WorldWideScience

Sample records for perceptual learning tipl

  1. Perceptual learning.

    Science.gov (United States)

    Seitz, Aaron R

    2017-07-10

    Perceptual learning refers to how experience can change the way we perceive sights, sounds, smells, tastes, and touch. Examples abound: music training improves our ability to discern tones; experience with food and wines can refine our pallet (and unfortunately more quickly empty our wallet), and with years of training radiologists learn to save lives by discerning subtle details of images that escape the notice of untrained viewers. We often take perceptual learning for granted, but it has a profound impact on how we perceive the world. In this Primer, I will explain how perceptual learning is transformative in guiding our perceptual processes, how research into perceptual learning provides insight into fundamental mechanisms of learning and brain processes, and how knowledge of perceptual learning can be used to develop more effective training approaches for those requiring expert perceptual skills or those in need of perceptual rehabilitation (such as individuals with poor vision). I will make a case that perceptual learning is ubiquitous, scientifically interesting, and has substantial practical utility to us all. Copyright © 2017. Published by Elsevier Ltd.

  2. Monetary reward modulates task-irrelevant perceptual learning for invisible stimuli.

    Directory of Open Access Journals (Sweden)

    David Pascucci

    Full Text Available Task Irrelevant Perceptual Learning (TIPL shows that the brain's discriminative capacity can improve also for invisible and unattended visual stimuli. It has been hypothesized that this form of "unconscious" neural plasticity is mediated by an endogenous reward mechanism triggered by the correct task performance. Although this result has challenged the mandatory role of attention in perceptual learning, no direct evidence exists of the hypothesized link between target recognition, reward and TIPL. Here, we manipulated the reward value associated with a target to demonstrate the involvement of reinforcement mechanisms in sensory plasticity for invisible inputs. Participants were trained in a central task associated with either high or low monetary incentives, provided only at the end of the experiment, while subliminal stimuli were presented peripherally. Our results showed that high incentive-value targets induced a greater degree of perceptual improvement for the subliminal stimuli, supporting the role of reinforcement mechanisms in TIPL.

  3. Monetary reward modulates task-irrelevant perceptual learning for invisible stimuli.

    Science.gov (United States)

    Pascucci, David; Mastropasqua, Tommaso; Turatto, Massimo

    2015-01-01

    Task Irrelevant Perceptual Learning (TIPL) shows that the brain's discriminative capacity can improve also for invisible and unattended visual stimuli. It has been hypothesized that this form of "unconscious" neural plasticity is mediated by an endogenous reward mechanism triggered by the correct task performance. Although this result has challenged the mandatory role of attention in perceptual learning, no direct evidence exists of the hypothesized link between target recognition, reward and TIPL. Here, we manipulated the reward value associated with a target to demonstrate the involvement of reinforcement mechanisms in sensory plasticity for invisible inputs. Participants were trained in a central task associated with either high or low monetary incentives, provided only at the end of the experiment, while subliminal stimuli were presented peripherally. Our results showed that high incentive-value targets induced a greater degree of perceptual improvement for the subliminal stimuli, supporting the role of reinforcement mechanisms in TIPL.

  4. Visual Perceptual Learning and Models.

    Science.gov (United States)

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  5. Varieties of perceptual learning.

    Science.gov (United States)

    Mackintosh, N J

    2009-05-01

    Although most studies of perceptual learning in human participants have concentrated on the changes in perception assumed to be occurring, studies of nonhuman animals necessarily measure discrimination learning and generalization and remain agnostic on the question of whether changes in behavior reflect changes in perception. On the other hand, animal studies do make it easier to draw a distinction between supervised and unsupervised learning. Differential reinforcement will surely teach animals to attend to some features of a stimulus array rather than to others. But it is an open question as to whether such changes in attention underlie the enhanced discrimination seen after unreinforced exposure to such an array. I argue that most instances of unsupervised perceptual learning observed in animals (and at least some in human animals) are better explained by appeal to well-established principles and phenomena of associative learning theory: excitatory and inhibitory associations between stimulus elements, latent inhibition, and habituation.

  6. Acetylcholine and Olfactory Perceptual Learning

    Science.gov (United States)

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  7. Perceptual learning and human expertise.

    Science.gov (United States)

    Kellman, Philip J; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  8. Perceptual learning and human expertise

    Science.gov (United States)

    Kellman, Philip J.; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  9. Integrated approaches to perceptual learning.

    Science.gov (United States)

    Jacobs, Robert A

    2010-04-01

    New technologies and new ways of thinking have recently led to rapid expansions in the study of perceptual learning. We describe three themes shared by many of the nine articles included in this topic on Integrated Approaches to Perceptual Learning. First, perceptual learning cannot be studied on its own because it is closely linked to other aspects of cognition, such as attention, working memory, decision making, and conceptual knowledge. Second, perceptual learning is sensitive to both the stimulus properties of the environment in which an observer exists and to the properties of the tasks that the observer needs to perform. Moreover, the environmental and task properties can be characterized through their statistical regularities. Finally, the study of perceptual learning has important implications for society, including implications for science education and medical rehabilitation. Contributed articles relevant to each theme are summarized. Copyright © 2010 Cognitive Science Society, Inc.

  10. Perceptual learning: top to bottom.

    Science.gov (United States)

    Amitay, Sygal; Zhang, Yu-Xuan; Jones, Pete R; Moore, David R

    2014-06-01

    Perceptual learning has traditionally been portrayed as a bottom-up phenomenon that improves encoding or decoding of the trained stimulus. Cognitive skills such as attention and memory are thought to drive, guide and modulate learning but are, with notable exceptions, not generally considered to undergo changes themselves as a result of training with simple perceptual tasks. Moreover, shifts in threshold are interpreted as shifts in perceptual sensitivity, with no consideration for non-sensory factors (such as response bias) that may contribute to these changes. Accumulating evidence from our own research and others shows that perceptual learning is a conglomeration of effects, with training-induced changes ranging from the lowest (noise reduction in the phase locking of auditory signals) to the highest (working memory capacity) level of processing, and includes contributions from non-sensory factors that affect decision making even on a "simple" auditory task such as frequency discrimination. We discuss our emerging view of learning as a process that increases the signal-to-noise ratio associated with perceptual tasks by tackling noise sources and inefficiencies that cause performance bottlenecks, and present some implications for training populations other than young, smart, attentive and highly-motivated college students. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Iterative perceptual learning for social behavior synthesis

    NARCIS (Netherlands)

    de Kok, I.A.; Poppe, Ronald Walter; Heylen, Dirk K.J.

    We introduce Iterative Perceptual Learning (IPL), a novel approach to learn computational models for social behavior synthesis from corpora of human–human interactions. IPL combines perceptual evaluation with iterative model refinement. Human observers rate the appropriateness of synthesized

  12. Iterative Perceptual Learning for Social Behavior Synthesis

    NARCIS (Netherlands)

    de Kok, I.A.; Poppe, Ronald Walter; Heylen, Dirk K.J.

    We introduce Iterative Perceptual Learning (IPL), a novel approach for learning computational models for social behavior synthesis from corpora of human-human interactions. The IPL approach combines perceptual evaluation with iterative model refinement. Human observers rate the appropriateness of

  13. Constraints on Perceptual Learning: Objects and Dimensions.

    Science.gov (United States)

    Bedford, Felice L.

    1995-01-01

    Addresses two questions that may be unique to perceptual learning: What are the circumstances that produce learning? and What is the content of learning? Suggests a critical principle for each question. Provides a discussion of perceptual learning theory, how learning occurs, and what gets learned. Includes a 121-item bibliography. (DR)

  14. Perceptual learning modifies untrained pursuit eye movements

    OpenAIRE

    Szpiro, Sarit F. A.; Spering, Miriam; Carrasco, Marisa

    2014-01-01

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training...

