WorldWideScience

Sample records for perennial ice zone

  1. Contrasts in Sea Ice Formation and Production in the Arctic Seasonal and Perennial Ice Zones

    Science.gov (United States)

    Kwok, R.

    2006-01-01

    Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea ice deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) ice zones. Ice production is of seasonal ice in openings during the winter. 3-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the mid-winter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is in the SIZ north of coastal Alaska. Both ice deformation and production are higher in the SIZ: deformation-related ice production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m) - this is connected to ice strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal ice growth in ice fractures accounts for approx.25-40% of the total ice production of the Arctic Ocean. By itself, this deformation-ice production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on ice production in the face of increasing seasonal and thinner/weaker ice coverage could be modified by: local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and, the upwelling of the pynocline associated with increased occurrence of large shear motion in sea ice.

  2. The potential of perennial cave ice in isotope palaeoclimatology

    International Nuclear Information System (INIS)

    Yonge, Charles J.; MacDonald, William D.

    1999-01-01

    Perennial ice from caves on and to the east of the Canadian Great Divide yield delta O 18 and delta D values which are usually high measurements where compared with the average precipitation for the region. Furthermore, these ice data fall below and along lines of lower slope than the Global Meteoric Water Line. To explain the observed relationships, we propose the following process. a vapour-ice isotopic fractionation mechanism operates on warm season vapour when it precipitates as hoar ice on entering the caves. The subsequent fall of hoar to the cave floor through mechanical overloading along with ice derived from ground-water seepage (with a mean annual isotopic composition), results in massive ice formation of a mixed composition. This mixed composition is what is observed in the characteristic relationships found here. Such findings suggest that a warm versus cold climate interpretation for ancient cave ice may be the opposite of that found in the more familiar polar and glacial ice caves. (Author) 3 figs., 1 tab., 12 refs

  3. Marginal Ice Zone Bibliography.

    Science.gov (United States)

    1985-06-01

    Tsunamis, Gravimetry , Earth Tides, World Data Center A: Oceanography Recent Movements of the Earth’s National Oceanographic Data Center Crust...sufficiently low, the dissolved salts precipitate out in the form of solid hydrates. It has been proposed that these solid hydrates add to the overall...strength of the ice. The first salt hydrate to precipitate should be that of sodium sul- * fate, Na2SO4IOH2O (the sulfate ion is the second most

  4. Seasonal Ice Zone Reconnaissance Surveys Coordination

    Science.gov (United States)

    2016-03-30

    Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness ( ADA ) flights of opportunity in the summers of 2012- 2014. In...measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness ( ADA ) flights of...such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. In addition to SIZRS

  5. Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica

    Science.gov (United States)

    Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.

    2016-01-01

    A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.

  6. Antarctic Circumpolar Current Dynamics and Their Relation to Antarctic Ice Sheet and Perennial Sea-Ice Variability in the Central Drake Passage During the Last Climate Cycle

    Science.gov (United States)

    Kuhn, G.; Wu, S.; Hass, H. C.; Klages, J. P.; Zheng, X.; Arz, H. W.; Esper, O.; Hillenbrand, C. D.; Lange, C.; Lamy, F.; Lohmann, G.; Müller, J.; McCave, I. N. N.; Nürnberg, D.; Roberts, J.; Tiedemann, R.; Timmermann, A.; Titschack, J.; Zhang, X.

    2017-12-01

    The evolution of the Antarctic Ice Sheet during the last climate cycle and the interrelation to global atmospheric and ocean circulation remains controversial and plays an important role for our understanding of ice sheet response to modern global warming. The timing and sequence of deglacial warming is relevant for understanding the variability and sensitivity of the Antarctic Ice Sheet to climatic changes, and the continuing rise of atmospheric greenhouse gas concentrations. The Antarctic Ice Sheet is a pivotal component of the global water budget. Freshwater fluxes from the ice sheet may affect the Antarctic Circumpolar Current (ACC), which is strongly impacted by the westerly wind belt in the Southern Hemisphere (SHWW) and constricted to its narrowest extent in the Drake Passage. The flow of ACC water masses through Drake Passage is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global meridional overturning circulation and global climate change. In order to address orbital and millennial-scale variability of the Antarctic ice sheet and the ACC, we applied a multi-proxy approach on a sediment core from the central Drake Passage including grain size, iceberg-rafted debris, mineral dust, bulk chemical and mineralogical composition, and physical properties. In combination with already published and new sediment records from the Drake Passage and Scotia Sea, as well as high-resolution data from Antarctic ice cores (WDC, EDML), we now have evidence that during glacial times a more northerly extent of the perennial sea-ice zone decreased ACC current velocities in the central Drake Passage. During deglaciation the SHWW shifted southwards due to a decreasing temperature gradient between subtropical and polar latitudes caused by sea ice and ice sheet decline. This in turn caused Southern Hemisphere warming, a more vigorous ACC, stronger Southern Ocean ventilation, and warm Circumpolar Deep Water (CDW) upwelling on Antarctic shelves

  7. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    Science.gov (United States)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  8. Ice films follow structure zone model morphologies

    International Nuclear Information System (INIS)

    Cartwright, Julyan H.E.; Escribano, Bruno; Sainz-Diaz, C. Ignacio

    2010-01-01

    Ice films deposited at temperatures of 6-220 K and at low pressures in situ in a cryo-environmental scanning electron microscope show pronounced morphologies at the mesoscale consistent with the structure zone model of film growth. Water vapour was injected directly inside the chamber at ambient pressures ranging from 10 -4 Pa to 10 2 Pa. Several different substrates were used to exclude the influence of their morphology on the grown films. At the lowest temperatures the ice, which under these conditions is amorphous on the molecular scale, shows the mesoscale morphologies typical of the low-temperature zones of the structure zone model (SZM), including cauliflower, transition, spongelike and matchstick morphologies. Our experiments confirm that the SZM is independent of the chemical nature of the adsorbate, although the intermolecular interactions in water (hydrogen bonds) are different to those in ceramics or metals. At higher temperatures, on the other hand, where the ice is hexagonal crystalline on the molecular scale, it displays a complex palmlike morphology on the mesoscale.

  9. Ice films follow structure zone model morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E. [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain); Escribano, Bruno, E-mail: bruno.escribano.salazar@gmail.co [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain); Sainz-Diaz, C. Ignacio [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain)

    2010-04-02

    Ice films deposited at temperatures of 6-220 K and at low pressures in situ in a cryo-environmental scanning electron microscope show pronounced morphologies at the mesoscale consistent with the structure zone model of film growth. Water vapour was injected directly inside the chamber at ambient pressures ranging from 10{sup -4} Pa to 10{sup 2} Pa. Several different substrates were used to exclude the influence of their morphology on the grown films. At the lowest temperatures the ice, which under these conditions is amorphous on the molecular scale, shows the mesoscale morphologies typical of the low-temperature zones of the structure zone model (SZM), including cauliflower, transition, spongelike and matchstick morphologies. Our experiments confirm that the SZM is independent of the chemical nature of the adsorbate, although the intermolecular interactions in water (hydrogen bonds) are different to those in ceramics or metals. At higher temperatures, on the other hand, where the ice is hexagonal crystalline on the molecular scale, it displays a complex palmlike morphology on the mesoscale.

  10. Ocean Profile Measurements During the Seasonal Ice Zone Reconnaissance Surveys

    Science.gov (United States)

    2014-09-30

    ice cover in 2014. The consequent reduced melting early in the summer delays the onset of sea - ice - albedo feed back in accelerating melt throughout the...Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. This report covers our grant...region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice

  11. Perennial water stratification and the role of freshwater in the mass balance of Arctic ice shelves and multiyear landfast sea ice

    International Nuclear Information System (INIS)

    Jeffries, M.O.

    1991-01-01

    A number of the ice shelves of northern Ellesmere Island in the Canadian High Arctic owe their origin to multiyear landfast sea ice (MLSI) growth during the post-Hypsithermal cooling ca. 3,000-4,000 BP. Since they grew in response to an arctic-wide climatic deterioration and contain evidence of occasional post-4,000 BP climatic ameliorations, they may be expected to be sensitive to future global climate changes manifested in the High Arctic. The purpose of this paper is to examine ice-ocean interactions and feedbacks, and the response of the ice shelves and the MLSI to the improved summer climate of the last ca. 100 years, and implications for the future. There is good evidence that there has been a negative surface mass balance since the turn of the century. Mass balance measurements on the Ward Hunt Ice Shelf between 1966 and 1985 indicate a total ice loss of 1.371 m at a mean annual rate of 68.5 mm. The interannual pattern of accumulation and ablation and the long-term losses on the ice shelf are similar to other Canadian High Arctic glacier mass balance records. It is evident from water and ice core records of salinity, δ 18 0 and tritium, that perennial water stratification is common below and behind the ice shelves and MLSI. The coastal waters are highly stratified, with anything from 0.5 m to 41.0 m of freshwater interposed between the overlying ice and underlying seawater. The primary source of the freshwater is summer run-off of snow-meltwater from the adjacent land and from the ice itself. There is minimal mixing between the influent freshwater and seawater, and the freshwater is either dammed behind the ice shelves and the MLSI, with subsequent under-ice freshwater outflows, or pooled in under-ice depressions

  12. Seasonal Ice Zone Reconnaissance Surveys Coordination and Ocean Profiles

    Science.gov (United States)

    2015-09-30

    measurements across the Beaufort- Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness ( ADA ) flights of opportunity...such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. In addition to SIZRS...This grant coordinates the various SIZRS observations on the ADA flights, assures integration with modeling efforts, serves as the SIZRS point of

  13. Some Results on Sea Ice Rheology for the Seasonal Ice Zone, Obtained from the Deformation Field of Sea Ice Drift Pattern

    Science.gov (United States)

    Toyota, T.; Kimura, N.

    2017-12-01

    Sea ice rheology which relates sea ice stress to the large-scale deformation of the ice cover has been a big issue to numerical sea ice modelling. At present the treatment of internal stress within sea ice area is based mostly on the rheology formulated by Hibler (1979), where the whole sea ice area behaves like an isotropic and plastic matter under the ordinary stress with the yield curve given by an ellipse with an aspect ratio (e) of 2, irrespective of sea ice area and horizontal resolution of the model. However, this formulation was initially developed to reproduce the seasonal variation of the perennial ice in the Arctic Ocean. As for its applicability to the seasonal ice zones (SIZ), where various types of sea ice are present, it still needs validation from observational data. In this study, the validity of this rheology was examined for the Sea of Okhotsk ice, typical of the SIZ, based on the AMSR-derived ice drift pattern in comparison with the result obtained for the Beaufort Sea. To examine the dependence on a horizontal scale, the coastal radar data operated near the Hokkaido coast, Japan, were also used. Ice drift pattern was obtained by a maximum cross-correlation method with grid spacings of 37.5 km from the 89 GHz brightness temperature of AMSR-E for the entire Sea of Okhotsk and the Beaufort Sea and 1.3 km from the coastal radar for the near-shore Sea of Okhotsk. The validity of this rheology was investigated from a standpoint of work rate done by deformation field, following the theory of Rothrock (1975). In analysis, the relative rates of convergence were compared between theory and observation to check the shape of yield curve, and the strain ellipse at each grid cell was estimated to see the horizontal variation of deformation field. The result shows that the ellipse of e=1.7-2.0 as the yield curve represents the observed relative conversion rates well for all the ice areas. Since this result corresponds with the yield criterion by Tresca and

  14. Air-sea interactions in the marginal ice zone

    Directory of Open Access Journals (Sweden)

    Seth Zippel

    2016-03-01

    Full Text Available Abstract The importance of waves in the Arctic Ocean has increased with the significant retreat of the seasonal sea-ice extent. Here, we use wind, wave, turbulence, and ice measurements to evaluate the response of the ocean surface to a given wind stress within the marginal ice zone, with a focus on the local wind input to waves and subsequent ocean surface turbulence. Observations are from the Beaufort Sea in the summer and early fall of 2014, with fractional ice cover of up to 50%. Observations showed strong damping and scattering of short waves, which, in turn, decreased the wind energy input to waves. Near-surface turbulent dissipation rates were also greatly reduced in partial ice cover. The reductions in waves and turbulence were balanced, suggesting that a wind-wave equilibrium is maintained in the marginal ice zone, though at levels much less than in open water. These results suggest that air-sea interactions are suppressed in the marginal ice zone relative to open ocean conditions at a given wind forcing, and this suppression may act as a feedback mechanism in expanding a persistent marginal ice zone throughout the Arctic.

  15. Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone

    Science.gov (United States)

    Morison, J.

    2016-02-01

    The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.

  16. How Vulnerable is Perennial Sea Ice? Insights from Earth's Late Cenozoic Natural Experiments (Invited)

    Science.gov (United States)

    Brigham-Grette, J.; Polyak, L. V.; Caissie, B.; Sharko, C. J.; Petsch, S.

    2010-12-01

    Sea ice is an important component of the climate system. Yet, reconstructions of Arctic sea ice conditions reflecting glacial and interglacial change over the past 3 million years are almost nonexistent. Our work to evaluate the sea ice and sea surface temperature record of the Bering Strait region builds on a review of the sea ice history of the pan-Arctic. The best estimates of sea ice make use of indirect proxies based on reconstructions of treeline, sea surface temperatures, depositional systems, and the ecological preferences of extant marine microfossil species. The development of new proxies of past sea ice extent including microfossil assemblages (diatoms, ostracodes) and biomarker proxies (IP25) show promise for quantifying seasonal concentrations of sea ice cover on centennial to millennial timescales. Using both marine and terrestrial information, periods of restricted sea ice and ice-free Arctic conditions can be inferred for parts of the late Cenozoic. The Arctic Ocean borderlands contain clear stratigraphic evidence for forested conditions at intervals over the past 50 million years, recording the migration of treeline from High Arctic coastal locations within the Canadian Archipelago. Metasequoia forests of the peak Eocene gave way to a variety of biomass-rich circumarctic redwood forests by 46 Ma. Between 23 and 16 Ma, cool-temperate metasequoia forests dominated NE Alaska and the Yukon while mixed conifer-hardwood forests (similar to those of modern southern maritime Canada and New England) dominated the central Canadian Archipelago. By 16 Ma, these forests gave way to larch and spruce. From 5 to 3 Ma the braid plains of the Beaufort Fm were dominated by over 100 vascular plants including pine and birch, while other locations remained dominated by spruce and larch. Boreal conditions across northern Greenland and arctic Alaska are consistent with the presence of bivalve Arctica islandica in marine sediments capping the Beaufort Formation on Meighen

  17. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program

    Science.gov (United States)

    2014-09-30

    OBJECTIVES • What is the volume of sea ice in the Beaufort Sea Seasonal Ice Zone (SIZ) and how does this evolve during summer as the ice edge...retreats? Recent observations suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest...surrounding ice . Recent analyses have indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer

  18. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems

    Science.gov (United States)

    Zappa, C. J.

    2015-12-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near

  19. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone

    Science.gov (United States)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.

    2016-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong

  20. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  1. Air-Sea Interactions in the Marginal Ice Zone

    Science.gov (United States)

    2016-03-31

    elementascience.org Air-sea interactions in the marginal ice zoneAir-Sea interactions in the Marginal Ice Zone Seth Zippel1* • Jim Thomson1 1Applied...Bidlot, 2013; Collins -III et al., 2015). Spectral wave directions and spread are given in Figure 5, where the difference in wave and wind direction...359219a0. Chalikov DV, Belevich MY. 1993. One-dimensional theory of the wave boundary layer. Bound-Lay Meteor 63: 65–96. Collins -III CO, Rogers WE

  2. Cryogenic Cave Pearls In the Periglacial Zones of Ice Caves

    Czech Academy of Sciences Publication Activity Database

    Žák, Karel; Orvošová, M.; Filippi, Michal; Vlček, M.; Onac, B. P.; Persoiu, A.; Rohovec, Jan; Světlík, Ivo

    2013-01-01

    Roč. 83, č. 2 (2013), s. 207-220 ISSN 1527-1404 R&D Projects: GA ČR GAP210/10/1760 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 ; RVO:61389005 Keywords : caves * cryogenic caves * ice caves * periglacial zones Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.943, year: 2013

  3. Active/passive microwave sensor comparison of MIZ-ice concentration estimates. [Marginal Ice Zone (MIZ)

    Science.gov (United States)

    Burns, B. A.; Cavalieri, D. J.; Keller, M. R.

    1986-01-01

    Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.

  4. An Autonomous Approach to Observing the Seasonal Ice Zone in the Western Arctic

    OpenAIRE

    Lee, Craig M.; Thomson, Jim

    2017-01-01

    The Marginal Ice Zone and Arctic Sea State programs examined the processes that govern evolution of the rapidly changing seasonal ice zone in the Beaufort Sea. Autonomous platforms operating from the ice and within the water column collected measurements across the atmosphere-ice-ocean system and provided the persistence to sample continuously through the springtime retreat and autumn advance of sea ice. Autonomous platforms also allowed operational modalities that reduced the field programs’...

  5. 3D Volume and Morphology of Perennial Cave Ice and Related Geomorphological Models at Scăriloara Ice Cave, Romania, from Structure from Motion, Ground Penetrating Radar and Total Station Surveys

    Science.gov (United States)

    Hubbard, J.; Onac, B. P.; Kruse, S.; Forray, F. L.

    2017-12-01

    Research at Scăriloara Ice Cave has proceeded for over 150 years, primarily driven by the presence and paleoclimatic importance of the large perennial ice block and various ice speleothems located within its galleries. Previous observations of the ice block led to rudimentary volume estimates of 70,000 to 120,000 cubic meters (m3), prospectively placing it as one of the world's largest cave ice deposits. The cave morphology and the surface of the ice block are now recreated in a total station survey-validated 3D model, produced using Structure from Motion (SfM) software. With the total station survey and the novel use of ArcGIS tools, the SfM validation process is drastically simplified to produce a scaled, georeferenced, and photo-texturized 3D model of the cave environment with a root-mean-square error (RMSE) of 0.24 m. Furthermore, ground penetrating radar data was collected and spatially oriented with the total station survey to recreate the ice block basal surface and was combined with the SfM model to create a model of the ice block itself. The resulting ice block model has a volume of over 118,000 m3 with an uncertainty of 9.5%, with additional volumes left un-surveyed. The varying elevation of the ice block basal surface model reflect specific features of the cave roof, such as areas of enlargement, shafts, and potential joints, which offer further validation and inform theories on cave and ice genesis. Specifically, a large depression area was identified as a potential area of initial ice growth. Finally, an ice thickness map was produced that will aid in the designing of future ice coring projects. This methodology presents a powerful means to observe and accurately characterize and measure cave and cave ice morphologies with ease and affordability. Results further establish the significance of Scăriloara's ice block to paleoclimate research, provide insights into cave and ice block genesis, and aid future study design.

  6. On Wave-Ice Interaction in the Arctic Marginal Ice Zone: Dispersion, Attenuation, and Ice Response

    Science.gov (United States)

    2016-06-01

    described in Thorndike et al. [1975]. Waves have not played a role in CICE because their influence is limited to the MIZ which was traditionally a... Thorndike et al, [1979] d(p) is area conserving, so that the integral over all ranges of ice property, p, is unity. � ()...most effected by lateral melt < O(30 m). Observations of FSD [Rothrock and Thorndike , 1984; Toyota et al., 2006], done through analysis of aerial

  7. Biologically-Oriented Processes in the Coastal Sea Ice Zone of the White Sea

    Science.gov (United States)

    Melnikov, I. A.

    2002-12-01

    The annual advance and retreat of sea ice is a major physical determinant of spatial and temporal changes in the structure and function of marine coastal biological communities. Sea ice biological data obtained in the tidal zone of Kandalaksha Gulf (White Sea) during 1996-2001 period will be presented. Previous observations in this area were mainly conducted during the ice-free summer season. However, there is little information on the ice-covered winter season (6-7 months duration), and, especially, on the sea-ice biology in the coastal zone within tidal regimes. During the January-May period time-series observations were conducted on transects along shorelines with coastal and fast ice. Trends in the annual extent of sea ice showed significant impacts on ice-associated biological communities. Three types of sea ice impact on kelps, balanoides, littorinas and amphipods are distinguished: (i) positive, when sea ice protects these populations from grinding (ii) negative, when ice grinds both fauna and flora, and (iii) a combined effect, when fast ice protects, but anchored ice grinds plant and animals. To understand the full spectrum of ecological problems caused by pollution on the coastal zone, as well as the problems of sea ice melting caused by global warming, an integrated, long-term study of the physical, chemical, and biological processes is needed.

  8. Thin Ice Area Extraction in the Seasonal Sea Ice Zones of the Northern Hemisphere Using Modis Data

    Science.gov (United States)

    Hayashi, K.; Naoki, K.; Cho, K.

    2018-04-01

    Sea ice has an important role of reflecting the solar radiation back into space. However, once the sea ice area melts, the area starts to absorb the solar radiation which accelerates the global warming. This means that the trend of global warming is likely to be enhanced in sea ice areas. In this study, the authors have developed a method to extract thin ice area using reflectance data of MODIS onboard Terra and Aqua satellites of NASA. The reflectance of thin sea ice in the visible region is rather low. Moreover, since the surface of thin sea ice is likely to be wet, the reflectance of thin sea ice in the near infrared region is much lower than that of visible region. Considering these characteristics, the authors have developed a method to extract thin sea ice areas by using the reflectance data of MODIS (NASA MYD09 product, 2017) derived from MODIS L1B. By using the scatter plots of the reflectance of Band 1 (620 nm-670 nm) and Band 2 (841 nm-876 nm)) of MODIS, equations for extracting thin ice area were derived. By using those equations, most of the thin ice areas which could be recognized from MODIS images were well extracted in the seasonal sea ice zones in the Northern Hemisphere, namely the Sea of Okhotsk, the Bering Sea and the Gulf of Saint Lawrence. For some limited areas, Landsat-8 OLI images were also used for validation.

  9. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone

    Science.gov (United States)

    Cooper, Matthew G.; Smith, Laurence C.; Rennermalm, Asa K.; Miège, Clément; Pitcher, Lincoln H.; Ryan, Jonathan C.; Yang, Kang; Cooley, Sarah W.

    2018-03-01

    We document the density and hydrologic properties of bare, ablating ice in a mid-elevation (1215 m a.s.l.) supraglacial internally drained catchment in the Kangerlussuaq sector of the western Greenland ice sheet. We find low-density (0.43-0.91 g cm-3, μ = 0.69 g cm-3) ice to at least 1.1 m depth below the ice sheet surface. This near-surface, low-density ice consists of alternating layers of water-saturated, porous ice and clear solid ice lenses, overlain by a thin (sheet ablation zone surface. A conservative estimate for the ˜ 63 km2 supraglacial catchment yields 0.009-0.012 km3 of liquid meltwater storage in near-surface, porous ice. Further work is required to determine if these findings are representative of broader areas of the Greenland ice sheet ablation zone, and to assess the implications for sub-seasonal mass balance processes, surface lowering observations from airborne and satellite altimetry, and supraglacial runoff processes.

  10. Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf

    Science.gov (United States)

    Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.

    2017-12-01

    Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.

  11. Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest.

    Directory of Open Access Journals (Sweden)

    Timothy D Meehan

    Full Text Available Integration of energy crops into agricultural landscapes could promote sustainability if they are placed in ways that foster multiple ecosystem services and mitigate ecosystem disservices from existing crops. We conducted a modeling study to investigate how replacing annual energy crops with perennial energy crops along Wisconsin waterways could affect a variety of provisioning and regulating ecosystem services. We found that a switch from continuous corn production to perennial-grass production decreased annual income provisioning by 75%, although it increased annual energy provisioning by 33%, decreased annual phosphorous loading to surface water by 29%, increased below-ground carbon sequestration by 30%, decreased annual nitrous oxide emissions by 84%, increased an index of pollinator abundance by an average of 11%, and increased an index of biocontrol potential by an average of 6%. We expressed the tradeoffs between income provisioning and other ecosystem services as benefit-cost ratios. Benefit-cost ratios averaged 12.06 GJ of additional net energy, 0.84 kg of avoided phosphorus pollution, 18.97 Mg of sequestered carbon, and 1.99 kg of avoided nitrous oxide emissions for every $1,000 reduction in income. These ratios varied spatially, from 2- to 70-fold depending on the ecosystem service. Benefit-cost ratios for different ecosystem services were generally correlated within watersheds, suggesting the presence of hotspots--watersheds where increases in multiple ecosystem services would come at lower-than-average opportunity costs. When assessing the monetary value of ecosystem services relative to existing conservation programs and environmental markets, the overall value of enhanced services associated with adoption of perennial energy crops was far lower than the opportunity cost. However, when we monitized services using estimates for the social costs of pollution, the value of enhanced services far exceeded the opportunity cost. This

  12. Marginal Ice Zone (MIZ) Program: Science and Experiment Plan

    Science.gov (United States)

    2012-10-01

    MIZ ( Terra Nordica and Sir John Franklin, since renamed Amundsen) served largely to provide ground truth data. _______________________UNIVERSITY OF...ocean, and sea ice components. Currently under development is the incorporation of ice sheets, glaciers and ice caps, and dynamic vegetation . The...and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the

  13. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    Science.gov (United States)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and

  14. Evolution of the Marginal Ice Zone: Adaptive Sampling with Autonomous Gliders

    Science.gov (United States)

    2015-09-30

    release; distribution is unlimited. Evolution of the Marginal Ice Zone: Adaptive Sampling with Autonomous Gliders Craig M. Lee, Luc Rainville and Jason I...missions in ice-covered waters , where they provide several unique capabilities. Ice-capable Seagliders can maintain persistent (many months) sampling ...irradiance. Careful calibration casts, including water sampling , were conducted during both the deployment and recovery cruises. An example of a

  15. A Meteorological Experiment in the Melting Zone of the Greenland Ice Sheet

    NARCIS (Netherlands)

    Oerlemans, J.; Vugts, H.F.

    1993-01-01

    Preliminary results are described from a glaciometeorological experiment carried out in the margin (melting zone) of the Greenland ice sheet in the summers of 1990 and 1991. This work was initiated within the framework of a Dutch research program on land ice and sea level change. Seven

  16. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone

    Science.gov (United States)

    Barber, David G.; Hop, Haakon; Mundy, Christopher J.; Else, Brent; Dmitrenko, Igor A.; Tremblay, Jean-Eric; Ehn, Jens K.; Assmy, Philipp; Daase, Malin; Candlish, Lauren M.; Rysgaard, Søren

    2015-12-01

    The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean-sea ice-atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underlying water column. Changes in the Arctic MIZ were interpreted for the period 1979-2010, based on best-fit regressions for each month. Trends of increasingly open water were statistically significant for each month, with quadratic fit for August-November, illustrating particularly strong seasonal feedbacks in sea-ice formation and decay. Geographic interpretations of physical and biological changes were based on comparison of regions with significant changes in sea ice: (1) The Pacific Sector of the Arctic Ocean including the Canada Basin and the Beaufort, Chukchi and East Siberian seas; (2) The Canadian Arctic Archipelago; (3) Baffin Bay and Hudson Bay; and (4) the Barents and Kara seas. Changes in ice conditions in the Barents sea/Kara sea region appear to be primarily forced by ocean heat fluxes during winter, whereas changes in the other sectors appear to be more summer-autumn related and primarily atmospherically forced. Effects of seasonal and regional changes in OSA-system with regard to increased open water were summarized for photosynthetically available radiation, nutrient delivery to the euphotic zone, primary production of ice algae and phytoplankton, ice-associated fauna and zooplankton, and gas exchange of CO2. Changes in the physical factors varied amongst regions, and showed direct effects on organisms linked to sea ice. Zooplankton species appear to be more flexible and likely able to adapt to variability in the onset of primary production. The major changes identified for the ice-associated ecosystem are with regard to production timing and abundance or biomass of ice flora and fauna, which are related to

  17. The Ice Cap Zone: A Unique Habitable Zone for Ocean Worlds

    Science.gov (United States)

    Ramirez, Ramses M.; Levi, Amit

    2018-03-01

    Traditional definitions of the habitable zone assume that habitable planets contain a carbonate-silicate cycle that regulates CO2 between the atmosphere, surface, and the interior. Such theories have been used to cast doubt on the habitability of ocean worlds. However, Levi et al (2017) have recently proposed a mechanism by which CO2 is mobilized between the atmosphere and the interior of an ocean world. At high enough CO2 pressures, sea ice can become enriched in CO2 clathrates and sink after a threshold density is achieved. The presence of subpolar sea ice is of great importance for habitability in ocean worlds. It may moderate the climate and is fundamental in current theories of life formation in diluted environments. Here, we model the Levi et al. mechanism and use latitudinally-dependent non-grey energy balance and single-column radiative-convective models and find that this mechanism may be sustained on ocean worlds that rotate at least 3 times faster than the Earth. We calculate the circumstellar region in which this cycle may operate for G-M-stars (Teff = 2,600-5,800 K), extending from ˜1.23 - 1.65, 0.69 - 0.873, 0.38-0.528 AU, 0.219-0.308 AU, 0.146-0.206 AU, and 0.0428-0.0617 AU for G2, K3, M0, M3, M5, and M8 stars, respectively. However, unless planets are very young and not tidally-locked, our mechanism would be unlikely to apply to stars cooler than a ˜M3. We predict C/O ratios for our atmospheres (˜0.5) that can be verified by the JWST mission.

  18. The Effect of Topographic Shadowing by Ice on Irradiance in the Greenland Ice Sheet Ablation Zone

    Science.gov (United States)

    Leidman, S. Z.; Rennermalm, A. K.; Ryan, J.; Cooper, M. G.; Smith, L. C.

    2017-12-01

    Accurately predicting runoff contributions to global sea level rise requires more refined surface mass balance (SMB) models of the Greenland Ice Sheet (GrIS). Topographic shadowing has shown to be important in the SMB of snow-covered regions, yet SMB models for the GrIS generally ignore how surface topography affects spatial variability of incoming solar radiation on a surface. In the ablation zone of Southwest Greenland, deeply incised supraglacial drainage features, fracturing, and large-scale bed deformation result in extensive areas of rough surface topography. This topography blocks direct radiation such that shadowed areas receive less energy for melting while other topographic features such as peaks recieve more energy. In this study, we quantify how shadowing from local topography features changes incoming solar radiation. We apply the ArcGIS Pro Solar Radiation Toolset to calculate the direct and diffuse irradiance in sunlit and shadowed areas by determining the sun's movement for every half hour increment of 2016. Multiple digital elevation models (DEMs) with spatial resolutions ranging from 0.06 to 5m were derived from fixed wing and quadcopter UAV imagery collected in summer 2016 and the ArcticDEM dataset. Our findings show that shadowing significantly decreases irradiance compared to smoothed surfaces where local topography is removed. This decrease is exponentially proportional to the DEM pixel sized with 5m DEMs only able to capture a small percentage of the effect. Applying these calculations to the ArcticDEM to cover a larger study area indicates that decreases in irradiance are nonlinearly proportional to elevation with highly crevassed areas showing a larger effect from shadowing. Even so, shading at higher elevations reduces irradiance enough to result in several centimeters snow water equivalence (SWE) per year of over-prediction of runoff in SMB models. Furthermore, analysis of solar radiation products shows that shadowing predicts albedo

  19. A sea ice model for the marginal ice zone with an application to the Greenland Sea

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Coon, Max D.

    2004-01-01

    A model is presented that describes the formation, transport, and desalinization of frazil and pancake ice as it is formed in marginal seas. This model uses as input the total ice concentration evaluated from Special Sensor Microwave Imager and wind speed and direction. The model calculates...... the areal concentration, thickness, volume concentration, and salinity of frazil ice as well as the areal concentration, thickness, and salinity of pancakes. A simple parameterization for the Odden region of the Greenland Sea is presented. The model is run for the winter of 1996-1997. There are direct...... observations of the thickness and salinity of pancakes and the volume concentration of frazil ice to compare with the model. The model results compare very well with the measured data. This new ice model can be tuned to work in marginal seas elsewhere to calculate ice thickness, motion, and brine rejection...

  20. Real time forecasting for an experimental oil spill in the arctic marginal ice zone

    International Nuclear Information System (INIS)

    Reed, M.; Aamo, O.M.

    1994-01-01

    The conference paper deals with the oil spill trajectory and weathering model OILMAP used to forecast spill trajectories for an experimental oil spill in the Barents Sea marginal ice zone. The model includes capabilities to enter graphically and display environmental data governing oil behavior: ice fields, tidal and background current fields, and wind time series, as well as geographical map information. Forecasts can also be updated from observations such as airplane overflights. The model performed well when wind was ''off-ice'' and speeds were relatively low (3-7 m/sec), with ice cover between 60% and 90%. Errors in forecasting the trajectory could be directly attributed to errors in the wind forecasts. Appropriate drift parameters for oil and ice were about 2.5% of the wind speed, with an Ekman veering angle of 35 o to the right. Ice sheets were typically 1 m thick. When the wind became ''on-ice'', speeds increased to about 10 m/sec, and trajectory simulations began to diverge from the observations, with observed drift parameters being 1.5% of the wind speed with a 60 o veering angle. Although, simple assumptions for the large scale movement of oil in dense ice fields appear appropriate, the importance of good wind forecasts as a basis for reliable trajectory prognoses cannot be overstated. 6 refs., 9 figs

  1. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    Science.gov (United States)

    2015-09-30

    as the ship encountered smaller ice floes. The first spectra is shown in dark blue and later spectra transitioning to aqua. SWAN spectra at this time...with no ice representation, is shown in black for reference. Figure 2 below shows the dissipation rate as a function of frequency by several...shown with the black lines. These estimates are created using large numbers of inexpensive simulations for Beaufort and Chukchi Seas in 2012, to

  2. Circulation and water properties in the landfast ice zone of the Alaskan Beaufort Sea

    Science.gov (United States)

    Weingartner, Thomas J.; Danielson, Seth L.; Potter, Rachel A.; Trefry, John H.; Mahoney, Andy; Savoie, Mark; Irvine, Cayman; Sousa, Leandra

    2017-09-01

    Moorings, hydrography, satellite-tracked drifters, and high-frequency radar data describe the annual cycle in circulation and water properties in the landfast ice zone (LIZ) of the Alaskan Beaufort Sea. Three seasons, whose duration and characteristics are controlled by landfast ice formation and ablation, define the LIZ: ;winter;, ;break-up;, and ;open-water;. Winter begins in October with ice formation and ends in June when rivers commence discharging. Winter LIZ ice velocities are zero, under-ice currents are weak ( 5 cm s-1), and poorly correlated with winds and local sea level. The along-shore momentum balance is between along-shore pressure gradients and bottom and ice-ocean friction. Currents at the landfast ice-edge are swift ( 35 cm s-1), wind-driven, with large horizontal shears, and potentially unstable. Weak cross-shore velocities ( 1 cm s-1) imply limited exchanges between the LIZ and the outer shelf in winter. The month-long break-up season (June) begins with the spring freshet and concludes when landfast ice detaches from the bottom. Cross-shore currents increase, and the LIZ hosts shallow ( 2 m), strongly-stratified, buoyant and sediment-laden, under-ice river plumes that overlie a sharp, 1 m thick, pycnocline across which salinity increases by 30. The plume salt balance is between entrainment and cross-shore advection. Break-up is followed by the 3-month long open-water season when currents are swift (≥20 cm s-1) and predominantly wind-driven. Winter water properties are initialized by fall advection and evolve slowly due to salt rejection from ice. Fall waters and ice within the LIZ derive from local rivers, the Mackenzie and/or Chukchi shelves, and the Arctic basin.

  3. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    Science.gov (United States)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  4. Wave Attenuation and Gas Exchange Velocity in Marginal Sea Ice Zone

    Science.gov (United States)

    Bigdeli, A.; Hara, T.; Loose, B.; Nguyen, A. T.

    2018-03-01

    The gas transfer velocity in marginal sea ice zones exerts a strong control on the input of anthropogenic gases into the ocean interior. In this study, a sea state-dependent gas exchange parametric model is developed based on the turbulent kinetic energy dissipation rate. The model is tuned to match the conventional gas exchange parametrization in fetch-unlimited, fully developed seas. Next, fetch limitation is introduced in the model and results are compared to fetch limited experiments in lakes, showing that the model captures the effects of finite fetch on gas exchange with good fidelity. Having validated the results in fetch limited waters such as lakes, the model is next applied in sea ice zones using an empirical relation between the sea ice cover and the effective fetch, while accounting for the sea ice motion effect that is unique to sea ice zones. The model results compare favorably with the available field measurements. Applying this parametric model to a regional Arctic numerical model, it is shown that, under the present conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a conventional parameterization is used.

  5. Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and Near the Marginal Ice Zone. The “Marginal Ice Zone Observations and Processes Experiment” (MIZOPEX) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    DeMott, P. J. [Colorado State Univ., Fort Collins, CO (United States); Hill, T. C.J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-02-01

    Despite the significance of the marginal ice zones of the Arctic Ocean, basic parameters such as sea surface temperature (SST) and a range of sea-ice characteristics are still insufficiently understood in these areas, and especially so during the summer melt period. The field campaigns summarized here, identified collectively as the “Marginal Ice Zone Ocean and Ice Observations and Processes Experiment” (MIZOPEX), were funded by U.S. National Aeronautic and Space Administration (NASA) with the intent of helping to address these information gaps through a targeted, intensive observation field campaign that tested and exploited unique capabilities of multiple classes of unmanned aerial systems (UASs). MIZOPEX was conceived and carried out in response to NASA’s request for research efforts that would address a key area of science while also helping to advance the application of UASs in a manner useful to NASA for assessing the relative merits of different UASs. To further exercise the potential of unmanned systems and to expand the science value of the effort, the field campaign added further challenges such as air deployment of miniaturized buoys and coordinating missions involving multiple aircraft. Specific research areas that MIZOPEX data were designed to address include relationships between ocean skin temperatures and subsurface temperatures and how these evolve over time in an Arctic environment during summer; variability in sea-ice conditions such as thickness, age, and albedo within the marginal ice zone (MIZ); interactions of SST, salinity, and ice conditions during the melt cycle; and validation of satellite-derived SST and ice concentration fields provided by satellite imagery and models.

  6. SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone

    DEFF Research Database (Denmark)

    Kaleschke, Lars; Tian-Kunze, Xiangshan; Maaß, Nina

    2016-01-01

    system for ship route optimisation has been developed and was tested during this field campaign with the ice-strengthened research vessel RV Lance. The ship cruise was complemented with coordinated measurements from a helicopter and the research aircraft Polar 5. Sea ice thickness was measured using...... an electromagnetic induction (EM) system from the bow of RV Lance and another EM-system towed below the helicopter. Polar 5 was equipped among others with the L-band radiometer EMIRAD-2. The experiment yielded a comprehensive data set allowing the evaluation of the operational forecast and route optimisation system...

  7. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coupling of Waves, Turbulence and Thermodynamics across...developing Thermodynamically Forced Marginal Ice Zone. Submitted to JGR. Heiles,A. S., NPS thesis, Sep. 2014 Schmidt, B. K., NPS thesis March 2012 Shaw

  8. Aerial Surveys of the Beaufort Sea Seasonal Ice Zone in 2012-2014

    Science.gov (United States)

    Dewey, S.; Morison, J.; Andersen, R.; Zhang, J.

    2014-12-01

    Seasonal Ice Zone Reconnaissance Surveys (SIZRS) of the Beaufort Sea aboard U.S. Coast Guard Arctic Domain Awareness flights were made monthly from May 2012 to October 2012, June 2013 to August 2013, and June 2014 to October 2014. In 2012 sea ice extent reached a record minimum and the SIZRS sampling ranged from complete ice cover to open water; in addition to its large spatial coverage, the SIZRS program extends temporal coverage of the seasonal ice zone (SIZ) beyond the traditional season for ship-based observations, and is a good set of measurements for model validation and climatological comparison. The SIZ, where ice melts and reforms annually, encompasses the marginal ice zone (MIZ). Thus SIZRS tracks interannual MIZ conditions, providing a regional context for smaller-scale MIZ processes. Observations with Air eXpendable CTDs (AXCTDs) reveal two near-surface warm layers: a locally-formed surface seasonal mixed layer and a layer of Pacific origin at 50-60m. Temperatures in the latter differ from the freezing point by up to 2°C more than climatologies. To distinguish vertical processes of mixed layer formation from Pacific advection, vertical heat and salt fluxes are quantified using a 1-D Price-Weller-Pinkel (PWP) model adapted for ice-covered seas. This PWP simulates mixing processes in the top 100m of the ocean. Surface forcing fluxes are taken from the Marginal Ice Zone Modeling and Assimilation System MIZMAS. Comparison of SIZRS observations with PWP output shows that the ocean behaves one-dimensionally above the Pacific layer of the Beaufort Gyre. Despite agreement with the MIZMAS-forced PWP, SIZRS observations remain fresher to 100m than do outputs from MIZMAS and ECCO.2. The shapes of seasonal cycles in SIZRS salinity and temperature agree with MIZMAS and ECCO.2 model outputs despite differences in the values of each. However, the seasonal change of surface albedo is not high enough resolution to accurately drive the PWP. Use of ice albedo

  9. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    Science.gov (United States)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    ., 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, Journal of Fluid Mechanics, 766, R1 doi:10.1017/jfm.2015.37 Kadri, U., 2016, Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones, Advances in Acoustics and Vibration. 2016. doi:10.1155/2016/8076108

  10. Microphysical characteristics of squall-line stratiform precipitation and transition zones inferred using an ice particle property-evolving model

    Science.gov (United States)

    Jensen, A. A.; Harrington, J. Y.; Morrison, H.

    2017-12-01

    A quasi-idealized 3D squall line (based on a June 2007 Oklahoma case) is simulated using a novel bulk microphysics scheme called the Ice-Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL). In ISHMAEL, the evolution of ice particle properties, such as mass, shape, maximum diameter, density, and fall speed, are tracked as these properties evolve from vapor growth, sublimation, riming, and melting. Thus, ice properties evolve from various microphysical processes without needing separate unrimed and rimed ice categories. Simulation results show that ISHMAEL produces both a squall-line transition zone and an enhanced stratiform precipitation region. The ice particle properties produced in this simulation are analyzed and compared to observations to determine the characteristics of ice that lead to the development of these squall-line features. It is shown that rimed particles advected rearward from the convective region produce the enhanced stratiform precipitation region. The development of the transition zone results from hydrometer sorting: the evolution of ice particle properties in the convective region produces specific fall speeds that favor significant ice advecting rearward of the transition zone before reaching the melting level, causing a local minimum in precipitation rate and reflectivity there. Microphysical sensitivity studies, for example turning rime splintering off, that lead to changes in ice particle properties reveal that the fall speed of ice particles largely determines both the location of the enhanced stratiform precipitation region and whether or not a transition zone forms.

  11. Layer disturbances and the radio-echo free zone in ice sheets

    Directory of Open Access Journals (Sweden)

    R. Drews

    2009-08-01

    Full Text Available Radio-echo sounding of the Antarctic and Greenlandic ice sheets often reveals a layer in the lowest hundreds of meters above bedrock more or less free of radio echoes, known as the echo-free zone (EFZ. The cause of this feature is unclear, so far lacking direct evidence for its origin. We compare echoes around the EPICA drill site in Dronning Maud Land, Antarctica, with the dielectric properties, crystal orientation fabrics and optical stratigraphy of the EPICA-DML ice core. We find that echoes disappear in the depth range where the dielectric contrast is blurred, and where the coherency of the layers in the ice core is lost due to disturbances caused by the ice flow. At the drill site, the EFZ onset at ~2100 m marks a boundary, below which the ice core may have experienced flow induced disturbances on various scales. The onset may indicate changing rheology which needs to be accounted for in the modeling of ice sheet dynamics.

  12. Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling

    Science.gov (United States)

    Heilig, Achim; Eisen, Olaf; MacFerrin, Michael; Tedesco, Marco; Fettweis, Xavier

    2018-06-01

    Increasing melt over the Greenland Ice Sheet (GrIS) recorded over the past several years has resulted in significant changes of the percolation regime of the ice sheet. It remains unclear whether Greenland's percolation zone will act as a meltwater buffer in the near future through gradually filling all pore space or if near-surface refreezing causes the formation of impermeable layers, which provoke lateral runoff. Homogeneous ice layers within perennial firn, as well as near-surface ice layers of several meter thickness have been observed in firn cores. Because firn coring is a destructive method, deriving stratigraphic changes in firn and allocation of summer melt events is challenging. To overcome this deficit and provide continuous data for model evaluations on snow and firn density, temporal changes in liquid water content and depths of water infiltration, we installed an upward-looking radar system (upGPR) 3.4 m below the snow surface in May 2016 close to Camp Raven (66.4779° N, 46.2856° W) at 2120 m a.s.l. The radar is capable of quasi-continuously monitoring changes in snow and firn stratigraphy, which occur above the antennas. For summer 2016, we observed four major melt events, which routed liquid water into various depths beneath the surface. The last event in mid-August resulted in the deepest percolation down to about 2.3 m beneath the surface. Comparisons with simulations from the regional climate model MAR are in very good agreement in terms of seasonal changes in accumulation and timing of onset of melt. However, neither bulk density of near-surface layers nor the amounts of liquid water and percolation depths predicted by MAR correspond with upGPR data. Radar data and records of a nearby thermistor string, in contrast, matched very well for both timing and depth of temperature changes and observed water percolations. All four melt events transferred a cumulative mass of 56 kg m-2 into firn beneath the summer surface of 2015. We find that

  13. Seasonal evolution of the Arctic marginal ice zone and its power-law obeying floe size distribution

    Science.gov (United States)

    Zhang, J.; Stern, H. L., III; Schweiger, A. J. B.; Steele, M.; Hwang, P. B.

    2017-12-01

    A thickness, floe size, and enthalpy distribution (TFED) sea ice model, implemented numerically into the Pan-arctic Ice-Ocean Modeling and Assimilation System (PIOMAS), is used to investigate the seasonal evolution of the Arctic marginal ice zone (MIZ) and its floe size distribution. The TFED sea ice model, by coupling the Zhang et al. [2015] sea ice floe size distribution (FSD) theory with the Thorndike et al. [1975] ice thickness distribution (ITD) theory, simulates 12-category FSD and ITD explicitly and jointly. A range of ice thickness and floe size observations were used for model calibration and validation. The model creates FSDs that generally obey a power law or upper truncated power law, as observed by satellites and aerial surveys. In this study, we will examine the role of ice fragmentation and lateral melting in altering FSDs in the Arctic MIZ. We will also investigate how changes in FSD impact the seasonal evolution of the MIZ by modifying the thermodynamic processes.

  14. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area.

    Science.gov (United States)

    Gustafsson, O; Andersson, P; Axelman, J; Bucheli, T D; Kömp, P; McLachlan, M S; Sobek, A; Thörngren, J-O

    2005-04-15

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l(-1) in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC(-1) in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K(ow) (ice log K(oc)-log K(ow) regressions: p<0.05, r2=0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration

  15. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area

    International Nuclear Information System (INIS)

    Gustafsson, Oe.; Andersson, P.; Axelman, J.; Bucheli, T.D.; Koemp, P.; McLachlan, M.S.; Sobek, A.; Thoerngren, J.-O.

    2005-01-01

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l -1 in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC -1 in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K ow (ice log K oc -log K ow regressions: p 2 =0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration gradients, both

  16. Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation

    Directory of Open Access Journals (Sweden)

    A. D. Elvidge

    2016-02-01

    Full Text Available Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ and consequently make recommendations for the parametrisation of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol–Cloud Coupling And Climate Interactions in the Arctic (ACCACIA project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10 from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85  ×  10−3. CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parametrisation scheme (Lüpkes et al., 2012 tailored for sea-ice drag over the MIZ in which the two constituent components of drag – skin and form drag – are separately quantified. Current parametrisation schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012 scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement holds for subsets of the data from different locations, despite differences in sea-ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values – especially at the higher ice fractions – than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea-ice morphology and floe size on

  17. Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation

    Science.gov (United States)

    Elvidge, A. D.; Renfrew, I. A.; Weiss, A. I.; Brooks, I. M.; Lachlan-Cope, T. A.; King, J. C.

    2016-02-01

    Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ) and consequently make recommendations for the parametrisation of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10) from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85 × 10-3). CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parametrisation scheme (Lüpkes et al., 2012) tailored for sea-ice drag over the MIZ in which the two constituent components of drag - skin and form drag - are separately quantified. Current parametrisation schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012) scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement holds for subsets of the data from different locations, despite differences in sea-ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values - especially at the higher ice fractions - than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea-ice morphology and floe size on surface roughness is recognised, and

  18. Observations of surface momentum exchange over the marginal-ice-zone and recommendations for its parameterization

    Science.gov (United States)

    Elvidge, A. D.; Renfrew, I. A.; Weiss, A. I.; Brooks, I. M.; Lachlan-Cope, T. A.; King, J. C.

