WorldWideScience

Sample records for perfectly conducting thin

  1. Carrier mobility and crystal perfection of tetracene thin film FET

    International Nuclear Information System (INIS)

    Moriguchi, N.; Nishikawa, T.; Anezaki, T.; Unno, A.; Tachibana, M.; Kojima, K.

    2006-01-01

    It is well-known that the carrier mobility of an organic field effect semiconductor (FET) depended on the crystal quality and/or the crystal perfection of the organic thin films [T.W. Kelly, D.V. Muyres, P.F. Baude, T.P. Smith, T.D. Jones, Mater. Res. Soc. Symp. Proc. 771 (2003) L6.5.1; D.J. Gundlach, J.A. Nichols, L. Zhou, T.N. Jackson, Appl. Phys. Lett. 80 (2002) 2925; H.K. Lauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, J. Appl. Phys. 92 (2002) 5259; M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Appl. Phys. Lett. 81 (2002) 268; D. Knipp, R.A. Street, A.R. Volkel, Appl. Phys. Lett. 82 (2003) 3907; R. Ruiz, A.C. Mayer, G.G. Malliaras, Appl. Phys. Lett. 85 (2004) 4926; R.W.I. de Boer, M.E. Gershenson, A.F. Morpurgo, V. Podzorov, Phys. Stat. Sol. A 201 (2004) 1031]. To improve the crystal quality of the thin film many efforts were made. One of the important improvements was the surface treatment of the substrate. The tetracene thin film FET (top contact structure) was fabricated using the substrate, which was coated by a spin-coating method with a 0.1% poly α-methylstyrene (AMS) solution. The crystal quality was improved by this treatment so that the carrier mobility was higher than that of non-treatment. The maximum mobility of the AMS-treated sample was obtained to be 0.12 cm 2 /V s

  2. A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking

    Science.gov (United States)

    Borges, L. H. C.; Barone, F. A.

    2017-10-01

    In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v^{μ } coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v^{μ }. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v^{μ } exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror.

  3. A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [UNESP, Campus de Guaratingueta, DFQ, Guaratingueta, SP (Brazil); Barone, F.A. [IFQ, Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2017-10-15

    In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v{sup μ} coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v{sup μ}. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v{sup μ} exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror. (orig.)

  4. Generalized magneto-thermoviscoelasticity in a perfectly conducting ...

    Indian Academy of Sciences (India)

    on the theory of generalized thermoelastic diffusion with one relaxation time. ... cavity is taken to be traction free and subjected to both heating and external constant ... problems on wave propagation in a linear viscoelas- ... Let us consider a perfect electric conductor medium ... The energy equation in the context of general-.

  5. Pathways to prepare perfect Co_4N thin films

    International Nuclear Information System (INIS)

    Gupta, Rachana; Pandey, Nidhi; Gupta, Mukul

    2016-01-01

    Magnetic nitrides of 3d transition metals (M = Fe,Co,Ni) are interesting materials for applications in magnetic devices. Controlled nitridation of magnetic metals for small N content (∼ 10-20 at.%) is sufficient to provide them high mechanical strength and superior chemical stability as compared to pure metals. At the same time tetra metal nitrides (M_4N) are known to posses a saturation magnetization (Ms) which is even higher than the pure metal. In M_4N enhanced magnetic moment is caused by a volume expansion (compared to a hypothetical fcc metal). All M_4N share a common fcc structure, in which metal atoms are arranged in the fcc positions and N atoms occupy the body centered positions. Such incorporation of N atoms results in an expansion of the fcc lattice. Theoretical studies suggest that such volume expansion enhances the itinerary of conduction band electrons and results in spreading of bandwidth of 3d electrons thereby suppression of exchange splitting leading to a larger (than pure metal) Ms. We did polarized neutron reflectivity (PNR) to measure Ms of Co_4N thin films. We found that as LP increases, Ms also increases. Our results clearly show that the Co_4N phase is formed at much lower Ts and when deposited at high Ts, N atoms diffuse out leaving behind pure fcc Co phase which seems to have been mistaken for Co_4N phase in earlier works

  6. AN FDTD ALGORITHM WITH PERFECTLY MATCHED LAYERS FOR CONDUCTIVE MEDIA. (R825225)

    Science.gov (United States)

    We extend Berenger's perfectly matched layers (PML) to conductive media. A finite-difference-time-domain (FDTD) algorithm with PML as an absorbing boundary condition is developed for solutions of Maxwell's equations in inhomogeneous, conductive media. For a perfectly matched laye...

  7. Arbitrarily thin metamaterial structure for perfect absorption and giant magnification

    DEFF Research Database (Denmark)

    Jin, Yi; Xiao, Sanshui; Mortensen, N. Asger

    2011-01-01

    In our common understanding, for strong absorption or amplification in a slab structure, the desire of reducing the slab thickness seems contradictory to the condition of small loss or gain. In this paper, this common understanding is challenged. It is shown that an arbitrarily thin metamaterial ...

  8. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  9. Zero-point energy of N perfectly conducting concentric cylindrical shells

    International Nuclear Information System (INIS)

    Tatur, K.; Woods, L.M.

    2008-01-01

    The zero-point (Casimir) energy of N perfectly conducting, infinitely long, concentric cylindrical shells is calculated utilizing the mode summation technique. The obtained convergent expression is studied as a function of size, curvature and number of shells. Limiting cases, such as infinitely close shells or infinite radius shells are also investigated

  10. Higher order equivalent edge currents for fringe wave radar scattering by perfectly conducting polygonal plates

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    1992-01-01

    An approach for including higher order edge diffraction in the equivalent edge current (EEC) method is proposed. This approach, which applies to monostatic as well as bistatic radar configurations with perfectly conducting polygonal plates, involves three distinct sets of EECs. All of these sets...

  11. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  12. Thermal conductivity of nanoscale thin nickel films

    Institute of Scientific and Technical Information of China (English)

    YUAN Shiping; JIANG Peixue

    2005-01-01

    The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through the use of the Wiedemann-Franz law. At the average temperature of T = 300 K, which is lower than the Debye temperature ()D = 450 K,the results show that in a film thickness range of about 1-11 nm, the calculated cross-plane thermal conductivity decreases almost linearly with the decreasing film thickness, exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivities are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

  13. Thermal conductivities of thin, sputtered optical films

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO 2 /Si 3 N 4 ) n and Al(Al 2 O 3 /AIN) n . Sputtered films of more conventional materials like SiO 2 , Al 2 O 3 , Ta 2 O 5 , Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented

  14. Fluctuation conductivity of thin superconductive vanadium films

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Sidorenko, A.S.; Fogel, N.Y.

    1982-01-01

    Resistive transitions into the superconductive state are studied in thin [d >T/sub c/ the experimental data on the excess conductivity of the films agree qualitatively and quantitively with Aslamazov--Larkin theory. There is no Maki--Thompson contribution to fluctuation conductivity. Near T/sub c/ the excess conductivity sigma' changes exponentially with temperature in accordance with the predictions of the theory of the critical fluctuations of the order parameter. The values of the effective charge carrier mass defined from data on sigma' for the low fluctuation and critical fluctuation regions differ markedly. This difference is within the spread of effective masses for various charge carrier groups already known for vanadium. Causes of the difference in resistive behavior for the regions T >T/sub c/ are considered

  15. EMAT Evaluation of Thin Conductive Sheets

    Directory of Open Access Journals (Sweden)

    Ivo Cap

    2006-01-01

    Full Text Available At present a non-destructive testing of conducting materials becomes very important one in connection with monitoring and control of strategic technical facilities, e.g. nuclear power plants. There are more methods of material testing and evaluation and every of them has its advantages and disadvantages. Recently the electromagnetic methods are in increasing interest. There are many ways of conducting material testing. One of them often used utilises investigation of eddy currents induced in the surface layer by means of a proper coil. The arrangement is very simple and inexpensive but it offers only local information on cracks and other inhomogeneities in the thin surface layer. On the other hand there exist a method based on an electromagnetic – acoustic transducer (EMAT, which is able to generate and detect acoustic wave in a conducting body in a contact-less way. The present paper deals with a survey of EMATs for investigation of thin metalliclayers by means of Lamb waves. The new design of generation coil is presented.

  16. Photoinduced conductivity in tin dioxide thin films

    International Nuclear Information System (INIS)

    Muraoka, Y.; Takubo, N.; Hiroi, Z.

    2009-01-01

    The effects of ultraviolet light irradiation on the conducting properties of SnO 2-x thin films grown epitaxially on TiO 2 or Al 2 O 3 single-crystal substrates are studied at room temperature. A large increase in conductivity by two to four orders of magnitude is observed with light irradiation in an inert atmosphere and remains after the light is removed. The high-conducting state reverts to the original low-conducting state by exposing it to oxygen gas. These reversible phenomena are ascribed to the desorption and adsorption of negatively charged oxygen species at the grain boundaries, which critically change the mobility of electron carriers already present inside grains by changing the potential barrier height at the grain boundary. The UV light irradiation provides us with an easy and useful route to achieve a high-conducting state even at low carrier density in transparent conducting oxides and also to draw an invisible conducting wire or a specific pattern on an insulating film.

  17. Transport tensors in perfectly aligned low-density fluids: Self-diffusion and thermal conductivity

    International Nuclear Information System (INIS)

    Singh, G. S.; Kumar, B.

    2001-01-01

    The modified Taxman equation for the kinetic theory of low-density fluids composed of rigid aspherical molecules possessing internal degrees of freedom is generalized to obtain the transport tensors in a fluid of aligned molecules. The theory takes care of the shape of the particles exactly but the solution has been obtained only for the case of perfectly aligned hard spheroids within the framework of the first Sonine polynomial approximation. The expressions for the thermal-conductivity components have been obtained for the first time whereas the self-diffusion components obtained here turn out to be exactly the same as those derived by Kumar and Masters [Mol. Phys. >81, 491 (1994)] through the solution of the Lorentz-Boltzmann equation. All our expressions yield correct results in the hard-sphere limit

  18. Bistatic radar cross section of a perfectly conducting rhombus-shaped flat plate

    Science.gov (United States)

    Fenn, Alan J.

    1990-05-01

    The bistatic radar cross section of a perfectly conducting flat plate that has a rhombus shape (equilateral parallelogram) is investigated. The Ohio State University electromagnetic surface patch code (ESP version 4) is used to compute the theoretical bistatic radar cross section of a 35- x 27-in rhombus plate at 1.3 GHz over the bistatic angles 15 deg to 142 deg. The ESP-4 computer code is a method of moments FORTRAN-77 program which can analyze general configurations of plates and wires. This code has been installed and modified at Lincoln Laboratory on a SUN 3 computer network. Details of the code modifications are described. Comparisons of the method of moments simulations and measurements of the rhombus plate are made. It is shown that the ESP-4 computer code provides a high degree of accuracy in the calculation of copolarized and cross-polarized bistatic radar cross section patterns.

  19. Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency

    Science.gov (United States)

    Park, Won-Kwang; Lesselier, Dominique

    2009-11-01

    We propose a non-iterative MUSIC (MUltiple SIgnal Classification)-type algorithm for the time-harmonic electromagnetic imaging of one or more perfectly conducting, arc-like cracks found within a homogeneous space R2. The algorithm is based on a factorization of the Multi-Static Response (MSR) matrix collected in the far-field at a single, nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition), followed by the calculation of a MUSIC cost functional expected to exhibit peaks along the crack curves each half a wavelength. Numerical experimentation from exact, noiseless and noisy data shows that this is indeed the case and that the proposed algorithm behaves in robust manner, with better results in the TM mode than in the TE mode for which one would have to estimate the normal to the crack to get the most optimal results.

  20. Optimization of loss and gain multilayers for reducing the scattering of a perfect conducting cylinder

    Science.gov (United States)

    Zhen-Zhong, Yu; Guo-Shu, Zhao; Gang, Sun; Hai-Fei, Si; Zhong, Yang

    2016-07-01

    Reduction of electromagnetic scattering from a conducting cylinder could be achieved by covering it with optimized multilayers of normal dielectric and plasmonic material. The plasmonic material with intrinsic losses could degrade the cloaking effect. Using a genetic algorithm, we present the optimized design of loss and gain multilayers for reduction of the scattering from a perfect conducting cylinder. This multilayered structure is theoretically and numerically analyzed when the plasmonic material with low loss and high loss respectively is considered. We demonstrate by full-wave simulation that the optimized nonmagnetic gain-loss design can greatly compensate the decreased cloaking effect caused by loss material, which facilitates the realization of practical electromagnetic cloaking, especially in the optical range. Project supported by the Research Foundation of Jinling Institute of Technology, China (Grant No. JIT-B-201426), the Jiangsu Modern Education and Technology Key Project, China (Grant No. 2014-R-31984), the Jiangsu 333 Project Funded Research Project, China (Grant No. BRA2010004), and the University Science Research Project of Jiangsu Province, China (Grant No. 15KJB520010).

  1. Optical conductivity of topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.; Peeters, F. M.

    2015-01-01

    We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k·p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi 2 Se 3 -based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy ℏω<200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200<ℏω<300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value σ 0 =e 2 /(8ℏ) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime (ℏω>300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF

  2. Second-order interactions in a medium containing perfect-conducting hyperspherical inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Alexopoulos, A [Electronic Warfare and Radar Division, Defence Science and Technology Organisation, PO Box 1500, Edinbrugh 5111 (Australia)

    2004-12-10

    We consider the interaction between two hyperspherical inclusions surrounded by a medium experiencing an E-field in the perfect-conducting limit. By the use of d-dimensional dipole moments we show that the dielectric function of the medium can be calculated to any order n. In particular, {kappa}{sup (d)}{sub n}, the coefficient of O(c{sup 2}) in the series expansion for the dielectric function is determined in terms of a dimensional dependence, which even though it is mathematically complex, proves to be superior in convergence to other methods. We calculate the potential difference between the two hyperspheres for various limits, including the all important closely-packed limit. Using the theory of continued fractions, we investigate the convergence of the interaction terms between the two inclusions and obtain results that reduce the enormous number of calculations that need to be computed as n {yields} {infinity}. The latter may be useful in the pursuit of a theory that resums the complicated interaction terms present in the two-body + medium problem with a view towards an improved effective medium theory.

  3. Perfect absorption in nanotextured thin films via Anderson-localized photon modes

    Science.gov (United States)

    Aeschlimann, Martin; Brixner, Tobias; Differt, Dominik; Heinzmann, Ulrich; Hensen, Matthias; Kramer, Christian; Lükermann, Florian; Melchior, Pascal; Pfeiffer, Walter; Piecuch, Martin; Schneider, Christian; Stiebig, Helmut; Strüber, Christian; Thielen, Philip

    2015-10-01

    The enhancement of light absorption in absorber layers is crucial in a number of applications, including photovoltaics and thermoelectrics. The efficient use of natural resources and physical constraints such as limited charge extraction in photovoltaic devices require thin but efficient absorbers. Among the many different strategies used, light diffraction and light localization at randomly nanotextured interfaces have been proposed to improve absorption. Although already exploited in commercial devices, the enhancement mechanism for devices with nanotextured interfaces is still subject to debate. Using coherent two-dimensional nanoscopy and coherent light scattering, we demonstrate the existence of localized photonic states in nanotextured amorphous silicon layers as used in commercial thin-film solar cells. Resonant absorption in these states accounts for the enhanced absorption in the long-wavelength cutoff region. Our observations establish that Anderson localization—that is, strong localization—is a highly efficient resonant absorption enhancement mechanism offering interesting opportunities for the design of efficient future absorber layers.

  4. A coupled magneto-thermo-elastic problem in a perfectly conducting elastic half-space with thermal relaxation

    Directory of Open Access Journals (Sweden)

    S. K. Roy-Choudhuri

    1990-01-01

    Full Text Available In the present paper we consider the magneto-thermo-elastic wave produced by a thermal shock in a perfectly conducting elastic half-space. Here the Lord-Shulman theory of thermoelasticity [1] is used to account for the interaction between the elastic and thermal fields. The solution obtained in analytical form reduces to those of Kaliski and Nowacki [2] when the coupling between the temperature and strain fields and the relaxation time are neglected. The results also agree with those of Massalas and DaLamangas [3] in absence of the thermal relaxation time.

  5. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  6. Electrical conductivity of free-standing mesoporous silicon thin films

    International Nuclear Information System (INIS)

    Khardani, M.; Bouaicha, M.; Dimassi, W.; Zribi, M.; Aouida, S.; Bessais, B.

    2006-01-01

    The effective electrical conductivity of free-standing p + -type porous silicon layers having porosities ranging from 30% to 80% was studied at both experimental and theoretical sides. An Effective Medium Approximation (EMA) model was used as a theoretical support. The porous silicon (PS) films were prepared by the electrochemical etching method for different values of the anodic current density. In order to model the PS electrical conductivity, the free-standing porous layer was assumed to be formed of three phases; vacuum, oxide and Si nanocrystallites. The analytical expression of the electrical conductivity of the Si nanocrystallites was established using the quantum confinement theory. This enables us to correlate the electrical conductivity of the mesoporous film to the value of the effective band gap energy estimated from the absorption coefficient. A perfect agreement between the theoretical and the experimental electrical conductivity values was obtained for all prospected PS porosities

  7. The exact calculation of the e. m. field arising from the scattering of twodimensional electromagnetic waves at a perfectly conducting cylindrical surface of arbitrary shape

    NARCIS (Netherlands)

    Hoenders, B.J.

    1982-01-01

    The scattered field generated by the interaction of an incoming twodimensional electromagnetic wave with a cylindrical perfectly conducting surface is calculated. The scattered field is obtained in closed form.

  8. An exact line integral representation of the physical optics scattered field: the case of a perfectly conducting polyhedral structure illuminated by electric Hertzian dipoles

    DEFF Research Database (Denmark)

    Johansen, Peter M.; Breinbjerg, Olav

    1995-01-01

    An exact line integral representation of the electric physical optics scattered field is presented. This representation applies to scattering configurations with perfectly electrically conducting polyhedral structures illuminated by a finite number of electric Hertzian dipoles. The positions...

  9. Variations in thermoelectric power of thin monocrystalline films with conductivity

    Science.gov (United States)

    Tellier, C. R.; Tosser, A. J.; Hafid, L.

    1980-12-01

    Starting from the bi-dimensional model for grain boundaries in monocrystalline thin films, the difference in thermoelectric power is expressed in terms of conductivity and energy dependence of the bulk electronic mean free path U. A new procedure is suggested for measuring U.

  10. Electrical Conductivity of CUXS Thin Film Deposited by Chemical ...

    African Journals Online (AJOL)

    Thin films of CuxS have successfully been deposited on glass substrates using the Chemical Bath Deposition (CBD) technique. The films were then investigated for their electrical properties. The results showed that the electrical conductivities of the CuxS films with different molarities (n) of thiourea (Tu), determined using ...

  11. Ion-conductivity of thin film Li-Borate glasses

    International Nuclear Information System (INIS)

    Abouzari, M.R.S.

    2007-01-01

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi 2 O.(1-y)B 2 O 3 with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10 -10 Ω -1 cm -1 and 2.5 x 10 -6 Ω -1 cm -1 when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but we have also found that the depression arises from the nature of ionic motions. The model

  12. Ion-conductivity of thin film Li-Borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abouzari, M.R.S.

    2007-12-17

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi{sub 2}O.(1-y)B{sub 2}O{sub 3} with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10{sup -10} {omega}{sup -1}cm{sup -1} and 2.5 x 10{sup -6} {omega}{sup -1}cm{sup -1} when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but

  13. Highly conductive grain boundaries in copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deuermeier, Jonas, E-mail: j.deuermeier@campus.fct.unl.pt [Department of Materials Science, Faculty of Science and Technology, i3N/CENIMAT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal); Department of Materials and Earth Sciences, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, D-64287 Darmstadt (Germany); Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Department of Materials and Earth Sciences, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, D-64287 Darmstadt (Germany); Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Fortunato, Elvira [Department of Materials Science, Faculty of Science and Technology, i3N/CENIMAT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-06-21

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu{sub 2}O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu{sub 2}O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu{sub 2}O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  14. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele; Roddatis, Vladimir; Fabbri, Emiliana; Schneider, Christof W; Lippert, Thomas; Traversa, Enrico; Kilner, John A

    2015-01-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used

  15. Dipolar Excitation of a Perfectly Electrically Conducting Spheroid in a Lossless Medium at the Low-Frequency Regime

    Directory of Open Access Journals (Sweden)

    Panayiotis Vafeas

    2018-01-01

    Full Text Available The electromagnetic vector fields, which are scattered off a highly conductive spheroid that is embedded within an otherwise lossless medium, are investigated in this contribution. A time-harmonic magnetic dipolar source, located nearby and operating at low frequencies, serves as the excitation primary field, being arbitrarily orientated in the three-dimensional space. The main idea is to obtain an analytical solution of this scattering problem, using the appropriate system of spheroidal coordinates, such that a possibly fast numerical estimation of the scattered fields could be useful for real data inversion. To this end, incident and scattered as well as total fields are written in a rigorous low-frequency manner in terms of positive integral powers of the real-valued wave number of the exterior environment. Then, the Maxwell-type problem is converted to interconnected Laplace’s or Poisson’s equations, complemented by the perfectly conducting boundary conditions on the spheroidal object and the necessary radiation behavior at infinity. The static approximation and the three first dynamic contributors are sufficient for the present study, while terms of higher orders are neglected at the low-frequency regime. Henceforth, the 3D scattering boundary value problems are solved incrementally, whereas the determination of the unknown constant coefficients leads either to concrete expressions or to infinite linear algebraic systems, which can be readily solved by implementing standard cut-off techniques. The nonaxisymmetric scattered magnetic and electric fields follow and they are obtained in an analytical compact fashion via infinite series expansions in spheroidal eigenfunctions. In order to demonstrate the efficiency of our analytical approach, the results are degenerated so as to recover the spherical case, which validates this approach.

  16. Thin film photovoltaic devices with a minimally conductive buffer layer

    Science.gov (United States)

    Barnes, Teresa M.; Burst, James

    2016-11-15

    A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.

  17. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  18. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    Science.gov (United States)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  19. Conductance Thin Film Model of Flexible Organic Thin Film Device using COMSOL Multiphysics

    Science.gov (United States)

    Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    We developed a virtual model to analyze the electrical conductivity of multilayered thin films placed above a graphene conducting and flexible polyethylene terephthalate (PET) substrate. The organic layers of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole conducting layer, poly(3-hexylthiophene-2,5-diyl) (P3HT), as a p-type, phenyl-C61-butyric acid methyl ester (PCBM) and as n-type, with aluminum as a top conductor. COMSOL Multiphysics was the software we used to develop the virtual model to analyze potential variations and conductivity through the thin-film layers. COMSOL Multiphysics software allows simulation and modeling of physical phenomena represented by differential equations such as heat transfer, fluid flow, electromagnetism, and structural mechanics. In this work, using the AC/DC, electric currents module we defined the geometry of the model and properties for each of the six layers: PET/graphene/PEDOT:PSS/P3HT/PCBM/aluminum. We analyzed the model with varying thicknesses of graphene and active layers (P3HT/PCBM). This simulation allowed us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates, useful for applications in solar cell devices.

  20. High mobility transparent conducting oxides for thin film solar cells

    International Nuclear Information System (INIS)

    Calnan, S.; Tiwari, A.N.

    2010-01-01

    A special class of transparent conducting oxides (TCO) with high mobility of > 65 cm 2 V -1 s -1 allows film resistivity in the low 10 -4 Ω cm range and a high transparency of > 80% over a wide spectrum, from 300 nm to beyond 1500 nm. This exceptional coincidence of desirable optical and electrical properties provides opportunities to improve the performance of opto-electronic devices and opens possibilities for new applications. Strategies to attain high mobility (HM) TCO materials as well as the current status of such materials based on indium and cadmium containing oxides are presented. Various concepts used to understand the underlying mechanisms for high mobility in HMTCO films are discussed. Examples of HMTCO layers used as transparent electrodes in thin film solar cells are used to illustrate possible improvements in solar cell performance. Finally, challenges and prospects for further development of HMTCO materials are discussed.

  1. Bianchi - I, II, VIII, IX and Kantowski-Sachs-like cosmological models with perfect fluid and electromagnetic fields with conductivity current

    International Nuclear Information System (INIS)

    Portugal, R.

    1984-01-01

    Three processes of solutions of the Einstein-Maxwell equations for Bianchi - I, II, VIII, IX and Kantowski-Sachs-like cosmological models with perfect fluid in magnetohydrolodynamical regimem are presented. Diagonal Bianchi-like models are considered with two anisotropy direction in the maximum. Solutions are found for Bianchi-II and IX-like models with energy conditions to be analyzed. Solutions are found for Bianchi-IX and Kantowski-Sachs-Like models with positive electric conductivity and satisfering to the predominant energy conditions. Solutions are formed for isotropic Kantowski-Sachs-Like models satisfering to the equation of state p=λρ, 0 0, admiting, in addition to the perfect fluid, electric field only. It is shown that a class of Bertotti-Robinson-like solutions is unstable by perturbations and it is carried in Kantowski-Sachs-like models with non-null electric conductivity. (L.C.) [pt

  2. Thin inclusion approach for modelling of heterogeneous conducting materials

    Science.gov (United States)

    Lavrov, Nikolay; Smirnova, Alevtina; Gorgun, Haluk; Sammes, Nigel

    Experimental data show that heterogeneous nanostructure of solid oxide and polymer electrolyte fuel cells could be approximated as an infinite set of fiber-like or penny-shaped inclusions in a continuous medium. Inclusions can be arranged in a cluster mode and regular or random order. In the newly proposed theoretical model of nanostructured material, the most attention is paid to the small aspect ratio of structural elements as well as to some model problems of electrostatics. The proposed integral equation for electric potential caused by the charge distributed over the single circular or elliptic cylindrical conductor of finite length, as a single unit of a nanostructured material, has been asymptotically simplified for the small aspect ratio and solved numerically. The result demonstrates that surface density changes slightly in the middle part of the thin domain and has boundary layers localized near the edges. It is anticipated, that contribution of boundary layer solution to the surface density is significant and cannot be governed by classic equation for smooth linear charge. The role of the cross-section shape is also investigated. Proposed approach is sufficiently simple, robust and allows extension to either regular or irregular system of various inclusions. This approach can be used for the development of the system of conducting inclusions, which are commonly present in nanostructured materials used for solid oxide and polymer electrolyte fuel cell (PEMFC) materials.

  3. Dietary restraint in college women : Fear of an imperfect fat self is stronger than hope of a perfect thin self

    NARCIS (Netherlands)

    Dalley, Simon E.; Toffanin, Paolo; Pollet, Thomas V.

    We predicted that the perceived likelihood of acquiring a hoped-for thin self would mediate perfectionistic strivings on dietary restraint, and that the perceived likelihood of acquiring a feared fat self would mediate perfectionistic concerns on dietary restraint. We also predicted that the

  4. Dietary restraint in college women: Fear of an imperfect fat self is stronger than hope of a perfect thin self

    NARCIS (Netherlands)

    Dalley, S.E.; Toffanin, P.; Pollet, T.V.

    2012-01-01

    We predicted that the perceived likelihood of acquiring a hoped-for thin self would mediate perfectionistic strivings on dietary restraint, and that the perceived likelihood of acquiring a feared fat self would mediate perfectionistic concerns on dietary restraint. We also predicted that the

  5. Ab initio thermodynamics for the growth of ultra-thin Cu film on a perfect Mg O(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovskii, Yuri F. [Institute for Solid State Physics, University of Latvia, Kengaraga str. 8, Riga LV-1063 (Latvia)]. E-mail: quantzh@latnet.lv; Fuks, David [Materials Engineering Department, Ben-Gurion University of the Negev, POB 653, Beer-Sheva IL-84105 (Israel); Kotomin, Eugene A. [Institute for Solid State Physics, University of Latvia, Kengaraga str. 8, Riga LV-1063 (Latvia); Dorfman, Simon [Department of Physics, Israel Institute of Technology-Technion, Haifa IL-32000 (Israel)

    2005-12-15

    Controlled growth of thin metallic films on oxide substrates is important for numerous micro-and nano electronic applications. Our ab initio study is devoted to the periodic slab simulations for a series of ordered 2a Cu superlattices on the regular Mg O(001) substrate. Submonolayer and monolayer substrate Cu coverages were calculated using the Daft-Gaga method, as implemented into the Crystal-98 code. The results of ab initio calculations have been combined with thermodynamic theory which allows US to predict the growth mode of ultra-thin metal films (spinodal decomposition vs. nucleation-and-growth regime) as a function of the metal coverage and the temperature, and to estimate the metal density in clusters. We show that 3a cluster formation becomes predominant already at low Cu coverages, in agreement with the experiment.

  6. Ab initio thermodynamics for the growth of ultra-thin Cu film on a perfect Mg O(001) surface

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F.; Fuks, David; Kotomin, Eugene A.; Dorfman, Simon

    2005-01-01

    Controlled growth of thin metallic films on oxide substrates is important for numerous micro-and nano electronic applications. Our ab initio study is devoted to the periodic slab simulations for a series of ordered 2a Cu superlattices on the regular Mg O(001) substrate. Submonolayer and monolayer substrate Cu coverages were calculated using the Daft-Gaga method, as implemented into the Crystal-98 code. The results of ab initio calculations have been combined with thermodynamic theory which allows US to predict the growth mode of ultra-thin metal films (spinodal decomposition vs. nucleation-and-growth regime) as a function of the metal coverage and the temperature, and to estimate the metal density in clusters. We show that 3a cluster formation becomes predominant already at low Cu coverages, in agreement with the experiment

  7. Dietary restraint in college women: fear of an imperfect fat self is stronger than hope of a perfect thin self.

    Science.gov (United States)

    Dalley, Simon E; Toffanin, Paolo; Pollet, Thomas V

    2012-09-01

    We predicted that the perceived likelihood of acquiring a hoped-for thin self would mediate perfectionistic strivings on dietary restraint, and that the perceived likelihood of acquiring a feared fat self would mediate perfectionistic concerns on dietary restraint. We also predicted that the mediation pathway from perfectionistic concerns to dietary restraint would have a greater impact than that from perfectionistic strivings. Participants were 222 female college students who reported their height and weight and completed measures of perfectionism, the likelihood of acquiring the feared fat and hoped-for thin selves, and dietary restraint. Statistical analyses revealed that the perceived likelihood of acquiring the feared fat self mediated both perfectionistic concerns and perfectionistic strivings on dietary restraint, and that the mediating pathway from perfectionistic concerns to dietary restraint was greater than that from perfectionistic strivings. Implications for future research and eating pathology interventions are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Extending the 3ω method: thermal conductivity characterization of thin films.

    Science.gov (United States)

    Bodenschatz, Nico; Liemert, André; Schnurr, Sebastian; Wiedwald, Ulf; Ziemann, Paul

    2013-08-01

    A lock-in technique for measurement of thermal conductivity and volumetric heat capacity of thin films is presented. The technique is based on the 3ω approach using electrical generation and detection of oscillatory heat along a thin metal strip. Thin films are deposited onto the backside of commercial silicon nitride membranes, forming a bilayer geometry with distinct thermal parameters. Stepwise comparison to an adapted heat diffusion model delivers these parameters for both layers. Highest sensitivity is found for metallic thin films.

  9. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  10. The effect of ZnS thin film's electrical conductivity on electromagnetic ...

    African Journals Online (AJOL)

    The effect of electrical conductivity on an electromagnetic wave propagating through ZnS thin film is analyzed using electromagnetic wave equation with relevant boundary condition. The solution of this equation enabled us to obtain a parameter known as the skin depth that relates to the conductivity of the thin film. This was ...

  11. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing; Ben, Teng; Xu, Shixian; Qiu, Shilun

    2014-01-01

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous

  12. Thin, Conductive, Pyrrolyc film production for radioactive sources backings

    International Nuclear Information System (INIS)

    Rodriguez, L.; Arcos, J.M. los

    1993-01-01

    A procedure for electro polymerization of pyrrole has been set up in order to produce thin, (> 15 μg/cm2) homogeneous (thickness variation < 2%) films, with no need for additional metallization to be used as backings of radioactive sources, having 10-0,4 Kfl/sample, for 35-70 μg/cm . The experimental equipment, reagent and procedure utilized is described as well as the characterization of Pyrrolyc films produced. (Author) 28 refs

  13. Picture perfect

    DEFF Research Database (Denmark)

    Pless, Mette; Sørensen, Niels Ulrik

    ’Picture perfect’ – when perfection becomes the new normal This paper draws on perspectives from three different studies. One study, which focuses on youth life and lack of well-being (Sørensen et al 2011), one study on youth life on the margins of society (Katznelson et al 2015) and one study...

  14. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    Science.gov (United States)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  15. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    International Nuclear Information System (INIS)

    Li Na; Chen Fei; Shen Qiang; Wang Chuanbin; Zhang Lianmeng

    2013-01-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  16. AC electrical conductivity in amorphous indium selenide thin films

    International Nuclear Information System (INIS)

    Di Giulio, H.; Rella, R.; Tepore, A.

    1987-01-01

    In order to obtain additional information about the nature of the conduction mechanism in amorphous InSe films results of an experimental study concerning the frequency and temperature dependence of the ac conductivity are reported. The measurements were performed on specimens of different thickness and different electrode contact areas. The results can be explained assuming that conduction occurs by phonon-assisted hopping between localized states near the Fermi level

  17. Thermal conductivity of silicon nanocrystals and polystyrene nanocomposite thin films

    International Nuclear Information System (INIS)

    Juangsa, Firman Bagja; Muroya, Yoshiki; Nozaki, Tomohiro; Ryu, Meguya; Morikawa, Junko

    2016-01-01

    Silicon nanocrystals (SiNCs) are well known for their size-dependent optical and electronic properties; they also have the potential for low yet controllable thermal properties. As a silicon-based low-thermal conductivity material is required in microdevice applications, SiNCs can be utilized for thermal insulation. In this paper, SiNCs and polymer nanocomposites were produced, and their thermal conductivity, including the density and specific heat, was measured. Measurement results were compared with thermal conductivity models for composite materials, and the comparison shows a decreasing value of the thermal conductivity, indicating the effect of the size and presence of the nanostructure on the thermal conductivity. Moreover, employing silicon inks at room temperature during the fabrication process enables a low cost of fabrication and preserves the unique properties of SiNCs. (paper)

  18. Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex

    Science.gov (United States)

    Shao, Dongkai; Yotprayoonsak, Peerapong; Saunajoki, Ville; Ahlskog, Markus; Virtanen, Jorma; Kangas, Veijo; Volodin, Alexander; Van Haesendonck, Chris; Burdanova, Maria; Mosley, Connor D. W.; Lloyd-Hughes, James

    2018-04-01

    We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm-1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance.

  19. Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol

    NARCIS (Netherlands)

    Nardes, A.M.; Kemerink, M.; Kok, de M.M.; Vinken, E.; Maturova, K.; Janssen, R.A.J.

    2008-01-01

    The electrical properties of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion using different concentrations of sorbitol have been studied in detail. Although it is well known that sorbitol enhances the conductivity of PEDOT:PSS thin

  20. There's no place like Ohm: conduction in oxide thin films.

    Science.gov (United States)

    Scott, J F

    2014-04-09

    A pedagogical essay is given that alerts researchers to the errors inherent in assigning linear I(V) current-voltage dependences to Ohmic conduction. Such a linear I(V) is necessary but not sufficient, since other mechanisms, including Simmons' modification of the basic Schottky emission theory, also give linear I(V) at small applied voltages. Discrimination among Ohmic, Schottky, space-charge limited, and other models requires accurate thickness dependence I(d) data, where for Ohmic conduction I=a/d, whereas for interface-limited mechanisms such as Simmons/Schottky, I is nearly independent of d.

  1. Space charge limited conduction in CdSe thin films

    Indian Academy of Sciences (India)

    Unknown

    of trap limited space charge limited conduction (SCLC) at higher voltage. The transition voltage (Vt ) from ohmic to SCLC is found to be quite independent of ambient temperature as well as intensity of illumination. SCLC is explained on the basis of the exponential trap distribution in CdSe films. Trap depths estimated from.

  2. Growth of conductive HfO{sub 2-x} thin films by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Kleebe, Hans-Joachim [Institut fuer Angewandte Geowissenschaften, TU Darmstadt (Germany)

    2009-07-01

    Thin films of oxygen deficient hafnium oxide were grown on single crystal c-cut and r-cut sapphire substrates by reactive molecular beam epitaxy. The oxidation conditions during growth were varied within a wide range using RF-activated oxygen. Hafnium oxide thin films were characterized using X-ray diffraction, resistivity measurements ({rho}-T) and transmission electron microscopy (TEM). The results show a dramatic increase in conductivity of the deposited oxygen deficient hafnium oxide thin films with decreasing oxidation conditions during growth. The electrical properties of deficient hafnium oxide thin films varied from insulating over semiconducting to conducting. X-ray diffraction data as well as TEM data rule out the possibility of conductivity due to metallic hafnium.

  3. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Science.gov (United States)

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  4. Thin films of conductive ZnO patterned by micromolding resulting in nearly isolated features

    NARCIS (Netherlands)

    Göbel, Ole; Blank, David H.A.; ten Elshof, Johan E.

    2010-01-01

    Patterned and continuous thin films of conductive Al-doped zinc oxide (ZnO:Al) were prepared on different substrates from a polymeric precursor solution. Their electric conductivity and light transmittance (for visible and UV light) was measured at room temperature. By means of a simple device,

  5. Structural, dielectric and AC conductivity study of Sb2O3 thin film ...

    Indian Academy of Sciences (India)

    52

    However, to date, no reports have appeared on impedance spectroscopy, modulus behavior, electrical conductivity, dielectric relaxation and dielectric properties of crystalline Sb2O3 thin films. This paper deals for the first time with the frequency and temperature dependence of AC conductivity and complex electric modulus ...

  6. Microscopic understanding of the anisotropic conductivity of PEDOT:PSS thin films

    NARCIS (Netherlands)

    Nardes, A.M.; Kemerink, M.; Janssen, R.A.J.; Bastiaansen, J.J.A.M.; Kiggen, N.M.M.; Langeveld, B.M.W.; Breemen, A.J.J.M. van; Kok, M.M. de

    2007-01-01

    The anisotropic conductivity of spin-coated poly(3,4- ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films by temperature-dependent conductivity measurements, has been analyzed. A detailed 3D morphological model was derived from topographic scanning tunneling microscopy (STM) and

  7. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    Science.gov (United States)

    Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.

    2016-07-01

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  8. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    Energy Technology Data Exchange (ETDEWEB)

    Jarad, Amer N., E-mail: amer78malay@yahoo.com.my; Ibrahim, Kamarulazizi, E-mail: kamarul@usm.my; Ahmed, Nasser M., E-mail: nas-tiji@yahoo.com [Nano-optoelectronic Research and Technology Laboratory School of physics, University of Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-07-06

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10{sup −5} (Ω.cm){sup −1}, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  9. ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing

    International Nuclear Information System (INIS)

    Liu, Y.; Li, Y.; Zeng, H.

    2013-01-01

    ZnO-based transparent conductive thin films have attracted much attention as a promising substitute material to the currently used indium-tin-oxide thin films in transparent electrode applications. However, the detailed function of the dopants, acting on the electrical and optical properties of ZnO-based transparent conductive thin films, is not clear yet, which has limited the development and practical applications of ZnO transparent conductive thin films. Growth conditions such as substrate type, growth temperature, and ambient atmosphere all play important roles in structural, electrical, and optical properties of films. This paper takes a panoramic view on properties of ZnO thin films and reviews the very recent works on new, efficient, low-temperature, and high-speed deposition technologies. In addition, we highlighted the methods of producing ZnO-based transparent conductive film on flexible substrate, one of the most promising and rapidly emerging research areas. As optimum-processing-parameter conditions are being obtained and their influencing mechanism is becoming clear, we can see that there will be a promising future for ZnO-based transparent conductive films.

  10. Conformable Skin-Like Conductive Thin Films with AgNWs Strips for Flexible Electronic Devices

    Directory of Open Access Journals (Sweden)

    Yuhang SUN

    2015-08-01

    Full Text Available Keeping good conductivity at high stretching strain is one of the main requirements for the fabrication of flexible electronic devices. The elastic nature of siloxane-based elastomers enables many innovative designs in wearable sensor devices and non-invasive insertion instruments, including skin-like tactile sensors. Over the last few years, polydimethylsiloxane (PDMS thin films have been widely used as the substrates in the fabrication of flexible electronic devices due to their good elasticity and outstanding biocompatibility. However, these kind of thin films usually suffer poor resistance to tearing and insufficient compliance to curved surfaces, which limits their applications. Currently no three-dimensionally mountable tactile sensor arrays have been reported commercially available. In this work, we developed a kind of mechanically compliant skin-like conductive thin film by patterning silver nano wire traces in strip-style on Dragon Skin® (DS substrates instead of PDMS. High cross- link quality was achieved then. To further improve the conductivity, a thin gold layer was coated onto the silver nanowires (AgNWs strips. Four different gold deposition routines have been designed and investigated by using different E-beam and spin coating processing methods. Owning to the intrinsically outstanding physical property of the Dragon Skin material and the uniform embedment built in the gold deposition processes, the DS/AgNWs thin films showed convincible advantages over PDMS/AgNWs thin films in both mechanical capability and conductive stability. Through experimental tests, the DS/AgNWs electrode thin films were proven to be able to maintain high conductivity following repeated linear deformations.

  11. Doping dependence of electrical and thermal conductivity of nanoscale polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin Jiezhu; Wang Qing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Haque, M A [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-05-26

    We performed simultaneous characterization of electrical and thermal conductivity of 55 nm thick polyaniline (PANI) thin films doped with different levels of camphor sulfonic acids (CSAs). The effect of the doping level is more pronounced on electrical conductivity than on thermal conductivity of PANIs, thereby greatly affecting their ratio that determines the thermoelectric efficiency. At the 60% (the molar ratio of CSA to phenyl-N repeat unit of PANI) doping level, PANI exhibited the maximum electrical and thermal conductivity due to the formation of mostly delocalized structures. Whereas polarons are the charge carriers responsible for the electrical conduction, phonons are believed to play a dominant role in the heat conduction in nanoscale doped PANI thin films.

  12. Transparent conducting zinc oxide thin film prepared by off-axis rf ...

    Indian Academy of Sciences (India)

    Highly conducting and transparent ZnO : Al thin films were grown by off-axis rf magnetron sputtering on amorphous silica substrates without any post-deposition annealing. The electrical and optical properties of the films deposited at various substrate temperatures and target to substrate distances were investigated in detail ...

  13. Optical approach to thermopower and conductivity measurements in thin-film semiconductors

    International Nuclear Information System (INIS)

    Dersch, H.; Amer, N.M.

    1984-01-01

    An optical beam deflection technique is applied to measure the Joule and Peltier heat generated by electric currents through thin-film semiconductors. The method yields a spatially resolved conductivity profile and allows the determination of Peltier coefficients. Results obtained on doped hydrogenated amorphous silicon films are presented

  14. Conduction mechanism in amorphous InGaZnO thin film transistors

    NARCIS (Netherlands)

    Bhoolokam, A.; Nag, M.; Steudel, S.; Genoe, J.; Gelinck, G.; Kadashchuk, A.; Groeseneken, G.; Heremans, P.

    2016-01-01

    We validate a model which is a combination of multiple trapping and release and percolation model for describing the conduction mechanism in amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFT). We show that using just multiple trapping and release or percolation model is

  15. A simple and flexible route to large-area conductive transparent graphene thin-films

    NARCIS (Netherlands)

    Arapov, K.; Goryachev, A.; With, de G.; Friedrich, H.

    2015-01-01

    Solution-processed conductive, flexible and transparent graphene thin films continue drawing attention from science and technology due to their potential for many electrical applications. Here, an up-scalable method for the solution processing of graphite to graphene and further to self-assembled

  16. Electric field dependence of excess electrical conductivity below transition temperature in thin superconducting lead films

    Energy Technology Data Exchange (ETDEWEB)

    Ashwini Kumar, P K; Duggal, V P [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-01-26

    Results of measurements of the electric field dependence of the excess electrical conductivity are reported in thin superconducting lead films below the transition temperature. It is observed that the normal state sheet resistance has some effect on the nonlinearity but the theory of Yamaji still fits well to the experimental data.

  17. A. C. conduction behaviour in amorphous WO 3 /CEO 2 thin film ...

    African Journals Online (AJOL)

    A. C. conduction behaviour in amorphous WO3/CEO2 thin film. B Yagoubi, C A Hogarth, A Boukorrt. Abstract. No Abstract. Technologies Avancees Vol. 17 2005: pp. 5-8. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/ta.v17i1.18478.

  18. Co-sputtered ZnO:Si thin films as transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Faure, C. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Clatot, J. [LRCS, 33 Rue St Leu, F-80039 Amiens (France); Teule-Gay, L.; Campet, G. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Labrugere, C. [CeCaMA, Universite de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac, F-33608 (France); Nistor, M. [National Institute for Lasers, Plasmas and Radiation Physics, L22, PO Box MG-36, 77125 Bucharest-Magurele (Romania); Rougier, A., E-mail: rougier@icmcb-bordeaux.cnrs.fr [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France)

    2012-12-01

    Silicon doped Zinc Oxide thin films, so-called SZO, were deposited at room temperature on glass and plastic substrates by co-sputtering of ZnO and SiO{sub 2} targets. The influence of the SiO{sub 2} target power supply (from 30 to 75 W) on the SZO thin film composition and crystallinity is discussed. Si/Zn atomic ratio, determined by X-ray microprobe, increases from 1.2 to 8.2 at.%. For Si/Zn ratio equal and lower than 3.9%, SZO (S{sub 3.9}ZO) thin films exhibit the Wurzite structure with the (0 0 2) preferred orientation. Larger Si content leads to a decrease in crystallinity. With Si addition, the resistivity decreases down to 3.5 Multiplication-Sign 10{sup -3} Ohm-Sign {center_dot}cm for SZO thin film containing 3.9 at.% of Si prior to an increase. The mean transmittance of S{sub 3.9}ZO thin film on glass substrate approaches 80% (it is about 90% for the film itself) in the visible range (from 400 to 750 nm). Co-sputtered SZO thin films are suitable candidates for large area transparent conductive oxides. - Highlights: Black-Right-Pointing-Pointer Si doped ZnO thin films by co-sputtering of ZnO and SiO{sub 2} targets. Black-Right-Pointing-Pointer Minimum of resistivity for Si doped ZnO thin films containing 3.9% of Si. Black-Right-Pointing-Pointer Si and O environments by X-ray Photoelectron Spectroscopy.

  19. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing

    2014-05-22

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  20. Transparent conductive zinc oxide basics and applications in thin film solar cells

    CERN Document Server

    Klein, Andreas; Rech, Bernd

    2008-01-01

    Zinc oxide (ZnO) belongs to the class of transparent conducting oxides which can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review. The editors and authors of this book are specialists in deposition, analysis and fabrication of thin-film solar cells and especially of ZnO. This book is intended as an overview and a data collection for students, engineers and scientist.

  1. Ionic conductivities of lithium phosphorus oxynitride glasses, polycrystals, and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.; Bates, J.B.; Chakoumakos, B.C.; Sales, B.C.; Kwak, B.S.; Zuhr, R.A. [Oak Ridge National Lab., TN (United States); Robertson, J.D. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Chemistry

    1994-11-01

    Various lithium phosphorus oxynitrides have been prepared in the form of glasses, polycrystals, and thin films. The structures of these compounds were investigated by X-ray and neutron diffraction, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). The ac impedance measurements indicate a significant improvement of ionic conductivity as the result of incorporation of nitrogen into the structure. In the case of polycrystalline Li{sub 2.88}PO{sub 3.73}N{sub 0.14} with the {gamma}-Li{sub 3}PO{sub 4} structure, the conductivity increased by several orders of magnitude on small addition of nitrogen. The highest conductivities in the bulk glasses and thin films were found to be 3.0 {times} 10{sup -7} and 8.9 {times} 10{sup -7} S{center_dot}cm{sup -1} at 25{degrees}C, respectively.

  2. EMHD micro-pumping of a non-conducting shear-thinning fluid under EDL phenomena

    International Nuclear Information System (INIS)

    Gaikwad, Harshad; Borole, Chetan; Basu, Dipankar N.; Mondal, Pranab K.