  15. Perceptual learning modifies untrained pursuit eye movements.

    Science.gov (United States)

    Szpiro, Sarit F A; Spering, Miriam; Carrasco, Marisa

    2014-07-07

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training led to greater overestimation and, remarkably, it modified untrained smooth pursuit. In contrast, pursuit training did not affect overestimation in either pursuit or perception, even though observers in both training groups were exposed to the same stimuli for the same time period. A second experiment revealed that estimation training also improved discrimination, indicating that overestimation may optimize perceptual sensitivity. Hence, active perceptual training is necessary to alter perceptual responses, and an acquired change in perception suffices to modify pursuit, a motor response. © 2014 ARVO.

  16. Perceptual learning and adult cortical plasticity.

    Science.gov (United States)

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  17. Topographic generalization of tactile perceptual learning.

    Science.gov (United States)

    Harrar, Vanessa; Spence, Charles; Makin, Tamar R

    2014-02-01

    Perceptual learning can improve our sensory abilities. Understanding its underlying mechanisms, in particular, when perceptual learning generalizes, has become a focus of research and controversy. Specifically, there is little consensus regarding the extent to which tactile perceptual learning generalizes across fingers. We measured tactile orientation discrimination abilities on 4 fingers (index and middle fingers of both hands), using psychophysical measures, before and after 4 training sessions on 1 finger. Given the somatotopic organization of the hand representation in the somatosensory cortex, the topography of the cortical areas underlying tactile perceptual learning can be inferred from the pattern of generalization across fingers; only fingers sharing cortical representation with the trained finger ought to improve with it. Following training, performance improved not only for the trained finger but also for its adjacent and homologous fingers. Although these fingers were not exposed to training, they nevertheless demonstrated similar levels of learning as the trained finger. Conversely, the performance of the finger that was neither adjacent nor homologous to the trained finger was unaffected by training, despite the fact that our procedure was designed to enhance generalization, as described in recent visual perceptual learning research. This pattern of improved performance is compatible with previous reports of neuronal receptive fields (RFs) in the primary somatosensory cortex (SI) spanning adjacent and homologous digits. We conclude that perceptual learning rooted in low-level cortex can still generalize, and suggest potential applications for the neurorehabilitation of syndromes associated with maladaptive plasticity in SI. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Resistance to Interference of Olfactory Perceptual Learning

    Science.gov (United States)

    Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline

    2007-01-01

    Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…

  19. Lexically guided perceptual learning in Mandarin Chinese

    NARCIS (Netherlands)

    Burchfield, L.A.; Luk, S.H.K.; Antoniou, M.; Cutler, A.

    2017-01-01

    Lexically guided perceptual learni ng refers to the use of lexical knowledge to retune sp eech categories and thereby adapt to a novel talker's pronunciation. This adaptation has been extensively documented, but primarily for segmental-based learning in English and Dutch. In languages with lexical

  20. Crossmodal Perceptual Learning and Sensory Substitution

    Directory of Open Access Journals (Sweden)

    Michael J Proulx

    2011-10-01

    Full Text Available A sensory substitution device for blind persons aims to provide the missing visual input by converting images into a form that another modality can perceive, such as sound. Here I will discuss the perceptual learning and attentional mechanisms necessary for interpreting sounds produced by a device (The vOICe in a visuospatial manner. Although some aspects of the conversion, such as relating vertical location to pitch, rely on natural crossmodal mappings, the extensive training required suggests that synthetic mappings are required to generalize perceptual learning to new objects and environments, and ultimately to experience visual qualia. Here I will discuss the effects of the conversion and training on perception and attention that demonstrate the synthetic nature of learning the crossmodal mapping. Sensorimotor experience may be required to facilitate learning, develop expertise, and to develop a form of synthetic synaesthesia.

  1. Nicotine facilitates memory consolidation in perceptual learning.

    Science.gov (United States)

    Beer, Anton L; Vartak, Devavrat; Greenlee, Mark W

    2013-01-01

    Perceptual learning is a special type of non-declarative learning that involves experience-dependent plasticity in sensory cortices. The cholinergic system is known to modulate declarative learning. In particular, reduced levels or efficacy of the neurotransmitter acetylcholine were found to facilitate declarative memory consolidation. However, little is known about the role of the cholinergic system in memory consolidation of non-declarative learning. Here we compared two groups of non-smoking men who learned a visual texture discrimination task (TDT). One group received chewing tobacco containing nicotine for 1 h directly following the TDT training. The other group received a similar tasting control substance without nicotine. Electroencephalographic recordings during substance consumption showed reduced alpha activity and P300 latencies in the nicotine group compared to the control group. When re-tested on the TDT the following day, both groups responded more accurately and more rapidly than during training. These improvements were specific to the retinal location and orientation of the texture elements of the TDT suggesting that learning involved early visual cortex. A group comparison showed that learning effects were more pronounced in the nicotine group than in the control group. These findings suggest that oral consumption of nicotine enhances the efficacy of nicotinic acetylcholine receptors. Our findings further suggest that enhanced efficacy of the cholinergic system facilitates memory consolidation in perceptual learning (and possibly other types of non-declarative learning). In that regard acetylcholine seems to affect consolidation processes in perceptual learning in a different manner than in declarative learning. Alternatively, our findings might reflect dose-dependent cholinergic modulation of memory consolidation. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Motivation and intelligence drive auditory perceptual learning.

    Science.gov (United States)

    Amitay, Sygal; Halliday, Lorna; Taylor, Jenny; Sohoglu, Ediz; Moore, David R

    2010-03-23

    Although feedback on performance is generally thought to promote perceptual learning, the role and necessity of feedback remain unclear. We investigated the effect of providing varying amounts of positive feedback while listeners attempted to discriminate between three identical tones on learning frequency discrimination. Using this novel procedure, the feedback was meaningless and random in relation to the listeners' responses, but the amount of feedback provided (or lack thereof) affected learning. We found that a group of listeners who received positive feedback on 10% of the trials improved their performance on the task (learned), while other groups provided either with excess (90%) or with no feedback did not learn. Superimposed on these group data, however, individual listeners showed other systematic changes of performance. In particular, those with lower non-verbal IQ who trained in the no feedback condition performed more poorly after training. This pattern of results cannot be accounted for by learning models that ascribe an external teacher role to feedback. We suggest, instead, that feedback is used to monitor performance on the task in relation to its perceived difficulty, and that listeners who learn without the benefit of feedback are adept at self-monitoring of performance, a trait that also supports better performance on non-verbal IQ tests. These results show that 'perceptual' learning is strongly influenced by top-down processes of motivation and intelligence.

  3. Chromatic Perceptual Learning but No Category Effects without Linguistic Input.

    Science.gov (United States)

    Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L

    2016-01-01

    Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.