    2015-10-01

    Comprehensive aircraft observations are used to characterise surface roughness over the Arctic marginal ice zone (MIZ) and consequently make recommendations for the parameterization of surface momentum exchange in the MIZ. These observations were gathered in the Barents Sea and Fram Strait from two aircraft as part of the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) project. They represent a doubling of the total number of such aircraft observations currently available over the Arctic MIZ. The eddy covariance method is used to derive estimates of the 10 m neutral drag coefficient (CDN10) from turbulent wind velocity measurements, and a novel method using albedo and surface temperature is employed to derive ice fraction. Peak surface roughness is found at ice fractions in the range 0.6 to 0.8 (with a mean interquartile range in CDN10 of 1.25 to 2.85 × 10-3). CDN10 as a function of ice fraction is found to be well approximated by the negatively skewed distribution provided by a leading parameterization scheme (Lüpkes et al., 2012) tailored for sea ice drag over the MIZ in which the two constituent components of drag - skin and form drag - are separately quantified. Current parameterization schemes used in the weather and climate models are compared with our results and the majority are found to be physically unjustified and unrepresentative. The Lüpkes et al. (2012) scheme is recommended in a computationally simple form, with adjusted parameter settings. A good agreement is found to hold for subsets of the data from different locations despite differences in sea ice conditions. Ice conditions in the Barents Sea, characterised by small, unconsolidated ice floes, are found to be associated with higher CDN10 values - especially at the higher ice fractions - than those of Fram Strait, where typically larger, smoother floes are observed. Consequently, the important influence of sea ice morphology and floe size on surface roughness is

  19. 76 FR 1362 - Safety Zone; Ice Conditions for the Baltimore Captain of Port Zone

    Science.gov (United States)

    2011-01-10

    ... hazards include vessels becoming beset or dragged off course, sinking or grounding, and creating hazards... safety zone's intended objectives of protecting persons and vessels from becoming beset or dragged off... there is little vessel traffic associated with recreational boating and commercial fishing during the...

  20. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.

    Science.gov (United States)

    Heimbürger, Lars-Eric; Sonke, Jeroen E; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-05-20

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.

  1. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone.

    Science.gov (United States)

    Kashiwase, Haruhiko; Ohshima, Kay I; Nihashi, Sohey; Eicken, Hajo

    2017-08-15

    Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

  2. 22-year surface salinity changes in the Seasonal Ice Zone near 140°E off Antarctica

    Science.gov (United States)

    Morrow, Rosemary; Kestenare, Elodie

    2017-11-01

    Seasonal and interannual variations in sea surface salinity (SSS) are analyzed in the Sea Ice Zone south of 60°S, from a 22-year time series of observations near 140°E. In the northern sea-ice zone during the warming, melting cycle from October to March, waters warm by an average of 3.5 °C and become fresher by 0.1 to 0.25. In the southern sea-ice zone, the surface temperatures vary from - 1 to 1 °C over summer, and the maximal SSS range occurs in December, with a minimum SSS of 33.65 near the Southern Boundary of the ACC, reaching 34.4 in the shelf waters close to the coast. The main fronts, normally defined at subsurface, are shown to have more distinct seasonal characteristics in SSS than in SST. The interannual variations in SSS are more closely linked to variations in upstream sea-ice cover than surface forcing. SSS and sea-ice variations show distinct phases, with large biannual variations in the early 1990s, weaker variations in the 2000s and larger variations again from 2009 onwards. The calving of the Mertz Glacier Tongue in February 2010 leads to increased sea-ice cover and widespread freshening of the surface layers from 2011 onwards. Summer freshening in the northern sea-ice zone is 0.05-0.07 per decade, increasing to 0.08 per decade in the southern sea-ice zone, largely influenced by the Mertz Glacier calving event at the end of our time series. The summer time series of SSS on the shelf at 140°E is in phase but less variable than the SSS observed upstream in the Adélie Depression, and thus represents a spatially integrated index of the wider SSS variations.

  3. Supraglacial Lakes in the Percolation Zone of the Western Greenland Ice Sheet: Formation and Development using Operation IceBridge Snow Radar and ATM (2009-2014)

    Science.gov (United States)

    Chen, C.; Howat, I. M.; de la Peña, S.

    2015-12-01

    Surface meltwater lakes on the Greenland Ice Sheet have appeared at higher elevations, extending well into the percolation zone, under recent warming, with the largest expansion occurring in the western Greenland Ice Sheet. The conditions that allow lakes to form atop firn are poorly constrained, but the formation of new lakes imply changes in the permeability of the firn at high elevations, promoting meltwater runoff. We explore the formation and evolution of new surface lakes in this region above 1500 meters, using a combination of satellite imagery and repeat Snow (2-6.5 GHz) radar echograms and LIDAR measurements from NASA's Operation IceBridge of 2009-2014. We identify conditions for surface lake formation at their farthest inland extent and suggest behaviors of persistence and lake drainage are due to differences in regional ice dynamics.

  4. Robust wavebuoys for the marginal ice zone: Experiences from a large persistent array in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Martin J. Doble

    2017-08-01

    Full Text Available An array of novel directional wavebuoys was designed and deployed into the Beaufort Sea ice cover in March 2014, as part of the Office of Naval Research 'Marginal Ice Zone' experiment. The buoys were designed to drift with the ice throughout the year and monitor the expected breakup and retreat of the ice cover, forced by waves travelling into the ice from open water. Buoys were deployed from fast-and-light air-supported ice camps, based out of Sachs Harbour on Canada’s Banks Island, and drifted westwards with the sea ice over the course of spring, summer and autumn, as the ice melted, broke up and finally re-froze. The buoys transmitted heave, roll and pitch timeseries at 1 Hz sample frequency over the course of up to eight months, surviving both convergent ice dynamics and significant waves-in-ice events. Twelve of the 19 buoys survived until their batteries were finally exhausted during freeze-up in late October/November. Ice impact was found to have contaminated a significant proportion of the Kalman-filter-derived heave records, and these bad records were removed with reference to raw x/y/z accelerations. The quality of magnetometer-derived buoy headings at the very high magnetic field inclinations close to the magnetic pole was found to be generally acceptable, except in the case of four buoys which had probably suffered rough handling during transport to the ice. In general, these new buoys performed as expected, though vigilance as to the veracity of the output is required.

  5. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink.

    Science.gov (United States)

    Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf

    2015-09-18

    Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.

  6. Comparison of the Microbial Diversity and Abundance Between the Freshwater Land-Locked Lakes of Schirmacher Oasis and the Perennially Ice-Covered Lake Untersee in East Antarctica

    Science.gov (United States)

    Huang, Jonathan; Hoover, Richard B.; Swain, Ashit; Murdock, Chris; Bej, Asim K.

    2010-01-01

    Extreme conditions such as low temperature, dryness, and constant UV-radiation in terrestrial Antarctica are limiting factors of the survival of microbial populations. The objective of this study was to investigate the microbial diversity and enumeration between the open water lakes of Schirmacher Oasis and the permanently ice-covered Lake Untersee. The lakes in Schirmacher Oasis possessed abundant and diverse group of microorganisms compared to the Lake Untersee. Furthermore, the microbial diversity between two lakes in Schirmacher Oasis (Lake L27C and L47) was compared by culture-based molecular approach. It was determined that L27Chad a richer microbial diversity representing 5 different phyla and 7 different genera. In contrast L47 consisted of 4 different phyla and 6 different genera. The difference in microbial community could be due to the wide range of pH between L27C (pH 9.1) and L47 (pH 5.7). Most of the microbes isolated from these lakes consisted of adaptive biological pigmentation. Characterization of the microbial community found in the freshwater lakes of East Antarctica is important because it gives a further glimpse into the adaptation and survival strategies found in extreme conditions.

  7. Quantifying the Evolution of Melt Ponds in the Marginal Ice Zone Using High Resolution Optical Imagery and Neural Networks

    Science.gov (United States)

    Ortiz, M.; Pinales, J. C.; Graber, H. C.; Wilkinson, J.; Lund, B.

    2016-02-01

    Melt ponds on sea ice play a significant and complex role on the thermodynamics in the Marginal Ice Zone (MIZ). Ponding reduces the sea ice's ability to reflect sunlight, and in consequence, exacerbates the albedo positive feedback cycle. In order to understand how melt ponds work and their effect on the heat uptake of sea ice, we must quantify ponds through their seasonal evolution first. A semi-supervised neural network three-class learning scheme using a gradient descent with momentum and adaptive learning rate backpropagation function is applied to classify melt ponds/melt areas in the Beaufort Sea region. The network uses high resolution panchromatic satellite images from the MEDEA program, which are collocated with autonomous platform arrays from the Marginal Ice Zone Program, including ice mass-balance buoys, arctic weather stations and wave buoys. The goal of the study is to capture the spatial variation of melt onset and freeze-up of the ponds within the MIZ, and gather ponding statistics such as size and concentration. The innovation of this work comes from training the neural network as the melt ponds evolve over time; making the machine learning algorithm time-dependent, which has not been previously done. We will achieve this by analyzing the image histograms through quantification of the minima and maxima intensity changes as well as linking textural variation information of the imagery. We will compare the evolution of the melt ponds against several different array sites on the sea ice to explore if there are spatial differences among the separated platforms in the MIZ.

  8. Sudden disintegration of ice in the glacial-proglacial transition zone of the largest glacier in Austria

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas; Avian, Michael; Hirschmann, Simon; Lieb, Gerhard Karl; Seier, Gernot; Sulzer, Wolfgang; Wakonigg, Herwig

    2017-04-01

    Rapid deglaciation does not only reveal a landscape which is prone to rapid geomorphic changes and sediment reworking but also the glacier ice itself might be in a state of disintegration by ice melting, pressure relief, crevasse formation, ice collapse or changes in the glacier's hydrology. In this study we considered the sudden disintegration of glacier ice in the glacial-proglacial transition zone of Pasterze Glacier. Pasterze Glacier is a typical alpine valley glacier and covers currently some 16.5 km2 making it to the largest glacier in Austria. This glacier is an important site for alpine mass tourism in Austria related to a public high alpine road and a cable car which enable access to the glacier rather easily also for unexperienced mountaineers. Spatial focus in our research is given on two particular study areas where several ice-mass movement events occurred during the 2015- and 2016-melting seasons. The first study area is a crevasse field at the lower third of the glacier tongue. This lateral crevasse field has been substantially modified during the last two melting seasons particularly because of thermo-erosional effects of a glacial stream which changed at this site from subglacial (until 2015) to glacier-lateral revealing a several tens of meters high unstable ice cliff prone to ice falls of different magnitudes. The second study area is located at the proglacial area. At Pasterze Glacier the proglacial area is widely influenced by dead-ice bodies of various dimensions making this area prone to slow to sudden geomorphic changes caused by ice mass changes. A particular ice-mass movement event took place on 20.09.2016. Within less than one hour the surface of the proglacial area changed substantially by tilting, lateral shifting, and subsidence of the ground accompanied by complete ice disintegration of once-debris covered ice. To understand acting processes at both areas of interest and to quantify mass changes we used field observations, terrain

  9. Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution

    Science.gov (United States)

    Montiel, F.; Squire, V. A.

    2013-12-01

    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive

  10. Atmospheric influence on Arctic marginal ice zone position and width in the Atlantic sector, February-April 1979-2010

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Courtenay [University of Utah, Salt Lake City, UT (United States)

    2012-12-15

    Arctic marginal ice zone (MIZ) widths in the Atlantic sector were measured during the months of maximum sea ice extent (February-April) for years 1979-2010 using a novel method based on objective curves through idealized sea ice concentration fields that satisfied Laplace's equation. Over the record, the Labrador Sea MIZ (MIZ{sub L}) had an average width of 122 km and narrowed by 28 % while moving 254 km poleward, the Greenland Sea MIZ (MIZ{sub G}) had an average width of 98 km and narrowed by 43 % while moving 158 km west toward the Greenland coast, and the Barents Sea MIZ (MIZ{sub B}) had an average width of 136 km and moved 259 km east toward the Eurasian coast without a trend in width. Trends in MIZ position and width were consistent with a warming Arctic and decreasing sea ice concentrations over the record. Beyond the trends, NAO-like atmospheric patterns influenced interannual variability in MIZ position and width: MIZ{sub L} widened and moved southeast under anomalously strong northerly flow conducive to advection of sea ice into the Labrador Sea, MIZ{sub G} widened and moved northeast under anomalously weak northerly flow conducive to diminishing the westward component of sea ice drift, and MIZ{sub B} widened and moved poleward at the expense of pack ice under anomalously strong southwesterly flow conducive to enhancing oceanic heat flux into the Barents Sea. In addition, meridional flow anomalies associated with the NAO per se moved MIZ{sub B} east and west by modulating sea ice concentration over the Barents Sea. (orig.)

  11. Evolution of a Western Arctic Ice Ocean Boundary Layer and Mixed Layer Across a Developing Thermodynamically Forced Marginal Ice Zone

    Science.gov (United States)

    2016-09-01

    heat and momentum transfer with the ice-ocean interface. These two observations demonstrate the intricate interplay between momentum, heat , and...summer evolution events: 1. Modulated shortwave radiative input to the ocean 2. Shoaled the ocean boundary layer increasing ocean heat storage 3... transfer in a stratified oceanic boundary layer. J. Geophys. Res., 92(C7), 6977–7986, doi:10.1029/JC092iC07p06977. McPhee, M. G., 1992: Turbulent heat

  12. An explanation for the dark region in the western melt zone of the Greenland ice sheet

    Directory of Open Access Journals (Sweden)

    I. G. M. Wientjes

    2010-07-01

    Full Text Available The western part of the Greenland ice sheet contains a region that is darker than the surrounding ice. This feature has been analysed with the help of MODIS images. The dark region appears every year during the summer season and can always be found at the same location, which makes meltwater unlikely as the only source for the low albedos. Spectral information indicates that the ice in this region contains more debris than the ice closer to the margin. ASTER images reveal a wavy pattern in the darker ice. Based on these findings we conclude that ice, containing dust from older periods, is presently outcropping near the margin, leading to albedos lower than observed for the remaining ablation area. Therefore it can be concluded that the accumulation of meltwater is a result rather than a cause of the darkening.

  13. Influence of landfast ice on the hydrography and circulation of the Baltic Sea coastal zone

    Directory of Open Access Journals (Sweden)

    Ioanna Merkouriadi

    2013-02-01

    Full Text Available The influence of landfast ice on hydrography and circulation is examined inSantala Bay, adjacent to the Hanko Peninsula, Gulf of Finland. Three-dimensionalelectromagnetic current meters and conductivity-temperature-depth (CTD sensorswere deployed in winters 1999-2000 and 2000-2001 during the Finnish-Japanese"Hanko 9012" experiment. In each winter, data collection started one month beforethe initial ice formation and lasted until one month after the ice had meltedcompletely. Temperature and salinity are compared with long-term data from theTvärminne Zoological Station, also located on the Hanko Peninsula. Thewater temperature was 2°C less than the long-term average. Iceformation and melting show up in the salinity evolution of the water body,which makes salinity a good indicator of ice formation and breakup in SantalaBay. The circulation under the ice became weaker by almost 1 cm s-1.

  14. The Annual Glaciohydrology Cycle in the Ablation Zone of the Greenland Ice Sheet: Part 1. Hydrology Model

    Science.gov (United States)

    Colgan, William; Rajaram, Harihar; Anderson, Robert; Steffen. Konrad; Phillips, Thomas; Zwally, H. Jay; Abdalati, Waleed

    2012-01-01

    We apply a novel one-dimensional glacier hydrology model that calculates hydraulic head to the tidewater-terminating Sermeq Avannarleq flowline of the Greenland ice sheet. Within a plausible parameter space, the model achieves a quasi-steady-state annual cycle in which hydraulic head oscillates close to flotation throughout the ablation zone. Flotation is briefly achieved during the summer melt season along a approx.17 km stretch of the approx.50 km of flowline within the ablation zone. Beneath the majority of the flowline, subglacial conduit storage closes (i.e. obtains minimum radius) during the winter and opens (i.e. obtains maximum radius) during the summer. Along certain stretches of the flowline, the model predicts that subglacial conduit storage remains open throughout the year. A calculated mean glacier water residence time of approx.2.2 years implies that significant amounts of water are stored in the glacier throughout the year. We interpret this residence time as being indicative of the timescale over which the glacier hydrologic system is capable of adjusting to external surface meltwater forcings. Based on in situ ice velocity observations, we suggest that the summer speed-up event generally corresponds to conditions of increasing hydraulic head during inefficient subglacial drainage. Conversely, the slowdown during fall generally corresponds to conditions of decreasing hydraulic head during efficient subglacial drainage.

  15. Clouds in the atmospheres of extrasolar planets. V. The impact of CO2 ice clouds on the outer boundary of the habitable zone

    OpenAIRE

    Kitzmann, Daniel

    2017-01-01

    Clouds have a strong impact on the climate of planetary atmospheres. The potential scattering greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Here, the impact of CO2 ice clouds on the surface temperatures of terrestrial planets with CO2 dominated atmospheres, orbiting different types of...

  16. 77 FR 2017 - Safety Zone; Ice Rescue Exercise; Green Bay, Dyckesville, WI

    Science.gov (United States)

    2012-01-13

    ... Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not concern an environmental risk to health or risk to safety that may disproportionately affect children... the Port Sector Lake has determined that this ice rescue exercise will pose hazards to the public...

  17. Observing Physical and Biological Drivers of pH and O2 in a Seasonal Ice Zone in the Ross Sea Using Profiling Float Data

    Science.gov (United States)

    Briggs, E.; Martz, T. R.; Talley, L. D.; Mazloff, M. R.

    2015-12-01

    Ice cover has strong influence over gas exchange, vertical stability, and biological production which are critical to understanding the Southern Ocean's central role in oceanic biogeochemical cycling and heat and carbon uptake under a changing climate. However the relative influence of physical versus biological processes in this hard-to-study region is poorly understood due to limited observations. Here we present new findings from a profiling float equipped with biogeochemical sensors in the seasonal ice zone of the Ross Sea capturing, for the first time, under-ice pH profile data over a two year timespan from 2014 to the present. The relative influence of physical (e.g. vertical mixing and air-sea gas exchange) and biological (e.g. production and respiration) drivers of pH and O2 within the mixed layer are explored during the phases of ice formation, ice cover, and ice melt over the two seasonal cycles. During the austral fall just prior to and during ice formation, O2 increases as expected due to surface-layer undersaturation and enhanced gas exchange. A small increase in pH is also observed during this phase, but without a biological signal in accompanying profiling float chlorophyll data, which goes against common reasoning from both a biological and physical standpoint. During the phase of ice cover, gas exchange is inhibited and a clear respiration signal is observed in pH and O2 data from which respiration rates are calculated. In the austral spring, ice melt gives rise to substantial ice edge phytoplankton blooms indicated by O2 supersaturation and corresponding increase in pH and large chlorophyll signal. The influence of the duration of ice cover and mixed layer depth on the magnitude of the ice edge blooms is explored between the two seasonal cycles.

  18. Perennial Environment Observatory

    International Nuclear Information System (INIS)

    Plas, Frederic

    2014-07-01

    The Perennial Environment Observatory [Observatoire Perenne de l'Environnement - OPE] is a unique approach and infrastructure developed and implemented by ANDRA, the French National Radioactive Waste Management Agency, as part of its overall project of deep geological disposal for radioactive waste. Its current mission is to assess the initial state of the rural (forest, pasture, open-field and aquatic) environment, prior to repository construction. This will be followed in 2017 (pending construction authorizations) and for a period exceeding a century, by monitoring of any impact the repository may have on the environment. In addition to serving its own industrial purpose of environmental monitoring, ANDRA also opens the OPE approach, infrastructure and acquired knowledge (database...) to the scientific community to support further research on long term evolution of the environment subjected to natural and anthropogenic stresses, and to contribute to a better understanding of the interaction between the various compartments of the environment

  19. MIZEX. A Program for Mesoscale Air-Ice-Ocean Interaction Experiments in Arctic Marginal Ice Zones. II. A Science Plan for a Summer Marginal Ice Zone Experiment in the Fram Strait/Greenland Sea: 1984.

    Science.gov (United States)

    1983-05-01

    size and thickness characteris- tics. N’ore complete analysis will require combin- ing ice data with data obtained by the oceano - graphic... sol concentration and microwave brightness tem- perature. A long-range aircraft and a light aircraft Hying from Spitzbergen will study mesoscale

  20. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    Science.gov (United States)

    2015-09-30

    measured by R/V Lance ( black solid line) and predicted by SWAN ( black dashed line) and the ship velocity (grey solid line). (c) BFI ( black solid line) and...and potential future trends; and WAVEWATCH-III® and SWAN wave models with new physics, adapted and validated for the Beaufort and Chukchi Seas...nondimensional spectral width ν ( black dashed line). (d–i) Selected photographs from the ship show local sea ice state. Fig. 6 illustrates a

  1. Development of Perennial Grain Sorghum

    Directory of Open Access Journals (Sweden)

    Stan Cox

    2018-01-01

    Full Text Available Perennial germplasm derived from crosses between Sorghum bicolor and either S. halepense or S. propinquum is being developed with the goal of preventing and reversing soil degradation in the world’s grain sorghum-growing regions. Perennial grain sorghum plants produce subterranean stems known as rhizomes that sprout to form the next season’s crop. In Kansas, breeding perennial sorghum involves crossing S. bicolor cultivars or breeding lines to S. halepense or perennial S. bicolorn × S. halepense breeding lines, selecting perennial plants from F2 or subsequent populations, crossing those plants with S. bicolor, and repeating the cycle. A retrospective field trial in Kansas showed that selection and backcrossing during 2002–2009 had improved grain yields and seed weights of breeding lines. Second-season grain yields of sorghum lines regrowing from rhizomes were similar to yields in the first season. Further selection cycles have been completed since 2009. Many rhizomatous lines that cannot survive winters in Kansas are perennial at subtropical or tropical locations in North America and Africa. Grain yield in Kansas was not correlated with rhizomatousness in either Kansas or Uganda. Genomic regions affecting rhizome growth and development have been mapped, providing new breeding tools. The S. halepense gene pool may harbor many alleles useful for improving sorghum for a broad range of traits in addition to perenniality.

  2. The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet

    NARCIS (Netherlands)

    van den Broeke, M.R.; Smeets, C.J.P.P.; van de Wal, R.S.W.

    2011-01-01

    We present the seasonal cycle and interannual variability of the surface energy balance (SEB) in the ablation zone of the west Greenland ice sheet, using seven years (September 2003–August 2010) of hourly observations from three automatic weather stations (AWS). The AWS are situated along the 67◦ N

  3. Looking Through the Ice: Searching for Past and Present Habitable Zones in the Martian North Polar Region Using MOLA DEMs

    Science.gov (United States)

    Payne, M. C.; Farmer, J. D.

    2002-12-01

    Hydrothermal systems have been acknowledged as important gateways to accessing a potential subsurface biology (extant or extinct) on Mars. Groundwater circulation, sustained for up to one billion years by large plutonic bodies (as modeled by previous authors), might well be capable of tapping into a deep subsurface biosphere and subsequently carrying members of microbial communities to the surface. Hence, future robotic missions with near surface drilling capabilities may be able to unearth cryopreserved biosignatures, or perhaps extant organisms, in the midst of the hydrothermal system itself. Digital Elevation Models (DEMs) constructed from Mars Orbiter Laser Altimeter (MOLA) data have proved to be a valuable tool in the search for potential habitable zones for extant and extinct life, and the detection of possible hydrothermal systems on Mars. When formatted for use in a Geographical Information Systems (GIS) software package such as ESRI's ArcView, MOLA data can be used to compose DEMs. Those DEMs can, in turn, be used to create contour maps, to allow profiling through features of interest, and to generate hillshaded views, which provide an image-like perspective of a selected area. Furthermore, DEMs eliminate many problems associated with photographic images such as over-/underexposure, poor focus, and albedo values too high or low for optimal observations. During this study, DEMs were used in the analysis of several regions north of 70° N latitude, in the Martian north polar cap and polar cap margin. The regions were selected during a Viking image survey that concentrated on the location of surface expressions of potential magma-ice interactions, and hence past or present hydrothermal activity. Specific features sought included individual volcanoes and volcanic fields, as well as pseudocrater fields, subglacial volcanic constructs (such as tuyas and tindar ridges), fluvial channels and outwash plains (indicative of j”kulhlaup flooding events), possible

  4. The evolution of the englacial temperature distribution in the superimposed ice zone of a polar ice cap during a summer season

    NARCIS (Netherlands)

    Greuell, W.; Oerlemans, J.

    1989-01-01

    The aim of the present investigation was to provide more insight into the processes affecting the evolution of the englacial temperature distribution at a non-temperate location on a glacier. Measurements were made in the top 10 m of the ice at the summit of Laika Ice Cap (Canadian Arctic)

  5. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone.

    Science.gov (United States)

    Joshi, Manoj M; Haberle, Robert M

    2012-01-01

    M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.

  6. Native herbaceous perennials as ornamentals

    DEFF Research Database (Denmark)

    Larsen, Bjarne; Ørgaard, Marian

    2013-01-01

    Gardening with native perennials is a way to bring nature closer to urban citizens and bring up reflections on nature in a busy world. During three seasons of trialing Salvia pratensis, Dianthus deltoides, Campanula trachelium, Vincetoxicum hirundinaria, Saxifraga granulata, Plantago media and P...

  7. Glacially-megalineated limestone terrain of Anticosti Island, Gulf of St. Lawrence, Canada; onset zone of the Laurentian Channel Ice Stream

    Science.gov (United States)

    Eyles, Nick; Putkinen, Niko

    2014-03-01

    Anticosti is a large elongate island (240 km long, 60 km wide) in eastern Canada within the northern part of a deep water trough (Gulf of St. Lawrence) that terminates at the Atlantic continental shelf edge. The island's Pleistocene glaciological significance is that its long axis lay transverse to ice from the Quebec and Labrador sectors of the Laurentide Ice Sheet moving south from the relatively high-standing Canadian Shield. Recent glaciological reconstructions place a fast-flowing ice stream along the axis of the Gulf of St. Lawrence but supporting geologic evidence in terms of recognizing its hard-bedded onset zone and downstream streamlined soft bed is limited. Anticosti Island consists of gently southward-dipping limestone plains composed of Ordovician and Silurian limestones (Vaureal, Becscie and Jupiter formations) with north-facing escarpments transverse to regional ice flow. Glacial deposits are largely absent and limestone plains in the higher central plateau of the island retain a relict apparently ‘preglacial’ drainage system consisting of deeply-incised dendritic bedrock valleys. In contrast, the bedrock geomorphology of the lower lying western and eastern limestone plains of the island is strikingly different having been extensively modified by glacial erosion. Escarpments are glacially megalineated with a distinct ‘zig-zag’ planform reflecting northward-projecting bullet-shaped ‘noses’ (identified as rock drumlins) up to 2 km wide at their base and 4 km in length with rare megagrooved upper surfaces. Drumlins are separated by southward-closing, funnel-shaped ‘through valleys’ where former dendritic valleys have been extensively altered by the streaming of basal ice through gaps in the escarpments. Glacially-megalineated bedrock terrain such as on the western and eastern flanks of Anticosti Island is elsewhere associated with the hard-bedded onset zones of fast flowing ice streams and provides important ground truth for the

  8. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonality Retreating Marginal Ice Zone

    Science.gov (United States)

    2016-12-30

    fluxes of heat, salt, and momentum. Hourly GPS fixes tracked the motion of the supporting ice floes and T/C recorders sampled the ocean waters just... sampled in a range of ice conditions from full ice cover to nearly open water and observed a variety of stratification and ocean velocity signals (e.g...From - To) 12/30/2016 final 01-Nov-2011to 30-Sep-201 6 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Autonomous observations of the upper ocean

  9. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    International Nuclear Information System (INIS)

    Quintana, Elisa V.; Lissauer, Jack J.

    2014-01-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M ⊕ to 1 M J ) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  10. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Elisa V. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Lissauer, Jack J., E-mail: elisa.quintana@nasa.gov [Space Science and Astrobiology Division 245-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-05-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  11. Managing for Multifunctionality in Perennial Grain Crops

    Science.gov (United States)

    Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G

    2018-01-01

    Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249

  12. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet?

    Science.gov (United States)

    Ryan, J.; Hubbard, A., II; Irvine-Fynn, T. D.; Doyle, S. H.; Cook, J.; Stibal, M.; Smith, L. C.; Box, J. E.

    2017-12-01

    Calibration and validation of satellite-derived ice sheet albedo data require high-quality, in situ measurements commonly acquired by up and down facing pyranometers mounted on automated weather stations (AWS). However, direct comparison between ground and satellite-derived albedo can only be justified when the measured surface is homogeneous at the length-scale of both satellite pixel and in situ footprint. We used digital imagery acquired by an unmanned aerial vehicle to evaluate point-to-pixel albedo comparisons across the western, ablating margin of the Greenland Ice Sheet. Our results reveal that in situ measurements overestimate albedo by up to 0.10 at the end of the melt season because the ground footprints of AWS-mounted pyranometers are insufficient to capture the spatial heterogeneity of the ice surface as it progressively ablates and darkens. Statistical analysis of 21 AWS across the entire Greenland Ice Sheet reveals that almost half suffer from this bias, including some AWS located within the wet snow zone.

  13. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy

    Science.gov (United States)

    Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.

    2010-01-01

    Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.

  14. MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and Beaufort Seas

    Science.gov (United States)

    2015-09-30

    ITD theory of Thorndike et al. (1975) in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and...et al., 2015). 4 RESULTS Modeling: A FSD theory is developed and coupled to the ITD theory of Thorndike et al. (1975) in order to... Thorndike , A.S., D.A. Rothrock, G.A. Maykut, and R. Colony (1975), The thickness distribution of sea ice. J. Geophys. Res., 80, 4501–4513. Zhang

  15. Evaluation and Improvement of Polar WRF simulations using the observed atmospheric profiles in the Arctic seasonal ice zone

    Science.gov (United States)

    Liu, Z.; Schweiger, A. J. B.

    2016-12-01

    We use the Polar Weather Research and Forecasting (WRF) model to simulate atmospheric conditions during the Seasonal Ice Zone Reconnaissance Survey (SIZRS) over the Beaufort Sea in the summer since 2013. With the 119 SIZRS dropsondes in the18 cross sections along the 150W and 140W longitude lines, we evaluate the performance of WRF simulations and two forcing data sets, the ERA-Interim reanalysis and the Global Forecast System (GFS) analysis, and explore the improvement of the Polar WRF performance when the dropsonde data are assimilated using observation nudging. Polar WRF, ERA-Interim, and GFS can reproduce the general features of the observed mean atmospheric profiles, such as low-level temperature inversion, low-level jet (LLJ) and specific humidity inversion. The Polar WRF significantly improves the mean LLJ, with a lower and stronger jet and a larger turning angle than the forcing, which is likely related to the lower values of the boundary layer diffusion in WRF than in the global models such as ECMWF and GFS. The Polar WRF simulated relative humidity closely resembles the forcing datasets while having large biases compared to observations. This suggests that the performance of Polar WRF and its forecasts in this region are limited by the quality of the forcing dataset and that the assimilation of more and better-calibrated observations, such as humidity data, is critical for their improvement. We investigate the potential of assimilating the SIZRS dropsonde dataset in improving the weather forecast over the Beaufort Sea. A simple local nudging approach is adopted. Along SIZRS flight cross sections, a set of Polar WRF simulations are performed with varying number of variables and dropsonde profiles assimilated. Different model physics are tested to examine the sensitivity of different aspects of model physics, such as boundary layer schemes, cloud microphysics, and radiation parameterization, to data assimilation. The comparison of the Polar WRF runs with

  16. Spatial Variability of accumulation across the Western Greenland Ice Sheet Percolation Zone from ground-penetrating-radar and shallow firn cores

    Science.gov (United States)

    Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Marshall, H. P.; Birkel, S. D.; Meehan, T. G.; Graeter, K.; Overly, T. B.; McCarthy, F.

    2017-12-01

    The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. Increased melting in the GrIS percolation zone over the past several decades has led to increased mass loss at lower elevations due to recent warming. Uncertainties in mass balance are especially large in regions with sparse and/or outdated in situ measurements. This study is the first to calculate in situ accumulation over a large region of western Greenland since the Program for Arctic Regional Climate Assessment campaign during the 1990s. Here we analyze 5000 km of 400 MHz ground penetrating radar data and sixteen 25-33 m-long firn cores in the western GrIS percolation zone to determine snow accumulation over the past 50 years. The cores and radar data were collected as part of the 2016-2017 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS). With the cores and radar profiles we capture spatial accumulation gradients between 1850-2500 m a.s.l and up to Summit Station. We calculate accumulation rates and use them to validate five widely used regional climate models and to compare with IceBridge snow and accumulation radars. Our results indicate that while the models capture most regional spatial climate patterns, they lack the small-scale spatial variability captured by in situ measurements. Additionally, we evaluate temporal trends in accumulation at ice core locations and throughout the traverse. Finally, we use empirical orthogonal function and correlation analyses to investigate the principal drivers of radar-derived accumulation rates across the western GrIS percolation zone, including major North Atlantic climate modes such as the North Atlantic Oscillation, Atlantic Multidecadal Oscillation, and Greenland Blocking Index.

  17. Air-sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements

    Science.gov (United States)

    Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.

    2017-08-01

    This study analyzed shipboard air-sea measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and air temperature, leading to consequential effects on air-sea variables and fluxes. Major effort was made to estimate the air-sea fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the sea-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong sea-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat exchanges between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.Plain Language SummaryThe icebreaker Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the southern summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to three permanent research stations on the

  18. Estimated Perennial Streams of Idaho and Related Geospatial Datasets

    Science.gov (United States)

    Rea, Alan; Skinner, Kenneth D.

    2009-01-01

    The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of

  19. Spatiotemporal Patterns of Ice Mass Variations and the Local Climatic Factors in the Riparian Zone of Central Valley, California

    Science.gov (United States)

    Inamdar, P.; Ambinakudige, S.

    2016-12-01

    Californian icefields are natural basins of fresh water. They provide irrigation water to the farms in the central valley. We analyzed the ice mass loss rates, air temperature and land surface temperature (LST) in Sacramento and San Joaquin basins in California. The digital elevation models from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to calculate ice mass loss rate between the years 2002 and 2015. Additionally, Landsat TIR data were used to extract the land surface temperature. Data from local weather stations were analyzed to understand the spatiotemporal trends in air temperature. The results showed an overall mass recession of -0.8 ± 0.7 m w.e.a-1. We also noticed an about 60% loss in areal extent of the glaciers in the study basins between 2000 and 2015. Local climatic factors, along with the global climate patterns might have influenced the negative trends in the ice mass loss. Overall, there was an increase in the air temperature by 0.07± 0.02 °C in the central valley between 2000 and 2015. Furthermore, LST increased by 0.34 ± 0.4 °C and 0.55± 0.1 °C in the Sacramento and San Joaquin basins. Our preliminary results show the decrease in area and mass of ice mass in the basins, and changing agricultural practices in the valley.

  20. Loss of sea ice in the Arctic.

    Science.gov (United States)

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  1. Design and Operation of Automated Ice-Tethered Profilers for Real-Time Seawater Observations in the Polar Oceans

    National Research Council Canada - National Science Library

    Toole, J; Proshutinsky, A; Krishfield, R; Doherty, K; Frye, Daniel E; Hammar, T; Kemp, J; Peters, D; Heydt, K. von der

    2006-01-01

    An automated, easily-deployed Ice-Tethered Profiler (ITP) has been developed for deployment on perennial sea ice in polar oceans to measure changes in upper ocean temperature and salinity in all seasons...

  2. Soil water status under perennial and annual pastures on an acid duplex soil

    International Nuclear Information System (INIS)

    Heng, L.K.; White, R.E.; Chen, D.

    2000-01-01

    A comprehensive field study of soil water balance, nitrogen (N) cycling, pasture management and animal production was carried out on an acid duplex soil at Book Book near Wagga Wagga in southern New South Wales. The experiment, carried out over a 3-year period, tested the hypothesis that sown perennial grass pastures improve the sustainability of a grazing system through better use of water and N. The treatments were: annual pastures without lime (AP-), annual pastures with lime (AP+), perennial pastures without lime (PP-) and perennial pastures with lime (PP+). Soil water measurement was made using a neutron probe on one set of the treatments comprising four adjacent paddocks. Over three winter and spring periods, the results showed that perennial grass pastures, especially PP+, consistently extracted about 40 mm more soil water each year than did the annual grass pastures. As a result, surface runoff, sub-surface flow and deep drainage (percolation below 180 cm depth) were about 40 mm less from the perennial pastures. The soil water status of the four pasture treatments was simulated reasonably well using a simple soil water model. Together with the long-term simulation of deep drainage, using past meteorological records, it is shown that proper management of perennial pastures can reduce recharge to groundwater and make pastoral systems more sustainable in the high rainfall zone. However, to completely reduce recharge, more-deeply rooted plants or trees are needed. (author)

  3. Continuous Estimates of Surface Density and Annual Snow Accumulation with Multi-Channel Snow/Firn Penetrating Radar in the Percolation Zone, Western Greenland Ice Sheet

    Science.gov (United States)

    Meehan, T.; Marshall, H. P.; Bradford, J.; Hawley, R. L.; Osterberg, E. C.; McCarthy, F.; Lewis, G.; Graeter, K.

    2017-12-01

    A priority of ice sheet surface mass balance (SMB) prediction is ascertaining the surface density and annual snow accumulation. These forcing data can be supplied into firn compaction models and used to tune Regional Climate Models (RCM). RCMs do not accurately capture subtle changes in the snow accumulation gradient. Additionally, leading RCMs disagree among each other and with accumulation studies in regions of the Greenland Ice Sheet (GrIS) over large distances and temporal scales. RCMs tend to yield inconsistencies over GrIS because of sparse and outdated validation data in the reanalysis pool. Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) implemented multi-channel 500 MHz Radar in multi-offset configuration throughout two traverse campaigns totaling greater than 3500 km along the western percolation zone of GrIS. The multi-channel radar has the capability of continuously estimating snow depth, average density, and annual snow accumulation, expressed at 95% confidence (+-) 0.15 m, (+-) 17 kgm-3, (+-) 0.04 m w.e. respectively, by examination of the primary reflection return from the previous year's summer surface.

  4. Inhibition of ordinary and diffusive convection in the water condensation zone of the ice giants and implications for their thermal evolution

    Science.gov (United States)

    Friedson, A. James; Gonzales, Erica J.

    2017-11-01

    We explore the conditions under which ordinary and double-diffusive thermal convection may be inhibited by water condensation in the hydrogen atmospheres of the ice giants and examine the consequences. The saturation of vapor in the condensation layer induces a vertical gradient in the mean molecular weight that stabilizes the layer against convective instability when the abundance of vapor exceeds a critical value. In this instance, the layer temperature gradient can become superadiabatic and heat must be transported vertically by another mechanism. On Uranus and Neptune, water is inferred to be sufficiently abundant for inhibition of ordinary convection to take place in their respective condensation zones. We find that suppression of double-diffusive convection is sensitive to the ratio of the sedimentation time scale of the condensates to the buoyancy period in the condensation layer. In the limit of rapid sedimentation, the layer is found to be stable to diffusive convection. In the opposite limit, diffusive convection can occur. However, if the fluid remains saturated, then layered convection is generally suppressed and the motion is restricted in form to weak, homogeneous, oscillatory turbulence. This form of diffusive convection is a relatively inefficient mechanism for transporting heat, characterized by low Nusselt numbers. When both ordinary and layered convection are suppressed, the condensation zone acts effectively as a thermal insulator, with the heat flux transported across it only slightly greater than the small value that can be supported by radiative diffusion. This may allow a large superadiabatic temperature gradient to develop in the layer over time. Once the layer has formed, however, it is vulnerable to persistent erosion by entrainment of fluid into the overlying convective envelope of the cooling planet, potentially leading to its collapse. We discuss the implications of our results for thermal evolution models of the ice giants, for

  5. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonally-Retreating Marginal Ice Zone

    Science.gov (United States)

    2016-12-30

    wavelength shifted towards smaller scales as ice concentration changed from greater than 95% to 70-95%. This work was reported at the 2016 Ocean ...71 ITP- 78 ITP-79 ITP-SO c. 2 - 1 -2 Figure 3. Time series of the wind stress work ( blue and black) and the ocean stress work (red) on one of...From - To) 12/30/2016 final 01-Nov-2011 to 30-Sep-2016 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Autonomous observations of the upper ocean

  6. Defining perennial, intermittent and ephemeral channels in eastern Kentucky: application to forestry best management practices

    Science.gov (United States)

    J. R. Svec; R. K. Kolka; J. W. Stringer

    2003-01-01

    In Kentucky stream classification is used to determine which forestry best management practice (BMP) to apply in riparian zones. Kentucky defines stream classes as follows (Stringer and others 1998): a) perennial streams that hold water throughout the year, b) intermittent streams that hold water during wet portions of the year, and c) ephemeral channels that hold...

  7. Origin of the pegmatite veins within the skarn body at Vevčice near Znojmo (Gfohl Unit, Moldanubian Zone)

    Czech Academy of Sciences Publication Activity Database

    Buriánek, D.; Houzar, S.; Krmíček, Lukáš; Šmerda, J.

    2017-01-01

    Roč. 62, č. 1 (2017), s. 1-23 ISSN 1802-6222 Institutional support: RVO:67985831 Keywords : diorite pegmatite * skarn * mineralogy * geochemistry * Moldanubian Zone * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 0.609, year: 2016

  8. How well does wind speed predict air-sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean

    Science.gov (United States)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.

    2017-05-01

    We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.

  9. Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea

    Science.gov (United States)

    Olli, Kalle; Wexels Riser, Christian; Wassmann, Paul; Ratkova, Tatjana; Arashkevich, Elena; Pasternak, Anna

    2002-12-01

    The spatial and seasonal variations in the vertical flux of particulate biogenic matter were investigated in the Barents Sea in winter and spring 1998 and summer 1999. Arrays of simple cylindrical sediment traps were moored for 24 h between 30 and 200 m along a transect from the ice-free Atlantic water to Arctic water with up to 80% ice cover. Large gradients in the quantity and composition of the sinking particles were observed in the south-north direction, and in relation to water column structure and stability, which depend on the processes of ice retreat. The magnitude of the vertical flux of particulate organic carbon (POC) out of the upper mixed layer ranged from background winter values (30-70 mg C m -2 day -1) to 150-300 mg C m -2 day -1 in summer and 500-1500 mg C m -2 day -1 in spring. Vertical flux of chlorophyll a (CHL) was negligible in winter, generally balticum and single-celled P. pouchetii). The magnitude of the vertical flux to the bottom in spring was comparable in the Arctic and Atlantic waters (ca. 200 mg C m -2 day -1), but the composition and C/N ratio of the particles were different. The regulation of biogenic particle sedimentation took place in the upper layers and over very short vertical distances, and varied with season and water mass. The vertical flux was mainly shaped by the water column stratification (strong salinity stratification in the Arctic water; no stratification in the Atlantic water) and also by the activity of plankton organisms. Zooplankton faecal pellets were an important constituent of the vertical flux (up to 250 mg C m -2 day -1), but their significance varied widely between stations. The daily sedimentation loss rates of POC in spring exceeded the loss rates in summer on the average of 1.7 times. The complexity of the planktonic community during summer suggested the prevalence of a retention food chain with a higher capacity of resource recycling compared to spring.

  10. Recent Progress in Perennial Buckwheat Development

    Directory of Open Access Journals (Sweden)

    Qing-Fu Chen

    2018-02-01

    Full Text Available Grains in the genus Fagopyrum have benefits to human health and are an excellent gluten-free raw material. Of all cereal foods, this genus has the highest total content of amino-acid nutrients necessary for humans; nutrients that are resistant to digestion (protein and starch resulting in their sustained release; higher dietary fiber content than key cereals, and is rich in a special healthy ingredient (flavonoids. Fagopyrum includes 24 species of which five are perennial. Among them, golden buckwheat (F.cymosum complex is the most important perennial buckwheat, which is not only used in Chinese medicine, but also has great potential in healthy food crop. In order to provide some clues for perennial crop studies and their industry development, this paper presents the state of perennial buckwheat research in terms of taxonomy; natural chemical products and pharmacological and health functions; genetics and evolution; breeding; and product development and utilization. The great advances such as successful interspecific crossing and its subsequent new perennial buckwheat varieties will speed up the development of the perennial buckwheat industry.

  11. Investigating the Sustainability of Perennial Agriculture

    Science.gov (United States)

    Sutherlin, C. E.; Brunsell, N. A.; De Oliveira, G.; Crews, T.; Vico, G.

    2017-12-01

    The changing climate leads to uncertainties concerning the sustainability of certain agricultural resources, and with the additional stresses of an increasing global population, uncertainty in food security will greatly increase. To adhere to future food demands in the face of this changing climate, perennial agriculture has been a proposed solution. However, it is equally important to assure that perennial agriculture is not negatively affecting the climate in exchange for this proposed more robust food source. We chose to examine the interactions between perennial and annual agricultural crops by focusing on the efficiency of exchanges with the atmosphere. This is done using the omega decoupling factor for 4 different sites as a way of quantifying the contributions of radiation and stomatal conductance over the resulting water and carbon cycles. This gives us an indication of how the plant canopy is interacting with, and influencing the local microclimate. Ultimately, this should give us an indication of the ability of perennial crops to aid in the climate mitigation process. We hypothesized that the perennial site chosen would have omega values more similar to the omega values of a natural grassland rather than an annual crop site. Using AmeriFlux towers to determine the canopy values needed to calculate the omega decoupling factor, we focused on the Kernza perennial crops being grown at the Land Institute in Salina, Kansas (KLS), in comparison to a natural grassland in Manhattan, Kansas (KON), a typical land cover model in Lawrence, Kansas (KFS), and an annual crop site in Lamont, Oklahoma (ARM). These results will allow us to move forward in the investigation of perennial crops as a sustainable food source.

  12. Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles

    Science.gov (United States)

    Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.

    2016-12-01

    Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.

  13. Interference between perennial grassland and Lavandula stoechas subsp. pedunculata seedlings: a case of spatial segregation cause by competition

    Science.gov (United States)

    Sánchez, Ana M.; Peco, Begoña

    2004-07-01

    This paper analyses the relationship between Lavandula stoechas subsp. pedunculata, a common Mediterranean scrub species in central Iberia, and perennial grasslands. While Lavandula gives rise to almost monospecific formations in intermediate and upper hill zones, perennial grasses occupy the low areas. The proposed explanatory hypothesis for this spatial distribution is that the scrub is unable to establish itself in grasslands with heavy spatial occupation. We designed two experiments to test this hypothesis, one which analysed the effect of perennial grass cover on Lavandula establishment, and another which focused on its influence on previously implanted seedling survival and growth, distinguishing the effect of shoot and root interference. The results show negative interference during establishment and later in the use of light and nutrients. This results in a very low overall survival probability, with only 1.4% of seedlings surviving the first growth period. This low success rate explains the existence of a clear spatial segregation between scrub patches and perennial-dominated grasslands.

  14. Variability and trends in the Arctic Sea ice cover: Results from different techniques

    Science.gov (United States)

    Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert

    2017-08-01

    Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at -3.88%/decade and -4.37%/decade, respectively, compared to an average of -4.36%/decade and -4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.Plain Language SummaryThe declining Arctic sea ice cover, especially in the summer, has been the center of attention in recent years. Reports on the sea ice cover have been provided by different institutions using basically the same set of satellite data but different techniques for estimating key parameters such as ice concentration, ice extent, and ice area. In

  15. Distribution of bacterial biomass and activity in the marginal ice zone of the central Barents Sea during summer

    Science.gov (United States)

    Howard-Jones, M. H.; Ballard, V. D.; Allen, A. E.; Frischer, M. E.; Verity, P. G.

    2002-12-01

    The purpose of this study was to determine bacterioplankton abundance and activity in the Barents Sea using the novel modified vital stain and probe (mVSP) method. The mVSP is a protocol that combines DAPI and propidium iodide staining with 16S rRNA eubacterial-specific oligonucleotide probes to determine the physiological status of individual microbial cells. Bacterial abundance and metabolic activity were measured in near-surface waters and with depth at stations in the central Barents Sea during a cruise in June/July 1999. Viral abundance was also determined for 19 transect stations and at depth (2-200 m) for five intensive 24-h stations. In general, bacterial and viral abundances varied across the transect, but showed peaks of abundance (6×10 9 cells l -1, 9×10 9 viruses l -1) in Polar Front water masses. Viruses were abundant in seawater and exceeded bacterial abundance. Metabolic activity was determined for individual cells using 16S rRNA eubacterial-specific oligonucleotide probes, and for the total community with 3H-leucine incorporation. Activity measured by oligonucleotide probes increased from south to north. The fraction of cells that were active was lowest in the southern Barents Sea (20%) and highest in the Polar Front (53%). The proportion of cells at the 24-h stations that were determined to be active decreased with depth, but not with distance from ice cover. Leucine incorporation rates varied significantly and did not always correlate with probe measurements. The proportion of total cells that had compromised membranes and were therefore considered dead remained relatively constant (activity (25-80%), which supports the hypothesis that a significant fraction of cells in aquatic ecosystems are inactive. Bacterioplankton production rates ranged from rates ranged from rates of 2.5 to >200 days. Our results demonstrate that bacterioplankton and viruses are dynamic but ubiquitous features of Arctic microbial communities. The contribution of bacteria

  16. Suitability Assessment of an ICE-Based Micro-CCHP Unit in Different Spanish Climatic Zones: Application of an Experimental Model in Transient Simulation

    Directory of Open Access Journals (Sweden)

    Guillermo Rey

    2016-11-01

    Full Text Available Tri-generation plants will have an important role in the near future in the residential sector where heating and cooling demands come into play throughout the year. Depending on the building’s location, the characteristics of its enclosure and its use, the thermal loads and demands will be different. This article analyses and compares a combined cooling, heating and power (CCHP system tested in the laboratory and a single household located in Spain. The cooling capacity is obtained using a reversible heat pump where the compressor is driven directly by a gas engine with internal combustion engine (ICE technology. The tests were carried out in a work bench at three different operating speeds. A variable-speed model is developed in the TRNSYS simulation environment with an operating strategy following the thermal load (FTL. Once the micro-CCHP system was modeled with experimental data and validated, it was dynamically simulated to analyze its performance in different climatic zones defined in the Spanish “Código Técnico de la Edificación” (CTE. This study reveals that the micro-CCHP system is suitable in mild weathers during the summer season.