    2016-01-01

    The Electro-Magneto-Hydrodynamic (EMHD) pumping of a binary fluid system constituted by one non-conducting shear-thinning fluid (top layer) by exploiting the transverse momentum exchange through the interfacial viscous shearing effect from a conducting Newtonian fluid layer (bottom layer) in a microfluidic channel is investigated. An externally applied electric field drives the conducting fluid layer under the influence of an applied magnetic field as well. The study reveals that the volume transport of shear-thinning fluid gets augmented for low magnetic field strength, higher electrical double layer (EDL) effect, low viscosity ratio and moderate potential ratio. It is also established that the volumetric flow rate reduces significantly for the higher magnetic field strength. (author)

  3. Ionic conductivities of lithium phosphorus oxynitride glasses, polycrystals, and thin films

    International Nuclear Information System (INIS)

    Wang, B.; Bates, J.B.; Chakoumakos, B.C.; Sales, B.C.; Kwak, B.S.; Zuhr, R.A.; Robertson, J.D.

    1994-11-01

    Various lithium phosphorus oxynitrides have been prepared in the form of glasses, polycrystals, and thin films. The structures of these compounds were investigated by X-ray and neutron diffraction, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). The ac impedance measurements indicate a significant improvement of ionic conductivity as the result of incorporation of nitrogen into the structure. In the case of polycrystalline Li 2.88 PO 3.73 N 0.14 with the γ-Li 3 PO 4 structure, the conductivity increased by several orders of magnitude on small addition of nitrogen. The highest conductivities in the bulk glasses and thin films were found to be 3.0 x 10 -7 and 8.9 x 10 -7 S·cm -1 at 25 degrees C, respectively

  4. Highly transparent and conductive thin films fabricated with nano-silver/double-walled carbon nanotube composites.

    Science.gov (United States)

    Lee, Shie-Heng; Teng, Chih-Chun; Ma, Chen-Chi M; Wang, Ikai

    2011-12-01

    This study develops a technique for enhancing the electrical conductivity and optical transmittance of transparent double-walled carbon nanotube (DWNT) film. Silver nanoparticles were modified with a NH(2)(CH(2))(2)SH self-assembled monolayer terminated by amino groups and subsequent surface condensation that reacted with functionalized DWNTs. Ag nanoparticles were grafted on the surface of the DWNTs. The low sheet resistance of the resulting thin conductive film on a polyethylene terephthalate (PET) substrate was due to the increased contact areas between DWNTs and work function by grafting Ag nanoparticles on the DWNT surfaces. Increasing the contact area between DWNTs and work function improved the conductivity of the DWNT-Ag thin films. The prepared DWNT-Ag thin films had a sheet resistance of 53.4 Ω/sq with 90.5% optical transmittance at a 550 nm wavelength. After treatment with HNO(3) and annealing at 150 °C for 30 min, a lower sheet resistance of 45.8 Ω/sq and a higher transmittance of 90.4% could be attained. The value of the DC conductivity to optical conductivity (σ(DC)/σ(OP)) ratio is 121.3. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele

    2015-02-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.

  6. The thickness of DLC thin film affects the thermal conduction of HPLED lights

    Science.gov (United States)

    Hsu, Ming Seng; Huang, Jen Wei; Shyu, Feng Lin

    2016-09-01

    Thermal dissipation had an important influence in the quantum effect and life of light emitting diodes (LED) because it enabled heat transfer away from electric devices to the aluminum plate for heat removal. In the industrial processing, the quality of the thermal dissipation was decided by the gumming technique between the PCB and aluminum plate. In this study, we made the ceramic thin films of diamond like carbon (DLC) by vacuum sputtering between the substrate and high power light emitting diodes (HPLED) light to check the influence of heat transfer by DLC thin films. The ceramic dielectric coatings were characterized by several subsequent analyses, especially the measurement of real work temperature of HPLEDs. The X-Ray photoelectron spectroscopy (XPS) patterns revealed that ceramic phases were successfully grown onto the substrate. At the same time, the real work temperatures showed the thickness of DLC thin film coating effectively affected the thermal conduction of HPLEDs.

  7. Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films

    International Nuclear Information System (INIS)

    Kim, D J; Gruverman, A; Connell, J G; Seo, S S A

    2016-01-01

    Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO 3 and Pb(Zr,Ti)O 3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO 3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO 3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects. (paper)

  8. Purely hopping conduction in c-axis oriented LiNbO3 thin films

    Science.gov (United States)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Dielectric constant and ac conductivity of highly c-axis oriented LiNbO3 thin film grown by pulsed laser deposition were studied in a metal-insulator-metal configuration over a wide temperature (200 to 450 K) and frequency (100 Hz to 1 MHz) range. The preferred oriented Al (1%) doped ZnO film with electrical conductivity 1.1×103 Ω-1 cm-1 was deposited for dual purpose: (1) to serve as nucleating center for LiNbO3 crystallites along preferred c-axis growth direction, and (2) to act as a suitable bottom electrode for electrical studies. The room temperature dc conductivity (σdc) of LiNbO3 film was about 5.34×10-10 Ω-1 cm-1 with activation energy ˜0.3 eV, indicating extrinsic conduction. The ac conductivity σac was found to be much higher in comparison to σdc in the low temperature region (300 K), σac shows a weak frequency dependence, whereas dielectric constant exhibits a strong frequency dispersion. The dielectric dispersion data has been discussed in the light of theoretical models based on Debye type mixed conduction and purely hopping conduction. The dominant conduction in c-axis oriented LiNbO3 thin film is attributed to the purely hopping where both σdc and σac arise due to same mechanism.

  9. Improved electrical conduction properties in unintentionally-doped ZnO thin films treated by rapid thermal annealing

    International Nuclear Information System (INIS)

    Lee, Youngmin; Lee, Choeun; Shim, Eunhee; Jung, Eiwhan; Lee, Jinyong; Kim, Deukyoung; Lee, Sejoon; Fu, Dejun; Yoon, Hyungdo

    2011-01-01

    The effects of thermal treatments on the electrical conduction properties for the unintentionally doped ZnO thin films were investigated. Despite the decreased carrier density in the annealed ZnO thin films, the conductivity was increased because the contribution of the effective carrier mobility to the conductivity of the unintentionally-doped ZnO thin films is greater than that of the carrier density. The resistivity exponentially decreased with increasing RTA temperature, and this result was confirmed to come from the enhanced effective carrier-mobility, which originated from the increased crystallite size in the annealed ZnO thin films.

  10. Improved electrical conduction properties in unintentionally-doped ZnO thin films treated by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Lee, Choeun; Shim, Eunhee; Jung, Eiwhan; Lee, Jinyong; Kim, Deukyoung; Lee, Sejoon [Dongguk University-Seoul, Seoul (Korea, Republic of); Fu, Dejun [Wuhan University, Wuhan (China); Yoon, Hyungdo [Korea Electronics Technology Institute, Seongnam (Korea, Republic of)

    2011-10-15

    The effects of thermal treatments on the electrical conduction properties for the unintentionally doped ZnO thin films were investigated. Despite the decreased carrier density in the annealed ZnO thin films, the conductivity was increased because the contribution of the effective carrier mobility to the conductivity of the unintentionally-doped ZnO thin films is greater than that of the carrier density. The resistivity exponentially decreased with increasing RTA temperature, and this result was confirmed to come from the enhanced effective carrier-mobility, which originated from the increased crystallite size in the annealed ZnO thin films.

  11. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui

    2013-02-21

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  12. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui; Xiao, Jiang; Manchon, Aurelien; Maekawa, Sadamichi

    2013-01-01

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  13. Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity

    Science.gov (United States)

    Varé, Thomas; Nouar, Chérif; Métivier, Christel

    2017-10-01

    Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbitrary thickness and finite thermal conductivity is considered. The first part of the paper deals with the primary bifurcation and the relative stability of convective patterns at threshold. Weakly nonlinear analysis combined with Stuart-Landau equation is used. The competition between squares and rolls, as a function of the shear-thinning degree of the fluid, the slabs' thickness, and the ratio of the thermal conductivity of the slabs to that of the fluid is investigated. Computations of heat transfer coefficients are in agreement with the maximum heat transfer principle. The second part of the paper concerns the stability of the convective patterns toward spatial perturbations and the determination of the band width of the stable wave number in the neighborhood of the critical Rayleigh number. The approach used is based on the Ginzburg-Landau equations. The study of rolls stability shows that: (i) for low shear-thinning effects, the band of stable wave numbers is bounded by zigzag instability and cross-roll instability. Furthermore, the marginal cross-roll stability boundary enlarges with increasing shear-thinning properties; (ii) for high shear-thinning effects, Eckhaus instability becomes more dangerous than cross-roll instability. For square patterns, the wave number selection is always restricted by zigzag instability and by "rectangular Eckhaus" instability. In addition, the width of the stable wave number decreases with increasing shear-thinning effects. Numerical simulations of the planform evolution are also presented to illustrate the different instabilities considered in the paper.

  14. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    Science.gov (United States)

    Simpson, Lin Jay

    2013-12-17

    A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).

  15. MOCVD growth of transparent conducting Cd2SnO4 thin films

    International Nuclear Information System (INIS)

    Metz, A.W.; Poeppelmeier, K.R.; Marks, T.J.; Lane, M.A.; Kannewurt, C.R.

    2004-01-01

    The first preparation of transparent conducting Cd 2 SnO 4 thin films by a simple MOCVD process is described. As-deposited films using Cd(hfa) 2 (TMEDA) (Figure), at 365 C are found to be highly crystalline with a relatively wide range of grain size of 100-300 nm. XRD indicates a cubic spinel Cd 2 SnO 4 crystal structure and the possible presence of a small amount of CdO. The films exhibit conductivities of 2170 S/cm and a bandgap of 3.3 eV, rivaling those of commercial tin-doped indium oxide. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  16. Measurement of the thermal conductivity of thin insulating anisotropic material with a stationary hot strip method

    International Nuclear Information System (INIS)

    Jannot, Yves; Degiovanni, Alain; Félix, Vincent; Bal, Harouna

    2011-01-01

    This paper presents a method dedicated to the thermal conductivity measurement of thin insulating anisotropic materials. The method is based on three hot-strip-type experiments in which the stationary temperature is measured at the center of the hot strip. A 3D model of the heat transfer in the system is established and simulated to determine the validity of a 2D transfer hypothesis at the center of the hot strip. A simplified 2D model is then developed leading to the definition of a geometrical factor calculable from a polynomial expression. A very simple calculation method enabling the estimation of the directional thermal conductivities from the three stationary temperature measurements and from the geometrical factor is presented. The uncertainties on each conductivity are estimated. The method is then validated by measurements on polyethylene foam and Ayous (anistropic low-density tropical wood); the estimated values of the thermal conductivities are in good agreement with the values estimated using the hot plate and the flash method. The method is finally applied on a thin super-insulating fibrous material for which no other method is able to measure the in-plane conductivity

  17. Development of In-plane Thermal Conductivity Calculation Methods in Thin Films

    Directory of Open Access Journals (Sweden)

    A. A. Barinov

    2017-01-01

    Full Text Available The future nanoelectronics development involves using the smaller- -and-smaller-sized circuit components based on the micro- and nanostructures. This causes a growth of the specific heat flows up to 100 W/cm2. Since performance of electronic devices is strongly dependent on the temperature there is a challenge to create the heat transfer models, which take into account the size effect and ensure a reliable estimate of the thermal conductivity. This is one of the crucial tasks for development of new generations of integrated circuits.The paper studies heat transfer processes using the silicon thin films as an example. Thermal conductivity calculations are performed taking into account the influence of the classical size effect in the context of the Sondheimer model based on the solution of the Boltzmann transport equation.The paper, for the first time, presents and considers the influence of various factors on the thermal conductivity of thin films, namely temperature, film thickness, polarization of the phonon waves (transverse and longitudinal, velocity and relaxation time versus frequency for the phonons of different wave types.Based on the analysis, three models with different accuracy are created to estimate the influence of detailing processes under consideration on the thermal conductivity in a wide range of temperatures (from 10 K to 450 К and film thickness (from 10 nm to 100 µm.So in the model I for the first time in calculating thermal conductivity of thin films we properly and circumstantially take into account the dependence of the velocity and the relaxation time of phonons on the frequency and polarization. The obtained values are in a good agreement with available experimental data and theoretical models of other authors. In the following models we use few average methods for relaxation times and velocities, which leads to significant reduction in calculating accuracy up to the values exceeding 100%.Therefore, when calculating

  18. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    International Nuclear Information System (INIS)

    Mohd Ali, N I; Misran, N; Mansor, M F; Jamlos, M F

    2017-01-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified. (paper)

  19. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    Science.gov (United States)

    Ali, N. I. Mohd; Misran, N.; Mansor, M. F.; Jamlos, M. F.

    2017-05-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified.

  20. Local photoconductivity of microcrystalline silicon thin films measured by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ledinsky, Martin; Fejfar, Antonin; Vetushka, Aliaksei; Stuchlik, Jiri; Rezek, Bohuslav; Kocka, Jan [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i. Cukrovarnicka 10, 162 00 Praha 6 (Czech Republic)

    2011-11-15

    Local currents measured under standard conductive atomic force microscopy (C-AFM) conditions on microcrystalline silicon ({mu}c-Si:H) thin films were studied. It was shown that the AFM detection diode illuminating the AFM cantilever (see the figure on the right side) 100 x enhanced the current flows through the photosensitive {mu}c-Si:H layer. The local current map and current-voltage characteristics were measured under dark conditions. This study enables mapping of both the dark current and photocurrent. C-AFM cantilever illuminated by the detection diode during measurement on {mu}c-Si:H thin film. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Improvement of the optoelectronic properties of tin oxide transparent conductive thin films through lanthanum doping

    Energy Technology Data Exchange (ETDEWEB)

    Mrabet, C., E-mail: chokri.mrabet@hotmail.com; Boukhachem, A.; Amlouk, M.; Manoubi, T.

    2016-05-05

    This work highlights some physical investigations on tin oxide thin films doped with different lanthanum content (ratio La–to-Sn = 0–3%). Such doped thin films have been successfully grown by spray pyrolysis onto glass substrates at 450 °C. X-ray diffraction (XRD) patterns showed that SnO{sub 2}:La thin films were polycrystalline with tetragonal crystal structure. The preferred orientation of crystallites for undoped SnO{sub 2} thin film was along (110) plane, whereas La-doped ones have rather preferential orientations along (200) direction. Although the grain size values exhibited a decreasing tendency with increasing doping content confirming the role of La as a grain growth inhibitor, dislocation density and microstrain values showed an increasing tendency. Also, Raman spectroscopy shows the bands corresponding to the tetragonal structure for the entire range of La doping. The same technique confirms the presence of La{sub 2}O{sub 3} as secondary phase. Moreover, SEM images showed a porous architecture with presence of big clusters with different sizes and shapes resulting from the agglomeration of small grains round shaped. Photoluminescence spectra of SnO{sub 2}:La thin films exhibit a decrease in the emission intensity with La concentration due to the decrease in grain size. Optical transmittance spectra of the films showed high transparency (∼80%) in the visible region. The dispersion of the refractive index is discussed using both Cauchy model and Wemple–Di-Domenico method. The optical band gap values vary slightly with La doping and were found to be around 3.8 eV. It has been found that La doping causes a pronounced decrease in the sheet resistance by up to two orders of magnitude and allows improving the Haacke's figure of merit (Φ) of the sprayed thin films. Moreover, we have introduced for a first time a new figure of merit for qualifying photo-thermal conversion applications. The obtained high conducting and transparent SnO{sub 2}:La

  2. Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Linde, Felix; Sekhar Yadavalli, Nataraja; Santer, Svetlana [Department of Experimental Physics, Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam (Germany)

    2013-12-16

    We report on conductivity behavior of very thin gold layer deposited on a photosensitive polymer film. Under irradiation with light interference pattern, the azobenzene containing photosensitive polymer film undergoes deformation at which topography follows a distribution of intensity, resulting in the formation of a surface relief grating. This process is accompanied by a change in the shape of the polymer surface from flat to sinusoidal together with a corresponding increase in surface area. The gold layer placed above deforms along with the polymer and ruptures at a strain of 4%. The rupturing is spatially well defined, occurring at the topographic maxima and minima resulting in periodic cracks across the whole irradiated area. We have shown that this periodic micro-rupturing of a thin metal film has no significant impact on the electrical conductivity of the films. We suggest a model to explain this phenomenon and support this by additional experiments where the conductivity is measured in a process when a single nanoscopic scratch is formed with an AFM tip. Our results indicate that in flexible electronic materials consisting of a polymer support and an integrated metal circuit, nano- and micro cracks do not alter significantly the behavior of the conductivity unless the metal is disrupted completely.

  3. The measurement of conductivity of copper indium disulphide thin films against temperature and thickness

    International Nuclear Information System (INIS)

    Yussof Wahab; Roslinda Zainal; Samsudi Sakrani

    1996-01-01

    Ternary semiconductor copper indium disulphide (CuInS sub 2) thin films have been prepared by thermal evaporation. Three stacked layers of film starting with copper, indium and finally sulphur was deposited on glass substrate in the thickness ratio of 1: 1: I0. The films were then annealed in carbon block by method known as encapsulated sulphurization at 350 degree C for 4 hours. The XRD analysis for four samples of thickness of 449.5, 586, 612 and 654 nm showed that stoichiometric CuInS sub 2, were formed at this annealing condition. The electrical conductivity of CuInS sub 2 thin films were measured against temperature from 150K to 300K. The conductivity values were between 76.6 Sm sup -1 to 631.26 Sm sup -1 and the result showed that it increase exponentially with temperature for the above temperature range. The resulting activation energies were found to be in the range 0.05 to 0.08 eV. This suggested that hopping mechanism predominant to the conducting process. It also found that the conductivity decreased with increasing film thickness

  4. Magnetoresistance of tungsten thin wafer at the multichannel surface scattering of conduction electrons

    International Nuclear Information System (INIS)

    Lutsishin, P.P.; Nakhodkin, T.N.

    1982-01-01

    The magnetoresistance of tungsten thin wafer with the (110) surface was studied at the adsorption of tungsten dioxide. The method of low-energy electron diffraction was used to study the symmetry of ordered surface structures. Using the method of the magnetoresistance measurement the character of the scattering of conduction electrons was investigated. THe dependence of magnetoresistance on the surface concentration of tungsten dioxide correlated w1th the structure of the surface layer of atoms, what was explained with allowance for diffraction of conduction electrons at the metal boundary. The magnetoresistance maximum for the (2x2) structure, which characterised decrease in surface conduction under the conditions of static skin effect, was explained by multichannel mirror reflection with the recombinations of electron and ho.le sections of Fermi Surface

  5. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Muhunthan, N.; Singh, Om Pal [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India); Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N., E-mail: singhvn@nplindia.org [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India)

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  6. Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss

    International Nuclear Information System (INIS)

    Kim, Sun-Hong; Kim, Sung-Soo

    2010-01-01

    For the aim of wide-band noise absorbers with a special design for low frequency performance, this study proposes conductive indium-tin oxide (ITO) thin films as the absorbent materials in microstrip line. ITO thin films were deposited on the polyimide film substrates by rf magnetron cosputtering of In 2 O 3 and Sn targets. The deposited ITO films show a typical value of electrical resistivity (∼10 -4 Ω m) and sheet resistance can be controlled in the range of 20-230 Ω by variation in film thickness. Microstrip line with characteristic impedance of 50 Ω was used for determining their noise absorbing properties. It is found that there is an optimum sheet resistance of ITO films for the maximum power absorption. Reflection parameter (S 11 ) is increased with decrease in sheet resistance due to impedance mismatch. On the while, transmission parameter (S 21 ) is decreased with decrease in sheet resistance due to larger Ohmic loss of the ITO films. Experimental results and computational prediction show that the optimum sheet resistance is about 100 Ω. For this film, greater power absorption is predicted in the lower frequency region than ferrite thin films of high magnetic loss, which indicates that Ohmic loss is the predominant loss parameter for power absorption in the low frequency range.

  7. Characterization of a new transparent-conducting material of ZnO doped ITO thin films

    Science.gov (United States)

    Ali, H. M.

    2005-11-01

    Thin films of indium tin oxide (ITO) doped with zinc oxide have the remarkable properties of being conductive yet still highly transparent in the visible and near-IR spectral ranges. The Electron beam deposi- tion technique is one of the simplest and least expensive ways of preparing. High-quality ITO thin films have been deposited on glass substrates by Electron beam evaporation technique. The effect of doping and substrate deposition temperature was found to have a significant effect on the structure, electrical and optical properties of ZnO doped ITO films. The average optical transmittance has been increased with in- creasing the substrate temperature. The maximum value of transmittance is greater than 84% in the visible region and 85% in the NIR region obtained for film with Zn/ITO = 0.13 at substrate temperature 200 °C. The dielectric constant, average excitation energy for electronic transitions (E o), the dispersion energy (E d), the long wavelength refractive index (n ), average oscillator wave length ( o) and oscillator strength S o for the thin films were determined and presented in this work.

  8. Mesoscopic layered structure in conducting polymer thin film fabricated by potential-programmed electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Fujitsuka, Mamoru (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Nakahara, Reiko (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Iyoda, Tomokazu (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Shimidzu, Takeo (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Tomita, Shigehisa (Toray Research Center Co., Ltd., Shiga (Japan)); Hatano, Yayoi (Toray Research Center Co., Ltd., Shiga (Japan)); Soeda, Fusami (Toray Research Center Co., Ltd., Shiga (Japan)); Ishitani, Akira (Toray Research Center Co., Ltd., Shiga (Japan)); Tsuchiya, Hajime (Nitto Technical Information Center Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan)); Ohtani, Akira (Central Research Lab., Nitto Denko Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan))

    1992-11-01

    Mesoscopic layered structures in conducting polymer thin films are fabricated by the potential-programmed electropolymerization method. High lateral quality in the layered structure is realized by the improvement of polymerization conditions, i.e., a mixture of pyrrole and bithiophene as monomers, a silicon single-crystal wafer as a working electrode and propylene carbonate as a solvent. SIMS depth profiling of the resulting layered films indicates a significant linear correlation between the electric charge passed and the thickness of the individual layers on a 100 A scale. (orig.)

  9. Electrical and optical properties of Zn–In–Sn–O transparent conducting thin films

    International Nuclear Information System (INIS)

    Carreras, Paz; Antony, Aldrin; Rojas, Fredy; Bertomeu, Joan

    2011-01-01

    Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn–In–Sn–O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 −4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.

  10. DLC and AlN thin films influence the thermal conduction of HPLED light

    Science.gov (United States)

    Hsu, Ming Seng; Hsu, Ching Yao; Huang, Jen Wei; Shyu, Feng Lin

    2015-08-01

    Thermal dissipation had an important influence in the effect and life of light emitting diodes (LED) because it enables transfer the heat away from electric device to the aluminum plate that can be used for heat removal. In the industrial processing, the quality of the thermal dissipation decides by the gumming technique between the PCB and aluminum plate. In this study, we fabricated double layer ceramic thin films of diamond like carbon (DLC) and alumina nitride (AlN) by vacuum sputtering soldered the substrate of high power light emitting diodes (HPLED) light to check the heat conduction. The ceramic dielectric coatings were characterized by several subsequent analyses, especially the measurement of real work temperature. The X-Ray photoelectron spectroscopy (XPS) patterns reveal those ceramic phases were successfully grown onto the substrate. The work temperatures show DLC and AlN films coating had limited the heat transfer by the lower thermal conductivity of these ceramic films. Obviously, it hadn't transferred heat and limited work temperature of HPLED better than DLC thin film only.

  11. Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors.

    Science.gov (United States)

    Yoo, Hocheon; Ghittorelli, Matteo; Lee, Dong-Kyu; Smits, Edsger C P; Gelinck, Gerwin H; Ahn, Hyungju; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2017-07-10

    Complementary organic electronics is a key enabling technology for the development of new applications including smart ubiquitous sensors, wearable electronics, and healthcare devices. High-performance, high-functionality and reliable complementary circuits require n- and p-type thin-film transistors with balanced characteristics. Recent advancements in ambipolar organic transistors in terms of semiconductor and device engineering demonstrate the great potential of this route but, unfortunately, the actual development of ambipolar organic complementary electronics is currently hampered by the uneven electron (n-type) and hole (p-type) conduction in ambipolar organic transistors. Here we show ambipolar organic thin-film transistors with balanced n-type and p-type operation. By manipulating air exposure and vacuum annealing conditions, we show that well-balanced electron and hole transport properties can be easily obtained. The method is used to control hole and electron conductions in split-gate transistors based on a solution-processed donor-acceptor semiconducting polymer. Complementary logic inverters with balanced charging and discharging characteristics are demonstrated. These findings may open up new opportunities for the rational design of complementary electronics based on ambipolar organic transistors.

  12. Effect of nitrogen doping on the thermal conductivity of GeTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fallica, Roberto; Longo, Massimo; Wiemer, Claudia [Laboratorio MDM, IMM-CNR, Agrate Brianza (Italy); Varesi, Enrico; Fumagalli, Luca; Spadoni, Simona [Micron Semiconductor Italia, Agrate Brianza (Italy)

    2013-12-15

    The 3{omega} method was employed to determine the effect of nitrogen doping (5 at.%) on the thermal conductivity of sputtered thin films of stoichiometric GeTe (a material of interest for phase change memories). It was found that nitrogen doping has a detrimental effect on the thermal conductivity of GeTe in both phases, but less markedly in the amorphous (-25%) than in the crystalline one (-40%). On the opposite, no effect could be detected on the measured thermal boundary resistance between these films and SiO{sub 2}, within the experimental error. Our results agree with those obtained by molecular dynamic simulation of amorphous GeTe. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Pulsed EM Field Response of a Thin, High-Contrast, Finely Layered Structure With Dielectric and Conductive Properties

    NARCIS (Netherlands)

    De Hoop, A.T.; Jiang, L.

    2009-01-01

    The response of a thin, high-contrast, finely layered structure with dielectric and conductive properties to an incident, pulsed, electromagnetic field is investigated theoretically. The fine layering causes the standard spatial discretization techniques to solve Maxwell's equations numerically to

  14. Mesoporous tin-doped indium oxide thin films: effect of mesostructure on electrical conductivity

    Directory of Open Access Journals (Sweden)

    Till von Graberg, Pascal Hartmann, Alexander Rein, Silvia Gross, Britta Seelandt, Cornelia Röger, Roman Zieba, Alexander Traut, Michael Wark, Jürgen Janek and Bernd M Smarsly

    2011-01-01

    Full Text Available We present a versatile method for the preparation of mesoporous tin-doped indium oxide (ITO thin films via dip-coating. Two poly(isobutylene-b-poly(ethyleneoxide (PIB-PEO copolymers of significantly different molecular weight (denoted as PIB-PEO 3000 and PIB-PEO 20000 are used as templates and are compared with non-templated films to clarify the effect of the template size on the crystallization and, thus, on the electrochemical properties of mesoporous ITO films. Transparent, mesoporous, conductive coatings are obtained after annealing at 500 °C; these coatings have a specific resistance of 0.5 Ω cm at a thickness of about 100 nm. Electrical conductivity is improved by one order of magnitude by annealing under a reducing atmosphere. The two types of PIB-PEO block copolymers create mesopores with in-plane diameters of 20–25 and 35–45 nm, the latter also possessing correspondingly thicker pore walls. Impedance measurements reveal that the conductivity is significantly higher for films prepared with the template generating larger mesopores. Because of the same size of the primary nanoparticles, the enhanced conductivity is attributed to a higher conduction path cross section. Prussian blue was deposited electrochemically within the films, thus confirming the accessibility of their pores and their functionality as electrode material.

  15. n-Type Conductivity of Cu2O Thin Film Prepared in Basic Aqueous Solution Under Hydrothermal Conditions

    Science.gov (United States)

    Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela

    2018-03-01

    We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.

  16. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  17. Conduction mechanism of leakage current due to the traps in ZrO2 thin film

    International Nuclear Information System (INIS)

    Seo, Yohan; Lee, Sangyouk; An, Ilsin; Jeong, Heejun; Song, Chulgi

    2009-01-01

    In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO 2 ) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current–voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO 2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5–5.0 MV cm −1 ) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8–1.5 MV cm −1 ). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV

  18. Conduction mechanism of leakage current due to the traps in ZrO2 thin film

    Science.gov (United States)

    Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun

    2009-11-01

    In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.

  19. Evaluation of thin discontinuities in planar conducting materials using the diffraction of electromagnetic field

    Science.gov (United States)

    Savin, A.; Novy, F.; Fintova, S.; Steigmann, R.

    2017-08-01

    The current stage of nondestructive evaluation techniques imposes the development of new electromagnetic (EM) methods that are based on high spatial resolution and increased sensitivity. In order to achieve high performance, the work frequencies must be either radifrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. In order to use the evanescent wave that can appear even if the slits width is much smaller that the wavwelength of incident EM wave, a sensor with metamaterial (MM) is used. The study of the EM field diffraction against the edge of long thin discontinuity placed under the inspected surface of a conductive plate has been performed using the geometrical optics principles. This type of sensor having the reception coils shielded by a conductive screen with a circular aperture placed in the front of reception coil of emission reception sensor has been developed and “transported” information for obtaining of magnified image of the conductive structures inspected. This work presents a sensor, using MM conical Swiss roll type that allows the propagation of evanescent waves and the electromagnetic images are magnified. The test method can be successfully applied in a variety of applications of maxim importance such as defect/damage detection in materials used in automotive and aviation technologies. Applying this testing method, spatial resolution can be improved.

  20. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-09-02

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10{sup -4} and 2.3x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates.

  1. Nanostructures and thin films of transparent conductive oxides studied by perturbed angular correlations

    CERN Document Server

    Barbosa, M B; Redondo-Cubero, A; Miranda, S M C; Simon, R; Kessler, P; Brandt, M; Henneberger, F; Nogales, E; Méndez, B; Johnston, K; Alves, E; Vianden, R; Araújo, J P; Lorenz, K; Correia, J G

    2013-01-01

    The versatility of perturbed angular correlations (PAC) in the study of nanostructures and thin films is demonstrated, namely for the specific cases of ZnO/Cd$_x$Zn$_{1-x}$O thin films and Ga$_2$O$_3$ powder pellets and nanowires, examples of transparent conductive oxides. PAC measurements as a function of annealing temperature were performed after implantation of $^{111m}$Cd$/^{111}$Cd (T$_{1/2}$=48$\\,$min.) and later compared to density functional theory simulations. For ZnO, the substitution of Cd probes at Zn sites was observed, as well as the formation of a probe-defect complex. The ternary Cd$_x$Zn$_{1-x}$O (x=0.16) showed good macroscopic crystal quality but revealed some clustering of local defects around the probe Cd atoms, which could not be annealed. In the Ga$_2$O$_3$ samples, the substitution of the Cd probes in the octahedral Ga-site was observed, demonstrating the potential of ion-implantation for the doping of nanowires.

  2. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    International Nuclear Information System (INIS)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C.N.; Mihailescu, I.N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A.C.; Luculescu, C.R.; Craciun, V.

    2012-01-01

    Highlights: ► TCO thin films were grown by PLD on PET substrate at low temperature. ► We found that the quality of TCO on PET substrate depends on the target–substrate distance. ► TCO with high transparency (>95%) and reduced electrical resistivity (∼5 × 10 −4 Ω cm) were obtained. ► Optimized TCO films deposited on PET were free of any cracks. - Abstract: The influence of target–substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10 −4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  3. ZnO transparent conductive oxide for thin film silicon solar cells

    Science.gov (United States)

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  4. Transparent conducting thin films by co-sputtering of ZnO-ITO targets

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Paz; Antony, Aldrin; Roldan, Ruben; Nos, Oriol; Frigeri, Paolo Antonio; Asensi, Jose Miguel; Bertomeu, Joan [Grup d' Energia Solar, Universitat de Barcelona (Spain)

    2010-04-15

    Transparent and conductive Zn-In-Sn-O (ZITO) amorphous thin films have been deposited at room temperature by the rf magnetron co-sputtering of ITO and ZnO targets. Co-sputtering gives the possibility to deposit multicomponent oxide thin films with different compositions by varying the power to one of the targets. In order to make ZITO films with different Zn content, a constant rf power of 50 W was used for the ITO target, where as the rf power to ZnO target was varied from 25 W to 150 W. The as deposited films showed an increase in Zn content ratio from 17 to 67% as the power to ZnO target was increased from 25 to 150 W. The structural, electrical and optical properties of the as deposited films are reported. The films showed an average transmittance over 80% in the visible wavelength range. The electrical resistivity and optical band gap of the ZITO films were found to depend on the Zn content in the film. The ZITO films deposited at room temperature with lower Zn content ratios showed better optical transmission and electrical properties compared to ITO film. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-01-01

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10 -4 and 2.3x10 -4 Ω·cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10 -4 Ω·cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates

  6. Thin sensing layer based on semi-conducting β-cyclodextrin rotaxane for toxic metals detection

    Energy Technology Data Exchange (ETDEWEB)

    Teka, S.; Gaied, A.; Jaballah, N. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Université de Monastir, Faculté des Sciences de Monastir, Bd. de l' Environnement, 5019 Monastir (Tunisia); Xiaonan, S. [Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baı̈ f, 75205 Paris Cedex 13 (France); Majdoub, M., E-mail: mustapha.majdoub@fsm.rnu.tn [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Université de Monastir, Faculté des Sciences de Monastir, Bd. de l' Environnement, 5019 Monastir (Tunisia)

    2016-02-15

    Highlights: • Microwave-assisted synthesis of rotaxane based on anthracene and β-cyclodextrin. • Morphological and optical characterization of thin solid film. • Elaboration of impedimetric gold/rotaxane sensor. • Investigation of the membrane sensitivity towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations. - Abstract: An impedimetric sensor based on a new semi-conducting rotaxane has been described for detection of toxic cations. The rotaxane, consists on a π-conjugated material encapsulated into β-cyclodextrin (β-CD); it has been synthesized via the Williamson reaction under microwaves irradiation. The supramolecular structure of the compound was confirmed by NMR and FT-IR spectroscopies. A thin solid film of the rotaxane was deposited by spin-coating to develop a new electrochemical sensor. The morphological properties of the organic membrane were evaluated using contact angle measurements and atomic force microscopy. The gold/rotaxane/solution interfaces were investigated by electrochemical impedance spectroscopy and the obtained data were fitted using an equivalent electrical circuit. The response of the gold/rotaxane membrane towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations was studied and the results showed a good sensitivity to the mercury cations.

  7. Carbon nanotubes length optimization for preparation of improved transparent and conducting thin film substrates

    Directory of Open Access Journals (Sweden)

    Mansoor Farbod

    2017-03-01

    Full Text Available Transparent and conductive thin films of multiwalled carbon nanotubes (MWCNTs with different lengths were prepared on glass substrates by the spin coating method. In order to reduce the MWCNTs length, they were functionalized. The initial length of MWCNTs (10–15 μm was reduced to 1200, 205 and 168 nm after 30, 60 and 120 min refluxing time, respectively. After post annealing at 285 °C for 24 h, the electrical and optical properties were greatly improved for functionalized MWCNT thin films. They strongly depend on the length of CNTs. The optical transmittance of the film prepared using 30 min reflux CNTs was 2.6% and 6.6% higher than that of the 60 min and 120 min refluxed samples respectively. The sheet resistance of this film showed reductions of 45% and 80% as well. The film also exhibited the least roughness. The percolative figure of merit, which is proportional to the transparency and disproportional to the sheet resistance, was found to be higher for the sample with 30 min refluxed MWCNTs.

  8. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    Science.gov (United States)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C. N.; Mihailescu, I. N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A. C.; Luculescu, C. R.; Craciun, V.

    2012-11-01

    The influence of target-substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10-4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  9. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Science.gov (United States)

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  10. Hall conductivity and the vortex phase in MgB2 thin films

    International Nuclear Information System (INIS)

    Jung, Soon-Gil; Seong, W K; Huh, Ji Young; Lee, T G; Kang, W N; Choi, Eun-Mi; Kim, Heon-Jung; Lee, Sung-Ik

    2007-01-01

    In a MgB 2 thin film superconductor, we have found that Hall conductivity (σ xy ) is described by the sum of two terms, σ xy = C 1 /H+C 3 H, where C 1 and C 3 are independent of the magnetic fields and have positive values. C 1 is observed to be proportional to (1-t) n with n = 4.2, where t is the reduced temperature (T/T c ), and C 3 is weakly dependent on the temperature. These results are consistent with those of the overdoped La 2-x Sr x CuO 4 superconductors. Based on Hall angle data, we obtained a vortex phase diagram with three regions, vortex-solid, crossover, and vortex-liquid regions in the H-T plane

  11. Across plane ionic conductivity of highly oriented neodymium doped ceria thin films.

    Science.gov (United States)

    Baure, G; Kasse, R M; Rudawski, N G; Nino, J C

    2015-05-14

    A methodology to limit interfacial effects in thin films is proposed and explained. The strategy is to reduce the impact of the electrode interfaces and eliminate cross grain boundaries that impede ionic motion. To this end, highly oriented Nd0.1Ce0.9O2-δ (NDC) nanocrystalline thin films were grown using pulsed laser deposition (PLD) on platinized single crystal a-plane sapphire substrates. High resolution cross-sectional transmission electron microscopy (HR-XTEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) verified the films were textured with columnar grains. The average widths of the columns were approximately 40 nm and not significantly changed by film thickness between 100 and 300 nm. HR-XTEM and XRD determined the {111} planes of NDC were grown preferentially on top of the {111} planes of platinum despite the large lattice mismatch between the two planes. From the XRD patterns, the out of plane strains on the platinum and NDC layers were less than 1%. This can be explained by the coincident site lattice (CSL) theory. Rotating the {111} ceria planes 19.11° with respect to the {111} platinum planes forms a Σ7 boundary where 1 in 7 cerium lattice sites are coincident with the platinum lattice sites. This orientation lowers interfacial energy promoting the preferential alignment of those two planes. The across plane ionic conductivity was measured at low temperatures (<350 °C) for the various film thicknesses. It is here shown that columnar grain growth of ceria can be induced on platinized substrates allowing pathways that are clear of blocking grain boundaries that cause conductivities to diminish as film thickness decreases.

  12. Quantum perfect correlations

    International Nuclear Information System (INIS)

    Ozawa, Masanao

    2006-01-01

    The notion of perfect correlations between arbitrary observables, or more generally arbitrary POVMs, is introduced in the standard formulation of quantum mechanics, and characterized by several well-established statistical conditions. The transitivity of perfect correlations is proved to generally hold, and applied to a simple articulation for the failure of Hardy's nonlocality proof for maximally entangled states. The notion of perfect correlations between observables and POVMs is used for defining the notion of a precise measurement of a given observable in a given state. A longstanding misconception on the correlation made by the measuring interaction is resolved in the light of the new theory of quantum perfect correlations

  13. Improved behavior of cooper-amine complexes during thermal annealing for conductive thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ayag, Kevin Ray; Panama, Gustavo; Paul, Shrabani; Kim, Hong Doo [Dept. of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin (Korea, Republic of)

    2017-02-15

    Previous studies successfully produced conductive thin films from organo-metallic-compounds-based inks. Some inks like those made from copper salt and amines, however, tend to move during thermal annealing and, thus, affect the conductive pattern on the substrate. In this study, conductive inks were synthesized by forming complexes of copper with amines and/or blended amines. To build-up an organo-metallic framework and preserve the pattern throughout the annealing period, diamine was added to the complex in different proportions. The prepared inks were coated on glass substrate and were annealed on a hot plate at 170°C under the gaseous mixture of formic acid and alcohol for 5 min. The metallic film was observed to retain the original pattern of the ink during and after annealing. Adhesion on the substrate was also improved. Inks with blended amines produced films with lower resistivities. The lowest electrical resistivity recorded was 4.99 μΩ cm, three times that of bulk copper.

  14. Metal-insulator transition in tin doped indium oxide (ITO thin films: Quantum correction to the electrical conductivity

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Kaushik

    2017-01-01

    Full Text Available Tin doped indium oxide (ITO thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes in low temperatures (25-300 K. The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l is the electron mean free path and degenerate semiconductors. The transport of charge carriers (electrons in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known ‘metal-insulator transition’ (MIT which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC; this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann’s expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  15. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    Science.gov (United States)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  16. Optimizing electrical conductivity and optical transparency of IZO thin film deposited by radio frequency (RF) magnetron sputtering

    Science.gov (United States)

    Zhang, Lei

    Transparent conducting oxide (TCO) thin films of In2O3, SnO2, ZnO, and their mixtures have been extensively used in optoelectronic applications such as transparent electrodes in solar photovoltaic devices. In this project I deposited amorphous indium-zinc oxide (IZO) thin films by radio frequency (RF) magnetron sputtering from a In2O3-10 wt.% ZnO sintered ceramic target to optimize the RF power, argon gas flowing rate, and the thickness of film to reach the maximum conductivity and transparency in visible spectrum. The results indicated optimized conductivity and transparency of IZO thin film is closer to ITO's conductivity and transparency, and is even better when the film was deposited with one specific tilted angle. National Science Foundation (NSF) MRSEC program at University of Nebraska Lincoln, and was hosted by Professor Jeff Shields lab.

  17. Space charge limited current conduction in Bi2Te3 thin films

    International Nuclear Information System (INIS)

    Sathyamoorthy, R.; Dheepa, J.; Velumani, S.

    2007-01-01

    Bi 2 Te 3 is known for its large thermoelectric coefficients and is widely used as a material for Peltier devices. Bi 2 Te 3 thin films with thicknesses in the range 125-300 A have been prepared by Flash Evaporation at a pressure of 10 -5 m bar on clean glass substrates at room temperature. An Al-Bi 2 Te 3 -Al sandwich structure has been used for electrical conduction properties in the temperature range 303 to 483 K. I-V characteristics showed Ohmic conduction in the low voltage region. In the higher voltage region, a Space Charge Limited Conduction (SCLC) takes place due to the presence of the trapping level. The transition voltage (V t ), between the Ohmic and the SCLC condition was proportional to the square of thickness. Further evidence for this conduction process was provided by the linear dependence of V t on t 2 and log J on log t. The hole concentration in the films were found to be n 0 = 1.65 * 10 10 m -3 . The carrier mobility increases with increasing temperature whereas the density of trapped charges decreases with increasing temperature. The barrier height decreases with an increase in temperature. The increase in the trapping concentration V t is correlated with ascending the degree of preferred orientation of the highest atomic density plane. The activation energy was estimated and the values found to decrease with increasing applied voltage. The zero field value of the activation energy is found to be 0.4 eV

  18. Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Trilok Kumar [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Kumar, Vinod, E-mail: vinod.phy@gmail.com [Department of Physics, University of the Free State, Bloemfontein (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa); Purohit, L.P., E-mail: proflppurohitphys@gmail.com [Semiconductor Research Lab, Department of Physics, Gurukula Kangri University, Haridwar (India)

    2016-01-01

    Nitrogen doped ZnO (NZO) thin films were synthesized on glass substrates by the sol–gel and spin coating method. Zinc acetate dihydrates and ammonium acetate were used as precursors for zinc and nitrogen, respectively. X-ray diffraction study showed that the thin films have a hexagonal wurtzite structure corresponding (002) peak for undoped and doped ZnO thin films. The transmittance of the films was above 80% and the band gap of the film varies from 3.21±0.03 eV for undoped and doped ZnO. The minimum resistivity of NZO thin films was obtained as 0.473 Ω cm for the 4 at% of nitrogen (N) doping with a mobility of 1.995 cm{sup 2}/V s. The NZO thin films showed p-type conductivity at 2 and 3 at% of N doping. The AC conductivity measurements that were carried out in the frequency range 10 kHz to 0.1 MHz showed localized conduction in the NZO thin films. These highly transparent ZnO films can be used as a possible window layer in solar cells.

  19. Uniaxial stress influence on electrical conductivity of thin epitaxial lanthanum-strontium manganite films

    Energy Technology Data Exchange (ETDEWEB)

    Stankevič, V., E-mail: wstan@pfi.lt [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius Gediminas Technical University, Sauletekio 11, Vilnius (Lithuania); Šimkevičius, Č.; Balevičius, S.; Žurauskienė, N. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius Gediminas Technical University, Sauletekio 11, Vilnius (Lithuania); Cimmperman, P. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Abrutis, A. [Vilnius University, Dept. of General and Inorganic Chemistry, Naugarduko 24, Vilnius (Lithuania); Plaušinaitienė, V. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius University, Dept. of General and Inorganic Chemistry, Naugarduko 24, Vilnius (Lithuania)

    2013-07-01

    This is a study of the influence of external uniaxial mechanical strains on the transport properties of thin epitaxial La{sub 0.83}Sr{sub 0.17}MnO{sub 3} (LSMO) films. Our measurements were carried out using standard isosceles triangle-shaped cantilever. Films which were tensed in-plane or compressed or were subjected to both tension and compression strains were grown onto SrTiO{sub 3} (STO), LaAlO{sub 3} (LAO) and (001) NdGaO{sub 3} (NGO) substrates, respectively. It was found that for thin films (less than 100 nm), the uniaxial compression of such films which were initially tensed in-plane (grown onto STO substrates) produces a decrease of their resistance, whereas the compression of initially compressed films (on LAO substrates) produces an increase of the films' resistance. The same results were obtained for LSMO films grown onto (001) NGO substrates when they were compressed along the [010] and [100] directions, respectively. For thicker films (more than 100 nm), the resistance behavior after uniaxial compression was found to be identical to that produced by hydrostatic compression, namely, the resistance decreases irrespective of the substrate. These experiments also reveal an increase of resistance and a shift of metal–insulator transition temperature T{sub m} to lower temperatures corresponding to a decrease of the film thickness. The occurrence of this effect is also independent of the kind of substrate used. Thus it was concluded that the influence of film thickness on its resistance as well as on the behavior of such films while under external uniaxial compression cannot be explained fully by only the presence of residual stress in these films. A possible reason is that the inhomogeneous distribution of the mechanical stresses in the films can lead to the appearance of two conductivity phases, each having a different mechanism. The results which were obtained when these films were subjected to hydrostatic compression were also explained by this

  20. Separation of top and bottom surface conduction in Bi2Te3 thin films

    International Nuclear Information System (INIS)

    Yu Xinxin; He Liang; Lang Murong; Jiang Wanjun; Kou Xufeng; Tang Jianshi; Huang Guan; Wang, Kang L; Xiu Faxian; Liao Zhiming; Zou Jin; Wang Yong; Zhang Peng

    2013-01-01

    Quantum spin Hall (QSH) systems are insulating in the bulk with gapless edges or surfaces that are topologically protected and immune to nonmagnetic impurities or geometric perturbations. Although the QSH effect has been realized in the HgTe/CdTe system, it has not been accomplished in normal 3D topological insulators. In this work, we demonstrate a separation of two surface conductions (top/bottom) in epitaxially grown Bi 2 Te 3 thin films through gate dependent Shubnikov–de Haas (SdH) oscillations. By sweeping the gate voltage, only the Fermi level of the top surface is tuned while that of the bottom surface remains unchanged due to strong electric field screening effects arising from the high dielectric constant of Bi 2 Te 3 . In addition, the bulk conduction can be modulated from n- to p-type with a varying gate bias. Our results on the surface control hence pave a way for the realization of QSH effect in topological insulators which requires a selective control of spin transports on the top/bottom surfaces. (paper)

  1. Transparent conducting oxide contacts and textured metal back reflectors for thin film silicon solar cells

    Science.gov (United States)

    Franken, R. H.-J.

    2006-09-01

    With the growing population and the increasing environmental problems of the 'common' fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic (PV) systems, can play a major role in the urgently needed energy transition in electricity production. At the present time PV module production is dominated by the crystalline wafer technology. Thin film silicon technology is an alternative solar energy technology that operates at lower efficiencies, however, it has several significant advantages, such as the possibility of deposition on cheap (flexible) substrates and the much smaller silicon material consumption. Because of the small thickness of the solar cells, light trapping schemes are needed in order to obtain enough light absorption and current generation. This thesis describes the research on thin film silicon solar cells with the focus on the optimization of the transparent conducting oxide (TCO) layers and textured metal Ag substrate layers for the use as enhanced light scattering back reflectors in n-i-p type of solar cells. First we analyzed ZnO:Al (TCO) layers deposited in an radio frequent (rf) magnetron deposition system equipped with a 7 inch target. We have focused on the improvement of the electrical properties without sacrificing the optical properties by increasing the mobility and decreasing the grain boundary density. Furthermore, we described some of the effects on light trapping of ZnO:Al enhanced back reflectors. The described effects are able to explain the observed experimental data. Furthermore, we present a relation between the surface morphology of the Ag back contact and the current enhancement in microcrystalline (muc-Si:H) solar cells. We show the importance of the lateral feature sizes of the Ag surface on the light scattering and introduce a method to characterize the quality of the back reflector by combining the vertical and lateral feature sizes

  2. PERFECT DEMAND ILLUSION

    Directory of Open Access Journals (Sweden)

    Alexander Yu. Sulimov

    2015-01-01

    Full Text Available The article is devoted to technique «Perfect demand illusion», which allows to strengthen the competitive advantageof retailers. Also in the paper spells out the golden rules of visual merchandising.The definition of the method «Demand illusion», formulated the conditions of its functioning, and is determined by the mainhypothesis of the existence of this method.Furthermore, given the definition of the «Perfect demand illusion», and describes its additional conditions. Also spells out the advantages of the «Perfect demandillusion», before the «Demand illusion».