  4. Ambiguity Tolerance and Perceptual Learning Styles of Chinese EFL Learners

    Science.gov (United States)

    Li, Haishan; He, Qingshun

    2016-01-01

    Ambiguity tolerance and perceptual learning styles are the two influential elements showing individual differences in EFL learning. This research is intended to explore the relationship between Chinese EFL learners' ambiguity tolerance and their preferred perceptual learning styles. The findings include (1) the learners are sensitive to English…

  5. Does perceptual learning require consciousness or attention?

    Science.gov (United States)

    Meuwese, Julia D I; Post, Ruben A G; Scholte, H Steven; Lamme, Victor A F

    2013-10-01

    It has been proposed that visual attention and consciousness are separate [Koch, C., & Tsuchiya, N. Attention and consciousness: Two distinct brain processes. Trends in Cognitive Sciences, 11, 16-22, 2007] and possibly even orthogonal processes [Lamme, V. A. F. Why visual attention and awareness are different. Trends in Cognitive Sciences, 7, 12-18, 2003]. Attention and consciousness converge when conscious visual percepts are attended and hence become available for conscious report. In such a view, a lack of reportability can have two causes: the absence of attention or the absence of a conscious percept. This raises an important question in the field of perceptual learning. It is known that learning can occur in the absence of reportability [Gutnisky, D. A., Hansen, B. J., Iliescu, B. F., & Dragoi, V. Attention alters visual plasticity during exposure-based learning. Current Biology, 19, 555-560, 2009; Seitz, A. R., Kim, D., & Watanabe, T. Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron, 61, 700-707, 2009; Seitz, A. R., & Watanabe, T. Is subliminal learning really passive? Nature, 422, 36, 2003; Watanabe, T., Náñez, J. E., & Sasaki, Y. Perceptual learning without perception. Nature, 413, 844-848, 2001], but it is unclear which of the two ingredients-consciousness or attention-is not necessary for learning. We presented textured figure-ground stimuli and manipulated reportability either by masking (which only interferes with consciousness) or with an inattention paradigm (which only interferes with attention). During the second session (24 hr later), learning was assessed neurally and behaviorally, via differences in figure-ground ERPs and via a detection task. Behavioral and neural learning effects were found for stimuli presented in the inattention paradigm and not for masked stimuli. Interestingly, the behavioral learning effect only became apparent when performance feedback was given on the task to measure learning

  6. Perceptual learning during action video game playing.

    Science.gov (United States)

    Green, C Shawn; Li, Renjie; Bavelier, Daphne

    2010-04-01

    Action video games have been shown to enhance behavioral performance on a wide variety of perceptual tasks, from those that require effective allocation of attentional resources across the visual scene, to those that demand the successful identification of fleetingly presented stimuli. Importantly, these effects have not only been shown in expert action video game players, but a causative link has been established between action video game play and enhanced processing through training studies. Although an account based solely on attention fails to capture the variety of enhancements observed after action game playing, a number of models of perceptual learning are consistent with the observed results, with behavioral modeling favoring the hypothesis that avid video game players are better able to form templates for, or extract the relevant statistics of, the task at hand. This may suggest that the neural site of learning is in areas where information is integrated and actions are selected; yet changes in low-level sensory areas cannot be ruled out. Copyright © 2009 Cognitive Science Society, Inc.

  7. Perceptual learning: toward a comprehensive theory.

    Science.gov (United States)

    Watanabe, Takeo; Sasaki, Yuka

    2015-01-03

    Visual perceptual learning (VPL) is long-term performance increase resulting from visual perceptual experience. Task-relevant VPL of a feature results from training of a task on the feature relevant to the task. Task-irrelevant VPL arises as a result of exposure to the feature irrelevant to the trained task. At least two serious problems exist. First, there is the controversy over which stage of information processing is changed in association with task-relevant VPL. Second, no model has ever explained both task-relevant and task-irrelevant VPL. Here we propose a dual plasticity model in which feature-based plasticity is a change in a representation of the learned feature, and task-based plasticity is a change in processing of the trained task. Although the two types of plasticity underlie task-relevant VPL, only feature-based plasticity underlies task-irrelevant VPL. This model provides a new comprehensive framework in which apparently contradictory results could be explained.

  8. Perceptual Organization of Visual Structure Requires a Flexible Learning Mechanism

    Science.gov (United States)

    Aslin, Richard N.

    2011-01-01

    Bhatt and Quinn (2011) provide a compelling and comprehensive review of empirical evidence that supports the operation of principles of perceptual organization in young infants. They also have provided a comprehensive list of experiences that could serve to trigger the learning of at least some of these principles of perceptual organization, and…

  9. Mode transition and change in variable use in perceptual learning

    NARCIS (Netherlands)

    Hajnal, A; Grocki, M; Jacobs, DM; Zaal, FTJM; Michaels, CF

    2006-01-01

    Runeson, Justin, and Olsson (2000) proposed (a) that perceptual learning entails a transition from an inferential to a direct-perceptual mode of apprehension, and (b) that relative confidence-the difference between estimated and actual performance-indicates whether apprehension is inferential or

  10. Mode transition and change in variable use in perceptual learning

    NARCIS (Netherlands)

    Hajnal, A.; Grocki, M.; Jacobs, D.M.; Zaal, F.T.J.M.; Michaels, C.F.

    2006-01-01

    Runeson, Juslin, and Olsson (2000) proposed (a) that perceptual learning entails a transition from an inferential to a direct-perceptual mode of apprehension, and (b) that relative confidence - the difference between estimated and actual performance - indicates whether apprehension is inferential or

  11. Shared mechanisms of perceptual learning and decision making.

    Science.gov (United States)

    Law, Chi-Tat; Gold, Joshua I

    2010-04-01

    Perceptual decisions require the brain to weigh noisy evidence from sensory neurons to form categorical judgments that guide behavior. Here we review behavioral and neurophysiological findings suggesting that at least some forms of perceptual learning do not appear to affect the response properties of neurons that represent the sensory evidence. Instead, improved perceptual performance results from changes in how the sensory evidence is selected and weighed to form the decision. We discuss the implications of this idea for possible sites and mechanisms of training-induced improvements in perceptual processing in the brain. Copyright © 2009 Cognitive Science Society, Inc.

  12. Effects of regular aerobic exercise on visual perceptual learning.

    Science.gov (United States)

    Connell, Charlotte J W; Thompson, Benjamin; Green, Hayden; Sullivan, Rachel K; Gant, Nicholas

    2017-12-02

    This study investigated the influence of five days of moderate intensity aerobic exercise on the acquisition and consolidation of visual perceptual learning using a motion direction discrimination (MDD) task. The timing of exercise relative to learning was manipulated by administering exercise either before or after perceptual training. Within a matched-subjects design, twenty-seven healthy participants (n = 9 per group) completed five consecutive days of perceptual training on a MDD task under one of three interventions: no exercise, exercise before the MDD task, or exercise after the MDD task. MDD task accuracy improved in all groups over the five-day period, but there was a trend for impaired learning when exercise was performed before visual perceptual training. MDD task accuracy (mean ± SD) increased in exercise before by 4.5 ± 6.5%; exercise after by 11.8 ± 6.4%; and no exercise by 11.3 ± 7.2%. All intervention groups displayed similar MDD threshold reductions for the trained and untrained motion axes after training. These findings suggest that moderate daily exercise does not enhance the rate of visual perceptual learning for an MDD task or the transfer of learning to an untrained motion axis. Furthermore, exercise performed immediately prior to a visual perceptual learning task may impair learning. Further research with larger groups is required in order to better understand these effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Is sequence awareness mandatory for perceptual sequence learning: An assessment using a pure perceptual sequence learning design.