  17. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  18. Observed degradation stages of ring-mold craters (RMC): Geomorphic evidence for modification of ice-rich deposits in the transitions zone between Elysium and Utopia Basin, Mars

    DEFF Research Database (Denmark)

    Pedersen, Gro Birkefeldt Møller

    Deposits with pits, depressions and RMCs observed north of Elysium rise are interpreted as degraded mixtures of ice and clastic material (CCF, LVF and LDA). Degradation stages of RMCs are an important tool for mapping dusty, deflated ice-rich units....

  19. Arctic landfast sea ice

    Science.gov (United States)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  20. Ice, Ice, Baby!

    Science.gov (United States)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  1. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    Science.gov (United States)

    2017-06-04

    further, changes in lower atmospheric temperature, humidity, winds , and clouds are likely to result from changed sea ice concentrations and ocean...affect changes in cloud properties and cover, • develop novel instrumentation including low cost, expendable, air-deployed micro -aircraft to obtain...from June through October to obtain atmospheric profiles of temperature, humidity, and winds from the time of ice edge retreat in spring to advance

  2. Regular network model for the sea ice-albedo feedback in the Arctic.

    Science.gov (United States)

    Müller-Stoffels, Marc; Wackerbauer, Renate

    2011-03-01

    The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.

  3. Diurnal dynamics of the CO2 concentration in water of the coastal zone of lake Baikal in the ice period (testing of the DIEL - CO2 method for assessment of lake metabolic rate)

    Science.gov (United States)

    Panchenko, M. V.; Domysheva, V. M.; Pestunov, D. A.; Sakirko, M. V.; Ivanov, V. G.; Shamrin, A. M.

    2017-11-01

    Results of three long cycles of 24-hour measurements of the carbon dioxide content in the surface and bottom water in the ice period of 2014-2016 in the Baikal coastal zone are analyzed. The diurnal dynamics of the CO2 concentration in the subglacial water, in which photosynthesis plays the leading role, is described. It is found that, in comparison with the surface subglacial water (that is, directly adjacent to the ice bottom), the more pronounced diurnal rhythm of CO2 is observed in the bottom layer in all realizations. This rhythm is well correlated with pyranometer readings. The data on the diurnal dynamics of CO2 are used to estimate the gross primary production in the bottom water with the DIEL method based on the analysis of temporal variability of the carbon dioxide concentration in water in situ.

  4. Multi-decadal Arctic sea ice roughness.

    Science.gov (United States)

    Tsamados, M.; Stroeve, J.; Kharbouche, S.; Muller, J. P., , Prof; Nolin, A. W.; Petty, A.; Haas, C.; Girard-Ardhuin, F.; Landy, J.

    2017-12-01

    The transformation of Arctic sea ice from mainly perennial, multi-year ice to a seasonal, first-year ice is believed to have been accompanied by a reduction of the roughness of the ice cover surface. This smoothening effect has been shown to (i) modify the momentum and heat transfer between the atmosphere and ocean, (ii) to alter the ice thickness distribution which in turn controls the snow and melt pond repartition over the ice cover, and (iii) to bias airborne and satellite remote sensing measurements that depend on the scattering and reflective characteristics over the sea ice surface topography. We will review existing and novel remote sensing methodologies proposed to estimate sea ice roughness, ranging from airborne LIDAR measurement (ie Operation IceBridge), to backscatter coefficients from scatterometers (ASCAT, QUICKSCAT), to multi angle maging spectroradiometer (MISR), and to laser (Icesat) and radar altimeters (Envisat, Cryosat, Altika, Sentinel-3). We will show that by comparing and cross-calibrating these different products we can offer a consistent multi-mission, multi-decadal view of the declining sea ice roughness. Implications for sea ice physics, climate and remote sensing will also be discussed.

  5. Genetic markers for flowering in perennial ryegrass

    DEFF Research Database (Denmark)

    Paina, Cristiana; Byrne, Stephen; Andersen, Jeppe Reitan

    2011-01-01

    Perennial ryegrass (Lolium perenne L.) is the principal forage grass utilized in Danish agriculture and underpins the beef and dairy sectors. It is characterized as having high digestibility, high nutritional value, and high productivity during vegetative growth. However, at the reproductive growth...... genes will be converted to molecular markers and mapped in an existing mapping population previously characterized for flowering time and vernalization response. References: Amasino, R.M., Michaels S.D. (2010). The Timing of Flowering. Plant Physiology 154: 516–520 Greenup, A., W. Peacock, W.J., Dennis...

  6. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn.

    Science.gov (United States)

    Harper, J; Humphrey, N; Pfeffer, W T; Brown, J; Fettweis, X

    2012-11-08

    Surface melt on the Greenland ice sheet has shown increasing trends in areal extent and duration since the beginning of the satellite era. Records for melt were broken in 2005, 2007, 2010 and 2012. Much of the increased surface melt is occurring in the percolation zone, a region of the accumulation area that is perennially covered by snow and firn (partly compacted snow). The fate of melt water in the percolation zone is poorly constrained: some may travel away from its point of origin and eventually influence the ice sheet's flow dynamics and mass balance and the global sea level, whereas some may simply infiltrate into cold snow or firn and refreeze with none of these effects. Here we quantify the existing water storage capacity of the percolation zone of the Greenland ice sheet and show the potential for hundreds of gigatonnes of meltwater storage. We collected in situ observations of firn structure and meltwater retention along a roughly 85-kilometre-long transect of the melting accumulation area. Our data show that repeated infiltration events in which melt water penetrates deeply (more than 10 metres) eventually fill all pore space with water. As future surface melt intensifies under Arctic warming, a fraction of melt water that would otherwise contribute to sea-level rise will fill existing pore space of the percolation zone. We estimate the lower and upper bounds of this storage sink to be 322 ± 44 gigatonnes and  1,289(+388)(-252) gigatonnes, respectively. Furthermore, we find that decades are required to fill this pore space under a range of plausible future climate conditions. Hence, routing of surface melt water into filling the pore space of the firn column will delay expansion of the area contributing to sea-level rise, although once the pore space is filled it cannot quickly be regenerated.

  7. Perennial Pepperweed Patches - San Francisco Estuary [ds295

    Data.gov (United States)

    California Natural Resource Agency — This layer contains polygon data for the perennial pepperweed (Lepidium latifolium) database. This database represents distribution data collected within the areas...

  8. Genomics: a potential panacea for the perennial problem.

    Science.gov (United States)

    McClure, Kendra A; Sawler, Jason; Gardner, Kyle M; Money, Daniel; Myles, Sean

    2014-10-01

    Perennial crops represent important fresh and processed food sources worldwide, but advancements in breeding perennials are often impeded due to their very nature. The perennial crops we rely on most for food take several years to reach production maturity and require large spaces to grow, which make breeding new cultivars costly compared with most annual crops. Because breeding perennials is inefficient and expensive, they are often grown in monocultures consisting of small numbers of elite cultivars that are vegetatively propagated for decades or even centuries. This practice puts many perennial crops at risk for calamity since they remain stationary in the face of evolving pest and disease pressures. Although there is tremendous genetic diversity available to them, perennial crop breeders often struggle to generate commercially successful cultivars in a timely and cost-effective manner because of the high costs of breeding. Moreover, consumers often expect the same cultivars to be available indefinitely, and there is often little or no incentive for growers and retailers to take the risk of adopting new cultivars. While genomics studies linking DNA variants to commercially important traits have been performed in diverse perennial crops, the translation of these studies into accelerated breeding of improved cultivars has been limited. Here we explain the "perennial problem" in detail and demonstrate how modern genomics tools can significantly improve the cost effectiveness of breeding perennial crops and thereby prevent crucial food sources from succumbing to the perils of perpetual propagation. © 2014 Botanical Society of America, Inc.

  9. Nitrogen removal and nitrate leaching for two perennial, sod-based forage systems receiving dairy effluent.

    Science.gov (United States)

    Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Rymph, Stuart J; Wade, Brett L; Prine, Gordon M; Van Horn, Harold H

    2003-01-01

    In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.

  10. Perennial Grass Bioenergy Cropping on Wet Marginal Land

    NARCIS (Netherlands)

    Das, Srabani; Teuffer, Karin; Stoof, Cathelijne R.; Walter, Michael F.; Walter, M.T.; Steenhuis, Tammo S.; Richards, Brian K.

    2018-01-01

    The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate

  11. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  12. Determination of microbial protein in perennial ryegrass silage

    NARCIS (Netherlands)

    Driehuis, F.; Wikselaar, van P.G.

    2001-01-01

    The microbial matter fraction was determined in perennial ryegrass silages of different dry-matter (DM) contents, ensiled with or without Lactobacillus plantarum. 15N-Leucine and the bacterial cell wall constituent diaminopimelic acid (DAPA) were used as markers for microbial-N. Perennial ryegrass

  13. Nonlinear threshold behavior during the loss of Arctic sea ice.

    Science.gov (United States)

    Eisenman, I; Wettlaufer, J S

    2009-01-06

    In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or "tipping point") beyond which the ice-albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice-albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice-albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely.

  14. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  15. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which

  16. Ice targets

    International Nuclear Information System (INIS)

    Pacheco, C.; Stark, C.; Tanaka, N.; Hodgkins, D.; Barnhart, J.; Kosty, J.

    1979-12-01

    This report presents a description of ice targets that were constructed for research work at the High Resolution Spectrometer (HRS) and at the Energetic Pion Channel and Spectrometer (EPICS). Reasons for using these ice targets and the instructions for their construction are given. Results of research using ice targets will be published at a later date

  17. Life in Ice: Implications to Astrobiology

    Science.gov (United States)

    Hoover, Richard B.

    2009-01-01

    During the 2008 Tawani International Expedition Schirmacher Oasis/Lake Untersee Antarctica Expedition, living and instantly motile bacteria were found in freshly thawed meltwater from ice of the Schirmacher Oasis Lakes, the Anuchin Glacier ice and samples of the that perennial ice sheet above Lake Untersee. This phenomenon of living bacteria encased in ice had previously been observed in the 32,000 year old ice of the Fox Tunnel. The bacteria found in this ice included the strain FTR1T which was isolated and published as valid new species (Carnobacterium pleistocenium) the first validly published living Pleistocene organism still alive today. Living bacteria were also extracted from ancient ice cores from Vostok, Antarctica. The discovery that many strains of bacteria are able to survive and remain alive while frozen in ice sheets for long periods of time may have direct relevance to Astrobiology. The abundance of viable bacteria in the ice sheets of Antarctica suggests that the presence of live bacteria in ice is common, rather than an isolated phenomenon. This paper will discuss the results of recent studies at NSSTC of bacteria cryopreserved in ice. This paper advances the hypothesis that cryopreserved cells, and perhaps even viable bacterial cells, may exist today--frozen in the water-ice of lunar craters, the Polar Caps or craters of Mars; or in the permafrost of Mars; ice and rocks of comets or water bearing asteroids; or in the frozen crusts of the icy moons of Jupiter and Saturn. The existence of bacterial life in ice suggests that it may not be necessary to drill through a thick ice crust to reach liquid water seas deep beneath the icy crusts of Europa, Ganymede and Enceladus. The presence of viable bacteria in the ice of the Earth s Polar Caps suggests that the possibility that cryo-panspermia (i.e., the trans-planetary transfer of microbial life by impact ejection/spallation of bacteria-rich polar ice masses) deserves serious consideration and study as a

  18. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    Science.gov (United States)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  19. Recycling of uranium by a perennial vegetation

    International Nuclear Information System (INIS)

    Thiry, Y.

    2005-01-01

    At sites of large scale mining and processing of uranium ore, tailings and waste rock piles are today the most visible relics of the uranium extractive industry. These mining relics are constantly subjected to weathering and leaching processes causing the dissemination of radioactive and toxic elements and sometimes requiring remedial operations. The in situ remediation of waste rock piles usually includes their revegetation for minimizing the water infiltration and for increasing surface soil stability. Thanks to its biomass density and longevity, the perennial vegetation plays an important role in stabilisation of the water cycling. The buffer role of forest vegetation can reduce water export from watersheds as well as erosion and hydrological losses of chemicals including radionuclides from contaminated sites. If long term reduction of contaminant dispersion at revegetated uranium mining sites is to be fully appreciated, then the extent of radioactive contaminant availability to forest vegetation and ecosystem cycling as well as the possible economic valorisation of the woody products must be considered. Concerned study focused on a Scots pine plantation established 35 years ago on a uranium waste rock pile (Wismuth GmbH) situated near Schlema (Germany). This investigation aimed at quantifying the mobility of uranium in the mining debris and its transport to the different tree compartments with emphasis on the processes involved. The influence of pine vegetation on uranium cycling dynamics was further assessed in terms of annual fluxes)

  20. Allium hookeri , Thw. Enum. A lesser known terrestrial perennial ...

    African Journals Online (AJOL)

    A lesser known terrestrial perennial herb used as food and its ethnobotanical ... from the wilderness, for consumption and traditional healing of various ailments. ... plants, the lifestyles of the people are changed and they prefer 'junk foods'.

  1. The Forecasting of Adaptation Potential of Herbaceous Perennials

    Directory of Open Access Journals (Sweden)

    Belykh, O. A.

    2013-04-01

    Full Text Available This work investigates the problem of the ecobiomorph productive features formation of perennial herbs Ranunculaceae family forecasting on the basis of quantitative connections of species parameters with the leading geomorphological factors of South Siberia environment.

  2. Bacterial endophytes of perennial crops for management of plant disease

    OpenAIRE

    Melnick, Rachel L.; Bailey, B.A.; Backman, Paul A.

    2013-01-01

    Metadata only record Bacterial endophytes, microorganisms which inhabit the internal tissues of plants, can suppress disease and are often used as a biological control in annual crops. Less research, however, has been applied to the use of bacterial endophytes to prevent disease in perennial crops, which presents a more complex challenge. However, exploration of their potential as a biological control in perennial crops has been limited. This chapter assembles current knowledge on the subj...

  3. Past and future ice age initiation: the role of an intrinsic deep-ocean millennial oscillation

    Science.gov (United States)

    Johnson, R. G.

    2014-05-01

    This paper offers three interdependent contributions to studies of climate variation: (1) the recognition and analysis of an intrinsic millennial oceanic oscillation that affects both Northern and Southern high latitude climates, (2) The recognition of an oceanographic switch to ice-free seas west of Greenland that explains the initiation of the Last Ice Age, and (3) an analysis of the effect of increasing salinity in the seas east of Greenland that suggests the possibility of the initiation of an ice age threshold climate in the near future. In the first contribution the millennial oscillation in the flow of the North Atlantic Drift reported by Bond et al. (1997) is proposed to be part of a 1500 yr intrinsic deep ocean oscillation. This oscillation involves the exchange of North Atlantic intermediate-level deep water (NADW) formed in the seas east of Greenland with Antarctic Bottom Water formed in a shallow-water zone at the edge of the Antarctic continent. The concept of NADW formation is already well known, with details of the sinking water flowing out of the Greenland Sea observed by Smethie et al. (2000) using chlorofluorocarbon tracers. The concept of Antarctic Bottom Water formation is also already well established. However, its modulation by the changing fraction of NADW in the Southern Ocean, which I infer from the analysis of Weyl (1968), has not been previously discussed. The modulated lower-salinity Antarctic Bottom Water that reaches the northern North Atlantic then provides negative feedback for the cyclic variation of NADW formation as proposed here. This causes the 1500 yr bipolar oscillation. The feedback suggests the possible sinusoidal character of the proposed oscillation model. The model is consistent with the cooling of the Little Ice Age (Lamb, 1972, 1995), and it also correctly predicts NASA's observation of today's record maximum area of winter sea ice on the Southern Ocean and the present observed record low rate of Antarctic Bottom Water

  4. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    Science.gov (United States)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  5. On the Arctic Ocean ice thickness response to changes in the external forcing

    Energy Technology Data Exchange (ETDEWEB)

    Stranne, Christian; Bjoerk, Goeran [University of Gothenburg, Department of Earth Sciences, Box 460, Goeteborg (Sweden)

    2012-12-15

    Submarine and satellite observations show that the Arctic Ocean ice cover has undergone a large thickness reduction and a decrease in the areal extent during the last decades. Here the response of the Arctic Ocean ice cover to changes in the poleward atmospheric energy transport, F{sub wall}, is investigated using coupled atmosphere-ice-ocean column models. Two models with highly different complexity are used in order to illustrate the importance of different internal processes and the results highlight the dramatic effects of the negative ice thickness - ice volume export feedback and the positive surface albedo feedback. The steady state ice thickness as a function of F{sub wall} is determined for various model setups and defines what we call ice thickness response curves. When a variable surface albedo and snow precipitation is included, a complex response curve appears with two distinct regimes: a perennial ice cover regime with a fairly linear response and a less responsive seasonal ice cover regime. The two regimes are separated by a steep transition associated with surface albedo feedback. The associated hysteresis is however small, indicating that the Arctic climate system does not have an irreversible tipping point behaviour related to the surface albedo feedback. The results are discussed in the context of the recent reduction of the Arctic sea ice cover. A new mechanism related to regional and temporal variations of the ice divergence within the Arctic Ocean is presented as an explanation for the observed regional variation of the ice thickness reduction. Our results further suggest that the recent reduction in areal ice extent and loss of multiyear ice is related to the albedo dependent transition between seasonal and perennial ice i.e. large areas of the Arctic Ocean that has previously been dominated by multiyear ice might have been pushed below a critical mean ice thickness, corresponding to the above mentioned transition, and into a state dominated

  6. Sea Ice, Climate and Fram Strait

    Science.gov (United States)

    Hunkins, K.

    1984-01-01

    When sea ice is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. Sea ice also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal Ice Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the ice pack in that area including the interactions between sea, air and ice.

  7. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  8. Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present.

    Science.gov (United States)

    Hoff, Ulrike; Rasmussen, Tine L; Stein, Ruediger; Ezat, Mohamed M; Fahl, Kirsten

    2016-07-26

    In the light of rapidly diminishing sea ice cover in the Arctic during the present atmospheric warming, it is imperative to study the distribution of sea ice in the past in relation to rapid climate change. Here we focus on glacial millennial-scale climatic events (Dansgaard/Oeschger events) using the sea ice proxy IP25 in combination with phytoplankton proxy data and quantification of diatom species in a record from the southeast Norwegian Sea. We demonstrate that expansion and retreat of sea ice varies consistently in pace with the rapid climate changes 90 kyr ago to present. Sea ice retreats abruptly at the start of warm interstadials, but spreads rapidly during cooling phases of the interstadials and becomes near perennial and perennial during cold stadials and Heinrich events, respectively. Low-salinity surface water and the sea ice edge spreads to the Greenland-Scotland Ridge, and during the largest Heinrich events, probably far into the Atlantic Ocean.

  9. Spring-summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012-2014.

    Science.gov (United States)

    Ducklow, Hugh W; Stukel, Michael R; Eveleth, Rachel; Doney, Scott C; Jickells, Tim; Schofield, Oscar; Baker, Alex R; Brindle, John; Chance, Rosie; Cassar, Nicolas

    2018-06-28

    New production (New P, the rate of net primary production (NPP) supported by exogenously supplied limiting nutrients) and net community production (NCP, gross primary production not consumed by community respiration) are closely related but mechanistically distinct processes. They set the carbon balance in the upper ocean and define an upper limit for export from the system. The relationships, relative magnitudes and variability of New P (from 15 NO 3 - uptake), O 2  : argon-based NCP and sinking particle export (based on the 238 U :  234 Th disequilibrium) are increasingly well documented but still not clearly understood. This is especially true in remote regions such as polar marginal ice zones. Here we present a 3-year dataset of simultaneous measurements made at approximately 50 stations along the Western Antarctic Peninsula (WAP) continental shelf in midsummer (January) 2012-2014. Net seasonal-scale changes in water column inventories (0-150 m) of nitrate and iodide were also estimated at the same stations. The average daily rates based on inventory changes exceeded the shorter-term rate measurements. A major uncertainty in the relative magnitude of the inventory estimates is specifying the start of the growing season following sea-ice retreat. New P and NCP(O 2 ) did not differ significantly. New P and NCP(O 2 ) were significantly greater than sinking particle export from thorium-234. We suggest this is a persistent and systematic imbalance and that other processes such as vertical mixing and advection of suspended particles are important export pathways.This article is part of the theme issue 'The marine system of the west Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Author(s).

  10. Seasonal versus perennial immunotherapy: evaluation after three years of treatment.

    Science.gov (United States)

    Muñoz Lejarazu, D; Bernaola, G; Fernández, E; Audícana, M; Ventas, P; Martín, S; Fernández de Corres, L

    1993-01-01

    We have performed a comparative study to evaluate seasonal and perennial schedules after 3 years of immunotherapy. Sixty patients suffering from rhinitis and/or asthma due to grass pollen sensitization were randomly allocated to receive a semi-depot extract of Phleum pratense according to a perennial or seasonal schedule. The last year of the study, 14 patients were recruited as a control group without immunotherapy. The cumulative dose was 602 BU in the perennial group and 372 BU in the seasonal group. The frequency and severity of side-effects were similar and very low in both treated groups. The IgE level was significantly lower after perennial immunotherapy at the end of the first 2 years. A seasonal decrease in specific IgG levels was observed in patients who interrupted immunotherapy, while this was not observed in patients under the perennial schedule. Symptoms and medication scores did not show differences between groups. Nevertheless, we found a significant difference between treated patients and the control group.

  11. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    Science.gov (United States)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  12. The genome and transcriptome of perennial ryegrass mitochondria

    DEFF Research Database (Denmark)

    Islam, Md. Shofiqul; Studer, Bruno; Byrne, Stephen

    2013-01-01

    Background: Perennial ryegrass (Lolium perenne L.) is one of the most important forage and turf grass species of temperate regions worldwide. Its mitochondrial genome is inherited maternally and contains genes that can influence traits of agricultural importance. Moreover, the DNA sequence...... and annotation of the complete mitochondrial genome from perennial ryegrass. Results: Intact mitochondria from perennial ryegrass leaves were isolated and used for mtDNA extraction. The mitochondrial genome was sequenced to a 167-fold coverage using the Roche 454 GS-FLX Titanium platform, and assembled...... of mitochondrial genomes has been established and compared for a large number of species in order to characterize evolutionary relationships.Therefore, it is crucial to understand the organization of the mitochondrial genome and how it varies between and within species. Here, we report the first de novo assembly...

  13. Totally impermeable film (TIF reduces emissions in perennial crop fumigation

    Directory of Open Access Journals (Sweden)

    Suduan Gao

    2013-10-01

    Full Text Available Many perennial nursery fields and replanted orchards and vineyards in California are treated with preplant soil fumigants to control soilborne pests. In annual crops, such as strawberry, covering fumigated fields with totally impermeable film (TIF has shown promise in controlling emissions and improving fumigant distribution in soil. The objective of this research was to optimize the use of TIF for perennial crops via three field trials. TIF reduced peak emission flux and cumulative emissions by > 90% relative to polyethylene tarp during a 2-week covering period. After the TIF was cut, emissions were greatly reduced compared to when tarps were cut after 6 days. TIF maintained higher fumigant concentrations under tarp and in the soil than polyethylene film. The results indicate that TIF can increase fumigation efficiency for perennial crop growers.

  14. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  15. Assessing Water-use Relationships in a Perennial Kernza Field

    Science.gov (United States)

    De Oliveira, G.; Brunsell, N. A.; Sutherlin, C. E.; Crews, T.; Vico, G.

    2017-12-01

    Perennial grain/forage crops can sustain high yields without replanting for 3-10 years or more, resulting in potentially important environmental benefits. Although previous research has been conducted in perennial food crops, the coupling between these ecosystems and the atmosphere is not well understood. The objective of this study was to evaluate the magnitude and temporal variability of the water-use relationships in a perennial Kernza wheatgrass crop in Salina, north-central region of Kansas (KS), USA. The study period comprised approximately 4.5 years (May 2012-October 2016) of eddy covariance observations collected at the US-KLS AmeriFlux tower. In particular, we examine the water-use efficiency, carbon and water fluxes in relation to the local environmental factors, such as vapor pressure deficit, soil moisture, air temperature, etc. An analysis of the correspondence between accumulated precipitation (PPT) and ET in the perennial crop indicated a most likely low surface runoff and that there were other sources of water for plant intake in addition to the annual PPT, i.e., deep water. In this sense, we highlight that the long roots observed in perennial crops may facilitate the water uptake in the deeper soil layers, providing extra resources for the plant growth especially when the rainfall indices are low. The results obtained in this work are important in order to better understand the hydrologic cycle of perennial agroecosystems as well as to understand the benefits and disadvantages in relation to annual crops particularly under changing climatic conditions.

  16. Estimating Summer Ocean Heating in the Arctic Ice Pack Using High-Resolution Satellite Imagery

    Science.gov (United States)

    2014-09-01

    8 D. THE BEAUFORT SEA ICE MARGINAL ICE ZONE ...............................9 1. Sea Ice - Albedo Feedback...seasonal evolution of sea ice albedo for MYI (blue) and FYI (red). Plot (c) is the daily solar heat input. Plot (d) is the time averaged solar heat... ice cover has decreased extensively, particularly in the summer months (from Lee et al. 2012). 13 1. Sea Ice - Albedo Feedback Albedo is a

  17. Skating on slippery ice

    Directory of Open Access Journals (Sweden)

    J. M. J. van Leeuwen

    2017-12-01

    Full Text Available The friction of a stationary moving skate on smooth ice is investigated, in particular in relation to the formation of a thin layer of water between skate and ice. It is found that the combination of ploughing and sliding gives a friction force that is rather insensitive for parameters such as velocity and temperature. The weak dependence originates from the pressure adjustment inside the water layer. For instance, high velocities, which would give rise to high friction, also lead to large pressures, which, in turn, decrease the contact zone and so lower the friction. The theory is a combination and completion of two existing but conflicting theories on the formation of the water layer.

  18. Defoliation effects of perennial grasses – continuing confusion | DL ...

    African Journals Online (AJOL)

    Although an adequate knowledge of growth patterns and defoliation effects in perennial grasses is a prerequisite for the rational use of veld and pastures for animal production, our knowledge of this subject is far from adequate. The results of various physiological and clipping studies on tropical and sub-tropical grasses are ...

  19. Rhetorical Transcendence Revisited: The "Thin Red Line" as Perennial Philosophy.

    Science.gov (United States)

    Stroud, Scott R.

    Fifteen years ago, J. H. Rushing published a seminal article addressing the fragmentation within contemporary society and the ways in which myths (films) may address this exigence. The exigence of fragmentation is relieved, according to her analysis, by mediated recourse to the perennial philosophy of monistic holism that is found across the…

  20. The occurrence of large branchiopod crustaceans in perennial pans ...

    African Journals Online (AJOL)

    Pans are isolated, shallow depressions that are endorheic in nature. Because of the natural hydrological functioning of pans, these systems are usually restricted to arid regions and complete desiccation occurs seasonally. In the eastern provinces of South Africa many pans are perennial in nature often remaining inundated ...

  1. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    Science.gov (United States)

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  2. Ionomics: Genes and QTLs controlling heavy metal uptake in perennial grasses grown on phytoxic soil

    Science.gov (United States)

    Perennial grasses occupy diverse soils throughout the world, including many sites contaminated with heavy metals. Uncovering the genetic architecture of QTLs controlling mineral homoeostasis is critical for understanding the biochemical pathways that determine the elemental profiles of perennial pl...

  3. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity of the ...

  4. Late Cenozoic Arctic Ocean sea ice and terrestrial paleoclimate.

    Science.gov (United States)

    Carter, L.D.; Brigham-Grette, J.; Marincovich, L.; Pease, V.L.; Hillhouse, J.W.

    1986-01-01

    Sea otter remains found in deposits of two marine transgressions (Bigbendian and Fishcreekian) of the Alaskan Arctic Coastal Plain which occurred between 2.4 and 3 Ma suggest that during these two events the southern limit of seasonal sea ice was at least 1600 km farther north than at present in Alaskan waters. Perennial sea ice must have been severely restricted or absent, and winters were warmer than at present during these two sea-level highstands. Paleomagnetic, faunal, and palynological data indicate that the later transgression (Fishcreekian) occurred during the early part of the Matuyama Reversed-Polarity Chron. -from Authors

  5. Sea ice production and transport of pollutants in Laptev Sea, 1979 to 1992

    International Nuclear Information System (INIS)

    Rigor, I.; Colony, R.

    1995-01-01

    About 900,000 km 2 of the polar pack ice is transferred annually from the Arctic Basin to the North Atlantic. The largest portion of this exported ice cover is created by the large scale divergence within the ice pack, but a significant portion of the ice cover originates in the marginal seas, either by fall freezing of the seasonally ice free waters or by wintertime advection away from the coast. The main objective of this study was to estimate the annual production of ice in the Laptev Sea and to determine its ultimate fate. The study was motivated by the possibility that ice formed in the Laptev Sea may be an agent for the long range transport of pollutants such as radionuclides. The authors have attempted to characterize the mean and interannual variability of ice production by investigating the winter production and subsequent melt of ice in the Laptev Sea from 1979 through 1992. The general approach was to associate pollution transport with the net exchange of ice area from the Laptev Sea to the perennial ice pack. The primary data sets supporting the study were ice charts, ice motion and geostrophic wind. 3 refs., 4 figs., 1 tab

  6. Sea ice roughness: the key for predicting Arctic summer ice albedo

    Science.gov (United States)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  7. Mapping the temporary and perennial character of whole river networks

    Science.gov (United States)

    González-Ferreras, A. M.; Barquín, J.

    2017-08-01

    Knowledge of the spatial distribution of temporary and perennial river channels in a whole catchment is important for effective integrated basin management and river biodiversity conservation. However, this information is usually not available or is incomplete. In this study, we present a statistically based methodology to classify river segments from a whole river network (Deva-Cares catchment, Northern Spain) as temporary or perennial. This method is based on an a priori classification of a subset of river segments as temporary or perennial, using field surveys and aerial images, and then running Random Forest models to predict classification membership for the rest of the river network. The independent variables and the river network were derived following a computer-based geospatial simulation of riverine landscapes. The model results show high values of overall accuracy, sensitivity, and specificity for the evaluation of the fitted model to the training and testing data set (≥0.9). The most important independent variables were catchment area, area occupied by broadleaf forest, minimum monthly precipitation in August, and average catchment elevation. The final map shows 7525 temporary river segments (1012.5 km) and 3731 perennial river segments (662.5 km). A subsequent validation of the mapping results using River Habitat Survey data and expert knowledge supported the validity of the proposed maps. We conclude that the proposed methodology is a valid method for mapping the limits of flow permanence that could substantially increase our understanding of the spatial links between terrestrial and aquatic interfaces, improving the research, management, and conservation of river biodiversity and functioning.

  8. Ice Ages

    Indian Academy of Sciences (India)

    that the precession of the earth's orbit caused ice ages. The precession of the earth's orbit leads to changes in the time of the year at which ... than in the southern hemisphere. ..... small increase in ocean temperature implies a large increase in.

  9. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    Science.gov (United States)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  10. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    The stretch zone of automotive steel sheets. L' AMBRIŠKO1,∗ and L PEŠEK2. 1Institute of Structural Engineering, Faculty of Civil Engineering,. Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic. 2Department of Materials Science, Faculty of Metallurgy,. Technical University of Košice, Letná 9, ...

  11. Ecology of southern ocean pack ice.

    Science.gov (United States)

    Brierley, Andrew S; Thomas, David N

    2002-01-01

    aggregating there. As a result, much of the Southern Ocean pelagic whaling was concentrated at the edge of the marginal ice zone. The extent and duration of sea ice fluctuate periodically under the influence of global climatic phenomena including the El Niño Southern Oscillation. Life cycles of some associated species may reflect this periodicity. With evidence for climatic warming in some regions of Antarctica, there is concern that ecosystem change may be induced by changes in sea-ice extent. The relative abundance of krill and salps appears to change interannually with sea-ice extent, and in warm years, when salps proliferate, krill are scarce and dependent predators suffer severely. Further research on the Southern Ocean sea-ice system is required, not only to further our basic understanding of the ecology, but also to provide ecosystem managers with the information necessary for the development of strategies in response to short- and medium-term environmental changes in Antarctica. Technological advances are delivering new sampling platforms such as autonomous underwater vehicles that are improving vastly our ability to sample the Antarctic under sea-ice environment. Data from such platforms will enhance greatly our understanding of the globally important Southern Ocean sea-ice ecosystem.

  12. Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska

    Science.gov (United States)

    Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.

    2011-01-01

    Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.

  13. A transcriptome map of perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Studer Bruno

    2012-04-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are increasingly becoming the DNA marker system of choice due to their prevalence in the genome and their ability to be used in highly multiplexed genotyping assays. Although needed in high numbers for genome-wide marker profiles and genomics-assisted breeding, a surprisingly low number of validated SNPs are currently available for perennial ryegrass. Results A perennial ryegrass unigene set representing 9,399 genes was used as a reference for the assembly of 802,156 high quality reads generated by 454 transcriptome sequencing and for in silico SNP discovery. Out of more than 15,433 SNPs in 1,778 unigenes fulfilling highly stringent assembly and detection parameters, a total of 768 SNP markers were selected for GoldenGate genotyping in 184 individuals of the perennial ryegrass mapping population VrnA, a population being previously evaluated for important agronomic traits. A total of 592 (77% of the SNPs tested were successfully called with a cluster separation above 0.9. Of these, 509 (86% genic SNP markers segregated in the VrnA mapping population, out of which 495 were assigned to map positions. The genetic linkage map presented here comprises a total of 838 DNA markers (767 gene-derived markers and spans 750 centi Mogan (cM with an average marker interval distance of less than 0.9 cM. Moreover, it locates 732 expressed genes involved in a broad range of molecular functions of different biological processes in the perennial ryegrass genome. Conclusions Here, we present an efficient approach of using next generation sequencing (NGS data for SNP discovery, and the successful design of a 768-plex Illumina GoldenGate genotyping assay in a complex genome. The ryegrass SNPs along with the corresponding transcribed sequences represent a milestone in the establishment of genetic and genomics resources available for this species and constitute a further step towards molecular breeding

  14. Sea ice thickness measurements collected during the LOMROG 2007 and 2009 expeditions

    DEFF Research Database (Denmark)

    Skourup, Henriette; Forsberg, René; Hanson, Susanne

    and 2009 we have collected a unique data set of late summer sea ice thickness, freeboard height and snow depth from the high Arctic Ocean during the time of the annual minimum sea ice extent. The data were collected by on-the-ground drilling and EM measurements. Here we give a brief overview of the data......According to scientific measurements, the Arctic sea ice extent has declined dramatically over the past thirty years, with the most extreme decline seen in the summer melt season. Other observations indicate that the sea ice has become thinner and perennial ice less widely distributed...... collection, as well as the results including the freeboard-to-sea-ice thickness conversion factor, which is used when interpreting freeboard heights measured by remote sensing....

  15. Eulerian Method for Ice Crystal Icing

    NARCIS (Netherlands)

    Norde, Ellen; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    In this study, an ice accretion method aimed at ice crystal icing in turbofan engines is developed and demonstrated for glaciated as well as mixed-phase icing conditions. The particle trajectories are computed by an Eulerian trajectory method. The effects of heat transfer and phase change on the

  16. Effectiveness of streamside management zones on water quality: pretreatment measurements

    Science.gov (United States)

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; E. Treasure

    2008-01-01

    The objective of this paired watershed study is to quantify the effects of upland forest harvesting and Streamside Management Zones (SMZs) on stream water quantity and quality in North Carolina. Four watersheds ranging from 12 to 28 hectares (i.e., two on Hill Forest and two on Umstead Research Farm) with perennial stream channels were gauged for flow monitoring and...

  17. The transfer of radionuclides from contaminated groundwater into perennial ryegrass and winter wheat

    International Nuclear Information System (INIS)

    Wadey, P.; Shaw, G.; Butler, A. P.; Tompkins, J. A.; Wheater, H. S.

    1996-01-01

    Lysimeter studies of the migration of radionuclides from a contaminated water table and their subsequent uptake by plant roots have been undertaken using two distinct soil types and varying crop regimes. An eight year multi-disciplinary research project (funded by Nirex) has concentrated on the upward migration of contaminants from near-surface water tables, and their uptake by winter wheat and perennial ryegrass crops. Experimental data are presented for the movement and uptake of radiocaesium 137 Cs. These data show significant movement in the unsaturated zone during the first year of dosing, followed by progressively reduced availability in subsequent years. A suite of physically based hydrological and solute transport models has been developed to model radionuclide transport in the unsaturated zone. Model simulations, based on a conventional advection-dispersion representation incorporating linear sorption processes, were unable to describe adequately the distribution of radiocaesium within the soil profile. However, the introduction of root storage and translocation processes provided significantly improved results. (author)

  18. A simple holistic hypothesis for the self-destruction of ice sheets

    Science.gov (United States)

    Hughes, T.

    2011-07-01

    Ice sheets are the only components of Earth's climate system that can self-destruct. This paper presents the quantitative force balance for bottom-up modeling of ice sheets, as first presented qualitatively in this journal as a way to quantify ice-bed uncoupling leading to self-destruction of ice sheets ( Hughes, 2009a). Rapid changes in sea level and climate can result if a large ice-sheet self-destructs quickly, as did the former Laurentide Ice Sheet of North America between 8100 and 7900 BP, thereby terminating the last cycle of Quaternary glaciation. Ice streams discharge up to 90 percent of ice from past and present ice sheets. A hypothesis is presented in which self-destruction of an ice sheet begins when ubiquitous ice-bed decoupling, quantified as a floating fraction of ice, proceeds along ice streams. This causes ice streams to surge and reduce thickness by some 90 percent, and height above sea level by up to 99 percent for floating ice, so the ice sheet undergoes gravitational collapse. Ice collapsing over marine embayments becomes floating ice shelves that may then disintegrate rapidly. This floods the world ocean with icebergs that reduce the ocean-to-atmosphere heat exchange, thereby triggering climate change. Calving bays migrate up low stagnating ice streams and carve out the accumulation zone of the collapsed ice sheet, which prevents its recovery, decreases Earth's albedo, and terminates the glaciation cycle. This sequence of events may coincide with a proposed life cycle of ice streams that drain the ice sheet. A first-order treatment of these life cycles is presented that depends on the longitudinal force balance along the flowbands of ice streams and gives a first approximation to ice-bed uncoupling at snapshots during gravitational collapse into ice shelves that disintegrate, thereby removing the ice sheet. The stability of the Antarctic Ice Sheet is assessed using this bottom-up approach.

  19. Sea ice - Multiyear cycles and white ice

    Science.gov (United States)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  20. Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy IPSO25

    Science.gov (United States)

    Schmidt, Katrin; Brown, Thomas A.; Belt, Simon T.; Ireland, Louise C.; Taylor, Kyle W. R.; Thorpe, Sally E.; Ward, Peter; Atkinson, Angus

    2018-04-01

    Sea ice affects primary production in polar regions in multiple ways. It can dampen water column productivity by reducing light or nutrient supply, provide a habitat for ice algae and condition the marginal ice zone (MIZ) for phytoplankton blooms on its seasonal retreat. The relative importance of three different carbon sources (sea ice derived, sea ice conditioned, non-sea-ice associated) for the polar food web is not well understood, partly due to the lack of methods that enable their unambiguous distinction. Here we analysed two highly branched isoprenoid (HBI) biomarkers to trace sea-ice-derived and sea-ice-conditioned carbon in Antarctic krill (Euphausia superba) and relate their concentrations to the grazers' body reserves, growth and recruitment. During our sampling in January-February 2003, the proxy for sea ice diatoms (a di-unsaturated HBI termed IPSO25, δ13C = -12.5 ± 3.3 ‰) occurred in open waters of the western Scotia Sea, where seasonal ice retreat was slow. In suspended matter from surface waters, IPSO25 was present at a few stations close to the ice edge, but in krill the marker was widespread. Even at stations that had been ice-free for several weeks, IPSO25 was found in krill stomachs, suggesting that they gathered the ice-derived algae from below the upper mixed layer. Peak abundances of the proxy for MIZ diatoms (a tri-unsaturated HBI termed HBI III, δ13C = -42.2 ± 2.4 ‰) occurred in regions of fast sea ice retreat and persistent salinity-driven stratification in the eastern Scotia Sea. Krill sampled in the area defined by the ice edge bloom likewise contained high amounts of HBI III. As indicators for the grazer's performance we used the mass-length ratio, size of digestive gland and growth rate for krill, and recruitment for the biomass-dominant calanoid copepods Calanoides acutus and Calanus propinquus. These indices consistently point to blooms in the MIZ as an important feeding ground for pelagic grazers. Even though ice

  1. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  2. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning

    2004-01-01

    This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...... depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order...

  3. Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave-ice model

    Science.gov (United States)

    Herman, Agnieszka

    2017-11-01

    In this paper, a coupled sea ice-wave model is developed and used to analyze wave-induced stress and breaking in sea ice for a range of wave and ice conditions. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid grains floating on the water surface that can be connected to their neighbors by elastic joints. The joints may break if instantaneous stresses acting on them exceed their strength. The wave module is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two modules are coupled with proper boundary conditions for pressure and velocity, exchanged at every wave model time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.

  4. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  5. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...

  6. Peculiarities of Vibration Characteristics of Amorphous Ices

    Science.gov (United States)

    Gets, Kirill V.; Subbotin, Oleg S.; Belosludov, Vladimir R.

    2012-03-01

    Dynamic properties of low (LDA), high (HDA) and very high (VHDA) density amorphous ices were investigated within the approach based on Lattice Dynamics simulations. In this approach, we assume that the short-range molecular order mainly determines the dynamic and thermodynamic properties of amorphous ices. Simulation cell of 512 water molecules with periodical boundary conditions and disordering allows us to study dynamical properties and dispersion curves in the Brillouin zone of pseudo-crystal. Existence of collective phenomena in amorphous ices which is usual for crystals but anomalous for disordered phase was confirmed in our simulations. Molecule amplitudes of delocalized (collective) as well as localized vibrations have been considered.

  7. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  8. Energizing marginal soils: A perennial cropping system for Sida hermaphrodita

    Science.gov (United States)

    Nabel, Moritz; Poorter, Hendrik; Temperton, Vicky; Schrey, Silvia D.; Koller, Robert; Schurr, Ulrich; Jablonowski, Nicolai D.

    2017-04-01

    As a way to avoid land use conflicts, the use of marginal soils for the production of plant biomass can be a sustainable alternative to conventional biomass production (e.g. maize). However, new cropping strategies have to be found that meet the challenge of crop production under marginal soil conditions. We aim for increased soil fertility by the use of the perennial crop Sida hermaphrodita in combination with organic fertilization and legume intercropping to produce substantial biomass yield. We present results of a three-year outdoor mesocosm experiment testing the perennial energy crop Sida hermaphrodita grown on a marginal model substrate (sand) with four kinds of fertilization (Digestate broadcast, Digestate Depot, mineral NPK and unfertilized control) in combination with legume intercropping. After three years, organic fertilization (via biogas digestate) compared to mineral fertilization (NPK), reduced the nitrate concentration in leachate and increased the soil carbon content. Biomass yields of Sida were 25% higher when fertilized organically, compared to mineral fertilizer. In general, digestate broadcast application reduced root growth and the wettability of the sandy substrate. However, when digestate was applied locally as depot to the rhizosphere, root growth increased and the wettability of the sandy substrate was preserved. Depot fertilization increased biomass yield by 10% compared to digestate broadcast fertilization. We intercropped Sida with various legumes (Trifolium repens, Trifolium pratense, Melilotus spp. and Medicago sativa) to enable biological nitrogen fixation and make the cropping system independent from synthetically produced fertilizers. We could show that Medicago sativa grown on marginal substrate fixed large amounts of N, especially when fertilized organically, whereas mineral fertilization suppressed biological nitrogen fixation. We conclude that the perennial energy crop Sida in combination with organic fertilization has great

  9. Association of Candidate Genes With Submergence Response in Perennial Ryegrass

    Directory of Open Access Journals (Sweden)

    Xicheng Wang

    2017-05-01

    Full Text Available Perennial ryegrass is a popular cool-season grass species due to its high quality for forage and turf. The objective of this study was to identify associations of candidate genes with growth and physiological traits to submergence stress and recovery after de-submergence in a global collection of 94 perennial ryegrass accessions. Accessions varied largely in leaf color, plant height (HT, leaf fresh weight (LFW, leaf dry weight (LDW, and chlorophyll fluorescence (Fv/Fm at 7 days of submergence and in HT, LFW and LDW at 7 days of recovery in two experiments. Among 26 candidate genes tested by various models, single nucleotide polymorphisms (SNPs in 10 genes showed significant associations with traits including 16 associations for control, 10 for submergence, and 8 for recovery. Under submergence, Lp1-SST encoding sucrose:sucrose 1-fructosyltransferase and LpGA20ox encoding gibberellin 20-oxidase were associated with LFW and LDW, and LpACO1 encoding 1-aminocyclopropane-1-carboxylic acid oxidase was associated with LFW. Associations between Lp1-SST and HT, Lp6G-FFT encoding fructan:fructan 6G-fructosyltransferase and Fv/Fm, LpCAT encoding catalase and HT were also detected under submergence stress. Upon de-submergence, Lp1-SST, Lp6G-FFT, and LpPIP1 encoding plasma membrane intrinsic protein type 1 were associated with LFW or LDW, while LpCBF1b encoding C-repeat binding factor were associated with HT. Nine significant SNPs in Lp1-SST, Lp6G-FFT, LpCAT, and LpACO1 resulted in amino acid changes with five substitutions found in Lp1-SST under submergence or recovery. The results indicated that allelic diversity in genes involved in carbohydrate and antioxidant metabolism, ethylene and gibberellin biosynthesis, and transcript factor could contribute to growth variations in perennial ryegrass under submergence stress and recovery after de-submergence.

  10. Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic Lake

    Directory of Open Access Journals (Sweden)

    Anne D. Jungblut

    2013-01-01

    Full Text Available Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a “natural experiment” on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm per year and accrue ~0.18 µg chlorophyll-a cm−2 y−1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited “climax” communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure.

  11. State of Arctic Sea Ice North of Svalbard during N-ICE2015

    Science.gov (United States)

    Rösel, Anja; King, Jennifer; Gerland, Sebastian

    2016-04-01

    The N-ICE2015 cruise, led by the Norwegian Polar Institute, was a drift experiment with the research vessel R/V Lance from January to June 2015, where the ship started the drift North of Svalbard at 83°14.45' N, 21°31.41' E. The drift was repeated as soon as the vessel drifted free. Altogether, 4 ice stations where installed and the complex ocean-sea ice-atmosphere system was studied with an interdisciplinary Approach. During the N-ICE2015 cruise, extensive ice thickness and snow depth measurements were performed during both, winter and summer conditions. Total ice and snow thickness was measured with ground-based and airborne electromagnetic instruments; snow depth was measured with a GPS snow depth probe. Additionally, ice mass balance and snow buoys were deployed. Snow and ice thickness measurements were performed on repeated transects to quantify the ice growth or loss as well as the snow accumulation and melt rate. Additionally, we collected independent values on surveys to determine the general ice thickness distribution. Average snow depths of 32 cm on first year ice, and 52 cm on multi-year ice were measured in January, the mean snow depth on all ice types even increased until end of March to 49 cm. The average total ice and snow thickness in winter conditions was 1.92 m. During winter we found a small growth rate on multi-year ice of about 15 cm in 2 months, due to above-average snow depths and some extraordinary storm events that came along with mild temperatures. In contrast thereto, we also were able to study new ice formation and thin ice on newly formed leads. In summer conditions an enormous melt rate, mainly driven by a warm Atlantic water inflow in the marginal ice zone, was observed during two ice stations with melt rates of up to 20 cm per 24 hours. To reinforce the local measurements around the ship and to confirm their significance on a larger scale, we compare them to airborne thickness measurements and classified SAR-satellite scenes. The

  12. Whole-stream metabolism of a perennial spring-fed aufeis field in Alaska, with coincident surface and subsurface flow

    Science.gov (United States)

    Hendrickson, P. J.; Gooseff, M. N.; Huryn, A. D.

    2017-12-01

    Aufeis (icings or naleds) are seasonal arctic and sub-arctic features that accumulate through repeated overflow and freeze events of river or spring discharge. Aufeis fields, defined as the substrate on which aufeis form and the overlaying ice, have been studied to mitigate impacts on engineering structures; however, ecological characteristics and functions of aufeis fields are poorly understood. The perennial springs that supply warm water to aufeis fields create unique fluvial habitats, and are thought to act as winter and summer oases for biota. To investigate ecosystem function, we measured whole-stream metabolism at the Kuparuk River Aufeis (North Slope, AK), a large ( 5 km2) field composed of cobble substrate and predominately subsurface flow dynamics. The single-station open channel diel oxygen method was utilized at several dissolved oxygen (DO) stations located within and downstream of the aufeis field. DO loggers were installed in August 2016, and data downloaded summer 2017. Daily ecosystem respiration (ER), gross primary production (GPP) and reaeration rates were modeled using BASE, a package freely available in the open-source software R. Preliminary results support net heterotrophy during a two-week period of DO measurements in the fall season when minimum ice extent is observed. GPP, ER, and net metabolism are greater at the upstream reach near the spring source (P/R = 0.53), and decrease as flow moves downstream. As flow exits the aufeis field, surface and subsurface flow are incorporated into the metabolism model, and indicate the stream system becomes dependent on autochthonous production (P/R = 0.91). Current work is directed towards spring and summer discharge and metabolic parameter estimation, which is associated with maximum ice extent and rapid melting of the aufeis feature.