  3. Transparent conducting ZnO-CdO thin films deposited by e-beam evaporation technique

    Science.gov (United States)

    Mohamed, H. A.; Ali, H. M.; Mohamed, S. H.; Abd El-Raheem, M. M.

    2006-04-01

    Thin films of Zn{1-x} Cd{x}O with x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5 at.% were deposited by electron-beam evaporation technique. It has been found that, for as-deposited films, both the transmittance and electrical resistivity decreased with increasing the Cd content. To improve the optical and electrical properties of these films, the effect of annealing temperature and time were taken into consideration for Zn{1-x} Cd{x}O film with x = 0.2. It was found that, the optical transmittance and the electrical conductivity were improved significantly with increasing the time of annealing. At fixed temperature of 300 °C, the transmittance increased with increasing the time of annealing and reached its maximum values of 81% in the visible region and 94% in the NIR region at annealing time of 120 min. The low electrical resistivity of 3.6 × 10-3 Ω cm was achieved at the same conditions. Other parameters named free carrier concentrations, refractive index, extinction coefficient, plasma frequency, and relaxation time were studied as a function of annealing temperature and time for 20% Cd content.

  4. Suppression of persistent photo-conductance in solution-processed amorphous oxide thin-film transistors

    Science.gov (United States)

    Lee, Minkyung; Kim, Minho; Jo, Jeong-Wan; Park, Sung Kyu; Kim, Yong-Hoon

    2018-01-01

    This study offers a combinatorial approach for suppressing the persistent photo-conductance (PPC) characteristic in solution-processed amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) in order to achieve rapid photo-recovery. Various analyses were used to examine the photo-instability of indium-gallium-zinc-oxide (IGZO) TFTs including negative-bias-illumination-stress (NBIS) and transient photo-response behaviors. It was found that the indium ratio in metallic components had a significant impact on their PPC and photo-recovery characteristics. In particular, when the indium ratio was low (51.5%), the PPC characteristic was significantly suppressed and achieving rapid photo-recovery was possible without significantly affecting the electrical performance of AOSs. These results imply that the optimization of the indium composition ratio may allow achieving highly photo-stable and near PPC-free characteristics while maintaining high electrical performance of AOSs. It is considered that the negligible PPC behavior and rapid photo-recovery observed in IGZO TFTs with a lower indium composition are attributed to the less activation energy required for the neutralization of ionized oxygen vacancies.

  5. Influence of heat conducting substrates on explosive crystallization in thin layers

    Science.gov (United States)

    Schneider, Wilhelm

    2017-09-01

    Crystallization in a thin, initially amorphous layer is considered. The layer is in thermal contact with a substrate of very large dimensions. The energy equation of the layer contains source and sink terms. The source term is due to liberation of latent heat in the crystallization process, while the sink term is due to conduction of heat into the substrate. To determine the latter, the heat diffusion equation for the substrate is solved by applying Duhamel's integral. Thus, the energy equation of the layer becomes a heat diffusion equation with a time integral as an additional term. The latter term indicates that the heat loss due to the substrate depends on the history of the process. To complete the set of equations, the crystallization process is described by a rate equation for the degree of crystallization. The governing equations are then transformed to a moving co-ordinate system in order to analyze crystallization waves that propagate with invariant properties. Dual solutions are found by an asymptotic expansion for large activation energies of molecular diffusion. By introducing suitable variables, the results can be presented in a universal form that comprises the influence of all non-dimensional parameters that govern the process. Of particular interest for applications is the prediction of a critical heat loss parameter for the existence of crystallization waves with invariant properties.

  6. Improved Laser Scribing of Transparent Conductive Oxide for Fabrication of Thin-Film Solar Module

    Science.gov (United States)

    Egorov, F. S.; Kukin, A. V.; Terukov, E. I.; Titov, A. S.

    2018-04-01

    Nonuniform thickness of the front transparent conductive oxide (TCO) used for fabrication of thin-film solar module (TFSM) based on micromorphic technology affects P1 laser scribing (P1 scribing on the TCO front layer). A method for improvement of the thickness uniformity of the front TCO using modification of the existing system for gas supply of the LPCVD (TCO1200) vacuum setup with the aid of gasdistributing tubes is proposed. The thickness nonuniformity of the deposition procedure is decreased from 15.2 to 11.4% to improve uniformity of the resistance of the front TCO and light-scattering factor of TFSM. In addition, the number of P1 laser scribes with inadmissible resistance of insulation (less than 2 MΩ) is decreased by a factor of 7. A decrease in the amount of melt at the P1 scribe edges leads to an increase in the TFSM shunting resistance by 56 Ω. The TFSM output power is increased by 0.4 W due to improvement of parameters of the front TCO related to application of gas-distributing tubes.

  7. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin, E-mail: junsin@skku.edu

    2017-02-28

    Highlights: • The characteristics of thin film transistors using double active layers are examined. • Electrical characteristics have been improved for the double active layers devices. • The total trap density can be decreased by insert-ion of ultrathin ITO film. - Abstract: This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm{sup 2}/V·s) compared with the ITZO-only TFTs (∼34 cm{sup 2}/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and −2.39 V compared with 6.10 and −6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of E{sub A} were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO{sub 2} reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  8. Mechanistic interaction study of thin oxide dielectric with conducting organic electrode

    International Nuclear Information System (INIS)

    Sharma, Himani; Sethi, Kanika; Raj, P. Markondeya; Gerhardt, R.A.; Tummala, Rao

    2012-01-01

    Highlights: ► Thin film-oxide dielectric-organic electrode interface studies for investigating the leakage mechanism. ► XPS to elucidate chemical-structural changes on dielectric oxide surface. ► Correlates structural characterization data with capacitor leakage current and impedance spectroscopy characteristics. - Abstract: This paper aims at understanding the interaction of intrinsic conducting polymer, PEDT, with ALD-deposited Al 2 O 3 and thermally oxidized Ta 2 O 5 dielectrics, and the underlying mechanisms for increase in leakage currents in PEDT-based capacitors. Conducting polymers offer several advantages as electrodes for high surface area capacitors because of their lower resistance, self-healing and enhanced conformality. However, capacitors with in situ polymerized PEDT show poor electrical properties that are attributed to the interfacial interaction between the organic electrode and the oxide dielectric. This study focuses on characterizing these interactions. A combination of compositional, structural and electrical characterization techniques was applied to polymer-solid-state-capacitor to understand the interfacial chemical behavior and dielectric property deterioration of alumina and tantalum-oxide films. XPS and impedance studies were employed to understand the stiochiometric and compositional changes that occur in the dielectric film on interaction with in situ deposited PEDT. Based on the observations from several complimentary techniques, it is concluded that tantalum-pentoxide has more resistance towards chemical interaction with in situ polymerized PEDT. The thermally oxidized Ta 2 O 5 -PEDT system showed leakage current of 280 nA μF −1 at 3 V with a breakdown voltage of 30 V. On the other hand, Al 2 O 3 -PEDT capacitor showed leakage current of 50 μA μF −1 and a breakdown voltage of 40 V. The study reports direct evidence for the mechanism of resistivity drop in alumina dielectric with in situ polymerized PEDT electrode.

  9. Conductive polymer/fullerene blend thin films with honeycomb framework for transparent photovoltaic application

    Science.gov (United States)

    Cotlet, Mircea; Wang, Hsing-Lin; Tsai, Hsinhan; Xu, Zhihua

    2015-04-21

    Optoelectronic devices and thin-film semiconductor compositions and methods for making same are disclosed. The methods provide for the synthesis of the disclosed composition. The thin-film semiconductor compositions disclosed herein have a unique configuration that exhibits efficient photo-induced charge transfer and high transparency to visible light.

  10. Optical and electrical properties of transparent conductive ITO thin films under proton radiation with 100 keV

    International Nuclear Information System (INIS)

    Wei, Q.; He, S.Y.; Yang, D.Z.; Liu, J.C.

    2005-01-01

    Under the simulation environment for the vacuum and heat sink in space, the changes in optical and electrical properties of transparent conductive indium tin oxide (ITO) thin films induced by radiation of protons with 100 keV were studied. The ITO thin films were deposited on JGS1 quartz substrate by a sol-gel method. The sheet resistance and transmittance spectra of the ITO thin films were measured using the four-point probe method and a spectrophotometer, respectively. The surface morphology was analyzed by AFM. The experimental results showed that the electrical and optical performances of the ITO thin films were closely related to the irradiation fluence. When the fluence exceeded a given value 2 x 10 16 cm -2 , the sheet resistance increased obviously and the optical transmittance decreased. The AFM analysis indicated that the grain size of the ITO thin films diminished. The studies about the radiation effect on ITO thin films will help to predict performance evolution of the second surface mirrors on satellites under space radiation environment. (orig.)

  11. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Science.gov (United States)

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  12. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  13. Critical phenomena at perfect and non-perfect surfaces

    International Nuclear Information System (INIS)

    Pleimling, M

    2004-01-01

    In the past, perfect surfaces have been shown to yield local critical behaviour that differs from bulk critical behaviour. On the other hand, surface defects, whether they are of natural origin or created artificially, are known to modify local quantities. It is therefore important to clarify whether these defects are relevant or irrelevant for the surface critical behaviour. The purpose of this review is two-fold. In the first part we summarize some of the important results on surface criticality at perfect surfaces. Special attention is thereby paid to new developments such as for example the study of the surface critical behaviour in systems with competing interactions or of surface critical dynamics. In the second part the effect of surface defects (presence of edges, steps, quenched randomness, lines of adatoms, regular geometric patterns) on local critical behaviour in semi-infinite systems and in thin films is discussed in detail. Whereas most of the defects commonly encountered are shown to be irrelevant, some notable exceptions are highlighted. It is shown furthermore that under certain circumstances non-universal local critical behaviour may be observed at surfaces. (topical review)

  14. Electrical conductivity dependence of thin metallic films of Au and Pd as a top electrode in capacitor applications

    International Nuclear Information System (INIS)

    Nazarpour, S.; Langenberg, E.; Jambois, O.; Ferrater, C.; Garcia-Cuenca, M.V.; Polo, M.C.; Varela, M.

    2009-01-01

    Electrical conductivity dependence of thin metallic films of Au and Pd over the different perovskites was investigated. It is found from electrical properties that crystallographic growth orientation of Au and Pd thin layers attained from X-ray diffraction results indicate the slop of current (I)-voltage (V) plots. Besides, surface morphology and topography was considered using Field Emission Scanning Electron Microscopy and Atomic Force Microscopy, respectively. Obtained results showed the Stranski-Krastanov growth of the Pd and Au. Indeed, diminishing of the root-mean-square roughness of Pd/BiMnO 3 /SrTiO 3 following by Au deposition should be concerned due to growth of Au onto the crack-like parts of the substrate. These crack-like parts appeared due to parasitic phases of the Bi-Mn-O system mainly Mn 3 O 4 (l 0 l) and Mn 3 O 4 (0 0 4 l). The different response in the electrical properties of heterostructures suggests that electrical conductance of the Au and Pd thin metallic films have the crystallographic orientation dependence. Furthermore, polycrystallinity of the thin metallic films are desired in electrode applications due to increase the conductivity of the metallic layers.

  15. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    International Nuclear Information System (INIS)

    Finger, F.; Astakhov, O.; Bronger, T.; Carius, R.; Chen, T.; Dasgupta, A.; Gordijn, A.; Houben, L.; Huang, Y.; Klein, S.; Luysberg, M.; Wang, H.; Xiao, L.

    2009-01-01

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  16. Transparent conductive Ta2O5-codoped ITO thin films prepared by different heating process

    International Nuclear Information System (INIS)

    Zhang, B.; Dong, X.P.; Wu, J.S.; Xu, X.F.

    2008-01-01

    Tantalum-doped indium tin oxide thin films were deposited by a cosputtering technique with an ITO target and a Ta 2 O 5 target. The variations of microstructure, electrical and optical properties with substrate temperature and annealing temperature were investigated in some detail. Ta-doped ITO thin films showed better crystalline structure with different prominent plane orientation by different heating process. ITO:Ta thin films deposited at room temperature showed better optical and electrical properties. Increasing substrate temperature and reasonable annealing temperature could remarkably improve the optical and electrical properties of the films. The variation of carrier concentration had an important influence on near-IR reflection, near-UV absorption and optical bandgap. ITO:Ta thin films showed wider optical bandgap. ITO:Ta thin films under the optimum parameters had a sheet resistance of 10-20 and ohm;/sq and a transmittance of 85% with an optical bandgap of above 4.0 eV. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Effect of substrate temperature on ac conduction properties of amorphous and polycrystalline GaSe thin films

    International Nuclear Information System (INIS)

    Thamilselvan, M.; PremNazeer, K.; Mangalaraj, D.; Narayandass, Sa.K.; Yi, Junsin

    2004-01-01

    X-ray diffraction analysis of GaSe thin films used in the present investigation showed that the as-deposited and the one deposited at higher substrate temperature are in amorphous and polycrystalline state, respectively. The alternating current (ac) conduction properties of thermally evaporated films of GaSe were studied ex situ employing symmetric aluminium ohmic electrodes in the frequency range of 120-10 5 Hz at various temperature regimes. For the film deposited at elevated substrate temperature (573 K) the ac conductivity was found to increase with improvement of its crystalline structure. The ac conductivity (σ ac ) is found to be proportional to (ω s ) where s m calculated from ac conductivity measurements are compared with optical studies of our previous reported work for a-GaSe and poly-GaSe thin films. The distance between the localized centres (R), activation energy (ΔE σ ) and the number of sites per unit energy per unit volume N(E F ) at the Fermi level were evaluated for both a-GaSe and poly-GaSe thin films. Goswami and Goswami model has been invoked to explain the dependence of capacitance on frequency and temperature

  18. Transparent and conductive electrodes by large-scale nanostructuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    grid, and nano-wire thin-films [1]. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...

  19. Balancing hole and electron conduction in ambipolar split-gate thin-film Transistors

    NARCIS (Netherlands)

    Yoo, H.; Ghittorelli, M.; Lee, D.-K.; Smits, E.C.P.; Gelinck, G.H.; Ahn, H.; Lee, H.-K.; Torricelli, F.; Kim, J.-J.

    2017-01-01

    Complementary organic electronics is a key enabling technology for the development of new applications including smart ubiquitous sensors, wearable electronics, and healthcare devices. High-performance, high-functionality and reliable complementary circuits require n- and p-type thin-film

  20. Improved conductivity of ZnO thin films by exposure to an atmospheric hydrogen plasma

    NARCIS (Netherlands)

    Illiberi, A.; Kniknie, B.; Deelen, J. van; Steijvers, H.L.A.H.; Habets, D.; Simons, P.J.P.M.; Janssen, A.C.; Beckers, E.H.A.

    2012-01-01

    Aluminum-doped zinc oxide (ZnOx:Al) films have been deposited on a moving glass substrate by a high throughput metalorganic chemical vapor deposition process at atmospheric pressure. Thin (< 250 nm) ZnOx:Al films have a poor crystalline quality, due to a small grain size and the presence of

  1. Everybody's Different Nobody's Perfect

    Science.gov (United States)

    ... traten ni qué edad tengan — eso se llama “DISCAPACIDAD.” Some kids have a disability because their muscles ... have one? ¿Conoces a alguien que tenga una discapacidad? ¿Tienes una tú? Everybody’s different, nobody’s perfect. So ...

  2. California's Perfect Storm

    Science.gov (United States)

    Bacon, David

    2010-01-01

    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  3. The Perfect Text.

    Science.gov (United States)

    Russo, Ruth

    1998-01-01

    A chemistry teacher describes the elements of the ideal chemistry textbook. The perfect text is focused and helps students draw a coherent whole out of the myriad fragments of information and interpretation. The text would show chemistry as the central science necessary for understanding other sciences and would also root chemistry firmly in the…

  4. Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films

    International Nuclear Information System (INIS)

    Sakr, G.B.; Yahia, I.S.; Fadel, M.; Fouad, S.S.; Romcevic, N.

    2010-01-01

    Research highlights: → The structural, optical dispersion parameters and the Raman spectroscopy have been studied for CuSe thin films. → X-ray diffraction results indicate the amorphous nature of the thermally evaporated CuSe thin films. → The refractive index shows an anomalous dispersion at the lower wavelength (absorption region) and a normal dispersion at the higher wavelengths (transparent region). → The refractive index dispersion obeys the single oscillator model proposed by Wemple and DiDomenico WDD model and the single oscillator parameters were determined. → The band gap of CuSe thin films was determined by three novel methods i.e. (relaxation time, real and imaginary dielectric constant and real and imaginary optical conductivity) which in a good agreement with the Tauc band gap value. - Abstract: The paper describes the structural and optical properties of CuSe thin films. X-ray diffraction pattern indicates that CuSe thin film has an amorphous structure. Transmittance T(λ) and reflectance R(λ) measurements in the wavelength range (300-1700 nm) were used to calculate the refractive index n(λ), the absorption index and the optical dispersion parameters according to Wemple and Didomenico WDD model. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal dispersion in the transparent region. The optical bandgap has been estimated and confirmed by four different methods. The value for the direct bandgap for the as-deposited CuSe thin film approximately equals 2.7 eV. The Raman spectroscopy was used to identify and quantify the individual phases presented in the CuSe films.

  5. Natively textured surface hydrogenated gallium-doped zinc oxide transparent conductive thin films with buffer layers for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin-liang, E-mail: cxlruzhou@163.com; Wang, Fei; Geng, Xin-hua; Huang, Qian; Zhao, Ying; Zhang, Xiao-dan

    2013-09-02

    Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. These natively textured HGZO thin films exhibit rough pyramid-like textured surface, high optical transmittances in the visible and near infrared region and excellent electrical properties. The experiment results indicate that tungsten-doped indium oxide (In{sub 2}O{sub 3}:W, IWO) buffer layers can effectively improve the surface roughness and enhance the light scattering ability of HGZO thin films. The root-mean-square roughness of HGZO, IWO (10 nm)/HGZO and IWO (30 nm)/HGZO thin films are 28, 44 and 47 nm, respectively. The haze values at the wavelength of 550 nm increase from 7.0% of HGZO thin film without buffer layer to 18.37% of IWO (10 nm)/HGZO thin film. The optimized IWO (10 nm)/HGZO exhibits a high optical transmittance of 82.18% in the visible and near infrared region (λ ∼ 400–1100 nm) and excellent electrical properties with a relatively low sheet resistance of 3.6 Ω/□ and the resistivity of 6.21 × 10{sup −4} Ωcm. - Highlights: • Textured hydrogenated gallium-doped zinc oxide (HGZO) films were developed. • Tungsten-doped indium oxide (IWO) buffer layers were applied for the HGZO films. • Light-scattering ability of the HGZO films can be improved through buffer layers. • Low sheet resistance and high haze were obtained for the IWO(10 nm)/HGZO film. • The IWO/HGZO films are promising transparent conductive layers for solar cells.

  6. Investigation into short-range order, electric conductivity and optical absorption edge of indium selenide thin amorphous films

    International Nuclear Information System (INIS)

    Bilyj, M.N.; Didyk, G.V.; Stetsiv, Ya.I.; Yurechko, R.Ya.

    1980-01-01

    Thin amorphous films of InSe have been obtained by the method of discrete vacuum evaporation of about 10 -2 Pa. The short-range order is investigated according to the radial distribution curves. The temperature and film thickness are shown to affect the character of conductivity. The width of the forbidden band determined by the fundamental absorption edge is found to depend on the time of film annealing

  7. Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling

    Science.gov (United States)

    Huebner, Torsten; Martens, Ulrike; Walowski, Jakob; Münzenberg, Markus; Thomas, Andy; Reiss, Günter; Kuschel, Timo

    2018-06-01

    In general, it is difficult to access the thermal conductivity of thin insulating films experimentally by electrical means. Here, we present a new approach utilizing the tunnel magneto-Seebeck effect (TMS) in combination with finite-element modeling (FEM). We detect the laser-induced TMS and the absolute thermovoltage of laser-heated magnetic tunnel junctions with 2.6 nm thin barriers of MgAl2O4 (MAO) and MgO, respectively. A second measurement of the absolute thermovoltage after a dielectric breakdown of the barrier grants insight into the remaining thermovoltage of the stack. Thus, the pure TMS without any parasitic Nernst contributions from the leads can be identified. In combination with FEM via COMSOL, we are able to extract values for the thermal conductivity of MAO (0.7 W (K · m)‑1) and MgO (5.8 W (K · m)‑1), which are in very good agreement with theoretical predictions. Our method provides a new promising way to extract the experimentally challenging parameter of the thermal conductivity of thin insulating films.

  8. The influence of Ga{sup +} irradiation on the transport properties of mesoscopic conducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Barzola-Quiquia, J; Dusari, S; Bridoux, G; Bern, F; Molle, A; Esquinazi, P, E-mail: j.barzola@physik.uni-leipzig.de, E-mail: esquin@physik.uni-leipzig.de [Division of Superconductivity and Magnetism, Universitaet Leipzig, Linnestrasse 5, D-04103 Leipzig (Germany)

    2010-04-09

    We studied the influence of 30 keV Ga{sup +}-ions-commonly used in focused-ion-beam (FIB) devices-on the transport properties of thin crystalline graphite flakes, and La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and Co thin films. The changes in electrical resistance were measured in situ during irradiation and also the temperature and magnetic field dependence before and after irradiation. Our results show that the transport properties of these materials strongly change at Ga{sup +} fluences much below those used for patterning and ion-beam-induced deposition (IBID), seriously limiting the use of FIB when the intrinsic properties of the materials of interest are of importance. We present a method that can be used to protect the sample as well as to produce selectively irradiation-induced changes.

  9. Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S S; Shinde, P S; Bhosale, C H; Rajpure, K Y

    2008-01-01

    Indium doped zinc oxide (IZO) thin films are grown onto Corning glass substrates using the spray pyrolysis technique. The effect of doping concentration on the structural, electrical and optical properties of IZO thin films is studied. X-ray diffraction studies show a change in preferential orientation from the (0 0 2) to the (1 0 1) crystal planes with increase in indium doping concentration. Scanning electron microscopy studies show polycrystalline morphology of the films. Based on the Hall-effect measurements and analysis, impurity scattering is found to be the dominant mechanism determining the diminished mobility in ZnO thin films having higher indium concentration. The addition of indium also induces a drastic decrease in the electrical resistivity of films; the lowest resistivity (4.03 x 10 -5 Ω cm) being observed for the film deposited with 3 at% indium doping. The effect of annealing on the film properties has been reported. Films deposited with 3 at% In concentration have relatively low resistivity with 90% transmittance at 550 nm and the highest value of figure of merit 7.9 x 10 -2 □ Ω -1

  10. Charge conduction process and photovoltaic effects in thiazole yellow (TY) thin film based Schottky devices

    Energy Technology Data Exchange (ETDEWEB)

    Roy, M.S. [Defence Lab., Jodhpur (India). Camouflage Div.; Sharma, G.D.; Gupta, S.K. [Department of Physics, J.N.V. University, Jodhpur (Raj.) (India)

    1997-11-21

    The charge generation and photovoltaic effects observed with thin films of TY in the form of sandwich structures, were analysed by J-V, C-V and photoaction spectra. These measurements were explained in terms of n-type semiconductivity of TY thin film and by the formation of a Schottky barrier with ITO while Ohmic contact with an Al or In electrode. The existence of thermionic emission over the ITO-TY barrier has been observed in low voltage region, whereas at high voltages, the process is dominant by the series resistance of TY layer. Various electrical parameters were calculated from the analysis of J-V and C-V characteristics of the devices and discussed in details. The diode quality factor is higher for Al/TY/ITO than In/TY/ITO device which can be attributed to the formation of thin layer of Al{sub 2}O{sub 3} between Al and TY. The photoaction spectra of the devices reveal that the fraction of light which is absorbed near the ITO-TY interface, to the depth of 180 A, is responsible for producing the charge carriers. The photovoltaic parameters were also calculated from the J-V characteristics of the devices, under illumination and described in detail. (orig.) 21 refs.

  11. Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a Thin-Film Electrolyte.

    Science.gov (United States)

    Ahn, Junsung; Jang, Ho Won; Ji, Hoil; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Kim, Byung-Kook; Lee, Hae-Weon; Lee, Jong-Ho

    2018-05-09

    Strain-induced fast ion conduction has been a research area of interest for nanoscale energy conversion and storage systems. However, because of significant discrepancies in the interpretation of strain effects, there remains a lack of understanding of how fast ionic transport can be achieved by strain effects and how strain can be controlled in a nanoscale system. In this study, we investigated strain effects on the ionic conductivity of Gd 0.2 Ce 0.8 O 1.9-δ (100) thin films under well controlled experimental conditions, in which errors due to the external environment could not intervene during the conductivity measurement. In order to avoid any interference from perpendicular-to-surface defects, such as grain boundaries, the ionic conductivity was measured in the out-of-plane direction by electrochemical impedance spectroscopy analysis. With varying film thickness, we found that a thicker film has a lower activation energy of ionic conduction. In addition, careful strain analysis using both reciprocal space mapping and strain mapping in transmission electron microscopy shows that a thicker film has a higher tensile strain than a thinner film. Furthermore, the tensile strain of thicker film was mostly developed near a grain boundary, which indicates that intrinsic strain is dominant rather than epitaxial or thermal strain during thin-film deposition and growth via the Volmer-Weber (island) growth mode.

  12. Effect of helium gas pressure on dc conduction mechanism and EMI shielding properties of nanocrystalline carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Ishpal, E-mail: rawalishpal@gmail.com [Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Singh, Avanish Pratap; Dhawan, S.K. [Polymeric and Soft Materials Group, Physics Engineering of Carbon, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2015-05-05

    This paper reports the effect of helium partial pressures ∼1.2 × 10{sup −5} (base pressure), 1.4 × 10{sup −4}, 8.6 × 10{sup −3} and 0.1 mbar on the variable range hopping conduction in nanocrystalline carbon thin films deposited by filtered cathodic jet carbon arc technique. High resolution transmission electron microscopy studies suggest the random distribution of nanocrystallites (∼3–7 nm) in the amorphous matrix. The DC conduction behavior of the deposited nanocrystalline films has been studied in the light of Mott's variable range hopping (VRH) model and found to obey three dimensional VRH conduction. The randomly distributed nanocrystallites in amorphous matrix may lead to change in the distribution of density of states near Fermi level and hence, the conduction behavior. The enhanced electrical conductivity of the deposited films due to the helium environment makes them suitable for electromagnetic interference shielding applications. The sample deposited at a helium partial pressure of 0.1 mbar has a value of shielding effectiveness ∼7.84 dB at 18 GHz frequency. - Highlights: • Nanocrystalline carbon thin films (NCTF) has been deposited by FCJCA technique. • Effect of helium gas pressure has been studied on the properties of NCTF. • Investigation of EMI shielding properties of NCTF has been carried out.

  13. Local photoconductivity of microcrystalline silicon thin films measured by conductive atomic force microscopy

    Czech Academy of Sciences Publication Activity Database

    Ledinský, Martin; Fejfar, Antonín; Vetushka, Aliaksi; Stuchlík, Jiří; Rezek, Bohuslav; Kočka, Jan

    2011-01-01

    Roč. 5, 10-11 (2011), s. 373-375 ISSN 1862-6254 R&D Projects: GA MŠk(CZ) LC06040; GA MŠk(CZ) MEB061012; GA AV ČR KAN400100701; GA MŠk LC510 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional research plan: CEZ:AV0Z10100521 Keywords : amorphous silicon * nanocrystalline silicon * thin films * atomic force microscopy * photoconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.218, year: 2011

  14. Untangling surface oxygen exchange effects in YBa2Cu3O6+x thin films by electrical conductivity relaxation.

    Science.gov (United States)

    Cayado, P; Sánchez-Valdés, C F; Stangl, A; Coll, M; Roura, P; Palau, A; Puig, T; Obradors, X

    2017-05-31

    The kinetics of oxygen incorporation (in-diffusion process) and excorporation (out-diffusion process), in YBa 2 Cu 3 O 6+x (YBCO) epitaxial thin films prepared using the chemical solution deposition (CSD) methodology by the trifluoroacetate route, was investigated by electrical conductivity relaxation measurements. We show that the oxygenation kinetics of YBCO films is limited by the surface exchange process of oxygen molecules prior to bulk diffusion into the films. The analysis of the temperature and oxygen partial pressure influence on the oxygenation kinetics has drawn a consistent picture of the oxygen surface exchange process enabling us to define the most likely rate determining step. We have also established a strategy to accelerate the oxygenation kinetics at low temperatures based on the catalytic influence of Ag coatings thus allowing us to decrease the oxygenation temperature in the YBCO thin films.

  15. Electric conduction mechanism of some heterocyclic compounds, 4,4′-bipyridine and indolizine derivatives in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Danac, Ramona, E-mail: rdanac@uaic.ro [Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Leontie, Liviu, E-mail: lleontie@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Carlescu, Aurelian, E-mail: carlescu_aurelian@yahoo.com [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Shova, Sergiu, E-mail: shova@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, Nr. 41A, 700487 Iasi (Romania); Tiron, Vasile, E-mail: vasile.tiron@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Rusu, George G., E-mail: rusugxg@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Iacomi, Felicia, E-mail: iacomi@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Gurlui, Silviu, E-mail: sgurlui@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Șușu, Oana, E-mail: oasusu@gmail.com [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Rusu, Gheorghe I., E-mail: girusu@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania)

    2016-08-01

    Temperature dependence of d. c. electric conductivity of some recently synthesized heterocyclic compounds, 4,4′-bipyridine and indolizine derivatives, in thin films (d = 0.27–0.51 μm) spin-coated from chloroform solutions onto glass, is studied. The investigated compounds are polycrystalline (as shown by X-ray Diffraction analysis) and show typical n-type semiconductor behavior. The activation energy of d. c. electric conduction ranges between 1.55 and 2.33 eV. Some correlations between semiconducting characteristics and essential features of molecular structure of organic compounds have been established. In the higher temperature range (400–520 K), the electronic transport properties in present compounds can be explained in the frame of band gap representation model, while in the lower temperature range (300–350 K), the Mott's variable-range hopping conduction model can be conveniently used. - Highlights: • 4,4′-bipyridine and indolizine derivatives in thin films behave as n-type semiconductors. • The electron transfer is favored by extended conjugation and packing capacity. • The band gap representation is suitable in the higher temperature range. • The Mott's VRH conduction model may be used in the lower temperature range.

  16. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M., E-mail: Morteza.Eslamian@sjtu.edu.cn

    2015-05-30

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  17. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    International Nuclear Information System (INIS)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M.

    2015-01-01

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  18. Study on characteristics of a double-conductible channel organic thin-film transistor with an ultra-thin hole-blocking layer

    International Nuclear Information System (INIS)

    Guang-Cai, Yuan; Zheng, Xu; Su-Ling, Zhao; Fu-Jun, Zhang; Xue-Yan, Tian; Xu-Rong, Xu; Na, Xu

    2009-01-01

    The properties of top-contact organic thin-film transistors (TC-OTFTs) using ultra-thin 2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP) as a hole-blocking interlayer have been improved significantly and a BCP interlayer was inserted into the middle of the pentacene active layer. This paper obtains a fire-new transport mode of an OTFT device with double-conductible channels. The accumulation and transfer of the hole carriers are limited by the BCP interlayer in the vertical region of the channel. A huge amount of carriers is located not only at the interface between pentacene and the gate insulator, but also at the two interfaces of pentacene/BCP interlayer and pentacene/gate insulator, respectively. The results suggest that the BCP interlayer may be useful to adjust the hole accumulation and transfer, and can increase the hole mobility and output current of OTFTs. The TC-OTFTs with a BCP interlayer at V DS = −20 V showed excellent hole mobility μFE and threshold voltage V TH of 0.58 cm 2 /(V·s) and −4.6 V, respectively

  19. Perovskite Thin Film Solar Cells Based on Inorganic Hole Conducting Materials

    Directory of Open Access Journals (Sweden)

    Pan-Pan Zhang

    2017-01-01

    Full Text Available Organic-inorganic metal halide perovskites have recently shown great potential for application, due to their advantages of low-cost, excellent photoelectric properties and high power conversion efficiency. Perovskite-based thin film solar cells have achieved a power conversion efficiency (PCE of up to 20%. Hole transport materials (HTMs are one of the most important components of perovskite solar cells (PSCs, having functions of optimizing interface, adjusting the energy match, and helping to obtain higher PCE. Inorganic p-type semiconductors are alternative HTMs due to their chemical stability, higher mobility, high transparency in the visible region, and applicable valence band (VB energy level. This review analyzed the advantages, disadvantages, and development prospects of several popular inorganic HTMs in PSCs.

  20. Building the perfect PC

    CERN Document Server

    Thompson, Robert Bruce

    2006-01-01

    This popular Build-It-Yourself (BIY) PC book covers everything you want to know about building your own system: Planning and picking out the right components, step-by-step instructions for assembling your perfect PC, and an insightful discussion of why you'd want to do it in the first place. Most big brand computers from HP, Dell and others use lower-quality components so they can meet their aggressive pricing targets. But component manufacturers also make high-quality parts that you can either purchase directly, or obtain through distributors and resellers. Consumers and corporations

  1. Conducting atomic force microscopy studies on doped CulnO2 thin films for resistive memory device applications

    International Nuclear Information System (INIS)

    Mehta, B.R.

    2009-01-01

    Full text: Delafosite thin films have interesting structural, optical and electronic properties due to the highly anisotropic crystal structure and possibility of bipolar conductivity. In this presentation, optical, structural and electrical properties of Sn (n type) and Ca (p type) doped CulnO 2 layers grown by rf magnetron sputtering technique will be discussed. Depending on doping and deposition temperature, these films show nanocolumnar structure with (110) and (006) preferred orientations. The observed decrease in activation energy from 0.9 eV to about 0.10 eV and a large decrease in conductivity from 2.11 x 10 -10 Scm -1 to 1.66 x 10 -1 Scm -1 on Sn doping has been explained due to the change in preferred orientation along with efficient doping. Our results show that crystallite orientation is the most important factor controlling the electrical conduction in delafossite thin films. The anisotropy of electrical conduction along (006) and (110) directions in tin doped samples has been further established using conducting atomic force microscopy (CAFM) measurements. The CAFM measurements shows the presence of nanoconducting region when the current flow direction is aligned along the BO 6 layer and complete absence of conducting regions when the current direction is perpendicular to the film surface. Resistive memory devices based on Sn and Ca doped CulnO 2 films show stable and reproducible 'on' and 'off' states. CAFM measurement on these devices carried out before and after 'forming' show the growth of nanoconducting filaments on the application of a threshold voltage. It is possible to control resistance in the 'on' and 'off' states and magnitude of the forming and switching voltages by controlling the doping concentration and crystallite orientation in CulnO 2 layers

  2. Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-κ dielectric based resistive random access memory

    KAUST Repository

    Wu, Xing

    2011-08-29

    Resistive switching in transition metal oxides could form the basis for next-generation non-volatile memory (NVM). It has been reported that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only individually, limiting our understanding of the possibility of multiple conductive filaments nucleation and rupture and the correlation kinetics of their evolution. In this study, direct visualization of uncorrelated multiple conductive filaments in ultra-thin HfO2-based high-κ dielectricresistive random access memory (RRAM) device has been achieved by high-resolution transmission electron microscopy (HRTEM), along with electron energy loss spectroscopy(EELS), for nanoscale chemical analysis. The locations of these multiple filaments are found to be spatially uncorrelated. The evolution of these microstructural changes and chemical properties of these filaments will provide a fundamental understanding of the switching mechanism for RRAM in thin oxide films and pave way for the investigation into improving the stability and scalability of switching memory devices.

  3. Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes

    International Nuclear Information System (INIS)

    Kim, Yang-Bae; Park, Sucheol; Hong, Jin-Who

    2009-01-01

    Conducting polymers exhibit good mechanical and interfacial compatibility with plastic substrates. We prepared an optimized coating formulation based on poly(3,4-ethylenedioxythiophene) (PEDOT) and 3-(trimethoxysilyl)propyl acrylate and fabricated a transparent electrode on poly(ethylene terephthalate) (PET) substrate. The surface resistances and transmittance of the prepared thin films were 500-600 Ω/□ and 87% at 500 nm, respectively. To evaluate the performance of the conducting polymer electrode, we fabricated a five-layer flexible polymer-dispersed liquid crystal (PDLC) device as a PET-PEDOT-PDLC-PEDOT-PET flexible film. The prepared PDLC device exhibited a low driving voltage (15 VAC), high contrast ratio (60:1), and high transmittance in the ON state (60%), characteristics that are comparable with those of conventional PDLC film based on indium tin oxide electrodes. The fabrication of conducting polymer thin films as the driving electrodes in this study showed that such films can be used as a substitute for an indium tin oxide electrode, which further enhances the flexibility of PDLC film

  4. Controlled oxygen vacancy induced p-type conductivity in HfO{sub 2-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Mueller, Mathis M.; Kleebe, Hans-Joachim; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany); Schroeder, Thomas [IHP, 15236 Frankfurt/Oder (Germany)

    2011-09-12

    We have synthesized highly oxygen deficient HfO{sub 2-x} thin films by controlled oxygen engineering using reactive molecular beam epitaxy. Above a threshold value of oxygen vacancies, p-type conductivity sets in with up to 6 times 10{sup 21} charge carriers per cm{sup 3}. At the same time, the band-gap is reduced continuously by more than 1 eV. We suggest an oxygen vacancy induced p-type defect band as origin of the observed behavior.

  5. Abnormal resistance switching behaviours of NiO thin films: possible occurrence of both formation and rupturing of conducting channels

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chunli; Chae, S C; Chang, S H; Lee, S B; Noh, T W [ReCOE and FPRD, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Lee, J S; Kahng, B [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, D-W [Division of Nano Sciences and Department of Physics, Ewha Womens University, Seoul 120-750 (Korea, Republic of); Jung, C U [Department of Physics, Hankuk University of Foreign Studies, Yongin, Gyeonggi-do 449-791 (Korea, Republic of); Seo, S; Ahn, S-E [Samsung Advanced Institute of Technology, Suwon 440-600 (Korea, Republic of)], E-mail: twnoh@snu.ac.kr

    2009-01-07

    We report a detailed study on the abnormal resistance switching behaviours observed in NiO thin films which show unipolar resistance switching phenomena. During the RESET process, in which the NiO film changed from a low resistance state to a high resistance state, we sometimes observed that the resistance became smaller than the initial value. We simulated the resistance switching by using a random circuit breaker network model. We found that local conducting channels could be formed as well as ruptured during the RESET process, which result in the occurrence of such abnormal switching behaviours.

  6. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  7. Fabrication of p-type conductivity in SnO{sub 2} thin films through Ga doping

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail: cytsay@fcu.edu.tw; Liang, Shan-Chien

    2015-02-15

    Highlights: • P-type Ga-doped SnO{sub 2} semiconductor films were prepared by sol-gel spin coating. • Optical bandgaps of the SnO{sub 2}:Ga films are narrower than that of the SnO{sub 2} film. • SnO{sub 2}:Ga films exhibited p-type conductivity as Ga doping content higher than 10%. • A p-n heterojunction composed of p-type SnO{sub 2}:Ga and n-type ZnO:Al was fabricated. - Abstract: P-type transparent tin oxide (SnO{sub 2}) based semiconductor thin films were deposited onto alkali-free glass substrates by a sol-gel spin-coating method using gallium (Ga) as acceptor dopant. In this study, we investigated the influence of Ga doping concentration ([Ga]/[Sn] + [Ga] = 0%, 5%, 10%, 15%, and 20%) on the structural, optical and electrical properties of SnO{sub 2} thin films. XRD analysis results showed that dried Ga-doped SnO{sub 2} (SnO{sub 2}:Ga) sol-gel films annealed in oxygen ambient at 520 °C for 1 h exhibited only the tetragonal rutile phase. The average optical transmittance of as-prepared thin film samples was higher than 87.0% in the visible light region; the optical band gap energy slightly decreased from 3.92 eV to 3.83 eV with increases in Ga doping content. Hall effect measurement showed that the nature of conductivity of SnO{sub 2}:Ga thin films changed from n-type to p-type when the Ga doping level was 10%, and when it was at 15%, Ga-doped SnO{sub 2} thin films exhibited the highest mean hole concentration of 1.70 × 10{sup 18} cm{sup -3}. Furthermore, a transparent p-SnO{sub 2}:Ga (Ga doping level of 15%)/n-ZnO:Al (Al doping level of 2%) heterojunction was fabricated on alkali-free glass. The I-V curve measurement for the p-n heterojunction diode showed a typical rectifying characteristic with a forward turn-on voltage of 0.65 V.

  8. Structural, dielectric and a.c. conductivity study of Sb2O3 thin film ...

    Indian Academy of Sciences (India)

    X-ray diffraction; a.c. conductivity; dielectric properties; complex electric modulus. ... the study disordered systems because of the unusual temper- ..... energy. tunnelling model suggested by Wang et al [31], (s) should decrease with increase in ...

  9. Electrophoretic deposition of thin film zirconia electrolyte on non-conducting NiO-YSZ substrate

    International Nuclear Information System (INIS)

    Das, Debasish; Basu, Rajendra N.

    2014-01-01

    Eight (8) mol% yttria stabilized zirconia (YSZ), an electrolyte material for solid oxide fuel cell (SOFC), has been deposited onto porous non-conducting NiO-YSZ substrate using electrophoretic deposition technique (EPD) from a stable non-aqueous suspension of YSZ. Normally, EPD cannot be performed on a non-conducting substrate, but, in this present study, YSZ particulate film has been successfully deposited on a non-conducting NiO-YSZ substrate following two different EPD approaches:(a) using a conducting metallic plate on the reverse side of the porous NiO-YSZ anode substrate and (b) using a conducting polymer coated NiO-YSZ substrate. The deposited films are then formed dense coatings of 5-15 μm after sintering at 1400℃ for 6 h in air. Surface and cross-sectional morphologies of green and sintered films deposited by different EPD approaches are investigated using SEM. La 0.65 Sr 0.3 MnO 3 (LSM), a cathode for SOFC, is then screen-printed onto the electrolyte layer of such sintered half cells (anode+electrolyte) prepared by both the above approaches to construct SOFC single cells. A maximum output power density of 0.37 W.cm -2 is obtained using single cells prepared by conducting metallic plate assisted EPD compared to that of 0.73 W.cm -2 for polymer coated at 800℃ using H 2 as fuel and O 2 as oxidant. (author)

  10. Perfect imaging without negative refraction

    OpenAIRE

    Leonhardt, Ulf

    2009-01-01

    Perfect imaging has been believed to rely on negative refraction, but here we show that an ordinary positively-refracting optical medium may form perfect images as well. In particular, we establish a mathematical proof that Maxwell's fish eye in two-dimensional integrated optics makes a perfect instrument with a resolution not limited by the wavelength of light. We also show how to modify the fish eye such that perfect imaging devices can be made in practice. Our method of perfect focusing ma...

  11. Perfect imaging without negative refraction

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)], E-mail: ulf@st-andrews.ac.uk

    2009-09-15

    Perfect imaging has been believed to rely on negative refraction, but here we show that an ordinary positively refracting optical medium may form perfect images as well. In particular, we establish a mathematical proof that Maxwell's fish eye in two-dimensional (2D) integrated optics makes a perfect instrument with a resolution not limited by the wavelength of light. We also show how to modify the fish eye such that perfect imaging devices can be made in practice. Our method of perfect focusing may also find applications outside of optics, in acoustics, fluid mechanics or quantum physics, wherever waves obey the 2D Helmholtz equation.

  12. Thin RuO2 conducting films grown by MOCVD for microelectronic applications

    International Nuclear Information System (INIS)

    Froehlich, K.; Cambel, V.; Machajdik, D.; Pignard, S.; Baumann, P. K.; Lindner, J.; Schumacher, M.

    2002-01-01

    We have prepared thin RuO 2 films by MOCVD using thermal evaporation of Ru(thd) 2 (cod) solid precursor. The films were prepared at deposition temperatures between 250 and 500 grad C on silicon and sapphire substrates. Different structure was observed for the RuO 2 films on these substrates; the films on Si substrate were polycrystalline, while X-ray diffraction analysis revealed epitaxial growth of RuO 2 on sapphire substrates. Polycrystalline RuO 2 films prepared at temperatures below 300 grad C on Si substrate exhibit smooth surface and excellent step coverage. Highly conformal growth of the RuO 2 films at low temperature and low pressure results in nearly 100% step coverage for sub-mm features with 1:1 aspect ratio. Resistivity of the polycrystalline RuO 2 at room temperature ranged between 100 and 200 μ x Ω x cm. These films are suitable for CMOS and RAM applications. (Authors)

  13. Conduction and stability of holmium titanium oxide thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castán, H., E-mail: helena@ele.uva.es [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); García, H.; Dueñas, S.; Bailón, L. [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); Miranda, E. [Departament d' Enginyería Electrònica, Universitat Autónoma de Barcelona, 08193 Bellaterra (Spain); Kukli, K. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland); Institute of Physics, University of Tartu, EE-50411,Tartu (Estonia); Kemell, M.; Ritala, M.; Leskelä, M. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland)

    2015-09-30

    Holmium titanium oxide (HoTiO{sub x}) thin films of variable chemical composition grown by atomic layer deposition are studied in order to assess their suitability as dielectric materials in metal–insulator–metal electronic devices. The correlation between thermal and electrical stabilities as well as the potential usefulness of HoTiO{sub x} as a resistive switching oxide are also explored. It is shown that the layer thickness and the relative holmium content play important roles in the switching behavior of the devices. Cycled current–voltage measurements showed that the resistive switching is bipolar with a resistance window of up to five orders of magnitude. In addition, it is demonstrated that the post-breakdown current–voltage characteristics in HoTiO{sub x} are well described by a power-law model in a wide voltage and current range which extends from the soft to the hard breakdown regimes. - Highlights: • Gate and memory suitabilities of atomic layer deposited holmium titanium oxide. • Holmium titanium oxide exhibits resistive switching. • Layer thickness and holmium content influence the resistive switching. • Low and high resistance regimes follow a power-law model. • The power-law model can be extended to the hard breakdown regime.

  14. Sol-gel preparation of ion-conducting ceramics for use in thin films

    International Nuclear Information System (INIS)

    Steinhauser, M.I.

    1992-12-01

    A metal alkoxide sol-gel solution suitable for depositing a thin film of La 0.6 Sr 0.4 CoO 3 on a porous substrate has been developed; such films should be useful in fuel cell electrode and oxygen separation membrane manufacture. Crack-free films have been deposited on both dense and porous substrates by dip-coating and spin-coating techniques followed by a heat treatment in air. Fourier transform infrared spectroscopy was used to determine the chemical structure of metal alkoxide solution system. X-ray diffraction was used to determine crystalline phases formed at various temperatures, while scanning electron microscopy was used to determine physical characteristics of the films. Surface coatings have been successfully applied to porous substrates through the control of the substrate pore size, deposition parameters, and firing parameters. Conditions have been defined for which films can be deposited, and for which the physical and chemical characteristics of the film can be improved. A theoretical discussion of the chemical reactions taking place before and after hydrolysis in the mixed alkoxide solutions is presented, and the conditions necessary for successful synthesis are defined. Applicability of these films as ionic and electronic conductors is discussed

  15. The design of high-temperature thermal conductivity measurements apparatus for thin sample size

    Directory of Open Access Journals (Sweden)

    Hadi Syamsul

    2017-01-01

    Full Text Available This study presents the designing, constructing and validating processes of thermal conductivity apparatus using steady-state heat-transfer techniques with the capability of testing a material at high temperatures. This design is an improvement from ASTM D5470 standard where meter-bars with the equal cross-sectional area were used to extrapolate surface temperature and measure heat transfer across a sample. There were two meter-bars in apparatus where each was placed three thermocouples. This Apparatus using a heater with a power of 1,000 watts, and cooling water to stable condition. The pressure applied was 3.4 MPa at the cross-sectional area of 113.09 mm2 meter-bar and thermal grease to minimized interfacial thermal contact resistance. To determine the performance, the validating process proceeded by comparing the results with thermal conductivity obtained by THB 500 made by LINSEIS. The tests showed the thermal conductivity of the stainless steel and bronze are 15.28 Wm-1K-1 and 38.01 Wm-1K-1 with a difference of test apparatus THB 500 are −2.55% and 2.49%. Furthermore, this apparatus has the capability to measure the thermal conductivity of the material to a temperature of 400°C where the results for the thermal conductivity of stainless steel is 19.21 Wm-1K-1 and the difference was 7.93%.