    Science.gov (United States)

    Deroost, Natacha; Coomans, Daphné

    2018-02-01

    We examined the role of sequence awareness in a pure perceptual sequence learning design. Participants had to react to the target's colour that changed according to a perceptual sequence. By varying the mapping of the target's colour onto the response keys, motor responses changed randomly. The effect of sequence awareness on perceptual sequence learning was determined by manipulating the learning instructions (explicit versus implicit) and assessing the amount of sequence awareness after the experiment. In the explicit instruction condition (n = 15), participants were instructed to intentionally search for the colour sequence, whereas in the implicit instruction condition (n = 15), they were left uninformed about the sequenced nature of the task. Sequence awareness after the sequence learning task was tested by means of a questionnaire and the process-dissociation-procedure. The results showed that the instruction manipulation had no effect on the amount of perceptual sequence learning. Based on their report to have actively applied their sequence knowledge during the experiment, participants were subsequently regrouped in a sequence strategy group (n = 14, of which 4 participants from the implicit instruction condition and 10 participants from the explicit instruction condition) and a no-sequence strategy group (n = 16, of which 11 participants from the implicit instruction condition and 5 participants from the explicit instruction condition). Only participants of the sequence strategy group showed reliable perceptual sequence learning and sequence awareness. These results indicate that perceptual sequence learning depends upon the continuous employment of strategic cognitive control processes on sequence knowledge. Sequence awareness is suggested to be a necessary but not sufficient condition for perceptual learning to take place. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Perceptual learning as improved probabilistic inference in early sensory areas.

    Science.gov (United States)

    Bejjanki, Vikranth R; Beck, Jeffrey M; Lu, Zhong-Lin; Pouget, Alexandre

    2011-05-01

    Extensive training on simple tasks such as fine orientation discrimination results in large improvements in performance, a form of learning known as perceptual learning. Previous models have argued that perceptual learning is due to either sharpening and amplification of tuning curves in early visual areas or to improved probabilistic inference in later visual areas (at the decision stage). However, early theories are inconsistent with the conclusions of psychophysical experiments manipulating external noise, whereas late theories cannot explain the changes in neural responses that have been reported in cortical areas V1 and V4. Here we show that we can capture both the neurophysiological and behavioral aspects of perceptual learning by altering only the feedforward connectivity in a recurrent network of spiking neurons so as to improve probabilistic inference in early visual areas. The resulting network shows modest changes in tuning curves, in line with neurophysiological reports, along with a marked reduction in the amplitude of pairwise noise correlations.

  15. Adaptive and perceptual learning technologies in medical education and training.

    Science.gov (United States)

    Kellman, Philip J

    2013-10-01

    Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  16. The perceptual effects of learning object categories that predict perceptual goals

    Science.gov (United States)

    Van Gulick, Ana E.; Gauthier, Isabel

    2014-01-01

    In classic category learning studies, subjects typically learn to assign items to one of two categories, with no further distinction between how items on each side of the category boundary should be treated. In real life, however, we often learn categories that dictate further processing goals, for instance with objects in only one category requiring further individuation. Using methods from category learning and perceptual expertise, we studied the perceptual consequences of experience with objects in tasks that rely on attention to different dimensions in different parts of the space. In two experiments, subjects first learned to categorize complex objects from a single morphspace into two categories based on one morph dimension, and then learned to perform a different task, either naming or a local feature judgment, for each of the two categories. A same-different discrimination test before and after each training measured sensitivity to feature dimensions of the space. After initial categorization, sensitivity increased along the category-diagnostic dimension. After task association, sensitivity increased more for the category that was named, especially along the non-diagnostic dimension. The results demonstrate that local attentional weights, associated with individual exemplars as a function of task requirements, can have lasting effects on perceptual representations. PMID:24820671

  17. Perceptual learning modifies the functional specializations of visual cortical areas.

    Science.gov (United States)

    Chen, Nihong; Cai, Peng; Zhou, Tiangang; Thompson, Benjamin; Fang, Fang

    2016-05-17

    Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.

  18. Perceptual learning effect on decision and confidence thresholds.

    Science.gov (United States)

    Solovey, Guillermo; Shalom, Diego; Pérez-Schuster, Verónica; Sigman, Mariano

    2016-10-01

    Practice can enhance of perceptual sensitivity, a well-known phenomenon called perceptual learning. However, the effect of practice on subjective perception has received little attention. We approach this problem from a visual psychophysics and computational modeling perspective. In a sequence of visual search experiments, subjects significantly increased the ability to detect a "trained target". Before and after training, subjects performed two psychophysical protocols that parametrically vary the visibility of the "trained target": an attentional blink and a visual masking task. We found that confidence increased after learning only in the attentional blink task. Despite large differences in some observables and task settings, we identify common mechanisms for decision-making and confidence. Specifically, our behavioral results and computational model suggest that perceptual ability is independent of processing time, indicating that changes in early cortical representations are effective, and learning changes decision criteria to convey choice and confidence. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Can theories of animal discrimination explain perceptual learning in humans?

    Science.gov (United States)

    Mitchell, Chris; Hall, Geoffrey

    2014-01-01

    We present a review of recent studies of perceptual learning conducted with nonhuman animals. The focus of this research has been to elucidate the mechanisms by which mere exposure to a pair of similar stimuli can increase the ease with which those stimuli are discriminated. These studies establish an important role for 2 mechanisms, one involving inhibitory associations between the unique features of the stimuli, the other involving a long-term habituation process that enhances the relative salience of these features. We then examine recent work investigating equivalent perceptual learning procedures with human participants. Our aim is to determine the extent to which the phenomena exhibited by people are susceptible to explanation in terms of the mechanisms revealed by the animal studies. Although we find no evidence that associative inhibition contributes to the perceptual learning effect in humans, initial detection of unique features (those that allow discrimination between 2 similar stimuli) appears to depend on an habituation process. Once the unique features have been detected, a tendency to attend to those features and to learn about their properties enhances subsequent discrimination. We conclude that the effects obtained with humans engage mechanisms additional to those seen in animals but argue that, for the most part, these have their basis in learning processes that are common to animals and people. In a final section, we discuss some implications of this analysis of perceptual learning for other aspects of experimental psychology and consider some potential applications. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  1. Constraints on the Transfer of Perceptual Learning in Accented Speech

    Science.gov (United States)

    Eisner, Frank; Melinger, Alissa; Weber, Andrea

    2013-01-01

    The perception of speech sounds can be re-tuned through a mechanism of lexically driven perceptual learning after exposure to instances of atypical speech production. This study asked whether this re-tuning is sensitive to the position of the atypical sound within the word. We investigated perceptual learning using English voiced stop consonants, which are commonly devoiced in word-final position by Dutch learners of English. After exposure to a Dutch learner’s productions of devoiced stops in word-final position (but not in any other positions), British English (BE) listeners showed evidence of perceptual learning in a subsequent cross-modal priming task, where auditory primes with devoiced final stops (e.g., “seed”, pronounced [si:th]), facilitated recognition of visual targets with voiced final stops (e.g., SEED). In Experiment 1, this learning effect generalized to test pairs where the critical contrast was in word-initial position, e.g., auditory primes such as “town” facilitated recognition of visual targets like DOWN. Control listeners, who had not heard any stops by the speaker during exposure, showed no learning effects. The generalization to word-initial position did not occur when participants had also heard correctly voiced, word-initial stops during exposure (Experiment 2), and when the speaker was a native BE speaker who mimicked the word-final devoicing (Experiment 3). The readiness of the perceptual system to generalize a previously learned adjustment to other positions within the word thus appears to be modulated by distributional properties of the speech input, as well as by the perceived sociophonetic characteristics of the speaker. The results suggest that the transfer of pre-lexical perceptual adjustments that occur through lexically driven learning can be affected by a combination of acoustic, phonological, and sociophonetic factors. PMID:23554598

  2. Attentional Modulation in Visual Cortex Is Modified during Perceptual Learning

    Science.gov (United States)

    Bartolucci, Marco; Smith, Andrew T.