  13. Under Sea Ice phytoplankton bloom detection and contamination in Antarctica

    Science.gov (United States)

    Zeng, C.; Zeng, T.; Xu, H.

    2017-12-01

    Previous researches reported compelling sea ice phytoplankton bloom in Arctic, while seldom reports studied about Antarctic. Here, lab experiment showed sea ice increased the visible light albedo of the water leaving radiance. Even a new formed sea ice of 10cm thickness increased water leaving radiance up to 4 times of its original bare water. Given that phytoplankton preferred growing and accumulating under the sea ice with thickness of 10cm-1m, our results showed that the changing rate of OC4 estimated [Chl-a] varied from 0.01-0.5mg/m3 to 0.2-0.3mg/m3, if the water covered by 10cm sea ice. Going further, varying thickness of sea ice modulated the changing rate of estimating [Chl-a] non-linearly, thus current routine OC4 model cannot estimate under sea ice [Chl-a] appropriately. Besides, marginal sea ice zone has a large amount of mixture regions containing sea ice, water and snow, where is favorable for phytoplankton. We applied 6S model to estimate the sea ice/snow contamination on sub-pixel water leaving radiance of 4.25km spatial resolution ocean color products. Results showed that sea ice/snow scale effectiveness overestimated [Chl-a] concentration based on routine band ratio OC4 model, which contamination increased with the rising fraction of sea ice/snow within one pixel. Finally, we analyzed the under sea ice bloom in Antarctica based on the [Chl-a] concentration trends during 21 days after sea ice retreating. Regardless of those overestimation caused by sea ice/snow sub scale contamination, we still did not see significant under sea ice blooms in Antarctica in 2012-2017 compared with Arctic. This research found that Southern Ocean is not favorable for under sea ice blooms and the phytoplankton bloom preferred to occur in at least 3 weeks after sea ice retreating.

  14. Tradeoffs between water requirements and yield stability in annual vs. perennial crops

    Science.gov (United States)

    Vico, Giulia; Brunsell, Nathaniel A.

    2018-02-01

    Population growth and changes in climate and diets will likely further increase the pressure on agriculture and water resources globally. Currently, staple crops are obtained from annuals plants. A shift towards perennial crops may enhance many ecosystem services, but at the cost of higher water requirements and lower yields. It is still unclear when the advantages of perennial crops overcome their disadvantages and perennial crops are thus a sustainable solution. Here we combine a probabilistic description of the soil water balance and crop development with an extensive dataset of traits of congeneric annuals and perennials to identify the conditions for which perennial crops are more viable than annual ones with reference to yield, yield stability, and effective use of water. We show that the larger and more developed roots of perennial crops allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species, but their yields remain lower when considering grain crops. Furthermore, perennial crops have higher and more variable irrigation requirements and lower water productivity. These results are important to understand the potential consequences for yield, its stability, and water resource use of a shift from annual to perennial crops and, more generally, if perennial crops may be more resilient than annual crops in the face of climatic fluctuations.

  15. Potential impacts to perennial springs from tar sand mining, processing, and disposal on the Tavaputs Plateau, Utah, USA

    International Nuclear Information System (INIS)

    Johnson, William P.; Frederick, Logan E.; Millington, Mallory R.; Vala, David; Reese, Barbara K.; Freedman, Dina R.; Stenten, Christina J.; Trauscht, Jacob S.; Tingey, Christopher E.; Kip Solomon, D.; Fernandez, Diego P.; Bowen, Gabriel J.

    2015-01-01

    Similar to fracking, the development of tar sand mining in the U.S. has moved faster than understanding of potential water quality impacts. Potential water quality impacts of tar sand mining, processing, and disposal to springs in canyons incised approximately 200 m into the Tavaputs Plateau, at the Uinta Basin southern rim, Utah, USA, were evaluated by hydrogeochemical sampling to determine potential sources of recharge, and chemical thermodynamic estimations to determine potential changes in transfer of bitumen compounds to water. Because the ridgetops in an area of the Tavaputs Plateau named PR Spring are starting to be developed for their tar sand resource, there is concern for potential hydrologic connection between these ridgetops and perennial springs in adjacent canyons on which depend ranching families, livestock, wildlife and recreationalists. Samples were collected from perennial springs to examine possible progression with elevation of parameters such as temperature, specific conductance, pH, dissolved oxygen, isotopic tracers of phase change, water-rock interaction, and age since recharge. The groundwater age dates indicate that the springs are recharged locally. The progression of hydrogeochemical parameters with elevation, in combination with the relatively short groundwater residence times, indicate that the recharge zone for these springs includes the surrounding ridges, and thereby suggests a hydrologic connection between the mining, processing, disposal area and the springs. Estimations based on chemical thermodynamic approaches indicate that bitumen compounds will have greatly enhanced solubility in water that comes into contact with the residual bitumen–solvent mixture in disposed tailings relative to water that currently comes into contact with natural tar. - Highlights: • The potential water quality impacts of the first US tar sand development are considered. • Analyses of perennial springs in adjacent canyons indicate hydrologic

  16. Potential impacts to perennial springs from tar sand mining, processing, and disposal on the Tavaputs Plateau, Utah, USA

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William P.; Frederick, Logan E.; Millington, Mallory R. [University of Utah, Department of Geology & Geophysics, Salt lake City, UT 84112 (United States); Vala, David [Murray High School, Murray, UT 84107 (United States); Reese, Barbara K. [Butler Middle School, Cottonwood Heights, UT 84121 (United States); Freedman, Dina R. [Hillside Middle School, Salt Lake City, UT 84108 (United States); Stenten, Christina J. [Draper Park Middle School, Draper, UT 84020 (United States); Trauscht, Jacob S.; Tingey, Christopher E.; Kip Solomon, D.; Fernandez, Diego P.; Bowen, Gabriel J. [University of Utah, Department of Geology & Geophysics, Salt lake City, UT 84112 (United States)

    2015-11-01

    Similar to fracking, the development of tar sand mining in the U.S. has moved faster than understanding of potential water quality impacts. Potential water quality impacts of tar sand mining, processing, and disposal to springs in canyons incised approximately 200 m into the Tavaputs Plateau, at the Uinta Basin southern rim, Utah, USA, were evaluated by hydrogeochemical sampling to determine potential sources of recharge, and chemical thermodynamic estimations to determine potential changes in transfer of bitumen compounds to water. Because the ridgetops in an area of the Tavaputs Plateau named PR Spring are starting to be developed for their tar sand resource, there is concern for potential hydrologic connection between these ridgetops and perennial springs in adjacent canyons on which depend ranching families, livestock, wildlife and recreationalists. Samples were collected from perennial springs to examine possible progression with elevation of parameters such as temperature, specific conductance, pH, dissolved oxygen, isotopic tracers of phase change, water-rock interaction, and age since recharge. The groundwater age dates indicate that the springs are recharged locally. The progression of hydrogeochemical parameters with elevation, in combination with the relatively short groundwater residence times, indicate that the recharge zone for these springs includes the surrounding ridges, and thereby suggests a hydrologic connection between the mining, processing, disposal area and the springs. Estimations based on chemical thermodynamic approaches indicate that bitumen compounds will have greatly enhanced solubility in water that comes into contact with the residual bitumen–solvent mixture in disposed tailings relative to water that currently comes into contact with natural tar. - Highlights: • The potential water quality impacts of the first US tar sand development are considered. • Analyses of perennial springs in adjacent canyons indicate hydrologic

  17. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  18. Variability and Anomalous Trends in the Global Sea Ice Cover

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The advent of satellite data came fortuitously at a time when the global sea ice cover has been changing rapidly and new techniques are needed to accurately assess the true state and characteristics of the global sea ice cover. The extent of the sea ice in the Northern Hemisphere has been declining by about -4% per decade for the period 1979 to 2011 but for the period from 1996 to 2010, the rate of decline became even more negative at -8% per decade, indicating an acceleration in the decline. More intriguing is the drastically declining perennial sea ice area, which is the ice that survives the summer melt and observed to be retreating at the rate of -14% per decade during the 1979 to 2012 period. Although a slight recovery occurred in the last three years from an abrupt decline in 2007, the perennial ice extent was almost as low as in 2007 in 2011. The multiyear ice, which is the thick component of the perennial ice and regarded as the mainstay of the Arctic sea ice cover is declining at an even higher rate of -19% per decade. The more rapid decline of the extent of this thicker ice type means that the volume of the ice is also declining making the survival of the Arctic ice in summer highly questionable. The slight recovery in 2008, 2009 and 2010 for the perennial ice in summer was likely associated with an apparent cycle in the time series with a period of about 8 years. Results of analysis of concurrent MODIS and AMSR-E data in summer also provide some evidence of more extensive summer melt and meltponding in 2007 and 2011 than in other years. Meanwhile, the Antarctic sea ice cover, as observed by the same set of satellite data, is showing an unexpected and counter intuitive increase of about 1 % per decade over the same period. Although a strong decline in ice extent is apparent in the Bellingshausen/ Amundsen Seas region, such decline is more than compensated by increases in the extent of the sea ice cover in the Ross Sea region. The results of analysis of

  19. Wave–ice interactions in the neXtSIM sea-ice model

    Directory of Open Access Journals (Sweden)

    T. D. Williams

    2017-09-01

    Full Text Available In this paper we describe a waves-in-ice model (WIM, which calculates ice breakage and the wave radiation stress (WRS. This WIM is then coupled to the new sea-ice model neXtSIM, which is based on the elasto-brittle (EB rheology. We highlight some numerical issues involved in the coupling and investigate the impact of the WRS, and of modifying the EB rheology to lower the stiffness of the ice in the area where the ice has broken up (the marginal ice zone or MIZ. In experiments in the absence of wind, we find that wind waves can produce noticeable movement of the ice edge in loose ice (concentration around 70 % – up to 36 km, depending on the material parameters of the ice that are used and the dynamical model used for the broken ice. The ice edge position is unaffected by the WRS if the initial concentration is higher (≳ 0.9. Swell waves (monochromatic waves with low frequency do not affect the ice edge location (even for loose ice, as they are attenuated much less than the higher-frequency components of a wind wave spectrum, and so consequently produce a much lower WRS (by about an order of magnitude at least.In the presence of wind, we find that the wind stress dominates the WRS, which, while large near the ice edge, decays exponentially away from it. This is in contrast to the wind stress, which is applied over a much larger ice area. In this case (when wind is present the dynamical model for the MIZ has more impact than the WRS, although that effect too is relatively modest. When the stiffness in the MIZ is lowered due to ice breakage, we find that on-ice winds produce more compression in the MIZ than in the pack, while off-ice winds can cause the MIZ to be separated from the pack ice.

  20. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    Science.gov (United States)

    Howell, Fergus W.; Haywood, Alan M.; Dowsett, Harry J.; Pickering, Steven J.

    2016-01-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicate. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found through analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, an understanding of the nature of mPWP Arctic sea ice would be highly beneficial.

  1. Natural and anthropogenic hydrocarbons in the Antarctic pack ice

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2004-01-01

    A field experiment was conducted near the Russian Antarctic stations in May, 2001 in the Pridz Bay and coastal part of the Davies Sea to examine the content of dissolved and suspended forms of aliphatic hydrocarbons in melted snow samples, pack ice and ice cores. The site included clean control areas and polluted test areas. A spill was performed by covering the bare ice surface with marine diesel fuel. The different physical characteristics of clean and polluted ice were measured. This included radiation balance, reflected solar radiation, integral albedo radiation, surface temperature, seawater temperature, salinity at depth, and ice salinity. The study showed that accumulation of natural and anthropogenic hydrocarbon took place in the ice-water barrier zone, mostly in suspended form. It was concluded that for oil spills in pack Antarctic ice, the mechanism of filtration due to convection-diffusion plays an important role in the transformation of diesel fuel. 14 refs., 2 tabs., 2 figs

  2. Perennial ryegrass for dairy cows: effects of cultivar on herbage intake during grazing

    NARCIS (Netherlands)

    Smit, H.J.

    2005-01-01

    Keywords:Perennial ryegrass, Lolium perenne , sward morphology, sward cutting, n-alkanes, herbage intake, selection, preference.Perennial ryegrass ( Lolium perenne L.) is the most important species for feeding dairy cows. The majority of the farmers in the Netherlands graze their

  3. Perennial wheat lines have highly admixed population structure and elevated rates of outcrossing.

    Science.gov (United States)

    Perennial wheat has been proposed to alleviate long standing issues with soil erosion in annual cropping systems, while supporting rural communities and providing grain farmers with a marketable climate-resilient crop. The Washington State University perennial wheat breeding program has created sev...

  4. Adaptive management of perennial pepperweed for endangered specias and tidal marsh recovery

    Science.gov (United States)

    Perennial pepperweed has invaded a wide range of habitat types in the far west. In the San Francisco Estuary, dense infestations have impacted sensitive tidal wetlands and compromised endangered species recovery efforts. An adaptive management effort to reduce perennial pepperweed was initiated by...

  5. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing

    Directory of Open Access Journals (Sweden)

    Kehua Wang

    2017-06-01

    Full Text Available Perennial ryegrass (Lolium perenne is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.

  6. Control of perennial weeds by mechanical methods and anaerobic soil disinfection

    NARCIS (Netherlands)

    Huiting, H.F.; Bleeker, P.O.; Riemens, M.M.

    2011-01-01

    Perennial weeds are difficult to control and ask for a specific approach. During the most recent years it has even become a great challenge to control these weeds in conventional farming systems, although in comparison effective perennial weed control in organic farming systems remains more

  7. Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska

    Science.gov (United States)

    Reimnitz, E.; Toimil, L.; Barnes, P.

    1978-01-01

    Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom

  8. Arctic Sea Ice Trafficability - New Strategies for a Changing Icescape

    Science.gov (United States)

    Dammann, Dyre Oliver

    substantial thickness variability results in the need to raise thickness thresholds by 50%. If sea ice is thick enough for safe travel, then the efficiency of travel is relevant and is influenced by the roughness of the ice surface. Here, I develop a technique to derive trafficability measures from ice roughness using polarimetric and interferometric synthetic aperture radar (SAR). Validated using Structure-from-Motion analysis of imagery obtained from an unmanned aerial system near Utqiagvik, Alaska, I demonstrate the ability of these SAR techniques to map both topography and roughness with potential to guide trail construction efforts towards more trafficable ice. Even when the ice is sufficiently thick to ensure safe travel, potential for fracturing can be a serious hazard through the ability of cracks to compromise load-bearing capacity. Therefore, I have created a state-of-the-art technique using interferometric SAR to assess ice stability with capability of assessing internal ice stress and potential for failure. In an analysis of ice deformation and potential hazards for the Northstar Island ice road near Prudhoe Bay on Alaska's North Slope I have identified a zone of high relative fracture intensity potential that conformed with road inspections and hazard assessments by the operator. Through this work I have investigated the intersection between ice use and geophysics, demonstrating that quantitative evaluation of a given region in the ice use assessment framework developed here can aid in tactical routing of ice trails and roads as well as help inform long-term strategic decision-making regarding the future of Arctic operations on or near sea ice.

  9. Matrix population models from 20 studies of perennial plant populations

    Science.gov (United States)

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  10. Fusarium-induced diseases of tropical, perennial crops.

    Science.gov (United States)

    Ploetz, Randy C

    2006-06-01

    ABSTRACT The world's oldest ecosystems are found in the tropics. They are diverse, highly evolved, but barely understood. This and subsequent papers describe diseases of tropical, perennial plants that are caused by Fusarium spp. Many of these are economically significant, difficult to manage, and of scientific interest. Some represent coevolved patho-systems (e.g., Panama disease, tracheomycosis of coffee, fusariosis of pineapple, and Fusarium wilt of oil palm), whereas others may be new-encounter diseases or are caused by generalist pathogens (cushion gall of cacao). New vector relationships are evident in other pathosystems (e.g., mango malformation), and two or more pathogens have been shown to cause some of the diseases (Panama disease and tracheomycosis of coffee). More work on these pathosystems is warranted as they could reveal much about the evolution of plant pathogens and the important diseases they cause.

  11. Glaciochemical investigations of the ice deposit of Vukušić Ice Cave, Velebit Mountain, Croatia

    Directory of Open Access Journals (Sweden)

    Z. Kern

    2011-06-01

    Full Text Available The 3H activity and the concentration of 23 metals and metalloids have been analysed in cave ice samples from the perennial cave ice deposit of Vukušić Ice Cave, Velebit Mt., Croatia. The results of tritium measurements exclude a secular age for the upper 2.4 m of ice deposition, and provide clear arguments that the sampled ice sequence consists of frozen post-1950 precipitation. Measured concentrations of most of the analysed elements have largely surmounted reported concentrations of similar elements from local precipitation or Alpine snow/firn/ice records, whereas three metals (Cr, Cu, Pb show concentrations comparable to them. Principal component analysis was used to select three groups of elements. The Ca-Mg-governed group (PC1 encompasses the bedrock-related components; their fluctuation might thus reflect the past intensity of dissolution in the epikarst. PC2, with the most characteristic elements being Na, Cr and Pb, probably preserved an atmospheric depositional signal. PC3 is governed by Al and Fe. This probably carries the distal, non-karstic crustal signal and hence might be related to atmospheric circulation (i.e., wind direction and speed.

  12. Dead-ice environments

    DEFF Research Database (Denmark)

    Krüger, Johannes; Kjær, Kurt H.; Schomacker, Anders

    2010-01-01

    glacier environment. The scientific challenges are to answer the key questions. What are the conditions for dead-ice formation? From which sources does the sediment cover originate? Which melting and reworking processes act in the ice-cored moraines? What is the rate of de-icing in the ice-cored moraines...

  13. Efficacy of montelukast for treating perennial allergic rhinitis.

    Science.gov (United States)

    Philip, George; Williams-Herman, Debora; Patel, Piyush; Weinstein, Steven F; Alon, Achilles; Gilles, Leen; Tozzi, Carol A; Dass, S Balachandra; Reiss, Theodore F

    2007-01-01

    Perennial allergic rhinitis (PAR) is a chronic inflammatory nasal condition in individuals exposed year-round to allergens. This was a double-blind study of 15- to 85-year-old patients randomly allocated to montelukast, 10 mg (n=630), placebo (n=613), or the positive control cetirizine, 10 mg (n=122) for 6 weeks. The primary efficacy end point was change from baseline in Daytime Nasal Symptoms Score (DNSS; mean of congestion, rhinorrhea, sneezing, and itching scores, rated daily by patients [scale: 0=none to 3=severe]) averaged during the initial 4 weeks (primary analysis) or entire 6 weeks of treatment. Also assessed were combined post hoc results of primary end point data from this study and another similarly designed study (Patel P, et al. Randomized, double-blind, placebo-controlled study of montelukast for treating perennial allergic rhinitis, Ann Allergy Asthma Immunol 95:551, 2005). Over 4 weeks, montelukast showed numerical improvement over placebo in DNSS (least-squares mean difference of -0.04 [95% confidence interval (CI}, -0.09, 0.01]); the difference between cetirizine and placebo was significant: -0.10 (95% CI, -0.19, -0.01). However, when averaged over 6 weeks, neither active treatment was significantly different from placebo. The Rhinoconjunctivitis Quality-of-Life score was significantly improved by montelukast (p < 0.05), but not by cetirizine, during 4 and 6 weeks. The treatment effect of montelukast, but not cetirizine, generally remained consistent through the 6 weeks of treatment. In pooled data, montelukast consistently improved DNSS versus placebo during all 6 weeks of treatment (-0.07 [95% CI, -0.10, -0.041). In conclusion, montelukast produced numerical improvement in daytime nasal symptoms and significant improvement in quality of life. In a pooled post hoc analysis, montelukast provided consistent improvement in daytime nasal symptoms over 6 weeks, supportive of an overall benefit in PAR.

  14. Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic

    Science.gov (United States)

    Comiso, Josefino C.

    2011-01-01

    Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.

  15. Rate of ice accumulation during ice storms

    Energy Technology Data Exchange (ETDEWEB)

    Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada); Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Sabourin, G. [Hydro-Quebec, Montreal, PQ (Canada)

    2005-07-01

    The rate of glaze ice accumulation is the result of a complex process dependent on numerous meteorological and physical factors. The aim of this paper was to estimate the distribution rate of glaze ice accumulation on conductors in southern Quebec for use in the design of mechanical and electrical de-icing devices. The analysis was based on direct observations of ice accumulation collected on passive ice meters. The historical database of Hydro-Quebec, which contains observations at over 140 stations over period of 25 years, was used to compute accumulation rates. Data was processed so that each glaze ice event was numbered in a chronological sequence. Each event consisted of the time series of ice accumulations on each of the 8 cylinders of the ice meters, as well as on 5 of its surfaces. Observed rates were converted to represent the average ice on a 30 mm diameter conductor at 30 m above ground with a span of 300 m. Observations were corrected to account for the water content of the glaze ice as evidenced by the presence of icicles. Results indicated that despite significant spatial variations in the expected severity of ice storms as a function of location, the distribution function for rates of accumulation were fairly similar and could be assumed to be independent of location. It was concluded that the observations from several sites could be combined in order to obtain better estimates of the distribution of hourly rates of ice accumulation. However, the rates were highly variable. For de-icing strategies, it was suggested that average accumulation rates over 12 hour periods were preferable, and that analyses should be performed for other time intervals to account for the variability in ice accumulation rates over time. In addition, accumulation rates did not appear to be highly correlated with average wind speed for maximum hourly accumulation rates. 3 refs., 2 tabs., 10 figs.

  16. The Sea-Ice Floe Size Distribution

    Science.gov (United States)

    Stern, H. L., III; Schweiger, A. J. B.; Zhang, J.; Steele, M.

    2017-12-01

    The size distribution of ice floes in the polar seas affects the dynamics and thermodynamics of the ice cover and its interaction with the ocean and atmosphere. Ice-ocean models are now beginning to include the floe size distribution (FSD) in their simulations. In order to characterize seasonal changes of the FSD and provide validation data for our ice-ocean model, we calculated the FSD in the Beaufort and Chukchi seas over two spring-summer-fall seasons (2013 and 2014) using more than 250 cloud-free visible-band scenes from the MODIS sensors on NASA's Terra and Aqua satellites, identifying nearly 250,000 ice floes between 2 and 30 km in diameter. We found that the FSD follows a power-law distribution at all locations, with a seasonally varying exponent that reflects floe break-up in spring, loss of smaller floes in summer, and the return of larger floes after fall freeze-up. We extended the results to floe sizes from 10 m to 2 km at selected time/space locations using more than 50 high-resolution radar and visible-band satellite images. Our analysis used more data and applied greater statistical rigor than any previous study of the FSD. The incorporation of the FSD into our ice-ocean model resulted in reduced sea-ice thickness, mainly in the marginal ice zone, which improved the simulation of sea-ice extent and yielded an earlier ice retreat. We also examined results from 17 previous studies of the FSD, most of which report power-law FSDs but with widely varying exponents. It is difficult to reconcile the range of results due to different study areas, seasons, and methods of analysis. We review the power-law representation of the FSD in these studies and discuss some mathematical details that are important to consider in any future analysis.

  17. Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean

    Science.gov (United States)

    Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.

    2017-12-01

    While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform

  18. Dark ice dynamics of the south-west Greenland Ice Sheet

    Science.gov (United States)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from

  19. Topographic Steering of Enhanced Ice Flow at the Bottleneck Between East and West Antarctica

    DEFF Research Database (Denmark)

    Winter, Kate; Ross, Neil; Ferraccioli, Fausto

    2018-01-01

    Hypothesized drawdown of the East Antarctic Ice Sheet through the “bottleneck” zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted...... investigations of basal boundary controls on ice flow in this region until now. New airborne radio echo sounding surveys reveal complex topography of high relief beneath the southernmost Weddell/Ross ice divide, with three subglacial troughs connecting interior Antarctica to the Foundation and Patuxent Ice...... Streams and Siple Coast ice streams. These troughs route enhanced ice flow through the interior of Antarctica but limit potential drawdown of the East Antarctic Ice Sheet through the bottleneck zone. In a thinning or retreating scenario, these topographically controlled corridors of enhanced flow could...

  20. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    Science.gov (United States)

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  1. Ice-based altitude distribution of natural radiation annual exposure rate in the Antarctica zone over the latitude range 69 degrees S-77 degrees S using a pair-filter thermoluminescence method.

    Science.gov (United States)

    Nakajima, T; Kamiyama, T; Fujii, Y; Motoyama, H; Esumi, S

    1995-12-01

    Both ice-based altitude distributions of natural ionizing radiation exposure and the quasi-effective energy of natural radiation over Antartica over the latitude range 69 degrees S - 77 degrees S during approx. 500 days were measured using thermoluminescent dosimeters. The results shows that dependence on altitude above sea level of the exposure rate increases by almost three-fold with each increase of 2000 m of altitude, thus deviating from the general rule stating that the exposure rate should double with each 2000 m. Although the exposure rate shows a dependence on altitude, altitude dependence of the quasi-effective energy of natural radiation over Antartica is not observed. In the present study it is observed that natural radiation occurring over the ice base of Antartica consists mainly of cosmic rays.

  2. Ice-based altitude distribution of natural radiation annual exposure rate in the Antarctica zone over the latitude range 69 deg S-77 deg S using a pair-filter thermoluminescence method

    International Nuclear Information System (INIS)

    Nakajima, Toshiyuki; Kamiyama, Takayoshi; Fujii, Yoshiyuki; Motoyama, Hideaki; Esumi, Shuuichi

    1995-01-01

    Both ice-based altitude distributions of natural ionizing radiation exposure and the quasi-effective energy of natural radiation over Antarctica over the latitude range 69 o S-77 o S during approx. 500 days were measured using thermoluminescent dosimeters. The results shows that dependence on altitude above sea level of the exposure rate increases by almost three-fold with each increase of 2000 m of altitude, thus deviating from the general rule stating that the exposure rate should double with each 2000 m. Although the exposure rate shows a dependence on altitude, altitude dependence of the quasi-effective energy of natural radiation over Antarctica is not observed. In the present study it is observed that natural radiation occurring over the ice base of Antarctica consists mainly of cosmic rays. (Author)

  3. Tracking Changes in Dissolved Organic Matter Patterns in Perennial Headwater Streams Throughout a Hydrologic Year Using In-situ Sensors and Optical Properties

    Science.gov (United States)

    Armstrong, A.; Epting, S.; Hosen, J. D.; Palmer, M.

    2015-12-01

    Dissolved organic matter (DOM) plays a central role in freshwater streams but key questions remain unanswered about temporal patterns in its quantity and composition. DOM in perennial streams in the temperate zone is a complex mixture reflecting a variety of sources such as leached plant material, organic matter from surrounding soils, and microbial processes in the streams themselves. Headwater perennial streams in the Tuckahoe Creek watershed of the Atlantic coastal plain (Maryland, USA) drain a mosaic of land cover types including row crops, forests, and both forested and marshy small depressional wetlands. Wetland-stream surface hydrologic connections generally occur between mid-fall and late spring, coinciding with peak wetland hydrologic expression (i.e. highest groundwater levels and surface inundation extent). When inundated, these wetlands contain high DOM concentrations, and surface connections may serve as conduits for downstream export. We hypothesized that changes in wetland-stream surface hydrologic connectivity would affect patterns of DOM concentration and composition in these streams. We deployed 6 sondes equipped with fluorescent DOM sensors in 4 perennial streams, 1 forested wetland, and the larger downstream channel draining all study sites for the 2015 water year. The 4 headwater streams drain areas containing forested wetlands and have documented temporary channel connections. Combined with baseflow and stormflow sampling, the sondes provided 15 minute estimates of dissolved organic carbon (DOC) concentrations. This resolution provided insights into patterns of DOC concentration across temporal scales from daily rhythms to seasonal changes, during both baseflow and storm conditions. Discrete measurements of absorbance and fluorescence provided information about DOM composition throughout the study. Together these measurements give a detailed record of DOM dynamics in multiple perennial headwater streams for an entire year. This information

  4. Modeling the Fracture of Ice Sheets on Parallel Computers

    Energy Technology Data Exchange (ETDEWEB)

    Waisman, Haim [Columbia Univ., New York, NY (United States); Tuminaro, Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-10-10

    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  5. Field and Satellite Observations of the Formation and Distribution of Arctic Atmospheric Bromine Above a Rejuvenated Sea Ice Cover

    Science.gov (United States)

    Nghiem, Son V.; Rigor, Ignatius G.; Richter, Andreas; Burrows, John P.; Shepson, Paul B.; Bottenheim, Jan; Barber, David G.; Steffen, Alexandra; Latonas, Jeff; Wang, Feiyue; hide

    2012-01-01

    Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion.

  6. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  7. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  8. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  9. Cumulative drought and land-use impacts on perennial vegetation across a North American dryland region

    Science.gov (United States)

    Munson, Seth M.; Long, A. Lexine; Wallace, Cynthia; Webb, Robert H.

    2016-01-01

    Question The decline and loss of perennial vegetation in dryland ecosystems due to global change pressures can alter ecosystem properties and initiate land degradation processes. We tracked changes of perennial vegetation using remote sensing to address the question of how prolonged drought and land-use intensification have affected perennial vegetation cover across a desert region in the early 21st century? Location Mojave Desert, southeastern California, southern Nevada, southwestern Utah and northwestern Arizona, USA. Methods We coupled the Moderate-Resolution Imaging Spectroradiometer Enhanced Vegetation Index (MODIS-EVI) with ground-based measurements of perennial vegetation cover taken in about 2000 and about 2010. Using the difference between these years, we determined perennial vegetation changes in the early 21st century and related these shifts to climate, soil and landscape properties, and patterns of land use. Results We found a good fit between MODIS-EVI and perennial vegetation cover (2000: R2 = 0.83 and 2010: R2 = 0.74). The southwestern, far southeastern and central Mojave Desert had large declines in perennial vegetation cover in the early 21st century, while the northeastern and southeastern portions of the desert had increases. These changes were explained by 10-yr precipitation anomalies, particularly in the cool season and during extreme dry or wet years. Areas heavily impacted by visitor use or wildfire lost perennial vegetation cover, and vegetation in protected areas increased to a greater degree than in unprotected areas. Conclusions We find that we can extrapolate previously documented declines of perennial plant cover to an entire desert, and demonstrate that prolonged water shortages coupled with land-use intensification create identifiable patterns of vegetation change in dryland regions.

  10. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  11. Inter-simple sequence repeat (ISSR) loci mapping in the genome of perennial ryegrass

    DEFF Research Database (Denmark)

    Pivorienė, O; Pašakinskienė, I; Brazauskas, G

    2008-01-01

    The aim of this study was to identify and characterize new ISSR markers and their loci in the genome of perennial ryegrass. A subsample of the VrnA F2 mapping family of perennial ryegrass comprising 92 individuals was used to develop a linkage map including inter-simple sequence repeat markers...... demonstrated a 70% similarity to the Hordeum vulgare germin gene GerA. Inter-SSR mapping will provide useful information for gene targeting, quantitative trait loci mapping and marker-assisted selection in perennial ryegrass....

  12. Ice ages and nuclear waste disposal

    International Nuclear Information System (INIS)

    Ahonen, L.; Ruskeeniemi, T.; Luukkonen, A.; Pitkaenen, P.; Rasilainen, K.

    2002-01-01

    This report is an overview of Quaternary Ice Age and its potential consequences for nuclear waste disposal. Geological information on past climatic changes is shortly reviewed, based on the following records: geomorphological information, loessic deposits, deep-sea carbonate sediments, ice-core records, and continental calcite precipitates. Even though the present 'Great Ice Age' has lasted more that two million years, the present variation in cycles of about 100 000 years seems to have commenced only about 600 - 700 thousands years ago. According to the present understanding, southern Finland was during a major span of Weichsel free of continental ice sheet. However, the conditions may have been very cold, periglacial, when the continental ice sheet covered the Caledonian mountains and large areas of central Fennoscandia. The last glacial maximum of Weichsel glaciation was shorter than estimated earlier. Periglacial conditions are characterized by deep permafrost, reaching even the depth of nuclear waste disposal. Calculations of the advancement of permafrost indicate that the permafrost-front may reach the depth of about 500 meters in less than 10 000 years. The crust beneath the continental ice cover depresses, and rebounds when the ice sheet retreats. During the most intensive vertical movement of the crust, some crush zones may be activated and bedrock movements may take place along them. Due to the growth of ice sheets, ocean water table also depresses during glacial maximum, thus changing hydrogeological conditions in non-glaciated terrains. Increase in global ice volume is manifested in the stable oxygen and hydrogen isotope ratios. Based on isotope signals, as well other hydrogeochemical interpretation methods, indications of the earlier glaciations have been recognized in present groundwaters. (orig.)

  13. Temporal dynamics of ikaite in experimental sea ice

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Wang, F.; Galley, R.J.

    2014-01-01

    Ikaite (CaCO3·6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air–sea CO2 exchange in ice......-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During...... the experiment, ikaite precipitated in sea ice when temperatures were below −4 C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of > 2000 μmol kg−1, (2) an internal layer...

  14. A natural ice boom

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, H.R. [Manitoba Hydro, Winnipeg, MB (Canada)

    1998-10-01

    Planning for ice jams and ice movements are critical on the Nelson River in northern Manitoba in designing cofferdams. Experience on the St. Lawrence River demonstrated the possibility of exercising some control over ice action by judicious placement of log booms or ice control structures. The success of experiments with man-made controls led to field tests in which an ice sheet of sufficient magnitude and competence was introduced into the open water stream of the Nelson River. The ice sheet was subsequently jammed in a narrow channel, thereby creating a natural ice bridge or boom upstream of a proposed hydro development. Under favourable conditions, this boom would initiate the progression of the ice cover from its location upstream, cutting off the downstream reach from the ice producing potential of the upstream reach. Although ice would still be generated downstream, the length of the reach between the ice boom and the development site would be short enough that ice jamming at the development site would never occur. Although problems in blasting prevented the introduction of a competent ice sheet into the main stream of the river at the location chosen, sufficient confidence in the theory was gained to warrant further consideration. 4 refs., 1 tab., 10 figs.

  15. Bending the law: tidal bending and its effects on ice viscosity and flow

    Science.gov (United States)

    Rosier, S.; Gudmundsson, G. H.

    2017-12-01

    Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.

  16. Ice issues relating to the Kashagan phase II development, North Caspian Sea.

    Energy Technology Data Exchange (ETDEWEB)

    Croasdale, Ken [KRCA, Calgary (Canada); Verlaan, Paul [Shell Development Kashagan, London (United Kingdom)

    2011-07-01

    The ice conditions in the north Caspian Sea are challenging for the Kashagan field development. The climatic conditions of the area are extreme, with cold winters (-30 degrees C) and hot summers (+40 degrees C). The presence and the quantity of ice are also highly variable from year to year. This paper investigated the major ice-related issues affecting the Kashagan structures and pipelines. An extensive description of the ice environment was provided. Ice design criteria for the offshore rock islands, the pipelines and the layout of the ice protection barriers around the islands were presented. It was found that the ice design methods used in Arctic areas have required some adaptations to meet Caspian conditions. All the islands were designed with an ice encroachment zone to reduce the hazardous effect of the ice rubble encroaching. Rock sloped barriers and steel barriers were implanted around the islands to protect the logistical areas.

  17. Root proliferation in native perennial grasses of arid Patagonia, Argentina

    Institute of Scientific and Technical Information of China (English)

    Yanina A. TORRES; Mara M. MUJICA; Sandra S. BAIONI; Jos ENTO; Mara N. FIORETTI; Guillermo TUCAT; Carlos A. BUSSO; Oscar A. MONTENEGRO; Leticia ITHURRART; Hugo D. GIORGETTI; Gustavo RODRGUEZ; Diego BENTIVEGNA; Roberto E. BREVEDAN; Osvaldo A. FERNNDEZ

    2014-01-01

    Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root length density and weight in the native species, and (2) root net primary productivity, and root length density and weight, are greater in P. vaginatum than in the other, less desirable, native species (i.e., Aristida spegazzinii, A. subulata and Sporobolus cryptandrus). Plants of all species were either exposed or not to a severe defoliation twice a year during two growing seasons. Root proliferation was measured using the cylinder method. Cylindrical, iron structures, wrapped up using nylon mesh, were buried diagonally from the periphery to the center on individual plants. These structures, initially filled with soil without any organic residue, were dug up from the soil on 25 April 2008, after two successive defoliations in mid-spring 2007. During the second growing season (2008-2009), cylinders were destructively harvested on 4 April 2009, after one or two defoliations in mid-and/or late-spring, respectively. Roots grown into the cylinders were obtained after washing the soil manually. Defoliation during two successive years did reduce the study variables only after plants of all species were defoliated twice, which supported the first hypothesis. The greater root net primary productivity, root length den-sity and weight in P. vaginatum than in the other native species, in support of the second hypothesis, could help to explain its greater abundance in rangelands of Argentina.

  18. Modelling farmer uptake of perennial energy crops in the UK

    International Nuclear Information System (INIS)

    Sherrington, Chris; Moran, Dominic

    2010-01-01

    The UK Biomass Strategy suggests that to reach the technical potential of perennial energy crops such as short rotation coppice (SRC) willow and miscanthus by 2020 requires 350,000 hectares of land. This represents a more than 20-fold increase on the current 15,546 hectares. Previous research has identified several barriers to adoption, including concerns over security of income from contracts. In addition, farmers perceive returns from these crops to be lower than for conventional crops. This paper uses a farm-level linear programming model to investigate theoretical uptake of energy crops at different gross margins under the assumption of a profit-maximising decision maker, and in the absence of known barriers to adoption. The findings suggest that while SRC willow, at current prices, remains less competitive, returns to miscanthus should have encouraged adoption on a wider scale than at present. This highlights the importance of the barriers to adoption. Recently announced contracts for miscanthus appear to offer a significant premium to farmers in order to encourage them to grow the crops. This raises the question of whether a more cost-effective approach would be for government to provide guarantees addressing farmers concerns including security of income from the contracts. Such an approach should encourage adoption at lower gross margins. (author)

  19. BETA DIVERSITY AND COMMUNITY DIFFERENTIATION IN DRY PERENNIAL SAND GRASSLANDS

    Directory of Open Access Journals (Sweden)

    E. KOVACS-LANG

    2011-01-01

    Full Text Available The spatial variability of species composition was studied in perennial sand grasslands in Hungary at multiple scales. Three sites were compared along an aridity gradient. Existing differences in climate along this ca. 200 km gradient correspond to regional climate changes predicted for the next 20-30 years. Six stands of Festucetum vaginatae grasslands were selected at each site within 400 x 1200 m areas for representing the coarse-scale within-site heterogeneity. Fine-scale compositional heterogeneity of vegetation within stands was sampled by recording the presence of species along 52 m long circular belt transects of 1040 units of 5 cm x 5 cm contiguous microquadrats. This sampling design enabled us to study the patterns of species combinations at a wide range of scales. The highest variability of plant species combinations appeared at very fine scales, between 10 cm and 25 cm. Differences in beta diversity along the gradient were scale-dependent. We found a decreasing trend of beta diversity with increasing aridity at fine scale, and on the contrary, an increasing trend at landscape scale. We conclude that the major trend of the vegetation differentiation due to aridity is the decrease of compositional variability at fine-scale accompanied by a coarse-scale diversification.

  20. Atmospheric forcing of sea ice leads in the Beaufort Sea

    Science.gov (United States)

    Lewis, B. J.; Hutchings, J.; Mahoney, A. R.; Shapiro, L. H.

    2016-12-01

    Leads in sea ice play an important role in the polar marine environment where they allow heat and moisture transfer between the oceans and atmosphere and act as travel pathways for both marine mammals and ships. Examining AVHRR thermal imagery of the Beaufort Sea, collected between 1994 and 2010, sea ice leads appear in repeating patterns and locations (Eicken et al 2005). The leads, resolved by AVHRR, are at least 250m wide (Mahoney et al 2012), thus the patterns described are for lead systems that extend up to hundreds of kilometers across the Beaufort Sea. We describe how these patterns are associated with the location of weather systems relative to the coastline. Mean sea level pressure and 10m wind fields from ECMWF ERA-Interim reanalysis are used to identify if particular lead patterns can be uniquely forecast based on the location of weather systems. Ice drift data from the NSIDC's Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors indicates the role shear along leads has on the motion of ice in the Beaufort Gyre. Lead formation is driven by 4 main factors: (i) coastal features such as promontories and islands influence the origin of leads by concentrating stresses within the ice pack; (ii) direction of the wind forcing on the ice pack determines the type of fracture, (iii) the location of the anticyclone (or cyclone) center determines the length of the fracture for certain patterns; and (iv) duration of weather conditions affects the width of the ice fracture zones. Movement of the ice pack on the leeward side of leads originating at promontories and islands increases, creating shear zones that control ice transport along the Alaska coast in winter. . Understanding how atmospheric conditions influence the large-scale motion of the ice pack is needed to design models that predict variability of the gyre and export of multi-year ice to lower latitudes.

  1. Microfabric and Structures in Glacial Ice

    Science.gov (United States)

    Monz, M.; Hudleston, P. J.

    2017-12-01

    Similar to rocks in active orogens, glacial ice develops both structures and fabrics that reflect deformation. Crystallographic preferred orientation (CPO), associated with mechanical anisotropy, develops as ice deforms, and as in rock, directly reflects the conditions and mechanisms of deformation and influences the overall strength. This project aims to better constrain the rheologic properties of natural ice through microstructural analysis and to establish the relationship of microfabric to macroscale structures. The focus is on enigmatic fabric patterns found in coarse grained, "warm" (T > -10oC) ice deep in ice sheets and in valley glaciers. Deformation mechanisms that produce such patterns are poorly understood. Detailed mapping of surface structures, including bedding, foliation, and blue bands (bubble-free veins of ice), was done in the ablation zone of Storglaciären, a polythermal valley glacier in northern Sweden. Microstructural studies on samples from a transect across the ablation zone were carried out in a cold room. Crystal size was too large for use of electron backscattered diffraction to determine CPO, therefore a Rigsby universal stage, designed specifically for ice, was used. In thick and thin sections, recrystallized grains are locally variable in both size (1mm-7cm in one thin section) and shape and clearly reflect recrystallization involving highly mobile grain boundaries. Larger crystals are often branching, and appear multiple times throughout one thin section. There is a clear shape preferred orientation that is generally parallel with foliation defined by bubble alignment and concentration. Locally, there appears to be an inverse correlation between bubble concentration and smoothness of grain boundaries. Fabric in samples that have undergone prolonged shear display roughly symmetrical multimaxima patterns centered around the pole to foliation. The angular distances between maxima suggest a possible twin relationship that may have

  2. Forecast Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Forecast Icing Product (FIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The FIP algorithm uses...

  3. Current Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Current Icing Product (CIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The CIP algorithm combines...

  4. Establishment techniques in under-sown perennial ryegrass for seed production

    DEFF Research Database (Denmark)

    Deleuran, Lise C; Boelt, Birte

    2009-01-01

    Establishment methods have proven to be of major importance for grass-seed production. The objective of this research was to test the effect of different sowing techniques on plant establishment and the subsequent seed yield. Perennial ryegrass (Lolium perenne L.) is used as the model grass due...... to its large importance in Danish agriculture. In a three-year trial six different methods of under-sowing of perennial ryegrass in a spring barley cover crop were employed. Perennial ryegrass was either sown directly at different depths within the spring barley (Hordeum vulgare L.) rows or placed 2, 6......, or 12 cm from the spring barley rows. Results of dry-matter yield indicate that the best establishment of the grass occurred when placing the grass 6 or 12 cm from the cover-crop row, and this is of importance in less vigorous grasses. Overall, no seed-yield difference has been observed for perennial...

  5. Sputtering of water ice

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.; Schou, J.; Shi, M.; Bahr, D.A.; Atteberrry, C.L.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from the decay of H(2p) atoms sputtered by heavy ion impact, but not bulk ice luminescence. Radiolyzed ice does not sputter under 3.7 eV laser irradiation

  6. DETECTIONS OF TRANS-NEPTUNIAN ICE IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K.; Calvet, N.; Bergin, E.; Cleeves, L. I. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Bldg., Ann Arbor, MI 48109 (United States); Espaillat, C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); D' Alessio, P. [Centro de Radioastronomía y Astrofísica, Universidad NacionalAUtónoma de México, 58089 Morelia, Michoacán (Mexico); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Sargent, B., E-mail: melisma@umich.edu, E-mail: ncalvet@umich.edu, E-mail: ebergin@umich.edu, E-mail: cleeves@umich.edu, E-mail: cce@bu.edu, E-mail: p.dalessio@crya.unam.mx, E-mail: dmw@pas.rochester.edu, E-mail: manoj.puravankara@tifr.res.in, E-mail: baspci@rit.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2015-02-01

    We present Herschel Space Observatory PACS spectra of T Tauri stars, in which we detect amorphous and crystalline water ice features. Using irradiated accretion disk models, we determine the disk structure and ice abundance in each of the systems. Combining a model-independent comparison of the ice feature strength and disk size with a detailed analysis of the model ice location, we estimate that the ice emitting region is at disk radii >30 AU, consistent with a proto-Kuiper belt. Vertically, the ice emits most below the photodesorption zone, consistent with Herschel observations of cold water vapor. The presence of crystallized water ice at a disk location (1) colder than its crystallization temperature and (2) where it should have been re-amorphized in ∼1 Myr suggests that localized generation is occurring; the most likely cause appears to be micrometeorite impact or planetesimal collisions. Based on simple tests with UV models and different ice distributions, we suggest that the SED shape from 20 to 50 μm may probe the location of the water ice snowline in the disk upper layers. This project represents one of the first extra-solar probes of the spatial structure of the cometary ice reservoir thought to deliver water to terrestrial planets.

  7. The Performance of Early-Generation Perennial Winter Cereals at 21 Sites across Four Continents

    Directory of Open Access Journals (Sweden)

    Richard C. Hayes

    2018-04-01

    Full Text Available A network of 21 experiments was established across nine countries on four continents and spanning both hemispheres, to evaluate the relative performance of early generation perennial cereal material derived from wheat, rye, and barley and to inform future breeding strategies. The experimental lines were grown in replicated single rows, and first year production and phenology characteristics as well as yield and persistence for up to three years were monitored. The study showed that the existing experimental material is all relatively short-lived (≤3 years, with environments that are milder in summer and winter generally conferring greater longevity. No pedigree was superior across this diverse network of sites although better performing lines at the higher latitude sites were generally derived from Thinopyrum intermedium. By contrast, at lower latitudes the superior lines were generally derived from Th. ponticum and Th. elongatum parentage. The study observed a poor relationship between year 1 performance and productivity in later years, highlighting the need for perennial cereal material with greater longevity to underpin future experimental evaluation, and the importance for breeding programs to emphasize post-year 1 performance in their selections. Hybrid lines derived from the tetraploid durum wheat generally showed greater longevity than derivatives of hexaploid wheat, highlighting potential for greater use of Triticum turgidum in perennial wheat breeding. We advocate a model in future breeding initiatives that develops perennial cereal genotypes for specific target environments rather than a generic product for one global market. These products may include a diversity of cultivars derived from locally adapted annual and perennial parents. In this scenario the breeding program may have access to only a limited range of adapted perennial grass parents. In other situations, such as at very high latitude environments, perennial crops derived

  8. Supporting Agricultural Ecosystem Services through the Integration of Perennial Polycultures into Crop Rotations

    Directory of Open Access Journals (Sweden)

    Peter Weißhuhn

    2017-12-01

    Full Text Available This review analyzes the potential role and long-term effects of field perennial polycultures (mixtures in agricultural systems, with the aim of reducing the trade-offs between provisioning and regulating ecosystem services. First, crop rotations are identified as a suitable tool for the assessment of the long-term effects of perennial polycultures on ecosystem services, which are not visible at the single-crop level. Second, the ability of perennial polycultures to support ecosystem services when used in crop rotations is quantified through eight agricultural ecosystem services. Legume–grass mixtures and wildflower mixtures are used as examples of perennial polycultures, and compared with silage maize as a typical crop for biomass production. Perennial polycultures enhance soil fertility, soil protection, climate regulation, pollination, pest and weed control, and landscape aesthetics compared with maize. They also score lower for biomass production compared with maize, which confirms the trade-off between provisioning and regulating ecosystem services. However, the additional positive factors provided by perennial polycultures, such as reduced costs for mineral fertilizer, pesticides, and soil tillage, and a significant preceding crop effect that increases the yields of subsequent crops, should be taken into account. However, a full assessment of agricultural ecosystem services requires a more holistic analysis that is beyond the capabilities of current frameworks.