  16. Thin, Conductive Permafrost Surrounding Lake Fryxell Indicates Salts From Past Lakes, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Foley, N.; Tulaczyk, S. M.; Gooseff, M. N.; Myers, K. F.; Doran, P. T.; Auken, E.; Dugan, H. A.; Mikucki, J.; Virginia, R. A.

    2017-12-01

    In the McMurdo Dry Valleys (MDV), permafrost should be thick and liquid water rare. However, despite the well below zero mean annual temperature in this cryospheric desert, liquid water can be found in lakes, summer melt streams, subglacial outflow, and - recent work has shown - underneath anomalously thin permafrost. In part, this niche hydrosphere is maintained by the presence of salts, which depress the freezing point of water to perhaps as cold as -10° Celsius. We detected widespread salty water across the MDV in lakes and at depth using a helicopter-borne Time Domain Electromagnetic (TDEM) sensor. By using the presence of brines to mark the transition from frozen permafrost (near the surface) to unfrozen ground (at depth), we have created a map of permafrost thickness in Lower Taylor Valley (LTV), a large MDV with a complex history of glaciation and occupation by lakes. Our results show that permafrost is thinner ( 200m) than would be expected based on geothermal gradient measurements (up to 1000m), a result of the freezing point depression caused by salt and potentially enhanced by an unfinished transient freezing process. Near Lake Fryxell, a large, brackish lake in the center of LTV, permafrost is very thin (about 30-40m) and notably more electrically conductive than more distal permafrost. This thin ring of conductive permafrost surrounding the lake basin most likely reflects the high presence of salts in the subsurface, preventing complete freezing. These salts may be a remnant of the salty bottom waters of a historic larger lake (LGM glacially dammed Lake Washburn) or the remnant of salty basal water from a past advance of Taylor Glacier, which now sits many km up-valley but is known to contain brines which currently flow onto the surface and directly into the subsurface aquifer.

  17. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.; Kurra, Narendra; Alshareef, Husam N.

    2015-01-01

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  18. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Directory of Open Access Journals (Sweden)

    M. Morales-Masis

    2014-09-01

    Full Text Available Improving the conductivity of earth-abundant transparent conductive oxides (TCOs remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H2-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H2-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  19. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Jeangros, Q. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Hessler-Wyser, A. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Nicolay, S. [Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Ballif, C. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland)

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  20. Spectroscopy and control of near-surface defects in conductive thin film ZnO

    KAUST Repository

    Kelly, Leah L

    2016-02-12

    The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy.

  1. Spectroscopy and control of near-surface defects in conductive thin film ZnO

    KAUST Repository

    Kelly, Leah L; Racke, David A; Schulz, Philip; Li, Hong; Winget, Paul; Kim, Hyungchul; Ndione, Paul; Sigdel, Ajaya K; Bredas, Jean-Luc; Berry, Joseph J; Graham, Samuel; Monti, Oliver L A

    2016-01-01

    The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy.

  2. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2015-11-24

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  3. There’s no place like Ohm: conduction in oxide thin films

    International Nuclear Information System (INIS)

    Scott, J F

    2014-01-01

    A pedagogical essay is given that alerts researchers to the errors inherent in assigning linear I(V) current–voltage dependences to Ohmic conduction. Such a linear I(V) is necessary but not sufficient, since other mechanisms, including Simmons’ modification of the basic Schottky emission theory, also give linear I(V) at small applied voltages. Discrimination among Ohmic, Schottky, space-charge limited, and other models requires accurate thickness dependence I(d) data, where for Ohmic conduction I = a/d, whereas for interface-limited mechanisms such as Simmons/Schottky, I is nearly independent of d. (fast track communications)

  4. Room-Temperature Voltage Tunable Phonon Thermal Conductivity via Reconfigurable Interfaces in Ferroelectric Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Ihlefeld, Jon F. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Foley, Brian M. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical and Aerospace Engineering; Scrymgeour, David A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Michael, Joseph R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); McKenzie, Bonnie B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Medlin, Douglas L. [Sandia National Laboratories, Livermore, CA; Wallace, Margeaux [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Trolier-McKinstry, Susan [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Hopkins, Patrick E. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical and Aerospace Engineering

    2015-02-19

    Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. Here, we demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.

  5. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films.

    Science.gov (United States)

    Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E

    2015-03-11

    Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.

  6. Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition

    International Nuclear Information System (INIS)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2013-01-01

    Highlights: •LaNiO 2 films were synthesized by metal organic decomposition and topotactic reduction. •Room-temperature resistivity as low as 0.6 mΩ cm was achieved for infinite-layer LaNiO 2 . •Lattice matched substrates are important in obtaining high conductivity. -- Abstract: Infinite-layer LaNiO 2 thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO 2 is isostructural to SrCuO 2 , the parent compound of high-T c Sr 0.9 La 0.1 CuO 2 with T c = 44 K, and has 3d 9 configuration, which is very rare in oxides but common to high-T c copper oxides. The bulk synthesis of LaNiO 2 is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO 2 is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO 2 . The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures

  7. Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour deposition

    International Nuclear Information System (INIS)

    David, C; Girardeau, T; Paumier, F; Eyidi, D; Guerin, P; Marteau, M; Lacroix, B; Papathanasiou, N; Tinkham, B P

    2011-01-01

    Zinc oxide (ZnO) thin films have attracted much attention in recent years due to progress in crystal growth for a large variety of technological applications including optoelectronics and transparent electrodes in solar cells. Boron (B)-doped ZnO thin films are deposited by low pressure chemical vapour deposition (LPCVD) on Si(100). These films exhibit a strong (002) texture with a pyramidal grain structure. The ZnO films were annealed after growth; the annealing temperature and the atmosphere appear to strongly impact the layer conductivity. This work will first present the modification of the physical properties (carrier concentration, mobility) extracted from the simulation of layer reflection in the infrared range. At low annealing temperatures the mobility increases slightly before decreasing drastically above a temperature close to 250 deg. C. The chemical and structural evolution (XPS, x-ray diffraction) of the films was also studied to identify the relationship between microstructural modifications and the variations observed in the film conductivity. An in situ XRD study during annealing has been performed under air and low pressure conditions. As observed for electrical properties, the microstructural modifications shift to higher temperatures for vacuum annealing.

  8. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  9. Electrically conductive aluminum oxide thin film used as cobalt catalyst-support layer in vertically aligned carbon nanotube growth

    International Nuclear Information System (INIS)

    Azam, Mohd Asyadi; Ismail, Syahriza; Mohamad, Noraiham; Isomura, Kazuki; Shimoda, Tatsuya

    2015-01-01

    This paper will present the unique characteristics of aluminum oxide (Al–O) and cobalt catalyst included in aligned carbon nanotube (CNT) electrode system of energy storage device, namely electrochemical capacitor. Electrical conductivity and nanostructure of the thermally oxidized Al–O used as catalyst-support layer in vertically grown single-walled CNTs were studied. Al–O films were characterized by means of current–voltage measurement and high resolution transmission electron microscopy analysis. The Al–O support layer was found to be conductive, with a relatively low resistance and, approximately 20 nm film thickness of Al–O is suggested to be too thin to form insulating barrier. The scanning TEM—annular dark field analysis confirmed that the nanosized cobalt catalyst particles distributed on Al–O surfaces and also embedded inside the Al–O film structure. (paper)

  10. Role of oxygen in enhancing N-type conductivity of CuInS2 thin films

    International Nuclear Information System (INIS)

    Rabeh, M. Ben; Kanzari, M.; Rezig, B.

    2007-01-01

    Post-growth treatments in air atmosphere were performed on CuInS 2 films prepared by the single-source thermal evaporation method. Their effect on the structural, optical and electrical properties of the films was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical reflection and transmission and resistance measurements. The films were annealed from 100 to 350 deg. C in air. The stability of the observed N-type conductivity after annealing depends strongly on the annealing temperature. Indeed it is shown that for annealing temperatures above 200 deg. C the N-type conductivity is stable. The resistance of the N-CuInS 2 thin films correlates well with the corresponding annealing temperature. The samples after annealing have direct bandgap energies of 1.45-1.50 eV

  11. High-throughput heterodyne thermoreflectance: Application to thermal conductivity measurements of a Fe-Si-Ge thin film alloy library

    Science.gov (United States)

    d'Acremont, Quentin; Pernot, Gilles; Rampnoux, Jean-Michel; Furlan, Andrej; Lacroix, David; Ludwig, Alfred; Dilhaire, Stefan

    2017-07-01

    A High-Throughput Time-Domain ThermoReflectance (HT-TDTR) technique was developed to perform fast thermal conductivity measurements with minimum user actions required. This new setup is based on a heterodyne picosecond thermoreflectance system. The use of two different laser oscillators has been proven to reduce the acquisition time by two orders of magnitude and avoid the experimental artefacts usually induced by moving the elements present in TDTR systems. An amplitude modulation associated to a lock-in detection scheme is included to maintain a high sensitivity to thermal properties. We demonstrate the capabilities of the HT-TDTR setup to perform high-throughput thermal analysis by mapping thermal conductivity and interface resistances of a ternary thin film silicide library FexSiyGe100-x-y (20 deposited by wedge-type multi-layer method on a 100 mm diameter sapphire wafer offering more than 300 analysis areas of different ternary alloy compositions.

  12. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-01-01

    Tungsten oxide (WO x ) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10 −4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO x -based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 10 6 , a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm 2 /V s was realized. Our results demonstrated that WO x -based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  13. Al and Fe co-doped transparent conducting ZnO thin film for mediator-less biosensing application

    Directory of Open Access Journals (Sweden)

    Shibu Saha

    2011-12-01

    Full Text Available Highly c-axis oriented Al and Fe co-doped ZnO (ZAF thin film is prepared by pulsed laser deposition. Fe introduces redox centre along with shallow donor level while Al doping enhances conductivity of ZnO, thus removing the requirement of both mediator and bottom conducting layer in bioelectrode. Model enzyme (glucose oxidase, was immobilized on surface of ZAF matrix. Cyclic voltammetry and photometric assay show that prepared bio-electrode is sensitive to glucose concentration with enhanced response of 0.18 μAmM-1cm-2 and low Km ∼ 2.01 mM. The results illustrate that ZAF is an attractive matrix for realization of miniaturized mediator-less solid state biosensor.

  14. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment.

    Science.gov (United States)

    Li, Chun-Yi; Liao, Ying-Chih

    2016-05-11

    In this study, a plasma surface modification with printing process was developed to fabricate printed flexible conductor patterns or devices directly on polydimethylsiloxane (PDMS) surface. An atmospheric plasma treatment was first used to oxidize the PDMS surface and create a hydrophilic silica surface layer, which was confirmed with photoelectron spectra. The plasma operating parameters, such as gas types and plasma powers, were optimized to obtain surface silica layers with the longest lifetime. Conductive paste with epoxy resin was screen-printed on the plasma-treated PDMS surface to fabricate flexible conductive tracks. As a result of the strong binding forces between epoxy resin and the silica surface layer, the printed patterns showed great adhesion on PDMS and were undamaged after several stringent adhesion tests. The printed conductive tracks showed strong mechanical stability and exhibited great electric conductivity under bending, twisting, and stretching conditions. Finally, a printed pressure sensor with good sensitivity and a fast response time was fabricated to demonstrate the capability of this method for the realization of printed electronic devices.

  15. High Transparent Conductive Aluminum-Doped Zinc Oxide Thin Films by Reactive Co-Sputtering (Postprint)

    Science.gov (United States)

    2016-03-30

    30 Mar 2016. This document contains color . Journal article published in Optical Interference Coatings, 19 Jun 2016. © 2016 Optical Society of...Ahn, Mi-So Lee, Moon-Ho Ham , Woong Lee, Jae-Min Myoung, “Effects of oxygen concentration on the properties of Al-doped ZnO transparent conductive

  16. Conduction mechanisms in thin atomic layer deposited Al2O3 layers

    International Nuclear Information System (INIS)

    Spahr, Holger; Montzka, Sebastian; Reinker, Johannes; Hirschberg, Felix; Kowalsky, Wolfgang; Johannes, Hans-Hermann

    2013-01-01

    Thin Al 2 O 3 layers of 2–135 nm thickness deposited by thermal atomic layer deposition at 80 °C were characterized regarding the current limiting mechanisms by increasing voltage ramp stress. By analyzing the j(U)-characteristics regarding ohmic injection, space charge limited current (SCLC), Schottky-emission, Fowler-Nordheim-tunneling, and Poole-Frenkel-emission, the limiting mechanisms were identified. This was performed by rearranging and plotting the data in a linear scale, such as Schottky-plot, Poole-Frenkel-plot, and Fowler-Nordheim-plot. Linear regression then was applied to the data to extract the values of relative permittivity from Schottky-plot slope and Poole-Frenkel-plot slope. From Fowler-Nordheim-plot slope, the Fowler-Nordheim-energy-barrier was extracted. Example measurements in addition to a statistical overview of the results of all investigated samples are provided. Linear regression was applied to the region of the data that matches the realistic values most. It is concluded that ohmic injection and therefore SCLC only occurs at thicknesses below 12 nm and that the Poole-Frenkel-effect is no significant current limiting process. The extracted Fowler-Nordheim-barriers vary in the range of up to approximately 4 eV but do not show a specific trend. It is discussed whether the negative slope in the Fowler-Nordheim-plot could in some cases be a misinterpreted trap filled limit in the case of space charge limited current

  17. Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature

    International Nuclear Information System (INIS)

    Yan, Y.; Zhang, X.-F.; Ding, Y.-T.

    2013-01-01

    Amorphous transparent conducting zinc-oxide stabilized indium oxide thin films, named amorphous indium zinc oxide (a-IZO), were deposited by direct current magnetron sputtering at ambient temperature on flexible polyethylene terephthalate substrates. It has been demonstrated that the electrical resistivity could attain as low as ∼ 5 × 10 −4 Ω cm, which was noticeably lower than amorphous indium tin oxide films prepared at the same condition, while the visible transmittance exceeded 84% with the refractive index of 1.85–2.00. In our experiments, introduction of oxygen gas appeared to be beneficial to the improvement of the transparency and electrical conductivity. Both free carrier absorption and indirect transition were observed and Burstein–Moss effect proved a-IZO to be a degenerated amorphous semiconductor. However, the linear relation between the optical band gap and the band tail width which usually observed in covalent amorphous semiconductor such as a-Si:H was not conserved. Besides, porosity could greatly determine the resistivity and optical constants for the thickness variation at this deposition condition. Furthermore, a broad photoluminescence peak around 510 nm was identified when more than 1.5 sccm oxygen was introduced. - Highlights: ► Highly conducting amorphous zinc-oxide stabilized indium oxide thin films were prepared. ► The films were fabricated on polyethylene terephthalate at ambient temperature. ► Introduction of oxygen can improve the transparency and electrical conductivity. ► The linear relation between optical band gap and band tail width was not conserved

  18. Perfect and imperfect states

    Directory of Open Access Journals (Sweden)

    Nikitović Aleksandar

    2013-01-01

    Full Text Available Early Greek ethics embodied in Cretan and Spartan mores, served as a model for Plato`s political theory. Plato theorized the contents of early Greek ethics, aspiring to justify and revitalize the fundamental principles of a traditional view of the world. However, according to Plato`s new insight, deed is further from the truth than a thought i.e. theory. The dorian model had to renounce its position to the perfect prototype of a righteous state, which is a result of the inner logic of philosophical theorizing in early Greek ethics. Prototype and model of philosophical reflection, in comparison to philosophical theory, becomes minor and deficient. Philosophical theorizing of early Greek ethics philosophically formatted Greek heritage, initiating substantial changes to the content of traditional ethics. Replacement of the myth with ontology, as a new foundation of politics, transformed early Greek ethics in various relevant ways. [Projekat Ministarstva nauke Republike Srbije, br. 179049

  19. Perfect pitch reconsidered.

    Science.gov (United States)

    Moulton, Calum

    2014-10-01

    Perfect pitch, or absolute pitch (AP), is defined as the ability to identify or produce the pitch of a sound without need for a reference pitch, and is generally regarded as a valuable asset to the musician. However, there has been no recent review of the literature examining its aetiology and its utility taking into account emerging scientific advances in AP research, notably in functional imaging. This review analyses the key empirical research on AP, focusing on genetic and neuroimaging studies. The review concludes that: AP probably has a genetic predisposition, although this is based on limited evidence; early musical training is almost certainly essential for AP acquisition; and, although there is evidence that it may be relevant to speech processing, AP can interfere with relative pitch, an ability on which humans rely to communicate effectively. The review calls into question the value of AP to musicians and non-musicians alike. © 2014 Royal College of Physicians.

  20. Metamaterials for perfect absorption

    CERN Document Server

    Lee, Young Pak; Yoo, Young Joon; Kim, Ki Won

    2016-01-01

    This book provides a comprehensive overview of the theory and practical development of metamaterial-based perfect absorbers (MMPAs). It begins with a brief history of MMPAs which reviews the various theoretical and experimental milestones in their development. The theoretical background and fundamental working principles of MMPAs are then discussed, providing the necessary background on how MMPAs work and are constructed. There then follows a section describing how different MMPAs are designed and built according to the operating frequency of the electromagnetic wave, and how their behavior is changed. Methods of fabricating and characterizing MMPAs are then presented. The book elaborates on the performance and characteristics of MMPAs, including electromagnetically-induced transparency (EIT). It also covers recent advances in MMPAs and their applications, including multi-band, broadband, tunability, polarization independence and incidence independence. Suitable for graduate students in optical sciences and e...

  1. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  2. Effects of crystallinity and impurities on the electrical conductivity of Li–La–Zr–O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joong Sun, E-mail: parkj@anl.gov [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Cheng, Lei [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Material Sciences and Engineering, University of California, Berkeley, CA 94720 (United States); Zorba, Vassilia [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Mehta, Apurva [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Cabana, Jordi [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Chemistry, University of Illinois at Chicago, IL 60607 (United States); Chen, Guoying; Doeff, Marca M.; Richardson, Thomas J. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Park, Jung Hoon [Department of Nano-Science and Technology, University of Seoul, Seoul (Korea, Republic of); Son, Ji-Won [High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136–791 (Korea, Republic of); Hong, Wan-Shick, E-mail: wshong@uos.ac.kr [Department of Nano-Science and Technology, University of Seoul, Seoul (Korea, Republic of)

    2015-02-02

    We present a study of the fabrication of thin films from a Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) target using pulsed laser deposition. The effects of substrate temperatures and impurities on electrochemical properties of the films were investigated. The thin films of Li–La–Zr–O were deposited at room temperature and higher temperatures on a variety of substrates. Deposition above 600 °C resulted in a mixture of cubic and tetragonal phases of LLZO, as well as a La{sub 2}Zr{sub 2}O{sub 7} impurity, and resulted in aluminum enrichment at the surface when Al-containing substrates were used. Films deposited at 600 °C exhibited the highest room temperature conductivity, 1.61 × 10{sup −6} S/cm. The chemical stability toward metallic lithium was also studied using X-ray photoelectron spectroscopy, which showed that the oxidation state of zirconium remained at + 4 following physical contact with heated lithium metal. - Highlights: • Thin film Li–La–Zr–O was deposited by pulsed laser deposition using Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}. • Deposition above 600 °C resulted in cubic and tetragonal phases of Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}. • Aluminum migration from the substrate to the film surface was observed. • The chemical stability toward lithium was studied by X-ray photoelectron spectroscopy.

  3. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  4. Local current-voltage behaviors of preferentially and randomly textured Cu(In,Ga)Se2 thin films investigated by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Shin, R.H.; Jo, W.; Kim, D.W.; Yun, Jae Ho; Ahn, S.

    2011-01-01

    Electrical transport properties on polycrystalline Cu(In,Ga)Se 2 (CIGS) (Ga/(In+Ga) ∼35%) thin films were examined by conductive atomic force microscopy. The CIGS thin films with a (112) preferential or random texture were deposited on Mo-coated glass substrates. Triangular pyramidal grain growths were observed in the CIGS thin films preferentially textured to the (112) planes. Current maps of the CIGS surface were acquired with a zero or non-zero external voltage bias. The contrast of the images on the grain boundaries and intragrains displayed the conduction path in the materials. Local current-voltage measurements were performed to evaluate the charge conduction properties of the CIGS thin films. (orig.)

  5. Local current-voltage behaviors of preferentially and randomly textured Cu(In,Ga)Se{sub 2} thin films investigated by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shin, R.H.; Jo, W. [Ewha Womans University, Department of Physics, Seoul (Korea, Republic of); Kim, D.W. [Ewha Womans University, Department of Physics, Seoul (Korea, Republic of); Ewha Womans University, Department of Chemistry and Nanosciences, Seoul (Korea, Republic of); Yun, Jae Ho; Ahn, S. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2011-09-15

    Electrical transport properties on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) (Ga/(In+Ga) {approx}35%) thin films were examined by conductive atomic force microscopy. The CIGS thin films with a (112) preferential or random texture were deposited on Mo-coated glass substrates. Triangular pyramidal grain growths were observed in the CIGS thin films preferentially textured to the (112) planes. Current maps of the CIGS surface were acquired with a zero or non-zero external voltage bias. The contrast of the images on the grain boundaries and intragrains displayed the conduction path in the materials. Local current-voltage measurements were performed to evaluate the charge conduction properties of the CIGS thin films. (orig.)

  6. Perfect simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    This article concerns a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual stratihtforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...... their branching and conditional independence structure, useful approximations of the distribution function for the length of a cluster are derived. This is used to construct upper and lower processes for the perfect simulation algorithm. Examples of applications and empirical results are presented....

  7. Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition

    Science.gov (United States)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2013-12-01

    Infinite-layer LaNiO2 thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO2 is isostructural to SrCuO2, the parent compound of high-Tc Sr0.9La0.1CuO2 with Tc = 44 K, and has 3d9 configuration, which is very rare in oxides but common to high-Tc copper oxides. The bulk synthesis of LaNiO2 is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO2 is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO2. The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures.

  8. Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Leem, Jung Woo; Yu, Jae Su

    2011-01-01

    The transparent conducting oxide (TCO) films with low-refractive-index (low-n) are fabricated by the oblique-angle sputtering method. By using the experimentally measured physical data of the fabricated low-n TCO films as the simulation parameters, the effect of low-n TCOs on the performance of a-Si:H/μc-Si:H tandem thin film solar cells is investigated using Silvaco ATLAS. The Al-doped zinc oxide, indium tin oxide (ITO), and Sb-doped tin oxide films are deposited at the flux incidence angles of θ i = 0 (normal sputtering) and θ i = 80 from the sputtering target during the sputtering process. The oblique-angle sputtered films at θ i = 80 show the inclined columnar nanostructures compared to those at θ i = 0 , modifying the optical properties of the films. This is caused mainly by the increase of porosity within the film which leads to its low-n characteristics. The a-Si:H/μc-Si:H tandem thin film solar cell incorporated with the low-n ITO film exhibits an improvement in the conversion efficiency of ∝1% under AM1.5g illumination because of its higher transmittance and lower absorption compared to that with the ITO film at θ i = 0 , indicating a conversion efficiency of 13.75%. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Jung Woo; Yu, Jae Su [Department of Electronics and Radio Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2011-09-15

    The transparent conducting oxide (TCO) films with low-refractive-index (low-n) are fabricated by the oblique-angle sputtering method. By using the experimentally measured physical data of the fabricated low-n TCO films as the simulation parameters, the effect of low-n TCOs on the performance of a-Si:H/{mu}c-Si:H tandem thin film solar cells is investigated using Silvaco ATLAS. The Al-doped zinc oxide, indium tin oxide (ITO), and Sb-doped tin oxide films are deposited at the flux incidence angles of {theta}{sub i} = 0 (normal sputtering) and {theta}{sub i} = 80 from the sputtering target during the sputtering process. The oblique-angle sputtered films at {theta}{sub i} = 80 show the inclined columnar nanostructures compared to those at {theta}{sub i} = 0 , modifying the optical properties of the films. This is caused mainly by the increase of porosity within the film which leads to its low-n characteristics. The a-Si:H/{mu}c-Si:H tandem thin film solar cell incorporated with the low-n ITO film exhibits an improvement in the conversion efficiency of {proportional_to}1% under AM1.5g illumination because of its higher transmittance and lower absorption compared to that with the ITO film at {theta}{sub i} = 0 , indicating a conversion efficiency of 13.75%. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    Science.gov (United States)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  11. Simplified tunnelling current calculation for MOS structures with ultra-thin oxides for conductive atomic force microscopy investigations

    International Nuclear Information System (INIS)

    Frammelsberger, Werner; Benstetter, Guenther; Stamp, Richard; Kiely, Janice; Schweinboeck, Thomas

    2005-01-01

    As charge tunnelling through thin and ultra-thin silicon dioxide layers is regarded as the driving force for MOS device degradation the determination and characterisation of electrically week spots is of paramount importance for device reliability and failure analysis. Conductive atomic force microscopy (C-AFM) is able to address this issue with a spatial resolution smaller than the expected breakdown spot. For the determination of the electrically active oxide thickness in practice an easy to use model with sufficient accuracy and which is largely independent of the oxide thickness is required. In this work a simplified method is presented that meets these demands. The electrically active oxide thickness is determined by matching of C-AFM voltage-current curves and a tunnelling current model, which is based on an analytical tunnelling current approximation. The model holds for both the Fowler-Nordheim tunnelling and the direct tunnelling regime with one single tunnelling parameter set. The results show good agreement with macroscopic measurements for gate voltages larger than approximately 0.5-1 V, and with microscopic C-AFM measurements. For this reason arbitrary oxides in the DT and the FNT regime may be analysed with high lateral resolution by C-AFM, without the need of a preselection of the tunnelling regime to be addressed

  12. Preparation of transparent conductive indium tin oxide thin films from nanocrystalline indium tin hydroxide by dip-coating method

    International Nuclear Information System (INIS)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre

    2011-01-01

    Indium tin oxide (ITO) thin films with well-controlled layer thickness were produced by dip-coating method. The ITO was synthesized by a sol-gel technique involving the use of aqueous InCl 3 , SnCl 4 and NH 3 solutions. To obtain stable sols for thin film preparation, as-prepared Sn-doped indium hydroxide was dialyzed, aged, and dispersed in ethanol. Polyvinylpyrrolidone (PVP) was applied to enhance the stability of the resulting ethanolic sols. The transparent, conductive ITO films on glass substrates were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy. The ITO layer thickness increased linearly during the dipping cycles, which permits excellent controllability of the film thickness in the range ∼ 40-1160 nm. After calcination at 550 o C, the initial indium tin hydroxide films were transformed completely to nanocrystalline ITO with cubic and rhombohedral structure. The effects of PVP on the optical, morphological and electrical properties of ITO are discussed.

  13. Measurement of the surface susceptibility and the surface conductivity of atomically thin by spectroscopic ellipsometry

    KAUST Repository

    Jayaswal, Gaurav; Dai, Zhenyu; Zhang, Xixiang; Bagnarol, Mirko; Martucci, Alessandro; Merano, Michele

    2017-01-01

    We show how to correctly extract from the ellipsometric data the surface susceptibility and the surface conductivity that describe the optical properties of monolayer $\\rm MoS_2$. Theoretically, these parameters stem from modelling a single-layer two-dimensional crystal as a surface current, a truly two-dimensional model. Currently experimental practice is to consider this model equivalent to a homogeneous slab with an effective thickness given by the interlayer spacing of the exfoliating bulk material. We prove that the error in the evaluation of the surface susceptibility of monolayer $\\rm MoS_2$, owing to the use of the slab model, is at least 10% or greater, a significant discrepancy in the determination of the optical properties of this material.

  14. Microsputterer with integrated ion-drag focusing for additive manufacturing of thin, narrow conductive lines

    Science.gov (United States)

    Kornbluth, Y. S.; Mathews, R. H.; Parameswaran, L.; Racz, L. M.; Velásquez-García, L. F.

    2018-04-01

    We report the design, modelling, and proof-of-concept demonstration of a continuously fed, atmospheric-pressure microplasma metal sputterer that is capable of printing conductive lines narrower than the width of the target without the need for post-processing or lithographic patterning. Ion drag-induced focusing is harnessed to print narrow lines; the focusing mechanism is modelled via COMSOL Multiphysics simulations and validated with experiments. A microplasma sputter head with gold target is constructed and used to deposit imprints with minimum feature sizes as narrow as 9 µm, roughness as small as 55 nm, and electrical resistivity as low as 1.1 µΩ · m.

  15. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    International Nuclear Information System (INIS)

    Alam, M. T.; Haque, M. A.; Bresnehan, M. S.; Robinson, J. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m −1 K −1 , is lower than the bulk basal plane value (390 W m −1 K −1 ) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics

  16. Measurement of the surface susceptibility and the surface conductivity of atomically thin by spectroscopic ellipsometry

    KAUST Repository

    Jayaswal, Gaurav

    2017-10-01

    We show how to correctly extract from the ellipsometric data the surface susceptibility and the surface conductivity that describe the optical properties of monolayer $\\ m MoS_2$. Theoretically, these parameters stem from modelling a single-layer two-dimensional crystal as a surface current, a truly two-dimensional model. Currently experimental practice is to consider this model equivalent to a homogeneous slab with an effective thickness given by the interlayer spacing of the exfoliating bulk material. We prove that the error in the evaluation of the surface susceptibility of monolayer $\\ m MoS_2$, owing to the use of the slab model, is at least 10% or greater, a significant discrepancy in the determination of the optical properties of this material.

  17. Perfect simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    2005-01-01

    Our objective is to construct a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual straightforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...... their branching and conditional independence structures, useful approximations of the distribution function for the length of a cluster are derived. This is used to construct upper and lower processes for the perfect simulation algorithm. A tail-lightness condition turns out to be of importance...... for the applicability of the perfect simulation algorithm. Examples of applications and empirical results are presented....

  18. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition

    Science.gov (United States)

    Huang, Yanwei; Zhang, Qun; Xi, Junhua; Ji, Zhenguo

    2012-07-01

    Transparent p-type Li0.25Ni0.75O conductive thin films were prepared on conventional glass substrates by pulsed plasma deposition. The effects of substrate temperature and oxygen pressure on structural, electrical and optical properties of the films were investigated. The electrical resistivity decreases initially and increases subsequently as the substrate temperature increases. As the oxygen pressure increases, the electrical resistivity decreases monotonically. The possible physical mechanism was discussed. And a hetero p-n junction of p-Li0.25Ni0.75O/n-SnO2:W was fabricated by depositing n-SnO2:W on top of the p-Li0.25Ni0.75O, which exhibits typical rectifying current-voltage characteristics.

  19. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition

    International Nuclear Information System (INIS)

    Huang Yanwei; Zhang Qun; Xi Junhua; Ji Zhenguo

    2012-01-01

    Transparent p-type Li 0.25 Ni 0.75 O conductive thin films were prepared on conventional glass substrates by pulsed plasma deposition. The effects of substrate temperature and oxygen pressure on structural, electrical and optical properties of the films were investigated. The electrical resistivity decreases initially and increases subsequently as the substrate temperature increases. As the oxygen pressure increases, the electrical resistivity decreases monotonically. The possible physical mechanism was discussed. And a hetero p-n junction of p-Li 0.25 Ni 0.75 O/n-SnO 2 :W was fabricated by depositing n-SnO 2 :W on top of the p-Li 0.25 Ni 0.75 O, which exhibits typical rectifying current-voltage characteristics.

  20. Quantum corrections to temperature dependent electrical conductivity of ZnO thin films degenerately doped with Si

    International Nuclear Information System (INIS)

    Das, Amit K.; Ajimsha, R. S.; Kukreja, L. M.

    2014-01-01

    ZnO thin films degenerately doped with Si (Si x Zn 1−x O) in the concentrations range of ∼0.5% to 5.8% were grown by sequential pulsed laser deposition on sapphire substrates at 400 °C. The temperature dependent resistivity measurements in the range from 300 to 4.2 K revealed negative temperature coefficient of resistivity (TCR) for the 0.5%, 3.8%, and 5.8% doped Si x Zn 1−x O films in the entire temperature range. On the contrary, the Si x Zn 1−x O films with Si concentrations of 1.0%, 1.7%, and 2.0% showed a transition from negative to positive TCR with increasing temperature. These observations were explained using weak localization based quantum corrections to conductivity

  1. Intrinsic conduction through topological surface states of insulating Bi{sub 2}Te{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, Katharina; Becker, Christoph; Rata, Diana; Thalmeier, Peter; Tjeng, Liu Hao [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Swanson, Jesse [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); University of British Columbia, Vancouver (Canada)

    2015-07-01

    Topological insulators represent a new state of matter that open up new opportunities to create unique quantum particles. Many exciting experiments have been proposed by theory, yet, the main obstacle for their execution is material quality and cleanliness of the experimental conditions. The presence of tiny amounts of defects in the bulk or contaminants at the surface already mask these phenomena. We present the preparation, structural and spectroscopic characterisation of MBE-grown Bi{sub 2}Te{sub 3} thin films that are insulating in the bulk. Moreover, temperature dependent four-point-probe resistivity measurements of the Dirac states on surfaces that are intrinsically clean were conducted. The total amount of surface charge carries is in the order of 10{sup 12} cm{sup -2} and mobilities up to 4600 cm{sup 2}/Vs are observed. Importantly, these results are achieved by carrying out the preparation and characterisation all in-situ under ultra-high-vacuum conditions.

  2. Wide-range measurement of thermal effusivity using molybdenum thin film with low thermal conductivity for thermal microscopes

    Science.gov (United States)

    Miyake, Shugo; Matsui, Genzou; Ohta, Hiromichi; Hatori, Kimihito; Taguchi, Kohei; Yamamoto, Suguru

    2017-07-01

    Thermal microscopes are a useful technology to investigate the spatial distribution of the thermal transport properties of various materials. However, for high thermal effusivity materials, the estimated values of thermophysical parameters based on the conventional 1D heat flow model are known to be higher than the values of materials in the literature. Here, we present a new procedure to solve the problem which calculates the theoretical temperature response with the 3D heat flow and measures reference materials which involve known values of thermal effusivity and heat capacity. In general, a complicated numerical iterative method and many thermophysical parameters are required for the calculation in the 3D heat flow model. Here, we devised a simple procedure by using a molybdenum (Mo) thin film with low thermal conductivity on the sample surface, enabling us to measure over a wide thermal effusivity range for various materials.

  3. Post-deposition thermal treatment of sprayed ZnO:Al thin films for enhancing the conductivity

    Science.gov (United States)

    Devasia, Sebin; Athma, P. V.; Shaji, Manu; Kumar, M. C. Santhosh; Anila, E. I.

    2018-03-01

    Here, we report the enhanced conductivity of Aluminium doped (2at.%) zinc oxide thin films prepared by simple spray pyrolysis technique. The structural, optical, electrical, morphological and compositional investigations confirm the better quality of films that can be a potential candidate for application in transparent electronics. Most importantly, the film demonstrates an average transmittance of 90 percent with a low resistivity value which was dropped from 1.39 × 10-2 to 5.10 × 10-3 Ω .cm, after annealing, and a very high carrier concentration in the order of 10 × 20cm-3. Further, we have used the Swanepoel envelop method to calculate thickness, refractive index and extinction coefficient from the interference patterns observed in the transmission spectra. The calculated figure of merit of the as-deposited sample was 1.4 × 10-3Ω-1 which was improved to 2.5 × 10-3Ω-1 after annealing.

  4. Electrical transport properties of spray deposited transparent conducting ortho-Zn2SnO4 thin films

    Science.gov (United States)

    Ramarajan, R.; Thangaraju, K.; Babu, R. Ramesh; Joseph, D. Paul

    2018-04-01

    Ortho Zinc Stannate (Zn2SnO4) exhibits excellent electrical and optical properties to serve as alternate transparent electrode in optoelectronic devices. Here we have optimized ortho-Zn2SnO4 thin film by spray pyrolysis method. Deposition was done onto a pre-heated glass substrate at a temperature of 400 °C. The XRD pattern indicated films to be polycrystalline with cubic structure. The surface of films had globular and twisted metal sheet like morphologies. Films were transparent in the visible region with band gap around 3.6 eV. Transport properties were studied by Hall measurements at 300 K. Activation energies were calculated from Arrhenius's plot from temperature dependent electrical measurements and the conduction mechanism is discussed.

  5. Temperature Dependence on Structural, Tribological, and Electrical Properties of Sputtered Conductive Carbon Thin Films

    International Nuclear Information System (INIS)

    Park, Yong Seob; Hong, Byung You; Cho, Sang Jin; Boo, Jin Hyo

    2011-01-01

    Conductive carbon films were prepared at room temperature by unbalanced magnetron sputtering (UBMS) on silicon substrates using argon (Ar) gas, and the effects of post-annealing temperature on the structural, tribological, and electrical properties of carbon films were investigated. Films were annealed at temperatures ranging from 400 .deg. C to 700 .deg. C in increments of 100 .deg. C using a rapid thermal annealing method by vacuum furnace in vacuum ambient. The increase of annealing temperature contributed to the increase of the ordering and formation of aromatic rings in the carbon film. Consequently, with increasing annealing temperature the tribological properties of sputtered carbon films are deteriorated while the resistivity of carbon films significantly decreased from 4.5 x 10 -3 to 1.0 x 10 -6 Ω-cm and carrier concentration as well as mobility increased, respectively. This behavior can be explained by the increase of sp 2 bonding fraction and ordering sp 2 clusters in the carbon networks caused by increasing annealing temperature

  6. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Gudage, Y G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Ghosh, A [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Vyas, J C [Technical and Prototype Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai (MS) (India); Singh, F [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Tripathi, A [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India)

    2008-02-07

    We have examined the effect of swift heavy ions using 100 MeV Au{sup 8+} ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10{sup -4} {omega} cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.

  7. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    International Nuclear Information System (INIS)

    Deshpande, N G; Gudage, Y G; Ghosh, A; Vyas, J C; Singh, F; Tripathi, A; Sharma, Ramphal

    2008-01-01

    We have examined the effect of swift heavy ions using 100 MeV Au 8+ ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10 -4 Ω cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications

  8. Improved conductivity of infinite-layer LaNiO{sub 2} thin films by metal organic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Ai [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Research Fellow of the Japan Society for the Promotion of Science (Japan); Manabe, Takaaki [National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan); Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan)

    2013-12-15

    Highlights: •LaNiO{sub 2} films were synthesized by metal organic decomposition and topotactic reduction. •Room-temperature resistivity as low as 0.6 mΩ cm was achieved for infinite-layer LaNiO{sub 2}. •Lattice matched substrates are important in obtaining high conductivity. -- Abstract: Infinite-layer LaNiO{sub 2} thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO{sub 2} is isostructural to SrCuO{sub 2}, the parent compound of high-T{sub c} Sr{sub 0.9}La{sub 0.1}CuO{sub 2} with T{sub c} = 44 K, and has 3d{sup 9} configuration, which is very rare in oxides but common to high-T{sub c} copper oxides. The bulk synthesis of LaNiO{sub 2} is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO{sub 2} is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO{sub 2}. The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures.

  9. High conductivity and transparent aluminum-based multi-layer source/drain electrodes for thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao

    2018-02-01

    In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64  ×  10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q   =  0.757 nm with scanning area of 5  ×  5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59  ×  106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.

  10. Ac conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2014-04-01

    Au/tin oxide/n-Si (1 0 0) structure has been created by forming a tin oxide (SnO{sub 2}) on n-type Si by using the spray deposition technique. The ac electrical conductivity (σ{sub ac}) and dielectric properties of the structure have been investigated between 30 kHz and 1 MHz at room temperature. The values of ε', ε″, tanδ, σ{sub ac}, M' and M″ were determined as 1.404, 0.357, 0.253, 1.99×10{sup −7} S/cm, 0.665 and 0.168 for 1 MHz and 6.377, 6.411, 1.005, 1.07×10{sup −7} S/cm, 0.077 and 0.078 for 30 kHz at zero bias, respectively. These changes were attributed to variation of the charge carriers from the interface traps located between semiconductor and metal in the band gap. It is concluded that the values of the ε', ε″ and tanδ increase with decreasing frequency while a decrease is seen in σ{sub ac} and the real (M') and imaginary (M″) components of the electrical modulus. The M″ parameter of the structure has a relaxation peak as a function of frequency for each examined voltage. The relaxation time of M″(τ{sub M″}) varies from 0.053 ns to 0.018 ns with increasing voltage. The variation of Cole–Cole plots of the sample shows that there is one relaxation.

  11. Assembly and benign step-by-step post-treatment of oppositely charged reduced graphene oxides for transparent conductive thin films with multiple applications

    Science.gov (United States)

    Zhu, Jiayi; He, Junhui

    2012-05-01

    We report a new approach for the fabrication of flexible and transparent conducting thin films via the layer-by-layer (LbL) assembly of oppositely charged reduced graphene oxide (RGO) and the benign step-by-step post-treatment on substrates with a low glass-transition temperature, such as glass and poly(ethylene terephthalate) (PET). The RGO dispersions and films were characterized by means of atomic force microscopy, UV-visible absorption spectrophotometery, Raman spectroscopy, transmission electron microscopy, contact angle/interface systems and a four-point probe. It was found that the graphene thin films exhibited a significant increase in electrical conductivity after the step-by-step post-treatments. The graphene thin film on the PET substrate had a good conductivity retainability after multiple cycles (30 cycles) of excessively bending (bending angle: 180°), while tin-doped indium oxide (ITO) thin films on PET showed a significant decrease in electrical conductivity. In addition, the graphene thin film had a smooth surface with tunable wettability.We report a new approach for the fabrication of flexible and transparent conducting thin films via the layer-by-layer (LbL) assembly of oppositely charged reduced graphene oxide (RGO) and the benign step-by-step post-treatment on substrates with a low glass-transition temperature, such as glass and poly(ethylene terephthalate) (PET). The RGO dispersions and films were characterized by means of atomic force microscopy, UV-visible absorption spectrophotometery, Raman spectroscopy, transmission electron microscopy, contact angle/interface systems and a four-point probe. It was found that the graphene thin films exhibited a significant increase in electrical conductivity after the step-by-step post-treatments. The graphene thin film on the PET substrate had a good conductivity retainability after multiple cycles (30 cycles) of excessively bending (bending angle: 180°), while tin-doped indium oxide (ITO) thin films on

  12. Conductivity of CH{sub 3}NH{sub 3}PbI{sub 3} thin film perovskite stored in ambient atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gebremichael, Bizuneh, E-mail: bizunehme@gmail.com [Physics Department, Addis Ababa University, Addis Ababa, P.O. Box 1176 (Ethiopia); Alemu, Getachew [Physics Department, Addis Ababa University, Addis Ababa, P.O. Box 1176 (Ethiopia); Tessema Mola, Genene [School of Chemistry & Physics, University of KwaZulu-Nat al, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209 (South Africa)

    2017-06-01

    Time dependent conductivity loss in CH{sub 3}NH{sub 3}PbI{sub 3} thin film perovskite stored in ambient atmosphere were studied based on electrical and optical measurements. Recent investigations on thin film perovskite solar cell suggest that in the steady state operation of the device, the V{sub oc} is unchanged by continuous illumination of light. Rather the reduction in the power conversion efficiency is caused by significant reduction of the short circuit current (J{sub sc}). In this paper, the effect of light on the optical absorption and electrical conductivity of the CH{sub 3}NH{sub 3}PbI{sub 3} thin film which is deposited on a glass substrate is investigated. The temperature dependent conductivity measurements indicated that the dominant conduction mechanism in the film perovskite is electronic rather than ionic.

  13. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    International Nuclear Information System (INIS)

    Panky, Sreedevi; Thandavan, Kavitha; Sivalingam, Durgajanani; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Jeyaprakash, Beri Gopalakrishnan; Rayappan, John Bosco Balaguru

    2013-01-01

    Nanostructured cerium oxide (CeO 2 ) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO 3 ) 3 ·6H 2 O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO 2 and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO 2 /TCO film to form the lipase/nano-CeO 2 /TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO 2 /TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO 2 /TCO film and hence the lipase/nano-CeO 2 /TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6

  14. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    Energy Technology Data Exchange (ETDEWEB)

    Panky, Sreedevi; Thandavan, Kavitha [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sivalingam, Durgajanani [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sethuraman, Swaminathan; Krishnan, Uma Maheswari [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Jeyaprakash, Beri Gopalakrishnan [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Rayappan, John Bosco Balaguru, E-mail: rjbosco@ece.sastra.edu [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India)

    2013-01-15

    Nanostructured cerium oxide (CeO{sub 2}) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO{sub 2} and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film to form the lipase/nano-CeO{sub 2}/TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO{sub 2}/TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film and hence the lipase/nano-CeO{sub 2}/TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp

  15. Electrical conduction studies of hot wall deposited CdSe{sub x}Te{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumarasamy, N. [Department of Physics, Coimbatore Institute of Technology, Coimbatore 641014 (India); Balasundaraprabhu, R.; Jayakumar, S.; Kannan, M.D. [Department of Physics, PSG College of Technology, Coimbatore (India)

    2008-08-15

    CdSe{sub x}Te{sub 1-x} thin films of different compositions have been deposited on cleaned glass substrates using the hot wall deposition technique under conditions very close to thermodynamical equilibrium with minimum loss of material. The electrical conductivity of the deposited films has been studied as a function of temperature. All the films showed a transition from phonon-assisted hopping conduction through the impurity band to grain-boundary-limited conduction in the conduction/valence band at temperature around 325 K. The conductivity has been found to vary with composition; it varied from 0.0027 to 0.0198 {omega}{sup -1} cm{sup -1} when x changed from 0 to 1. The activation energies of the films of different compositions determined at 225 and 400 K have been observed to lie in the range 0.0031-0.0098 and 0.0285-0.0750 eV, respectively. The Hall-effect studies carried out on the deposited films revealed that the nature of conductivity (p or n-type) was dependent on film composition; films with composition x=0 and 0.15 have been found to be p-type and the ones with composition x=0.4, 0.6, 0.7, 0.85 and 1 have been observed to exhibit n-type conductivity. The carrier concentration has been determined and is of the order of 10{sup 17} cm{sup -3}. The majority of carrier mobilities of the films have been observed to vary from 0.032 to 0.183 cm{sup 2} V{sup -1} s{sup -1} depending on film composition. The study of the mobility of the charge carriers with temperature in the range of 300-450 K showed that the mobility increased with 3/2 power of temperature indicating that the type of scattering mechanism in the studied temperature range is the ionized impurity scattering mechanism. (author)

  16. Facile Synthesis of Ultralong and Thin Copper Nanowires and Its Application to High-Performance Flexible Transparent Conductive Electrodes

    Science.gov (United States)

    Wang, Yaxiong; Liu, Ping; Zeng, Baoqing; Liu, Liming; Yang, Jianjun

    2018-03-01

    A hydrothermal method for synthesizing ultralong and thin copper nanowires (CuNWs) with average diameter of 35 nm and average length of 100 μm is demonstrated in this paper. The concerning raw materials include copric (II) chloride dihydrate (CuCl2·2H2O), octadecylamine (ODA), and ascorbic acid, which are all very cheap and nontoxic. The effect of different reaction time and different molar ratios to the reaction products were researched. The CuNWs prepared by the hydrothermal method were applied to fabricate CuNW transparent conductive electrode (TCE), which exhibited excellent conductivity-transmittance performance with low sheet resistance of 26.23 Ω /\\square and high transparency at 550 nm of 89.06% (excluding Polyethylene terephthalate (PET) substrate). The electrode fabrication process was carried out at room temperature, and there was no need for post-treatment. In order to decrease roughness and protect CuNW TCEs against being oxidized, we fabricated CuNW/poly(methyl methacrylate) (PMMA) hybrid TCEs (HTCEs) using PMMA solution. The CuNW/PMMA HTCEs exhibited low surface roughness and chemical stability as compared with CuNW TCEs.

  17. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.

    Science.gov (United States)

    Liu, Jun; Zhu, Jie; Tian, Miao; Gu, Xiaokun; Schmidt, Aaron; Yang, Ronggui

    2013-03-01

    The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.