    2011-01-01

    Practicing a visual task commonly results in improved performance. Often the improvement does not transfer well to a new retinal location, suggesting that it is mediated by changes occurring in early visual cortex, and indeed neuroimaging and neurophysiological studies both demonstrate that perceptual learning is associated with altered activity…

  3. Audiovisual Cues and Perceptual Learning of Spectrally Distorted Speech

    Science.gov (United States)

    Pilling, Michael; Thomas, Sharon

    2011-01-01

    Two experiments investigate the effectiveness of audiovisual (AV) speech cues (cues derived from both seeing and hearing a talker speak) in facilitating perceptual learning of spectrally distorted speech. Speech was distorted through an eight channel noise-vocoder which shifted the spectral envelope of the speech signal to simulate the properties…

  4. Multisensory perceptual learning is dependent upon task difficulty.

    Science.gov (United States)

    De Niear, Matthew A; Koo, Bonhwang; Wallace, Mark T

    2016-11-01

    There has been a growing interest in developing behavioral tasks to enhance temporal acuity as recent findings have demonstrated changes in temporal processing in a number of clinical conditions. Prior research has demonstrated that perceptual training can enhance temporal acuity both within and across different sensory modalities. Although certain forms of unisensory perceptual learning have been shown to be dependent upon task difficulty, this relationship has not been explored for multisensory learning. The present study sought to determine the effects of task difficulty on multisensory perceptual learning. Prior to and following a single training session, participants completed a simultaneity judgment (SJ) task, which required them to judge whether a visual stimulus (flash) and auditory stimulus (beep) presented in synchrony or at various stimulus onset asynchronies (SOAs) occurred synchronously or asynchronously. During the training session, participants completed the same SJ task but received feedback regarding the accuracy of their responses. Participants were randomly assigned to one of three levels of difficulty during training: easy, moderate, and hard, which were distinguished based on the SOAs used during training. We report that only the most difficult (i.e., hard) training protocol enhanced temporal acuity. We conclude that perceptual training protocols for enhancing multisensory temporal acuity may be optimized by employing audiovisual stimuli for which it is difficult to discriminate temporal synchrony from asynchrony.

  5. Predicting perceptual learning from higher-order cortical processing.

    Science.gov (United States)

    Wang, Fang; Huang, Jing; Lv, Yaping; Ma, Xiaoli; Yang, Bin; Wang, Encong; Du, Boqi; Li, Wu; Song, Yan

    2016-01-01

    Visual perceptual learning has been shown to be highly specific to the retinotopic location and attributes of the trained stimulus. Recent psychophysical studies suggest that these specificities, which have been associated with early retinotopic visual cortex, may in fact not be inherent in perceptual learning and could be related to higher-order brain functions. Here we provide direct electrophysiological evidence in support of this proposition. In a series of event-related potential (ERP) experiments, we recorded high-density electroencephalography (EEG) from human adults over the course of learning in a texture discrimination task (TDT). The results consistently showed that the earliest C1 component (68-84ms), known to reflect V1 activity driven by feedforward inputs, was not modulated by learning regardless of whether the behavioral improvement is location specific or not. In contrast, two later posterior ERP components (posterior P1 and P160-350) over the occipital cortex and one anterior ERP component (anterior P160-350) over the prefrontal cortex were progressively modified day by day. Moreover, the change of the anterior component was closely correlated with improved behavioral performance on a daily basis. Consistent with recent psychophysical and imaging observations, our results indicate that perceptual learning can mainly involve changes in higher-level visual cortex as well as in the neural networks responsible for cognitive functions such as attention and decision making. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Audiovisual perceptual learning with multiple speakers.

    Science.gov (United States)

    Mitchel, Aaron D; Gerfen, Chip; Weiss, Daniel J

    2016-05-01

    One challenge for speech perception is between-speaker variability in the acoustic parameters of speech. For example, the same phoneme (e.g. the vowel in "cat") may have substantially different acoustic properties when produced by two different speakers and yet the listener must be able to interpret these disparate stimuli as equivalent. Perceptual tuning, the use of contextual information to adjust phonemic representations, may be one mechanism that helps listeners overcome obstacles they face due to this variability during speech perception. Here we test whether visual contextual cues to speaker identity may facilitate the formation and maintenance of distributional representations for individual speakers, allowing listeners to adjust phoneme boundaries in a speaker-specific manner. We familiarized participants to an audiovisual continuum between /aba/ and /ada/. During familiarization, the "b-face" mouthed /aba/ when an ambiguous token was played, while the "D-face" mouthed /ada/. At test, the same ambiguous token was more likely to be identified as /aba/ when paired with a stilled image of the "b-face" than with an image of the "D-face." This was not the case in the control condition when the two faces were paired equally with the ambiguous token. Together, these results suggest that listeners may form speaker-specific phonemic representations using facial identity cues.

  7. When does fading enhance perceptual category learning?

    Science.gov (United States)

    Pashler, Harold; Mozer, Michael C

    2013-07-01

    Training that uses exaggerated versions of a stimulus discrimination (fading) has sometimes been found to enhance category learning, mostly in studies involving animals and impaired populations. However, little is known about whether and when fading facilitates learning for typical individuals. This issue was explored in 7 experiments. In Experiments 1 and 2, observers discriminated stimuli based on a single sensory continuum (time duration and line length, respectively). Adaptive fading dramatically improved performance in training (unsurprisingly) but did not enhance learning as assessed in a final test. The same was true for nonadaptive linear fading (Experiment 3). However, when variation in length (predicting category membership) was embedded among other (category-irrelevant) variation, fading dramatically enhanced not only performance in training but also learning as assessed in a final test (Experiments 4 and 5). Fading also helped learners to acquire a color saturation discrimination amid category-irrelevant variation in hue and brightness, although this learning proved transitory after feedback was withdrawn (Experiment 7). Theoretical implications are discussed, and we argue that fading should have practical utility in naturalistic category learning tasks, which involve extremely high dimensional stimuli and many irrelevant dimensions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  8. The role of culture in perceptual learning styles

    OpenAIRE

    حسینی فاطمی ، پیشقدم حسینی فاطمی ، پیشقدم

    2009-01-01

    The major aim of this article is to determine the role of culture in perceptual learning style (PLS) preferences of Iranian English learners, in order to minimize teacher-student style conflict in the classroom. To do this, 400 university students from different fields of study were selected from Allameh Tabatabaee University in Tehran, Ferdowsi University of Mashhad and Mashhad University of Medical Sciences. The subjects were asked to answer Reid’s questionnaire (1987) which was designed to...

  9. Perceptual learning is specific to the trained structure of information.

    Science.gov (United States)

    Cohen, Yamit; Daikhin, Luba; Ahissar, Merav

    2013-12-01

    What do we learn when we practice a simple perceptual task? Many studies have suggested that we learn to refine or better select the sensory representations of the task-relevant dimension. Here we show that learning is specific to the trained structural regularities. Specifically, when this structure is modified after training with a fixed temporal structure, performance regresses to pretraining levels, even when the trained stimuli and task are retained. This specificity raises key questions as to the importance of low-level sensory modifications in the learning process. We trained two groups of participants on a two-tone frequency discrimination task for several days. In one group, a fixed reference tone was consistently presented in the first interval (the second tone was higher or lower), and in the other group the same reference tone was consistently presented in the second interval. When following training, these temporal protocols were switched between groups, performance of both groups regressed to pretraining levels, and further training was needed to attain postlearning performance. ERP measures, taken before and after training, indicated that participants implicitly learned the temporal regularity of the protocol and formed an attentional template that matched the trained structure of information. These results are consistent with Reverse Hierarchy Theory, which posits that even the learning of simple perceptual tasks progresses in a top-down manner, hence can benefit from temporal regularities at the trial level, albeit at the potential cost that learning may be specific to these regularities.