  9. Impact of prescribed Arctic sea ice thickness in simulations of the present and future climate

    Energy Technology Data Exchange (ETDEWEB)

    Krinner, Gerhard [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); INSU-CNRS and UJF Grenoble, Laboratoire de Glaciologie et Geophysique de l' Environnement (LGGE), 54 rue Moliere, BP 96, Saint Martin d' Heres Cedex (France); Rinke, Annette; Dethloff, Klaus [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); Gorodetskaya, Irina V. [INSU-CNRS and UJF Grenoble, Laboratoire de Glaciologie et Geophysique de l' Environnement (LGGE), 54 rue Moliere, BP 96, Saint Martin d' Heres Cedex (France)

    2010-09-15

    This paper describes atmospheric general circulation model climate change experiments in which the Arctic sea-ice thickness is either fixed to 3 m or somewhat more realistically parameterized in order to take into account essentially the spatial variability of Arctic sea-ice thickness, which is, to a first approximation, a function of ice type (perennial or seasonal). It is shown that, both at present and at the end of the twenty-first century (under the SRES-A1B greenhouse gas scenario), the impact of a variable sea-ice thickness compared to a uniform value is essentially limited to the cold seasons and the lower troposphere. However, because first-year ice is scarce in the Central Arctic today, but not under SRES-A1B conditions at the end of the twenty-first century, and because the impact of a sea-ice thickness reduction can be masked by changes of the open water fraction, the spatial and temporal patterns of the effect of sea-ice thinning on the atmosphere differ between the two periods considered. As a consequence, not only the climate simulated at a given period, but also the simulated Arctic climate change over the twenty-first century is affected by the way sea-ice thickness is prescribed. (orig.)

  10. Development of a new USDA plant hardiness zone map for the United States

    Science.gov (United States)

    C. Daly; M.P. Widrlechner; M.D. Halbleib; J.I. Smith; W.P. Gibson

    2012-01-01

    In many regions of the world, the extremes of winter cold are a major determinant of the geographic distribution of perennial plant species and of their successful cultivation. In the United States, the U.S. Department of Agriculture (USDA) Plant Hardiness Zone Map (PHZM) is the primary reference for defining geospatial patterns of extreme winter cold for the...

  11. Breaking Ice 2: A rift system on the Ross Ice Shelf as an analog for tidal tectonics on icy moons

    Science.gov (United States)

    Brunt, K. M.; Hurford, T., Jr.; Schmerr, N. C.; Sauber, J. M.; MacAyeal, D. R.

    2016-12-01

    Ice shelves are the floating regions of the polar ice sheets. Outside of the influence of the narrow region of their grounding zone, they are fully hydrostatic and strongly influenced by the ocean tides. Recent observational and modeling studies have assessed the effect of tides on ice shelves, including: the tidal influence on the ice-shelf surface height, which changes by as much as 6 to 7 m on the southern extreme of the Ronne-Filchner Ice Shelf; the tidal modulation of the ice-shelf horizontal flow velocities, which changes the mean ice-flow rate by as much as two fold on the Ross Ice Shelf; and the tidal contribution to fracture and rift propagation, which eventually leads to iceberg calving. Here, we present the analysis of 16 days of continuous GPS data from a rift system near the front of the Ross Ice Shelf. While the GPS sites were installed for a different scientific investigation, and not optimized to assess tidal rifting mechanics, they provide a first-order sense of the tidal evolution of the rift system. These analyses can be used as a terrestrial analog for tidal activity on icy satellites, such as Europa and Enceladus, moons of Jupiter and Saturn, respectively. Using remote sensing and modeling of the Ross Ice Shelf rift system, we can investigate the geological processes observed on icy satellites and advance modeling efforts of their tidal-tectonic evolution.

  12. Perennial filter strips reduce nitrate levels in soil and shallow groundwater after grassland-to-cropland conversion.

    Science.gov (United States)

    Zhou, Xiaobo; Helmers, Matthew J; Asbjornsen, Heidi; Kolka, Randy; Tomer, Mark D

    2010-01-01

    Many croplands planted to perennial grasses under the Conservation Reserve Program are being returned to crop production, and with potential consequences for water quality. The objective of this study was to quantify the impact of grassland-to-cropland conversion on nitrate-nitrogen (NO3-N) concentrations in soil and shallow groundwater and to assess the potential for perennial filter strips (PFS) to mitigate increases in NO3-N levels. The study, conducted at the Neal Smith National Wildlife Refuge (NSNWR) in central Iowa, consisted of a balanced incomplete block design with 12 watersheds and four watershed-scale treatments having different proportions and topographic positions of PFS planted in native prairie grasses: 100% rowcrop, 10% PFS (toeslope position), 10% PFS (distributed on toe and as contour strips), and 20 PFS (distributed on toe and as contour strips). All treatments were established in fall 2006 on watersheds that were under bromegrass (Bromus L.) cover for at least 10 yr. Nonperennial areas were maintained under a no-till 2-yr corn (Zea mays L.)--soybean [Glycine max. (L.) Merr.] rotation since spring 2007. Suction lysimeter and shallow groundwater wells located at upslope and toeslope positions were sampled monthly during the growing season to determine NO3-N concentration from 2005 to 2008. The results indicated significant increases in NO3-N concentration in soil and groundwater following grassland-to-cropland conversion. Nitrate-nitrogen levels in the vadose zone and groundwater under PFS were lower compared with 100% cropland, with the most significant differences occurring at the toeslope position. During the years following conversion, PFS mitigated increases in subsurface nitrate, but long-term monitoring is needed to observe and understand the full response to land-use conversion.

  13. Automated mapping of persistent ice and snow cover across the western U.S. with Landsat

    Science.gov (United States)

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We implemented an automated approach for mapping persistent ice and snow cover (PISC) across the conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late summer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset provides a more accurate representation of glacial ice and perennial snow cover for the region than either the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps (based on aerial photography primarily from the 1960s–1980s) or the National Land Cover Database 2011 perennial ice and snow cover class. Our 2010–2014 Landsat-derived dataset indicates 28% less glacier and perennial snow cover than the USGS DRG dataset. There are larger differences between the datasets in some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where the Landsat dataset indicates 54% less PISC area. Analysis of Landsat scenes from 1987–1988 and 2008–2010 for three regions using a more conventional, semi-automated approach indicates substantial decreases in glaciers and perennial snow cover that correlate with differences between PISC mapped by the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in PISC, as opposed to differences between mapping techniques. While the dataset produced by the automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights areas where decreases in PISC have been most significant over the past 25–50 years.

  14. Helicopter Icing Review.

    Science.gov (United States)

    1980-09-01

    helicopter (i.e. in an icing tunnel or engine test cell ) and therefore can be subjected to controlled icing where spe- cific problems can be safely...evaluation. 69 2.2.5.2 Ice Protection Systems Demonstration Many of the systems noted in 2.2.5.1 can be evaluated in icing test cells or icing wind tunnels...Figure 2-32 illustrates a typical rotor deice system control arrangement. 104 (N >4 A.dO INaH -E- C4) uo U En 9 E-1 H m I ~z O 04 04iH U 0 El4 E-f C E

  15. Ice slurry applications

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe (Germany); Wang, M.J.; Goldstein, V. [Sunwell Technologies Inc., 180 Caster Avenue, Woodbridge, L4L 5Y (Canada); Kasza, K.E. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2010-12-15

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single-phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. (author)

  16. Autonomous Aerial Ice Observation for Ice Defense

    Directory of Open Access Journals (Sweden)

    Joakim Haugen

    2014-10-01

    Full Text Available One of the tasks in ice defense is to gather information about the surrounding ice environment using various sensor platforms. In this manuscript we identify two monitoring tasks known in literature, namely dynamic coverage and target tracking, and motivate how these tasks are relevant in ice defense using RPAS. An optimization-based path planning concept is outlined for solving these tasks. A path planner for the target tracking problem is elaborated in more detail and a hybrid experiment, which consists of both a real fixed-wing aircraft and simulated objects, is included to show the applicability of the proposed framework.

  17. Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy IPSO25

    Directory of Open Access Journals (Sweden)

    K. Schmidt

    2018-04-01

    Full Text Available Sea ice affects primary production in polar regions in multiple ways. It can dampen water column productivity by reducing light or nutrient supply, provide a habitat for ice algae and condition the marginal ice zone (MIZ for phytoplankton blooms on its seasonal retreat. The relative importance of three different carbon sources (sea ice derived, sea ice conditioned, non-sea-ice associated for the polar food web is not well understood, partly due to the lack of methods that enable their unambiguous distinction. Here we analysed two highly branched isoprenoid (HBI biomarkers to trace sea-ice-derived and sea-ice-conditioned carbon in Antarctic krill (Euphausia superba and relate their concentrations to the grazers' body reserves, growth and recruitment. During our sampling in January–February 2003, the proxy for sea ice diatoms (a di-unsaturated HBI termed IPSO25, δ13C  =  −12.5 ± 3.3 ‰ occurred in open waters of the western Scotia Sea, where seasonal ice retreat was slow. In suspended matter from surface waters, IPSO25 was present at a few stations close to the ice edge, but in krill the marker was widespread. Even at stations that had been ice-free for several weeks, IPSO25 was found in krill stomachs, suggesting that they gathered the ice-derived algae from below the upper mixed layer. Peak abundances of the proxy for MIZ diatoms (a tri-unsaturated HBI termed HBI III, δ13C  =  −42.2 ± 2.4 ‰ occurred in regions of fast sea ice retreat and persistent salinity-driven stratification in the eastern Scotia Sea. Krill sampled in the area defined by the ice edge bloom likewise contained high amounts of HBI III. As indicators for the grazer's performance we used the mass–length ratio, size of digestive gland and growth rate for krill, and recruitment for the biomass-dominant calanoid copepods Calanoides acutus and Calanus propinquus. These indices consistently point to blooms in the MIZ as an important feeding

  18. Unravelling InSAR observed Antarctic ice-shelf flexure using 2-D elastic and viscoelastic modelling

    Science.gov (United States)

    Wild, Christian T.; Marsh, Oliver J.; Rack, Wolfgang

    2018-04-01

    Ice-shelf grounding zones link the Antarctic ice-sheets to the ocean. Differential interferometric synthetic aperture radar (DInSAR) is commonly used to monitor grounding-line locations, but also contains information on grounding-zone ice thickness, ice properties and tidal conditions beneath the ice shelf. Here, we combine in-situ data with numerical modelling of ice-shelf flexure to investigate 2-D controls on the tidal bending pattern on the Southern McMurdo Ice Shelf. We validate our results with 9 double-differential TerraSAR-X interferograms. It is necessary to make adjustments to the tidal forcing to directly compare observations with model output and we find that when these adjustments are small (tide models are required to allow for the full exploitation of DInSAR in grounding-zone glaciology.

  19. Ice matrix in reconfigurable microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, A M [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Vareijka, M; Piletska, E V; Turner, A P F; Piletsky, S A [Cranfield Health, Cranfield University, Vincent Building B52, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Meglinski, I [Department of Physics, University of Otago, PO Box 56, Dunedin, 9054 (New Zealand)

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices. (paper)

  20. Ice matrix in reconfigurable microfluidic systems

    International Nuclear Information System (INIS)

    Bossi, A M; Vareijka, M; Piletska, E V; Turner, A P F; Piletsky, S A; Meglinski, I

    2013-01-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices. (paper)

  1. Ice matrix in reconfigurable microfluidic systems

    Science.gov (United States)

    Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.

  2. Organic compounds and suspended matter in the White Sea snow-ice cover

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.

    2008-01-01

    The pollution of the White Sea snow-ice cover was estimated by examining the distribution of organic compounds, including oil and pyrogenic hydrocarbons. Ice and snow cores were taken from Chupa Bay and the Kandalaksha Gulf in the Cape Kartesh area in the spring of 2004 and from the mouth of the Severnaya Dvina River in the spring of 2005, 2006, and 2007. This paper presented data on the lipid content, aliphatic hydrocarbons (AHC), polycyclic aromatic hydrocarbons (PAH) and suspended particulate matter in snow, ice and under-ice water. This paper focused on organic compounds and suspended matter (SM) concentrations in the sea snow-ice cover and described the ice forming conditions and interactions of the substances with ice, snow and sub-ice water. The amount of particulate matter and organic compounds in the snow increased sharply near industrial centres. The concentration of compounds decreased further away from these centres, suggesting that most pollutants are deposited locally. The study revealed that organic compounds concentrate in barrier zones, such as snow-ice and water-ice, depending on the source of pollution. There was no obvious evidence of petrogenic sources of PAHs in particulate matter from the White Sea snow-ice cover. The SM and organic compounds accumulated in layers characterized by local depositional processes. The zones remained biogeochemically active even under low temperature conditions, but the accumulation of both SM and organic compounds was at its highest during the initial stage of ice formation. 16 refs., 2 tabs., 4 figs

  3. Snow and ice blocking of tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Leif

    1998-12-31

    Hydroelectric power development in cold regions causes much concern about operational reliability and dam safety. This thesis studies the temperature distribution in tunnels by means of air temperature measurements in six tunnel spillways and five diversion tunnels. The measurements lasted for two consecutive winters. The air through flow tunnel is used as it causes cooling of both rock and water. In open spillway tunnels, frost reaches the entire tunnel. In spillway tunnels with walls, the frost zones reach about 100 m from the downstream end. In mildly-inclined diversion tunnels, a frost free zone is located in the middle of the tunnel and snow and ice problems were only observed in the inlet and outlet. Severe aufeis is accumulation is observed in the frost zones. The heat transfer from rock to air, water and ice is calculated and used in a prediction model for the calculation of aufeis build-up together with local field observation data. The water penetration of snow plugs is also calculated, based on the heat balance. It takes 20 to 50 days for water to enter the blocked tunnel. The empirical values are 30 to 60 days, but only 1 day if the temperature of the snow pack is 0{sup o}C. Sensitivity analyses are carried out for temperature variations in rock, snow, water and ice. Systematic field observation shows that it is important for hydropower companies to know about the effects of snow and ice blocking in an area. A risk analysis of dam safety is presented for a real case. Finally, the thesis proposes solutions which can reduce the snow and ice problems. 79 refs., 63 figs., 11 tabs.

  4. Ice Penetrating Radar Reveals Spatially Variable Features in Basal Channel under the Nansen Ice Shelf, Terra Nova Bay, Antarctica

    Science.gov (United States)

    Wray, P. L.; Dow, C. F.; Mueller, D.; Lee, W. S.; Lindzey, L.; Greenbaum, J. S.; Blankenship, D. D.

    2017-12-01

    The stability of Antarctic ice shelves is of great concern as their current thinning and future collapse will contribute to sea-level rise via the acceleration of grounded tributary glaciers into the ocean. The study of the sub-ice-shelf environment is essential for understanding ice-ocean interaction, where warming ocean temperatures have already begun to threaten the long-term viability of Antarctic ice shelves. Obtaining direct measurements of the sub-ice-shelf cavity remains challenging. Here, we demonstrate that ground-based geophysical methods can deliver high resolution monitoring and mapping of the spatial and temporal changes in features, melt rates, and ice mass transport of this environment. In November 2016, 84 km of ground-based, low frequency, Ice Penetrating Radar (IPR) surveys were completed on three sites over the Nansen Ice Shelf in Terra Nova Bay, Antarctica. The surveys examined an ocean-sourced basal channel incised into the bottom of the shelf, originally detected from a large surface depression. Results reveal high resolution features of a several kilometre-wide, 100 m high channel, with 40 m high sub-channels, zones of significant marine ice accumulation, and basal crevasses penetrating large fractions of the ice shelf thickness. Data from multiple airborne geophysical surveys were compared to the November 2016 IPR data to calculate mass change both spatially and temporally. Many of the smaller scale features we detected are not represented through hydrostatic equilibrium as calculated from ice thicknesses, due to bridging stresses, and as such can not be detected with satellite based remote sensing methods. Our in-field geophysical methods produced high-resolution information of these features, which underscores the need for similar surveys over vulnerable ice shelves to better understand ice-ocean processes.

  5. A Systematic Review of Perennial Staple Crops Literature Using Topic Modeling and Bibliometric Analysis

    Science.gov (United States)

    2016-01-01

    Research on perennial staple crops has increased in the past ten years due to their potential to improve ecosystem services in agricultural systems. However, multiple past breeding efforts as well as research on traditional ratoon systems mean there is already a broad body of literature on perennial crops. In this review, we compare the development of research on perennial staple crops, including wheat, rice, rye, sorghum, and pigeon pea. We utilized the advanced search capabilities of Web of Science, Scopus, ScienceDirect, and Agricola to gather a library of 914 articles published from 1930 to the present. We analyzed the metadata in the entire library and in collections of literature on each crop to understand trends in research and publishing. In addition, we applied topic modeling to the article abstracts, a type of text analysis that identifies frequently co-occurring terms and latent topics. We found: 1.) Research on perennials is increasing overall, but individual crops have each seen periods of heightened interest and research activity; 2.) Specialist journals play an important role in supporting early research efforts. Research often begins within communities of specialists or breeders for the individual crop before transitioning to a more general scientific audience; 3.) Existing perennial agricultural systems and their domesticated crop material, such as ratoon rice systems, can provide a useful foundation for breeding efforts, accelerating the development of truly perennial crops and farming systems; 4.) Primary research is lacking for crops that are produced on a smaller scale globally, such as pigeon pea and sorghum, and on the ecosystem service benefits of perennial agricultural systems. PMID:27213283

  6. Removable cruciform for ice condenser ice basket

    International Nuclear Information System (INIS)

    Scrabis, C.M.; Mazza, G.E.; Golick, L.R.; Pomaibo, P.

    1987-01-01

    A removable cruciform for use in an ice basket having a generally cylindrical sidewall defining a central, vertical axis of the ice basket and plural, generally annular retaining rings secured to the interior of the cylindrical sidewall of the ice basket at predetermined, spaced elevations throughout the axial height of the ice basket is described comprising: a pair of brackets, each comprising a central, base portion having parallel longitudinal edges and a pair of integral legs extending at corresponding angles relative to the base portion from the perspective parallel longitudinal edges thereof; a pair of support plate assemblies secured to and extending in parallel, spaced relationship from one of the pair of brackets; a pair of slide support plates secured to the other of the pair of brackets and extending therefrom in spaced, parallel relationship; and spring means received within the housing and engaging the base portions of the brackets and applying a resilient biasing force thereto for maintaining the spaced relationship thereof

  7. Ice cream structure modification by ice-binding proteins.

    Science.gov (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, Henrik B.

    2008-01-01

    Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops....... The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...... oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy...

  9. Dinosaur demise in light of their alleged perennial polar residency

    Science.gov (United States)

    Lewy, Zeev

    2017-10-01

    The end-Cretaceous biological crisis is represented by the demise of the non-avian dinosaurs. However, most crucial biologically was the elimination of the photosynthesizing marine phyto- and zooplankton forming the base of the marine food chain. Their abrupt demise attests to sunlight screening darkening the atmosphere for a few years. Alvarez et al. (Science 208:1095-1108, 1980. doi: 10.1126/science.208.44) noticed in deep marine end-Cretaceous sediments an anomalous rise in the chemical element iridium (Ir), which is rare on planet Earth and thus suggests an extraterrestrial origin through an impact of a large asteroid. This impact would have ejected enormous quantities of particles and aerosols, shading the solar illumination as attested to by the elimination of the marine photosynthesizing plankton. Such a dark period must have affected life on land. The apparent cold-blooded non-avian dinosaurs, which were used to living in open terrains to absorb the solar illumination, became inactive during the dark period and were incapable of withstanding predators. This was in contrast to cold-blooded crocodilians, turtles and lizards that could hide in refuge sites on land and in the water. Dinosaur relics discovered in Cretaceous Polar Regions were attributed to perennial residents, surviving the nearly half-year-long dark winter despite their ability to leave. The polar concentrations of disarticulated dinosaur bones were suggested as having resulted from a catastrophic burial of a population by floods. However, this should have fossilized complete skeletons. Alternatively, herds of dinosaurs living in high latitudes might have been sexually driven to spend the half year of continuously illuminated polar summer for mating rather than for nourishment, in which the lower latitudes provided as well. The aggressive mating competitions would have left victims among the rivals and of young ones incidentally trampled over, all being consumed and their skeletons

  10. A New Discrete Element Sea-Ice Model for Earth System Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Adrian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    Sea ice forms a frozen crust of sea water oating in high-latitude oceans. It is a critical component of the Earth system because its formation helps to drive the global thermohaline circulation, and its seasonal waxing and waning in the high north and Southern Ocean signi cantly affects planetary albedo. Usually 4{6% of Earth's marine surface is covered by sea ice at any one time, which limits the exchange of heat, momentum, and mass between the atmosphere and ocean in the polar realms. Snow accumulates on sea ice and inhibits its vertical growth, increases its albedo, and contributes to pooled water in melt ponds that darken the Arctic ice surface in the spring. Ice extent and volume are subject to strong seasonal, inter-annual and hemispheric variations, and climatic trends, which Earth System Models (ESMs) are challenged to simulate accurately (Stroeve et al., 2012; Stocker et al., 2013). This is because there are strong coupled feedbacks across the atmosphere-ice-ocean boundary layers, including the ice-albedo feedback, whereby a reduced ice cover leads to increased upper ocean heating, further enhancing sea-ice melt and reducing incident solar radiation re ected back into the atmosphere (Perovich et al., 2008). A reduction in perennial Arctic sea-ice during the satellite era has been implicated in mid-latitude weather changes, including over North America (Overland et al., 2015). Meanwhile, most ESMs have been unable to simulate observed inter-annual variability and trends in Antarctic sea-ice extent during the same period (Gagne et al., 2014).

  11. In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf

    Directory of Open Access Journals (Sweden)

    D. P. Grosvenor

    2012-12-01

    lack of seeding ice crystals to act as rimers to initiate secondary ice particle production. This highlights the chaotic and spatially inhomogeneous nature of this process and indicates that the accurate representation of it in global models is likely to represent a challenge. However, the contrast between Hallett Mossop zone ice concentrations and the fairly low concentrations of heterogeneously nucleated ice suggests that the Hallet Mossop process has the potential to be very important in remote, pristine regions such as around the Antarctic coast.

  12. A generic model for estimating biomass accumulation and greenhouse gas emissions from perennial crops

    Science.gov (United States)

    Ledo, Alicia; Heathcote, Richard; Hastings, Astley; Smith, Pete; Hillier, Jonathan

    2017-04-01

    Agriculture is essential to maintain humankind but is, at the same time, a substantial emitter of greenhouse gas (GHG) emissions. With a rising global population, the need for agriculture to provide secure food and energy supply is one of the main human challenges. At the same time, it is the only sector which has significant potential for negative emissions through the sequestration of carbon and offsetting via supply of feedstock for energy production. Perennial crops accumulate carbon during their lifetime and enhance organic soil carbon increase via root senescence and decomposition. However, inconsistency in accounting for this stored biomass undermines efforts to assess the benefits of such cropping systems when applied at scale. A consequence of this exclusion is that efforts to manage this important carbon stock are neglected. Detailed information on carbon balance is crucial to identify the main processes responsible for greenhouse gas emissions in order to develop strategic mitigation programs. Perennial crops systems represent 30% in area of total global crop systems, a considerable amount to be ignored. Furthermore, they have a major standing both in the bioenergy and global food industries. In this study, we first present a generic model to calculate the carbon balance and GHGs emissions from perennial crops, covering both food and bioenergy crops. The model is composed of two simple process-based sub-models, to cover perennial grasses and other perennial woody plants. The first is a generic individual based sub-model (IBM) covering crops in which the yield is the fruit and the plant biomass is an unharvested residue. Trees, shrubs and climbers fall into this category. The second model is a generic area based sub-model (ABM) covering perennial grasses, in which the harvested part includes some of the plant parts in which the carbon storage is accounted. Most second generation perennial bioenergy crops fall into this category. Both generic sub

  13. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    Science.gov (United States)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  14. MICROBIOLOGICAL STUDY ON ICE FROM A FISH STALL

    Directory of Open Access Journals (Sweden)

    E. Tirloni

    2012-08-01

    Full Text Available The ice used for exposure of fish products could be a source of secondary contamination due to ice machine, due to not respected good manufacturing practices, particularly when ice is left on the fish stall and the next day the new layer is deposited over the old one. Aim of this study was the verification of the hygienic risk of this procedure through analyses of the liquid produced by the zones “thawed cephalopods” and “fresh whole fish”. Almost the microorganisms found were Gram negative (in particular Pseudomonadaceae.

  15. Aircraft Icing Handbook. (Update)

    Science.gov (United States)

    1993-01-01

    Report 1946-1947, U. S. Air Material Command Tech. Rept. 5676. Findeisen , W., *Meteorological Commentary of D (air) 1209, Icing,* Germany, Reichsamt fur...Wetterdienst, Forschungs-und Krfahrungsberichte, Ser. a, No. 29, 1943. Findeisen , W., *Meteorological-Physical Limitations of Icing on the Atmosphere...Apparatus for Measurement,’ Harvard - Mt. Washington Icing Research Report 1946-1947, U. S. Air Material Command Tech. Rept. 5676.. Findeisen , W., "The

  16. Safe Loads on Ice Sheets (Ice Engineering. Number 13)

    National Research Council Canada - National Science Library

    Haynes, F. D; Carey, Kevin L; Cattabriga, Gioia

    1996-01-01

    Every winter, ice sheets that grow on lakes and rivers in northern states are used for ice roads, ice bridges, construction platforms, airstrips, and recreational activities, It becomes very important...

  17. Climate adaption and post-fire restoration of a foundational perennial in cold desert: Insights from intraspecific variation in response to weather

    Science.gov (United States)

    Brabec, Martha M.; Germino, Matthew; Richardson, Bryce A.

    2017-01-01

    1.The loss of foundational but fire-intolerant perennials such as sagebrush due to increases in fire size and frequency in semiarid regions has motivated efforts to restore them, often with mixed or even no success. Seeds of sagebrush Artemisia tridentata and related species must be moved considerable distances from seed source to planting sites, but such transfers have not been guided by an understanding of local climate adaptation. Initial seedling establishment and its response to weather are a key demographic bottleneck that likely varies among subspecies and populations of sagebrush. 2.We assessed differences in survival, growth, and physiological responses of sagebrush to weather among eleven seed sources that varied in subspecies, cytotype, and climates-of-origin over 18 months following outplanting. Diploid or polyploid populations of mountain, Wyoming, and basin big sagebrush (A.tridentata ssp. vaseyana, A.tridentata ssp. wyomingensis, and A.tridentata ssp. tridentata, respectively) were planted onto five burned sites that normally support A.t.wyomingensis with some A.t.tridentata. 3.A.t.wyomingensis had the most growth and survival, and tetraploid populations had greater survival and height than diploids. Seasonal timing of mortality varied among the subspecies/cytotypes and was more closely related to minimum temperatures than water deficit. 4.Temperatures required to induce ice formation were up to 6°C more negative in 4n-A.t.tridentata and A.t.wyomingensis than other subspecies/cytotypes, indicating greater freezing avoidance. In contrast, freezing resistance of photosynthesis varied only 1°C among subspecies/cytotypes, being greatest in A.t.wyomingensis and least in the subspecies normally considered most cold-adapted,A.t.vaseyana. A large spectrum of reliance on freezing-avoidance vs. freezing-tolerance was observed and corresponded to differences in post-fire survivorship among subspecies/cytotypes. Differences in water deficit

  18. Ice–ocean coupled computations for sea-ice prediction to support ice navigation in Arctic sea routes

    Directory of Open Access Journals (Sweden)

    Liyanarachchi Waruna Arampath De Silva

    2015-11-01

    Full Text Available With the recent rapid decrease in summer sea ice in the Arctic Ocean extending the navigation period in the Arctic sea routes (ASR, the precise prediction of ice distribution is crucial for safe and efficient navigation in the Arctic Ocean. In general, however, most of the available numerical models have exhibited significant uncertainties in short-term and narrow-area predictions, especially in marginal ice zones such as the ASR. In this study, we predict short-term sea-ice conditions in the ASR by using a mesoscale eddy-resolving ice–ocean coupled model that explicitly treats ice floe collisions in marginal ice zones. First, numerical issues associated with collision rheology in the ice–ocean coupled model (ice–Princeton Ocean Model [POM] are discussed and resolved. A model for the whole of the Arctic Ocean with a coarser resolution (about 25 km was developed to investigate the performance of the ice–POM model by examining the reproducibility of seasonal and interannual sea-ice variability. It was found that this coarser resolution model can reproduce seasonal and interannual sea-ice variations compared to observations, but it cannot be used to predict variations over the short-term, such as one to two weeks. Therefore, second, high-resolution (about 2.5 km regional models were set up along the ASR to investigate the accuracy of short-term sea-ice predictions. High-resolution computations were able to reasonably reproduce the sea-ice extent compared to Advanced Microwave Scanning Radiometer–Earth Observing System satellite observations because of the improved expression of the ice–albedo feedback process and the ice–eddy interaction process.

  19. Genomics-Assisted Exploitation of Heterosis in Perennial Ryegrass (Lolium perenne L.)

    DEFF Research Database (Denmark)

    Islam, Md. Shofiqul

    ryegrass for the development of improved varieties. During his PhD studies, Mohammad Shofiqul Islam studied the feasibility of developing novel hybrid breeding schemes based on cytoplasmic male sterility (CMS) systems in perennial ryegrass. He successfully completed the assembly and annotation of a male......-fertile perennial ryegrass mitochondrial genome, and identified candidate genes responsible for the CMS phenotype by comparing male-fertile and male-sterile mitochondrial genomes. His findings constitute a good basis for continuing research to produce hybrid grass varieties to address the future needs......, breeding activities have been carried out to improve the population and develop synthetic varieties. This does not fully exploit the potential of heterosis, however. Hybrid breeding is an alternative strategy and provides opportunities to fully exploit the genetically available heterosis in perennial...

  20. Genetic variation, population structure, and linkage disequilibrium in European elite germplasm of perennial ryegrass

    DEFF Research Database (Denmark)

    Brazauskas, Gintaras; Lenk, Ingo; Pedersen, Morten Greve

    2011-01-01

    Perennial ryegrass (Lolium perenne L.) is a highly valued temperate climate grass species grown as forage crop and for amenity uses. Due to its outbreeding nature and recent domestication, a high degree of genetic diversity is expected among cultivars. The aim of this study was to assess the extent...... of linkage disequilibrium (LD) within European elite germplasm and to evaluate the appropriate methodology for genetic association mapping in perennial ryegrass. A high level of genetic diversity was observed in a set of 380 perennial ryegrass elite genotypes when genotyped with 40 SSRs and 2 STS markers...... and occurred within 0.4 cM across European varieties, when population structure was taken into consideration. However, an extended LD of up to 6.6 cM was detected within the variety Aberdart. High genetic diversity and rapid LD decay provide means for high resolution association mapping in elite materials...

  1. The Perennial Ryegrass GenomeZipper – Targeted Use of Genome Resources for Comparative Grass Genomics

    DEFF Research Database (Denmark)

    Pfeiffer, Matthias; Martis, Mihaela; Asp, Torben

    2013-01-01

    (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold......Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass...... to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous...

  2. Direct control of perennial weeds between crops - Implication for organic farming

    DEFF Research Database (Denmark)

    Melander, Bo; Holst, Niels; Rasmussen, Ilse Ankjær

    2012-01-01

    and ending the strategy with mouldboard ploughing in the succeeding spring. Grain yields did not differ among the treatments in the two experiments as a result of the generally high effectiveness exerted by the control strategies. Especially post-harvest control strategies based on rotating weed devices...... and mouldboard ploughing appear to be effective solutions against mixed stands of perennials on sandy soils but they do not comply with optimal nutrient management in organic cropping. Therefore, intensive autumn cultivation is only relevant where a perennial weed problem is uncontrollable by other means.......Perennial weeds can be a major constraint to organic crop production and direct control actions applied between crops can then be necessary to reduce the problems. We conducted two experiments, one on a sandy loam and one on a sandy soil in Denmark, with the aim of studying the efficacy...

  3. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    Science.gov (United States)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream

  4. Bacterial Ice Crystal Controlling Proteins

    Science.gov (United States)

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  5. Introducing perennial biomass crops into agricultural landscapes to address water quality challenges and provide other environmental services: Integrating perennial bioenergy crops into agricultural landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Cacho, J. F. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA; Negri, M. C. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA; Zumpf, C. R. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA; Campbell, P. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA

    2017-11-29

    The world is faced with a difficult multiple challenge of meeting nutritional, energy, and other basic needs, under a limited land and water budget, of between 9 and 10 billion people in the next three decades, mitigating impacts of climate change, and making agricultural production resilient. More productivity is expected from agricultural lands, but intensification of production could further impact the integrity of our finite surface water and groundwater resources. Integrating perennial bioenergy crops in agricultural lands could provide biomass for biofuel and potential improvements on the sustainability of commodity crop production. This article provides an overview of ways in which research has shown that perennial bioenergy grasses and short rotation woody crops can be incorporated into agricultural production systems with reduced indirect land use change, while increasing water quality benefits. Current challenges and opportunities as well as future directions are also highlighted.

  6. Genomic prediction in families of perennial ryegrass based on genotyping-by-sequencing

    DEFF Research Database (Denmark)

    Ashraf, Bilal

    In this thesis we investigate the potential for genomic prediction in perennial ryegrass using genotyping-by-sequencing (GBS) data. Association method based on family-based breeding systems was developed, genomic heritabilities, genomic prediction accurancies and effects of some key factors wer...... explored. Results show that low sequencing depth caused underestimation of allele substitution effects in GWAS and overestimation of genomic heritability in prediction studies. Other factors susch as SNP marker density, population structure and size of training population influenced accuracy of genomic...... prediction. Overall, GBS allows for genomic prediction in breeding families of perennial ryegrass and holds good potential to expedite genetic gain and encourage the application of genomic prediction...

  7. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  8. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  9. Turning into Ice

    Science.gov (United States)

    Pietsch, Renée B.; Hanlon, Regina; Bohland, Cynthia; Schmale, David G., III

    2016-01-01

    This article describes an interdisciplinary unit in which students explore biological "ice nucleation"--by particles that cause water to freeze at temperatures above -38°C--through the lens of the microbial ice nucleator "Pseudomonas syringae." Such This activity, which aligns with the "Next Generation Science…

  10. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  11. Population surveys of the ice rat Otomys sloggetti robertsi in the ...

    African Journals Online (AJOL)

    We investigated whether the numbers of the ice rat Otomys sloggetti robertsi, whose populations are regulated by low temperatures, have increased in the recent past as a consequence of current environmental warming in the Lesotho Drakensberg. Ice rats are endemic to the southern African alpine zone, are exclusively ...

  12. Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation.

    NARCIS (Netherlands)

    Kanfoush, S.L.; Hodell, D.A.; Charles, C.D.; Guilderson, T.P.; Mortyn, P.G.

    2000-01-01

    Records of ice-rafted detritus (IRD) concentration in deep-sea cores from the southeast Atlantic Ocean reveal millennial-scale pulses of IRD delivery between 20,000 and 74,000 years ago. Prominent IRD layers correlate across the Polar Frontal Zone, suggesting episodes of Antarctic Ice Sheet

  13. Field test and sensitivity analysis of a sensible heat balance method to determine ice contents

    Science.gov (United States)

    Soil ice content impacts winter vadose zone hydrology. It may be possible to estimate changes in soil ice content with a sensible heat balance (SHB) method, using measurements from heat pulse (HP) sensors. Feasibility of the SHB method is unknown because of difficulties in measuring soil thermal pro...

  14. Does tree harvesting in streamside management zones adversely affect stream turbidity? - preliminary observations from an Australian case study

    Science.gov (United States)

    Daniel G. Neary; Philip J. Smethurst; Brenda R. Baillie; Kevin C. Petrone; William E. Cotching; Craig C. Baillie

    2010-01-01

    In Australia, farmers and natural resource managers are striving to enhance environmental outcomes at farm and catchment scales by planting streamside management zones (SMZs) on farms with trees and other perennial vegetation. Lack of sound information on and funding for establishing and managing trees in SMZs is hindering widescale adoption of this practice....

  15. Perennial peanut (Arachis glabrata Benth.) contains polyphenol oxidase (PPO) and PPO substrates that can reduce post-harvest proteolysis.

    Science.gov (United States)

    Sullivan, Michael L; Foster, Jamie L

    2013-08-15

    Studies of perennial peanut (Arachis glabrata Benth.) suggest its hay and haylage have greater levels of rumen undegraded protein (RUP) than other legume forages such as alfalfa (Medicago sativa L.). Greater RUP can result in more efficient nitrogen utilization by ruminant animals with positive economic and environmental effects. We sought to determine whether, like red clover (Trifolium pretense L.), perennial peanut contains polyphenol oxidase (PPO) and PPO substrates that might be responsible for increased RUP. Perennial peanut extracts contain immunologically detectible PPO protein and high levels of PPO activity (>100 nkatal mg(-1) protein). Addition of caffeic acid (PPO substrate) to perennial peanut extracts depleted of endogenous substrates reduced proteolysis by 90%. Addition of phenolics prepared from perennial peanut leaves to extracts of either transgenic PPO-expressing or control (non-expressing) alfalfa showed peanut phenolics could reduce proteolysis >70% in a PPO-dependent manner. Two abundant likely PPO substrates are present in perennial peanut leaves including caftaric acid. Perennial peanut contains PPO and PPO substrates that together are capable of inhibiting post-harvest proteolysis, suggesting a possible mechanism for increased RUP in this forage. Research related to optimizing the PPO system in other forage crops will likely be applicable to perennial peanut. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  16. Cultivar by environment effects of perennial ryegrass cultivars selected for high water soluble carbohydrates managed under differing precipitation levels

    Science.gov (United States)

    Historic results of perennial ryegrass (Lolium perenne L.) breeding include improved disease resistance, biomass, and nutritional quality. Yet, lack of tolerance to water stress limits its wise use. Recent efforts to increase water soluble carbohydrate (WSC) content in perennial ryegrass may incre...

  17. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, H.B.

    2008-01-01

    . The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...

  18. GLERL Radiation Transfer Through Freshwater Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...

  19. Torque and Axial Loading Physics for Measuring Atmospheric Icing Load and Icing Rate

    OpenAIRE

    Mughal, Umair Najeeb; Virk, Muhammad Shakeel

    2015-01-01

    Measuring icing load and icing rate are important parameters for an atmospheric icing sensor. A new icing sensor has recently been designed and developed at Narvik University College for measuring atmospheric icing rate, icing load and icing type. Unlike the existing atmospheric icing sensors commercially available in market, which uses the axial loading for measuring icing load and icing rate, this new sensory system measures icing load and icing rate using the torque loading physics. The pe...

  20. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang

    2015-08-01

    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  1. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series

    Directory of Open Access Journals (Sweden)

    Sofia Antonova

    2016-11-01

    Full Text Available Thermokarst lakes and ponds are major elements of permafrost landscapes, occupying up to 40% of the land area in some Arctic regions. Shallow lakes freeze to the bed, thus preventing permafrost thaw underneath them and limiting the length of the period with greenhouse gas production in the unfrozen lake sediments. Radar remote sensing permits to distinguish lakes with bedfast ice due to the difference in backscatter intensities from bedfast and floating ice. This study investigates the potential of a unique time series of three-year repeat-pass TerraSAR-X (TSX imagery with high temporal (11 days and spatial (10 m resolution for monitoring bedfast ice as well as ice phenology of lakes in the zone of continuous permafrost in the Lena River Delta, Siberia. TSX backscatter intensity is shown to be an excellent tool for monitoring floating versus bedfast lake ice as well as ice phenology. TSX-derived timing of ice grounding and the ice growth model CLIMo are used to retrieve the ice thicknesses of the bedfast ice at points where in situ ice thickness measurements were available. Comparison shows good agreement in the year of field measurements. Additionally, for the first time, an 11-day sequential interferometric coherence time series is analyzed as a supplementary approach for the bedfast ice monitoring. The coherence time series detects most of the ice grounding as well as spring snow/ice melt onset. Overall, the results show the great value of TSX time series for monitoring Arctic lake ice and provide a basis for various applications: for instance, derivation of shallow lakes bathymetry, evaluation of winter water resources and locating fish winter habitat as well as estimation of taliks extent in permafrost.

  2. Large Eddy Simulation of Heat Entrainment Under Arctic Sea Ice

    Science.gov (United States)

    Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand

    2018-01-01

    Arctic sea ice has declined rapidly in recent decades. The faster than projected retreat suggests that free-running large-scale climate models may not be accurately representing some key processes. The small-scale turbulent entrainment of heat from the mixed layer could be one such process. To better understand this mechanism, we model the Arctic Ocean's Canada Basin, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) within the mixed layer trapping heat from solar radiation. We use large eddy simulation (LES) to investigate heat entrainment for different ice-drift velocities and different initial temperature profiles. The value of LES is that the resolved turbulent fluxes are greater than the subgrid-scale fluxes for most of our parameter space. The results show that the presence of the NSTM enhances heat entrainment from the mixed layer. Additionally there is no PSW heat entrained under the parameter space considered. We propose a scaling law for the ocean-to-ice heat flux which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of "The Great Arctic Cyclone of 2012" gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer.

  3. Anaerobic co-digestion of perennials: Methane potential and digestate nitrogen fertilizer value

    DEFF Research Database (Denmark)

    Muller-Stover, Dorette Sophie; Sun, Guotao; Kroff, Pablo

    2016-01-01

    Co-digestion of crop biomass improves the traditional manure-based biogas yield due to an increased content of easily degradable carbon compounds. In this study, the methane potential of three perennials (grass, legumes, and grass+legume) was determined using various amounts together with animal ...

  4. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    Directory of Open Access Journals (Sweden)

    Astrid eWingler

    2015-01-01

    Full Text Available Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g. via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellins (GA and jasmonate (JA play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor (CBF dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants.

  5. Testing water-soluble carbohydrate QTL effects in perennial ryegrass (Lolium perenne L.) by marker selection

    NARCIS (Netherlands)

    Turner, L.B.; Farrell, M.; Humphreys, M.O.; Dolstra, O.

    2010-01-01

    Water-soluble carbohydrates (WSC) are an important factor determining the nutritional value of grass forage and development of genetic markers for selection of WSC traits in perennial ryegrass would benefit future breeding programmes. Quantitative trait loci (QTLs) for WSC have been published for an

  6. Cultivar effects of perennial ryegrass on herbage intake by grazing dairy cows

    NARCIS (Netherlands)

    Smit, H.J.

    2006-01-01

    Perennial ryegrass is the most abundant grass species in temperate climates. An increased herbage intake of dairy cows by breeding new cultivars could have a large potential impact on agriculture. The effects of cultivars on sward structure, nutritive value, physical characteristics and disease

  7. Teaching Writing: Some Perennial Questions and Some Possible Answers. Occasional Paper No. 85.

    Science.gov (United States)

    Florio-Ruane, Susan; Dunn, Saundra

    Based on the premise that writing research will be useful to educators only to the extent that it offers them conceptual tools to use in framing and solving their own problems, this paper reviews studies that address educators' perennial concerns about writing instruction. Among the questions addressed in the paper are those concerning (1) the…

  8. Returning succession to downy brome dominated rangelands: roadblocks to perennial grass establishment

    Science.gov (United States)

    The most common cause of successional retrogression in the Great Basin is wildfires fueled by downy brome (Bromus tectorum). Downy brome invasion has reduced fire intervals from an estimated 60-100 years down to 5-10 years. Our previous research found that establishment of long-lived perennial grass...

  9. Optimal prescribed burn frequency to manage foundation California perennial grass species and enhance native flora

    Science.gov (United States)

    Grasslands can be diverse assemblages of grasses and forbs but not much is known how perennial grass species management affects native plant diversity except for in a few instances. We studied the use of late spring prescribed burns over a span of eleven years on experimental plots in which the pere...

  10. Next steps in determining the overall sustainability of perennial bioenergy crops

    Science.gov (United States)

    Perennial bioenergy crops are being developed and evaluated in the United States to partially offset petroleum transport fuels. Accurate accounting of upstream and downstream greenhouse gas (GHG) emissions is necessary to measure the overall carbon intensity of new biofuel feedstocks. For example, c...

  11. Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions

    Science.gov (United States)

    Xiaoqing Yu; Guihua Bai; Shuwei Liu; Na Luo; Ying Wang; Douglas S. Richmond; Paula M. Pijut; Scott A. Jackson; Jianming Yu; Yiwei. Jiang

    2013-01-01

    Drought is a major environmental stress limiting growth of perennial grasses in temperate regions. Plant drought tolerance is a complex trait that is controlled by multiple genes. Candidate gene association mapping provides a powerful tool for dissection of complex traits. Candidate gene association mapping of drought tolerance traits was conducted in 192 diverse...

  12. Theoretical implications for the estimation of dinitrogen fixation by large perennial plant species using isotope dilution

    Science.gov (United States)

    Dwight D. Baker; Maurice Fried; John A. Parrotta

    1995-01-01

    Estimation of symbiotic N2 fixation associated with large perennial plant species, especially trees, poses special problems because the process must be followed over a potentially long period of time to integrate the total amount of fixation. Estimations using isotope dilution methodology have begun to be used for trees in field studies. Because...

  13. Perennial soybean seeds coated with high doses of boron and zinc ...

    African Journals Online (AJOL)

    The objective of this work was to study combinations of high doses of boron (B) and zinc (Zn) in the recoating of perennial soybean seeds, in order to provide these nutrients to the future plants. The physical, physiological and nutritional characteristics of the coated seeds and initial development of plants in a greenhouse ...

  14. Perennial forbs for wildlife habitat restoration on mined lands in the northern Great Plains

    Science.gov (United States)

    Ardell J. Bjugstad; Warren C. Whitman

    1982-01-01

    Research was designed to assess the establishment and growth potential of 30 perennial forbs by seeding and/or transplanting them on coal mine spoil materials over a 2-year period. Five species showed exceptional emergence and vigorous growth from direct seeding. Six species showed vigorous growth with the use of transplanted plants. Seeding resulted in successful...

  15. Energy-conserving perennial agriculture for marginal land in southern Appalachia. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.

    1982-01-30

    USDA economists predict the end of surplus farm production in the US within this decade. More and more marginal land will be cropped to provide feed for the growing world population and to produce energy. Much of this potential cropland in Southern Appalachia is poorly suited to annual crops, such as corn. Perennial crops are much better suited to steep, rocky, and wet sites. Research was undertaken on the theoretical potentials of perennial species with high predicted yields of protein, carbohydrates, or oils. Several candidate staple perennial crops for marginal land in Southern Appalachia were identified, and estimates were made of their yields, energy input requirements, and general suitabilities. Cropping systems incorporating honeylocust, persimmon, mulberry, jujube, and beech were compared with corn cropping systems. It appears that these candidate staple perennials show distinct advantages for energy conservation and environmental preservation. Detailed economic analyses must await actual demonstration trials, but preliminary indications for ethanol conversion systems with honeylocust are encouraging. It is suggested that short-term loans to farmers undertaking this new type of agriculture would be appropriate to solve cash-flow problems.

  16. Molecular mechanisms responsive to dehydration may impact the invasiveness of perennial weeds under global climate change

    Science.gov (United States)

    Leafy spurge is an invasive perennial weed in the great plains of the US and Canada. The ability of this herbaceous weed to regenerate new shoot growth from an abundance of crown and root buds after severe abiotic stress is critical for survival. Due to its adaptable and aggressive nature, global cl...

  17. Towards in vitro fertilization, gametosomatic cybridization and DNA transfer in perennial ryegrass (Lolium perenne L.)

    NARCIS (Netherlands)

    Maas, van der H.M.

    1994-01-01

    In this thesis, research towards invitro fertilization, gametosomatic cybridization andDNAtransfer in perennial ryegrass ( Loliumperenne L.), the most important forage

  18. Gene Flow in Genetically Engineered Perennial Grasses: Lessons for Modification of Dedicated Bioenergy Crops

    Science.gov (United States)

    Genetic modification of dedicated bioenergy crops, such as switchgrass, will play a major role in crop improvement for a wide range of beneficial traits specific to biofuels. One obstacle that arises regarding transgenic improvement of perennials used for biofuels is the propensity of these plants t...

  19. Changes of biomass in some perennial grass species. | M.C. ...

    African Journals Online (AJOL)

    Patterns of seasonal herbaceous biomass change in a burned, ungrazed savanna woodland are reported. A standard clipping technique was used and material farmed in the current season was separated from that formed in the previous season for three perennial grass species: Brachiaria nigropedata, Andropogon ...

  20. Nitrogen cycling in summer active perennial grass systems in South Australia: Non-symbiotic nitrogen fixation

    NARCIS (Netherlands)

    Gupta, V.V.S.R.; Kroker, S.J.; Hicks, M.; Davoren, W.; Descheemaeker, K.K.E.; Llewellyn, R.

    2014-01-01

    Non-symbiotic nitrogen (N2) fixation by diazotrophic bacteria is a potential source for biological N inputs in non-leguminous crops and pastures. Perennial grasses generally add larger quantities of above- and belowground plant residues to soil, and so can support higher levels of soil biological

  1. Extending the shelf life of flower bulbs and perennials in consumer packages by modiefied atmosphere packaging

    NARCIS (Netherlands)

    Gude, H.; Dijkema, M.H.G.E.; Miller, C.T.

    2011-01-01

    The quality of flower bulbs and herbaceous perennials in consumer packages declines rapidly due to sprouting and drying out. The present study was undertaken to develop Modified Atmosphere Packages (MAP) with suitable filling materials for a prolonged shelf life of different species of flower bulbs

  2. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil

    International Nuclear Information System (INIS)

    Kirk, Jennifer L.; Klironomos, John N.; Lee, Hung; Trevors, Jack T.