  18. Thin Film Williamson Nanofluid Flow with Varying Viscosity and Thermal Conductivity on a Time-Dependent Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Waris Khan

    2016-11-01

    Full Text Available This article describes the effect of thermal radiation on the thin film nanofluid flow of a Williamson fluid over an unsteady stretching surface with variable fluid properties. The basic governing equations of continuity, momentum, energy, and concentration are incorporated. The effect of thermal radiation and viscous dissipation terms are included in the energy equation. The energy and concentration fields are also coupled with the effect of Dufour and Soret. The transformations are used to reduce the unsteady equations of velocity, temperature and concentration in the set of nonlinear differential equations and these equations are tackled through the Homotopy Analysis Method (HAM. For the sake of comparison, numerical (ND-Solve Method solutions are also obtained. Special attention has been given to the variable fluid properties’ effects on the flow of a Williamson nanofluid. Finally, the effect of non-dimensional physical parameters like thermal conductivity, Schmidt number, Williamson parameter, Brinkman number, radiation parameter, and Prandtl number has been thoroughly demonstrated and discussed.

  19. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes

    International Nuclear Information System (INIS)

    Yang Yu; Wang Lian; Yan He; Jin Shu; Marks, Tobin J.; Li Shuyou

    2006-01-01

    Double-layer transparent conducting oxide thin film structures containing In-doped CdO (CIO) and Sn-doped In 2 O 3 (ITO) layers were grown on glass by metal-organic chemical vapor deposition and ion-assisted deposition (IAD), respectively, and used as anodes for polymer light-emitting diodes (PLEDs). These films have a very low overall In content of 16 at. %. For 180-nm-thick CIO/ITO films, the sheet resistance is 5.6 Ω/□, and the average optical transmittance is 87.1% in the 400-700 nm region. The overall figure of merit (Φ=T 10 /R sheet ) of the double-layer CIO/ITO films is significantly greater than that of single-layer CIO, IAD-ITO, and commercial ITO films. CIO/ITO-based PLEDs exhibit comparable or superior device performance versus ITO-based control devices. CIO/ITO materials have a much lower sheet resistance than ITO, rendering them promising low In content electrode materials for large-area optoelectronic devices

  20. Atomic mapping of Ruddlesden-Popper faults in transparent conducting BaSnO3-based thin films.

    Science.gov (United States)

    Wang, W Y; Tang, Y L; Zhu, Y L; Suriyaprakash, J; Xu, Y B; Liu, Y; Gao, B; Cheong, S-W; Ma, X L

    2015-11-03

    Doped BaSnO3 has arisen many interests recently as one of the promising transparent conducting oxides for future applications. Understanding the microstructural characteristics are crucial for the exploration of relevant devices. In this paper, we investigated the microstructural features of 0.001% La doped BaSnO3 thin film using both conventional and aberration corrected transmission electron microscopes. Contrast analysis shows high densities of Ruddlesden-Popper faults in the film, which are on {100} planes with translational displacements of 1/2a  . Atomic EELS element mappings reveal that the Ruddlesden-Popper faults are Ba-O layer terminated, and two kinds of kink structures at the Ruddlesden-Popper faults with different element distributions are also demonstrated. Quantitative analysis on lattice distortions of the Ruddlesden-Popper faults illustrates that the local lattice spacing poses a huge increment of 36%, indicating that large strains exist around the Ruddlesden-Popper faults in the film.

  1. Morphological differences in transparent conductive indium-doped zinc oxide thin films deposited by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jongthammanurak, Samerkhae; Cheawkul, Tinnaphob; Witana, Maetapa

    2014-01-01

    In-doped ZnO thin films were deposited on glass substrates by an ultrasonic spray pyrolysis technique, using indium chloride (InCl 3 ) as a dopant and zinc acetate solution as a precursor. Increasing the [at.% In]/[at.% Zn] ratio changed the crystal orientations of thin films, from the (100) preferred orientation in the undoped, to the (101) and (001) preferred orientations in the In-doped ZnO thin films with 4 at.% and 6–8 at.%, respectively. Undoped ZnO thin film shows relatively smooth surface whereas In-doped ZnO thin films with 4 at.% and 6–8 at.% show surface features of pyramidal forms and hexagonal columns, respectively. X-ray diffraction patterns of the In-doped ZnO thin films with [at.% In]/[at.% Zn] ratios of 6–8% presented an additional peak located at 2-theta of 32.95°, which possibly suggested that a metastable Zn 7 In 2 O 10 phase was present with the ZnO phase. ZnO thin films doped with 2 at.% In resulted in a sheet resistance of ∼ 645 Ω/sq, the lowest value among thin films with [at.% In]/[at.% Zn] ratio in a range of 0–8%. The precursor molarity was changed between 0.05 M and 0.20 M at an [at.% In]/[at.% Zn] ratio of 2%. Increasing the precursor molarity in a range of 0.10 M–0.20 M resulted in In-doped ZnO thin films with the (100) preferred orientation. An In-doped ZnO thin film deposited by 0.20 M precursor showed a sheet resistance of 25 Ω/sq, and an optical transmission of 75% at 550 nm wavelength. The optical band gap estimated from the transmission result was 3.292 eV. - Highlights: • Indium-doped ZnO thin films were grown on glass using ultrasonic spray pyrolysis. • Thin films' orientations depend on In doping and Zn molarity of precursor solution. • Highly c-axis or a-axis orientations were found in the In-doped ZnO thin films. • In doping of 6–8 at.% may have resulted in ZnO and a metastable Zn 7 In 2 O 10 phases. • Increasing precursor molarity reduced sheet resistance of In-doped ZnO thin films

  2. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)

    2011-07-15

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10{sup -4}{Omega} cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm{sup 2}/Vs and carrier concentrations on the order of 10{sup 20} cm{sup -3}. All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10{sup -3}-10{sup -4}{Omega} cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  3. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    International Nuclear Information System (INIS)

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2011-01-01

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10 -4 Ω cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm 2 /Vs and carrier concentrations on the order of 10 20 cm -3 . All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10 -3 -10 -4 Ω cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  4. Structural, nanomechanical and variable range hopping conduction behavior of nanocrystalline carbon thin films deposited by the ambient environment assisted filtered cathodic jet carbon arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Rawal, Ishpal; Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Kumar, Mahesh [Ultrafast Opto-Electronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India)

    2015-04-15

    Highlights: • Nanocrystalline carbon thin films are grown by filtered cathodic jet carbon arc process. • Effect of gaseous environment on the properties of carbon films has been studied. • The structural and nanomechanical properties of carbon thin films have been studied. • The VRH conduction behavior in nanocrystalline carbon thin films has been studied. - Abstract: This paper reports the deposition and characterization of nanocrystalline carbon thin films by filtered cathodic jet carbon arc technique assisted with three different gaseous environments of helium, nitrogen and hydrogen. All the films are nanocrystalline in nature as observed from the high resolution transmission electron microscopic (HRTEM) measurements, which suggests that the nanocrystallites of size ∼10–50 nm are embedded though out the amorphous matrix. X-ray photoelectron spectroscopic studies suggest that the film deposited under the nitrogen gaseous environment has the highest sp{sup 3}/sp{sup 2} ratio accompanied with the highest hardness of ∼18.34 GPa observed from the nanoindentation technique. The film deposited under the helium gaseous environment has the highest ratio of the area under the Raman D peak to G peak (A{sub D}/A{sub G}) and the highest conductivity (∼2.23 S/cm) at room temperature, whereas, the film deposited under the hydrogen environment has the lowest conductivity value (2.27 × 10{sup −7} S/cm). The temperature dependent dc conduction behavior of all the nanocrystalline carbon thin films has been analyzed in the light of Mott’s variable range hopping (VRH) conduction mechanism and observed that all the films obey three dimension VRH conduction mechanism for the charge transport.

  5. The effect of the Grain-Boundary and surface scattering of charge carriers on electrical conductance of thin V and Re films

    International Nuclear Information System (INIS)

    Lakh, Kh.G.; Stasyuk, Z.V.

    1994-01-01

    Size effects in electrical conductivity and the Hall coefficient of thin V and Re films have been investigated. An analysis of experimental data was made within the framework of modified Mayadas -Shatzkes and Tellier - Tosser - Pichard models. The parameters of charge transport for V and Re have been found

  6. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    OpenAIRE

    Deepak Kumar Kaushik; K. Uday Kumar; A. Subrahmanyam

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l ...

  7. Terahertz conductivity measurement of FeSe0.5Te0.5 and Co-doped BaFe2As2 thin films

    International Nuclear Information System (INIS)

    Nakamura, D.; Akiike, T.; Takahashi, H.; Nabeshima, F.; Imai, Y.; Maeda, A.; Katase, T.; Hiramatsu, H.; Hosono, H.; Komiya, S.; Tsukada, I.

    2011-01-01

    We investigated the THz conductivity of FeSe 0.5 Te 0.5 and Ba (Fe 2-x Co x )As 2 thin films. We estimated the superconducting gap energy values. We found anomolous conductivity spectrum in the antiferromagnetic phase. The terahertz (THz) conductivity of FeSe 0.5 Te 0.5 ('11'-type) and Co-doped BaFe 2 As 2 ('122'-type) thin films are investigated. For '11'-type, the frequency dependence of the complex conductivity can be understood as that of BCS-type superconductor near the superconducting gap energy, and we estimated the superconducting gap energy to be 0.6 meV. For '122'-type, we estimated the superconducting gap energy to be 2.8 meV, which is considered to be the superconducting gap opened at the electron-type Fermi surface near the M point.

  8. Perfect lensing with phase-conjugating surfaces: toward practical realization

    International Nuclear Information System (INIS)

    Maslovski, Stanislav; Tretyakov, Sergei

    2012-01-01

    It is theoretically known that a pair of phase-conjugating surfaces can function as a perfect lens, focusing propagating waves and enhancing evanescent waves. However, the known experimental approaches based on thin sheets of nonlinear materials cannot fully realize the required phase conjugation boundary condition. In this paper, we show that the ideal phase-conjugating surface is, in principle, physically realizable and investigate the necessary properties of nonlinear and nonreciprocal particles which can be used to build a perfect lens system. The physical principle of the lens operation is discussed in detail and directions of possible experimental realizations are outlined. (paper)

  9. Effects of laser-induced recovery process on conductive property of SnO2:F thin films

    International Nuclear Information System (INIS)

    Chen, Ming-Fei; Lin, Keh-moh; Ho, Yu-Sen

    2011-01-01

    In this study, we developed a laser annealing process to enhance the electrical properties of SnO 2 :F (FTO) films. It is already known that in contrast to indium oxides or zinc oxides, the carrier mobility of FTO films is relatively lower. Thus, improving the mobility is a direct way to enhance the conductivity of FTO films. Furthermore, improving the crystal quality of the thin films is in turn a direct way to enhance the mobility effectively. Contrary to the high working temperatures of traditional annealing processes, the laser annealing process, with its focusing character, enables us to modify the crystal quality of oxide films on substrates with low-melting points. Using a self-built laser system, which consists of a Nd:YAG solid-state laser with a wavelength of 1064 nm and a beam shaper lens, we carried out a series of experiments to achieve the optimal laser annealing process. Hall, SEM, and XRD measurements were used to characterize the opto-electrical as well as the structural properties. As experimental results show, the tin oxide crystallites recovered well during the laser annealing process. By using a suitable beam profile and a proper laser intensity, the film resistivity was reduced from 7.19 ± 0.55 x 10 -3 Ω cm to 6.70 ± 0.20 x 10 -3 Ω cm while the carrier mobility was enhanced from 11.18 ± 0.29 cm 2 /V s to 11.71 ± 0.34 cm 2 /V s.

  10. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...... solution-processed masks for physical vapor-deposited metal electrodes consisting of hexagonally ordered aperture arrays with scalable aperture-size and spacing in an otherwise homogeneous noble metal thin-film that may exhibit better electrical performance than carbon nanotube-based thin-films...... for equivalent optical transparency. The fabricated electrodes are characterized optically and electrically by measuring transmittance and sheet resistance. The presented methods yield large-scale reproducible results. Experimentally realized thin-films with very low sheet resistance, Rsh = 2.01 ± 0.14 Ω...

  11. Significant efficiency enhancement in thin film solar cells using laser beam-induced graphene transparent conductive electrodes

    OpenAIRE

    Thekkekara, L. V.; Cai, Bouyan

    2018-01-01

    Thin film solar cells have been attractive for decades in advanced green technology platforms due to its possibilities to be integrated with buildings and on-chip applications. However, the bottleneck issues involved to consider the current solar cells as a major electricity source includes the lower efficiencies and cost-effectiveness. We numerically demonstrate the concept of the absorption enhancement in thin-film amorphous silicon solar cells using the laser beam-induced graphene material...

  12. Reversible p-type conductivity in H passivated nitrogen and phosphorous codoped ZnO thin films using rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mannam, Ramanjaneyulu, E-mail: ramu.nov9@gmail.com [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India); Kumar, E. Senthil [SRM Research Institute, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603203, Tamil Nadu (India); DasGupta, Nandita [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India); Ramachandra Rao, M.S., E-mail: msrrao@iitm.ac.in [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India)

    2017-04-01

    Highlights: • Electrical transport measurements revel that the (P, N) codoped ZnO thin films exhibited change in conductivity from p-type to n-type over a span of 120 days. • Hydrogen and carbon are found to be the main unintentional impurities in n-type (P, N) codoped ZnO thin films. • Rapid thermal annealing has been used to remove both H and C from the films. • Carbon can be removed at an annealing temperature of 600 °C, whereas, the dissociation of N−H complex takes place only at 800 °C. • The n-type (P, N) codoped ZnO thin film exhibited change in conductivity to p-type at an annealing temperature of 800 °C. - Abstract: We demonstrate reversible p-type nature of pulsed laser deposited (P, N) codoped ZnO thin films using rapid thermal annealing process. As grown thin films exhibited change in conductivity from p to n-type over a span of 120 days. Non-annealed n-type thin films contain unintentional donor impurities such as hydrogen and carbon. X-ray photoelectron spectroscopy and Raman measurements conclusively show that hydrogen passivates nitrogen acceptors by forming N−H complex. Carbon can be annealed out at 600 °C, whereas, the dissociation of N−H complex takes place at 800 °C. The films revert its p-type nature at an annealing temperature of 800 °C.

  13. On the perfect hexagonal packing of rods

    International Nuclear Information System (INIS)

    Starostin, E L

    2006-01-01

    In most cases the hexagonal packing of fibrous structures or rods extremizes the energy of interaction between strands. If the strands are not straight, then it is still possible to form a perfect hexatic bundle. Conditions under which the perfect hexagonal packing of curved tubular structures may exist are formulated. Particular attention is given to closed or cycled arrangements of the rods like in the DNA toroids and spools. The closure or return constraints of the bundle result in an allowable group of automorphisms of the cross-sectional hexagonal lattice. The structure of this group is explored. Examples of open helical-like and closed toroidal-like bundles are presented. An expression for the elastic energy of a perfectly packed bundle of thin elastic rods is derived. The energy accounts for both the bending and torsional stiffnesses of the rods. It is shown that equilibria of the bundle correspond to solutions of a variational problem formulated for the curve representing the axis of the bundle. The functional involves a function of the squared curvature under the constraints on the total torsion and the length. The Euler-Lagrange equations are obtained in terms of curvature and torsion and due to the existence of the first integrals the problem is reduced to the quadrature. The three-dimensional shape of the bundle may be readily reconstructed by integration of the Ilyukhin-type equations in special cylindrical coordinates. The results are of universal nature and are applicable to various fibrous structures, in particular, to intramolecular liquid crystals formed by DNA condensed in toroids or packed inside the viral capsids

  14. Preparation and characterization of structures of oxygen-ion-conductive thin-film membranes; Herstellung und Charakterisierung von sauerstoffionenleitenden Duennschichtmembranstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Betz, Michael

    2010-07-01

    In power plants using Oxyfuel technology, fossil fuels are combusted with pure oxygen. This leads to carbon dioxide of high purity, which is necessary for its transport and storage. Oxygen separation by means of perovskitic membranes have great potential to decrease the efficiency losses caused by the allocation of the enormous amounts of oxygen. The aim of this work is the preparation and characterisation of thin film membranes on porous substrates and the analysis of their oxygen permeation properties. Therefore the material system A{sub 0,68}Sr{sub 0,3}Fe{sub 0,8}Co{sub 0,2}O{sub 3-{delta}} (A68SFC) was analysed, where the A-site was substituted with Lanthanides (La, Pr, Nd, Eu, Sm, Gd, Dy, Er) or alkaline earth metals (Ba, Ca). After an extensive characterisation, the selection was reduced to the substitutions with La, Pr and Nd. Other compounds could not meet the demands with regard to phase purity, chemical stability or extension behaviour. All analyses were conducted in comparison to Ba{sub 0,5}Sr{sub 0,5}Co{sub 0,8}Fe{sub 0,2}O{sub 3-{delta}} (BSCF) which is known to exhibit higher permeation rates, but is more sensitive to stability issues. The dependency of permeation rates on membrane thickness or oxygen partial pressures on both membrane surfaces is discussed by means of permeation measurements conducted on bulk BSCF membranes. These cannot be described completely by the Wagner equation. This is due to changes of the driving force originating from influences of the surface reaction kinetics and concentration polarisation on the membrane surface, which are not considered. Porous substrates for asymmetric membranes were manufactured by tape casting and warm pressing. The application of the functional layer was performed via screen printing. Permeation measurements show that the asymmetric structures exhibit higher permeation rates in comparison to bulk membranes with L=1 mm. The moderate increase can be attributed to the low gas permeability of the

  15. Perfect secure domination in graphs

    Directory of Open Access Journals (Sweden)

    S.V. Divya Rashmi

    2017-07-01

    Full Text Available Let $G=(V,E$ be a graph. A subset $S$ of $V$ is a dominating set of $G$ if every vertex in $Vsetminus  S$ is adjacent to a vertex in $S.$ A dominating set $S$ is called a secure dominating set if for each $vin Vsetminus S$ there exists $uin S$ such that $v$ is adjacent to $u$ and $S_1=(Ssetminus{u}cup {v}$ is a dominating set. If further the vertex $uin S$ is unique, then $S$ is called a perfect secure dominating set. The minimum cardinality of a perfect secure dominating set of $G$ is called the perfect  secure domination number of $G$ and is denoted by $gamma_{ps}(G.$ In this paper we initiate a study of this parameter and present several basic results.

  16. In-plane thermal conductivity measurements of ZnO-, ZnS-, and YSZ thin-films on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, David; Gather, Florian; Kronenberger, Achim; Kuhl, Florian; Meyer, Bruno K.; Klar, Peter J. [I. Physikalisches Institut, Justus-Liebig-University, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)

    2012-07-01

    In this work we present in-plane thermal conductivity measurements of ZnO-, ZnS-, and YSZ thin-films. Borosilicate glass with a thickness of 50 microns and low thermal conductivity for improving the signal to noise ratio was used as substrate material. The above different films are deposited by rf-sputtering and have a thickness of about 1 micron. Our approach is a steady-state measurement. A wide metal wire on the film is used as a heater and two parallel lying narrow wires at distances of 100 microns and 200 microns from the heater wire, respectively, serve as the temperature sensors. The wire structure design is transfered on to the thin films by photolithography and metal evaporation. Measurements of the in-plane thermal conductivities of the above mentioned materials are presented and compared with corresponding results in the literature.

  17. [INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures

    Science.gov (United States)

    Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-05-01

    Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.

  18. Improved approach for determining thin layer thermal conductivity using the 3 ω method. Application to porous Si thermal conductivity in the temperature range 77–300 K

    International Nuclear Information System (INIS)

    Valalaki, K; Nassiopoulou, A G

    2017-01-01

    An improved approach for determining thermal conductivity using the 3 ω method was used to determine anisotropic porous Si thermal conductivity in the temperature range 77–300 K. In this approach, thermal conductivity is extracted from experimental data of the third harmonic of the voltage (3 ω ) as a function of frequency, combined with consequent FEM simulations. The advantage is that within this approach the finite thickness of the sample and the heater are taken into account so that the corresponding errors introduced in thermal conductivity values when using Cahill’s simplified analytical formula are eliminated. The developed method constitutes a useful tool for measuring the thermal conductivity of samples with unknown thermal properties. The thermal conductivity measurements with the 3 ω method are discussed and compared with those obtained using the well-established dc method. (paper)

  19. Fabrication and electrical resistivity of Mo-doped VO2 thin films coated on graphite conductive plates by a sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.; Jung, H.M.; Um, S. [Hanyang Univ., Seoul (Korea, Republic of). School of Mechanical Engineering

    2008-07-01

    Vanadium oxides (VO2) can be used in optical devices, thermochromic smart windows and sensors. This paper reported on a study in which vanadium pentoxide (V2O5) powder was prepared and mixed with Molybdenum Oxides (MoO3) to form Mo-doped and -undoped VO2 thin films by a sol-gel method on graphite conductive substrates. The micro-structure and chemical compositions of the Mo-doped and -undoped VO2 thin films was investigated using X-Ray diffraction and scanning electron microscopy. Changes in electrical resistivity were measured as a function of the stoichiometric compositions between vanadium and molybdenum. In this study. Mo-doped and -undoped VO2 thin films showed the typical metal to insulator transition (MIT), where temperature range could be adjusted by modifying the dopant atomic ratio. The through-plane substrate structure of the Mo-doped layer influences the electrical resistivity of the graphite substrate. As the amount of the molybdenum increases, the electrical resistivity of the graphite conductive substrate decreases in the lower temperature range below the freezing point of water. The experimental results showed that if carefully controlled, thermal dissipation of VO2 thin films can be used as a self-heating source to melt frozen water with the electrical current flowing through the graphite substrate. 3 refs., 3 figs.

  20. Perfect sequences over the real quaternions

    OpenAIRE

    Kuznetsov, Oleg

    2017-01-01

    In this Thesis, perfect sequences over the real quaternions are first considered. Definitions for the right and left periodic autocorrelation functions are given, and right and left perfect sequences introduced. It is shown that the right (left) perfection of any sequence implies the left (right) perfection, so concepts of right and left perfect sequences over the real quaternions are equivalent. Unitary transformations of the quaternion space ℍ are then considered. Using the equivalence of t...

  1. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...

  2. Local conductivity and the role of vacancies around twin walls of (001)-BiFeO3 thin films

    NARCIS (Netherlands)

    Farokhipoor, S.; Noheda, Beatriz

    2012-01-01

    BiFeO3 thin films epitaxially grown on SrRuO3-buffered (001)-oriented SrTiO3 substrates show orthogonal bundles of twin domains, each of which contains parallel and periodic 71 degrees domain walls. A smaller amount of 109 degrees domain walls are also present at the boundaries between two adjacent

  3. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing

    International Nuclear Information System (INIS)

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-01-01

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10 −2 Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. (papers)

  4. Electrical conductivity and oxygen exchange kinetics of La2NiO4+delta thin films grown by chemical vapor deposition

    DEFF Research Database (Denmark)

    Garcia, G.; Burriel, M.; Bonanos, Nikolaos

    2008-01-01

    Epitaxial c-axis oriented La2NiO4+delta films were deposited onto SrTiO3 and NdGaO3 substrates by the pulsed injection metal organic chemical vapor deposition technique. Experimental conditions were optimized in order to accurately control the composition, thickness, and texture of the layers. X......-ray diffraction was used to confirm the high crystalline quality of the obtained material. Electrical characterizations were performed on thin (50 nm) and thick (335 nm) layers. The total specific conductivity, which is predominantly electronic, was found to be larger for the thinner films measured (50 nm......), probably due to the effect of the strain present in the layers. Those thin films (50 nm) showed values even larger than those observed for single crystals and, to our knowledge, are the largest conductivity values reported to date for the La2NiO4+delta material. The oxygen exchange kinetics was studied...

  5. Addressing the selectivity issue of cobalt doped zinc oxide thin film iso-butane sensors: Conductance transients and principal component analyses

    Science.gov (United States)

    Ghosh, A.; Majumder, S. B.

    2017-07-01

    Iso-butane (i-C4H10) is one of the major components of liquefied petroleum gas which is used as fuel in domestic and industrial applications. Developing chemi-resistive selective i-C4H10 thin film sensors remains a major challenge. Two strategies were undertaken to differentiate carbon monoxide, hydrogen, and iso-butane gases from the measured conductance transients of cobalt doped zinc oxide thin films. Following the first strategy, the response and recovery transients of conductances in these gas environments are fitted using the Langmuir adsorption kinetic model to estimate the heat of adsorption, response time constant, and activation energies for adsorption (response) and desorption (recovery). Although these test gases have seemingly different vapor densities, molecular diameters, and reactivities, analyzing the estimated heat of adsorption and activation energies (for both adsorption and desorption), we could not differentiate these gases unequivocally. However, we have found that the lower the vapor density, the faster the response time irrespective of the test gas concentration. As a second strategy, we demonstrated that feature extraction of conductance transients (using fast Fourier transformation) in conjunction with the pattern recognition algorithm (principal component analysis) is more fruitful to address the cross-sensitivity of Co doped ZnO thin film sensors. We have found that although the dispersion among different concentrations of hydrogen and carbon monoxide could not be avoided, each of these three gases forms distinct clusters in the plot of principal component 2 versus 1 and therefore could easily be differentiated.

  6. Preparation of Zinc Oxide (ZnO) Thin Film as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process

    Science.gov (United States)

    Muslih, E. Y.; Kim, K. H.

    2017-07-01

    Zinc oxide (ZnO) thin film as a transparent conductive oxide (TCO) for thin film solar cell application was successfully prepared through two step preparations which consisted of deposition by spin coating at 2000 rpm for 10 second and followed by annealing at 500 °C for 2 hours under O2 and ambient atmosphere. Zinc acetate dehydrate was used as a precursor which dissolved in ethanol and acetone (1:1 mol) mixture in order to make a zinc complex compound. In this work, we reported the O2 effect, reaction mechanism, structure, morphology, optical and electrical properties. ZnO thin film in this work shows a single phase of wurtzite, with n-type semiconductor and has band gap, carrier concentration, mobility, and resistivity as 3.18 eV, 1.21 × 10-19cm3, 11 cm2/Vs, 2.35 × 10-3 Ωcm respectively which is suitable for TCO at thin film solar cell.

  7. Perfect Liberty or Natural Liberty?

    DEFF Research Database (Denmark)

    Jacobsen, Stefan Gaarsmand

    2012-01-01

    The article investigates the concept of natural order as it is used by François Quesnay and Adam Smith in their respective economic writings. While Smith used the concept only after having visited Quesnay and the Physiocrats in France in the 1760s, in The Wealth of Nations he sought to negotiate...... the meaning of what was “natural” about economic life. The Physiocrats believed it possible to identify a model or a perfect regime of natural order – an order that they in fact thought to exist and function in China due to a rigorous system of economic laws. Smith sided with contemporary critics...... of this metaphysical vision of economic perfection (and of Chinese governance), but he suggested that the economic mechanisms of the physiocratic theories would remain intact even with a minimum of control by state laws. However, Smith’s balancing act on these questions remained disputed even by his Scottish...

  8. Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ling [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049, China and School of Information Science and Engineering, Shandong University, Jinan 250100 (China); Fan, Lina; Li, Yanhuai; Song, Zhongxiao; Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn, E-mail: chlliu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Chunliang, E-mail: mafei@mail.xjtu.edu.cn, E-mail: chlliu@mail.xjtu.edu.cn [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-03-15

    Amorphous In–Ga–Zn oxide (IGZO) thin films were prepared using radio frequency magnetron sputtering at room temperature. Upon thermal annealing at temperatures even up to 500 °C, the amorphous characteristics were still maintained, but the electronic properties could be considerably enhanced. This could be ascribed to the increased optical band gap and the increased oxygen vacancies, as corroborated by the microstructure characterizations. In addition, the surface became smoother upon thermal annealing, guaranteeing good interface contact between electrode and a-IGZO. The optical transmittance at 400–800 nm exceeded 90% for all samples. All in all, thermal annealing at appropriate temperatures is expected to improve the performances of relevant a-IGZO thin film transistors.

  9. Thin, Conductive, Pyrrolyc film production for radioactive sources backings; Preparacion de peliculas pirrolicas conductoras ultrafinas para soporte de fuentes radiactivas

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L; Arcos, J.M. los

    1993-07-01

    A procedure for electro polymerization of pyrrole has been set up in order to produce thin, (> 15 {mu}g/cm2) homogeneous (thickness variation < 2%) films, with no need for additional metallization to be used as backings of radioactive sources, having 10-0,4 Kfl/sample, for 35-70 {mu}g/cm . The experimental equipment, reagent and procedure utilized is described as well as the characterization of Pyrrolyc films produced. (Author) 28 refs.

  10. Looking beyond the perfect lens

    International Nuclear Information System (INIS)

    Wee, W H; Pendry, J B

    2010-01-01

    The holy grail of imaging is the ability to see through anything. From the conservation of energy, we can easily see that to see through a lossy material would require lenses with gain. The aim of this paper therefore is to propose a simple scheme by which we can construct a general perfect lens, with gain-one that can restore both the phases and amplitudes of near and far fields.

  11. Effects of reductive annealing on insulating polycrystalline thin films of Nb-doped anatase TiO2: recovery of high conductivity

    International Nuclear Information System (INIS)

    Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2016-01-01

    We studied the effects of reductive annealing on insulating polycrystalline thin films of anatase Nb-doped TiO 2 (TNO). The insulating TNO films were intentionally fabricated by annealing conductive TNO films in oxygen ambient at 400 °C. Reduced free carrier absorption in the insulating TNO films indicated carrier compensation due to excess oxygen. With H 2 -annealing, both carrier density and Hall mobility recovered to the level of conducting TNO, demonstrating that the excess oxygen can be efficiently removed by the annealing process without introducing additional scattering centers. (paper)

  12. Phonon thermal conductivity of scandium nitride for thermoelectrics from first-principles calculations and thin-film growth

    DEFF Research Database (Denmark)

    Kerdsongpanya, Sit; Hellman, Olle; Sun, Bo

    2017-01-01

    The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since many modern technologies require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity, which takes into account......-domain thermoreflectance. Our experimental results show a trend of reduction in lattice thermal conductivity with decreasing domain size predicted by the theoretical model. These results suggest a possibility to control thermal conductivity by microstructural tailoring and provide a predictive tool for the effect...... of the microstructure on the lattice thermal conductivity of materials based on ab initio calculations....

  13. Effects of introduction of argon on structural and transparent conducting properties of ZnO-In2O3 thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Moriga, Toshihiro; Mikawa, Michio; Sakakibara, Yuji; Misaki, Yukinori; Murai, Kei-ichiro; Nakabayashi, Ichiro; Tominaga, Kikuo; Metson, James B.

    2005-01-01

    Indium-zinc oxide thin films were deposited on a glass substrate from a ZnO and In 2 O 3 mixed target by a pulsed laser deposition technique. The effects on surface texture, structure and transparent conducting properties of the introduction of argon into the chamber during the depositions of amorphous and homologous ZnO-In 2 O 3 thin films were examined. The compositional range where amorphous films formed was widened by the introduction of argon. Resistivity in the region where the amorphous phase appeared increased slightly, with an increase of zinc content, due to the counteractions of decreased Hall mobility and increased carrier concentration. Introduction of argon improved surface roughness of the films and reduced and regulated particle and/or crystallite sizes of the films

  14. Development of transparent conductive indium and fluorine co-doped ZnO thin films: Effect of F concentration and post-annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hadri, A. [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco); Taibi, M. [University of Mohammed V, LPCMIN, Ecole Normale Superieure, Rabat (Morocco); Loghmarti, M.; Nassiri, C.; Slimani Tlemçani, T. [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco); Mzerd, A., E-mail: mzerd@yahoo.fr [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco)

    2016-02-29

    In the present work ZnO, In doped ZnO and In-F co-doped ZnO (IFZO) films were synthesized on heated glass substrates (350 °C) by the chemical spray technique. The effect of fluorine concentration on the structural, morphological, optical and electrical properties was studied. It was observed from X-ray diffraction (XRD) that the films have a polycrystalline structure and the intensity of the peaks depend on the doping and co-doping concentration. No diffraction peak related to dopants in XRD patterns along with shift in peaks angles to ZnO proved that In and F ions were doped into ZnO thin films. The Raman spectra confirm the hexagonal structure of the as-deposited films, and demonstrated an enhancement of the surface phonon mode of doped and co-doped films as compared to undoped films. The as-deposited films showed an average transmittance above 70%, in the wavelength range of 400–800 nm. A minimum electrical resistivity, in the order of 5.2 × 10{sup −} {sup 2} Ω cm was obtained for the IFZO thin film with 5 at.% F doping. Moreover, the electrical properties of doped and co-doped films were enhanced after post-deposition annealing. It was found that post-annealed thin films at 350 °C showed a decrease of one order of magnitude of the resistivity values. Such a transparent and conducting thin film can be suitable for optical and electrical applications owing to their low resistivity combined with high transmittance in the visible range. - Highlights: • Conductive transparent ZnO, IZO, IFZO thin films were deposited by spray pyrolysis. • Doping and co-doping affect morphology and optoelectrical properties. • As deposited film with high fluorine content exhibited high carrier mobility (55 cm{sup 2} V{sup −} {sup 1} s{sup −} {sup 1}). • Correlation between intrinsic defects and carrier mobility was observed. • Post-annealing in Ar atmosphere improves conductivity.

  15. Modelling of imploding phase of thin-film liners

    International Nuclear Information System (INIS)

    Savic, P.; Gupta, R.P.; Kekez, M.M.; Lau, J.H.; Lougheed, G.D.

    1983-01-01

    Theoretical models for thin-film implosions in vacuum are proposed for theta and Z-geometries in this paper, in order to develop a high-energy XUV source. In the present study, attention is confined to the implosion phase. The authors consider the plasma to be perfectly conducting and to have a frozen magnetic field resulting in a modified magnatoacoustic wave speed. An attempt is made to find to what extend the present treatment differs from detailed numerical analysis

  16. Low temperature-pyrosol-deposition of aluminum-doped zinc oxide thin films for transparent conducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M.J. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico); Ramírez, E.B. [Universidad Autónoma de la Ciudad de México, Calle Prolongación San Isidro Núm. 151, Col. San Lorenzo Tezonco, Iztapalapa, 09790 México, D.F. (Mexico); Juárez, B.; González, J.; García-León, J.M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico); Escobar-Alarcón, L. [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México, D.F. 11801 (Mexico); Alonso, J.C., E-mail: alonso@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico)

    2016-04-30

    Aluminum doped-zinc oxide (ZnO:Al) thin films with thickness ~ 1000 nm have been deposited by the ultrasonic spray pyrolysis technique using low substrate temperatures in the range from 285 to 360 °C. The electrical and optical properties of the ZnO:Al (AZO) films were investigated by Uv–vis spectroscopy and Hall effect measurements. The crystallinity and morphology of the films were analyzed using X-ray diffraction (XRD), atomic force microscopy (AFM), and high resolution scanning electron microcopy (SEM). XRD results reveal that all the films are nanocrystalline with a hexagonal wurtzite structure with a preferential orientation in the (002) plane. The size of the grains calculated from Scherrer's formula was in the range from 28 to 35 nm. AFM and SEM analysis reveals that the grains form round and hexagonal shaped aggregates at high deposition temperatures and larger rice shaped aggregates at low temperatures. All the films have a high optical transparency (~ 82%). According to the Hall measurements the AZO films deposited at 360 and 340 °C had resistivities of 2.2 × 10{sup −3}–4.3 × 10{sup −3} Ω cm, respectively. These films were n-type and had carrier concentrations and mobilities of 3.71–2.54 × 10{sup 20} cm{sup −3} and 7.4–5.7 cm{sup 2}/V s, respectively. The figure of merit of these films as transparent conductors was in the range of 2.6 × 10{sup −2} Ω{sup −1}–4.1 × 10{sup −2} Ω{sup −1}. Films deposited at 300 °C and 285 °C, had much higher resistivities. Based on the thermogravimetric analysis of the individual precursors used for film deposition, we speculate on possible film growing mechanisms that can explain the composition and electrical properties of films deposited under the two different ranges of temperatures. - Highlights: • Aluminum doped zinc oxide thin films were deposited at low temperatures by pyrosol. • Low resistivity was achieved from 340 °C substrate temperature. • All films deposited

  17. In-plane conductance of thin films as a probe of surface chemical environment: Adsorbate effects on film electronic properties of indium tin oxide and gold

    Science.gov (United States)

    Swint, Amy Lynn

    Changes in the in-plane conductance of conductive thin films are observed as a result of chemical adsorption at the surface. Reaction of the indium tin oxide (ITO) surface with Bronsted acids (bases) leads to increases (decreases) in its in-plane conductance as measured by a four-point probe configuration. The conductance varies monotonically with pH suggesting that the degree of surface protonation or hydroxylation controls the surface charge density, which in turn affects the width of the n-type depletion layer, and ultimately the in-plane conductance. Measurements at constant pH with a series of tetraalkylammonium hydroxide species of varying cation size indicate that surface dipoles also affect ITO conductance by modulating the magnitude of the surface polarization. Modulating the double layer with varying aqueous salt solutions also affects ITO conductance, though not to the same degree as strong Bronsted acids and bases. Solvents of varying dielectric constant and proton donating ability (ethanol, dimethylformamide) decrease ITO conductance relative to H2O. In addition, changing solvent gives rise to thermally-derived conductance transients, which result from exothermic solvent mixing. The self-assembly of alkanethiols at the surface increases the conductance of ITO films, most likely through carrier population effects. In all cases examined the combined effects of surface charge, adsorbed dipole layer magnitude and carrier injection are responsible for altering the ITO conductance. Besides being directly applicable to the control of electronic properties, these results also point to the use of four-point probe resistance measurements in condensed phase sensing applications. Ultrasensitive conductance-based gas phase sensing of organothiol adsorption to gold nanowires is accomplished with a limit of detection in the 105 molecule range. Further refinement of the inherently low noise resistance measurement may lead to observation of single adsorption events at

  18. Investigation on the structural changes of ZnO:Er:Yb thin film during laser annealing to fabricate a transparent conducting upconverter

    Energy Technology Data Exchange (ETDEWEB)

    Lluscà, Marta, E-mail: marta.llusca@gmail.com [Department of Applied Physics, Universitat de Barcelona, 08028 Barcelona (Spain); Future Industries Institute, University of South Australia, Mawson Lakes, 5095 South Australia (Australia); López-Vidrier, Julian [Department of Electronics, Universitat de Barcelona, 08028 Barcelona (Spain); IMTEK, Faculty of Engineering, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Lauzurica, Sara; Canteli, David; Sánchez-Aniorte, Maria I.; Molpeceres, Carlos [Centro Láser, Universidad Politécnica de Madrid, 28031 Madrid (Spain); Antony, Aldrin [Department of Applied Physics, Universitat de Barcelona, 08028 Barcelona (Spain); Indian Institute of Technology Bombay, 400076 Mumbai (India); Hernández, Sergi [Department of Electronics, Universitat de Barcelona, 08028 Barcelona (Spain); Alcobé, Xavier [Unitat de Difracció de Raigs X, Centres Científics i Tecnològics, Universitat de Barcelona, 08028 Barcelona (Spain); Garrido, Blas [Department of Electronics, Universitat de Barcelona, 08028 Barcelona (Spain); Bertomeu, Joan [Department of Applied Physics, Universitat de Barcelona, 08028 Barcelona (Spain)

    2017-05-15

    A transparent and conducting ZnO:Er:Yb thin film with upconversion properties has been achieved after being annealed with continuous laser radiation just before the ablation point of the material. This work demonstrates that the laser energy preserves the conductivity of the film and at the same time creates an adequate surrounding for Er and Yb to produce visible upconversion at 660, 560, 520, and 480 nm under 980 nm laser excitation. The relation between the structural, electrical and upconversion properties is discussed. It is observed that the laser energy melts part of the material, which recrystallizes creating rare earth oxides and two different wurtzite structures, one with substitutional rare earths and oxygen vacancies (responsible for the conductivity) and the other without substitutional rare earth ions (responsible for the upconversion emission).

  19. Development of a Handmade Conductivity Measurement Device for a Thin-Film Semiconductor and Its Application to Polypyrrole

    Science.gov (United States)

    Seng, Set; Shinpei, Tomita; Yoshihiko, Inada; Masakazu, Kita

    2014-01-01

    The precise measurement of conductivity of a semiconductor film such as polypyrrole (Ppy) should be carried out by the four-point probe method; however, this is difficult for classroom application. This article describes the development of a new, convenient, handmade conductivity device from inexpensive materials that can measure the conductivity…

  20. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ohtani, Yuusuke; Miyata, Toshihiro; Kuboi, Takeshi

    2007-01-01

    A newly developed Al-doped ZnO (AZO) thin-film magnetron-sputtering deposition technique that decreases resistivity, improves resistivity distribution, and produces high-rate depositions has been demonstrated by dc magnetron-sputtering depositions that incorporate rf power (dc+rf-MS), either with or without the introduction of H 2 gas into the deposition chamber. The dc+rf-MS preparations were carried out in a pure Ar or an Ar+H 2 (0%-2%) gas atmosphere at a pressure of 0.4 Pa by adding a rf component (13.56 MHz) to a constant dc power of 80 W. The deposition rate in a dc+rf-MS deposition incorporating a rf power of 150 W was approximately 62 nm/min, an increase from the approximately 35 nm/min observed in dc magnetron sputtering with a dc power of 80 W. A resistivity as low as 3x10 -4 Ω cm and an improved resistivity distribution could be obtained in AZO thin films deposited on substrates at a low temperature of 150 deg. C by dc+rf-MS with the introduction of hydrogen gas with a content of 1.5%. This article describes the effects of adding a rf power component (i.e., dc+rf-MS deposition) as well as introducing H 2 gas into dc magnetron-sputtering preparations of transparent conducting AZO thin films

  1. Thin Film Thermoelectric Metal-Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity. Supporting Information

    Science.gov (United States)

    2015-04-28

    conductivity The Green- Kubo method uses the auto-correlation of equilibrium heat flux J to calculate the conductivity κ from the expression (2) where V...specific experiments are discussed here, specifically, sensitivity calculations of our measurements to the thermal conductivity of the TCNQ@Cu3(BTC)2...where x denotes κMOF, CMOF, hK,Al/MOF or hK,MOF/SiO2. This TDTR sensitivity, Sx, is calculated by ]ln[ )( )( ln )( x tV tV tS out in x

  2. Generating perfect fluid spheres in general relativity

    Science.gov (United States)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  3. Generating perfect fluid spheres in general relativity

    International Nuclear Information System (INIS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-01-01

    Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres

  4. Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-κ dielectric based resistive random access memory

    KAUST Repository

    Wu, Xing; Li, Kun; Raghavan, Nagarajan; Bosman, Michel; Wang, Qing-Xiao; Cha, Dong Kyu; Zhang, Xixiang; Pey, Kin-Leong

    2011-01-01

    Resistive switching in transition metal oxides could form the basis for next-generation non-volatile memory (NVM). It has been reported that the current in the high-conductivity state of several technologically relevant oxide materials flows through

  5. Transparent conducting properties of Ni doped zinc oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Bouaoud, A.; Rmili, A.; Ouachtari, F.; Louardi, A.; Chtouki, T. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Ecole Nationale des Sciences Appliquees de Kenitra (ENSAK) (Morocco)

    2013-01-15

    Undoped and Ni doped zinc oxide (Ni-ZnO) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of anhydrous zinc acetate (Zn(CH{sub 3}COOH){sub 2} and hexahydrated nickel chloride (NiCl{sub 2}{center_dot}6H{sub 2}O) as sources of zinc and nickel, respectively. The films were deposited onto the amorphous glass substrates kept at (450 Degree-Sign C). The effect of the [Ni]/[Zn] ratio on the structural, morphological, optical and electrical properties of Ni doped ZnO thin film was studied. It was found from X-ray diffraction (XRD) analysis that both the undoped and Ni doped ZnO films were crystallized in the hexagonal structure with a preferred orientation of the crystallites along the [002] direction perpendicular to the substrate. The scanning electron microscopy (SEM) images showed a relatively dense surface structure composed of crystallites in the spherical form whose average size decreases when the [Ni]/[Zn] ratio increases. The optical study showed that all the films were highly transparent. The optical transmittance in the visible region varied between 75 and 85%, depending on the dopant concentrations. The variation of the band gap versus the [Ni]/[Zn] ratio showed that the energy gap decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02 and then increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. The films obtained with the [Ni]/[Zn] ratio = 0.02 showed minimum resistivity of 2 Multiplication-Sign 10{sup -3} {Omega} cm at room temperature. -- Highlights: Black-Right-Pointing-Pointer The optical transmittance of Ni doped ZnO varies between 75 and 85%. Black-Right-Pointing-Pointer The energy gap of these films decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02. Black-Right-Pointing-Pointer The energy gap increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. Black-Right-Pointing-Pointer The films obtained with [Ni]/[Zn] ratio = 0.02 show minimum resistivity of 2

  6. Development of thermal scanning probe microscopy for the determination of thin films thermal conductivity: application to ceramic materials for nuclear industry

    International Nuclear Information System (INIS)

    David, L.

    2006-10-01

    Since the 1980's, various thermal metrologies have been developed to understand and characterize the phenomena of transport of thermal energy at microscopic and submicroscopic scales. Thermal Scanning Probe Microscopy (SThM) is promising. Based on the analysis of the thermal interaction between an heated probe and a sample, it permits to probe the matter at the level of micrometric size in volumes. Performed in the framework of the development of this technique, this work more particularly relates to the study of thin films thermal conductivity. We propose a new modelling of the prediction of measurement with SThM. This model allows not only the calibration of the method for the measurement of bulk material thermal conductivity but also to specify and to better describe the probe - sample thermal coupling and to estimate, from its inversion, thin films thermal conductivity. This new approach of measurement has allowed the determination of the thermal conductivity of micrometric and sub-micrometric thicknesses of meso-porous silicon thin film in particular. Our estimates for the micrometric thicknesses are in agreement with those obtained by the use of Raman spectrometry. For the lower thicknesses of film, we give new data. Our model has, moreover, allowed a better definition of the in-depth resolution of the apparatus. This one is strongly linked to the sensitivity of SThM and strongly depends on the probe-sample thermal coupling area and on the geometry of the probe used. We also developed the technique by the vacuum setting of SThM. Our first results under this environment of measurement are encouraging and validate the description of the coupling used in our model. Our method was applied to the study of ceramics (SiC, TiN, TiC and ZrC) under consideration in the composition of future nuclear fuels. Because of the limitations of SThM in terms of sensitivity to thermal conductivity and in-depth resolution, measurements were also undertaken with a modulated thermo

  7. Breast milk is conditionally perfect.

    Science.gov (United States)

    Erick, Miriam

    2018-02-01

    Breast milk is the universal preferred nutrition for the newborn human infant. New mother have been encouraged to exclusively breastfeed by health care professionals and consumer-advocacy forums for years, citing "breast milk is the perfect food". The benefits are numerous and include psychological, convenience, economical, ecological and nutritionally superior. Human milk is a composite of nutritional choices of the mother, commencing in the pre-conceptual era. Events influencing the eventual nutritional profile of breast milk for the neonate start with pre-conceptual dietary habits through pregnancy and finally to postpartum. Food choices do affect the nutritional profile of human breast milk. It is not known who coined the phrase "breast milk is the perfect food" but it is widely prevalent in the literature. While breast milk is highly nutritive, containing important immunological and growth factors, scientific investigation reveals a few short-falls. Overall, human breast milk has been found to be low in certain nutrients in developed countries: vitamin D, iodine, iron, and vitamin K. Additional nutrient deficiencies have been documented in resource-poor countries: vitamin A, vitamin B 12, zinc, and vitamin B 1/thiamin. Given these findings, isn't it more accurate to describe breast milk as "conditionally perfect"? Correcting the impression that breast milk is an inherently, automatically comprehensive enriched product would encourage women who plan to breastfeed an opportunity to concentrate on dietary improvement to optimizes nutrient benefits ultimately to the neonate. The more immediate result would improve pre-conceptual nutritional status. Here, we explore the nutritional status of groups of young women; some of whom will become pregnant and eventually produce breast milk. We will review the available literature profiling vitamin, mineral, protein and caloric content of breast milk. We highlight pre-existing situations needing correction to optimize

  8. Young's Modulus and Coefficient of Linear Thermal Expansion of ZnO Conductive and Transparent Ultra-Thin Films

    Directory of Open Access Journals (Sweden)

    Naoki Yamamoto

    2011-01-01

    Full Text Available A new technique for measuring Young's modulus of an ultra-thin film, with a thickness in the range of about 10 nm, was developed by combining an optical lever technique for measuring the residual stress and X-ray diffraction for measuring the strain in the film. The new technique was applied to analyze the mechanical properties of Ga-doped ZnO (GZO films, that have become the focus of significant attention as a substitute material for indium-tin-oxide transparent electrodes. Young's modulus of the as-deposited GZO films decreased with thickness; the values for 30 nm and 500 nm thick films were 205 GPa and 117 GPa, respectively. The coefficient of linear thermal expansion of the GZO films was measured using the new technique in combination with in-situ residual stress measurement during heat-cycle testing. GZO films with 30–100 nm thickness had a coefficient of linear thermal expansion in the range of 4.3 × 10−6 – 5.6 × 10−6 °C−1.