  10. Conditions of Practice in Perceptual Skill Learning

    Science.gov (United States)

    Memmert, D.; Hagemann, N.; Althoetmar, R.; Geppert, S.; Seiler, D.

    2009-01-01

    This study uses three experiments with different kinds of training conditions to investigate the "easy-to-hard" principle, context interference conditions, and feedback effects for learning anticipatory skills in badminton. Experiment 1 (N = 60) showed that a training program that gradually increases the difficulty level has no advantage over the…

  11. Magnetic stimulation of visual cortex impairs perceptual learning.

    Science.gov (United States)

    Baldassarre, Antonello; Capotosto, Paolo; Committeri, Giorgia; Corbetta, Maurizio

    2016-12-01

    The ability to learn and process visual stimuli more efficiently is important for survival. Previous neuroimaging studies have shown that perceptual learning on a shape identification task differently modulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005;Lewis et al., 2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated for trained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higher activation for familiar shape. Here, after the intensive training, we employed transcranial magnetic stimulation over both visual occipital and parietal regions, previously shown to be modulated, to investigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition. Moreover, the impairment observed after stimulation over the two visual regions was positive correlated. These results strongly support the causal role of the visual network in the control of the perceptual learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Age-related declines of stability in visual perceptual learning.

    Science.gov (United States)

    Chang, Li-Hung; Shibata, Kazuhisa; Andersen, George J; Sasaki, Yuka; Watanabe, Takeo

    2014-12-15

    One of the biggest questions in learning is how a system can resolve the plasticity and stability dilemma. Specifically, the learning system needs to have not only a high capability of learning new items (plasticity) but also a high stability to retain important items or processing in the system by preventing unimportant or irrelevant information from being learned. This dilemma should hold true for visual perceptual learning (VPL), which is defined as a long-term increase in performance on a visual task as a result of visual experience. Although it is well known that aging influences learning, the effect of aging on the stability and plasticity of the visual system is unclear. To address the question, we asked older and younger adults to perform a task while a task-irrelevant feature was merely exposed. We found that older individuals learned the task-irrelevant features that younger individuals did not learn, both the features that were sufficiently strong for younger individuals to suppress and the features that were too weak for younger individuals to learn. At the same time, there was no plasticity reduction in older individuals within the task tested. These results suggest that the older visual system is less stable to unimportant information than the younger visual system. A learning problem with older individuals may be due to a decrease in stability rather than a decrease in plasticity, at least in VPL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Making perceptual learning practical to improve visual functions.

    Science.gov (United States)

    Polat, Uri

    2009-10-01

    Task-specific improvement in performance after training is well established. The finding that learning is stimulus-specific and does not transfer well between different stimuli, between stimulus locations in the visual field, or between the two eyes has been used to support the notion that neurons or assemblies of neurons are modified at the earliest stage of cortical processing. However, a debate regarding the proposed mechanism underlying perceptual learning is an ongoing issue. Nevertheless, generalization of a trained task to other functions is an important key, for both understanding the neural mechanisms and the practical value of the training. This manuscript describes a structured perceptual learning method that previously used (amblyopia, myopia) and a novel technique and results that were applied for presbyopia. In general, subjects were trained for contrast detection of Gabor targets under lateral masking conditions. Training improved contrast sensitivity and diminished the lateral suppression when it existed (amblyopia). The improvement was transferred to unrelated functions such as visual acuity. The new results of presbyopia show substantial improvement of the spatial and temporal contrast sensitivity, leading to improved processing speed of target detection as well as reaction time. Consequently, the subjects, who were able to eliminate the need for reading glasses, benefited. Thus, here we show that the transfer of functions indicates that the specificity of improvement in the trained task can be generalized by repetitive practice of target detection, covering a sufficient range of spatial frequencies and orientations, leading to an improvement in unrelated visual functions. Thus, perceptual learning can be a practical method to improve visual functions in people with impaired or blurred vision.

  14. Relationship between perceptual learning in speech and statistical learning in younger and older adults

    Directory of Open Access Journals (Sweden)

    Thordis Marisa Neger

    2014-09-01

    Full Text Available Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech.In the present study, 73 older adults (aged over 60 years and 60 younger adults (aged between 18 and 30 years performed a visual artificial grammar learning task and were presented with sixty meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory and processing speed. Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

  15. Perceptual learning in Williams syndrome: looking beyond averages.

    Directory of Open Access Journals (Sweden)

    Patricia Gervan

    Full Text Available Williams Syndrome is a genetically determined neurodevelopmental disorder characterized by an uneven cognitive profile and surprisingly large neurobehavioral differences among individuals. Previous studies have already shown different forms of memory deficiencies and learning difficulties in WS. Here we studied the capacity of WS subjects to improve their performance in a basic visual task. We employed a contour integration paradigm that addresses occipital visual function, and analyzed the initial (i.e. baseline and after-learning performance of WS individuals. Instead of pooling the very inhomogeneous results of WS subjects together, we evaluated individual performance by expressing it in terms of the deviation from the average performance of the group of typically developing subjects of similar age. This approach helped us to reveal information about the possible origins of poor performance of WS subjects in contour integration. Although the majority of WS individuals showed both reduced baseline and reduced learning performance, individual analysis also revealed a dissociation between baseline and learning capacity in several WS subjects. In spite of impaired initial contour integration performance, some WS individuals presented learning capacity comparable to learning in the typically developing population, and vice versa, poor learning was also observed in subjects with high initial performance levels. These data indicate a dissociation between factors determining initial performance and perceptual learning.

  16. Applying perceptual and adaptive learning techniques for teaching introductory histopathology

    Directory of Open Access Journals (Sweden)

    Sally Krasne

    2013-01-01

    Full Text Available Background: Medical students are expected to master the ability to interpret histopathologic images, a difficult and time-consuming process. A major problem is the issue of transferring information learned from one example of a particular pathology to a new example. Recent advances in cognitive science have identified new approaches to address this problem. Methods: We adapted a new approach for enhancing pattern recognition of basic pathologic processes in skin histopathology images that utilizes perceptual learning techniques, allowing learners to see relevant structure in novel cases along with adaptive learning algorithms that space and sequence different categories (e.g. diagnoses that appear during a learning session based on each learner′s accuracy and response time (RT. We developed a perceptual and adaptive learning module (PALM that utilized 261 unique images of cell injury, inflammation, neoplasia, or normal histology at low and high magnification. Accuracy and RT were tracked and integrated into a "Score" that reflected students rapid recognition of the pathologies and pre- and post-tests were given to assess the effectiveness. Results: Accuracy, RT and Scores significantly improved from the pre- to post-test with Scores showing much greater improvement than accuracy alone. Delayed post-tests with previously unseen cases, given after 6-7 weeks, showed a decline in accuracy relative to the post-test for 1 st -year students, but not significantly so for 2 nd -year students. However, the delayed post-test scores maintained a significant and large improvement relative to those of the pre-test for both 1 st and 2 nd year students suggesting good retention of pattern recognition. Student evaluations were very favorable. Conclusion: A web-based learning module based on the principles of cognitive science showed an evidence for improved recognition of histopathology patterns by medical students.