    2005-01-01

    Enhanced rhizosphere degradation uses plants to stimulate the rhizosphere microbial community to degrade organic contaminants. We measured changes in microbial communities caused by the addition of two species of plants in a soil contaminated with 31,000 ppm of total petroleum hydrocarbons. Perennial ryegrass and/or alfalfa increased the number of rhizosphere bacteria in the hydrocarbon-contaminated soil. These plants also increased the number of bacteria capable of petroleum degradation as estimated by the most probable number (MPN) method. Eco-Biolog plates did not detect changes in metabolic diversity between bulk and rhizosphere samples but denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified partial 16S rDNA sequences indicated a shift in the bacterial community in the rhizosphere samples. Dice coefficient matrices derived from DGGE profiles showed similarities between the rhizospheres of alfalfa and perennial ryegrass/alfalfa mixture in the contaminated soil at week seven. Perennial ryegrass and perennial ryegrass/alfalfa mixture caused the greatest change in the rhizosphere bacterial community as determined by DGGE analysis. We concluded that plants altered the microbial population; these changes were plant-specific and could contribute to degradation of petroleum hydrocarbons in contaminated soil. - Plant-specific changes in microbial populations on roots affect degradation of petroleum hydrocarbons in contaminated soil

  3. Novel application of ALMANAC: Modelling a functional group, exotic warm-season perennial grasses

    Science.gov (United States)

    Introduced perennial C4 grasses such buffelgrass (Pennisetum ciliare [(L.) Link]) and old world bluestems (OWB), including genera such as Bothriochloa Kuntze, Capillipedium Stapf, and Dichanthium Willemet have the potential to dominate landscapes. A process-based model that realistically simulates ...

  4. The central and eastern Arabian Sea as a perennial source of atmospheric carbon dioxide

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; DileepKumar, M.; George, M.D.

    circulation and biological production. In all seasons, the pCO sub(2) is higher in surface waters of the Arabian Sea, except along the Indian coast in the southwest monsoon, than that in atmosphere, and thus this region appears to be a perennial source...

  5. Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers

    Czech Academy of Sciences Publication Activity Database

    Tomaszewski, C.; Byrne, S. L.; Foito, A.; Kildea, S.; Kopecký, David; Doležel, Jaroslav; Heslop-Harrison, J. S.; Stewart, D.; Barth, S.

    2012-01-01

    Roč. 131, č. 2 (2012), s. 345-349 ISSN 0179-9541 Institutional research plan: CEZ:AV0Z50380511 Keywords : Lolium perenne * perennial ryegrass * genetic map Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.175, year: 2012

  6. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    Science.gov (United States)

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  7. Evaluating winter/spring seeding of a native perennial bunchgrass in the sagebrush steppe

    Science.gov (United States)

    Sagebrush (Artemisia tridentata Nutt.) plant communities in the US Great Basin region are being severely impacted by increasingly frequent wildfires in association with the expansion of exotic annual grasses. Maintenance of native perennial bunchgrasses is key to controlling annual grass expansion,...

  8. Perennial ryegrass for dairy cows: Intake, milk production and nitrogen utilization

    NARCIS (Netherlands)

    Tas, B.M.

    2005-01-01

    Keywords: perennial ryegrass, dairy cows, intake, digestibility milk production, nitrogen utilisation.In the Netherlands, grass is one of the main roughages in the diet of high productive dairy cows. Grass is associated with two main problems: the limited dry matter intake (DMI)

  9. Coulombic charge ice

    Science.gov (United States)

    McClarty, P. A.; O'Brien, A.; Pollmann, F.

    2014-05-01

    We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.

  10. Creep of ice: further studies

    International Nuclear Information System (INIS)

    Heard, H.C.; Durham, W.B.; Kirby, S.H.

    1987-01-01

    Detailed studies have been done of ice creep as related to the icy satellites, Ganymede and Callisto. Included were: (1) the flow of high-pressure water ices II, III, and V, and (2) frictional sliding of ice I sub h. Work was also begun on the study of the effects of impurities on the flow of ice. Test results are summarized

  11. Evaporite deposition in a shallow perennial lake, Qaidam basin, western China

    Energy Technology Data Exchange (ETDEWEB)

    Schubel, K.A.; Lowenstein, T.K. (SUNY, Binghampton, NY (United States)); Spencer, R.J. (Univ. of Calgary, Alberta (Canada)); Pengxi, Z. (Institute of Salt Lakes, Xining (China))

    1991-03-01

    Evaporites accumulate in ephemeral saline-pans, shallow perennial lakes or lagoons, and deep perennial systems. Continuous brine trench exposures of Holocene evaporites from the Qaidam basin provide criteria for the recognition of shallow perennial lake sediments. Based on Landsat photographs, lateral extent of beds (at least 7 km), and sequence thicknesses (maximum 2.5 m), the paleolake is interpreted to have been less than 2.5 m deep and at least 120 km{sup 2} in area. Sediments consist of laminated siliciclastic mud overlain by mud-halite couplets (mm- to cm-scale layers), which represent one vertical shallowing- and concentrating-upwards sequence. The basal laminite marks the onset of deposition in this shallow perennial paleolake. Syndepositional halite textures and fabrics in the overlying mud-halite couplets include cumulates, rafts, and chevrons, draped by mud laminae, and halite layers truncated by horizontal dissolution surfaces (increasing in frequency upwards). Paleolake brines, determined from fluid inclusion melting temperatures, are Na-Mg-Cl-rich and evolve from 0.84 m Mg{sup 2} to 1.52 m Mg{sup 2+} (near the surface). Combinations of the following criteria may be used for the recognition of shallow, nonstratified, perennial lake sediments: lateral continuity of layers; muds undisrupted by subaerial exposure; vertical bottom-growth of halite; halite layers conformably overlain by mud; halite layers truncated by nonuniformly spaced horizontal dissolution surfaces; erosional scours and channels filled with cross-laminated gypsum, halite, and siliciclastic sand and mud; and salinity fluctuations over small stratigraphic intervals within an overall concentrating-upwards sequence.

  12. Transnational Sea-Ice Transport in a Warmer, More Mobile Arctic

    Science.gov (United States)

    Newton, R.; Tremblay, B.; Pfirman, S. L.; DeRepentigny, P.

    2015-12-01

    As the Arctic sea ice thins, summer ice continues to shrink in its area, and multi-year ice becomes rarer, winter ice is not disappearing from the Arctic Basin. Rather, it is ever more dominated by first year ice. And each summer, as the total coverage withdraws, the first year ice is able travel faster and farther, carrying any ice-rafted material with it. Micro-organisms, sediments, pollutants and river runoff all move across the Arctic each summer and are deposited hundreds of kilometers from their origins. Analyzing Arctic sea ice drift patterns in the context of the exclusive economic zones (EEZs) of the Arctic nations raises concerns about the changing fate of "alien" ice which forms within one country's EEZ, then drifts and melts in another country's EEZ. We have developed a new data set from satellite-based ice-drift data that allows us to track groups of ice "pixels" forward from their origin to their destination, or backwards from their melting location to their point of formation. The software has been integrated with model output to extend the tracking of sea ice to include climate projections. Results indicate, for example, that Russian sea ice dominates "imports" to the EEZ of Norway, as expected, but with increasing ice mobility it is also is exported into the EEZs of other countries, including Canada and the United States. Regions of potential conflict are identified, including several national borders with extensive and/or changing transboundary sea ice transport. These data are a starting point for discussion of transborder questions raised by "alien" ice and the material it may import from one nation's EEZ to another's.

  13. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  14. Behaviour of the lake district ice lobe of the Scandinavian ice sheet during the younger dryas chronozone (ca. 12 800 - 11 500 years ago)

    Energy Technology Data Exchange (ETDEWEB)

    Lunkka, J.P.; Erikkilae, A. [Oulu Univ. (Finland)

    2012-04-15

    It is highly relevant to picture the conditions that prevailed under and in front of the ice sheets as they were stationary or in equilibrium for many hundreds of years. This knowledge is particularly relevant when planning to dispose of spent nuclear fuel in a repository underground. For estimating what kind of conditions might exist at the ice margin basic knowledge is needed from the palaeoice sheets that remained stationary for long periods of time. During Younder Dryas Stadial (c. 12 800 - 11 500 years ago) glaciers remained stationary or advanced worldwide as a result of climate cooling. The major end moraine complexes that run around Fennoscandia, Russian Karelia and the Kola Peninsula were deposited at that time and mark the former Younger Dryas ice margin. It this work the palaeoenvironments have been reconstructed in order to reveal the conditions that existed for more than 1000 years in the area where the former Lake District Ice Lobe of the Scandinavian Ice Sheet was in the Salpausselkae zone in southern Finland. Work was carried out using GIS-based reconstruction tools, sedimentological and geophysical (ground penetrating radar) methods. In addition, a detailed palaeoenvironmental reconstruction was produced for the Kylaeniemi area which forms a part of the Salpausselkae II end moraine. The GIS-based reconstructions clearly indicate that the ice grounding line of the Lake District Ice Lobe was standing in shallow water depth in the Baltic Ice Lake. The water depth in front of Salpausselkae I, which marks the ice margin at c. 12 500 years ago was mainly between 20-40 metres. When the ice margin was in Salpausselkae II at around 11 700 years ago the water depth in front of the ice margin was on average less than 20 metres. Although the surface profile of ice was not possible to calculate subgalcial and ice frontal landforms indicate that subgalcial tunnel systems were responsible for releasing melt water and sediment to the ice margin throughout the

  15. Behaviour of the lake district ice lobe of the Scandinavian ice sheet during the younger dryas chronozone (ca. 12 800 - 11 500 years ago)

    International Nuclear Information System (INIS)

    Lunkka, J.P.; Erikkilae, A.

    2012-04-01

    It is highly relevant to picture the conditions that prevailed under and in front of the ice sheets as they were stationary or in equilibrium for many hundreds of years. This knowledge is particularly relevant when planning to dispose of spent nuclear fuel in a repository underground. For estimating what kind of conditions might exist at the ice margin basic knowledge is needed from the palaeoice sheets that remained stationary for long periods of time. During Younder Dryas Stadial (c. 12 800 - 11 500 years ago) glaciers remained stationary or advanced worldwide as a result of climate cooling. The major end moraine complexes that run around Fennoscandia, Russian Karelia and the Kola Peninsula were deposited at that time and mark the former Younger Dryas ice margin. It this work the palaeoenvironments have been reconstructed in order to reveal the conditions that existed for more than 1000 years in the area where the former Lake District Ice Lobe of the Scandinavian Ice Sheet was in the Salpausselkae zone in southern Finland. Work was carried out using GIS-based reconstruction tools, sedimentological and geophysical (ground penetrating radar) methods. In addition, a detailed palaeoenvironmental reconstruction was produced for the Kylaeniemi area which forms a part of the Salpausselkae II end moraine. The GIS-based reconstructions clearly indicate that the ice grounding line of the Lake District Ice Lobe was standing in shallow water depth in the Baltic Ice Lake. The water depth in front of Salpausselkae I, which marks the ice margin at c. 12 500 years ago was mainly between 20-40 metres. When the ice margin was in Salpausselkae II at around 11 700 years ago the water depth in front of the ice margin was on average less than 20 metres. Although the surface profile of ice was not possible to calculate subgalcial and ice frontal landforms indicate that subgalcial tunnel systems were responsible for releasing melt water and sediment to the ice margin throughout the

  16. Glaciation of Siberia and the problem of massive ice beddings

    Directory of Open Access Journals (Sweden)

    V. S. Sheinkman

    2017-01-01

    Full Text Available As a result of many years of the author’s studies of glaciers and ground ices, a great amount of factual material has been collected for a purpose to analyze a possibility of burying the glaciers in the permafrost zone and to esti‑ mate a time of their stay in such а condition. According to the author’s opinion, the Siberian glaciers were mainly the valley ones; ice sheets were never formed, and any existence of buried glaciers could not be real in the geo‑ logical time scale. However, some researchers still believe that in the Quaternary ice sheets occurred in the North of Siberia, and, in addition, they consider the local massive ice beddings as relics of these sheets. No clear expla‑ nation of the similar origin of such ice structures exists at the present time, so development and variety of this ice could be easier explained by the permafrost genesis. Basing on results of observations carried out in all glacier regions of Siberia, the author concludes that glaciers cannot exist in the form of buried ice for a long time. This is unrealistic even in the North‑East of Siberia, where the absolute minimum temperature is −67.8 °C, and the mean annual air temperature drops below −17 °C. The characteristic feature of the Siberia continental climate is short, but hot summer. In such a situation, the coarse fragmental morainic material, covering glaciers by the layer up to 3 m thick, cannot preserve the underlying ice from melting because the heat penetrates down with the air, liquid precipitation, and the melt water. When glaciers reduce, the dead ice, buried under a moraine, may be preserved in the coldest areas of Siberia for only 100–150 years. Therefore, despite the resemblance of the scarps of the ice bodies having the permafrost or glacial origin, consideration of them as relics of ancient glaciers would be wrong.

  17. Ice Engineering Research Area

    Data.gov (United States)

    Federal Laboratory Consortium — Refrigerated Physical Modeling of Waterways in a Controlled EnvironmentThe Research Area in the Ice Engineering Facility at the Cold Regions Research and Engineering...

  18. Ice Cream Stick Math.

    Science.gov (United States)

    Paddock, Cynthia

    1992-01-01

    Described is a teaching technique which uses the collection of ice cream sticks as a means of increasing awareness of quantity in a self-contained elementary special class for students with learning disabilities and mild mental retardation. (DB)

  19. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  20. The Antartic Ice Borehole Probe

    Science.gov (United States)

    Behar, A.; Carsey, F.; Lane, A.; Engelhardt, H.

    2000-01-01

    The Antartic Ice Borehole Probe mission is a glaciological investigation, scheduled for November 2000-2001, that will place a probe in a hot-water drilled hole in the West Antartic ice sheet. The objectives of the probe are to observe ice-bed interactions with a downward looking camera, and ice inclusions and structure, including hypothesized ice accretion, with a side-looking camera.

  1. Long-Endurance, Ice-capable Autonomous Seagliders

    Science.gov (United States)

    Lee, Craig; Gobat, Jason; Shilling, Geoff; Curry, Beth

    2013-04-01

    . The first successful section across the ice-covered Davis Strait occurred in 2006, while the first full mission took place September - February 2008. Mission duration was 25 weeks, with over 800 km of under-ice transit over 51 days. The glider was able to identify and surface through leads 10 times during under-ice operations. Most recently, a pair of successful missions collected continuous sections across Davis Strait from October 2010 through June 2011, including operations between January and June, when the strait was nearly entirely ice-covered and the glider rarely gained access to the surface. These missions provide the first year-round time series of high-resolution sections across Davis Strait. In the Antarctic, ice-capable Seagliders successfully transited beneath a 40-km ice bridge and self-extracted after being carried beneath the Ross ice shelf during missions conducted without the support of an acoustic navigation array. Ice-capable Seagliders can provide sustainable, continuous occupation of critical sections in ice-covered regions, including the marginal ice zone, with typical horizontal resolution of 3 km and routine sampling of the important, but hazardous, region near the ice-ocean interface. Future directions include development of basin-scale acoustic navigation ('underwater GPS' for the Arctic) and use of existing high-frequency acoustic communications for short-range data transfer.

  2. The Perennial Ryegrass GenomeZipper: Targeted Use of Genome Resources for Comparative Grass Genomics1[C][W

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F.X.; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-01-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species. PMID:23184232

  3. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  4. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  5. The evolution of the western rift area of the Fimbul Ice Shelf, Antarctica

    Directory of Open Access Journals (Sweden)

    A. Humbert

    2011-10-01

    Full Text Available This paper studies the evolution of a zone in the Fimbul Ice Shelf that is characterised by large crevasses and rifts west of Jutulstraumen, an outlet glacier flowing into Fimbulisen. High-resolution radar imagery and radio echo sounding data were used to study the surface and internal structure of this rift area and to define zones of similar characteristics. The western rift area is dominated by two factors: a small ice rumple that leads to basal crevasses and disturbs the homogeneity of the ice, and a zone with fibre-like blocks. Downstream of the rumple we found down-welling of internal layers and local thinning, which we explain as a result of basal crevasses due to the basal drag at the ice rumple. North of Ahlmannryggen the ice loses its lateral constraint and forms individual blocks, which are deformed like fibres under shear, where the ice stream merges with slower moving ice masses of the western side. There, the ice loses its integrity, which initiates the western rift system. The velocity difference between the slow moving western part and the fast moving extension of Jutulstraumen produces shear stress that causes the rifts to form tails and expand them to the major rifts of up to 30 km length.

  6. Method for maintenance of ice beds of ice condenser containment

    International Nuclear Information System (INIS)

    Scrabis, C.M.; Hardin, R.T. Jr.

    1987-01-01

    This patent describes a method of maintaining ice baskets associated with a nuclear reactor system and disposed in an array of plural such ice baskets, supported in generally vertically oriented and parallel relationship by a lattice support structure which extends between the individual ice baskets and includes lateral supports adjacent the tops of the comprising: selecting an ice basket of the array requiring replenishment of the ice therewithin due to sublimation voids within the ice charges in the basket; isolating the selected ice basket; drilling a hole downwardly through the ice charges in the ice basket in general parallel axial relationship with respect to the cylindrical sidewall of the ice basket, utilizing a rotary drill bit connected through an auger to a rotary drive means; maintaining the rotary drive means in a fixed axial position and reversing the direction of rotation thereof for driving the auger in reverse rotation; and supplying ice in particulate form to the vicinity of the auger and conveying the particulate ice through the drilled hole by continued, reverse rotation of the auger so as to fill the sublimated voids in communication with the drilled hole, from the lowest and through successively higher such voids in the ice charges within the ice basket, and withdrawing the auger from the drilled hole as the voids are filled

  7. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    Science.gov (United States)

    Surdu, Cristina M.; Duguay, Claude R.; Fernández Prieto, Diego

    2016-05-01

    Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than 10 months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions - polar oases - with longer growing seasons and greater biological productivity and diversity are secluded from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997-2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath, and Landsat acquisitions were analyzed. Results show that melt onset occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer ice minimum and water-clear-of-ice (WCI) dates, with greater changes being observed for polar-oasis lakes (9-24 days earlier WCI dates for lakes located in polar oases and 2-20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes, which preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.

  8. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

    Directory of Open Access Journals (Sweden)

    M. M. Helsen

    2017-08-01

    Full Text Available The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by taking a constant value for areas with thick perennial snow cover. This is an important reason why the surface mass balance (SMB of the Greenland ice sheet (GrIS is poorly resolved in the model. The purpose of this study is to improve the SMB forcing of the GrIS by evaluating different parameter settings within a snow albedo scheme. By allowing ice-sheet albedo to vary as a function of wet and dry conditions, the spatial distribution of albedo and melt rate improves. Nevertheless, the spatial distribution of SMB in EC-Earth is not significantly improved. As a reason for this, we identify omissions in the current snow albedo scheme, such as separate treatment of snow and ice and the effect of refreezing. The resulting SMB is downscaled from the lower-resolution global climate model topography to the higher-resolution ice-sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice-sheet model simulations. From these ice-sheet simulations we conclude that an albedo scheme with a short response time of decaying albedo during wet conditions performs best with respect to long-term simulated ice-sheet volume. This results in an optimized albedo parameterization that can be used in future EC-Earth simulations with an interactive ice-sheet component.

  9. Microorganisms Trapped Within Permafrost Ice In The Fox Permafrost Tunnel, Alaska

    Science.gov (United States)

    Katayama, T.; Tanaka, M.; Douglas, T. A.; Cai, Y.; Tomita, F.; Asano, K.; Fukuda, M.

    2008-12-01

    Several different types of massive ice are common in permafrost. Ice wedges are easily recognized by their shape and foliated structure. They grow syngenetically or epigenetically as a result of repeated cycles of frost cracking followed by the infiltration of snow, melt water, soil or other material into the open frost cracks. Material incorporated into ice wedges becomes frozen and preserved. Pool ice, another massive ice type, is formed by the freezing of water resting on top of frozen thermokarst sediment or melting wedges and is not foliated. The Fox Permafrost Tunnel in Fairbanks was excavated within the discontinuous permafrost zone of central Alaska and it contains permafrost, ice wedges, and pool ice preserved at roughly -3°C. We collected samples from five ice wedges and three pool ice structures in the Fox Permafrost Tunnel. If the microorganisms were incorporated into the ice during its formation, a community analysis of the microorganisms could elucidate the environment in which the ice was formed. Organic material from sediments in the tunnel was radiocarbon-dated between 14,000 and 30,000 years BP. However, it is still not clear when the ice wedges were formed or subsequently deformed because they are only partially exposed and their upper surfaces are above the tunnel walls. The objectives of our study were to determine the biogeochemical conditions during massive ice formation and to analyze the microbial community within the ices by incubation-based and DNA-based analyses. The geochemical profile and the PCR-DGGE band patterns of bacteria among five ice wedge and 3 portions of pool ice samples were markedly different. The DGGE band patterns of fungi were simple with a few bands of fungi or yeast. The dominant bands of ice wedge and pool ice samples were affiliated with the genus Geomyces and Doratomyces, respectively. Phylogenetic analysis using rRNA gene ITS regions indicated isolates of Geomyces spp. from different ice wedges were affiliated

  10. The Potsdam Parallel Ice Sheet Model (PISM-PIK – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    M. A. Martin

    2011-09-01

    Full Text Available We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK. The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  11. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Science.gov (United States)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  12. Sea Ice and Hydrographic Variability in the Northwest North Atlantic

    Science.gov (United States)

    Fenty, I. G.; Heimbach, P.; Wunsch, C. I.

    2010-12-01

    marginal ice zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for ice to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing ice pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from ice meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime ice extent; positive ice extent anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic ice associated with future warming may be predicted to lead positive ice extent anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.

  13. Icing losses on wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, T.; Fotsing, I.; Pearson, S. [Garrad Hassan Canada Inc., Ottawa, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed some of the energy losses that can occur as a result of icing on wind turbines. Airfoil deterioration can occur in the presence of rime and glaze ice. Anemometers are also impacted by ice, and shut-downs can occur as a result of icing events. Availability deficits that occur during the winter months can lead to annual energy losses of 0.5 percent. The impact of icing events on total wind power energy production in Quebec is estimated at between 1.3 percent to 2.7 percent. Ice loss estimates are considered during the pre-construction phases of wind power projects. However, ice loss prediction methods are often inaccurate. Studies have demonstrated that preconstruction masts show a reasonable correlation with wind turbine icing, and that icing losses are site-specific. tabs., figs.

  14. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  15. Ice ages and the thermal equilibrium of the earth, II

    Science.gov (United States)

    Adam, D.P.

    1975-01-01

    The energy required to sustain midlatitude continental glaciations comes from solar radiation absorbed by the oceans. It is made available through changes in relative amounts of energy lost from the sea surface as net outgoing infrared radiation, sensible heat loss, and latent heat loss. Ice sheets form in response to the initial occurrence of a large perennial snowfield in the subarctic. When such a snowfield forms, it undergoes a drastic reduction in absorbed solar energy because of its high albedo. When the absorbed solar energy cannot supply local infrared radiation losses, the snowfield cools, thus increasing the energy gradient between itself and external, warmer areas that can act as energy sources. Cooling of the snowfield progresses until the energy gradients between the snowfield and external heat sources are sufficient to bring in enough (latent plus sensible) energy to balance the energy budget over the snowfield. Much of the energy is imported as latent heat. The snow that falls and nourishes the ice sheet is a by-product of the process used to satisfy the energy balance requirements of the snowfield. The oceans are the primary energy source for the ice sheet because only the ocean can supply large amounts of latent heat. At first, some of the energy extracted by the ice sheet from the ocean is stored heat, so the ocean cools. As it cools, less energy is lost as net outgoing infrared radiation, and the energy thus saved is then available to augment evaporation. The ratio between sensible and latent heat lost by the ocean is the Bowen ratio; it depends in part on the sea surface temperature. As the sea surface temperature falls during a glaciation, the Bowen ratio increases, until most of the available energy leaves the oceans as sensible, rather than latent heat. The ice sheet starves, and an interglacial period begins. The oscillations between stadial and interstadial intervals within a glaciation are caused by the effects of varying amounts of

  16. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  17. Bottom Fixed Platform Dynamics Models Assessing Surface Ice Interactions for Transitional Depth Structures in the Great Lakes: FAST8 – IceDyn

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Dale G. [Univ. of Michigan, Ann Arbor, MI (United States); Yu, Bingbin [Principle Power, Inc., Emeryville, CA (United States); Sirnivas, Senu [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-04-01

    base, were compared. Ice models 1 and 6 do not significantly affect the tower fore-aft shear and moment. However, ice model 2 (dynamic analyses), model 3 (random ice loading), and model 4 (multiple ice failure zone loading) show increased effect on the tower fore-aft shear and moment with significant effect from ice model 3.1. In general ice loading creates large reaction forces and moments at the base of the IBGS foundation; the largest occurred in model 1.1 (steady creep ice indentation loading) followed by model 3.1 (random creep ice indentation loading). In general the power production from the ice loading cases had little deviation from the baseline case without ice loading. For ultimate limit state (ULS), ice model 1.1 ice and 3.1 appear to be the ice most critical models to consider at an early stage of design. Ice model 4 is an important tool for assessing structural fatigue.

  18. A Proteomics Sample Preparation Method for Mature, Recalcitrant Leaves of Perennial Plants

    Science.gov (United States)

    Na, Zhang; Chengying, Lao; Bo, Wang; Dingxiang, Peng; Lijun, Liu

    2014-01-01

    Sample preparation is key to the success of proteomics studies. In the present study, two sample preparation methods were tested for their suitability on the mature, recalcitrant leaves of six representative perennial plants (grape, plum, pear, peach, orange, and ramie). An improved sample preparation method was obtained: Tris and Triton X-100 were added together instead of CHAPS to the lysis buffer, and a 20% TCA-water solution and 100% precooled acetone were added after the protein extraction for the further purification of protein. This method effectively eliminates nonprotein impurities and obtains a clear two-dimensional gel electrophoresis array. The method facilitates the separation of high-molecular-weight proteins and increases the resolution of low-abundance proteins. This method provides a widely applicable and economically feasible technology for the proteomic study of the mature, recalcitrant leaves of perennial plants. PMID:25028960

  19. Fructan metabolism and changes in fructan composition during cold acclimation in perennial ryegrass

    DEFF Research Database (Denmark)

    Abeynayake, Shamila; Etzerodt, Thomas; Jonavičienė, Kristina

    2015-01-01

    . The ecotype ‘Falster’, adapted to cold climates, increased total fructan content and produced more fructans (DP˃7) in the roots than the variety ‘Veyo’, adapted to warmer climates suggesting that accumulation of fructans in roots, especially the high-DP fructans as an adaptive trait for plant recovery after......Perennial ryegrass (Lolium perenne L.) produces high levels of fructans as a mixture of oligomers with different degrees of polymerization (DP). The present study describes the analysis of the compositional changes in the full spectrum of fructan oligomers, fructan distribution between above ground...... biomass (top) and the roots, and the transcription of candidate genes involved in fructan metabolism during cold acclimation in perennial ryegrass variety ‘Veyo’ and ecotype ‘Falster’ from distinct geographical origins. We observed changes in fructan composition and induction of low-DP fructans...

  20. A proteomics sample preparation method for mature, recalcitrant leaves of perennial plants.

    Directory of Open Access Journals (Sweden)

    Deng Gang

    Full Text Available Sample preparation is key to the success of proteomics studies. In the present study, two sample preparation methods were tested for their suitability on the mature, recalcitrant leaves of six representative perennial plants (grape, plum, pear, peach, orange, and ramie. An improved sample preparation method was obtained: Tris and Triton X-100 were added together instead of CHAPS to the lysis buffer, and a 20% TCA-water solution and 100% precooled acetone were added after the protein extraction for the further purification of protein. This method effectively eliminates nonprotein impurities and obtains a clear two-dimensional gel electrophoresis array. The method facilitates the separation of high-molecular-weight proteins and increases the resolution of low-abundance proteins. This method provides a widely applicable and economically feasible technology for the proteomic study of the mature, recalcitrant leaves of perennial plants.

  1. Path and correlation analysis of perennial ryegrass (Lolium perenne L.) seed yield components

    DEFF Research Database (Denmark)

    Abel, Simon; Gislum, René; Boelt, Birte

    2017-01-01

    Maximum perennial ryegrass seed production potential is substantially greater than harvested yields with harvested yields representing only 20% of calculated potential. Similar to wheat, maize and other agriculturally important crops, seed yield is highly dependent on a number of interacting seed...... yield components. This research was performed to apply and describe path analysis of perennial ryegrass seed yield components in relation to harvested seed yields. Utilising extensive yield components which included subdividing reproductive inflorescences into five size categories, path analysis...... was undertaken assuming a unidirectional causal-admissible relationship between seed yield components and harvested seed yield in six commercial seed production fields. Both spikelets per inflorescence and florets per spikelet had a significant (p seed yield; however, total...

  2. Fast determination of soil behavior in the capillary zone using simple laboratory tests.

    Science.gov (United States)

    2012-12-01

    Frost heave and thaw weakening are typical problems for engineers building in northern regions. These unsaturated-soil behaviors are : caused by water flowing through the capillary zone to a freezing front, where it forms ice lenses. Although suction...

  3. The ICES system

    International Nuclear Information System (INIS)

    Inzaghi, A.

    1983-01-01

    ICES is an integrated system used in the various engineering fields. It is made up of the Basic System and the applied Subsystems. ICES is controlled by the Operating System of the computer, from which it calls for suitable services: space allocation, loading of the modules etc... To be able to use software of this type on a computer the Operating System should be made more general. The Subsystems are developed with special programs included in the ICES Basic System. Each Subsystem is associated with an area of application. In other words, a Subsystem can only treat a previously defined ''class of problems''. The engineer (user) communicates with the Subsystem using a language oriented towards the problem (POL) also previously defined using the CDL language. The use of the (POL) language makes the engineer-computer contact much easier. The applied programs written in ICETRAN, once supplied as input to the ICETRAN Precompiler, become Fortran programs with special characteristics. A Fortran compiler produces the corresponding object programs with which, using the ICES ''Link-edit'' procedures, one obtains the modules which can be executed by an ICES Subsystem

  4. Elevation Changes of Ice Caps in the Canadian Arctic Archipelago

    Science.gov (United States)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Yungel, J.; Koerner, R.

    2004-01-01

    Precise repeat airborne laser surveys were conducted over the major ice caps in the Canadian Arctic Archipelago in the spring of 1995 and 2000 in order to measure elevation changes in the region. Our measurements reveal thinning at lower elevations (below 1600 m) on most of the ice caps and glaciers, but either very little change or thickening at higher elevations in the ice cap accumulation zones. Recent increases in precipitation in the area can account for the slight thickening where it was observed, but not for the thinning at lower elevations. For the northern ice caps on the Queen Elizabeth Islands, thinning was generally less than 0.5 m/yr , which is consistent with what would be expected from the warm temperature anomalies in the region for the 5-year period between surveys and appears to be a continuation of a trend that began in the mid 1980s. Further south, however, on the Barnes and Penny ice caps on Baffin Island, this thinning was much more pronounced at over 1 m/yr in the lower elevations. Here temperature anomalies were very small, and the thinning at low elevations far exceeds any associated enhanced ablation. The observations on Barnes, and perhaps Penny are consistent with the idea that the observed thinning is part of a much longer term deglaciation, as has been previously suggested for Barnes Ice Cap. Based on the regional relationships between elevation and elevation-change in our data, the 1995-2000 mass balance for the region is estimated to be 25 cu km/yr of ice, which corresponds to a sea level increase of 0.064 mm/ yr . This places it among the more significant sources of eustatic sea level rise, though not as substantial as Greenland ice sheet, Alaskan glaciers, or the Patagonian ice fields.

  5. Temporal dynamics of ikaite in experimental sea ice

    Science.gov (United States)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Notz, D.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Sørensen, L. L.; Sievers, J.; Papakyriakou, T.

    2014-08-01

    Ikaite (CaCO3 · 6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During the experiment, ikaite precipitated in sea ice when temperatures were below -4 °C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of >2000 μmol kg-1, (2) an internal layer with ikaite concentrations of 200-400 μmol kg-1, and (3) a bottom layer with ikaite concentrations of ikaite crystals to dissolve. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The observed ikaite concentrations were on the same order of magnitude as modeled by FREZCHEM, which further supports the notion that ikaite concentration in sea ice increases with decreasing temperature. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This could have a major implication for CO2 exchange with the atmosphere and ocean that has not been accounted for previously.

  6. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Science.gov (United States)

    Talukder, Shyamal K.; Saha, Malay C.

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. PMID:28798766

  7. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Shyamal K. Talukder

    2017-07-01

    Full Text Available Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs. Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  8. Belowground Water Dynamics Under Contrasting Annual and Perennial Plant Communities in an Agriculturally-Dominated Landscape

    Science.gov (United States)

    Mora, G.; Asbjornsen, H.; Helmers, M. J.; Shepherd, G. W.

    2005-12-01

    The conversion from grasslands and forests to row-crops in the Midwest has affected soil water cycling because plant characteristics are one of the main parameters determining soil storage capacity, infiltration rates, and surface runoff. Little is known, however, about the extent of modification of soil water dynamics under different plant communities. To address this important issue, we are documenting soil water dynamics under contrasting perennial and annual plant communities in an agriculturally-dominated landscape. Measurements of soil moisture and depths of uptake of source water were obtained for six vegetative cover types (corn and soybean field, brome pasture, degraded savanna, restored savanna, and restored prairie) at the Neal Smith National Wildlife Refuge in Prairie City, Iowa. The depths of uptake of soil water were determined on the basis of oxygen isotope composition of soil water and stem water. Measurements were performed once a month during an entire growing season. Preliminary results indicate that soil water present under the different vegetation types show similar profiles with depth during the dry months. Soil water in the upper 5 cm is enriched in oxygen-18 by about 5 per mil relative to soil water at 100 cm. Our preliminary results also indicate that the isotopic composition of stem water from annual plants is typically higher by about 2 per mil relative to that of stem water from perennial plants during the dry period. Whereas the oxygen isotopic composition for corn stem water is -5.49 per mil, that for elm and oak stem water is -7.62 and -7.51 per mil, respectively. The higher isotope values for corn suggest that annual crop plants are withdrawing water from shallower soil horizons relative to perennial plants. Moreover, our preliminary data suggest lower moisture content in soil under annual plant cover. We propose that the presence of deeper roots in the perennial vegetation allows these plants to tap into deeper water sources when

  9. Noncorrelated effects of seed predation and pollination on the perennial herb Ruellia nudiflora remain spatially consistent

    OpenAIRE

    Abdala-Roberts, Luis; Parra-Tabla, Víctor; Salinas-Peba, Luis; Herrera, Carlos M.

    2009-01-01

    By simultaneously manipulating both seed predator and pollinator effects on the perennial herb Ruellia nudiflora at two sites in Yucatan (Mexico), the present study evaluated (1) whether a correlation (interaction) existed between seed predator and pollinator effects on R. nudiflora seed production and (2) whether such an interaction varied geographically. We used three populations per site, and a total of 20 plants per population (N = 120). Groups of five plants wer...

  10. Soil carbon under perennial pastures; benchmarking the influence of pasture age and management

    Science.gov (United States)

    Orgill, Susan E.; Spoljaric, Nancy; Kelly, Georgina

    2015-07-01

    This paper reports baseline soil carbon stocks from a field survey of 19 sites; 8 pairs/triplet in the Monaro region of New South Wales. Site comparisons were selected by the Monaro Farming Systems group to demonstrate the influence of land management on soil carbon, and included: nutrient management, liming, pasture age and cropping history. Soil carbon stocks varied with parent material and with land management. The fertilised (phosphorus) native perennial pasture had a greater stock of soil carbon compared with the unfertilised site; 46.8 vs 40.4 Mg.C.ha to 0.50 m. However, the introduced perennial pasture which had been limed had a lower stock of soil carbon compared with the unlimed site; 62.8 vs 66.7 Mg.C.ha to 0.50 m. There was a greater stock of soil carbon under two of the three younger (35 yr old) pastures. Cropped sites did not have lower soil carbon stocks at all sites; however, this survey was conducted after three years of above average annual rainfall and most sites had been cropped for less than three years. At all sites more than 20% of the total carbon stock to 0.50 m was in the 0.30 to 0.50 m soil layer highlighting the importance of considering this soil layer when investigating the implications of land management on soil carbon. Our baseline data indicates that nutrient management may increase soil carbon under perennial pastures and highlights the importance of perennial pastures for soil carbon sequestration regardless of age.

  11. Energy from biomass: Results of two-years trials on annual and perennial Herba ceous species

    International Nuclear Information System (INIS)

    Angelini, L.; Ceccarini, L.; Oggiano, N.; Bonari, E.

    1994-01-01

    In the framework of the PRisCa Project (Alternative Crops Research Project) a number of germ plasm collections were set up at the Department of Agronomy of the University of Pisa in order to identify annual and perennial herbaceous species utilizable for electric energy production. The first results deriving from trials carried out in 1992-93 are reported. The following species were used: 1) Annual: Sorghum bicolor, Hibiscus cannabinus, Pennisetum americanum, Kochia scoparia. 2) Perennial: Cynara cardunculus, Helianthus tuberosus, Miscantus sinensis, Arundo donax. Almost all species tested were represented by several genotypes. The total amount of species and genotype tested was 16. On all species, main phenological, biometric and productive determinations were performed. The hypothesized final use was intended to be electric power production by direct combustion and/or gasification. In addition, specific calorific value was also determined by adiabatic calorimeter as well as chemical composition of dry matter and ash composition. Species showing high yield potential, both from the quantitative and qualitative point of view, were Sorghum bicolor and Kochia scoparia (among annuals), as well as Miscanthus sinensis and Arundo donax (among perennials). Total dry matter yield ranged from about 23 tha -1 in the annual species to about 56 tha -1 in the perennials. The highest total calorific power obtainable from dry epigeic biomass was measured in Sorghum bicolor and Arundo donax - 4023 Kcal Kg -1 and 4166 Kcal Kg -1 respectively. The preliminary results suggest that vegetable biomass is environmentally-friendly and could contribute significantly to the world energy needs. (author)

  12. PERPHECLIM ACCAF Project - Perennial fruit crops and forest phenology evolution facing climatic changes

    Science.gov (United States)

    Garcia de Cortazar-Atauri, Iñaki; Audergon, Jean Marc; Bertuzzi, Patrick; Anger, Christel; Bonhomme, Marc; Chuine, Isabelle; Davi, Hendrik; Delzon, Sylvain; Duchêne, Eric; Legave, Jean Michel; Raynal, Hélène; Pichot, Christian; Van Leeuwen, Cornelis; Perpheclim Team

    2015-04-01

    Phenology is a bio-indicator of climate evolutions. Measurements of phenological stages on perennial species provide actually significant illustrations and assessments of the impact of climate change. Phenology is also one of the main key characteristics of the capacity of adaptation of perennial species, generating questions about their consequences on plant growth and development or on fruit quality. Predicting phenology evolution and adaptative capacities of perennial species need to override three main methodological limitations: 1) existing observations and associated databases are scattered and sometimes incomplete, rendering difficult implementation of multi-site study of genotype-environment interaction analyses; 2) there are not common protocols to observe phenological stages; 3) access to generic phenological models platforms is still very limited. In this context, the PERPHECLIM project, which is funded by the Adapting Agriculture and Forestry to Climate Change Meta-Program (ACCAF) from INRA (French National Institute of Agronomic Research), has the objective to develop the necessary infrastructure at INRA level (observatories, information system, modeling tools) to enable partners to study the phenology of various perennial species (grapevine, fruit trees and forest trees). Currently the PERPHECLIM project involves 27 research units in France. The main activities currently developed are: define protocols and observation forms to observe phenology for various species of interest for the project; organizing observation training; develop generic modeling solutions to simulate phenology (Phenological Modelling Platform and modelling platform solutions); support in building research projects at national and international level; develop environment/genotype observation networks for fruit trees species; develop an information system managing data and documentation concerning phenology. Finally, PERPHECLIM project aims to build strong collaborations with public

  13. De novo assembly of the perennial ryegrass transcriptome using an RNA-Seq strategy.

    Directory of Open Access Journals (Sweden)

    Jacqueline D Farrell

    Full Text Available Perennial ryegrass is a highly heterozygous outbreeding grass species used for turf and forage production. Heterozygosity can affect de-Bruijn graph assembly making de novo transcriptome assembly of species such as perennial ryegrass challenging. Creating a reference transcriptome from a homozygous perennial ryegrass genotype can circumvent the challenge of heterozygosity. The goals of this study were to perform RNA-sequencing on multiple tissues from a highly inbred genotype to develop a reference transcriptome. This was complemented with RNA-sequencing of a highly heterozygous genotype for SNP calling.De novo transcriptome assembly of the inbred genotype created 185,833 transcripts with an average length of 830 base pairs. Within the inbred reference transcriptome 78,560 predicted open reading frames were found of which 24,434 were predicted as complete. Functional annotation found 50,890 transcripts with a BLASTp hit from the Swiss-Prot non-redundant database, 58,941 transcripts with a Pfam protein domain and 1,151 transcripts encoding putative secreted peptides. To evaluate the reference transcriptome we targeted the high-affinity K+ transporter gene family and found multiple orthologs. Using the longest unique open reading frames as the reference sequence, 64,242 single nucleotide polymorphisms were found. One thousand sixty one open reading frames from the inbred genotype contained heterozygous sites, confirming the high degree of homozygosity.Our study has developed an annotated, comprehensive transcriptome reference for perennial ryegrass that can aid in determining genetic variation, expression analysis, genome annotation, and gene mapping.

  14. Nasal budesonide offers superior symptom relief in perennial allergic rhinitis in comparison to nasal azelastine.

    Science.gov (United States)

    Stern, M A; Wade, A G; Ridout, S M; Cambell, L M

    1998-10-01

    Allergic rhinitis is usually treated with oral antihistamines or nasal steroids. Topically active nasal antihistamine is a new treatment modality for allergic rhinitis. The efficacy in comparison to well established topical treatment alternatives is not fully known. To compare the efficacy of intranasally administered azelastine to budesonide, at their respectively recommended dosage, on the symptoms of perennial rhinitis patients. A placebo-controlled, randomized, parallel group study was conducted to compare the efficacy and tolerability of intranasal budesonide aqueous suspension (256 microg once daily) with azelastine hydrochloride nasal spray (280 microg twice daily (560 microg/day)) and with placebo in the treatment of perennial allergic rhinitis. The 195 patients (with at least a 2-year history of perennial allergic rhinitis) recorded individual nasal symptom scores, the degree of symptom control achieved and any adverse events experienced over a 2-week baseline period and a 6-week treatment period. Following treatment, the reductions in mean combined and individual nasal symptom scores from baseline values were significantly greater in the budesonide group compared with the placebo group (P < .0001 for all variables except runny nose P = .01). In patients treated with budesonide, there were also significantly larger reductions from baseline values in combined nasal symptom scores (P < .01) and in scores for all individual nasal symptoms (P < or = .05) compared with those treated with azelastine. The reductions from baseline in both combined and individual nasal symptom scores did not differ between azelastine and placebo. The study medications were well tolerated, producing no unexpected or serious treatment-related adverse events. A once-daily dose of 256 microg of intranasal budesonide aqueous suspension is significantly more effective at relieving the symptoms of perennial allergic rhinitis compared with a twice daily dose of 280 microg of azelastine

  15. Use of Plant Growth Regulators to Improve Branching of Herbaceous Perennial Liners

    OpenAIRE

    Grossman, Mara Celeste

    2012-01-01

    The objective of this study is to evaluate the efficacy of PGRs to improve branching during production of herbaceous perennial liners and finished plants. The effects of benzyladenine (BA) on the branching and root and shoot growth of Agastache Clayt. Ex Gronov. 'Purple Hazeâ , Gaura lindheimeri Engelm. & A. Gray 'Siskiyou Pink', Lavandula à intermedia Emeric ex Loisel. 'Provence', Leucanthemum à superbum (Bergmans ex J.W. Ingram) Bergmans ex Kent. 'Snowcap', and Salvia à sylv...

  16. Ice Engineering. Number 25, September 2000. Remote Ice Motion Detection

    National Research Council Canada - National Science Library

    2000-01-01

    .... Government agencies, and the engineering community in general. The potential exists for property damage, serious injury, and fatalities during ice-related flooding, evacuations, and other ice mitigation operations...

  17. An unusual early Holocene diatom event north of the Getz Ice Shelf (Amundsen Sea): Implications for West Antarctic Ice Sheet development

    Science.gov (United States)

    Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.

    2011-12-01

    Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and palaeobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited around 12,500 cal. years B.P. [1]. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage

  18. Ice Water Classification Using Statistical Distribution Based Conditional Random Fields in RADARSAT-2 Dual Polarization Imagery

    Science.gov (United States)

    Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.

    2017-09-01

    In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.

  19. Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Dąbrowski, P., E-mail: piotr_dabrowski@sggw.pl [Department of Environmental Improvement, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw (Poland); Kalaji, M.H., E-mail: hazem@kalaji.pl [Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw (Poland); SI TECHNOLOGY Sp. z o. o., Górczewska 226C/26, 01-460 Warsaw (Poland); Baczewska, A.H., E-mail: a.baczewska@obpan.pl [Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, 2 Prawdziwka St., 02-973 Warsaw (Poland); Pawluśkiewicz, B. [Department of Environmental Improvement, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw (Poland); Mastalerczuk, G., E-mail: grazyna_mastalerczuk@sggw.pl [Department of Agronomy, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw (Poland); Borawska-Jarmułowicz, B., E-mail: barbara_borawska_jarmulowicz@sggw.pl [Department of Agronomy, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw (Poland); Paunov, M. [Department Biophysics and Radiobiology, St. Kl. Ohridski Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia (Bulgaria); Goltsev, V., E-mail: goltsev@biofac.uni-sofia.bg [Department Biophysics and Radiobiology, St. Kl. Ohridski Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia (Bulgaria)

    2017-03-15

    Perennial ryegrass (Lolium perenne L.) is one of the more popular grass species in Europe. It is commonly used for starting lawns in urban areas, where plant growth is limited by many environmental conditions. The contamination of soils by salt is one of the major problems in urban green areas, as well as in natural areas. The basic aim of this study is to provide a detailed in vivo analysis of the changes in the delayed chlorophyll fluorescence and MR 820 signals (induced by salt stress) of two lawn varieties of perennial ryegrass, and to find out if there are correlations between these parameters and gas exchange. Two lawn varieties of Lolium perenne L. were used: Nira and Roadrunner. Salinization was performed at 8 weeks after sowing by adding NaCl in water solution (0, 0.15, and 0.30 M). There were 8 terms of measurement: 0 h, 24 h, 48 h, 96 h, 144 h, 192 h, 240 h, and 288 h after salinization. Our results showed that delayed fluorescence is a tool that can bring completely new opportunities for detecting stress in plants caused by salt. Our work allowed us to identify various limitation patterns in the photosynthetic efficiency of perennial ryegrass lawn varieties grown under salt stress conditions. Significant differences between the two tested varieties in response to salt stress were confirmed.

  20. Genetic Loci Governing Androgenic Capacity in Perennial Ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Rachel F. Begheyn

    2018-06-01

    Full Text Available Immature pollen can be induced to switch developmental pathways from gametogenesis to embryogenesis and subsequently regenerate into homozygous, diploid plants. Such androgenic production of doubled haploids is particularly useful for species where inbreeding is hampered by effective self-incompatibility systems. Therefore, increasing the generally low androgenic capacity of perennial ryegrass (Lolium perenne L. germplasm would enable the efficient production of homozygous plant material, so that a more effective exploitation of heterosis through hybrid breeding schemes can be realized. Here, we present the results of a genome-wide association study in a heterozygous, multiparental population of perennial ryegrass (n = 391 segregating for androgenic capacity. Genotyping-by-sequencing was used to interrogate gene- dense genomic regions and revealed over 1,100 polymorphic sites. Between one and 10 quantitative trait loci (QTL were identified for anther response, embryo and total plant production, green and albino plant production and regeneration. Most traits were under polygenic control, although a major QTL on linkage group 5 was associated with green plant regeneration. Distinct genetic factors seem to affect green and albino plant recovery. Two intriguing candidate genes, encoding chromatin binding domains of the developmental phase transition regulator, Polycomb Repressive Complex 2, were identified. Our results shed the first light on the molecular mechanisms behind perennial ryegrass microspore embryogenesis and enable marker-assisted introgression of androgenic capacity into recalcitrant germplasm of this forage crop of global significance.

  1. Population structure, genetic variation and linkage disequilibrium in perennial ryegrass populations divergently selected for freezing tolerance

    Directory of Open Access Journals (Sweden)

    Mallikarjuna Rao eKovi

    2015-11-01

    Full Text Available Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF] and 27 of Unselected [US] from the second generation of the two divergently selected populations and an unselected control population were genotyped using 278 genome-wide SNPs derived from Lolium perenne L. transcriptome sequence. Our studies showed that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island model (fdist by LOSITAN and hierarchical structure model using ARLEQUIN detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation and abiotic stress and might be the potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  2. Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress

    International Nuclear Information System (INIS)

    Dąbrowski, P.; Kalaji, M.H.; Baczewska, A.H.; Pawluśkiewicz, B.; Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Paunov, M.; Goltsev, V.