  9. Ga and Al doped zinc oxide thin films for transparent conducting oxide applications: Structure-property correlations

    Science.gov (United States)

    Temizer, Namik K.; Nori, Sudhakar; Narayan, Jagdish

    2014-01-01

    We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110 μΩ-cm) values. The films grown in an ambient oxygen partial pressure (PO2) of 5 × 10-2 Torr and at growth temperatures from room temperature to 600 °C show semiconducting behavior, whereas samples grown at a PO2 of 1 × 10-3 Torr show metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The measured optical and transport properties were found to be a strong function of growth conditions implying that the drastic changes are brought about essentially by native point defects. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical, and magnetic properties and such changes in physical properties are controlled predominantly by the defect content.

  10. External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001)

    Science.gov (United States)

    Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji

    2018-01-01

    The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).

  11. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2008-01-01

    Coauthored by one of the creators of the most efficient space packing solution, the Weaire-Phelan structure, The Pursuit of Perfect Packing, Second Edition explores a problem of importance in physics, mathematics, chemistry, biology, and engineering: the packing of structures. Maintaining its mathematical core, this edition continues and revises some of the stories from its predecessor while adding several new examples and applications. The book focuses on both scientific and everyday problems ranging from atoms to honeycombs. It describes packing models, such as the Kepler conjecture, Voronoï decomposition, and Delaunay decomposition, as well as actual structure models, such as the Kelvin cell and the Weaire-Phelan structure. The authors discuss numerous historical aspects and provide biographical details on influential contributors to the field, including emails from Thomas Hales and Ken Brakke. With examples from physics, crystallography, engineering, and biology, this accessible and whimsical bo...

  12. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2000-01-01

    In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, physics, biology, and engineering, including the arrangement of soap bubbles in foam, atoms in a crystal, the architecture of the bee''s honeycomb, and the structure of the Giant''s Causeway. Using an informal style and with key references, the book also includes brief accounts of the lives of many of the scientists who devoted themselves to problems of packing over many centuries, together with wry comments on their efforts. It is an entertaining introduction to the field for both specialists and the more general public.

  13. Building up Graphene-Based Conductive Polymer Composite Thin Films Using Reduced Graphene Oxide Prepared by γ-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    Siyuan Xie

    2013-01-01

    Full Text Available In this paper, reduced graphene oxide (RGO was prepared by means of γ-ray irradiation of graphene oxide (GO in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite films based on the RGO and polymeric matrix through facile vacuum filtration and polymer coating. The electrical and optical properties of the obtained composite films were tested, showing good electrical conductivity with visible transmittance but strong ultraviolet absorbance.

  14. On the effect of ammonia and wet atmospheres on the conducting properties of different lutetium bisphthalocyanine thin films

    International Nuclear Information System (INIS)

    Parra, Vicente; Bouvet, Marcel; Brunet, Jerome; Rodriguez-Mendez, Maria Luz; Saja, Jose Antonio de

    2008-01-01

    In this article, we present new experimental data regarding the influence of ammonia (NH 3 ) and water (from wet atmospheres) in the conducting properties of lutetium bisphthalocyanine (LuPc 2 )-based films in two very different structural features, namely Langmuir-Blodgett (LB) and vacuum evaporated (VE) films, deposited onto interdigitated electrodes. We pay particular attention to the effect of the mass flow rate ratios of the active gases, which certainly influence the mechanism of conduction of the chemiresistors. The particular trends observed are discussed on the basis of two main contributions: the electronic effects and the competition between gases in the adsorption process

  15. On the effect of ammonia and wet atmospheres on the conducting properties of different lutetium bisphthalocyanine thin films

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Vicente [Ecole Superieure de Physique et Chimie Industrielles (ESPCI) and Laboratoire de Chimie Inorganique et Materiaux Moleculaires-CNRS UMR 7071, Universite Pierre et Marie Curie (Paris 6) (France); Bouvet, Marcel [Ecole Superieure de Physique et Chimie Industrielles (ESPCI) and Laboratoire de Chimie Inorganique et Materiaux Moleculaires-CNRS UMR 7071, Universite Pierre et Marie Curie (Paris 6) (France)], E-mail: marcel.bouvet@espci.fr; Brunet, Jerome [Universite Blaise Pascal, LASMEA-CNRS UMR 6602, Clermont-Ferrand (France); Rodriguez-Mendez, Maria Luz [Dept. Quimica Fisica y Quimica Inorganica, Escuela Tecnica Superior de Ingenieros Industriales (E.T.S.I.I), Universidad de Valladolid (Spain); Saja, Jose Antonio de [Dept. Fisica de la Materia Condensada, Facultad de Ciencias, Universidad de Valladolid (Spain)

    2008-10-31

    In this article, we present new experimental data regarding the influence of ammonia (NH{sub 3}) and water (from wet atmospheres) in the conducting properties of lutetium bisphthalocyanine (LuPc{sub 2})-based films in two very different structural features, namely Langmuir-Blodgett (LB) and vacuum evaporated (VE) films, deposited onto interdigitated electrodes. We pay particular attention to the effect of the mass flow rate ratios of the active gases, which certainly influence the mechanism of conduction of the chemiresistors. The particular trends observed are discussed on the basis of two main contributions: the electronic effects and the competition between gases in the adsorption process.

  16. Analysis of optical band-gap shift in impurity doped ZnO thin films by using nonparabolic conduction band parameters

    International Nuclear Information System (INIS)

    Kim, Won Mok; Kim, Jin Soo; Jeong, Jeung-hyun; Park, Jong-Keuk; Baik, Young-Jun; Seong, Tae-Yeon

    2013-01-01

    Polycrystalline ZnO thin films both undoped and doped with various types of impurities, which covered the wide carrier concentration range of 10 16 –10 21 cm −3 , were prepared by magnetron sputtering, and their optical-band gaps were investigated. The experimentally measured optical band-gap shifts were analyzed by taking into account the carrier density dependent effective mass determined by the first-order nonparabolicity approximation. It was shown that the measured shifts in optical band-gaps in ZnO films doped with cationic dopants, which mainly perturb the conduction band, could be well represented by theoretical estimation in which the band-gap widening due to the band-filling effect and the band-gap renormalization due to the many-body effect derived for a weakly interacting electron-gas model were combined and the carrier density dependent effective mass was incorporated. - Highlights: ► Optical band-gaps of polycrystalline ZnO thin films were analyzed. ► Experimental carrier concentration range covered from 10 16 to 10 21 cm −3 . ► Nonparabolic conduction band parameters were used in theoretical analysis. ► The band-filling and the band-gap renormalization effects were considered. ► The measured optical band-gap shifts corresponded well with the calculated ones

  17. Roughness-based monitoring of transparency and conductivity in boron-doped ZnO thin films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Gaikwad, Rajendra S.; Bhande, Sambhaji S.; Mane, Rajaram S.; Pawar, Bhagwat N.; Gaikwad, Sanjay L.; Han, Sung-Hwan; Joo, Oh-Shim

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► We report surface roughness dependent transparency and conductivity in ZnO films. ► The surface roughness with respected to boron doping concentrations is studied. ► Boron doped and pristine Zinc oxide thin films have showed ≥95% transmittance. ► Increased carrier concentration of 9.21 × 10 21 cm −3 revealed from Hall measurement. -- Abstract: Sprayed polycrystalline ZnO and boron-doped ZnO thin films composed of spherical grains of 25–32 nm in diameters are used in roughness measurement and further correlated with the transparency and the conductivity characteristics. The surface roughness is increased up to Zn 0.98 B 0.02 O and then declined at higher boron concentrations. The sprayed ZnO films revealed ≥95% transmittance in the visible wavelength range, 1.956 × 10 −4 Ω cm electrical resistivity, 46 cm 2 /V s Hall mobility and 9.21 × 10 21 cm −3 charge carrier concentration. The X-ray photoelectron spectroscopy study has confirmed 0.15 eV binding energy change for Zn 2p 3/2 when 2 at% boron content is mixed without altering electro-optical properties substantially. Finally, using soft modeling importance of these textured ZnO over non-textured films for enhancing the solar cells performance is explored.

  18. AC electrical conductivity and dielectric relaxation studies on n-type organic thin films of N, N‧-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC)

    Science.gov (United States)

    Qashou, Saleem I.; Darwish, A. A. A.; Rashad, M.; Khattari, Z.

    2017-11-01

    Both Alternating current (AC) conductivity and dielectric behavior of n-type organic thin films of N, N‧-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC) have been investigated. Fourier transformation infrared (FTIR) spectroscopy is used for identifying both powder and film bonds which confirm that there are no observed changes in the bonds between the DMPDC powder and evaporated films. The dependence of AC conductivity on the temperature for DMPDC evaporated films was explained by the correlated barrier hopping (CBH) model. The calculated barrier height using CBH model shows a decreasing behavior with increasing temperature. The mechanism of dielectric relaxation was interpreted on the basis of the modulus of the complex dielectric. The calculated activation energy of the relaxation process was found to be 0.055 eV.

  19. Role of Al2O3 thin layer on improving the resistive switching properties of Ta5Si3-based conductive bridge random accesses memory device

    Science.gov (United States)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2018-04-01

    Ta5Si3-based conductive bridge random access memory (CBRAM) devices have been investigated to improve their resistive switching characteristics for their application in future nonvolatile memory technology. Changes in the switching characteristics by the addition of a thin Al2O3 layer of different thicknesses at the bottom electrode interface of a Ta5Si3-based CBRAM devices have been studied. The double-layer device with a 1 nm Al2O3 layer has shown improved resistive switching characteristics over the single layer one with a high on/off resistance ratio of 102, high endurance of more than 104 cycles, and good retention for more than 105 s at the temperature of 130 °C. The higher thermal conductivity of Al2O3 over Ta5Si3 has been attributed to the enhanced switching properties of the double-layer devices.

  20. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    Science.gov (United States)

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (electronics are expected.

  1. Optimization of preparation of skilled wrestlers by perfection of method of the special preparation

    Directory of Open Access Journals (Sweden)

    Ogar' G.O.

    2009-12-01

    Full Text Available The author method of the special physical preparation of skilled fighters is presented. A method carries stage-by-stage character. On the first stage effectively to conduct the accented power training. On the second stage - to perfect explosive force. Tasks of the third stage are perfection of speed force and lactate component of energy supply. On the fourth stage the special is perfected speed-power endurance. The fifth stage coincides with beginning of competition period of macrocycle.

  2. Experimental determination of thermal conductivities of dielectric thin films; Determination experimentale des conductivites thermiques de couches minces dielectriques

    Energy Technology Data Exchange (ETDEWEB)

    Scudeller, Y.; Hmina, N.; Lahmar, J.; Bardon, J.P. [Nantes Univ., 44 (France)

    1996-12-31

    This paper presents a method of measurement of thermal conductivity of sub-micron dielectric films in a direction perpendicular to the substrate. These films (oxides, nitrides, diamond..) are mainly used for the electrical insulation of semiconductor circuits and in optical treatments of high energy lasers. The principle of the method used and the experimental device are described. The results obtained with silicon oxides are discussed. (J.S.) 13 refs.

  3. Preparation of p-type transparent conducting tin-antimony oxide thin films by DC reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhenguo [College of Electronic Information, Hangzhou Dianzi University, Hangzhou (China); State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou (China); Xi, Junhua; Huo, Lijuan; Zhao, Yi [State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou (China)

    2008-07-01

    P-type transparent conducting tin-antimony oxide (TAO) films were successfully prepared by DC reactive magnetron sputtering followed by post annealing in the air. Structural, optical and electrical properties of the TAO films were investigated. X-ray diffraction studies showed that the films are polycrystalline with orthorhombic structure of Sb{sub 2}O{sub 4}. UV-Visible absorption and transmittance spectra showed that the optical band-gap of the TAO films is about 3.90 eV, and the overall transmittance is higher than 85% in the visible region. Hall effect measurement indicated that the Sn/Sb ratio is a critical parameter to get p-type conducting TAO films. It was found that 0.19conducting films. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez, Ángel Luis; Coya, Carmen; García-Vélez, Miguel [Departamento Teoría de la Señal y Comunicaciones, Sistemas Telemáticos y Computación, Escuela Técnica Superior de Ingeniería de Telecomunicación, Universidad Rey Juan Carlos, Fuenlabrada, Madrid 28943 (Spain)

    2015-08-15

    We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the material in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indium tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.

  5. Role of the tip induced local anodic oxidation in the conductive atomic force microscopy of mixed phase silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Vetushka, Aliaksi; Fejfar, Antonín; Ledinský, Martin; Rezek, Bohuslav; Stuchlík, Jiří; Kočka, Jan

    2010-01-01

    Roč. 7, 3-4 (2010), s. 728-731 ISSN 1862-6351 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510; GA AV ČR(CZ) IAA100100902 Institutional research plan: CEZ:AV0Z10100521 Keywords : local anodic oxidation (LAO) * conductive atomic force microscopy (C-AFM) Subject RIV: BM - Solid Matter Physics ; Magnetism http://www3.interscience.wiley.com/journal/123289759/abstract

  6. Correlation between the transport mechanisms in conductive filaments inside Ta2O5-based resistive switching devices and in substoichiometric TaOx thin films

    Science.gov (United States)

    Rosário, Carlos M. M.; Thöner, Bo; Schönhals, Alexander; Menzel, Stephan; Wuttig, Matthias; Waser, Rainer; Sobolev, Nikolai A.; Wouters, Dirk J.

    2018-05-01

    Conductive filaments play a key role in redox-based resistive random access memory (ReRAM) devices based on the valence change mechanism, where the change of the resistance is ascribed to the modulation of the oxygen content in a local region of these conductive filaments. However, a deep understanding of the filaments' composition and structure is still a matter of debate. We approached the problem by comparing the electronic transport, at temperatures from 300 K down to 2 K, in the filaments and in TaOx films exhibiting a substoichiometric oxygen content. The filaments were created in Ta (15 nm)/Ta2O5 (5 nm)/Pt crossbar ReRAM structures. In the TaOx thin films with various oxygen contents, the in-plane transport was studied. There is a close similarity between the electrical properties of the conductive filaments in the ReRAM devices and of the TaOx films with x ˜ 1, evidencing also no dimensionality difference for the electrical transport. More specifically, for both systems there are two different conduction processes: one in the higher temperature range (from 50 K up to ˜300 K), where the conductivity follows a √{ T } dependence, and one at lower temperatures (<50 K), where the conductivity follows the exp(-1 / √{ T } ) dependence. This suggests a strong similarity between the material composition and structure of the filaments and those of the substoichiometric TaOx films. We also discuss the temperature dependence of the conductivity in the framework of possible transport mechanisms, mainly of those normally observed for granular metals.

  7. AC conductivity and dielectric properties of amorphous GexSb40-xSe60 thin films

    International Nuclear Information System (INIS)

    Atyia, H.E.; Farid, A.M.; Hegab, N.A.

    2008-01-01

    Measurements of AC conductivity and dielectric properties have been made for chalcogenide film samples of Ge x Sb 40-x Se 60 (with x=0, 10 and 20 at%) at different temperatures (303-393 K) and various frequencies (10 2 -10 5 Hz). It was found that the AC conductivity obeys the law σ(ω, T)=Aω s . The exponent s 1 and dielectric loss ε 2 were found to decrease with frequency and increase with temperature. The maximum barrier height W M was calculated from dielectric measurements according to the Guintini equation. It was found that the obtained value of W m agrees with that proposed by the theory of hopping of charge carriers over potential barrier as suggested by Elliott in case of chalcogenide glasses. The density of localized states N(E F ) has also been calculated for the studied compositions. The effect of decreasing the Sb content at the expense of the Ge content was investigated for the obtained results of the studied parameters

  8. The n-type conduction of indium-doped Cu{sub 2}O thin films fabricated by direct current magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xing-Min; Su, Xiao-Qiang; Ye, Fan, E-mail: yefan@szu.edu.cn; Wang, Huan; Tian, Xiao-Qing; Zhang, Dong-Ping; Fan, Ping; Luo, Jing-Ting; Zheng, Zhuang-Hao; Liang, Guang-Xing [Institute of Thin Film Physics and Applications, School of Physical Science and Technology and Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen 518060 (China); Roy, V. A. L. [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China)

    2015-08-24

    Indium-doped Cu{sub 2}O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O{sub 2}. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu{sub 2}O, with no other phases detected. Indium atoms exist as In{sup 3+} in Cu{sub 2}O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. The Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2–713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu{sub 2}O and, therefore, lead to n-type conduction.

  9. Thermal conductivity in Pr{sub 1-x}Ca{sub x}MnO{sub 3} and SrTiO{sub 3} thin film systems

    Energy Technology Data Exchange (ETDEWEB)

    Wiedigen, Stefanie; Kramer, Thilo; Mangipudi, Kodanda R.; Hoffmann, Joerg; Volkert, Cynthia A.; Jooss, Christian [Institute for Materials Physics, University of Goettingen (Germany); Feuchter, Manuel; Kamlah, Marc [Institute for Applied Materials, Karlsruhe Institute of Technology (Germany)

    2012-07-01

    Epitaxial multilayers and superlattices are one recent approach for the design of efficient thermoelectrics. To study the effect of phonon blocking and scattering on thermal conductivity of oxide multilayers, a combination of two perovskites with promising thermoelectric properties is selected: the orthorhombic Pr{sub 1-x}Ca{sub x}MnO{sub 3} and the cubic SrTiO{sub 3}. In order to investigate the effect of microstructure, interfaces and acoustic impedance mismatch on thermal conductivity {kappa} high preparation quality is needed. Our thin films were prepared by ion-beam and magnetron sputtering. Structural analysis is done by XRD and TEM and is presented in combination with thermal conductivity measurements using the 3{omega} method. Single layers of Pr{sub 1-x}Ca{sub x}MnO{sub 3} show low {kappa} values and no significant increase of thermal conductivity with increasing doping. In homoepitaxial single layers of SrTiO{sub 3} preparation conditions have a high impact on {kappa}, most probably due to different concentrations of point defects. Pr{sub 1-x}Ca{sub x}MnO{sub 3}/SrTiO{sub 3} multilayers show a {kappa} decreases systematically with increasing number of double layers. The results are discussed in the light of the theoretically calculated phonon dispersion and the experimentally observed microstructure.

  10. Obsession with perfection: Body dysmorphia.

    Science.gov (United States)

    Vashi, Neelam A

    The deeply rooted fascination with beauty penetrates society worldwide. The indulgence to look and feel beautiful pervades all ages, genders, and nationalities, with research conferring a remarkable tendency to agree on measures of attractiveness among these disparate groups. Research has found that beautiful people do, in fact, receive more desirable outcomes in life and job satisfaction, family formation, and overall happiness. Humans have a tendency to respond to attractive persons more favorably, driving many patients to our clinics. Although some dissatisfaction with one's appearance is common and normal, excessive concern with certain facial or body attributes can be sign of an underlying disorder. Body dysmorphic disorder (BDD) is a disorder of self-perception. It is the obsession with perfection. Defined as the impairing preoccupation with a nonexistent or minimal flaw in appearance, BDD affects 0.7-2.4% of the general population and a much larger percentage of those attempting to receive aesthetic treatments. Clinicians should be aware of this disorder and remain vigilant because such patients will not be satisfied with corrective procedures. Although not involving cosmetic intervention, the treatment of BDD does involve psychiatric referral and psychopharmacologic therapy, with patients receiving these having a much better prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption

    Directory of Open Access Journals (Sweden)

    V. S. Asadchy

    2015-07-01

    Full Text Available Energy of propagating electromagnetic waves can be fully absorbed in a thin lossy layer, but only in a narrow frequency band, as follows from the causality principle. On the other hand, it appears that there are no fundamental limitations on broadband matching of thin resonant absorbing layers. However, known thin absorbers produce significant reflections outside of the resonant absorption band. In this paper, we explore possibilities to realize a thin absorbing layer that produces no reflected waves in a very wide frequency range, while the transmission coefficient has a narrow peak of full absorption. Here we show, both theoretically and experimentally, that a thin resonant absorber, invisible in reflection in a very wide frequency range, can be realized if one and the same resonant mode of the absorbing array unit cells is utilized to create both electric and magnetic responses. We test this concept using chiral particles in each unit cell, arranged in a periodic planar racemic array, utilizing chirality coupling in each unit cell but compensating the field coupling at the macroscopic level. We prove that the concept and the proposed realization approach also can be used to create nonreflecting layers for full control of transmitted fields. Our results can have a broad range of potential applications over the entire electromagnetic spectrum including, for example, perfect ultracompact wave filters and selective multifrequency sensors.

  12. High-conductance low-voltage organic thin film transistor with locally rearranged poly(3-hexylthiophene) domain by current annealing on plastic substrate

    Science.gov (United States)

    Pei, Zingway; Tsai, Hsing-Wang; Lai, Hsin-Cheng

    2016-02-01

    The organic material based thin film transistors (TFTs) are attractive for flexible optoelectronics applications due to the ability of lager area fabrication by solution and low temperature process on plastic substrate. Recently, the research of organic TFT focus on low operation voltage and high output current to achieve a low power organic logic circuit for optoelectronic device,such as e-paper or OLED displayer. To obtain low voltage and high output current, high gate capacitance and high channel mobility are key factors. The well-arranged polymer chain by a high temperature postannealing, leading enhancement conductivity of polymer film was a general method. However, the thermal annealing applying heat for all device on the substrate and may not applicable to plastic substrate. Therefore, in this work, the low operation voltage and high output current of polymer TFTs was demonstrated by locally electrical bias annealing. The poly(styrene-comethyl methacrylate) (PS-r-PMMA) with ultra-thin thickness is used as gate dielectric that the thickness is controlled by thermal treatment after spin coated on organic electrode. In electrical bias-annealing process, the PS-r- PMMA is acted a heating layer. After electrical bias-annealing, the polymer TFTs obtain high channel mobility at low voltage that lead high output current by a locally annealing of P3HT film. In the future, the locally electrical biasannealing method could be applied on plastic substrate for flexible optoelectronic application.

  13. Highly-ordered mesoporous titania thin films prepared via surfactant assembly on conductive indium-tin-oxide/glass substrate and its optical properties

    International Nuclear Information System (INIS)

    Uchida, Hiroshi; Patel, Mehul N.; May, R. Alan; Gupta, Gaurav; Stevenson, Keith J.; Johnston, Keith P.

    2010-01-01

    Highly ordered mesoporous titanium dioxide (titania, TiO 2 ) thin films on indium-tin-oxide (ITO) coated glass were prepared via a Pluronic (P123) block copolymer template and a hydrophilic TiO 2 buffer layer. The contraction of the 3D hexagonal array of P123 micelles upon calcination merges the titania domains on the TiO 2 buffer layer to form mesoporous films with a mesochannel diameter of approximately 10 nm and a pore-to-pore distance of 10 nm. The mesoporous titania films on TiO 2 -buffered ITO/glass featured an inverse mesospace with a hexagonally-ordered structure, whereas the films formed without a TiO 2 buffer layer had a disordered microstructure with submicron cracks because of non-uniform water condensation on the hydrophobic ITO/glass surface. The density of the mesoporous film was 83% that of a bulk TiO 2 film. The optical band gap of the mesoporous titania thin film was approximately 3.4 eV, larger than that for nonporous anatase TiO 2 (∼ 3.2 eV), suggesting that the nanoscopic grain size leads to an increase in the band gap due to weak quantum confinement effects. The ability to form highly-ordered mesoporous titania films on electrically conductive and transparent substrates offers the potential for facile fabrication of high surface area semiconductive films with small diffusion lengths for optoelectronics applications.

  14. Synthesis of highly conductive thin-walled Al-doped ZnO single-crystal microtubes by a solid state method

    Science.gov (United States)

    Hu, Shuopeng; Wang, Yue; Wang, Qiang; Xing, Cheng; Yan, Yinzhou; Jiang, Yijian

    2018-06-01

    ZnO has attracted considerable attention in fundamental studies and practical applications for the past decade due to its outstanding performance in gas sensing, photocatalytic degradation, light harvesting, UV-light emitting/lasing, etc. The large-sized thin-walled ZnO (TW-ZnO) microtube with stable and rich VZn-related acceptors grown by optical vapor supersaturated precipitation (OVSP) is a novel multifunctional optoelectronic material. Unfortunately, the OVSP cannot achieve doping due to the vapor growth process. To obtain doped TW-ZnO microtubes, a solid state method is introduced in this work to achieve thin-walled Al-doping ZnO (TW-ZnO:Al) microtubes with high electrical conductivity. The morphology and microstructures of ZnO:Al microtubes are similar to undoped ones. The Al3+ ions are confirmed to substitute Zn2+ sites and Zn(0/-1) vacancies in the lattice of ZnO by EDS, XRD, Raman and temperature-dependent photoluminescence analyses. The Al dopant acting as a donor level offers massive free electrons to increase the carrier concentrations. The resistivity of the ZnO:Al microtube is reduced down to ∼10-3 Ω·cm, which is one order of magnitude lower than that of the undoped microtube. The present work provides a simple way to achieve doped ZnO tubular components for potential device applications in optoelectronics.

  15. Measurement of the surface susceptibility and the surface conductivity of atomically thin MoS2 by spectroscopic ellipsometry

    KAUST Repository

    Jayaswal, Gaurav; Dai, Zhenyu; Zhang, Xixiang; Bagnarol, Mirko; Martucci, Alessandro; Merano, Michele

    2018-01-01

    We show how to correctly extract from the ellipsometric data the surface susceptibility and the surface conductivity that describe the optical properties of monolayer MoS. Theoretically, these parameters stem from modelling a single-layer two-dimensional crystal as a surface current, a truly two-dimensional model. Current experimental practice is to consider this model equivalent to a homogeneous slab with an effective thickness given by the interlayer spacing of the exfoliating bulk material. We prove that the error in the evaluation of the surface susceptibility of monolayer MoS, owing to the use of the slab model, is at least 10% or greater, a significant discrepancy in the determination of the optical properties of this material.

  16. Measurement of the surface susceptibility and the surface conductivity of atomically thin MoS2 by spectroscopic ellipsometry

    KAUST Repository

    Jayaswal, Gaurav

    2018-02-06

    We show how to correctly extract from the ellipsometric data the surface susceptibility and the surface conductivity that describe the optical properties of monolayer MoS. Theoretically, these parameters stem from modelling a single-layer two-dimensional crystal as a surface current, a truly two-dimensional model. Current experimental practice is to consider this model equivalent to a homogeneous slab with an effective thickness given by the interlayer spacing of the exfoliating bulk material. We prove that the error in the evaluation of the surface susceptibility of monolayer MoS, owing to the use of the slab model, is at least 10% or greater, a significant discrepancy in the determination of the optical properties of this material.

  17. A simple model for the prediction of thermal conductivity of Ge2Sb2Te5 thin film

    International Nuclear Information System (INIS)

    Jin, Jae Sik

    2013-01-01

    A modified version of the Mayadas-Shatzkes (MS) model is proposed for the prediction of the thermal conductivity of both amorphous and crystalline of Ge 2 Sb 2 Te 5 (GST) phase-change materials at room temperature. The structural parameters of the original MS model are extended to describe the additional disorder scattering effects caused by the ternary components of the GST. The effect of disorder due to the alloy composition on the grain boundary scattering can be interpreted with the aid of thermal models. It is also found that for all phases of GST, the contribution of disorder scattering to the thermal resistance is nearly uniform. This is consistent with the fact that the GST phase changes without any destruction of the structural basis such as the building blocks.

  18. Properties of TiO2-based transparent conducting oxide thin films on GaN(0001) surfaces

    International Nuclear Information System (INIS)

    Kasai, J.; Nakao, S.; Yamada, N.; Hitosugi, T.; Moriyama, M.; Goshonoo, K.; Hoang, N. L. H.; Hasegawa, T.

    2010-01-01

    Anatase Nb-doped TiO 2 transparent conducting oxide has been formed on GaN(0001) surfaces using a sputtering method. Amorphous films deposited at room temperature were annealed at a substrate temperature of 500 deg. C in vacuum to form single-phase anatase films. Films with a thickness of 170 nm exhibited a resistivity of 8x10 -4 Ω cm with absorptance less than 5% at a wavelength of 460 nm. Furthermore, the refractive index of the Nb-doped TiO 2 was well matched to that of GaN. These findings indicate that Nb-doped TiO 2 is a promising material for use as transparent electrodes in GaN-based light emitting diodes (LEDs), particularly since reflection at the electrode/GaN boundary can be suppressed, enhancing the external quantum efficiency of blue LEDs.

  19. Improving the conductance of ZnO thin film doping with Ti by using a cathodic vacuum arc deposition process

    International Nuclear Information System (INIS)

    Wu, Chun-Sen; Lin, Bor-Tsuen; Jean, Ming-Der

    2011-01-01

    The Ti-doped ZnO films compared to un-doped ZnO films were deposited onto Corning XG glass substrates by using a cathodic vacuum arc deposition process in a mixture of oxygen and argon gases. The structural, electrical and optical properties of un-doped and Ti-doped ZnO films have been investigated. When the Ti target power is about 750 W, the incorporation of titanium atoms into zinc oxide films is obviously effective. Additionally, the resistivity of un-doped ZnO films is high and reduces to a value of 3.48 x 10 -3 Ω-cm when Ti is incorporated. The Ti doped in the ZnO films gave rise to the improvement of the conductivity of the films obviously. The Ti-doped ZnO films have > 85% transmittance in a range of 400-700 nm.

  20. Application of hydrogen-doped In2O3 transparent conductive oxide to thin-film microcrystalline Si solar cells

    International Nuclear Information System (INIS)

    Koida, Takashi; Sai, Hitoshi; Kondo, Michio

    2010-01-01

    Hydrogen-doped In 2 O 3 (IO:H) films with high electron mobility and improved near-infrared (NIR) transparency have been applied as a transparent conducting oxide (TCO) electrode in substrate-type hydrogenated microcrystalline silicon (μc-Si:H) solar cells. The incorporation of IO:H, instead of conventional Sn-doped In 2 O 3 , improved the short-circuit current density (J sc ) and the resulting conversion efficiency. Optical analysis of the solar cells and TCO films revealed that the improvement in J sc is due to the improved spectral sensitivity in the visible and NIR wavelengths by reduction of absorption loss caused by free carriers in the TCO films.

  1. High efficiency bifacial Cu2ZnSnSe4 thin-film solar cells on transparent conducting oxide glass substrates

    Directory of Open Access Journals (Sweden)

    Jung-Sik Kim

    2016-09-01

    Full Text Available In this work, transparent conducting oxides (TCOs have been employed as a back contact instead of Mo on Cu2ZnSnSe4 (CZTSe thin-film solar cells in order to examine the feasibility of bifacial Cu2ZnSn(S,Se4 (CZTSSe solar cells based on a vacuum process. It is found that the interfacial reaction between flourine doped tin oxide (FTO or indium tin oxide (ITO and the CZTSe precursor is at odds with the conventional CZTSe/Mo reaction. While there is no interfacial reaction on CZTSe/FTO, indium in CZTSe/ITO was significantly diffused into the CZTSe layers; consequently, a SnO2 layer was formed on the ITO substrate. Under bifacial illumination, we achieved a power efficiency of 6.05% and 4.31% for CZTSe/FTO and CZTSe/ITO, respectively.

  2. Influence of growth temperature of transparent conducting oxide layer on Cu(In,Ga)Se2 thin-film solar cells

    International Nuclear Information System (INIS)

    Cho, Dae-Hyung; Chung, Yong-Duck; Lee, Kyu-Seok; Park, Nae-Man; Kim, Kyung-Hyun; Choi, Hae-Won; Kim, Jeha

    2012-01-01

    We have studied the influence of growth temperature (T G ) in the deposition of an indium tin oxide (ITO) transparent conducting oxide layer on Cu(In,Ga)Se 2 (CIGS) thin-film solar cells. The ITO films were deposited on i-ZnO/glass and i-ZnO/CdS/CIGS/Mo/glass substrates using radio-frequency magnetron sputtering at various T G up to 350 °C. Both the resistivity of ITO and the interface quality of CdS/CIGS strongly depend on T G . For a T G ≤ 200 °C, a reduction in the series resistance enhanced the solar cell performance, while the p–n interface of the device was found to become deteriorated severely at T G > 200 °C. CIGS solar cells with ITO deposited at T G = 200 °C showed the best performance in terms of efficiency.

  3. Resistive switching of organic–inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO2 films

    Science.gov (United States)

    Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya

    2018-06-01

    We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO2 ultra-thin films. The SiO2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO2∣PEDOT:PSS architecture show good resistive switching performance with set–reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO2 interface.

  4. Looking for the Perfect Mentor.

    Science.gov (United States)

    Sá, Ana Pinheiro; Teixeira-Pinto, Cristina; Veríssimo, Rafaela; Vilas-Boas, Andreia; Firmino-Machado, João

    2015-01-01

    The authors established the profile of the Internal Medicine clinical teachers in Portugal aiming to define a future interventional strategy plan as adequate as possible to the target group and to the problems identified by the residents. Observational, transversal, analytic study. An online anonymous questionnaire was defined, evaluating the demographic characteristics of the clinical teachers, their path in Internal Medicine and their involvement in the residents learning process. We collected 213 valid questionnaires, making for an estimated response rate of 28.4%. Median global satisfaction with the clinical teacher was 4.52 (± 1.33 points) and the classification of the relationship between resident and clinical teacher was 4.86 ± 1.04 points. The perfect clinical teacher is defined by high standards of dedication and responsibility (4.9 ± 1.37 points), practical (4.8 ± 1.12 points) and theoretical skills (4.8 ± 1.07 points). The multiple linear regression model allowed to determine predictors of the residentâs satisfaction with their clinical teacher, justifying 82,5% of the variation of satisfaction with the clinical teacher (R2 = 0.83; R2 a = 0.82). Postgraduate medical education consists of an interaction between several areas of knowledge and intervening variables in the learning process having the clinical teacher in the central role. Overall, the pedagogical abilities were the most valued by the Internal Medicine residents regarding their clinical teacher, as determinants of a quality residentship. This study demonstrates the critical relevance of the clinical teacher in the satisfaction of residents with their residentship. The established multiple linear regression model highlights the impact of the clinical and pedagogical relantionship with the clinical teacher in a relevant increase in the satisfaction with the latter.

  5. A new characterization of trivially perfect graphs

    Directory of Open Access Journals (Sweden)

    Christian Rubio Montiel

    2015-03-01

    Full Text Available A graph $G$ is \\emph{trivially perfect} if for every induced subgraph the cardinality of the largest set of pairwise nonadjacent vertices (the stability number $\\alpha(G$ equals the number of (maximal cliques $m(G$. We characterize the trivially perfect graphs in terms of vertex-coloring and we extend some definitions to infinite graphs.

  6. Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pranav; Dutta, Titas; Mal, Siddhartha; Narayan, Jagdish [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606 (United States)

    2012-01-01

    We report the systematic changes in structural, electrical, and optical properties of NiO thin films on c-sapphire introduced by nanosecond ultraviolet excimer laser pulses. Epitaxial nature of as deposited NiO was determined by x-ray diffraction phi scans and transmission electron microscopy (TEM) and it was established that NiO film growth takes place with twin domains on sapphire where two types of domains have 60 deg. in-plane rotation with respect to each other about the [111] growth direction. We determined that at pulsed laser energy density of 0.275 J/cm{sup 2}, NiO films exhibited conversion from p-type semiconducting to n-type conductive behavior with three orders of magnitude decrease in resistivity, while maintaining its cubic crystal structure and good epitaxial relationship. Our TEM and electron-energy-loss spectroscopy studies conclusively ruled out the presence of any Ni clustering or precipitation due to the laser treatment. The laser-induced n-type carrier transport and conductivity enhancement were shown to be reversible through subsequent thermal annealing in oxygen. This change in conductivity behavior was correlated with the nonequilibrium concentration of laser induced Ni{sup 0}-like defect states.

  7. Improved transparent-conducting properties in N2- and H2- annealed GaZnO thin films grown on glass substrates

    International Nuclear Information System (INIS)

    Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon

    2012-01-01

    The effects of N 2 - and H 2 - annealing on the transparent-conducting properties of Ga-doped ZnO (GaZnO) were examined. The as-grown GaZnO thin film, which was deposited on a soda-lime glass substrate by r.f. magnetron sputtering, exhibited moderate transparent-conducting properties: a resistivity of ∼10 0 Ω·cm and an optical transmittance of ∼86%. After annealing in N 2 or H 2 , the GaZnO samples showed great improvements in both the electrical and the optical properties. Particularly, in the H 2 -annealed sample, a dramatic decrease in the resistivity (7 x 10 -4 Ω·cm) with a considerable increase in the carrier concentration (4.22 x 10 21 cm -3 ) was observed. This is attributed to both an increase in the number of Ga-O bonds and a reduction in the number of chemisorbed oxygen atoms though H 2 annealing. The sample revealed an enhanced optical transmittance (∼91%), which comes from the Burstein-Moss effect. Namely, a blue-shift of the optical absorption edge, which results from the increased carrier concentration, was observed in the H 2 -annealed sample. The results suggest that hydrogen annealing can help improve the transparent conducting properties of GaZnO via a modification of the electrochemical bonding structures.

  8. Characterization of two-qubit perfect entanglers

    International Nuclear Information System (INIS)

    Rezakhani, A.T.

    2004-01-01

    Here we consider perfect entanglers from another perspective. It is shown that there are some special perfect entanglers which can maximally entangle a full product basis. We explicitly construct a one-parameter family of such entanglers together with the proper product basis that they maximally entangle. This special family of perfect entanglers contains some well-known operators such as controlled-NOT (CNOT) and double-CNOT, but not √(SWAP). In addition, it is shown that all perfect entanglers with entangling power equal to the maximal value (2/9) are also special perfect entanglers. It is proved that the one-parameter family is the only possible set of special perfect entanglers. Also we provide an analytic way to implement any arbitrary two-qubit gate, given a proper special perfect entangler supplemented with single-qubit gates. Such gates are shown to provide a minimum universal gate construction in that just two of them are necessary and sufficient in implementation of a generic two-qubit gate

  9. An Effective Design of Electrically Conducting Thin-Film Composite (TFC) Membranes for Bio and Organic Fouling Control in Forward Osmosis (FO).

    Science.gov (United States)

    Liu, Qing; Qiu, Guanglei; Zhou, Zhengzhong; Li, Jingguo; Amy, Gary Lee; Xie, Jianping; Lee, Jim Yang

    2016-10-04

    The organic foulants and bacteria in secondary wastewater treatment can seriously impair the membrane performance in a water treatment plant. The embedded electrode approach using an externally applied potential to repel organic foulants and inhibit bacterial adhesion can effectively reduce the frequency of membrane replacement. Electrode embedment in membranes is often carried out by dispensing a conductor (e.g., carbon nanotubes, or CNTs) in the membrane substrate, which gives rise to two problems: the leaching-out of the conductor and a percolation-limited membrane conductivity that results in an added energy cost. This study presents a facile method for the embedment of a continuous electrode in thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, a conducting porous carbon paper is used as the understructure for the formation of a membrane substrate by the classical phase inversion process. The carbon paper and the membrane substrate polymer form an interpenetrating structure with good stability and low electrical resistance (only about 1Ω/□). The membrane-electrode assembly was deployed as the cathode of an electrochemical cell, and showed good resistance to organic and microbial fouling with the imposition of a 2.0 V DC voltage. The carbon paper-based FO TFC membranes also possess good mechanical stability for practical use.

  10. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  11. On 4-critical t-perfect graphs

    OpenAIRE

    Benchetrit, Yohann

    2016-01-01

    It is an open question whether the chromatic number of $t$-perfect graphs is bounded by a constant. The largest known value for this parameter is 4, and the only example of a 4-critical $t$-perfect graph, due to Laurent and Seymour, is the complement of the line graph of the prism $\\Pi$ (a graph is 4-critical if it has chromatic number 4 and all its proper induced subgraphs are 3-colorable). In this paper, we show a new example of a 4-critical $t$-perfect graph: the complement of the line gra...

  12. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  13. Creating the perfect indoor environment

    Energy Technology Data Exchange (ETDEWEB)

    Kilbridge, K.

    2002-08-01

    The virtues of radiant heating over convection heating systems is extolled, by outlining the salient features of the various forms of radiant heating systems. Among those described are thermal storage systems, radiant ceiling panels, suspended ceiling systems, commercial and industrial systems, and floor warming systems. There are two types of thermal storage systems; one is similar in appearance to a convection system that is installed in each room at the wall. The other is installed in soil or sand under the concrete slab building foundation. Both systems take advantage of reduced electrical rates applicable to power drawn during off-peak hours. Radiant ceiling panels are comprised of gypsum panels that fit between the ceiling joists above a finished ceiling. Regardless of the particular model, these systems are completely concealed; there are no radiators or registers to interfere with furniture placement or decorating. They eliminate cold and hot spots, maintaining a temperature variation between ceiling and floor at less than one degree C. Suspended ceiling panels sit in the suspended ceiling grid work and are connected using industry-standard electrical box and connectors. They are particularly suitable for office buildings, basements, etc. Commercial and industrial systems are used to provide higher output, to spot-heat areas, or perimeter of buildings where the heat loss load is high. Panels come in various sizes and can be connected to an energy management system, allowing complete management of the environment levels for every office on every floor. Floor warming systems are most frequently used in kitchens, bathrooms, entrance ways and foyers. The central energy source is hydronic, which heats up the liquid heat transfer agent. The pipes or tubing fixed to the plywood flooring are embedded in a thin layer of concrete to radiate upwards through the marble, ceramic tile or stone outer flooring.

  14. Improved transparent-conducting properties in N{sub 2{sup -}} and H{sub 2{sup -}} annealed GaZnO thin films grown on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon [Dongguk University, Seoul (Korea, Republic of)

    2012-01-15

    The effects of N{sub 2{sup -}} and H{sub 2{sup -}} annealing on the transparent-conducting properties of Ga-doped ZnO (GaZnO) were examined. The as-grown GaZnO thin film, which was deposited on a soda-lime glass substrate by r.f. magnetron sputtering, exhibited moderate transparent-conducting properties: a resistivity of {approx}10{sup 0} {Omega}{center_dot}cm and an optical transmittance of {approx}86%. After annealing in N{sub 2} or H{sub 2}, the GaZnO samples showed great improvements in both the electrical and the optical properties. Particularly, in the H{sub 2}-annealed sample, a dramatic decrease in the resistivity (7 x 10{sup -4} {Omega}{center_dot}cm) with a considerable increase in the carrier concentration (4.22 x 10{sup 21} cm{sup -3}) was observed. This is attributed to both an increase in the number of Ga-O bonds and a reduction in the number of chemisorbed oxygen atoms though H{sub 2} annealing. The sample revealed an enhanced optical transmittance ({approx}91%), which comes from the Burstein-Moss effect. Namely, a blue-shift of the optical absorption edge, which results from the increased carrier concentration, was observed in the H{sub 2}-annealed sample. The results suggest that hydrogen annealing can help improve the transparent conducting properties of GaZnO via a modification of the electrochemical bonding structures.

  15. The flow of an incompressible electroconductive fluid past a thin airfoil. The parabolic profile

    Directory of Open Access Journals (Sweden)

    Adrian CARABINEANU

    2014-04-01

    Full Text Available We study the two-dimensional steady flow of an ideal incompressible perfectly conducting fluid past an insulating thin parabolic airfoil. We consider the linearized Euler and Maxwell equations and Ohm's law. We use the integral representations for the velocity, magnetic induction and pressure and the boundary conditions to obtain an integral equation for the jump of the pressure across the airfoil. We give some graphic representations for the lift coefficient, velocity and magnetic induction.

  16. Stable proton-conducting Ca-doped LaNbO4 thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    International Nuclear Information System (INIS)

    Lin Bin; Wang Songlin; Liu Xingqin; Meng Guangyao

    2009-01-01

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La 0.99 Ca 0.01 NbO 4 (LCN) thin electrolyte was fabricated on a porous NiO-La 0.5 Ce 0.5 O 1.75 (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La 2 O 3 , CaCO 3 and Nb 2 O 5 instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 μm was obtained. A single cell was assembled with (La 0.8 Sr 0.2 ) 0.9 MnO 3-δ -La 0.5 Ce 0.5 O 1.75 (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm -2 at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  17. Stable proton-conducting Ca-doped LaNbO{sub 4} thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    Energy Technology Data Exchange (ETDEWEB)

    Lin Bin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: bin@mail.ustc.edu.cn; Wang Songlin; Liu Xingqin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China); Meng Guangyao [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: mgym@ustc.edu.cn

    2009-06-10

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La{sub 0.99}Ca{sub 0.01}NbO{sub 4} (LCN) thin electrolyte was fabricated on a porous NiO-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La{sub 2}O{sub 3}, CaCO{sub 3} and Nb{sub 2}O{sub 5} instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 {mu}m was obtained. A single cell was assembled with (La{sub 0.8}Sr{sub 0.2}){sub 0.9}MnO{sub 3-{delta}}-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm{sup -2} at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  18. Thermoelectric properties of TiNiSn and Zr0.5Hf0.5NiSn thin films and superlattices with reduced thermal conductivities

    International Nuclear Information System (INIS)

    Jaeger, Tino

    2013-01-01

    Rising energy costs and enhanced CO 2 emission have moved research about thermoelectric (TE) materials into focus. The suitability of a material for usage in TE devices depends on the figure of merit ZT and is equal to α 2 σTκ -1 including Seebeck coefficient α, conductivity σ, temperature T and thermal conductivity κ. Without affecting the power factor α 2 σ, using nanostructuring, ZT should here be increased by a depressed thermal conductivity. As half-Heusler (HH) bulk materials, the TE properties of TiNiSn and Zr 0.5 Hf 0.5 NiSn have been extensively studied. Here, semiconducting TiNiSn and Zr 0.5 Hf 0.5 NiSn thin films were fabricated for the first time by dc magnetron sputtering. On MgO (100) substrates, strongly textured polycrystalline films were obtained at substrate temperatures of about 450 C. The film consisted of grains with an elongation perpendicular to the surface of 55 nm. These generated rocking curves with FWHMs of less than 1 . Structural analyses were performed by X ray diffraction (XRD). Having deposition rates of about 1 nms -1 within shortest time also films in the order of microns were fabricated. For TiNiSn the highest in-plane power factor of about 0.4 mWK -2 m -1 was measured at about 550 K. In addition, at room temperature a cross-plane thermal conductivity of 2.8 Wm -1 K -1 was observed by the differential 3ω method. Because the reduction of thermal conductivity by mass fluctuation is well-known and interface scattering of phonons is expected, superlattices (SL) were fabricated. Therefore, TiNiSn and Zr 0.5 Hf 0.5 NiSn were successively deposited. While the sputter cathodes were continuously running, for fabrication of SLs the substrates were moved from one to another. The high crystal quality of the SLs and the sharp interfaces were proven by satellite peaks (XRD) and Scanning Transmission Electron Microscopy (STEM). For a SL with a periodicity of 21 nm (TiNiSn and Zr 0.5 Hf 0.5 NiSn each 15 nm) at a temperature of 550 K an

  19. Mechanistic analysis of temperature-dependent current conduction through thin tunnel oxide in n+-polySi/SiO2/n+-Si structures

    Science.gov (United States)

    Samanta, Piyas

    2017-09-01

    We present a detailed investigation on temperature-dependent current conduction through thin tunnel oxides grown on degenerately doped n-type silicon (n+-Si) under positive bias ( VG ) on heavily doped n-type polycrystalline silicon (n+-polySi) gate in metal-oxide-semiconductor devices. The leakage current measured between 298 and 573 K and at oxide fields ranging from 6 to 10 MV/cm is primarily attributed to Poole-Frenkel (PF) emission of trapped electrons from the neutral electron traps located in the silicon dioxide (SiO2) band gap in addition to Fowler-Nordheim (FN) tunneling of electrons from n+-Si acting as the drain node in FLOating gate Tunnel OXide Electrically Erasable Programmable Read-Only Memory devices. Process-induced neutral electron traps are located at 0.18 eV and 0.9 eV below the SiO2 conduction band. Throughout the temperature range studied here, PF emission current IPF dominates FN electron tunneling current IFN at oxide electric fields Eox between 6 and 10 MV/cm. A physics based new analytical formula has been developed for FN tunneling of electrons from the accumulation layer of degenerate semiconductors at a wide range of temperatures incorporating the image force barrier rounding effect. FN tunneling has been formulated in the framework of Wentzel-Kramers-Brilloiun taking into account the correction factor due to abrupt variation of the energy barrier at the cathode/oxide interface. The effect of interfacial and near-interfacial trapped-oxide charges on FN tunneling has also been investigated in detail at positive VG . The mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown of the memory devices and to precisely predict the normal operating field or applied floating gate (FG) voltage for lifetime projection of the devices. In addition, we present theoretical results showing the effect of drain doping concentration on the FG leakage current.