  17. Unconscious Attentional Capture Effect Can be Induced by Perceptual Learning

    Directory of Open Access Journals (Sweden)

    Zhe Qu

    2011-05-01

    Full Text Available Previous ERP studies have shown that N2pc serves as an index for salient stimuli that capture attention, even if they are task irrelevant. This study aims to investigate whether nonsalient stimuli can capture attention automatically and unconsciously after perceptual learning. Adult subjects were trained with a visual search task for eight to ten sessions. The training task was to detect whether the target (triangle with one particular direction was present or not. After training, an ERP session was performed, in which subjects were required to detect the presence of either the trained triangle (i.e., the target triangle in the training sessions or an untrained triangle. Results showed that, while the untrained triangle did not elicit an N2pc effect, the trained triangle elicited a significant N2pc effect regardless of whether it was perceived correctly or not, even when it was task irrelevant. Moreover, the N2pc effect for the trained triangle was completely retained 3 months later. These results suggest that, after perceptual learning, previously unsalient stimuli become more salient and can capture attention automatically and unconsciously. Once the facilitating process of the unsalient stimulus has been built up in the brain, it can last for a long time.

  18. Perceptual learning improves visual performance in juvenile amblyopia.

    Science.gov (United States)

    Li, Roger W; Young, Karen G; Hoenig, Pia; Levi, Dennis M

    2005-09-01

    To determine whether practicing a position-discrimination task improves visual performance in children with amblyopia and to determine the mechanism(s) of improvement. Five children (age range, 7-10 years) with amblyopia practiced a positional acuity task in which they had to judge which of three pairs of lines was misaligned. Positional noise was produced by distributing the individual patches of each line segment according to a Gaussian probability function. Observers were trained at three noise levels (including 0), with each observer performing between 3000 and 4000 responses in 7 to 10 sessions. Trial-by-trial feedback was provided. Four of the five observers showed significant improvement in positional acuity. In those four observers, on average, positional acuity with no noise improved by approximately 32% and with high noise by approximately 26%. A position-averaging model was used to parse the improvement into an increase in efficiency or a decrease in equivalent input noise. Two observers showed increased efficiency (51% and 117% improvements) with no significant change in equivalent input noise across sessions. The other two observers showed both a decrease in equivalent input noise (18% and 29%) and an increase in efficiency (17% and 71%). All five observers showed substantial improvement in Snellen acuity (approximately 26%) after practice. Perceptual learning can improve visual performance in amblyopic children. The improvement can be parsed into two important factors: decreased equivalent input noise and increased efficiency. Perceptual learning techniques may add an effective new method to the armamentarium of amblyopia treatments.

  19. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    Science.gov (United States)

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  20. The Role of Feedback Contingency in Perceptual Category Learning

    Science.gov (United States)

    Ashby, F. Gregory; Vucovich, Lauren E.

    2016-01-01

    Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how feedback contingency affects category learning, and current theories assign little or no importance to this variable. Two experiments examined the effects of contingency degradation on rule-based and information-integration category learning. In rule-based tasks, optimal accuracy is possible with a simple explicit rule, whereas optimal accuracy in information-integration tasks requires integrating information from two or more incommensurable perceptual dimensions. In both experiments, participants each learned rule-based or information-integration categories under either high or low levels of feedback contingency. The exact same stimuli were used in all four conditions and optimal accuracy was identical in every condition. Learning was good in both high-contingency conditions, but most participants showed little or no evidence of learning in either low-contingency condition. Possible causes of these effects are discussed, as well as their theoretical implications. PMID:27149393

  1. Individual differences in learning to perceive length by dynamic touch : Evidence for variation in perceptual learning capacities

    NARCIS (Netherlands)

    Withagen, Rob; van Wermeskerken, Margot

    Recent studies of perceptual learning have explored and commented on variation in learning trajectories. Although several factors have been suggested to account for this variation, thus far the idea that humans vary in their perceptual learning capacities has received scant attention. In the present

  2. The Neural Circuitry of Expertise: Perceptual Learning and Social Cognition

    Directory of Open Access Journals (Sweden)

    Michael eHarre

    2013-12-01

    Full Text Available Amongst the most significant questions we are confronted with today include the integration of the brain's micro-circuitry, our ability to build the complex social networks that underpin society and how our society impacts on our ecological environment. In trying to unravel these issues one place to begin is at the level of the individual: to consider how we accumulate information about our environment, how this information leads to decisions and how our individual decisions in turn create our social environment. While this is an enormous task, we may already have at hand many of the tools we need. This article is intended to review some of the recent results in neuro-cognitive research and show how they can be extended to two very specific types of expertise: perceptual expertise and social cognition. These two cognitive skills span a vast range of our genetic heritage. Perceptual expertise developed very early in our evolutionary history and is likely a highly developed part of all mammals' cognitive ability. On the other hand social cognition is most highly developed in humans in that we are able to maintain larger and more stable long term social connections with more behaviourally diverse individuals than any other species. To illustrate these ideas I will discuss board games as a toy model of social interactions as they include many of the relevant concepts: perceptual learning, decision-making, long term planning and understanding the mental states of other people. Using techniques that have been developed in mathematical psychology, I show that we can represent some of the key features of expertise using stochastic differential equations. Such models demonstrate how an expert's long exposure to a particular context influences the information they accumulate in order to make a decision.These processes are not confined to board games, we are all experts in our daily lives through long exposure to the many regularities of daily tasks and

  3. Two-stage perceptual learning to break visual crowding.

    Science.gov (United States)

    Zhu, Ziyun; Fan, Zhenzhi; Fang, Fang

    2016-01-01

    When a target is presented with nearby flankers in the peripheral visual field, it becomes harder to identify, which is referred to as crowding. Crowding sets a fundamental limit of object recognition in peripheral vision, preventing us from fully appreciating cluttered visual scenes. We trained adult human subjects on a crowded orientation discrimination task and investigated whether crowding could be completely eliminated by training. We discovered a two-stage learning process with this training task. In the early stage, when the target and flankers were separated beyond a certain distance, subjects acquired a relatively general ability to break crowding, as evidenced by the fact that the breaking of crowding could transfer to another crowded orientation, even a crowded motion stimulus, although the transfer to the opposite visual hemi-field was weak. In the late stage, like many classical perceptual learning effects, subjects' performance gradually improved and showed specificity to the trained orientation. We also found that, when the target and flankers were spaced too finely, training could only reduce, rather than completely eliminate, the crowding effect. This two-stage learning process illustrates a learning strategy for our brain to deal with the notoriously difficult problem of identifying peripheral objects in clutter. The brain first learned to solve the "easy and general" part of the problem (i.e., improving the processing resolution and segmenting the target and flankers) and then tackle the "difficult and specific" part (i.e., refining the representation of the target).

  4. Perceptual learning in children with visual impairment improves near visual acuity.

    Science.gov (United States)

    Huurneman, Bianca; Boonstra, F Nienke; Cox, Ralf F A; van Rens, Ger; Cillessen, Antonius H N

    2013-09-17

    This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. Participants were 45 children with visual impairment and 29 children with normal vision. Children with visual impairment were divided into three groups: a magnifier group (n = 12), a crowded perceptual learning group (n = 18), and an uncrowded perceptual learning group (n = 15). Children with normal vision also were divided in three groups, but were measured only at baseline. Dependent variables were single near visual acuity (NVA), crowded NVA, LH line 50% crowding NVA, number of trials, accuracy, performance time, amount of small errors, and amount of large errors. Children with visual impairment trained during six weeks, two times per week, for 30 minutes (12 training sessions). After training, children showed significant improvement of NVA in addition to specific improvements on the training task. The crowded perceptual learning group showed the largest acuity improvements (1.7 logMAR lines on the crowded chart, P children in the crowded perceptual learning group showed improvements on all NVA charts. Children with visual impairment benefit from perceptual training. While task-specific improvements were observed in all training groups, transfer to crowded NVA was largest in the crowded perceptual learning group. To our knowledge, this is the first study to provide evidence for the improvement of NVA by perceptual learning in children with visual impairment. (http://www.trialregister.nl number, NTR2537.).