    2017-01-01

    Perennial ryegrass (Lolium perenne L.) is one of the more popular grass species in Europe. It is commonly used for starting lawns in urban areas, where plant growth is limited by many environmental conditions. The contamination of soils by salt is one of the major problems in urban green areas, as well as in natural areas. The basic aim of this study is to provide a detailed in vivo analysis of the changes in the delayed chlorophyll fluorescence and MR 820 signals (induced by salt stress) of two lawn varieties of perennial ryegrass, and to find out if there are correlations between these parameters and gas exchange. Two lawn varieties of Lolium perenne L. were used: Nira and Roadrunner. Salinization was performed at 8 weeks after sowing by adding NaCl in water solution (0, 0.15, and 0.30 M). There were 8 terms of measurement: 0 h, 24 h, 48 h, 96 h, 144 h, 192 h, 240 h, and 288 h after salinization. Our results showed that delayed fluorescence is a tool that can bring completely new opportunities for detecting stress in plants caused by salt. Our work allowed us to identify various limitation patterns in the photosynthetic efficiency of perennial ryegrass lawn varieties grown under salt stress conditions. Significant differences between the two tested varieties in response to salt stress were confirmed.

  3. The role of changing climate in driving the shift from perennial grasses to annual succulents in a Mediterranean saltmarsh

    NARCIS (Netherlands)

    Strain, E.M.A.; van Belzen, J.; Comandini, P.; Wong, J.; Bouma, T.J.; Airoldi, L.

    2017-01-01

    Changing climate threatens the structure and function of saltmarshes, which are often severely degraded by other human perturbations. Along the Mediterranean coastline, increasing temperature and decreasing rainfall have been hypothesised to trigger habitat shifts from perennial grasses to annual

  4. The late Cainozoic East Antarctic ice sheet

    International Nuclear Information System (INIS)

    Colhoun, E.A.

    1999-01-01

    A review, mainly of East Antarctic late Cainozoic (post 40 Ma) geological and geomorphological evidence, supports the hypothesis of the continuous presence of an ice sheet, of about the present size, since the late Miocene. Evidence is presented and the view advanced that, during the late Wisconsin maximum of isotope stage 2, ice was not nearly as thick or extensive over the continental shelf as required by the model of 'maximum' Antarctic glaciation. Some of the factors influencing the contribution of Antarctica to post-glacial sea-level rise are discussed. It is considered that Antarctica's contribution was probably considerably less than previously estimated. The dating of marine and freshwater sequences in the Vestfold and Bunger Hills is consistent with deglaciation around the Pleistocene Holocene boundary, after the Late Wisconsin maximum. A date of ∼25 ka BP from permafrost in the Larsemann Hills means that either the Larsemann Hills were not glaciated during the Late Wisconsin or the ice failed to erode much of the permafrost surface. The degree of weathering of rock and glacial drifts in the Vestfold, Larsemann and Bunger Hills suggests a long time for formation, perhaps considerably longer than indicated by the dated marine and freshwater sediment sequences. Cosmogenic isotope dating in the Vestfold Hills has provided equivocal ages for deglaciation. While the results could indicate deglaciation before 80 ka BP, they do not confirm such early deglaciation. If the ice cover was thin and failed to remove the previous rock exposure profile, then the assays could predate the last ice advance. Weathered iron crust fragments in the till suggest little erosion. The raised beaches of the oases are Holocene. Assuming they have been produced by post Late Wisconsin isostatic uplift and by the Holocene transgression, calculations show that the Antarctic continental ice sheet could not have been more than ∼500 m thicker in the inner shelf-coastal zone. The

  5. On the Ice Nucleation Spectrum

    Science.gov (United States)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  6. Rheology of planetary ices

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. [Lawrence Livermore National Lab., CA (United States); Kirby, S.H.; Stern, L.A. [Geological Survey, Menlo Park, CA (United States)

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  7. Ice accreditation vs wind

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, G. [Hydro-Quebec, PQ (Canada). TransEnergie Div.; Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada)

    2002-07-01

    Wind and ice data from Hydro Quebec and Environment Canada indicates that winds during ice storms are in the general direction of the St. Lawrence River. This observation is important for upgrading existing power transmission lines from the Manicouagan and Churchill generation system because they are parallel to the St. Lawrence and they were designed with lower criteria than is currently accepted. ASCE 74 suggests an accumulation ratio based on thickness of 0.70 for winds parallel to the line. The Goodwin model was used to calculate this ratio. The presentation includes illustrations showing the accumulation ratio for a north wind, as well as the accumulation ratios and wind roses at Quebec. A table showing a comparison of ratios from passive ice meters shows that results are similar to mean values from the theoretical model.

  8. Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska

    Science.gov (United States)

    Kanevskiy, Mikhail; Shur, Yuri; Jorgenson, Torre; Brown, Dana R. N.; Moskalenko, Nataliya; Brown, Jerry; Walker, Donald A.; Raynolds, Martha K.; Buchhorn, Marcel

    2017-11-01

    Widespread degradation of ice wedges has been observed during the last decades in numerous areas within the continuous permafrost zone of Eurasia and North America. To study ice-wedge degradation, we performed field investigations at Prudhoe Bay and Barrow in northern Alaska during 2011-2016. In each study area, a 250-m transect was established with plots representing different stages of ice-wedge degradation/stabilization. Field work included surveying ground- and water-surface elevations, thaw-depth measurements, permafrost coring, vegetation sampling, and ground-based LiDAR scanning. We described cryostratigraphy of frozen soils and stable isotope composition, analyzed environmental characteristics associated with ice-wedge degradation and stabilization, evaluated the vulnerability and resilience of ice wedges to climate change and disturbances, and developed new conceptual models of ice-wedge dynamics that identify the main factors affecting ice-wedge degradation and stabilization and the main stages of this quasi-cyclic process. We found significant differences in the patterns of ice-wedge degradation and stabilization between the two areas, and the patterns were more complex than those previously described because of the interactions of changing topography, water redistribution, and vegetation/soil responses that can interrupt or reinforce degradation. Degradation of ice wedges is usually triggered by an increase in the active-layer thickness during exceptionally warm and wet summers or as a result of flooding or disturbance. Vulnerability of ice wedges to thermokarst is controlled by the thickness of the intermediate layer of the upper permafrost, which overlies ice wedges and protects them from thawing. In the continuous permafrost zone, degradation of ice wedges rarely leads to their complete melting; and in most cases wedges eventually stabilize and can then resume growing, indicating a somewhat cyclic and reversible process. Stabilization of ice wedges

  9. Middle-to-late Holocene palaeoenvironmental reconstruction from the A294 ice-cave record (Central Pyrenees, northern Spain)

    Science.gov (United States)

    Sancho, Carlos; Belmonte, Ánchel; Bartolomé, Miguel; Moreno, Ana; Leunda, María; López-Martínez, Jerónimo

    2018-02-01

    Perennial ice deposits in caves represent unique, but underexplored, terrestrial sequences that potentially contain outstanding palaeoclimatic records. Here, we present a pioneer palaeoenvironmental study of an ice deposit preserved in a small sag-type cave (A294) in the Central Pyrenees (northern Iberian Peninsula). The 9.25-m-thick sequence, which is dated from 6100 ± 107 to 1888 ± 64 cal BP, represents the oldest known firn ice record worldwide. The stratigraphy (detrital layers, unconformities, and cross stratification), plant macrofossils, and isotopic signature (similarity between the ice linear distribution, δ2H = 7.83δ18O + 8.4, and the Global Meteoric Water Line) of the ice point to the diagenesis of snow introduced to the cave by winter snowstorms. Four phases of rapid ice accumulation (6100-5515, 4945-4250, 3810-3155, and 2450-1890 cal BP) are related to wetter and colder winters. Comparison of the isotopic composition (δ18O and deuterium excess) of the ice with other paleoclimate records show that both source effects and the North Atlantic Oscillation (NAO) mechanism exert a dominant influence on the ice cave record. The NAO signal may be a combination of source effects and rainfall amount. Three intervals with low ice accumulation occurred between the phases of rapid accumulation and were related to drier, and possibly warmer, winters. These centennial-scale episodes appear to be in-phase with regional arid events, as established from high altitude lacustrine records and can be correlated to global Rapid Climate Change events. The current warming trend has dramatically decreased the volume of the ice deposit in cave A294.

  10. The Influence of Climate Change on the Intensity of Ice Gouging of the Bottom by Hummocky Formations

    Science.gov (United States)

    Ogorodov, S. A.; Arkhipov, V. V.; Baranskaya, A. V.; Kokin, O. V.; Romanov, A. O.

    2018-02-01

    In the present work, several results of repeated sounding of bottom ice gouging microrelief within the area of the underwater pipeline crossing of the Baydaratskaya Bay, Kara Sea, are presented. Based on the results of the monitoring, as well as the analysis of literature sources and modeling it has been established that under the conditions of climate warming and sea ice reduction, the zone of the most intensive ice gouging is shifted landwards, on shallower water areas.

  11. Crevasse-squeeze ridge corridors: Diagnostic features of late-stage palaeo-ice stream activity

    Science.gov (United States)

    Evans, David J. A.; Storrar, Robert D.; Rea, Brice R.

    2016-04-01

    A 200-km-long and 10-km-wide linear assemblage of till-filled geometrical ridges on the bed of the Maskwa palaeo-ice stream of the late Wisconsinan southwest Laurentide Ice Sheet are interpreted as crevasse-squeeze ridges (CSR) developed during internal flow unit reorganization, immediately prior to ice stream shutdown. Ridge orientations are predominantly orientated WNW-ESE, with a subordinate WSW-ENE alignment, both indicative of ice fracture development transverse to former ice stream flow, as indicated by NNE-SSW aligned MSGL. Subglacial till injection into basal and/or full depth, mode I and II crevasses occurred at the approximate centreline of the ice stream, in response to extension and fracturing. Landform preservation indicates that this took place during the final stages of ice streaming, immediately prior to ice stream shutdown. This linear zone of ice fracturing therefore likely represents the narrowing of the fast-flowing trunk, similar to the plug flow identified in some surging valley glaciers. Lateral drag between the final active flow unit and the slower moving ice on either side is likely recorded by the up-ice bending of the CSR limbs. The resulting CSR corridor, here related to an individual ice stream flow unit, constitutes a previously unreported style of crevasse infilling and contrasts with two existing CSR patterns: (1) wide arcuate zones of CSRs related to widespread fracturing within glacier surge lobes; and (2) narrow concentric arcs of CSRs and recessional push moraines related to submarginal till deformation at active temperate glacier lobes.

  12. Ice cores and palaeoclimate

    International Nuclear Information System (INIS)

    Krogh Andersen, K.; Ditlevsen, P.; Steffensen, J.P.

    2001-01-01

    Ice cores from Greenland give testimony of a highly variable climate during the last glacial period. Dramatic climate warmings of 15 to 25 deg. C for the annual average temperature in less than a human lifetime have been documented. Several questions arise: Why is the Holocene so stable? Is climatic instability only a property of glacial periods? What is the mechanism behind the sudden climate changes? Are the increased temperatures in the past century man-made? And what happens in the future? The ice core community tries to attack some of these problems. The NGRIP ice core currently being drilled is analysed in very high detail, allowing for a very precise dating of climate events. It will be possible to study some of the fast changes on a year by year basis and from this we expect to find clues to the sequence of events during rapid changes. New techniques are hoped to allow for detection of annual layers as far back as 100,000 years and thus a much improved time scale over past climate changes. It is also hoped to find ice from the Eemian period. If the Eemian layers confirm the GRIP sequence, the Eemian was actually climatically unstable just as the glacial period. This would mean that the stability of the Holocene is unique. It would also mean, that if human made global warming indeed occurs, we could jeopardize the Holocene stability and create an unstable 'Eemian situation' which ultimately could start an ice age. Currenlty mankind is changing the composition of the atmosphere. Ice cores document significant increases in greenhouse gases, and due to increased emissions of sulfuric and nitric acid from fossil fuel burning, combustion engines and agriculture, modern Greenland snow is 3 - 5 times more acidic than pre-industrial snow (Mayewski et al., 1986). However, the magnitude and abruptness of the temperature changes of the past century do not exceed the magnitude of natural variability. It is from the ice core perspective thus not possible to attribute the

  13. ICE Online Detainee Locator System

    Data.gov (United States)

    Department of Homeland Security — The Online Detainee Locator datasets provide the location of a detainee who is currently in ICE custody, or who was release from ICE custody for any reason with the...

  14. Under-Ice Phytoplankton Blooms Inhibited by Spring Convective Mixing in Refreezing Leads

    Science.gov (United States)

    Lowry, Kate E.; Pickart, Robert S.; Selz, Virginia; Mills, Matthew M.; Pacini, Astrid; Lewis, Kate M.; Joy-Warren, Hannah L.; Nobre, Carolina; van Dijken, Gert L.; Grondin, Pierre-Luc; Ferland, Joannie; Arrigo, Kevin R.

    2018-01-01

    Spring phytoplankton growth in polar marine ecosystems is limited by light availability beneath ice-covered waters, particularly early in the season prior to snowmelt and melt pond formation. Leads of open water increase light transmission to the ice-covered ocean and are sites of air-sea exchange. We explore the role of leads in controlling phytoplankton bloom dynamics within the sea ice zone of the Arctic Ocean. Data are presented from spring measurements in the Chukchi Sea during the Study of Under-ice Blooms In the Chukchi Ecosystem (SUBICE) program in May and June 2014. We observed that fully consolidated sea ice supported modest under-ice blooms, while waters beneath sea ice with leads had significantly lower phytoplankton biomass, despite high nutrient availability. Through an analysis of hydrographic and biological properties, we attribute this counterintuitive finding to springtime convective mixing in refreezing leads of open water. Our results demonstrate that waters beneath loosely consolidated sea ice (84-95% ice concentration) had weak stratification and were frequently mixed below the critical depth (the depth at which depth-integrated production balances depth-integrated respiration). These findings are supported by theoretical model calculations of under-ice light, primary production, and critical depth at varied lead fractions. The model demonstrates that under-ice blooms can form even beneath snow-covered sea ice in the absence of mixing but not in more deeply mixed waters beneath sea ice with refreezing leads. Future estimates of primary production should account for these phytoplankton dynamics in ice-covered waters.

  15. Diagnostics, taxonomy, nomenclature and distribution of perennial Sesuvium (Aizoaceae) in Africa

    Science.gov (United States)

    Sukhorukov, Alexander P.; Nilova, Maya V.; Erst, Andrey S.; Kushunina, Maria; Baider, Cláudia; Verloove, Filip; Salas-Pascual, Marcos; Belyaeva, Irina V.; Krinitsina, Anastasiya A.; Bruyns, Peter V.; Klak, Cornelia

    2018-01-01

    Abstract The taxonomy of perennial Sesuvium species in Africa has been poorly investigated until now. Previously five perennial species of Sesuvium were recognised in Africa (S. congense, S. crithmoides, S. mesembryanthemoides, S. portulacastrum, and S. sesuvioides). Based on the differing number of stamens, S. ayresii is accepted here as being distinct from S. portulacastrum. Field observations in Angola also led the authors to conclude that S. crystallinum and S. mesembryanthemoides are conspecific with S. crithmoides. A new subspecies, Sesuvium portulacastrum subsp. persoonii, is described from West Africa (Cape Verde, Gambia, Guinea-Bissau, Mauritania, Senegal). The molecular phylogeny indicates the position of S. portulacastrum subsp. persoonii within the “American lineage” as a part of the Sesuvium portulacastrum complex which needs further studies. A diagnostic key and taxonomic notes are provided for the six perennial species of Sesuvium found in Africa and recognised by the authors (S. ayresii, S. congense, S. crithmoides, S. portulacastrum subsp. portulacastrum, S. portulacastrum subsp. persoonii, S. verrucosum and the facultatively short-lived S. sesuvioides). The distribution of S. crithmoides, previously considered to be endemic to Angola, is now confirmed for the seashores of Republic of Congo and DR Congo. The American species S. verrucosum is reported for the first time for Africa (the Macaronesian islands: Cape Verde and the Canaries). It is locally naturalised in Gran Canaria, being a potentially invasive species. These findings as well as new records of S. verrucosum from Asia and the Pacific Islands confirm its proneness to transcontinental introduction. Lectotypes of S. brevifolium, S. crithmoides, S. crystallinum and S. mesembryanthemoides are selected. The seed micromorphology and anatomy of the perennial African species is studied. Compared to the seeds of some annual African Sesuvium investigated earlier, those of perennial species are

  16. An automated approach for mapping persistent ice and snow cover over high latitude regions

    Science.gov (United States)

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly

  17. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  18. Insights into Spatial Sensitivities of Ice Mass Response to Environmental Change from the SeaRISE Ice Sheet Modeling Project I: Antarctica

    Science.gov (United States)

    Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako; Aschwanden, Andy; Bueler, Ed; Choi, Hyengu; Fastook, Jim; Granzow, Glen; Greve, Ralf; Gutowski, Gail; hide

    2013-01-01

    Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500 year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three.

  19. A laboratory experiment assessing the effect of sea ice on wave dumping

    Science.gov (United States)

    Cavaliere, Claudio; Alberello, Alberto; Bennetts, Luke; Meylan, Mike; Babanin, Alexander; Malavasi, Stefano; Toffoli, Alessandro

    2014-05-01

    Wave-ice interaction is a critical factor in the dynamics of the marginal ice zone (MIZ), the region between open ocean and an expanse of ice floes of varying size and shape. This interaction works both ways: while waves cause the fractures of ice floes, the presence of ice floes affects waves through scattering and various dissipative processes. In order to assess the latter, a laboratory experiment has been carried out in the coastal directional basin at Plymouth University. Sea ice has been simulated with two deformable plates: 1mX1m plastic sheet with variable thickness of polypropylene, which holds the same density (~0.9 g/cm3) of ice, and PVC Forex, which hold the same mechanical property of ice. Experiments have been conducted using monochromatic as well as random wave fields with different steepness and wavelengths (both shorter and larger than the floe). The wave field has been monitored before and after the simulated ice floe with a number of wave probes deployed along the basin, including a 6-probe array to track directional properties. On the whole, results show a substantial scattering and dissipation of the wave field, which appears to be dependent on the amount of overwash on the ice floe.

  20. The IceProd Framework

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2015-01-01

    of computational resources. IceProd is a distributed management system based on Python, XML-RPC and GridFTP. It is driven by a central database in order to coordinate and admin- ister production of simulations and processing of data produced by the IceCube detector. IceProd runs as a separate layer on top of other...

  1. 2006 Program of Study: Ice

    Science.gov (United States)

    2007-03-01

    form a debris flow. One such debris flow, initiated by a glacial lake flood in Peru in 1941, devastated the city of Huaraz, killing over 6000 people [5...ice, a series of’ prototype interlocking fingers is formed which grow ats the ice floes areI compressed and the ice floes plough through one another

  2. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  3. Polar Stereographic Valid Ice Masks Derived from National Ice Center Monthly Sea Ice Climatologies, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — These valid ice masks provide a way to remove spurious ice caused by residual weather effects and land spillover in passive microwave data. They are derived from the...

  4. Organic compounds and suspended matter in the marine ice of the Eastern Antarctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2005-01-01

    Data on the composition of organic compounds in Antarctic sea ice are virtually non-existent, as most works concentrate on the structure, physical composition and biological properties of the ice. Data is needed for the study of the global carbon cycle and the estimation of background values and anthropogenic compounds. Specific features of the hydrometeorological regime near Antarctica affect the structure of the ice cover and its properties. The transportation of large volumes of snow to the ocean results in the formation of a snow sludge layer which gradually accumulates on the sea surface and freezes into young slush ice. The irregular distribution of snow at the ice surface and seawater infiltration results in the formation of ice with a specific crystalline structure and physiochemical properties. This paper discussed the dissolved and suspended lipids and hydrocarbons, as well as suspended matter (SM) concentrations in snow, sea ice and sub-ice water in coastal zones of the East Antarctic. The data was obtained during the Russian Antarctic Expedition in 2003. Variations in the concentration and distribution of the various substances suggest that they are related to ice forming conditions and to the processes that occur when ice forms, as well as in the interaction of the substances with ice, snow and sub-ice water. The SM and organic compounds are accumulated in layers characterized by intense autochthonous processes. It was noted that the zones stay biogeochemically active even under low temperature conditions. The highest concentrations of organic compounds, along with the biggest variations in their proportions have been discovered in the areas surrounded by penguin colonies near Buromsky Island and Haswell Island's Lake. The presence of significant quantities of PAHs in both pack and seasonal ice of high latitudes indicates that their formation is relatively rapid even at low temperatures. Many biochemical processes are intense under the influence of ice

  5. User's guide for ICE

    International Nuclear Information System (INIS)

    Fraley, S.K.

    1976-07-01

    ICE is a cross-section mixing code which will accept cross sections from an AMPX working library and produce mixed cross sections in the AMPX working library format, ANISN format, and the group-independent ANISN format. User input is in the free-form or fixed-form FIDO structure. The code is operable as a module in the AMPX system

  6. Autosub under ice

    OpenAIRE

    Griffiths, G.

    2005-01-01

    Autosub made headlines recently when it became trapped under 200m of ice in Antarctica.Here we explore the ideas behind the £5.86 million research programme, and look back at an earlier expedition which took place last summer off the coast of Greenland.

  7. Melting ice, growing trade?

    Directory of Open Access Journals (Sweden)

    Sami Bensassi

    2016-05-01

    Full Text Available Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR. Two key constraints on the future viability of the NSR pertain to bathymetry and the future evolution of the sea ice cover. Climate model projections of future sea ice conditions throughout the rest of the century suggest that even under the most “aggressive” emission scenario, increases in international trade between Europe and Asia will be very low. The large inter-annual variability of weather and sea ice conditions in the route, the Russian toll imposed for transiting the NSR, together with high insurance costs and scarce loading/unloading opportunities, limit the use of the NSR. We show that even if these obstacles are removed, the duration of the opening of the NSR over the course of the century is not long enough to offer a consequent boost to international trade at the macroeconomic level.

  8. Ecology under lake ice

    NARCIS (Netherlands)

    Hampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H.; North, Rebecca L.; Stockwell, Jason D.; Adrian, Rita; Weyhenmeyer, Gesa A.; Arvola, Lauri; Baulch, Helen M.; Bertani, Isabella; Bowman, Larry L., Jr.; Carey, Cayelan C.; Catalan, Jordi; Colom-Montero, William; Domine, Leah M.; Felip, Marisol; Granados, Ignacio; Gries, Corinna; Grossart, Hans-Peter; Haberman, Juta; Haldna, Marina; Hayden, Brian; Higgins, Scott N.; Jolley, Jeff C.; Kahilainen, Kimmo K.; Kaup, Enn; Kehoe, Michael J.; MacIntyre, Sally; Mackay, Anson W.; Mariash, Heather L.; Mckay, Robert M.; Nixdorf, Brigitte; Noges, Peeter; Noges, Tiina; Palmer, Michelle; Pierson, Don C.; Post, David M.; Pruett, Matthew J.; Rautio, Milla; Read, Jordan S.; Roberts, Sarah L.; Ruecker, Jacqueline; Sadro, Steven; Silow, Eugene A.; Smith, Derek E.; Sterner, Robert W.; Swann, George E. A.; Timofeyev, Maxim A.; Toro, Manuel; Twiss, Michael R.; Vogt, Richard J.; Watson, Susan B.; Whiteford, Erika J.; Xenopoulos, Marguerite A.

    Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experi-ence periods of snow and ice cover. Relatively little is known of winter ecology in these systems,due to a historical research focus on summer ‘growing seasons’. We executed the first global

  9. Ice shelf fracture parameterization in an ice sheet model

    Directory of Open Access Journals (Sweden)

    S. Sun

    2017-11-01

    Full Text Available Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  10. Ice shelf fracture parameterization in an ice sheet model

    Science.gov (United States)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  11. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    Science.gov (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  12. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  13. Improved ice loss estimate of the northwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Wahr, J.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change...... estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume...... change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show...

  14. Heterogeneous ice nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, A. [Helsinki Univ. (Finland). Dept. of Physics

    1994-12-31

    The classical theory of heterogenous ice nucleation is reviewed in detail. The modelling of ice nucleation in the adsorbed water films on natural particles by analogous ice nucleation in adsorbed water films on the walls of porous media is discussed. Ice nucleation in adsorbed films of purewater and the HNO{sub 3}/H{sub 2}0 binary system on the surface of porous aerosol (SiO{sub 2}) was investigated using the method of NMR spectroscopy. The median freezing temperature and freezing temperature region were shown to be highly sensitive both to the average thickness of the adsorbed films and to the amount of adsorbed nitric acid. The character of the ice phase formation tends to approach that of bulk liquid with increasing adsorbed film thickness. Under the given conditions the thickness of the adsorbed films decreases with an increasing amount of adsorbed nitric acid molecules The molar concentration of nitric acid in the adsorbed films is very small (of the order of 10{sup -}3 10{sup -}2 (M/l)). Nitric acid molecules tend to adsorb on the surface of aerosol to a greater extent than in subsequent layers. The concentration is greatest in layers situated close to the surface and sharply decreases with the distance from the surface. The difference between the median freezing temperatures for adsorbed pure water and for the binary system was found to be about 9 K for films of equal thickness. This is about 150 times greater than the difference between the median freezing temperatures of bulk pure water and a solution with the same concentration of nitric acid. (orig.)

  15. Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies.

    Science.gov (United States)

    Cockell, Charles S; Rettberg, Petra; Horneck, Gerda; Wynn-Williams, David D; Scherer, Kerstin; Gugg-Helminger, Anton

    2002-08-01

    Bacillus subtilis spore biological dosimeters and electronic dosimeters were used to investigate the exposure of terrestrial microbial communities in micro-habitats covered by snow and ice in Antarctica. The melting of snow covers of between 5- and 15-cm thickness, depending on age and heterogeneity, could increase B. subtilis spore inactivation by up to an order of magnitude, a relative increase twice that caused by a 50% ozone depletion. Within the snow-pack at depths of less than approximately 3 cm snow algae could receive two to three times the DNA-weighted irradiance they would receive on bare ground. At the edge of the snow-pack, warming of low albedo soils resulted in the formation of overhangs that provided transient UV protection to thawed and growing microbial communities on the soils underneath. In shallow aquatic habitats, thin layers of heterogeneous ice of a few millimetres thickness were found to reduce DNA-weighted irradiances by up to 55% compared to full-sky values with equivalent DNA-weighted diffuse attenuation coefficients (K(DNA)) of >200 m(-1). A 2-mm snow-encrusted ice cover on a pond was equivalent to 10 cm of ice on a perennially ice covered lake. Ice covers also had the effect of stabilizing the UV exposure, which was often subject to rapid variations of up to 33% of the mean value caused by wind-rippling of the water surface. These data show that changing ice and snow covers cause relative changes in microbial UV exposure at least as great as those caused by changing ozone column abundance. Copyright 2002 Elsevier Science B.V.

  16. Changes in ice cover thickness and lake level of Lake Hoare, Antarctica - Implications for local climatic change

    Science.gov (United States)

    Wharton, Robert A., Jr.; Mckay, Christopher P.; Clow, Gary D.; Andersen, Dale T.; Simmons, George M., Jr.; Love, F. G.

    1992-01-01

    Results are reported from 10 years of ice-thickness measurements at perennially ice-covered Lake Hoare in southern Victoria Land, Antarctica. The ice cover of this lake had been thinning steadily at a rate exceeding 20 cm/yr during the last decade but seems to have recently stabilized at a thickness of 3.3 m. Data concerning lake level and degree-days above freezing are presented to show the relationship between peak summer temperatures and the volume of glacier-derived meltwater entering Lake Hoare each summer. From these latter data it is inferred that peak summer temperatures have been above 0 C for a progressively longer period of time each year since 1972. Possible explanations for the thinning of the lake ice are considered. The thickness of the ice cover is determined by the balance between freezing during the winter and ablation that occurs all year but maximizes in summer. It is suggested that the term most likely responsible for the change in the ice cover thickness at Lake Hoare is the extent of summer melting, consistent with the rising lake levels.

  17. Spatial variability and trends of seasonal snowmelt processes over Antarctic sea ice observed by satellite scatterometers

    Science.gov (United States)

    Arndt, S.; Haas, C.

    2017-12-01

    Snow is one of the key drivers determining the seasonal energy and mass budgets of sea ice in the Southern Ocean. Here, we analyze radar backscatter time series from the European Remote Sensing Satellites (ERS)-1 and-2 scatterometers, from the Quick Scatterometer (QSCAT), and from the Advanced Scatterometer (ASCAT) in order to observe the regional and inter-annual variability of Antarctic snowmelt processes from 1992 to 2014. On perennial ice, seasonal backscatter changes show two different snowmelt stages: A weak backscatter rise indicating the initial warming and metamorphosis of the snowpack (pre-melt), followed by a rapid rise indicating the onset of internal snowmelt and thaw-freeze cycles (snowmelt). In contrast, similar seasonal backscatter cycles are absent on seasonal ice, preventing the periodic retrieval of spring/summer transitions. This may be due to the dominance of ice bottom melt over snowmelt, leading to flooding and ice disintegration before strong snowmelt sets in. Resulting snowmelt onset dates on perennial sea ice show the expected latitudinal gradient from early melt onsets (mid-November) in the northern Weddell Sea towards late (end-December) or even absent snowmelt conditions further south. This result is likely related to seasonal variations in solar shortwave radiation (absorption). In addition, observations with different microwave frequencies allow to detect changing snow properties at different depths. We show that short wavelengths of passive microwave observations indicate earlier pre-melt and snowmelt onset dates than longer wavelength scatterometer observations, in response to earlier warming of upper snow layers compared to lower snow layers. Similarly, pre-melt and snowmelt onset dates retrieved from Ku-Band radars were earlier by an average of 11 and 23 days, respectively, than those retrieved from C-Band. This time difference was used to correct melt onset dates retrieved from Ku-Band to compile a consistent time series from

  18. A century of ice retreat on Kilimanjaro: the mapping reloaded

    Directory of Open Access Journals (Sweden)

    N. J. Cullen

    2013-03-01

    Full Text Available A new and consistent time series of glacier retreat on Kilimanjaro over the last century has been established by re-interpreting two historical maps and processing nine satellite images, which removes uncertainty about the location and extent of past and present ice bodies. Three-dimensional visualization techniques were used in conjunction with aerial and ground-based photography to facilitate the interpretation of ice boundaries over eight epochs between 1912 and 2011. The glaciers have retreated from their former extent of 11.40 km2 in 1912 to 1.76 km2 in 2011, which represents a total loss of about 85% of the ice cover over the last 100 yr. The total loss of ice cover is in broad agreement with previous estimates, but to further characterize the spatial and temporal variability of glacier retreat a cluster analysis using topographical information (elevation, slope and aspect was performed to segment the ice cover as observed in 1912, which resulted in three glacier zones being identified. Linear extrapolation of the retreat in each of the three identified glacier assemblages implies the ice cover on the western slopes of Kilimanjaro will be gone before 2020, while the remaining ice bodies on the plateau and southern slopes will most likely disappear by 2040. It is highly unlikely that any body of ice will be present on Kilimanjaro after 2060 if present-day climatological conditions are maintained. Importantly, the geo-statistical approach developed in this study provides us with an additional tool to characterize the physical processes governing glacier retreat on Kilimanjaro. It remains clear that, to use glacier response to unravel past climatic conditions on Kilimanjaro, the transition from growth to decay of the plateau glaciers must be further resolved, in particular the mechanisms responsible for vertical cliff development.

  19. Bibliography of Ice Properties and Forecasting Related to Transportation in Ice-Covered Waters.

    Science.gov (United States)

    1980-09-01

    N. and Tabata , T., Ice study in the Gulf of Peschanskii, I.S., Ice science and ice technology, Bothnia, III: observations on large grains of ice...ice and by Sterrett, K.F., The arctic environment and the hitting ice floes. Results of these measurements have arctic surface effect vehicle, Cold...ice growth, temperature 26-3673 effects, ice cover thickness. 28-557 Determining contact stresses when a ship’s stem hits the ice, Kheisin, D.E

  20. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  1. Analysis of groundwater flow beneath ice sheets

    International Nuclear Information System (INIS)

    Boulton, G. S.; Zatsepin, S.; Maillot, B.

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix

  2. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China.

    Science.gov (United States)

    Zhou, Yong; Pei, Zhiqin; Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr(-1) for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m(-2)) than in the shrubs (1.12 Kg C m(-2)) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.

  3. Ice Algae-Produced Carbon Is Critical for Overwintering of Antarctic Krill Euphausia superba

    Directory of Open Access Journals (Sweden)

    Doreen Kohlbach

    2017-09-01

    Full Text Available Antarctic krill Euphausia superba (“krill” constitute a fundamental food source for Antarctic seabirds and mammals, and a globally important fisheries resource. The future resilience of krill to climate change depends critically on the winter survival of young krill. To survive periods of extremely low production by pelagic algae during winter, krill are assumed to rely partly on carbon produced by ice algae. The true dependency on ice algae-produced carbon, however, is so far unquantified. This confounds predictions on the future resilience of krill stocks to sea ice decline. Fatty acid (FA analysis, bulk stable isotope analysis (BSIA, and compound-specific stable isotope analysis (CSIA of diatom- and dinoflagellate-associated marker FAs were applied to quantify the dependency of overwintering larval, juvenile, and adult krill on ice algae-produced carbon (αIce during winter 2013 in the Weddell-Scotia Confluence Zone. Our results demonstrate that the majority of the carbon uptake of the overwintering larval and juvenile krill originated from ice algae (up to 88% of the carbon budget, and that the dependency on ice algal carbon decreased with ontogeny, reaching <56% of the carbon budget in adults. Spatio-temporal variability in the utilization of ice algal carbon was more pronounced in larvae and juvenile krill than in adults. Differences between αIce estimates derived from short- vs. long-term FA-specific isotopic compositions suggested that ice algae-produced carbon gained importance as the winter progressed, and might become critical at the late winter-spring transition, before the phytoplankton bloom commences. Where the sea ice season shortens, reduced availability of ice algae might possibly not be compensated by surplus phytoplankton production during wintertime. Hence, sea ice decline could seriously endanger the winter survival of recruits, and subsequently overall biomass of krill.

  4. Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion

    Science.gov (United States)

    Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.

    2017-12-01

    In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.

  5. Statistical Analyses of High-Resolution Aircraft and Satellite Observations of Sea Ice: Applications for Improving Model Simulations

    Science.gov (United States)

    Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.

    2012-12-01

    /divergent ice zones, (ii) provide datasets that support enhanced parameterizations in numerical models as well as model initialization and validation, (iii) parameters of interest to Arctic stakeholders for marine navigation and ice engineering studies, and (iv) statistics that support algorithm development for the next-generation of airborne and satellite altimeters, including NASA's ICESat-2 mission. We describe the potential contribution our results can make towards the improvement of coupled ice-ocean numerical models, and discuss how data synthesis and integration with high-resolution models may improve our understanding of sea ice variability and our capabilities in predicting the future state of the ice pack.

  6. Zone separator for multiple zone vessels

    Science.gov (United States)

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  7. Selecting native perennial plants for ecological intensification in Mediterranean greenhouse horticulture.

    Science.gov (United States)

    Rodríguez, E; González, M; Paredes, D; Campos, M; Benítez, E

    2017-12-04

    Natural control by predators and parasitoids provides an important and often unnoticed ecosystem service to agricultural landscapes by reducing pest populations in crops. The current model of horticultural intensification in south-eastern Spain produces high yields but has also resulted in a landscape almost completely covered by plastic. Promoting natural areas among greenhouses could enhance biodiversity, by being beneficial insects, and reduce pest pressure outdoors. The first step is to ascertain how pests and their natural enemies (NEs) use Mediterranean vegetation for selecting the best plants for pest suppression outdoors. The abundance of the two major horticultural pests, the tobacco whitefly, Bemisia tabaci, and the western flower thrips, Frankliniella occidentalis, together with their NEs, were assayed in 22 flowering perennial plants, which were newly planted in an experimental field surrounded by greenhouses. Eight plant species were identified as the most critical species for sustaining pest populations outdoors. A set of five plant species supported a medium level of pests, and another set of ten plant species supported the lowest level of both pests. Tobacco whitefly occurred in a few plants species, whereas western flower thrips occurred on almost all the plant species studied, and was favoured by the presence of flowers in perennial plants. The results suggest that plant diversity may provide relatively few acceptable host plants for tobacco whitefly than for western flower thrips. NEs were generally collected in plants that also supported abundance of pests, indicating that host/prey availability, more than food resources from flowers, was a stronger predictor of NE abundance in perennial plants. Field trials using the plants with the lowest host acceptance by pests are needed in order to ascertain whether pest abundance outdoors is reduced.

  8. Horticultural markets promote alien species invasions: an Estonian case study of herbaceous perennials

    Directory of Open Access Journals (Sweden)

    Merle Ööpik

    2013-06-01

    Full Text Available Gardening is a popular pastime, but commercial horticulture is responsible for the introduction of alien species and contributes to invasions in a variety of ways. Although an extensive international literature is available on plant invasions, it is still important at the national level to examine the influence of local factors. Accordingly, 17 nurseries in Estonia that cultivated and sold perennial alien species were selected, and a list of species and prices was compiled. The relationships between species status, and factors such as their abundance in the wild were examined statistically. A qualitative list of the nationally problematic species among herbaceous perennials was also completed. A total of 880 taxa were recorded, of which 10.3% were native and 89.7% alien. In all, 87.3% of the alien species were still confined to cultivated areas. The ecological and socio-economic characteristics of the taxa were described, and lists of the families of casual, naturalised and invasive aliens were provided. Both native and increasing wild alien species have a very similar profile on the market. Alien species that are less expensive, widely available and have more cultivars per species on the market are also more likely to escape. The invasive status and abundance of escaped aliens in an area increases with residence time. In general, socio-economic factors create new and reflect previous propagule pressures from commercial horticulture, which continuously increase the likelihood of alien species surviving and invading new areas. Our findings suggest that these national socio-economic market-related factors explain much of the invasiveness of various perennial ornamental species, and therefore regional and national authorities urgently need to regulate and control the ornamental plant trade to diminish the risk of new invasions.

  9. Sheep numbers required for dry matter digestibility evaluations when fed fresh perennial ryegrass or forage rape.

    Science.gov (United States)

    Sun, Xuezhao; Krijgsman, Linda; Waghorn, Garry C; Kjestrup, Holly; Koolaard, John; Pacheco, David

    2017-03-01

    Research trials with fresh forages often require accurate and precise measurement of digestibility and variation in digestion between individuals, and the duration of measurement periods needs to be established to ensure reliable data are obtained. The variation is likely to be greater when freshly harvested feeds are given, such as perennial ryegrass ( Lolium perenne L.) and forage rape ( Brassica napus L.), because the nutrient composition changes over time and in response to weather conditions. Daily feed intake and faeces output data from a digestibility trial with these forages were used to calculate the effects of differing lengths of the measurement period and differing numbers of sheep, on the precision of digestibility, with a view towards development of a protocol. Sixteen lambs aged 8 months and weighing 33 kg at the commencement of the trial were fed either perennial ryegrass or forage rape (8/treatment group) over 2 periods with 35 d between measurements. They had been acclimatised to the diets, having grazed them for 42 d prior to 11 days of indoor measurements. The sheep numbers required for a digestibility trial with different combinations of acclimatisation and measurement period lengths were subsequently calculated for 3 levels of imposed precision upon the estimate of mean dry matter (DM) digestibility. It is recommended that if the standard error of the mean for digestibility is equal to or higher than 5 g/kg DM, and if sheep are already used to a fresh perennial ryegrass or forage rape diet, then a minimum of 6 animals are needed and 4 acclimatisation days being fed individually in metabolic crates followed by 7 days of measurement.

  10. Immunomodulatory and antioxidant protective effect of Sarcocornia perennis L. (swampfire) in lead intoxicated rat.

    Science.gov (United States)

    Gargouri, Manel; Hamed, Houda; Akrouti, Amel; Christian, Magné; Ksouri, Riadh; El Feki, Abdelfattah

    2017-11-01

    Lead (Pb) is a very toxic metal present in the environment, causing disturbances of several functions. Preventive or curative effects of halophytic plants against these disorders may be a promising and safe therapeutic strategy. Thus, this study was designed to evaluate in vivo immunomodulatory and antioxidant effects of Sarcocornia perennis extract (Sp) against lead toxicity in rats. Groups of six animals each were treated with plant extract (via food), 6 g/L lead acetate (via drinking water) or a combination of both. At the end of the three-week period, rat exposure to lead caused reduction of liver weight but an increase of that of kidney. Moreover, lead intoxication-induced oxidative stress manifested by significant increases of inflammatory cytokines (except IL-10) and lipid peroxidation (TBARS), compared with the control group. Meanwhile, interleukin-10 (IL-10) and glutathione levels (GSH), as well as antioxidant activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), were decreased. Considering liver and renal markers, lead treatment induced a significant increase in the activities of aminotransferases (AST, ALT), and in the levels of urea, creatinine and phosphorous, whereas total plasma protein, albumin and calcium levels were significantly decreased. S. perennis extract alone did not induce any significant changes in hepatic or renal markers, whereas the antioxidant markers were significantly increased. S. perennis supplementation significantly reduced the lead-induced elevation of serum IL-1ß, IL-6, TNF-α, IFN-γ and TBARS but increased the IL-10 and antioxidant enzyme activities. Overall, plant components ameliorated hepatorenal damages caused by lead.

  11. Summary architecture of brutalsm in Serbia: Hotel 'Zlatibor' in Užice

    Directory of Open Access Journals (Sweden)

    Kuzović Duško

    2017-01-01

    Full Text Available The Hotel 'Zlatibor' in Užice was built by architect Svetlana Radević Kana. The project was prepared by the Institute for Urban Planning from Užice. The contractor is Construction Company 'Zlatibor' from Užice. The hotel is located in the southwestern part of the Partisans Square (between streets Dimitrija Tucovića, Little Square, Omaldinska and Strahinjića Bana. Floors are Su+Pr+Ga1+- GA2+Me+14sp. The volume of the building is divided into two parts: the lower zone (ground floor, gallery and mezzanine / office facilities and the upper zone (from the first to the fourteenth floor / guest rooms. A typical base is cruciform. Rooms are grouped by four or two, depending on the orientation. In the center of the building is a communication block. Hotel 'Zlatibor' in Užice is among the most important examples of architecture of Brutalism in Yugoslavia.

  12. Transport and degradation of contaminants in the vadose zone

    NARCIS (Netherlands)

    Schotanus, D.

    2013-01-01

    Leaching of contaminants from the vadose zone to the groundwater depends on the soil properties and the infiltration rate. In this thesis, organic degradable contaminants were studied, such as de-icing chemicals (consisting of propylene glycol, PG) and pesticides. Heterogeneous soil properties

  13. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    Science.gov (United States)

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  14. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog

    DEFF Research Database (Denmark)

    Martin, J.; Storgaard, M.; Andersen, C.H.

    2004-01-01

    Photoperiod and vernalization are the two key environmental factors of the. oral induction of perennial ryegrass (Lolium perenne L.). Transition from vegetative to reproductive growth will only occur after an extended vernalization period, followed by an increase in day length and temperature. Here...... we report on the isolation and characterization of a L. perenne gene (LpCO) that is homologous to CONSTANS, and which is tightly coupled to the. oral inductive long day signal. Like other monocot CO-like proteins, the LpCO contains a zinc finger domain with a non-conserved B-Box2. Although the B-Box2...

  15. Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers

    DEFF Research Database (Denmark)

    Tomaszewski, Céline; Byrne, Stephen; Foito, Alexandra

    2012-01-01

    Perennial ryegrass is the principal forage grass species used in temperate agriculture. In recent years, significant efforts have been made to develop molecular marker strategies to allow cost-effective characterization of a large number of loci simultaneously. One such strategy involves using DAr......T markers, and a DArT array has recently been developed for the Lolium-Festuca complex. In this study, we report the first use of the DArTFest array to generate a genetic linkage map based on 326 markers in a Lolium perenne F2 population, consisting of 325 genotypes. For proof of concept, the map was used...

  16. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland?

    Science.gov (United States)

    Canty, Mary J; Fogarty, Ursula; Sheridan, Michael K; Ensley, Steve M; Schrunk, Dwayne E; More, Simon J

    2014-01-01

    Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as 'ergot alkaloid intoxication'. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of a

  17. A Decade of Carbon Flux Measurements with Annual and Perennial Crop Rotations on the Canadian Prairies

    Science.gov (United States)

    Amiro, B. D.; Tenuta, M.; Gao, X.; Gervais, M.

    2016-12-01

    The Fluxnet database has over 100 cropland sites, some of which have long-term (over a decade) measurements. Carbon neutrality is one goal of sustainable agriculture, although measurements over many annual cropping systems have indicated that soil carbon is often lost. Croplands are complex systems because the CO2 exchange depends on the type of crop, soil, weather, and management decisions such as planting date, nutrient fertilization and pest management strategy. Crop rotations are often used to decrease pest pressure, and can range from a simple 2-crop system, to have 4 or more crops in series. Carbon dioxide exchange has been measured using the flux-gradient technique since 2006 in agricultural systems in Manitoba, Canada. Two cropping systems are being followed: one that is a rotation of annual crops (corn, faba bean, spring wheat, rapeseed, barley, spring wheat, corn, soybean, spring wheat, soybean); and the other with a perennial phase of alfalfa/grass in years 3 to 6. Net ecosystem production ranged from a gain of 330 g C m-2 y-1 in corn to a loss of 75 g C m-2 y-1 in a poor spring-wheat crop. Over a decade, net ecosystem production for the annual cropping system was not significantly different from zero (carbon neutral), but the addition of the perennial phase increased the sink to 130 g C m-2 y-1. Once harvest removals were included, there was a net loss of carbon ranging from 77 g C m-2 y-1 in the annual system to 52 g C m-2 y-1 in the annual-perennial system; but neither of these were significantly different from zero. Termination of the perennial phase of the rotation only caused short-term increases in respiration. We conclude that both these systems were close to carbon-neutral over a decade even though they were tilled with a short growing season (90 to 130 days). We discuss the need for more datasets on agricultural systems to inform management options to increase the soil carbon sink.

  18. Review of literature on perennial peanut (Arachis pintoi) as potential cover crop in the tropics

    OpenAIRE

    Kartika, J.G.; Reyes, Manuel R.; Susila, Anas D.

    2007-01-01

    The use of living mulch as a substitute for plastic mulch is increasing in the tropics as researchers have gradually shifted their attention to organic farming systems. Arachis pintoi is a perennial plant and a member of the leguminosae family. A. pintoi has good potential for use as a living mulch in association with vegetables, trees, or grass (as a pasture) because of its ability to fix nitrogen from the atmosphere and to grow in heavy shade. This work, based on fact sheets, journals and t...

  19. GPR capabilities for ice thickness sampling of low salinity ice and for detecting oil in ice

    Energy Technology Data Exchange (ETDEWEB)

    Lalumiere, Louis [Sensors by Design Ltd. (Canada)

    2011-07-01

    This report discusses the performance and capabilities test of two airborne ground-penetrating radar (GPR) systems of the Bedford Institute of Oceanography (BIO), Noggin 1000 and Noggin 500, for monitoring low salinity snow and ice properties which was used to measure the thickness of brackish ice on Lake Melville in Labrador and on a tidal river in Prince Edward Island. The work of other researchers is documented and the measurement techniques proposed are compared to the actual GPR approach. Different plots of GPR data taken over snow and freshwater ice and over ice with changing salinity are discussed. An interpretation of brackish ice GPR plots done by the Noggin 1000 and Noggin 500 systems is given based on resolution criterion. Additionally, the capability of the BIO helicopter-borne GPR to detect oil-in-ice has been also investigated, and an opinion on the likelihood of the success of GPR as an oil-in-ice detector is given.

  20. Animals and ICE

    DEFF Research Database (Denmark)

    van Hemmen, J Leo; Christensen-Dalsgaard, Jakob; Carr, Catherine E

    2016-01-01

    experimental and mathematical foundation, it is known that there is a low-frequency regime where the internal time difference (iTD) as perceived by the animal may well be 2-5 times higher than the external ITD, the interaural time difference, and that there is a frequency plateau over which the fraction i......TD/ITD is constant. There is also a high-frequency regime where the internal level (amplitude) difference iLD as perceived by the animal is much higher than the interaural level difference ILD measured externally between the two ears. The fundamental tympanic frequency segregates the two regimes. The present special...... issue devoted to "internally coupled ears" provides an overview of many aspects of ICE, be they acoustic, anatomical, auditory, mathematical, or neurobiological. A focus is on the hotly debated topic of what aspects of ICE animals actually exploit neuronally to localize a sound source....

  1. Theory of amorphous ices.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  2. Ice at the Interface: Atmosphere-Ice-Ocean Boundary Layer Processes and Their Role in Polar Change---Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Elizabeth C. [Los Alamos National Laboratory

    2012-07-23

    The atmosphere-ocean boundary layer in which sea ice resides includes many complex processes that require a more realistic treatment in GCMs, particularly as models move toward full earth system descriptions. The primary purpose of the workshop was to define and discuss such coupled processes from observational and modeling points of view, including insight from both the Arctic and Antarctic systems. The workshop met each of its overarching goals, including fostering collaboration among experimentalists, theorists and modelers, proposing modeling strategies, and ascertaining data availability and needs. Several scientific themes emerged from the workshop, such as the importance of episodic or extreme events, precipitation, stratification above and below the ice, and the marginal ice zone, whose seasonal Arctic migrations now traverse more territory than in the past.