  20. A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meng; Gong, Yongshuai; Li, Zhilin; Dou, Meiling, E-mail: douml@mail.buct.edu.cn; Wang, Feng, E-mail: wangf@mail.buct.edu.cn

    2016-11-30

    Highlights: • A green and facile hydrothermal approach for Sb{sub 2}S{sub 3} films was developed. • The film possessed a relatively ideal S/Sb atomic ratio and a compact surface. • The grain size of Sb{sub 2}S{sub 3} was increased by high temperature annealing. • The film annealed at 450 °C showed the improved optical and electrical performance. - Abstract: High-quality semi-conducting antimony sulfide (Sb{sub 2}S{sub 3}) thin films were directly deposited on the indium tin oxide (ITO) substrates by a green and facile one-step approach based on a hydrothermal reaction and post-annealing process without any assistance of complexing agents. The obtained Sb{sub 2}S{sub 3} films possessed a relatively ideal S/Sb atomic ratio and a compact and continuous surface as the grain size of Sb{sub 2}S{sub 3} was increased by high temperature annealing. The Sb{sub 2}S{sub 3} film annealed at 450 °C exhibited the improved optical and electrical performances, with a narrow band gap of 1.63 eV, an electrical resistivity of 1.3 × 10{sup 4} Ω cm, a carrier concentration of 7.3 × 10{sup 13} cm{sup −3} and a carrier mobility of 6.4 cm{sup 2} V{sup −1} s{sup −1}. This environmentally friendly synthetic route is promising for the preparation of high-quality Sb{sub 2}S{sub 3} films to be used as absorber layer materials for high-performance solar cells.

  1. Influence of a thin veneer of low-hydraulic-conductivity sediment on modelled exchange between river water and groundwater in response to induced infiltration

    Science.gov (United States)

    Rosenberry, Donald O.; Healy, Richard W.

    2012-01-01

    A thin layer of fine-grained sediment commonly is deposited at the sediment–water interface of streams and rivers during low-flow conditions, and may hinder exchange at the sediment–water interface similar to that observed at many riverbank-filtration (RBF) sites. Results from a numerical groundwater-flow model indicate that a low-permeability veneer reduces the contribution of river water to a pumping well in a riparian aquifer to various degrees, depending on simulated hydraulic gradients, hydrogeological properties, and pumping conditions. Seepage of river water is reduced by 5–10% when a 2-cm thick, low-permeability veneer is present on the bed surface. Increasing thickness of the low-permeability layer to 0·1 m has little effect on distribution of seepage or percentage contribution from the river to the pumping well. A three-orders-of-magnitude reduction in hydraulic conductivity of the veneer is required to reduce seepage from the river to the extent typically associated with clogging at RBF sites. This degree of reduction is much larger than field-measured values that were on the order of a factor of 20–25. Over 90% of seepage occurs within 12 m of the shoreline closest to the pumping well for most simulations. Virtually no seepage occurs through the thalweg near the shoreline opposite the pumping well, although no low-permeability sediment was simulated for the thalweg. These results are relevant to natural settings that favour formation of a substantial, low-permeability sediment veneer, as well as central-pivot irrigation systems, and municipal water supplies where river seepage is induced via pumping wells

  2. Overlapped optics induced perfect coherent effects

    Science.gov (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  3. Optimal simulation of a perfect entangler

    International Nuclear Information System (INIS)

    Yu Nengkun; Duan Runyao; Ying Mingsheng

    2010-01-01

    A 2 x 2 unitary operation is called a perfect entangler if it can generate a maximally entangled state from some unentangled input. We study the following question: How many runs of a given two-qubit entangling unitary operation are required to simulate some perfect entangler with one-qubit unitary operations as free resources? We completely solve this problem by presenting an analytical formula for the optimal number of runs of the entangling operation. Our result reveals an entanglement strength of two-qubit unitary operations.

  4. Perfect 800 Advanced Strategies for Top Students

    CERN Document Server

    Celenti, Dan

    2010-01-01

    Getting into the nation's most competitive universities requires more than a good SAT score, it requires a perfect score. Perfect 800: SAT Math gives advanced students the tools needed to master the SAT math test. Covering areas including arithmetic concepts; algebra; geometry; and additional topics such as probability and weighted average, the book offers exposure to a wide range of degrees of difficulty in a holistic approach that allows students to experience the "real thing," including the impact of time constraints on their performance. By emphasizing critical thinking and analytic skills

  5. A Hypergraph Dictatorship Test with Perfect Completeness

    Science.gov (United States)

    Chen, Victor

    A hypergraph dictatorship test is first introduced by Samorodnitsky and Trevisan and serves as a key component in their unique games based {operatorname{PCP}} construction. Such a test has oracle access to a collection of functions and determines whether all the functions are the same dictatorship, or all their low degree influences are o(1). Their test makes q ≥ 3 queries, has amortized query complexity 1+Oleft(log q/qright), but has an inherent loss of perfect completeness. In this paper we give an (adaptive) hypergraph dictatorship test that achieves both perfect completeness and amortized query complexity 1+Oleft(log q/qright).

  6. Perfect and Periphrastic Passive Constructions in Danish

    DEFF Research Database (Denmark)

    Bjerre, Tavs; Bjerre, Anne

    2007-01-01

    This paper gives an account of the event and argument structure of past participles and the linking between argument structure and valence structure. It further accounts for how participles form perfect and passiv constructions with auxiliaries. We assume that the same participle form is used...... in both types of construction. Our claim is that the valence structure of a past participle is predictable from its semantic type, and that the valence structure predicts with which auciliary a past participle combines in perfect constructions and whether the past participle may occur in passiv...

  7. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented....... Utilizing photo-excited free carriers in silicon padsplaced in the capacitive gaps of split ring resonators, a dynamically modu-lated perfect absorber is designed and fabricated to operate in reflection.Large modulation depth (38% and 91%) in two absorption bands (with 97%and 92% peak absorption...

  8. Optimization of Perfect Absorbers with Multilayer Structures

    Science.gov (United States)

    Li Voti, Roberto

    2018-02-01

    We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.

  9. Electromagnetic Detection of a Perfect Invisibility Cloak

    International Nuclear Information System (INIS)

    Zhang Baile; Wu, Bae-Ian

    2009-01-01

    A perfect invisibility cloak is commonly believed to be undetectable from electromagnetic (EM) detection because it is equivalent to a curved but empty EM space created from coordinate transformation. Based on the intrinsic asymmetry of coordinate transformation applied to motions of photons and charges, we propose a method to detect this curved EM space by shooting a fast-moving charged particle through it. A broadband radiation generated in this process makes a cloak visible. Our method is the only known EM mechanism so far to detect an ideal perfect cloak (curved EM space) within its working band.

  10. Lattice-Like Total Perfect Codes

    Directory of Open Access Journals (Sweden)

    Araujo Carlos

    2014-02-01

    Full Text Available A contribution is made to the classification of lattice-like total perfect codes in integer lattices Λn via pairs (G, Φ formed by abelian groups G and homomorphisms Φ: Zn → G. A conjecture is posed that the cited contribution covers all possible cases. A related conjecture on the unfinished work on open problems on lattice-like perfect dominating sets in Λn with induced components that are parallel paths of length > 1 is posed as well.

  11. IR emission and electrical conductivity of Nd/Nb-codoped TiO{sub x} (1.5 < x < 2) thin films grown by pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tchiffo-Tameko, C.; Cachoncinlle, C. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Perriere, J. [Sorbonne Universités, UPMC Université Paris 06, UMR 7588, INSP, 75005 Paris (France); CNRS, UMR 7588, INSP, 75005 Paris (France); Nistor, M. [NILPRP, L 22 P.O. Box MG-36, 77125 Bucharest-Magurele (Romania); Petit, A.; Aubry, O. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Pérez Casero, R. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Millon, E., E-mail: eric.millon@univ-orleans.fr [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France)

    2016-12-15

    Highlights: • Nd/Nb-codoped TiO{sub 2} PLD films are electrically insulating and transparent in the UV visible NIR spectral domain. • Nd/Nb-codoped oxygen deficient TiO{sub x} (x ≈ 1.5) films are conductive and absorbent. • IR emission of Nd{sup 3+} in codoped TiO{sub x} films is quenched due to oxygen deficiency. • High Nb-doping rate decreases the IR emission of Nd{sup 3+} in Nd/Nb-codoped TiO{sub 2} films. - Abstract: The effect of the co-doping with Nd and Nb on electrical and optical properties of TiO{sub x} films is reported. The role of oxygen vacancies on the physical properties is also evidenced. The films are grown by pulsed-laser deposition onto (001) sapphire and (100) silicon substrates. The substrate temperature was fixed at 700 °C. To obtain either stoichiometric (TiO{sub 2}) or highly oxygen deficient (TiO{sub x} with x < 1.6) thin films, the oxygen partial pressure was adjusted at 10{sup −1} and 10{sup −6} mbar, respectively. 1%Nd-1%Nb, 1%Nd-5%Nb and 5%Nd-1%Nb co-doped TiO{sub 2} were used as bulk ceramic target. Composition, structural and morphological properties of films determined by Rutherford backscattering spectroscopy, X-ray diffraction and scanning electron microscopy, are correlated to their optical (UV–vis transmission and photoluminescence) and electrical properties (resistivity at room temperature). The most intense Nd{sup 3+} emission in the IR domain is obtained for stoichiometric films. Codoping Nd-TiO{sub x} films by Nb{sup 5+} ions is found to decrease the photoluminescence efficiency. The oxygen pressure during the growth allows to tune the optical and electrical properties: insulating and highly transparent (80% in the visible range) Nd/Nb codoped TiO{sub 2} films are obtained at high oxygen pressure, while conductive and absorbent films are grown under low oxygen pressure (10{sup −6} mbar).

  12. Measurement of thermal conductance of La0.7Sr0.3MnO3 thin films deposited on SrTiO3 and MgO substrates

    Science.gov (United States)

    Aryan, A.; Guillet, B.; Routoure, J. M.; Fur, C.; Langlois, P.; Méchin, L.

    2015-01-01

    We present measurements of the thermal conductance of thin-film-on-substrate structures that could serve as thin film uncooled bolometers. Studied samples were 75 nm thick epitaxial La0.7Sr0.3MnO3 thin films deposited on SrTiO3 (0 0 1) and MgO (0 0 1) substrates patterned in square geometries of areas ranging from 50 μm × 50 μm to 200 μm × 200 μm. The model allows estimating thermal boundary conductance values at the interface between film and substrate of 0.28 ± 0.08 × 106 W K-1 m-2 for LSMO/STO (0 0 1) and 5.8 ± 3.0 × 106 W K-1 m-2 for LSMO/MgO (0 0 1) from measurements performed in the static regime. Analytical expressions of thermal conductance and thermal capacitance versus modulation frequency are compared to measurements of the elevation temperature due to absorbed incoming optical power. The overall good agreement found between measurements and model finally provides the possibility to calculate the bolometric response of thin film bolometers, thus predicting their frequency response for various geometries.

  13. Mechanical Energy Changes in Perfectly Inelastic Collisions

    Science.gov (United States)

    Mungan, Carl E.

    2013-01-01

    Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)

  14. The Present Perfect in World Englishes

    Science.gov (United States)

    Yao, Xinyue; Collins, Peter

    2012-01-01

    This paper reports on a comprehensive corpus-based study of regional and stylistic variation in the distribution of the English present perfect. The data represents ten English varieties of both the Inner Circle and Outer Circle, covering four major text types: conversation, news reportage, academic and fictional writing. The results are discussed…

  15. Le Perfectionnement en Phonetique (Perfecting Phonetics)

    Science.gov (United States)

    Laroche-Bouvy, Danielle

    1975-01-01

    This article describes the programs of the Institut d'Etudes Linguistiques et Phonetiques, located in Paris. The program focuses on perfecting the students' phonetic production of French. Both curriculum and teaching methods are described, as well as a course in phonetics for future teachers of French. (Text is in French.) (CLK)

  16. Maple Explorations, Perfect Numbers, and Mersenne Primes

    Science.gov (United States)

    Ghusayni, B.

    2005-01-01

    Some examples from different areas of mathematics are explored to give a working knowledge of the computer algebra system Maple. Perfect numbers and Mersenne primes, which have fascinated people for a very long time and continue to do so, are studied using Maple and some questions are posed that still await answers.

  17. Perfectly Secure Oblivious RAM without Random Oracles

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Meldgaard, Sigurd Torkel; Nielsen, Jesper Buus

    2011-01-01

    We present an algorithm for implementing a secure oblivious RAM where the access pattern is perfectly hidden in the information theoretic sense, without assuming that the CPU has access to a random oracle. In addition we prove a lower bound on the amount of randomness needed for implementing...

  18. Reshaping the perfect electrical conductor cylinder arbitrarily

    International Nuclear Information System (INIS)

    Chen Huanyang; Zhang Xiaohe; Luo Xudong; Ma Hongru; Chan Cheting

    2008-01-01

    A general method is proposed to design a cylindrical cloak, concentrator and superscatterer with an arbitrary cross section. The method is demonstrated by the design of a perfect electrical conductor (PEC) reshaper which is able to reshape a PEC cylinder arbitrarily by combining the concept of cloak, concentrator and superscatterer together. Numerical simulations are performed to demonstrate its properties.

  19. What is anthropological about The Perfect Human?

    DEFF Research Database (Denmark)

    Thomsen, Line Hassall

    2015-01-01

    Jørgen Leth has classified The Perfect Human as an anthropological film. But is the film anthropological at all? This article explores Leth’s connections with anthropology and finds that he is more inspired by anthropological framing than he is by anthropological research methods....

  20. Electrochemical deposition of molybdenum sulfide thin films on conductive plastic substrates as platinum-free flexible counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chao-Kuang; Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw

    2015-06-01

    In this study, pulsed electrochemical deposition (pulsed ECD) was used to deposit molybdenum sulfide (MoS{sub x}) thin films on indium tin oxide/polyethylene naphthalate (ITO/PEN) substrates as flexible counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The surface morphologies and elemental distributions of the prepared MoS{sub x} thin films were examined using field-emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy. The chemical states and crystallinities of the prepared MoS{sub x} thin films were examined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The optical transmission (T (%)) properties of the prepared MoS{sub x} samples were determined by ultraviolet–visible spectrophotometry. Cyclic voltammetry (CV) and Tafel-polarization measurements were performed to analyze the electrochemical properties and catalytic activities of the thin films for redox reactions. The FE-SEM results showed that the MoS{sub x} thin films were deposited uniformly on the ITO/PEN flexible substrates via the pulsed ECD method. The CV and Tafel-polarization curve measurements demonstrated that the deposited MoS{sub x} thin films exhibited excellent performances for the reduction of triiodide ions. The photoelectric conversion efficiency (PCE) of the DSSC produced with the pulsed ECD MoS{sub x} thin-film CE was examined by a solar simulator. In combination with a dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSC with the MoS{sub x} flexible CE showed a PCE of 4.39% under an illumination of AM 1.5 (100 mW cm{sup −2}). Thus, we report that the MoS{sub x} thin films are active catalysts for triiodide reduction. The MoS{sub x} thin films are prepared at room temperature and atmospheric pressure and in a simple and rapid manner. This is an important practical contribution to the production of flexible low-cost thin-film CEs based on plastic substrates. The MoS{sub x

  1. Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Chen Xinliang; Lin Quan; Ni Jian; Zhang Dekun; Sun Jian; Zhao Ying; Geng Xinhua

    2011-01-01

    Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ∼ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ∼ 80%) and excellent electrical properties (Rs ∼ 10 Ω at d ∼ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density J SC = 10.62 mA/cm 2 , open-circuit voltage V OC = 0.93 V and fill factor = 64%).

  2. Research of electrosurgical unit with novel antiadhesion composite thin film for tumor ablation: Microstructural characteristics, thermal conduction properties, and biological behaviors.

    Science.gov (United States)

    Shen, Yun-Dun; Lin, Li-Hsiang; Chiang, Hsi-Jen; Ou, Keng-Liang; Cheng, Han-Yi

    2016-01-01

    The objective of this study was to use surface functionalization to evaluate the antiadhesion property and thermal injury effects on the liver when using a novel electrosurgical unit with nanostructured-doped diamond-like carbon (DLC-Cu) thin films for tumor ablations. The physical and chemical properties of DLC-Cu thin films were characterized by contact angle goniometer, scanning electron microscope, and transmission electron microscope. Three-dimensional (3D) hepatic models were reconstructed using magnetic resonance imaging to simulate a clinical electrosurgical operation. The results indicated a significant increase of the contact angle on the nanostructured DLC-Cu thin films, and the antiadhesion properties were also observed in an animal model. Furthermore, the surgical temperature in the DLC-Cu electrosurgical unit was found to be significantly lower than the untreated unit when analyzed using 3D models and thermal images. In addition, DLC-Cu electrodes caused a relatively small injury area and lateral thermal effect. The results indicated that the nanostructured DLC-Cu thin film coating reduced excessive thermal injury and tissue adherence effect in the liver. © 2015 Wiley Periodicals, Inc.

  3. Nonminimal coupling of perfect fluids to curvature

    International Nuclear Information System (INIS)

    Bertolami, Orfeu; Lobo, Francisco S. N.; Paramos, Jorge

    2008-01-01

    In this work, we consider different forms of relativistic perfect fluid Lagrangian densities that yield the same gravitational field equations in general relativity (GR). A particularly intriguing example is the case with couplings of the form [1+f 2 (R)]L m , where R is the scalar curvature, which induces an extra force that depends on the form of the Lagrangian density. It has been found that, considering the Lagrangian density L m =p, where p is the pressure, the extra-force vanishes. We argue that this is not the unique choice for the matter Lagrangian density, and that more natural forms for L m do not imply the vanishing of the extra force. Particular attention is paid to the impact on the classical equivalence between different Lagrangian descriptions of a perfect fluid.

  4. Thermodynamical stability for a perfect fluid

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiongjun; Jing, Jiliang [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); He, Xiaokai [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Hunan First Normal University, School of Mathematics and Computational Science, Changsha (China)

    2017-12-15

    According to the maximum entropy principle, it has been proved that the gravitational field equations could be derived by the extrema of the total entropy for a perfect fluid, which implies that thermodynamic relations contain information as regards gravity. In this manuscript, we obtain a criterion for the thermodynamical stability of an adiabatic, self-gravitating perfect fluid system by the second variation of the total entropy. We show, for Einstein's gravity with spherical symmetry spacetime, that the criterion is consistent with that for the dynamical stability derived by Chandrasekhar and Wald. We also find that the criterion could be applied to cases without spherical symmetry, or under general perturbations. The result further establishes the connection between thermodynamics and gravity. (orig.)

  5. Physicotechnical potentialities of perfecting roentgenographic research

    International Nuclear Information System (INIS)

    Chikirdin, Eh.G.; Mishkinis, B.Ya.

    1991-01-01

    Physicotechnical potentialities of perfecting image quality in X-ray examinations are enumerated. Realization of these potentialities demands interrelated decision of two problems: substantiation of optimizing conditions of survey (postures of a patient, geometry of investigation, image converters, electric regimes), creation of adequate hardware and software components. It is shown that introduction of X-ray feeding device with microprocessor control permits to upgrade the quality of X-ray images and to reduce radiation loads of a patient

  6. Perfect Fluid Theory and its Extensions

    OpenAIRE

    Jackiw, R.; Nair, V. P.; Pi, S. -Y.; Polychronakos, A. P.

    2004-01-01

    We review the canonical theory for perfect fluids, in Eulerian and Lagrangian formulations. The theory is related to a description of extended structures in higher dimensions. Internal symmetry and supersymmetry degrees of freedom are incorporated. Additional miscellaneous subjects that are covered include physical topics concerning quantization, as well as mathematical issues of volume preserving diffeomorphisms and representations of Chern-Simons terms (= vortex or magnetic helicity).

  7. Perfect fluid cosmology with geodesic world lines

    International Nuclear Information System (INIS)

    Raychaudhuri, A.K.; Maity, S.R.

    1978-01-01

    It is shown that for a perfect fluid with an equation of state p = p (rho), if the world lines are geodesics, then they are hypersurface orthogonal and the scalars p, rho, sigma 2 , and theta 2 are all constants over these hypersurfaces, irrespective of any spatial-homogeneity assumption. However, an examination of some simple cases does not reveal any spatially nonhomogeneous solution with these properties

  8. Comment on 'Perfect imaging without negative refraction'

    Science.gov (United States)

    Blaikie, R. J.

    2010-05-01

    The prediction of 'perfect' imaging without negative refraction for Maxwell's fish-eye lens (Leonhardt U 2009 New J. Phys. 11 093040) is a consequence of imposing an active localized 'drain' at the image point rather than being a general property of the lens. This work then becomes analogous to other work using time-reversal symmetry and/or structured antennae to achieve super-resolution, which can be applied to many types of imaging system beyond the fish-eye lens.

  9. Comment on 'Perfect imaging without negative refraction'

    International Nuclear Information System (INIS)

    Blaikie, R J

    2010-01-01

    The prediction of 'perfect' imaging without negative refraction for Maxwell's fish-eye lens (Leonhardt U 2009 New J. Phys. 11 093040) is a consequence of imposing an active localized 'drain' at the image point rather than being a general property of the lens. This work then becomes analogous to other work using time-reversal symmetry and/or structured antennae to achieve super-resolution, which can be applied to many types of imaging system beyond the fish-eye lens.

  10. Inequivalent quantizations and fundamentally perfect spaces

    International Nuclear Information System (INIS)

    Imbo, T.D.; Sudarshan, E.C.G.

    1987-06-01

    We investigate the problem of inequivalent quantizations of a physical system with multiply connected configuration space X. For scalar quantum theory on X we show that state vectors must be single-valued if and only if the first homology group H 1 (X) is trivial, or equivalently the fundamental group π 1 (X) is perfect. The θ-structure of quantum gauge and gravitational theories is discussed in light of this result

  11. Another Class of Perfect Nonlinear Polynomial Functions

    Directory of Open Access Journals (Sweden)

    Menglong Su

    2013-01-01

    Full Text Available Perfect nonlinear (PN functions have been an interesting subject of study for a long time and have applications in coding theory, cryptography, combinatorial designs, and so on. In this paper, the planarity of the trinomials xpk+1+ux2+vx2pk over GF(p2k are presented. This class of PN functions are all EA-equivalent to x2.

  12. A note on perfect scalar fields

    International Nuclear Information System (INIS)

    Unnikrishnan, Sanil; Sriramkumar, L.

    2010-01-01

    We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.

  13. The effect of oxygen pressure on structure, electrical conductivity and oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ thin films by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    S Daneshmandi

    2013-09-01

    Full Text Available  In this paper, Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF thin films were deposited on single crystal SrTiO3 (STO (100 by pulsed laser deposition (PLD technique at different pressures of oxygen. Crystal structure of bulk and thin film samples was studied by x-ray diffraction (XRD. The XRD results indicate that both bulk and thin film samples have cubic structures. AFM micrographs showed an increase in RMS roughness by oxygen pressure. The electrical resistance was measured at room temperature up to 600 and 800 °C in air using four probe method for bulk and thin films, respectively. A sharp drop in resistance was observed by increasing temperature up to 400 °C, that was explained with the small polaron hopping model. Polaron activation energy was calculated by Arrhenius relation. It was decreased over increasing oxygen pressure. The surface exchange coefficient (Kchem of the 300 mTorr sample was measured by electrical conductivity relaxation (ECR technique. The results suggested a linear relationship between Kchem and reciprocal of absolute temperature.

  14. Specular Andreev reflection in thin films of topological insulators

    Science.gov (United States)

    Majidi, Leyla; Asgari, Reza

    2016-05-01

    We theoretically reveal the possibility of specular Andreev reflection in a thin film topological insulator normal-superconductor (N/S) junction in the presence of a gate electric field. The probability of specular Andreev reflection increases with the electric field, and electron-hole conversion with unit efficiency happens in a wide experimentally accessible range of the electric field. We show that perfect specular Andreev reflection can occur for all angles of incidence with a particular excitation energy value. In addition, we find that the thermal conductance of the structure displays exponential dependence on the temperature. Our results reveal the potential of the proposed topological insulator thin-film-based N/S structure for the realization of intraband specular Andreev reflection.

  15. Diamagnetic expansions for perfect quantum gases

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Louis, Delphine

    2006-01-01

    In this work we study the diamagnetic properties of a perfect quantum gas in the presence of a constant magnetic field of intensity B. We investigate the Gibbs semigroup associated with the one particle operator at finite volume, and study its Taylor series with respect to the field parameter ome......:=eB/c in different topologies. This allows us to prove the existence of the thermodynamic limit for the pressure and for all its derivatives with respect to omega (the so-called generalized susceptibilities)....

  16. Black hole formation in perfect fluid collapse

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S

    2004-01-01

    We construct here a special class of perfect fluid collapse models which generalizes the homogeneous dust collapse solution in order to include nonzero pressures and inhomogeneities into evolution. It is shown that a black hole is necessarily generated as the end product of continued gravitational collapse, rather than a naked singularity. We examine the nature of the central singularity forming as a result of endless collapse and it is shown that no nonspacelike trajectories can escape from the central singularity. Our results provide some insights into how the dynamical collapse works and into the possible formulations of the cosmic censorship hypothesis, which is as yet a major unsolved problem in black hole physics

  17. Explaining evolution via constrained persistent perfect phylogeny

    Science.gov (United States)

    2014-01-01

    Background The perfect phylogeny is an often used model in phylogenetics since it provides an efficient basic procedure for representing the evolution of genomic binary characters in several frameworks, such as for example in haplotype inference. The model, which is conceptually the simplest, is based on the infinite sites assumption, that is no character can mutate more than once in the whole tree. A main open problem regarding the model is finding generalizations that retain the computational tractability of the original model but are more flexible in modeling biological data when the infinite site assumption is violated because of e.g. back mutations. A special case of back mutations that has been considered in the study of the evolution of protein domains (where a domain is acquired and then lost) is persistency, that is the fact that a character is allowed to return back to the ancestral state. In this model characters can be gained and lost at most once. In this paper we consider the computational problem of explaining binary data by the Persistent Perfect Phylogeny model (referred as PPP) and for this purpose we investigate the problem of reconstructing an evolution where some constraints are imposed on the paths of the tree. Results We define a natural generalization of the PPP problem obtained by requiring that for some pairs (character, species), neither the species nor any of its ancestors can have the character. In other words, some characters cannot be persistent for some species. This new problem is called Constrained PPP (CPPP). Based on a graph formulation of the CPPP problem, we are able to provide a polynomial time solution for the CPPP problem for matrices whose conflict graph has no edges. Using this result, we develop a parameterized algorithm for solving the CPPP problem where the parameter is the number of characters. Conclusions A preliminary experimental analysis shows that the constrained persistent perfect phylogeny model allows to

  18. Influence of Oxygen Pressure on the Domain Dynamics and Local Electrical Properties of BiFe0.95Mn0.05O3 Thin Films Studied by Piezoresponse Force Microscopy and Conductive Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Kunyu Zhao

    2017-11-01

    Full Text Available In this work, we have studied the microstructures, nanodomains, polarization preservation behaviors, and electrical properties of BiFe0.95Mn0.05O3 (BFMO multiferroic thin films, which have been epitaxially created on the substrates of SrRuO3, SrTiO3, and TiN-buffered (001-oriented Si at different oxygen pressures via piezoresponse force microscopy and conductive atomic force microscopy. We found that the pure phase state, inhomogeneous piezoresponse force microscopy (PFM response, low leakage current with unidirectional diode-like properties, and orientation-dependent polarization reversal properties were found in BFMO thin films deposited at low oxygen pressure. Meanwhile, these films under high oxygen pressures resulted in impurities in the secondary phase in BFMO films, which caused a greater leakage that hindered the polarization preservation capability. Thus, this shows the important impact of the oxygen pressure on modulating the physical effects of BFMO films.

  19. Comparative study about Al-doped zinc oxide thin films deposited by Pulsed Electron Deposition and Radio Frequency Magnetron Sputtering as Transparent Conductive Oxide for Cu(In,Ga)Se{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pattini, F., E-mail: pattini@imem.cnr.it [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Annoni, F.; Bissoli, F.; Bronzoni, M. [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Garcia, J.P. [Delft University of Technology, Faculty of Applied Sciences, Delft Product and Process Design Institute, Julianalaan 67, 2628 BC Delft (Netherlands); Gilioli, E.; Rampino, S. [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy)

    2015-05-01

    In this study, a comparison between Al-doped ZnO (AZO) as Transparent Conductive Oxide for Cu(In,Ga)Se{sub 2}-based solar cells grown by Pulsed Electron Deposition (PED) and Radio Frequency Magnetron Sputtering (RFMS) was performed. PED yielded polycrystalline [002] mono-oriented thin films with low electrical resistivity and high optical transparency with heater temperatures ranging from room temperature (RT) to 250 °C. The electrical resistivity of these films can be tuned by varying the heater temperature, reaching a minimum value of 3.5 × 10{sup −4} Ωcm at 150 °C and an average transmittance over 90% in the visible range. An AZO film grown at RT was deposited by PED on an actual Cu(In,Ga)Se{sub 2}-based solar cell, resulting to an efficiency value of 15.2% on the best device. This result clearly shows that PED is a suitable technique for growing ZnO-based thin films for devices/applications where low deposition temperature is required. On the other hand, an optimized AZO thin film front contact for thin film solar cells was studied and fabricated via RFMS. The parameters of this technique were tweaked to obtain highly conductive and transparent AZO thin films. The lowest resistivity value of 3.7 × 10{sup −4} Ωcm and an average transmittance of 86% in the 400-1100 nm wavelength range was obtained with a heater temperature of 250 °C. A thick sputtered AZO film was deposited at RT onto an identical cell used for PED-grown AZO, reaching the highest conversion efficiency value of 14.7%. In both cases, neither antireflection coatings nor pure ZnO layer was used. - Highlights: • Pulsed Electron Deposition (PED) lets high quality films grow at low temperature. • Al:ZnO (AZO) thin films grown by PED present high optical and electrical quality. • AZO electrical resistivity can be tuned from 10{sup −4} to 10{sup −2} Ωcm in proper condition. • Cu(In,Ga)Se{sub 2}-based simplified solar cells achieved efficiency of 15.2% for PED-grown AZO.

  20. Nb and Ta Co-Doped TiO2 Transparent Conductive Thin Films by Magnetron Sputtering: Fabrication, Structure, and Characteristics

    Science.gov (United States)

    Liu, Yang; Peng, Qian; Qiao, Yadong; Yang, Guang

    2018-06-01

    Nb and Ta co-doped anatase titanium dioxide (NTTO) nanocrystalline thin films were deposited on quartz and Si (100) substrates by RF magnetron sputtering. The influence of RF power on the growth, structure, morphology, and properties of the samples are discussed in detail. X-ray diffraction measurements show that the films are polycrystalline with anatase tetragonal structure, which is further confirmed by Raman spectroscopy analysis. Meanwhile, Raman spectroscopy results indicate that the peak width of E g(1) mode, which is directly correlated to the carrier density, changes obviously with RF power. It is found that the substitution of Nb5+ and Ta5+ at Ti site is significantly improved with the increase of RF power from 150 W to 210 W. For the sample deposited at 210 W, the optical transmittance is above 82% in the visible range and the electrical resistivity is as low as 1.3 × 10-3 Ω cm with carrier density of 1.1 × 1021 cm-3 and Hall mobility of 4.5 cm2 V-1 s-1. The optical and electrical properties of NTTO thin films can be compared to those of Nb or Ta doped anatase TiO2. However, co-doping with Nb and Ta gives a possible platform to complement the limitations of each individual dopant.

  1. Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol–gel method

    International Nuclear Information System (INIS)

    Pan, Zhanchang; Luo, Junming; Tian, Xinlong; Wu, Shoukun; Chen, Chun; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    Highlights: • F/Sn and Al co-doped ZnO thin films were synthesized by sol–gel method. • The co-doped nanocrystals exhibit good crystal quality. • The origin of the photoluminescence emissions was discussed. • The films showed high transmittance and low resistivity. -- Abstract: Al doped ZnO, Al–Sn co-doped ZnO and Al–F co-doped ZnO nanocrystals were successfully synthesized onto glass substrates by the sol–gel method. The structure and morphology of the films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The results indicated that all the films were polycrystalline with a hexagonal wurtzite structure and exhibited a c-axis preferred orientation. The electrical and optical properties were also investigated by 4-point probe device and Uv–vis spectroscopy, room temperature photoluminescence (PL) and Raman spectrum (Raman), respectively. The PL and Raman results suggested that the co-doped films with a very low defect concentration and exhibit a better crystallinity than AZO thin films. The XPS study confirmed the incorporation of Al, Sn and F ions in the ZnO lattice

  2. Apnea of prematurity--perfect storm.

    Science.gov (United States)

    Di Fiore, Juliann M; Martin, Richard J; Gauda, Estelle B

    2013-11-01

    With increased survival of preterm infants as young as 23 weeks gestation, maintaining adequate respiration and corresponding oxygenation represents a clinical challenge in this unique patient cohort. Respiratory instability characterized by apnea and periodic breathing occurs in premature infants because of immature development of the respiratory network. While short respiratory pauses and apnea may be of minimal consequence if oxygenation is maintained, they can be problematic if accompanied by chronic intermittent hypoxemia. Underdevelopment of the lung and the resultant lung injury that occurs in this population concurrent with respiratory instability creates the perfect storm leading to frequent episodes of profound and recurrent hypoxemia. Chronic intermittent hypoxemia contributes to the immediate and long term co-morbidities that occur in this population. In this review we discuss the pathophysiology leading to the perfect storm, diagnostic assessment of breathing instability in this unique population and therapeutic interventions that aim to stabilize breathing without contributing to tissue injury. Copyright © 2013. Published by Elsevier B.V.

  3. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles

    Science.gov (United States)

    Riley, Conor T.; Smalley, Joseph S. T.; Brodie, Jeffrey R. J.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei

    2017-02-01

    Broadband absorbers are essential components of many light detection, energy harvesting, and camouflage schemes. Current designs are either bulky or use planar films that cause problems in cracking and delamination during flexing or heating. In addition, transferring planar materials to flexible, thin, or low-cost substrates poses a significant challenge. On the other hand, particle-based materials are highly flexible and can be transferred and assembled onto a more desirable substrate but have not shown high performance as an absorber in a standalone system. Here, we introduce a class of particle absorbers called transferable hyperbolic metamaterial particles (THMMP) that display selective, omnidirectional, tunable, broadband absorption when closely packed. This is demonstrated with vertically aligned hyperbolic nanotube (HNT) arrays composed of alternating layers of aluminum-doped zinc oxide and zinc oxide. The broadband absorption measures >87% from 1,200 nm to over 2,200 nm with a maximum absorption of 98.1% at 1,550 nm and remains large for high angles. Furthermore, we show the advantages of particle-based absorbers by transferring the HNTs to a polymer substrate that shows excellent mechanical flexibility and visible transparency while maintaining near-perfect absorption in the telecommunications region. In addition, other material systems and geometries are proposed for a wider range of applications.

  4. Electromagnetic Detection of a Perfect Carpet Cloak

    Science.gov (United States)

    Shi, Xihang; Gao, Fei; Lin, Xiao; Zhang, Baile

    2015-05-01

    It has been shown that a spherical invisibility cloak originally proposed by Pendry et al. can be electromagnetically detected by shooting a charged particle through it, whose underlying mechanism stems from the asymmetry of transformation optics applied to motions of photons and charges [PRL 103, 243901 (2009)]. However, the conceptual three-dimensional invisibility cloak that exactly follows specifications of transformation optics is formidably difficult to implement, while the simplified cylindrical cloak that has been experimentally realized is inherently visible. On the other hand, the recent carpet cloak model has acquired remarkable experimental development, including a recently demonstrated full-parameter carpet cloak without any approximation in the required constitutive parameters. In this paper, we numerically investigate the electromagnetic radiation from a charged particle passing through a perfect carpet cloak and propose an experimentally verifiable model to demonstrate symmetry breaking of transformation optics.

  5. A perfect launch viewed across Banana Creek

    Science.gov (United States)

    2000-01-01

    Billows of smoke and steam surround Space Shuttle Discovery as it lifts off from Launch Pad 39A on mission STS-92 to the International Space Station. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  6. The surveyors' quest for perfect alignment

    CERN Document Server

    2003-01-01

    Photogrammetry of a CMS endcap and part of the hadronic calorimeter.The structure was covered with targets photographed by digital cameras. Perfect alignment.... Although CERN's surveyors do not claim to achieve it, they are constantly striving for it and deploy all necessary means to come as close as they can. In their highly specialised field of large-scale metrology, the solution lies in geodesy and photogrammetry, both of which are based on increasingly sophisticated instruments and systems. In civil engineering, these techniques are used for non-destructive inspection of bridges, dams and other structures, while industrial applications include dimensional verification and deformation measurement in large mechanical assemblies. The same techniques also come into play for the metrology of research tools such as large telescopes and of course, particle accelerators. Particle physics laboratories are especially demanding customers, and CERN has often asked for the impossible. As a result, the alignment metro...

  7. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Fatemeh Musavi

    2010-12-01

    Full Text Available The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  8. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Mohammadkazem Shaker

    2011-01-01

    Full Text Available   The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  9. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Shaker, M.K

    2011-01-01

    Full Text Available The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  10. Resonance generation of photons from vacuum in cavities due to strong periodical changes of conductivity in a thin semiconductor boundary layer

    International Nuclear Information System (INIS)

    Dodonov, A V; Dodonov, V V

    2005-01-01

    We study a possibility of photon generation from vacuum in a cavity with an artificial effective time-dependent plasma mirror, which could be created by means of periodical short laser pulses, illuminating a thin semiconductor slab. We take into account two important circumstances: a big imaginary part of the complex time-dependent dielectric permeability inside the slab and a strong dependence of this imaginary part on the distance from the surface of the slab. We find the conditions under which the usual unitary quantization schemes in time-dependent media with real dielectric permeability can be applied to the problem concerned with relatively small (a few per cent) error. We show that, by using a slab with thickness of the order of 1 mm, it is possible to generate a large number of microwave (GHz) photons (up to 10 8 or more) after several thousand picosecond pulses with repetition frequency of the order of 1 GHz, provided that semiconductor materials with high mobility of carriers, high photoabsorption efficiency and small recombination time (less than 1 ns) can be found. We discuss the possible advantages of modes with TM polarization over TE ones, as well as some other important problems to be solved

  11. Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba2In2O5 Thin Films

    DEFF Research Database (Denmark)

    Fluri, Aline; Gilardi, Elisa; Karlsson, Maths

    2017-01-01

    Solid oxide oxygen ion and proton conductors are a highly important class of materials for renewable energy conversion devices like solid oxide fuel cells. Ba2In2O5 (BIO) exhibits both oxygen ion and proton conduction, in a dry and humid environment, respectively. In a dry environment...

  12. Influence of different substrates on the ionic conduction in LiCoO{sub 2}/LiNbO{sub 3} thin-film bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Horopanitis, E.E.; Perentzis, G.; Papadimitriou, L. [Aristotle University of Thessaloniki, Department of Physics, Section of Solid State Physics, Thessaloniki (Greece)

    2008-07-01

    LiNbO{sub 3} thin films, deposited by e-gun evaporation, show lithium deficiency, which is cured by ''Li doping''. The ''Li doping'' of the films was achieved by preparing a structure of Li-Nb-O/Li/Li-Nb-O, which after annealing forms a homogenized LiNbO{sub 3} layer because of diffusion of Li in the two Li-Nb-O layers. The LiCoO{sub 2}/LiNbO{sub 3} bi-layers were prepared either on Stainless Steel/TiN or on Al{sub 2}O{sub 3}/Co/Pt substrates/ohmic-contacts by depositing first either the cathode LiCoO{sub 2} or the electrolyte LiNbO{sub 3}. The Nyquist plots of the AC impedance measurements of all structures showed that the interfaces prepared on Stainless-Steel/TiN consisted of two semicircles. The structures deposited on Al{sub 2}O{sub 3}/Co/Pt showed a third semicircle, which is probably due to the roughness of the substrate. It is important that the ionic properties of the bi-layers with the cathode material deposited first, a usual structure in a microbattery, are improved compared to the other structures. The quality of the LiNbO{sub 3} layer depends very much on the substrate. It can be evaluated from Arrhenius plots that the activation energy of this layer is considerably lower when the whole structure is deposited on Stainless Steel/TiN. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Electric field variations measured continuously in free air over a conductive thin zone in the tilted Lias-epsilon black shales near Osnabrück, Northwest Germany

    Science.gov (United States)

    Gurk, M.; Bosch, F. P.; Tougiannidis, N.

    2013-04-01

    Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies. Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector. During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in

  14. Modern problems of perfection of elite light athletic sportsmen’s technical skillfulness perfection

    Directory of Open Access Journals (Sweden)

    A.V. Kolot

    2016-04-01

    Full Text Available Purpose: perfection of elite sportsmen’s technical skillfulness in competition kinds of light athletic. Material: the data of more than 60 literature sources were systemized. Expert questioning of 36 coaches, having experience of work with elite sportsmen, was carried out; documents of training process planning were analyzed as well as sportsmen’s diaries (n=244. Results: we have presented main principles of sportsmen’s technical skillfulness perfection and elucidated characteristics of technical training methodic. We have determined main priorities of technical training building for light athletes at every stage of many years’ perfection. Dynamic of competition practice volume has been found as well as main requirements to selection of training means of technical orientation. The data of bio-mechanical criteria of sportsmen’s technical skillfulness assessment have been supplemented. Conclusions: effectiveness of sportsmen’s training methodic is determined by realization of previous stages’ technical potential in final competition results. It can be achieved by determination of means of and methods of different orientation rational correlation.

  15. Modern problems of perfection of elite light athletic sportsmen’s technical skillfulness perfection

    Directory of Open Access Journals (Sweden)

    Kolot A.V.

    2016-02-01

    Full Text Available Purpose: perfection of elite sportsmen’s technical skillfulness in competition kinds of light athletic. Material: the data of more than 60 literature sources were systemized. Expert questioning of 36 coaches, having experience of work with elite sportsmen, was carried out; documents of training process planning were analyzed as well as sportsmen’s diaries (n=244. Results: we have presented main principles of sportsmen’s technical skillfulness perfection and elucidated characteristics of technical training methodic. We have determined main priorities of technical training building for light athletes at every stage of many years’ perfection. Dynamic of competition practice volume has been found as well as main requirements to selection of training means of technical orientation. The data of bio-mechanical criteria of sportsmen’s technical skillfulness assessment have been supplemented. Conclusions: effectiveness of sportsmen’s training methodic is determined by realization of previous stages’ technical potential in final competition results. It can be achieved by determination of means of and methods of different orientation rational correlation.

  16. Characterization of polymer, DNA-based, and silk thin film resistivities and of DNA-based films prepared for enhanced electrical conductivity

    Science.gov (United States)

    Yaney, Perry P.; Ouchen, Fahima; Grote, James G.

    2009-08-01

    DC resistivity studies were carried out on biopolymer films of DNA-CTMA and silk fibroin, and on selected traditional polymer films, including PMMA and APC. Films of DNA-CTMA versus molecular weight and with conductive dopants PCBM, BAYTRON P and ammonium tetrachloroplatinate are reported. The films were spin coated on glass slides configured for measurements of volume dc resistance. The measurements used the alternating polarity method to record the applied voltage-dependent current independent of charging and background currents. The Arrhenius equation plus a constant was fitted to the conductivity versus temperature data of the polymers and the non-doped DNA-based biopolymers with activation energies ranging from 0.8 to 1.4 eV.

  17. The swimming of a perfect deforming helix

    Science.gov (United States)

    Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric

    2017-11-01

    Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.

  18. Perfect crystal interferometer and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yuji [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1996-08-01

    The interferometry with angstrom scale wavelength has developed steadily, and various types of interferometers have been investigated. Among them, LLL interferometers are widely used. The first neutron interferometry was achieved in 1962 by Maier-Leibnitz et al. A new type of neutron interferometers was constructed with a perfect crystal, and experimentally performed in 1974 by Rauch et al. The precise measurements with LLL neutron interferometers were performed on scattering length, gravitational effect, coherence, Fizeau effects, spin superposition, complementarity, and post-selection effects. Since the early stage of quantum physics, the double-slit experiment has served as the example of the epistemologically strange features of quantum phenomena, and its course of study is described. The time-delayed interferometry with nuclear resonant scattering of synchrotron radiation and phase transfer in time-delayed interferometry with nuclear resonant scattering were experimented, and are briefly reported. A geometric phase factor was derived for a split beam experiment as an example of cyclic evolution. The geometric phase was observed with a two-loop neutron interferometer. All the experimental results showed complete agreement with the theoretical treatment. (K.I.)

  19. Memory and Perfection in Ferroelastic Inclusion Compounds

    International Nuclear Information System (INIS)

    Hollingsworth, M.; Peterson, M.; Rush, J.; Brown, M.; Abel, M.; Black, A.; Dudley, M.; Raghothamachar, B.; Werner-Zwanziger, U.

    2005-01-01

    In a series of ferroelastic urea inclusion compounds (UICs), in which domain reorientation occurs upon application of an external anisotropic force, introduction of a relaxive impurity that disrupts a specific hydrogen-bonding network transforms a plastic (irreversible) domain-switching process into one that exhibits a striking memory effect and 'rubber-like behavior', a form of pseudoelasticity. As expected for a highly cooperative process, the ferroelastic response to the impurity concentration exhibits a critical threshold. Through synchrotron white-beam X-ray topography (SWBXT) of crystals under stress, videomicroscopy of spontaneous repair during crystal growth, acoustomechanical relaxation of daughter domains, kinetic measurements of spontaneous domain reversion, and solid-state 2 H NMR of labeled guests, this work shows how relaxive impurities lower the barrier to domain switching and how differences in perfection between mother and daughter domains provide the driving force for the memory effects. Although the interfacial effects implicated here are different from the volume effects that operate in certain shape memory materials, the twinning and defect phenomena responsible for the rubber-like behavior and memory effects should be generally applicable to domain switching in ferroelastic and ferroelectric crystals and to other solid-state processes

  20. Natural death and the work of perfection.

    Science.gov (United States)

    Young, Alexey

    1998-08-01

    The historic or traditional Christian view of pain (suffering) and death, especially as preserved by the Christians East (i.e., the Orthodox), is radically opposed to the modern secular obsession with avoidance of pain. Everything about this life has its goal or aim in a mystical reality, the Kingdom of Heaven, for which earthly life is a preparation. While neither illness nor health are seen as ends in themselves, both are viewed as proceeding from the will of God for our benefit and have no ultimate meaning or purpose outside of eternal life. Death may be a relief or an ending of suffering, but in itself it is not "good" but evil. Because they are the embodiment of lived theology, saints' lives can be a sure guide to understanding how to die as a traditional Christian. To illustrate this, I have chosen some examples from the lives of relatively recent saints. I myself am from the Russian Orthodox spiritual tradition, so all but one of my examples come from pre-Revolutionary Russia. The question is not so much whether or not a traditional Christian can countenance physician-assisted suicide, but rather, what is the meaning or purpose of pain and suffering in general. Is it part of the "work of perfection" required of those who wish to enter the Kingdom of Heaven and therefore not to be completely denied?

  1. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    Science.gov (United States)

    Wilson, Adam A.

    The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It

  2. Diffraction of stochastic electromagnetic fields by a hole in a thin film with real optical properties

    Science.gov (United States)

    Dorofeyev, Illarion

    2008-08-01

    The classical Kirchhoff theory of diffraction is extended to the case of real optical properties of a screen and its finite thickness. A spectral power density of diffracted electromagnetic fields by a hole in a thin film with real optical properties was calculated. The problem was solved by use of the vector Green theorems and related Green function of the boundary value problem. A spectral and spatial selectivity of the considered system was demonstrated. Diffracted patterns were calculated for the coherent and incoherent incident fields in case of holes array in a screen of perfect conductivity.

  3. Diffraction of stochastic electromagnetic fields by a hole in a thin film with real optical properties

    International Nuclear Information System (INIS)

    Dorofeyev, Illarion

    2008-01-01

    The classical Kirchhoff theory of diffraction is extended to the case of real optical properties of a screen and its finite thickness. A spectral power density of diffracted electromagnetic fields by a hole in a thin film with real optical properties was calculated. The problem was solved by use of the vector Green theorems and related Green function of the boundary value problem. A spectral and spatial selectivity of the considered system was demonstrated. Diffracted patterns were calculated for the coherent and incoherent incident fields in case of holes array in a screen of perfect conductivity

  4. Superhydrophobic and anti-reflective ZnO nanorod-coated FTO transparent conductive thin films prepared by a three-step method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: li_bjia@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); Huang, Li-jing; Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Kong, Xia; Cai, Yun-long; Zhang, Jie-lu [Jiangsu Tailong Reduction Box Co. Ltd., Taixing, 225400 (China)

    2016-07-25

    A ZnO nanorod-coated FTO film was prepared by sputtering an AZO layer on FTO glass, thermal annealing of the AZO/FTO film, and hydrothermal growth of ZnO nanorods at 70 °C on the annealed AZO/FTO film using zinc foils as zinc source. Two other ZnO nanorod-coated FTO films were also prepared by hydrothermal growths of ZnO nanorods on the FTO glass and the unannealed AZO/FTO film respectively for comparison purpose. The results were observed in detail using X-ray diffraction, scanning electron microscopy, water contact/sliding angle measurement, spectrophotometry and four-point probe measurement. The ZnO nanorods on the annealed AZO/FTO film were found to exhibit denser distribution and better orientation than those on the FTO glass and the unannealed AZO/FTO film. As a result, the ZnO nanorod-coated annealed AZO/FTO film demonstrated superhydrophobicity, high transparency and low reflectance in the visible range. Also this film had the lowest sheet resistance of 4.0 Ω/sq, implying its good electrical conductivity. This investigation provides a valuable reference for developing multifunctional transparent conductive films. - Highlights: • ZnO nanorod-coated annealed AZO/FTO film was obtained by a three-step method. • FTO and unannealed AZO/FTO films were also used as substrates for comparison. • ZnO nanorods on the annealed AZO/FTO film were denser and more vertically-oriented. • The ZnO nanorod-coated annealed AZO/FTO film (Z/TA-FTO) had superhydrophobicity. • The Z/TA-FTO exhibited high transparency, low reflectance and good conductivity.

  5. Surface microstructure evolution of highly transparent and conductive Al-doped ZnO thin films and its application in CIGS solar cells

    Science.gov (United States)

    Cheng, Ke; Liu, Jingjing; Jin, Ranran; Liu, Jingling; Liu, Xinsheng; Lu, Zhangbo; Liu, Ya; Liu, Xiaolan; Du, Zuliang

    2017-07-01

    Aluminum-doped zinc oxide (AZO) has attained intensive attention as being a very good transparent conducting oxide for photovoltaic applications. In this work, AZO films have been deposited on glass substrate by radio frequency (RF) magnetron sputtering. The influences of substrate temperatures on morphological, structural, optical and electrical properties of AZO films were systematically investigated. The results indicate that all AZO films have the hexagonal structure with c-axis preferred orientation. Morphological and electrical measurements have revealed that the substrate temperatures have strong influence on the microstructure, optical and electrical properties of AZO films. The AZO film is highly transparent from ultraviolet up to near infrared range with highest average transparency exceeding 83%. The minimum resistivity is as low as 6.1 × 10-4 Ω cm. The carrier concentration and mobility are as high as 3.357 × 1020 cm-3 and 30.48 cm2/Vs, respectively. Finally, the performances of the AZO film are evaluated by its practical application in Cu(In1-xGax)Se2 (CIGS) photovoltaic device as a transparent electrode. Benefited from its highly transparent and conductive feature, the most efficient device reveals an efficiency of 7.8% with a short-circuit current density of 28.99 mA/cm2, an open-circuit voltage of 430 mV, and a fill factor of 62.44 under standard conditions.

  6. Vacuum-annealing induced enhancements in the transparent conducting properties of Mo  +  F doped ZnO thin films

    Science.gov (United States)

    Dineshbabu, N.; Ravichandran, K.

    2017-09-01

    The decisive aim of the present study is to enhance the transparent conducting properties of Mo  +  F co-doped ZnO films through annealing. In this work, Mo  +  F co-doped ZnO (MFZO) films were deposited on glass substrates at a deposition temperature of 350 °C using a home-made nebulizer spray pyrolysis technique and the prepared samples were annealed under air and vacuum atmosphere at 400 °C for 2 h. The structural, electrical, optical, surface morphological and elemental properties of as-deposited, air-annealed and vacuum-annealed samples were compared using various analytical techniques. The vacuum-annealed sample shows lowest resistivity of 1.364  ×  10-3 Ω cm and high transmittance of 90% in the visible region with high ohmic conducting nature. The optical bandgap of the sample was found to be increased to 3.36 eV after vacuum annealing treatment. The XRD patterns of the films confirmed the polycrystalline nature. The PL measurements show the defect levels of the deposited films. The FESEM and AFM studies show an increase in the grain size and roughness of the films, respectively, after vacuum-annealing treatment. The presence of the elements before and after annealing treatment was confirmed using XPS analysis.

  7. Electronic transport and conduction mechanism transition in La1∕3Sr2∕3FeO3 thin films

    International Nuclear Information System (INIS)

    Devlin, R. C.; Krick, A. L.; Sichel-Tissot, R. J.; Xie, Y. J.; May, S. J.

    2014-01-01

    We report on the electronic transport properties of epitaxial La 1∕3 Sr 2∕3 FeO 3 films using temperature dependent resistivity, Hall effect, and magnetoresistance measurements. We show that the electronic phase transition, which occurs near 190 K, results in a change in conduction mechanism from nonadiabatic polaron transport at high temperatures to resistivity behavior following a power law temperature dependence at low temperatures. The phase transition is also accompanied by an abrupt increase in apparent mobility and Hall coefficient below the critical temperature (T*). We argue that the exotic low temperature transport properties are a consequence of the unusually long-range periodicity of the antiferromagnetic ordering, which also couples to the electronic transport in the form of a negative magnetoresistance below T* and a sign reversal of the Hall coefficient at T*. By comparing films of differing thicknesses, stoichiometry, and strain states, we demonstrate that the observed conduction behavior is a robust feature of La 1∕3 Sr 2∕3 FeO 3 .

  8. Electronic transport and conduction mechanism transition in La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, R. C.; Krick, A. L.; Sichel-Tissot, R. J.; Xie, Y. J.; May, S. J., E-mail: smay@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2014-06-21

    We report on the electronic transport properties of epitaxial La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3} films using temperature dependent resistivity, Hall effect, and magnetoresistance measurements. We show that the electronic phase transition, which occurs near 190 K, results in a change in conduction mechanism from nonadiabatic polaron transport at high temperatures to resistivity behavior following a power law temperature dependence at low temperatures. The phase transition is also accompanied by an abrupt increase in apparent mobility and Hall coefficient below the critical temperature (T*). We argue that the exotic low temperature transport properties are a consequence of the unusually long-range periodicity of the antiferromagnetic ordering, which also couples to the electronic transport in the form of a negative magnetoresistance below T* and a sign reversal of the Hall coefficient at T*. By comparing films of differing thicknesses, stoichiometry, and strain states, we demonstrate that the observed conduction behavior is a robust feature of La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3}.

  9. Development of a perfect prognosis probabilistic model for ...

    Indian Academy of Sciences (India)

    A prediction model based on the perfect prognosis method was developed to predict the probability of lightning and probable time of its occurrence over the south-east Indian region. In the perfect prognosis method, statistical relationships are established using past observed data. For real time applications, the predictors ...

  10. A cross-linguistic discourse analysis of the perfect

    NARCIS (Netherlands)

    Swart, Henriëtte de

    2007-01-01

    Since Reichenbach (1947), the Present Perfect has been discussed in relation to the Simple Past. The Reichenbachian characterization E-R,S has led to the view that the English Present Perfect, with its restrictions on modification by time adverbials and its resistance to narrative structure is the

  11. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  12. Indium oxide co-doped with tin and zinc: A simple route to highly conducting high density targets for TCO thin-film fabrication

    Science.gov (United States)

    Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.

    2012-07-01

    Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.

  13. Particles Size and Conductivity Study of P-Type Copper (I) Iodide (CuI) Thin Film for Solid State Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Zainun, A R; Mamat, M H; Noor, U M; Rusop, M

    2011-01-01

    Copper Iodide based dye-sensitized solar cells (DSSC) has been reported either deliver small photocurrents or highly unstable. In this research, by added in a small amount of Tetra-methyl-ethylene-diamine (TMED) into CuI sol-gel (CuI in acetonitrile), performance of electrical properties and optical properties of CuI based DSSC have been studied. Particles size and conductivity of CuI solution were measured when addition of TMED to the sol at 0.05M concentrations. Spin-coating technique has been explored to prepare nano-crystalline CuI films at room temperature. The film was examined for their surface morphology, optical and electrical properties by field emission scanning electron microscope (FESEM), ultraviolet visible spectroscopy (UV-Vis), Photoluminescence (PL) and current-voltage (I-V) measurement respectively. The results were then compared with CuI sol-gel which prepared by dissolving CuI powder with acetonitrile only. It showed some improvement to the CuI-based DSSC by incorporation of a small quantity of TMED in the solution of precursor.

  14. Particle size and conductivity study of P-type copper (I) iodide (CuI) thin film for solid state dye sensitized solar cells

    International Nuclear Information System (INIS)

    Ayib Rosdi Zainun; Mohd Hafiz Mamat; Rusop, M.

    2009-01-01

    Full text: Copper Iodide based dye-sensitized solar cells (DSSC) has been reported either deliver small photocurrents or highly unstable. In this research, by added in a small amount of Tetra-methyl-ethylene-diamine (TMED) into CuI sol-gel (CuI in acetonitrile), performance of electrical properties and optical properties of CuI based DSSC have been studied. Particles size and conductivity of CuI solution were measured when addition of TMED to the sol at 0.05 M concentrations. Spin-coating technique has been explored to prepare nano-crystalline CuI films at room temperature. The film was examined for their surface morphology, optical and electrical properties by field emission scanning electron microscope (FESEM), ultraviolet visible spectroscopy (UV-Vis), Photoluminescence (PL) and current-voltage (I-V) measurement respectively. The results were then compared with CuI sol-gel which prepared by dissolving CuI powder with acetonitrile only. It showed some improvement to the CuI-based DSSC by incorporation of a small quantity of TMED in the solution of precursor. (author)

  15. In situ X-ray study of the structural evolution of gold nano-domains by spray deposition on thin conductive P3HT films.

    Science.gov (United States)

    Al-Hussein, M; Schindler, M; Ruderer, M A; Perlich, J; Schwartzkopf, M; Herzog, G; Heidmann, B; Buffet, A; Roth, S V; Müller-Buschbaum, P

    2013-02-26

    Gold (Au) nanoparticles are deposited from aqueous solution onto one of the most used conductive polymers, namely poly(3-hexylthiophene) (P3HT), using airbrush deposition. We report on the structure formation and packing of the Au nanoparticles after a 5 s spray cycle. In situ grazing incidence small-angle X-ray scattering (GISAXS) measurements with 20 ms time resolution allow a real-time observation of the emergence and evolution of the microstructure during a spray cycle and subsequent solvent evaporation. The results reveal multistage nanoscale ordering of the Au nanoparticles during the spray cycle. Further ex situ atomic force microscopy measurements of the sprayed films showed the formation of Au monolayer islands on top of the polymer film. Our study suggests that the solvent-substrate interaction as well as solvent evaporation kinetics are important factors that need to be taken into consideration in order to grow a compact uniform monolayer film for the fabrication of ultrathin films using airbrush deposition.

  16. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  17. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  18. Multi-mode competition in an FEL oscillator at perfect synchronism of an optical cavity

    CERN Document Server

    Dong, Z W; Kii, T; Yamazaki, T; Yoshikawa, K

    2002-01-01

    The sustained saturation in a short pulse free electron laser (FEL) oscillator at perfect synchronism of an optical cavity has been observed recently by Japan Atomic Energy Research Institute (JAERI) FEL group by using their super-conducting linac (Phys. Rev. Lett., in preparation). The experiments have clearly shown that FEL efficiency becomes maximum at perfect synchronism, although it has been considered that only a transient state exists at perfect synchronism due to the lethargy effect. Through careful analyses of the experimental condition of JAERI FEL, we found that, in spite of the short length of the electron micro-bunch, the saturation appears due to the following features, which were different from other FEL experiments: (1) very large ratio of the small signal gain to losses, (2) very long electron macro-bunch which can tolerate a slow start up. The saturation and high efficiency at perfect synchronism were benefited from the contribution of the weak sideband instability. In order to analyse these...

  19. Individualization of psychological training and its importance at different stages of many years’ perfection in tennis

    Directory of Open Access Journals (Sweden)

    N.L. Vysochina

    2015-08-01

    Full Text Available Purpose: to determine significance of individualized approach during psychological training at different stages of many years’ perfection in tennis. The tasks of the research were studying of place and role of psychological component in general system of tennis players’ sport training as well as determination of specificities of individualized approach during 14-15 years old and elite tennis players’ psychological training. Material: In the research 24 experts, coaches of combined teams and clubs, elite tennis players took part. Results: Role of psychological training in general system of many years’ perfection has been determined. We also found out that individualization of psychological training in modern tennis is not paid sufficient attention to at present. Most of the questioned respondents pointed, that such training is conducted mainly with elite sportsmen (42%. Only 14% noted that individual psychological training is carried out at basic stages of many years’ perfection. Conclusions: Principle of individualization is a determining one in the course of sportsmen’s training at stages of many years’ perfection. About 86% of experts stressed on significance of application of individualized approach in work with tennis players. Consideration of tennis players’ individual features during psychological training is a compulsory matter in increasing of effectiveness of sportsmen’s training and competition functioning.

  20. Scheme for achieving coherent perfect absorption by anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2017-02-22

    We propose a unified scheme to achieve coherent perfect absorption of electromagnetic waves by anisotropic metamaterials. The scheme describes the condition on perfect absorption and offers an inverse design route based on effective medium theory in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a wide range of incident angles, verifying the scheme. By integrating these absorbers, we further propose an absorber to absorb energy from two coherent point sources.

  1. Two-perfect fluid interpretation of an energy tensor

    International Nuclear Information System (INIS)

    Ferrando, J.J.; Morales, J.A.; Portilla, M.

    1990-01-01

    There are many topics in General Relativity where matter is represented by a mixture of two fluids. In fact, some astrophysical and cosmological situations need to be described by an energy tensor made up of the sum of two or more perfect fluids rather than that with only one. The paper contains the necessary and sufficient conditions for a given energy tensor to be interpreted as a sum of two perfect fluids. Given a tensor of this class, the decomposition in two perfect fluids (which is determined up to a couple of real functions) is obtained

  2. Zero electrical resistance of perfect conductor and diamagnet

    International Nuclear Information System (INIS)

    Palaspagar, R.S.

    2012-01-01

    Intense research has taken place to discover new superconductors, to understand the physics that underlies the properties of superconductors, and to develop new applications for these materials. The fascinating phenomenon of superconductivity and its potential applications have attracted the attention of scientists, engineers and businessmen. In this paper we will discuss about the brief history of superconductors. And we will discuss also phenomenons of superconductors and the two different types of superconductor that exist today. We can say that superconductor exhibits infinite conductivity. A bulk specimen of metal in the superconducting state exhibits perfect diamagnetism, with the magnetic induction B=0 named as Meissner effect. It would have been very difficult to have arrived at the theory of superconductivity by purely deductive reasoning from the basic equations of quantum mechanics. A successful quantum theory of superconductivity has provided the basic for subsequent work and the importance of the phase of the superconducting wave function. If we could make a material that was superconducting at room temperature then our computers would work faster because they would allow electric currents to flow more easily. That would mean electric appliances in our homes and offices would waste much less power. We could also make 'Maglev' (magnetic levitation) trains that would float on rails using linear motors and get us around with a fraction of the power used by current locomotives. (author)

  3. The Ideology of the Perfect Dictionary: How Efficient Can a ...

    African Journals Online (AJOL)

    friendly material which will improve both their fluency in and understanding of the target language, and embed acquired lexis in their long-term memory. Lexicographers, in their search for perfection and in compliance with users' wishes, are ...

  4. Perfect 3-colorings of the cubic graphs of order 10

    Directory of Open Access Journals (Sweden)

    Mehdi Alaeiyan

    2017-10-01

    Full Text Available Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect m-coloring of a graph G with m colors is a partition of the vertex set of G into m parts A_1, A_2, ..., A_m such that, for all $ i,j \\in \\lbrace 1, ... , m \\rbrace $, every vertex of A_i is adjacent to the same number of vertices, namely, a_{ij} vertices, of A_j. The matrix $A=(a_{ij}_{i,j\\in \\lbrace 1,... ,m\\rbrace }$, is called the parameter matrix. We study the perfect 3-colorings (also known as the equitable partitions into three parts of the cubic graphs of order 10. In particular, we classify all the realizable parameter matrices of perfect 3-colorings for the cubic graphs of order 10.

  5. Perfect imaging with positive refraction in three dimensions

    International Nuclear Information System (INIS)

    Leonhardt, Ulf; Philbin, Thomas G.

    2010-01-01

    Maxwell's fish eye has been known to be a perfect lens within the validity range of ray optics since 1854. Solving Maxwell's equations, we show that the fish-eye lens in three dimensions has unlimited resolution for electromagnetic waves.

  6. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.; Vanteru, Mahendra Reddy; Ruan, S.; Doan, N. A K; Roberts, William L.; Swaminathan, N.

    2016-01-01

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used

  7. Scheme for achieving coherent perfect absorption by anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan; Wu, Ying

    2017-01-01

    in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a

  8. Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds

    Science.gov (United States)

    Martínez-Torres, David; Miranda, Eva

    2018-01-01

    We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.

  9. Perfect 2-colorings of the generalized Petersen graph

    Indian Academy of Sciences (India)

    There are no perfect 2-colorings of GP(n, 2) with the matrix A3. Proof. Suppose, contrary to our claim, there is a perfect 2-coloring of GP(n, 2) with the matrix A3. By Lemma 3.4, there are 2 vertices ai and bi, for some 0 ≤ i ≤ n−1, such that they are the same color. By symmetry, without loss of generality, we can assume T (a0) ...

  10. Elaboration of a semiconductive thin film device technology on the basis of monocrystalline gallium arsenide

    International Nuclear Information System (INIS)

    Antoshenko, V.; Taurbaev, T.; Skirnevskaya, E.; Shorin, V.; Mihajlov, L.; Bajganatova, Sh.

    1996-01-01

    The aim of the project: To elaborate the economical technological process of preparing super thin monocrystalline GaAs substrates and device structures for semiconductive electronics. To realize the project it is necessary to solve following problems: o to elaborate and produce the equipment for preparing of separated films and thin film multilayer structures with p-n-junction; - to study conditions of preparing plane crystal perfect separated Ga(Al)As - films; - to optimize regimes of preparing thin film structures with p- and n-conductive - layers; - to determine the optimal methods of transferring autonomous films and structures over the second substrates; - to work out preparing methods of ohmic contacts and electrical commutation; - to optimize the process of repeated use of initial monocrystalline GaAs substrate; - to prepare the samples of discrete thin film photo- and emitting devices. As the result of project realization there will be created cheap ecological technology of heterojunction optoelectronic devices on the basis of GaAs and AlGaAs solid solutions, the laboratory samples of thin film devices will be presented

  11. Circuital model for the spherical geodesic waveguide perfect drain

    Science.gov (United States)

    González, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan C.

    2012-08-01

    The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity that depends on frequency. However, this material is only a theoretical material, so it cannot be used in practical devices. The perfect drain has been claimed as necessary for achieving super-resolution (Leonhardt 2009 New J. Phys. 11 093040), which has increased the interest in practical perfect drains suitable for manufacturing. Here, we present a practical perfect drain that is designed using a simple circuit (made of a resistance and a capacitor) connected to the coaxial line. Moreover, we analyze the super-resolution properties of a device equivalent to the MFE, known as a spherical geodesic waveguide, loaded with this perfect drain. The super-resolution analysis for this device is carried out using COMSOL Multiphysics. The results of simulations predict a super-resolution of up to λ/3000.

  12. Circuital model for the spherical geodesic waveguide perfect drain

    International Nuclear Information System (INIS)

    González, Juan C; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan C

    2012-01-01

    The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity that depends on frequency. However, this material is only a theoretical material, so it cannot be used in practical devices. The perfect drain has been claimed as necessary for achieving super-resolution (Leonhardt 2009 New J. Phys. 11 093040), which has increased the interest in practical perfect drains suitable for manufacturing. Here, we present a practical perfect drain that is designed using a simple circuit (made of a resistance and a capacitor) connected to the coaxial line. Moreover, we analyze the super-resolution properties of a device equivalent to the MFE, known as a spherical geodesic waveguide, loaded with this perfect drain. The super-resolution analysis for this device is carried out using COMSOL Multiphysics. The results of simulations predict a super-resolution of up to λ/3000. (paper)

  13. Amplitude-phase characteristics of electromagnetic fields diffracted by a hole in a thin film with realistic optical properties

    Science.gov (United States)

    Dorofeyev, Illarion

    2009-03-01

    Characteristics of a quasi-spherical wave front of an electromagnetic field diffracted by a subwavelength hole in a thin film with real optical properties are studied. Related diffraction problem is solved in general by use of the scalar and vector Green's theorems and related Green's function of a boundary-value problem. Local phase deviations of a diffracted wave front from an ideal spherical front are calculated. Diffracted patterns are calculated for the coherent incident fields in case of holes array in a screen of perfect conductivity.

  14. A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation)

    Science.gov (United States)

    Zhou, Jiangfeng; Bhattarai, Khagendra; Silva, Sinhara; Jeon, Jiyeon; Kim, Junoh; Lee, Sang Jun; Ku, Zahyun

    2016-10-01

    The plasmonic metamaterial perfect absorber (MPA) is a recently developed branch of metamaterial which exhibits nearly unity absorption within certain frequency range.[1-6] The optically thin MPA possesses characteristic features of angular-independence, high Q-factor and strong field localization that have inspired a wide range of applications including electromagnetic wave absorption,[3, 7, 8] spatial[6] and spectral[5] modulation of light,[9] selective thermal emission,[9] thermal detecting[10] and refractive index sensing for gas[11] and liquid[12, 13] targets. In this work, we demonstrate a MPA working at terahertz (THz) regime and characterize it using an ultrafast THz time-domain spectroscopy (THz-TDS). Our study reveal an ultra-thin Fabry-Perot cavity mechanism compared to the impedance matching mechanism widely adopted in previous study [1-6]. Our results also shows higher-order resonances when the cavities length increases. These higher order modes exhibits much larger Q-factor that can benefit potential sensing and imaging applications. [1] C. M. Watts, X. L. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers," Advanced Materials, vol. 24, pp. 98-120, Jun 19 2012. [2] M. Hedayati, F. Faupel, and M. Elbahri, "Review of Plasmonic Nanocomposite Metamaterial Absorber," Materials, vol. 7, pp. 1221-1248, 2014. [3] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, May 23 2008. [4] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, et al., "Optically Modulated Multiband Terahertz Perfect Absorber," Advanced Optical Materials, vol. 2, pp. 1221-1226, 2014. [5] D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, "Four-Color Metamaterial Absorber THz Spatial Light Modulator," Advanced Optical Materials, vol. 1, pp. 905-909, 2013. [6] S. Savo, D. Shrekenhamer, and W. J. Padilla, "Liquid Crystal Metamaterial Absorber Spatial

  15. Forbidden Structures for Planar Perfect Consecutively Colourable Graphs

    Directory of Open Access Journals (Sweden)

    Borowiecka-Olszewska Marta

    2017-05-01

    Full Text Available A consecutive colouring of a graph is a proper edge colouring with posi- tive integers in which the colours of edges incident with each vertex form an interval of integers. The idea of this colouring was introduced in 1987 by Asratian and Kamalian under the name of interval colouring. Sevast- janov showed that the corresponding decision problem is NP-complete even restricted to the class of bipartite graphs. We focus our attention on the class of consecutively colourable graphs whose all induced subgraphs are consecutively colourable, too. We call elements of this class perfect consecutively colourable to emphasise the conceptual similarity to perfect graphs. Obviously, the class of perfect consecutively colourable graphs is induced hereditary, so it can be characterized by the family of induced forbidden graphs. In this work we give a necessary and sufficient conditions that must be satisfied by the generalized Sevastjanov rosette to be an induced forbid- den graph for the class of perfect consecutively colourable graphs. Along the way, we show the exact values of the deficiency of all generalized Sevastjanov rosettes, which improves the earlier known estimating result. It should be mentioned that the deficiency of a graph measures its closeness to the class of consecutively colourable graphs. We motivate the investigation of graphs considered here by showing their connection to the class of planar perfect consecutively colourable graphs.

  16. Adaptation of the perfect linear model for ion beam formation to the case of plasma sources with electron electrostatic containment

    International Nuclear Information System (INIS)

    Coste, Ph.; Aubert, J.; Lejeune, C.

    1991-01-01

    The extensive development of ion beam technologies in the last years, in particular for thin film deposition and etching, poses the problem of predicting the behaviour of the ion beam from convenient models. One of the existing models, the 'perfect linear model', is easy to use and provides information about the geometrical parameters of the ion beam envelope. In this model, however, the plasma potential must be close to the plasma electrode potential. Now, ion sources with electrostatic containment of the ionizing electrons -very attractive because of their improved ionization efficiency - have a plasma potential higher than the plasma electrode potential. Thus, a space-charge sheath with a non-negligible thickness exists, which modifies the equilibrium conditions of the plasma meniscus and, therefore, the initial divergence of the ion beam. In this paper an adaptation of the perfect linear model for ion beam formation to the case of plasma sources with electron electrostatic containment is presented. (author)

  17. MUSIC-type imaging of small perfectly conducting cracks with an unknown frequency

    International Nuclear Information System (INIS)

    Park, Won-Kwang

    2015-01-01

    MUltiple SIgnal Classification (MUSIC) is a famous non-iterative detection algorithm in inverse scattering problems. However, when the applied frequency is unknown, inaccurate locations are identified via MUSIC. This fact has been confirmed through numerical simulations. However, the reason behind this phenomenon has not been investigated theoretically. Motivated by this fact, we identify the structure of MUSIC-type imaging functionals with unknown frequency, by establishing a relationship with Bessel functions of order zero of the first kind. Through this, we can explain why inaccurate results appear. (paper)

  18. Radiation by Sources on Perfectly Conducting Convex Cylinders with an Impedance Surface Patch.

    Science.gov (United States)

    1980-01-01

    U -- = - (a to0 . 0 0 m 4- 0 4- 04 0-0 1 - .0 4’ U-- ~4- 4 0 n4- -- C_ to S~0- 4J C >1 cu S)-0’ (0 C 0)~ 00 =3 .r aCCA 50 It is observed from these...by such a source has only a z-component and it will be denoted by H . H satisfies the reduced, inhomo- geneous wave equation, and the f6 1llowing

  19. Bistatic Radar Cross Section of a Perfectly Conducting Rhombus-Shaped Flat Plate

    Science.gov (United States)

    1990-05-02

    Monostatic scattering from square and circular flate plates is treated thoroughly in [1-3]. A physical optics formulation for the bistatic scattering of...7ESP13900 2 12X1*4*0.’.. MAO, (O5/M**2) oss-1’ ESP13k10 3 SX,.-00se.’ PHASE (DEC) *.....’../ EPP13920 4 2X,’F(t0Z)’.4X,’STTV,4X,’SPPM’,4X,’ STPM ’,4X,’SPTM...SCSP,SCST,SPPM,SPTrI, STPM ,STTN,fltAGE.ICN,NDNPLT) ESP14780 CALL SORTUN(1AIB,11,?2.13,NWR,t4 ,A,CGD.SOD,F)I2.D, ESP14190 & IWR1, IIISCT,ZTF,ZT,!IPLICC

  20. MUSIC-type imaging of small perfectly conducting cracks with an unknown frequency

    Science.gov (United States)

    Park, Won-Kwang

    2015-09-01

    MUltiple SIgnal Classification (MUSIC) is a famous non-iterative detection algorithm in inverse scattering problems. However, when the applied frequency is unknown, inaccurate locations are identified via MUSIC. This fact has been confirmed through numerical simulations. However, the reason behind this phenomenon has not been investigated theoretically. Motivated by this fact, we identify the structure of MUSIC-type imaging functionals with unknown frequency, by establishing a relationship with Bessel functions of order zero of the first kind. Through this, we can explain why inaccurate results appear.

  1. Numerical Reconstruction of Perfectly Conducting Inclusions from One Electrostatic Boundary Measurement

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Knudsen, Kim; Wriedt, Thomas

    Electrical Impedance Tomography (EIT) aims to reconstruct inhomogeneities or inclusions in the interior of a medium based on current and voltage measurements at the boundary of the medium. In many practical applications of EIT, the e±ciency of the employed numerical inversion scheme is an essential...

  2. Perfect transfer of arbitrary states in quantum spin networks

    International Nuclear Information System (INIS)

    Christandl, Matthias; Kay, Alastair; Datta, Nilanjana; Dorlas, Tony C.; Ekert, Artur; Landahl, Andrew J.

    2005-01-01

    We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between two distant parties, and can, by using such systems in parallel, transmit the higher-dimensional systems states across the network. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that 2 log 3 N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done by Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)

  3. Whole genome association mapping by incompatibilities and local perfect phylogenies

    DEFF Research Database (Denmark)

    Mailund, Thomas; Besenbacher, Søren; Schierup, Mikkel Heide

    2006-01-01

    around each marker that is compatible with a single phylogenetic tree. This perfect phylogenetic tree is treated as a decision tree for determining disease status, and scored by its accuracy as a decision tree. The rationale for this is that the perfect phylogeny near a disease affecting mutation should...... a fast method for accurate localisation of disease causing variants in high density case-control association mapping experiments with large numbers of cases and controls. The method searches for significant clustering of case chromosomes in the "perfect" phylogenetic tree defined by the largest region...... provide more information about the affected/unaffected classification than random trees. If regions of compatibility contain few markers, due to e.g. large marker spacing, the algorithm can allow the inclusion of incompatibility markers in order to enlarge the regions prior to estimating their phylogeny...

  4. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  5. High Thermal Conductivity Composite Structures

    National Research Council Canada - National Science Library

    Bootle, John

    1999-01-01

    ... applications and space based radiators. The advantage of this material compared to competing materials that it can be used to fabricate high strength, high thermal conductivity, relatively thin structures less than 0.050" thick...

  6. Dual band metamaterial perfect absorber based on Mie resonances

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bi, Ke [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhao, Qian [State Key Lab of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2016-08-08

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.

  7. Hydrogen can be used as a perfect fuel

    International Nuclear Information System (INIS)

    Aydin, E.

    2005-01-01

    At present, hydrogen is one of the new and clean energy production sources. Hydrogen is the perfect partner for electricity, and together they create an integrated energy system based on distributed power generation and use. Hydrogen and electricity are interchangeable using a fuel cell (to convert hydrogen to electricity) or an electrolyzer (for converting electricity to hydrogen). A regenerative fuel cell works either way, converting hydrogen to electricity and vice versa. Hydrogen and electricity are both energy carriers because, unlike naturally occurring hydrocarbon fuels, they must both be produced using a primary energy source. In this study, it will be discussed whether hydrogen is perfect fuel or not

  8. Perfection of badminton players’ speed-power fitness with the help of training means’ variable modules

    Directory of Open Access Journals (Sweden)

    I.V. Karatnyk

    2016-06-01

    Full Text Available Purpose: to determine effectiveness of badminton players’ speed power fitness program’s perfection at stage of specialized basic training with different variants of training means modules’ combination. Material: in experiment badminton players of 15-17 years’ age (from 1st sports grade to master of sports participated. The sportsmen were divided into three experimental groups (10 persons in each. The trainings were being conducted during 24 weeks by different variants of program. Results: we created different complexes of exercises, combined in three modules (every of each lasted eight week micro-cycles. Every module has more expressed meaningful parts (1 – speed, 2 – power, 3 – jumping. All modules were combined in program of badminton players’ speed power fitness perfection. For every experimental group we worked out distinguishing variant of modules’ combination in program (first variant – 1-2-3 modules; second – 2-3-1; third – 3-1-2. General duration of program was 24 week micro-cycles. Conclusions: we recommended some variants of variable modules’ combination for badminton players’ speed-power fitness perfection. With it, we can regard total influence on the following: speed-power endurance, work with support on own body, quick movements of different body links.

  9. Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid

    Science.gov (United States)

    Roy, S. R.; Prasad, A.

    1991-07-01

    Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.

  10. Gauge freedom in perfect fluid spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Jantzen, R.T.

    1983-01-01

    The class of reference systems compatible with the symmetry of a spatially homogeneous perfect fluid spacetime is discussed together with the associated class of symmetry adapted comoving ADM frames (or computational frames). The fluid equations of motion are related to the four functions on the space of fluid flow lines discovered by Taub and which characterize an isentropic flow. (Auth.)

  11. Perfect Worlds : Utopian Fiction in China and the West

    NARCIS (Netherlands)

    Fokkema, Douwe

    2011-01-01

    Perfect Worlds biedt een uitgebreide historische analyse van utopische verhalen in de Chinese en Euro-Amerikaanse traditie. Aan bod komen onder meer de kritiek van Thomas More op Plato, de Europese oriëntalistische speurtocht naar utopieën in China en Chinese schrijvers die hun confucianistische

  12. Perfect Worlds : Utopian Fiction in China and the West

    NARCIS (Netherlands)

    Fokkema, Douwe

    2011-01-01

    Perfect Worlds biedt een uitgebreide historische analyse van utopische verhalen in de Chinese en Euro-Amerikaanse traditie. Verschillende hoofdstukken gaan onder meer in op de kritiek van Thomas More op Plato, de Europese oriëntalistische speurtocht naar utopieën in China, Dostoevsky’s reactie op

  13. Hyper-Achievement, Perfection, and College Student Resilience

    Science.gov (United States)

    Eells, Gregory T.

    2017-01-01

    Over the past decade, there has been considerable attention given to college students' experience of pressure to pursue perfection through hyper-achievement and the psychological and emotional toll this process takes on them. The popular press has highlighted this phenomenon and raised specific questions about some of the related consequences like…

  14. Cognitive Learning Styles: Can You Engineer a "Perfect" Match?

    Science.gov (United States)

    Khuzzan, Sharifah Mazlina Syed; Goulding, Jack Steven

    2016-01-01

    Education and training is widely acknowledged as being one of the key factors for leveraging organisational success. However, it is equally acknowledged that skills development and the acquisition of learning through managed cognitive approaches has yet to provide a "perfect" match. Whilst it is argued that an ideal learning scenario…

  15. The Perfect Storm--Genetic Engineering, Science, and Ethics

    Science.gov (United States)

    Rollin, Bernard E.

    2014-01-01

    Uncertainty about ethics has been a major factor in societal rejection of biotechnology. Six factors help create a societal "perfect storm" regarding ethics and biotechnology: Social demand for ethical discussion; societal scientific illiteracy; poor social understanding of ethics; a "Gresham's Law for Ethics;" Scientific…

  16. The Perfect Storm—Genetic Engineering, Science, and Ethics

    Science.gov (United States)

    Rollin, Bernard E.

    2014-02-01

    Uncertainty about ethics has been a major factor in societal rejection of biotechnology. Six factors help create a societal "perfect storm" regarding ethics and biotechnology: Social demand for ethical discussion; societal scientific illiteracy; poor social understanding of ethics; a "Gresham's Law for Ethics;" Scientific Ideology; vested interests dominating ethical discussion. How this can be remedied is discussed.

  17. Overemphasis on Perfectly Competitive Markets in Microeconomics Principles Textbooks

    Science.gov (United States)

    Hill, Roderick; Myatt, Anthony

    2007-01-01

    Microeconomic principles courses focus on perfectly competitive markets far more than other market structures. The authors examine five possible reasons for this but find none of them sufficiently compelling. They conclude that textbook authors should place more emphasis on how economists select appropriate models and test models' predictions…

  18. Helicity and other conservation laws in perfect fluid motion

    Science.gov (United States)

    Serre, Denis

    2018-03-01

    In this review paper, we discuss helicity from a geometrical point of view and see how it applies to the motion of a perfect fluid. We discuss its relation with the Hamiltonian structure, and then its extension to arbitrary space dimensions. We also comment about the existence of additional conservation laws for the Euler equation, and its unlikely integrability in Liouville's sense.

  19. A short note on nearly perfect maps of locales | Razafindrakoto ...

    African Journals Online (AJOL)

    We characterise compact locales in terms of nearly perfect maps. We show in particular that these maps are the natural pointfree version of Bourbaki's proper maps - when defined via any ultrafillter - and that they extend Herrlich's notion of nearly closed sublocales [10]. Mathematics Subject Classication (2010): 06A15, ...

  20. Indefinite and Continuative Interpretations of the English Present Perfect

    Directory of Open Access Journals (Sweden)

    Katarina Dea Žetko

    2005-06-01

    Full Text Available The objective of our paper is to demonstrate that the English present perfect is not by inherent meaning either indefinite or continuative. Notions like indefinite and continuative are contextdependent interpretations of whole constructions and their broader context. However, continuative interpretation can also be triggered by certain adverbials, negative constructions and verbs in the progressive form. But, even these factors do not always guarantee continuative interpretations. Construction, continuative meaning can be cancelled by the context in a broader sense, this fact being a proof that this meaning is merely an implicature. We will demonstrate how different factors interact and trigger either indefinite or continuative interpretations which are not inherent in the present perfect itself. Our paper will attempt to provide sufficient evidence that there is no indefinite/continuative distinction in the English present perfect, the inherent meaning or function of the present perfect is merely to locate the situation somewhere within a period that starts before the time of utterance and leads up to it.

  1. Robust Secure Authentication and Data Storage with Perfect Secrecy

    Directory of Open Access Journals (Sweden)

    Sebastian Baur

    2018-04-01

    Full Text Available We consider an authentication process that makes use of biometric data or the output of a physical unclonable function (PUF, respectively, from an information theoretical point of view. We analyse different definitions of achievability for the authentication model. For the secrecy of the key generated for authentication, these definitions differ in their requirements. In the first work on PUF based authentication, weak secrecy has been used and the corresponding capacity regions have been characterized. The disadvantages of weak secrecy are well known. The ultimate performance criteria for the key are perfect secrecy together with uniform distribution of the key. We derive the corresponding capacity region. We show that, for perfect secrecy and uniform distribution of the key, we can achieve the same rates as for weak secrecy together with a weaker requirement on the distribution of the key. In the classical works on PUF based authentication, it is assumed that the source statistics are known perfectly. This requirement is rarely met in applications. That is why the model is generalized to a compound model, taking into account source uncertainty. We also derive the capacity region for the compound model requiring perfect secrecy. Additionally, we consider results for secure storage using a biometric or PUF source that follow directly from the results for authentication. We also generalize known results for this problem by weakening the assumption concerning the distribution of the data that shall be stored. This allows us to combine source compression and secure storage.

  2. The periphrastic perfect of Old Persian revisited (slides) [Dataset

    NARCIS (Netherlands)

    Bavant, M.J.J.

    2011-01-01

    The voice of the periphrastic perfect of Old Persian has long been a controversial issue. This document is a slide set to present the matter. It illustrates the contents of an article on the same theme: "Retour sur le parfait périphrastique du vieux perse".

  3. Unity and Duality in Barack Obama's "A More Perfect Union"

    Science.gov (United States)

    Terrill, Robert E.

    2009-01-01

    Faced with a racialized political crisis that threatened to derail his campaign to become the first African American president of the United States, Barack Obama delivered a speech on race titled "A More Perfect Union." He begins by portraying himself as an embodiment of double consciousness, but then invites his audience to share his…

  4. A linear construction of perfect secret sharing schemes

    NARCIS (Netherlands)

    Dijk, van M.; Santis, De A.

    1995-01-01

    In this paper, we generalize the vector space construction due to Brickell [5]. This generalization, introduced by Bertilsson [1], leads to perfect secret sharing schemes with rational information rates in which the secret can be computed efficiently by each qualified group. A one to one

  5. Tie-breaking in games of perfect information

    DEFF Research Database (Denmark)

    Tranæs, Torben

    1998-01-01

    The paper suggests that ties in an extensive form game have strategic implications if they represent credible threats or promises. We consider a subset of subgame-perfect Nash equilibria obtained by breaking ties according to their strategic implications, and show that the subset is nonempty for ...

  6. Perfect 2-colorings of the generalized Petersen graph

    Indian Academy of Sciences (India)

    It is obvious that GP(n, k) is a 3-regular connected graph. DEFINITION 2.2 ... vertex of color i, the number of its neighbors of color j is equal to aij . ... By the given conditions, we can see that a parameter matrix of a perfect 2-coloring of. GP(n, k) ...

  7. An improved perfectly matched layer for the eigenmode expansion technique

    DEFF Research Database (Denmark)

    Gregersen, Niels; Mørk, Jesper

    2008-01-01

    be suppressed by introducing a perfectly matched layer (PML) using e.g. complex coordinate stretching of the cylinder radius. However, the traditional PML suffers from an artificial field divergence limiting its usefulness. We show that the choice of a constant cylinder radius leads to mode profiles...

  8. An improved perfectly matched layer in the eigenmode expansion technique

    DEFF Research Database (Denmark)

    Gregersen, Niels; Mørk, Jesper

    2008-01-01

    When employing the eigenmode expansion technique (EET), parasitic reflections at the boundary of the computational domain can be suppressed by introducing a perfectly matched layer (PML). However, the traditional PML, suffers from an artificial field divergence limiting its usefulness. We propose...

  9. Perfect Power Prototype for Illinois Institute of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shahidehpour, Mohammad [Illinois Inst. Of Technology, Chicago, IL (United States)

    2014-09-30

    Starting in October 2008, Illinois Institute of Technology (IIT), in collaboration with over 20 participating members, led an extensive effort to develop, demonstrate, promote, and commercialize a microgrid system and offer supporting technologies that will achieve Perfect Power at the main campus of IIT. A Perfect Power system, as defined by the Galvin Electricity Initiative (GEI), is a system that cannot fail to meet the electric needs of the individual end-user. The Principle Investigator of this Perfect Power project was Dr. Mohammad Shahidehpour, Director of the Robert W. Galvin Center for Electricity Innovation at IIT. There were six overall objectives of the Perfect Power project: (1) Demonstrate the higher reliability introduced by the microgrid system at IIT; (2) Demonstrate the economics of microgrid operations; (3) Allow for a decrease of fifty percent (50%) of grid electricity load; (4) Create a permanent twenty percent (20%) decrease in peak load from 2007 level; (5) Defer planned substation through load reduction; (6) Offer a distribution system design that can be replicated in urban communities.

  10. Do Musicians with Perfect Pitch Have More Autism Traits than Musicians without Perfect Pitch? An Empirical Study

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increas...

  11. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  12. Perfect quantum multiple-unicast network coding protocol

    Science.gov (United States)

    Li, Dan-Dan; Gao, Fei; Qin, Su-Juan; Wen, Qiao-Yan

    2018-01-01

    In order to realize long-distance and large-scale quantum communication, it is natural to utilize quantum repeater. For a general quantum multiple-unicast network, it is still puzzling how to complete communication tasks perfectly with less resources such as registers. In this paper, we solve this problem. By applying quantum repeaters to multiple-unicast communication problem, we give encoding-decoding schemes for source nodes, internal ones and target ones, respectively. Source-target nodes share EPR pairs by using our encoding-decoding schemes over quantum multiple-unicast network. Furthermore, quantum communication can be accomplished perfectly via teleportation. Compared with existed schemes, our schemes can reduce resource consumption and realize long-distance transmission of quantum information.

  13. On a ''conformal'' perfect fluid in the classical vacuum

    International Nuclear Information System (INIS)

    Culetu, H.

    1993-02-01

    A possible existence of a conformal perfect fluid in the classical vacuum is investigated in this letter. It is shown, contrary to Madsen's opinion, that the scalar field stress tensor acquires a perfect fluid form even with a nonminimal coupling (ξ = 1/6) in the Einstein Lagrangian, provided the geometry is the Lorentzian analogue of the Euclidean Hawking wormhole. In addition, our T μν equals (up to a constant factor) the vacuum expectation value of the Fulling stress tensor for a massless scalar field and Visser's one concerning transversible wormholes. On the other side of the light cone, there is a coordinate system (the dimensionally reduced Witten bubble) where the stress tensor becomes diagonal. (author). 13 refs

  14. Perfect commuting-operator strategies for linear system games

    Science.gov (United States)

    Cleve, Richard; Liu, Li; Slofstra, William

    2017-01-01

    Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.

  15. Novel beam bunching methods by perfect crystals and electromagnetic means

    International Nuclear Information System (INIS)

    Rauch, H.

    1985-01-01

    The use of perfect crystals for installing new neutron small-angle scattering cameras provides advantages for measurements in the small Q-range and for real-time experiments. A neutron resonator is proposed which is based on the combination of perfect crystal back-reflections in Zeman energy splitting. The neutron magnetic resonance system in combination with gated crystals can act as a pumping unit for neutrons and as a new pulse-shaping unit. It is shown how travelling magnetic waves can act as powerful neutron bunching units. The achievable velocity changes are around 5 m/s and, therefore, by a factor of 100 larger than in the case of neutron magnetic resonance systems. The advantage of expanding potentials for focusing neutrons from a source with a long pulse duration becomes obvious. Real gain factors higher than 10 are expected for properly designed systems. (author)

  16. Thermodynamics of perfect fluids from scalar field theory

    CERN Document Server

    Ballesteros, Guillermo; Pilo, Luigi

    2016-01-01

    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  17. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yijun [Institute of Optoelectronic Technology, Department of Electronic Engineering, Xiamen University, Xiamen 361005 (China); Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Zhu, Jinfeng, E-mail: nanoantenna@hotmail.com [Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Liu, Qing Huo [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2015-01-26

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  18. A quantitative comparison of corrective and perfective maintenance

    Science.gov (United States)

    Henry, Joel; Cain, James

    1994-01-01

    This paper presents a quantitative comparison of corrective and perfective software maintenance activities. The comparison utilizes basic data collected throughout the maintenance process. The data collected are extensive and allow the impact of both types of maintenance to be quantitatively evaluated and compared. Basic statistical techniques test relationships between and among process and product data. The results show interesting similarities and important differences in both process and product characteristics.

  19. The perfect family: decision making in biparental care.

    Science.gov (United States)

    Akçay, Erol; Roughgarden, Joan

    2009-10-13

    Previous theoretical work on parental decisions in biparental care has emphasized the role of the conflict between evolutionary interests of parents in these decisions. A prominent prediction from this work is that parents should compensate for decreases in each other's effort, but only partially so. However, experimental tests that manipulate parents and measure their responses fail to confirm this prediction. At the same time, the process of parental decision making has remained unexplored theoretically. We develop a model to address the discrepancy between experiments and the theoretical prediction, and explore how assuming different decision making processes changes the prediction from the theory. We assume that parents make decisions in behavioral time. They have a fixed time budget, and allocate it between two parental tasks: provisioning the offspring and defending the nest. The proximate determinant of the allocation decisions are parents' behavioral objectives. We assume both parents aim to maximize the offspring production from the nest. Experimental manipulations change the shape of the nest production function. We consider two different scenarios for how parents make decisions: one where parents communicate with each other and act together (the perfect family), and one where they do not communicate, and act independently (the almost perfect family). The perfect family model is able to generate all the types of responses seen in experimental studies. The kind of response predicted depends on the nest production function, i.e. how parents' allocations affect offspring production, and the type of experimental manipulation. In particular, we find that complementarity of parents' allocations promotes matching responses. In contrast, the relative responses do not depend on the type of manipulation in the almost perfect family model. These results highlight the importance of the interaction between nest production function and how parents make decisions

  20. Quality strategies implemented within the tourism agency Perfect Tour

    Directory of Open Access Journals (Sweden)

    Madar, A.

    2012-01-01

    Full Text Available The paper presents the quality strategies adopted by the tourism agency Perfect Tour. The most important advantages of the Romanian agency in comparison with its competitors are: the focus on high quality services, cooperation with other international agencies, entering new fields like medical tourism and sole representative of Disneyland Paris. The strategies adopted explain the good financial results even in the period of crisis.