  3. Deglacial climate modulated by the storage and release of Arctic sea ice

    Science.gov (United States)

    Condron, A.; Coletti, A. J.; Bradley, R. S.

    2017-12-01

    Periods of abrupt climate cooling during the last deglaciation (20 - 8 kyr ago) are often attributed to glacial outburst floods slowing the Atlantic meridional overturning circulation (AMOC). Here, we present results from a series of climate model simulations showing that the episodic break-up and mobilization of thick, perennial, Arctic sea ice during this time would have released considerable volumes of freshwater directly to the Nordic Seas, where processes regulating large-scale climate occur. Massive sea ice export events to the North Atlantic are generated whenever the transport of sea ice is enhanced, either by changes in atmospheric circulation, rising sea level submerging the Bering land bridge, or glacial outburst floods draining into the Arctic Ocean from the Mackenzie River. We find that the volumes of freshwater released to the Nordic Seas are similar to, or larger than, those estimated to have come from terrestrial outburst floods, including the discharge at the onset of the Younger Dryas. Our results provide the first evidence that the storage and release of Arctic sea ice helped drive deglacial climate change by modulating the strength of the AMOC.

  4. Arctic Ice Studies

    Science.gov (United States)

    1993-02-01

    i heoriotlscale wace s 50 kin wthe11 aii vertical leadi tof M o.ChrlesA Lcur the siir-ai’.orc~5 . ~ ~G. RLI Lt(lWA~S II I Shuchln P A P Ut alI 9...can be utilized msccesafully. distinguish between these two major ice types and open I. INTRODUCTION water. S THE geophysical and economic importance of

  5. Car engine breather icing

    OpenAIRE

    Horoufi, Aryan

    2012-01-01

    Icing in an engine breather system can block the engine breather pipe, cause excessive crankcase pressure and degrade the engine performance. In this project, a numerical study, experimental tests and CFD analysis are employed in order to understand condensation and the extent of freezing inside a vertical pipe, a horizontal pipe and a T-joint pipe which are exposed to an external convective cooling. The pipe internal flow is assumed to be a vapour/air mixture. This study has l...

  6. Phytoplankton ice-edge blooms in the marginal ice zone at Princess Astrid Coast in Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Dhargalkar, V.K.; Goswami, S.C.; Mhamal, N.P.

    dominated the bloom conditions and nannoplankton (5 to 20 mu m) prevail the non-bloom periods while the picoplankton (less than 5 mu m) constituted a minor fraction during most of the period. Weekly changes in phytoplankton showed inverse relationship...

  7. Ice condenser experimental plan

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Piepel, G.F.; Owczarski, P.C.; Liebetrau, A.M.

    1986-01-01

    An experimental plan is being developed to validate the computer code ICEDF. The code was developed to estimate the extent of aerosol retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The development of the experimental plan began with review of available information on the conditions under which the code will be applied. Computer-generated estimates of thermohydraulic and aerosol conditions entering the ice condenser were evaluated and along with other information, used to generate design criteria. The design criteria have been used for preliminary test assembly design and for generation of statistical test designs. Consideration of the phenomena to be evaluated in the testing program, as well as equipment and measurement limitations, have led to changes in the design criteria and to subsequent changes in the test assembly design and statistical test design. The overall strategy in developing the experimental plan includes iterative generation and evaluation of candidate test designs using computer codes for statistical test design and ICEDF for estimation of experimental results. Estimates of experimental variability made prior to actual testing will be verified by replicate testing at preselected design points

  8. Using ice melting and ice rolling technologies to remove ice from sub-transmission and transmission lines at Manitoba Hydro

    International Nuclear Information System (INIS)

    Farias, A. R.

    1999-01-01

    Development of an of an Ice Storm Management program by Manitoba Hydro to reduce ice storm damage to its 8 kV feeders to 115 kV transmission lines, is discussed. The program consists of the de-icing of overhead lines, either by ice melting, or ice rolling. Ice melting involves the placement of a three-phase short at a calculated point. The term ice rolling denotes a process of mechanically stripping the ice from conductors. The most recent major ice storm experienced by Manitoba Hydro was in the winter of 1997/1998. During the period from February 6 to February 17, 1998, a total of 83 'ice melt' procedures were performed to melt the ice from 2,628 km of overhead line (7,883 km of conductor), in addition to 'ice rolling'. This paper describes Manitoba Hydro's 25-years' experience with ice melting and it also describes the advantages and disadvantages of both ice melting and ice rolling. Although not a panacea to combat the effects of ice storms, ice melting was found to be the most effective way of removing ice from overhead transmission and sub-transmission lines. Ice rolling was also found to be effective. Other tools that have been found to be useful by various utilities in combating ice storm damage include improved structure and line design, system design that provide more redundancies and emergency sources, and standby generators at critical load points

  9. IceCube systematic errors investigation: Simulation of the ice

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Wolf, Martin [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Schukraft, Anne [RWTH, Aachen University (Germany)

    2010-07-01

    IceCube is a neutrino observatory for astroparticle and astronomy research at the South Pole. It uses one cubic kilometer of Antartica's deepest ice (1500 m-2500 m in depth) to detect Cherenkov light, generated by charged particles traveling through the ice, with an array of phototubes encapsulated in glass pressure spheres. The arrival time as well as the charge deposited of the detected photons represent the base measurements that are used for track and energy reconstruction of those charged particles. The optical properties of the deep antarctic ice vary from layer to layer. Measurements of the ice properties and their correct modeling in Monte Carlo simulation is then of primary importance for the correct understanding of the IceCube telescope behavior. After a short summary about the different methods to investigate the ice properties and to calibrate the detector, we show how the simulation obtained by using this information compares to the measured data and how systematic errors due to uncertain ice properties are determined in IceCube.

  10. The role of the margins in ice stream dynamics

    Science.gov (United States)

    Echelmeyer, Keith; Harrison, William

    1993-07-01

    At first glance, it would appear that the bed of the active ice stream plays a much more important role in the overall force balance than do the margins, especially because the ratio of the half-width to depth for a typical ice stream is large (15:1 to 50:1). On the other hand, recent observations indicate that at least part of the ice stream is underlain by a layer of very weak till (shear strength about 2 kPa), and this weak basal layer would then imply that some or all of the resistive drag is transferred to the margins. In order to address this question, a detailed velocity profile near Upstream B Camp, which extends from the center of the ice stream, across the chaotic shear margin, and onto the Unicorn, which is part of the slow-moving ice sheet was measured. Comparison of this observed velocity profile with finite-element models of flow shows several interesting features. First, the shear stress at the margin is on the order of 130 kPa, while the mean value along the bed is about 15 kPa. Integration of these stresses along the boundaries indicates that the margins provide 40 to 50 percent, and the bed, 60 to 40 percent of the total resistive drag needed to balance the gravitational driving stress in this region. (The range of values represents calculations for different values of surface slope.) Second, the mean basal stress predicted by the models shows that the entire bed cannot be blanketed by the weak till observed beneath upstream B - instead there must be a distribution of weak till and 'sticky spots' (e.g., 85 percent till and 15 percent sticky spots of resistive stress equal to 100 kPa). If more of the bed were composed of weak till, then the modeled velocity would not match that observed. Third, the ice must exhibit an increasing enhancement factor as the margins are approached (E equals 10 in the chaotic zone), in keeping with laboratory measurements on ice under prolonged shear strain. Also, there is either a narrow zone of somewhat stiffer ice (E

  11. Application of perennial legume green manures to improve growth and yield of organic lowland rice

    Directory of Open Access Journals (Sweden)

    M Winarni

    2016-10-01

    Full Text Available A pot experiment in green house was done to study the effect of the dosage and speciesof perennial legume green manures to the physiological traits, growth and yield of organic lowland rice (Oryza sativaL., and to obtain the optimal dosage as well.  The research was arranged in a factorial randomized block design consistedof two factors with three replications.The first factor was the species of perennial legume thatconsisted of threespecies: Turi (Sesbaniagrandiflora, Glirisidia (Gliricidiasepium, and Lamtoro (Leucaenaleucocephala and cow manure as control treatment. The second factor was the dosage of green manure thatconsisted of four levels: 5, 10, 20 and 40 t/ha.  The results showed that application ofperennial legumesinto the soil significantly improved the growth and yield of rice.  The application of  20 t Glirisidia leaves/haproduced the highest grain yield, followed by 20 t Lamtoro leaves/ha and 20 t Turi leaves/ha.  The optimal dosages of S. grandiflora, G. sepium and L. leucochepala leaves that could yield 58.03 g/hill (equivalent to14.51 t/ha, 53.67 g/hill (equivalent to 13.42 t/ha, and 49.67 g/hill (equivalent to 12.42 t/ha were 28.05, 25.46 and 26.41 t/ha, respectively.

  12. Reproduction and recruitment in perennial colonies of the introduced wasp Vespula germanica.

    Science.gov (United States)

    Goodisman, M A; Matthews, R W; Spradbery, J P; Carew, M E; Crozier, R H

    2001-01-01

    We investigated the genetic structure of perennial colonies of the yellowjacket wasp (Vespula germanica) in its introduced range in Australia and New Zealand. The nuclear genotypes of 712 gynes from 21 colonies, 147 workers from 5 colonies, and 81 males from 4 colonies were assayed at three polymorphic microsatellite loci. The mitochondrial haplotypes of all wasps also were determined for a 450-bp region of the mtDNA using double-stranded conformational polymorphism (DSCP) analysis. We found that multiple reproductives were needed to explain the genotypes of gynes, workers, and males in 7 of 21, 2 of 5, and 2 of 4 colonies, respectively, and that nestmate relatedness of these three castes equaled 0.42, 0.16, and 0.22, respectively. The mitochondrial data revealed that all individuals shared the same mtDNA haplotype in 20 of the 21 colonies. However, in one colony, gynes and workers displayed multiple mtDNA haplotypes, indicating that nonnestmate recruitment had occurred. Overall the genetic structure within the majority of perennial colonies conformed to expectations based on the biology of V. germanica and kin selection theory for polygyne colonies; multiple reproductives successfully produced offspring and were recruited into their natal nests, thereby maintaining relatively high relatedness between interacting individuals.

  13. Progress and Bottlenecks in the Early Domestication of the Perennial Oilseed Silphium integrifolium, a Sunflower Substitute

    Directory of Open Access Journals (Sweden)

    Alejandra Vilela

    2018-02-01

    Full Text Available Silflower (Silphium integrifolium Michx. is in the early stages of domestication as a perennial version of oilseed sunflower, its close relative. Grain crops with deep perennial root systems will provide farmers with new alternatives for managing soil moisture and limiting or remediating soil erosion, fertilizer leaching, and loss of soil biota. Several cycles of selection for increased seed production potential following initial germplasm evaluation in 2002 have provided opportunities to document the botany and ecology of this relatively obscure species, to compare agronomic practices for improving its propagation and management, and to evaluate the differences between semi-domesticated and wild accessions that have accrued over this time through intentional and unintentional genetic processes. Key findings include: domestication has increased aboveground biomass at seedling and adult stages; seed yield has increased more, achieving modest improvement in harvest index. Harvest index decreases with nitrogen fertilization. Silflower acquires nitrogen and water from greater depth than typical crops. In agricultural silflower stands within its native range, we found that Puccinia silphii (rust and Eucosma giganteana (moth populations build up to unacceptable levels, but we also found genetic variation for traits contributing to resistance or tolerance. Breeding or management for reduced height and vegetative plasticity should be top priorities for future silflower research outside its native range.

  14. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  15. Impact of perennial energy crops income variability on the crop selection of risk averse farmers

    International Nuclear Information System (INIS)

    Alexander, Peter; Moran, Dominic

    2013-01-01

    The UK Government policy is for the area of perennial energy crops in the UK to expand significantly. Farmers need to choose these crops in preference to conventional rotations for this to be achievable. This paper looks at the potential level and variability of perennial energy crop incomes and the relation to incomes from conventional arable crops. Assuming energy crop prices are correlated to oil prices the results suggests that incomes from them are not well correlated to conventional arable crop incomes. A farm scale mathematical programming model is then used to attempt to understand the affect on risk averse farmers crop selection. The inclusion of risk reduces the energy crop price required for the selection of these crops. However yields towards the highest of those predicted in the UK are still required to make them an optimal choice, suggesting only a small area of energy crops within the UK would be expected to be chosen to be grown. This must be regarded as a tentative conclusion, primarily due to high sensitivity found to crop yields, resulting in the proposal for further work to apply the model using spatially disaggregated data. - Highlights: ► Energy crop and conventional crop incomes suggested as uncorrelated. ► Diversification effect of energy crops investigated for a risk averse farmer. ► Energy crops indicated as optimal selection only on highest yielding UK sites. ► Large establishment grant rates to substantially alter crop selections.

  16. Syngas Production from Pyrolysis of Nine Composts Obtained from Nonhybrid and Hybrid Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Adéla Hlavsová

    2014-01-01

    Full Text Available A pyrolysis of compost for the production of syngas with an explicit H2/CO = 2 or H2/CO = 3 was investigated in this study. The composts were obtained from nonhybrid (perennial grasses (NHG and hybrid (perennial grasses (HG. Discrepancies in H2 evolution profiles were found between NHG and HG composts. In addition, positive correlations for NHG composts were obtained between (i H2 yield and lignin content, (ii H2 yield and potassium content, and (iii CO yield and cellulose content. All composts resulted in H2/CO = 2 and five of the nine composts resulted in H2/CO = 3. Exceptionally large higher heating values (HHVs of pyrolysis gas, very close to HHVs of feedstock, were obtained for composts made from mountain brome (MB, 16.23 MJ/kg, hybrid Becva (FB, 16.45 MJ/kg, and tall fescue (TF, 17.43 MJ/kg. The MB and FB composts resulted in the highest syngas formation with H2/CO = 2, whereas TF compost resulted in the highest syngas formation with H2/CO = 3.

  17. IQ Score of Children with Persistent or Perennial Allergic Rhinitis: A Comparison with Healthy Children.

    Science.gov (United States)

    Ghaffari, Javad; Abbaskhanian, Ali; Jalili, Masumeh; Yazdani Charati, Jamshid

    2014-01-01

    Prevalence of allergies is different around the world. Allergic rhinitis is a common chronic disease in children. Intelligence quotient (IQ) is an indicator of efficacy and many factors including chronic diseases may affect it. This study compares the IQs of children diagnosed with persistent or perennial allergic rhinitis with healthy children. This was a comparative study that was conducted from June 2011-May 2013 in an academic referral clinic. In this study, 90 patients aged 6- to 14-yearsold who were diagnosed with persistent or perennial allergic rhinitis and were compared to 90 age and gender match healthy patients from their respective families. The Wechsler Intelligence Scale for Children was used to divide and calculate overall IQ, verbal IQ, and practical IQ. The t-test and chi square were used to analyze quantitative variables and qualitative variables, respectively. In this study, out of total 180 children, 90 (50%) in the case group and 90 children (50%), the control group participated for IQ comparison. One hundred (57%) were male and 80 (43%) were female. The overall IQ for allergic rhinitis patients and healthy patients was 109.2 and 107.5, respectively. This difference was not considered significant. Furthermore, there was no significant difference between the IQ scores of males and females. Although allergic rhinitis is a chronic disease and effects quality of life, there were no identifiable negative effects on IQ.

  18. Does a decade of elevated [CO2] affect a desert perennial plant community?

    Science.gov (United States)

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  19. Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae.

    Science.gov (United States)

    Rahman, Alamgir; Kuldau, Gretchen A; Uddin, Wakar

    2014-06-01

    Incorporation of plant defense activators is an innovative approach to development of an integrated strategy for the management of turfgrass diseases. The effects of salicylic acid (SA), benzothiadiazole (BTH, chemical analog of SA), jasmonic acid (JA), and ethephon (ET, an ethylene-releasing compound) on development of gray leaf spot in perennial ryegrass (Lolium perenne L.) caused by Magnaporthe oryzae were evaluated. Gray leaf spot disease incidence and severity were significantly decreased when plants were treated prior to inoculation with SA, BTH, and partially by ET but not by JA. Accumulation of endogenous SA and elevated expression of pathogenesis-related (PR)-1, PR-3.1, and PR-5 genes were associated with inoculation of plants by M. oryzae. Treatment of plants with SA enhanced expression levels of PR-3.1 and PR-5 but did not affect the PR-1 level, whereas BTH treatment enhanced relative expression levels of all three PR genes. Microscopic observations of leaves inoculated with M. oryzae revealed higher frequencies of callose deposition at the penetration sites in SA- and BTH-treated plants compared with the control plants (treated with water). These results suggest that early and higher induction of these genes by systemic resistance inducers may provide perennial ryegrass with a substantial advantage to defend against infection by M. oryzae.

  20. PERENNIAL HELIANTHUS TAXA IN TÂRGU-MURES CITY AND ITS SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    FILEP RITA

    2010-12-01

    Full Text Available Although in the neighbouring countries several perennial Helianthus taxa have been recorded in the last decade, in Romania only three have been identified so far. The literature and herbaria data of Târgu-Mures date back to the end of the XIXth century, and only refer to H. × multiflorus and H. tuberosus. The aim of this study was to identify the perennial Helianthus taxa in this region and to prepare their current distribution map. The survey was conducted in Târgu Mures city and the neighbouring villages: Livezeni, Sântana de Mures, Sâncraiu de Mures, Sângeorgiu de Mures, and Corunca. Four taxa were identified: H. pauciflorus Nutt., H. × laetiflorus Pers., H. tuberosus L. s.str., and Helianthus tuberosus L. s.l. The first two taxa are cultivated as ornamental plants, H. tuberosus s. str. is cultivated in a few farms, whereas H. tuberosus s. l. is an invasive species that spreads along the rivers.

  1. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations.

    Science.gov (United States)

    Halty, Virginia; Valdés, Matías; Tejera, Mauricio; Picasso, Valentín; Fort, Hugo

    2017-12-01

    The contribution of plant species richness to productivity and ecosystem functioning is a longstanding issue in ecology, with relevant implications for both conservation and agriculture. Both experiments and quantitative modeling are fundamental to the design of sustainable agroecosystems and the optimization of crop production. We modeled communities of perennial crop mixtures by using a generalized Lotka-Volterra model, i.e., a model such that the interspecific interactions are more general than purely competitive. We estimated model parameters -carrying capacities and interaction coefficients- from, respectively, the observed biomass of monocultures and bicultures measured in a large diversity experiment of seven perennial forage species in Iowa, United States. The sign and absolute value of the interaction coefficients showed that the biological interactions between species pairs included amensalism, competition, and parasitism (asymmetric positive-negative interaction), with various degrees of intensity. We tested the model fit by simulating the combinations of more than two species and comparing them with the polycultures experimental data. Overall, theoretical predictions are in good agreement with the experiments. Using this model, we also simulated species combinations that were not sown. From all possible mixtures (sown and not sown) we identified which are the most productive species combinations. Our results demonstrate that a combination of experiments and modeling can contribute to the design of sustainable agricultural systems in general and to the optimization of crop production in particular. © 2017 by the Ecological Society of America.

  2. Fructan metabolism and changes in fructan composition during cold acclimation in perennial ryegrass

    Science.gov (United States)

    Abeynayake, Shamila W.; Etzerodt, Thomas P.; Jonavičienė, Kristina; Byrne, Stephen; Asp, Torben; Boelt, Birte

    2015-01-01

    Perennial ryegrass (Lolium perenne L.) produces high levels of fructans as a mixture of oligosaccharides and polysaccharides with different degrees of polymerization (DP). The present study describes the analysis of the compositional changes in the full spectrum of fructans, fructan distribution between above ground biomass (top) and the roots, and the transcription of candidate genes involved in fructan metabolism during cold acclimation in perennial ryegrass variety “Veyo” and ecotype “Falster” from distinct geographical origins. We observed changes in fructan composition and induction of low-DP fructans, especially DP = 4, in both the top and the roots of “Veyo” and “Falster” in response to low-temperature stress. The accumulation of DP > 50 fructans was only apparent in the top tissues where the Lp1-FFT expression is higher compared to the roots in both “Veyo” and “Falster.” Our results also show the accumulation and depolymerization of fructans with different DP, together with the induction of genes encoding fructosyltransferases and fructan exohydrolases in both “Veyo” and “Falster” during cold acclimation, supporting the hypothesis that fructan synthesis and depolymerization occurring simultaneously. The ecotype “Falster,” adapted to cold climates, increased total fructan content and produced more DP > 7 fructans in the roots than the variety “Veyo,” adapted to warmer climates. This indicates that high-DP fructan accumulation in roots may be an adaptive trait for plant recovery after abiotic stresses. PMID:26029229

  3. Accuracy of Genomic Prediction in a Commercial Perennial Ryegrass Breeding Program

    Directory of Open Access Journals (Sweden)

    Dario Fè

    2016-11-01

    Full Text Available The implementation of genomic selection (GS in plant breeding, so far, has been mainly evaluated in crops farmed as homogeneous varieties, and the results have been generally positive. Fewer results are available for species, such as forage grasses, that are grown as heterogenous families (developed from multiparent crosses in which the control of the genetic variation is far more complex. Here we test the potential for implementing GS in the breeding of perennial ryegrass ( L. using empirical data from a commercial forage breeding program. Biparental F and multiparental synthetic (SYN families of diploid perennial ryegrass were genotyped using genotyping-by-sequencing, and phenotypes for five different traits were analyzed. Genotypes were expressed as family allele frequencies, and phenotypes were recorded as family means. Different models for genomic prediction were compared by using practically relevant cross-validation strategies. All traits showed a highly significant level of genetic variance, which could be traced using the genotyping assay. While there was significant genotype × environment (G × E interaction for some traits, accuracies were high among F families and between biparental F and multiparental SYN families. We have demonstrated that the implementation of GS in grass breeding is now possible and presents an opportunity to make significant gains for various traits.

  4. Retrieving a common accumulation record from Greenland ice cores for the past 1800 years

    DEFF Research Database (Denmark)

    Andersen, Katrine K.; Ditlevsen, Peter D.; Rasmussen, Sune Olander

    2006-01-01

    In the accumulation zone of the Greenland ice sheet the annual accumulation rate may be determined through identification of the annual cycle in the isotopic climate signal and other parameters that exhibit seasonal variations. On an annual basis the accumulation rate in different Greenland ice...... cores is highly variable, and the degree of correlation between accumulation series from different ice cores is low. However, when using multiyear averages of the different accumulation records, the correlation increases significantly. A statistical model has been developed to estimate the common...

  5. Radiation effects in ice: New results

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Fama, M.; Loeffler, M.J.; Raut, U.; Shi, J.

    2008-01-01

    Studies of radiation effects in ice are motivated by intrinsic interest and by applications in astronomy. Here we report on new and recent results on radiation effects induced by energetic ions in ice: amorphization of crystalline ice, compaction of microporous amorphous ice, electrostatic charging and dielectric breakdown and correlated structural/chemical changes in the irradiation of water-ammonia ices

  6. Fragmentation and melting of the seasonal sea ice cover

    Science.gov (United States)

    Feltham, D. L.; Bateson, A.; Schroeder, D.; Ridley, J. K.; Aksenov, Y.

    2017-12-01

    Recent years have seen a rapid reduction in the summer extent of Arctic sea ice. This trend has implications for navigation, oil exploration, wildlife, and local communities. Furthermore the Arctic sea ice cover impacts the exchange of heat and momentum between the ocean and atmosphere with significant teleconnections across the climate system, particularly mid to low latitudes in the Northern Hemisphere. The treatment of melting and break-up processes of the seasonal sea ice cover within climate models is currently limited. In particular floes are assumed to have a uniform size which does not evolve with time. Observations suggest however that floe sizes can be modelled as truncated power law distributions, with different exponents for smaller and larger floes. This study aims to examine factors controlling the floe size distribution in the seasonal and marginal ice zone. This includes lateral melting, wave induced break-up of floes, and the feedback between floe size and the mixed ocean layer. These results are then used to quantify the proximate mechanisms of seasonal sea ice reduction in a sea ice—ocean mixed layer model. Observations are used to assess and calibrate the model. The impacts of introducing these processes to the model will be discussed and the preliminary results of sensitivity and feedback studies will also be presented.

  7. Summer sea ice characteristics and morphology in the Pacific Arctic sector as observed during the CHINARE 2010 cruise

    Directory of Open Access Journals (Sweden)

    H. Xie

    2013-07-01

    Full Text Available In the summer of 2010, atmosphere–ice–ocean interaction was studied aboard the icebreaker R/V Xuelong during the Chinese National Arctic Research Expedition (CHINARE, in the sea ice zone of the Pacific Arctic sector between 150° W and 180° W up to 88.5° N. The expedition lasted from 21 July to 28 August and comprised of ice observations and measurements along the cruise track, 8 short-term stations and one 12-day drift station. Ship-based observations of ice thickness and concentration are compared with ice thickness measured by an electromagnetic induction device (EM31 mounted off the ship's side and ice concentrations obtained from AMSR-E. It is found that the modal thickness from ship-based visual observations matches well with the modal thickness from the mounted EM31. A grid of 8 profiles of ice thickness measurements (four repeats was conducted at the 12-day drift station in the central Arctic (~ 86°50´ N–87°20´ N and an average melt rate of 2 cm day−1, primarily bottom melt, was found. As compared with the 2005 data from the Healy/Oden Trans-Arctic Expedition (HOTRAX for the same sector but ~ 20 days later (9 August to 10 September, the summer 2010 was first-year ice dominant (vs. the multi-year ice dominant in 2005, 70% or less in mean ice concentration (vs. 90% in 2005, and 94–114 cm in mean ice thickness (vs. 150 cm in 2005. Those changes suggest the continuation of ice thinning, less concentration, and younger ice for the summer sea ice in the sector since 2007 when a record minimum sea ice extent was observed. Overall, the measurements provide a valuable dataset of sea ice morphological properties over the Arctic Pacific Sector in summer 2010 and can be used as a benchmark for measurements of future changes.

  8. CRYOGENESIS AND GEODYNAMICS OF ICING VALLEYS

    Directory of Open Access Journals (Sweden)

    V. R. Alekseyev

    2015-01-01

    heavily influenced by aufeis deposits and processes taking place at the aufeis surfaces, especially in areas of discontinuous and continuous permafrost where an average thickness of the ice cover on rivers ranges from 1.0 to 2.5 m, and the major part of the ice cover is accumulated layer by layer due to freezing of discharged groundwater. In the permafrost zone, the intensity of cryogenic channelling is clearly cyclical, and the cycles depend on accumulation of aufeis ice above the river level during the autumn low-water period. Five stages of cryogenic channelling are distinguished: I – pre-glacial development, II – transgression, III – stabilization, IV – regression, and V – post-glacial development. Each stage is characterised by a specific glaciohydrological regime of runoff channels and their specific shapes, sizes and spatial patterns.The channel network is subject to the maximum transformation in aufeis development stages III and IV, when the transit flow channel is split into several shallow-water branches, producing a complicated plan pattern of the terrain. In the mature aufeis glades, there are sites undergoing various development stages, which gives evidence that aufeis channelling is variable in a wide range in both space and time. With respect to sizes of aufeis glades, river flow capacities and geological, geomorphological, cryo-hydrogeological conditions, aufeis patterns of the channel network are classified into five types as follows: fan-shaped, cone-shaped, treelike, reticular, and longitudinal-insular types. The aufeis channel network is a reliable indicator of intensity of both recent and ancient geodynamic processes in the cryolithozone.In Siberia and the Far East, the aufeis deposits are much larger, more numerous and more important in terms of morpholithology in comparison with the 'classical' (sedimentary metamorphic icing structures. The more contrasting is the terrain, the more active are neotectonic movements, the lower is the mean

  9. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    Directory of Open Access Journals (Sweden)

    F. Richter

    2018-03-01

    Full Text Available Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  10. Early precursors to break-up of the Larsen Ice Shelves, Antarctica

    Science.gov (United States)

    Scambos, T. A.; Klinger, M.

    2017-12-01

    Ice flux into the embayments left behind by the collapse of the Larsen A and Larsen B ice shelves surged 2- to 6-fold after their disintegration events in 1995 and 2002. Glacier imbalance in the region since the events has been persistent, with elevation changes indicating a mass loss per year of approximately twice the rate of accumulation (Scambos et al., 2014, TCryo). The proximal cause of the disintegration events was a group of processes arising from the presence of extensive surface melt lakes and hydrofracture. However, precursor changes in the ice shelves beginning more than a decade before the disintegrations have been identified, and coincide with a trend towards reduced sea ice cover and increased foehn winds. Ice flow speeds in the Larsen A and B increased, even in the period prior to the loss of critical inboard areas of the ice shelf (which began in 1998 for the Larsen B), and elevation of the ice shelf surface decreased. Ice shelf surface lowering is interpreted as resulting from actual ice shelf thinning for this area, since field studies on both the Larsen A and B noted the upper firn of the shelf was almost completely converted to ice. Examination of satellite images spanning 1963 - 2014 shows that Larsen B shear margins and some suture zones evolved significantly prior to major ice shelf retreat. Overall, these changes suggest either increased ocean-driven basal melt or effects of increased surface meltwater on grounded glacier outflow are a cause of early shelf weakening that leads eventually to disintegration. Available ocean temperature data show that modified Weddell Deep Water, having a temperature 0.1-0.4°C above the surface freezing point, is present near the former ice fronts in some 1995-2012 profiles, but to date this has not been detected within the embayments or near the glacier grounding lines.

  11. Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models

    Science.gov (United States)

    Richter, Friedrich; Drusch, Matthias; Kaleschke, Lars; Maaß, Nina; Tian-Kunze, Xiangshan; Mecklenburg, Susanne

    2018-03-01

    Sea ice is a crucial component for short-, medium- and long-term numerical weather predictions. Most importantly, changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the atmosphere. L-band brightness temperatures from ESA's Earth Explorer SMOS (Soil Moisture and Ocean Salinity) have been proven to be a valuable tool to derive thin sea ice thickness. These retrieved estimates were already successfully assimilated in forecasting models to constrain the ice analysis, leading to more accurate initial conditions and subsequently more accurate forecasts. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems, reducing the data latency and providing a more consistent first guess. As a first step towards such a data assimilation system we studied the forward operator that translates geophysical parameters provided by a model into brightness temperatures. We use two different radiative transfer models to generate top of atmosphere brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured brightness temperatures over sea ice. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes are most pronounced in the marginal ice zone where new sea ice is formed. There we observe the largest differences of more than 20 K over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness temperatures yields high potential for forecasting models to correct for uncertainties in thin sea ice areas and suggest that information on sea ice fractional coverage from higher-frequency brightness temperatures should be used simultaneously.

  12. Microtopographic control on the ground thermal regime in ice wedge polygons

    Science.gov (United States)

    Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.; Harp, Dylan R.

    2018-06-01

    The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 °C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.

  13. The influence of the hydrologic cycle on the extent of sea ice with climatic implications

    Science.gov (United States)

    Dean, Kenneson G.; Stringer, William J.; Searcy, Craig

    1993-01-01

    Multi-temporal satellite images, field observations, and field measurements were used to investigate the mechanisms by which sea ice melts offshore from the Mackenzie River delta. Advanced Very High Resolution Radiometer (AVHRR) satellite data recorded in 1986 were analyzed. The satellite data were geometrically corrected and radiometrically calibrated so that albedo and temperature values could be extracted. The investigation revealed that sea ice melted approximately 2 weeks earlier offshore from the Mackenzie River delta than along coasts where river discharge is minimal or non-existent. There is significant intra-delta variability in the timing and patterns of ice melt. An estimation of energy flux indicates that 30 percent more of the visible wavelength energy and 25 percent more of the near-infrared wavelength energy is absorbed by water offshore of the delta compared to coastal areas with minimal river discharge. The analysis also revealed that the removal of sea ice involves the following: over-ice-flooding along the coast offshore from river delta channels; under-ice flow of 'warm' river water; melting and calving of the fast ice; and, the formation of a bight in the pack ice edge. Two stages in the melting of sea ice were identified: (1) an early stage where heat is supplied to overflows largely by solar radiation, and (2) a later stage where heat is supplied by river discharge in addition to solar radiation. A simple thermodynamic model of the thaw process in the fast ice zone was developed and parameterized based on events recorded by the satellite images. The model treats river discharge as the source of sensible heat at the base of the ice cover. The results of a series of sensitivity tests to assess the influence of river discharge on the near shore ice are presented.

  14. Transport of contaminants by Arctic sea ice and surface ocean currents

    International Nuclear Information System (INIS)

    Pfirman, S.

    1995-01-01

    Sea ice and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian margin are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in ice during suspension freezing on the shelves, and by atmospheric deposition during drift. Ice releases its contaminant load through brine drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The marginal ice zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated ice from the Kara Sea is likely to influence the marginal ice zones of the Barents and Greenland seas. From studies conducted to date it appears that sea ice from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan margins

  15. The making of salty ice

    International Nuclear Information System (INIS)

    Bove, L.E.

    2009-01-01

    Full text: It is widely accepted that ice, no matter what phase, is unable to incorporate large amount of salt into its structure. This conclusion is based on the observation that upon freezing of saltwater, ice expels the salt almost entirely into brine, a fact which can be exploited to desalinate seawater. Here we show, by neutron diffraction under high pressure, that this behaviour is not an intrinsic physico-chemical property of ice phases. We demonstrate that substantial am mounts of dissolved LiCl can be built homogeneously into the ice VII structure if it is produced by recrystallisation of its glassy state under pressure [1]. Such highly doped or alloyed ice VII has significantly different structural properties compared to pure ice VII, such as a 8% larger unit cell volume, 5 times larger displacement factors, an absence of a transition to an ordered ice VIII structure, plasticity, and most likely ionic conductivity. Our study suggests that there could be a whole new class of salty ices based on various kinds of solutes and high pressure ice forms. (author)

  16. Diffuse scattering in Ih ice

    International Nuclear Information System (INIS)

    Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor

    2014-01-01

    Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)

  17. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    to sea level high stands during past interglacial periods. A number of AIS models have been developed and applied to try to understand the workings of the AIS and to form a robust basis for future projections of the AIS contribution to sea level change. The recent DCESS (Danish Center for Earth System......The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...

  18. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  19. Drought mitigation in perennial crops by fertilization and adjustments of regional yield models for future climate variability

    Science.gov (United States)

    Kantola, I. B.; Blanc-Betes, E.; Gomez-Casanovas, N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2017-12-01

    Increased variability and intensity of precipitation in the Midwest agricultural belt due to climate change is a major concern. The success of perennial bioenergy crops in replacing maize for bioethanol production is dependent on sustained yields that exceed maize, and the marketing of perennial crops often emphasizes the resilience of perennial agriculture to climate stressors. Land conversion from maize for bioethanol to Miscanthus x giganteus (miscanthus) increases yields and annual evapotranspiration rates (ET). However, establishment of miscanthus also increases biome water use efficiency (the ratio between net ecosystem productivity after harvest and ET), due to greater belowground biomass in miscanthus than in maize or soybean. In 2012, a widespread drought reduced the yield of 5-year-old miscanthus plots in central Illinois by 36% compared to the previous two years. Eddy covariance data indicated continued soil water deficit during the hydrologically-normal growing season in 2013 and miscanthus yield failed to rebound as expected, lagging behind pre-drought yields by an average of 53% over the next three years. In early 2014, nitrogen fertilizer was applied to half of mature (7-year-old) miscanthus plots in an effort to improve yields. In plots with annual post-emergence application of 60 kg ha-1 of urea, peak biomass was 29% greater than unfertilized miscanthus in 2014, and 113% greater in 2015, achieving statistically similar yields to the pre-drought average. Regional-scale models of perennial crop productivity use 30-year climate averages that are inadequate for predicting long-term effects of short-term extremes on perennial crops. Modeled predictions of perennial crop productivity incorporating repeated extreme weather events, observed crop response, and the use of management practices to mitigate water deficit demonstrate divergent effects on predicted yields.

  20. Under the sea ice: Exploring the relationship between sea ice and the foraging behaviour of southern elephant seals in East Antarctica

    Science.gov (United States)

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Robert A.; Reid, Phillip; Sumner, Michael; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit

    2017-08-01

    diurnal vertical migration) in the pack ice region, likely attracted by an ice algal autumn bloom that sustains an under-ice ecosystem. In contrast, male foraging effort increased when they remained deep within the sea ice (420-960 km from the ice edge) over the shelf. Males had a longer foraging activity (i) in the lowest sea ice concentration at their position, and (ii) when there were more patches of low concentration sea ice around their position (either in time or in space; 30 days & 50 km) presumably in polynyas or flaw leads between land fast and pack ice. This provides access to zones of enhanced resources in autumn or in early spring such as polynyas, the Antarctic shelf and slope. Our results suggest that some seals utilized a highly sea ice covered environment, which is key for their foraging effort, sustaining or concentrating resources during winter.

  1. Reconsidering the generation time hypothesis based on nuclear ribosomal ITS sequence comparisons in annual and perennial angiosperms

    Directory of Open Access Journals (Sweden)

    Fiz-Palacios Omar

    2008-12-01

    Full Text Available Abstract Background Differences in plant annual/perennial habit are hypothesized to cause a generation time effect on divergence rates. Previous studies that compared rates of divergence for internal transcribed spacer (ITS1 and ITS2 sequences of nuclear ribosomal DNA (nrDNA in angiosperms have reached contradictory conclusions about whether differences in generation times (or other life history features are associated with divergence rate heterogeneity. We compared annual/perennial ITS divergence rates using published sequence data, employing sampling criteria to control for possible artifacts that might obscure any actual rate variation caused by annual/perennial differences. Results Relative rate tests employing ITS sequences from 16 phylogenetically-independent annual/perennial species pairs rejected rate homogeneity in only a few comparisons, with annuals more frequently exhibiting faster substitution rates. Treating branch length differences categorically (annual faster or perennial faster regardless of magnitude with a sign test often indicated an excess of annuals with faster substitution rates. Annuals showed an approximately 1.6-fold rate acceleration in nucleotide substitution models for ITS. Relative rates of three nuclear loci and two chloroplast regions for the annual Arabidopsis thaliana compared with two closely related Arabidopsis perennials indicated that divergence was faster for the annual. In contrast, A. thaliana ITS divergence rates were sometimes faster and sometimes slower than the perennial. In simulations, divergence rate differences of at least 3.5-fold were required to reject rate constancy in > 80 % of replicates using a nucleotide substitution model observed for the combination of ITS1 and ITS2. Simulations also showed that categorical treatment of branch length differences detected rate heterogeneity > 80% of the time with a 1.5-fold or greater rate difference. Conclusion Although rate homogeneity was not rejected

  2. Improved ice loss estimate of the northwestern Greenland ice sheet

    NARCIS (Netherlands)

    Kjeldsen, K.K.; Khan, S.A.; van den Broeke, M.R.; van Angelen, J.H.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change

  3. Eulerian method for ice crystal icing in turbofan engines

    NARCIS (Netherlands)

    Norde, Ellen

    2017-01-01

    The newer generations of high-bypass-ratio engines are susceptible to the ingestion of small ice crystals which may cause engine power loss or damage. The research presented in this thesis focusses on the development of a computational method for in-engine ice crystal accretion. The work has been

  4. Tropospheric characteristics over sea ice during N-ICE2015

    Science.gov (United States)

    Kayser, Markus; Maturilli, Marion; Graham, Robert; Hudson, Stephen; Cohen, Lana; Rinke, Annette; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats

    2017-04-01

    Over recent years, the Arctic Ocean region has shifted towards a younger and thinner sea-ice regime. The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in this new ice regime north of Svalbard. Here we analyze upper-air measurements made by radiosondes launched twice daily together with surface meteorology observations during N-ICE2015 from January to June 2015. We study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, sudden increases in moisture content and temperature, temperature inversions and boundary layer dynamics. The influence of synoptic cyclones is strongest under polar night conditions, when radiative cooling is most effective and the moisture content is low. We find that transitions between the radiatively clear and opaque state are the largest drivers of changes to temperature inversion and stability characteristics in the boundary layer during winter. In spring radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. The unique N-ICE2015 dataset is used for case studies investigating changes in the vertical structure of the atmosphere under varying synoptic conditions. The goal is to deepen our understanding of synoptic interactions within the Arctic climate system, to improve model performance, as well as to identify gaps in instrumentation, which precludes further investigations.

  5. 78 FR 12595 - Safety Zone for Ice Conditions; Baltimore Captain of the Port Zone

    Science.gov (United States)

    2013-02-25

    .... SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice.... If you submit your comments by mail or hand delivery, submit them in an unbound format, no larger... the Administrative Procedure Act (APA) (5 U.S.C. 553(b)). This provision authorizes an agency to issue...

  6. Arctic Sea Ice Freeboard and Thickness

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides measurements of sea ice freeboard and sea ice thickness for the Arctic region. The data were derived from measurements made by from the Ice,...

  7. Climate Impacts of Ice Nucleation

    Science.gov (United States)

    Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia

    2012-01-01

    Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).

  8. On The Importance of Connecting Laboratory Measurements of Ice Crystal Growth with Model Parameterizations: Predicting Ice Particle Properties

    Science.gov (United States)

    Harrington, J. Y.

    2017-12-01

    lines show a substantial influence to predicted particle properties: The more natural evolution of ice crystals during riming produces graupel-like particles with size and fall-speeds required for the formation of a classic transition zone and extended stratiform precipitation region.

  9. Diatom-induced silicon isotopic fractionation in Antarctic sea ice

    Science.gov (United States)

    Francois, F.; Damien, C.; Jean-Louis, T.; Anthony, W.; Luc, A.

    2006-12-01

    grown in a semi-closed system in which the dissolved silicon pool (i.e. brines) is partially replenished. Finally, we show that the average silicon-isotopic composition of the sea-ice diatoms (+0.63 p.mil) is very distinct from the one of biogenic silica in the seasonal ice zone mixed layer (+0.08 p.mil) indicating that sea- ice diatoms either contribute to an insignificant part of the whole diatoms biomass in the upper water layer (without affecting the silicon-isotopic budget), and/or that they are directly exported below the mixed layer. In this latter case, we will study the possibility to use the distinct signature of the sea ice diatoms as a tracer of paleo-sea ice extension in oceanic sediments.

  10. Dry matter production of perennial pasture Tifton 85 (Cynodon spp under different doses of fertilization

    Directory of Open Access Journals (Sweden)

    Karlize Prigol

    2012-12-01

    Full Text Available Dairy farming is an activity that provides the small rural farmer the opportunity to earn income in small areas of land. The perennial pastures represent a source for a cheap and nutritious diet for the animals. The correct management of perennial pastures can be the key to sustainability in the dairy business, resulting in the preservation or recovery of the balance of a pasture system, starting with the pursuit of production with low costs and good pasture production per unit area. The correct choice of fertilizer is of great importance to ensure the continuous production of pasture both in quantity and in quality. The aim of this study was to evaluate the dry matter production of perennial pasture consisting of Tifton 85 (Cynodon spp under different nutrient sources on a typical dystrophic Red Latosol, presents in a region where the climate is characterized as humid-mesothermic with a hot summer, Cfa according to Köppen, with an average annual rainfall of 2039 mm, well distributed throughout the year and average annual temperatures around 18 º C, varying monthly from 14.1 to 23 º C. The treatments consisted of three nutrient sources: 1 organic manure, a base of chicken bedding (average values of reference NPK (02/03/02, 2 organic manure + mineral - organic mineral, with application of 606 kg ha-1 (04/10/10 Formula, aiming to adjust the same amounts of NPK supplied by mineral fertilizer and, 3 Mineral. The experimental design was a randomized blocks with nine replications. We collected five samples of each pasture treatment for determination of the average. After cutting the pasture of Tifton 85, the samples were subjected to weighing for determination of wet weight and then taken to the drying oven (temperature 65 ° C for 72 hours to determine dry matter production. The statistical analysis was performed with SAS for Windows computer system (SAS and the results submitted to the Tukey test at 5%. The highest dry matter yield (kg ha-1 was

  11. Sea-ice deformation in a coupled ocean–sea-ice model and in satellite remote sensing data

    Directory of Open Access Journals (Sweden)

    G. Spreen

    2017-07-01

    Full Text Available A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous–plastic (VP sea-ice rheology are compared with synthetic aperture radar (SAR satellite observations (RGPS, RADARSAT Geophysical Processor System for the time period 1996–2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous–plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.

  12. Linking resilience theory and diffusion of innovations theory to understand the potential for perennials in the U.S. Corn Belt

    Science.gov (United States)

    Ryan C. Atwell; Lisa A. Schulte; Lynne M. Westphal

    2009-01-01

    In the last 200 yr, more than 80% of the land in the U.S. Corn Belt agro-ecosystem has been converted from natural perennial vegetation to intensive agricultural production of row crops. Despite research showing how re-integration of perennial vegetation, e.g., cover crops, pasture, riparian buffers, and restored wetlands, at strategic landscape positions can bolster...

  13. Impacts of managing perennial grasses in the northern Midwest United States for bioenergy on soil organic C and nitrous oxide emission

    Science.gov (United States)

    In the USA perennial grasses [e.g., switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman)] are proposed as cellulosic feedstock. Perennial grasses are often touted as being low input and as having a C-neutral foot print, but managing them as bioenergy feedstock means addin...

  14. Study on absorption and translocation amounts of 2,4-D on perennial weed( Glycyrrhiza glabra) by 19 C- labelled herbicides tracer technique

    International Nuclear Information System (INIS)

    Ahari Mostafavi, H.; Fatholahi, H.; Naserian, B.

    2004-01-01

    Glycyrrhiza glabra a perennial broad leaf weed, is very difficult to control due to it's powerful root system. The best chemical treatment to perennial weeds control is the application of systemic herbicides and their effect is related to amount of permeability and mobility

  15. Ice hockey injuries.

    Science.gov (United States)

    Benson, Brian W; Meeuwisse, Willem H

    2005-01-01

    This article reviews the distribution and determinants of injuries reported in the pediatric ice hockey literature, and suggests potential injury prevention strategies and directions for further research. Thirteen electronic databases, the ISI Web of Science, and 'grey literature' databases were searched using a combination of Medical Subject Headings and text words to identify potentially relevant articles. The bibliographies of selected studies were searched to identify additional articles. Studies were selected for review based on predetermined inclusion and exclusion criteria. A comparison between studies on this topic area was difficult due to the variability in research designs, definition of injury, study populations, and measurements used to assess injury. The majority of injuries were sustained during games compared with practices. The two most commonly reported injuries were sprains/strains and contusions. Players competing at the Minor hockey, High School, and Junior levels of competition sustained most of their injuries to the upper extremity, head, and lower extremity, respectively. The primary mechanism of injury was body checking, followed by stick and puck contact. The frequency of catastrophic eye injuries has been significantly reduced with the world-wide mandation of full facial protection for all Minor hockey players. Specific hockey-related injury risk factors are poorly delineated and rarely studied among pediatric ice hockey players leaving large gaps in the knowledge of appropriate prevention strategies. Risk management strategies should be focused at avoiding unnecessary foreseeable risk, and controlling the risks inherent to the sport. Suggestions for injury prevention and future research are discussed.

  16. The physics of ice cream

    Science.gov (United States)

    Clarke, Chris

    2003-05-01

    Almost everybody likes ice cream, so it can provide an excellent vehicle for discussing and demonstrating a variety of physical phenomena, such as Newton's law of cooling, Boyle's law and the relationship between microstructure and macroscopic properties (e.g. Young's modulus). Furthermore, a demonstration of freezing point depression can be used to make ice cream in the classroom!

  17. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  18. Ice as a Construction Material

    Science.gov (United States)

    Zuppero, Anthony; Lewis, Joseph

    1998-01-01

    The use of ice as a construction material is discussed. A model of an ice tire torus space ship, which slowly spins to produce artificial gravity is proposed. The size of the ship, needed to support a given number of people and the required envelope mass is presented.

  19. Greenland deep boreholes inform on sliding and deformation of the basal ice

    Science.gov (United States)

    Dahl-Jensen, D.

    2017-12-01

    Repeated measurements of the deformation of the deep boreholes on the Greenland ice sheet informs on the basal sliding, near basal deformation and in general on the horizontal velocity through the ice. Results of the logging of the boreholes at Dye3, GRIP, NGRIP, NEEM and Camp Century through the last 40 years by the Danish Ice and Climate group will be presented and discussed. The results on the flow will be compared with the information on ice properties, impurity load and bedrock entrained material from the deep ice cores and the radio echo sounding images near the drill sites.The results show that the basal movement often happens in an impurity rich zone above the bedrock while pure basal sliding is limited even in the presence of basal water and significant basal melt.Most of the deep ice core sites are located close to ice divides where the surface velocity is limited so significant basal sliding is not expected. Exceptions are the surface velocities at Camp Century and Dye 3, both being 13 m/yr.Finally, the ongoing deep drilling at EGRIP will shortly be presented where we are drilling in the center of the North East Greenland Ice Stream (NEGIS).

  20. Quantifying Local Ablation Rates for the Greenland Ice Sheet Using Terrestrial LIDAR

    Science.gov (United States)

    Kershner, C. M.; Pitcher, L. H.; LeWinter, A.; Finnegan, D. C.; Overstreet, B. T.; Miège, C.; Cooper, M. G.; Smith, L. C.; Rennermalm, A. K.

    2016-12-01

    Quantifying accurate ice surface ablation or melt rates for the Greenland Ice Sheet is important for calibrating and validating surface