  5. The relationship between students' perceptual learning style preferences, language learning strategies and English language vocabulary size

    OpenAIRE

    Gorevanova, Anna

    2000-01-01

    Ankara : The Institute of Economic and Social Sciences Bilkent Univ., 2000. Thesis (Master's) -- Bilkent University, 2000. Includes bibliographical references leaves 54-58 This study investigated the relationship between students’ perceptual learning style preferences, language learning strategies and English language vocabulary size. It is very important for teachers to be aware of students’ preferences in learning to help them be more successful and to avoid conflicts when...

  6. Short-term perceptual learning in visual conjunction search.

    Science.gov (United States)

    Su, Yuling; Lai, Yunpeng; Huang, Wanyi; Tan, Wei; Qu, Zhe; Ding, Yulong

    2014-08-01

    Although some studies showed that training can improve the ability of cross-dimension conjunction search, less is known about the underlying mechanism. Specifically, it remains unclear whether training of visual conjunction search can successfully bind different features of separated dimensions into a new function unit at early stages of visual processing. In the present study, we utilized stimulus specificity and generalization to provide a new approach to investigate the mechanisms underlying perceptual learning (PL) in visual conjunction search. Five experiments consistently showed that after 40 to 50 min of training of color-shape/orientation conjunction search, the ability to search for a certain conjunction target improved significantly and the learning effects did not transfer to a new target that differed from the trained target in both color and shape/orientation features. However, the learning effects were not strictly specific. In color-shape conjunction search, although the learning effect could not transfer to a same-shape different-color target, it almost completely transferred to a same-color different-shape target. In color-orientation conjunction search, the learning effect partly transferred to a new target that shared same color or same orientation with the trained target. Moreover, the sum of transfer effects for the same color target and the same orientation target in color-orientation conjunction search was algebraically equivalent to the learning effect for trained target, showing an additive transfer effect. The different transfer patterns in color-shape and color-orientation conjunction search learning might reflect the different complexity and discriminability between feature dimensions. These results suggested a feature-based attention enhancement mechanism rather than a unitization mechanism underlying the short-term PL of color-shape/orientation conjunction search.

  7. Young Drivers Perceptual Learning Styles Preferences and Traffic Accidents

    Directory of Open Access Journals (Sweden)

    Svetlana Čičević

    2011-05-01

    Full Text Available Young drivers are over-represented in crash and fatality statistics. One way of dealing with this problem is to achieve primary prevention through driver education and training. Factors of traffic accidents related to gender, age, driving experience, and self-assessments of safety and their relationship to perceptual learning styles (LS preferences have been analyzed in this study. The results show that auditory is the most prominent LS. Drivers in general, as well as drivers without traffic accidents favour visual and tactile LS. Both inexperienced and highly experienced drivers show relatively high preference of kinaesthetic style. Yet, taking into account driving experience we could see that the role of kinaesthetic LS is reduced, since individual LS has become more important. Based on the results of this study it can be concluded that a multivariate and multistage approach to driver education, taking into account differences in LS preferences, would be highly beneficial for traffic safety.

  8. Influence of Perceptual Saliency Hierarchy on Learning of Language Structures: An Artificial Language Learning Experiment.

    Science.gov (United States)

    Gong, Tao; Lam, Yau W; Shuai, Lan

    2016-01-01

    Psychological experiments have revealed that in normal visual perception of humans, color cues are more salient than shape cues, which are more salient than textural patterns. We carried out an artificial language learning experiment to study whether such perceptual saliency hierarchy (color > shape > texture) influences the learning of orders regulating adjectives of involved visual features in a manner either congruent (expressing a salient feature in a salient part of the form) or incongruent (expressing a salient feature in a less salient part of the form) with that hierarchy. Results showed that within a few rounds of learning participants could learn the compositional segments encoding the visual features and the order between them, generalize the learned knowledge to unseen instances with the same or different orders, and show learning biases for orders that are congruent with the perceptual saliency hierarchy. Although the learning performances for both the biased and unbiased orders became similar given more learning trials, our study confirms that this type of individual perceptual constraint could contribute to the structural configuration of language, and points out that such constraint, as well as other factors, could collectively affect the structural diversity in languages.

  9. Influence of Perceptual Saliency Hierarchy on Learning of Language Structures: An Artificial Language Learning Experiment

    Science.gov (United States)

    Gong, Tao; Lam, Yau W.; Shuai, Lan

    2016-01-01

    Psychological experiments have revealed that in normal visual perception of humans, color cues are more salient than shape cues, which are more salient than textural patterns. We carried out an artificial language learning experiment to study whether such perceptual saliency hierarchy (color > shape > texture) influences the learning of orders regulating adjectives of involved visual features in a manner either congruent (expressing a salient feature in a salient part of the form) or incongruent (expressing a salient feature in a less salient part of the form) with that hierarchy. Results showed that within a few rounds of learning participants could learn the compositional segments encoding the visual features and the order between them, generalize the learned knowledge to unseen instances with the same or different orders, and show learning biases for orders that are congruent with the perceptual saliency hierarchy. Although the learning performances for both the biased and unbiased orders became similar given more learning trials, our study confirms that this type of individual perceptual constraint could contribute to the structural configuration of language, and points out that such constraint, as well as other factors, could collectively affect the structural diversity in languages. PMID:28066281

  10. A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors

    Science.gov (United States)

    Rosalie, Simon M.; Muller, Sean

    2012-01-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…

  11. Dual mechanisms governing reward-driven perceptual learning [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dongho Kim

    2015-09-01

    Full Text Available In this review, we explore how reward signals shape perceptual learning in animals and humans. Perceptual learning is the well-established phenomenon by which extensive practice elicits selective improvement in one’s perceptual discrimination of basic visual features, such as oriented lines or moving stimuli. While perceptual learning has long been thought to rely on ‘top-down’ processes, such as attention and decision-making, a wave of recent findings suggests that these higher-level processes are, in fact, not necessary.  Rather, these recent findings indicate that reward signals alone, in the absence of the contribution of higher-level cognitive processes, are sufficient to drive the benefits of perceptual learning. Here, we will review the literature tying reward signals to perceptual learning. Based on these findings, we propose dual underlying mechanisms that give rise to perceptual learning: one mechanism that operates ‘automatically’ and is tied directly to reward signals, and another mechanism that involves more ‘top-down’, goal-directed computations.

  12. Auditory temporal perceptual learning and transfer in Chinese-speaking children with developmental dyslexia.

    Science.gov (United States)

    Zhang, Manli; Xie, Weiyi; Xu, Yanzhi; Meng, Xiangzhi

    2018-03-01

    Perceptual learning refers to the improvement of perceptual performance as a function of training. Recent studies found that auditory perceptual learning may improve phonological skills in individuals with developmental dyslexia in alphabetic writing system. However, whether auditory perceptual learning could also benefit the reading skills of those learning the Chinese logographic writing system is, as yet, unknown. The current study aimed to investigate the remediation effect of auditory temporal perceptual learning on Mandarin-speaking school children with developmental dyslexia. Thirty children with dyslexia were screened from a large pool of students in 3th-5th grades. They completed a series of pretests and then were assigned to either a non-training control group or a training group. The training group worked on a pure tone duration discrimination task for 7 sessions over 2 weeks with thirty minutes per session. Post-tests immediately after training and a follow-up test 2 months later were conducted. Analyses revealed a significant training effect in the training group relative to non-training group, as well as near transfer to the temporal interval discrimination task and far transfer to phonological awareness, character recognition and reading fluency. Importantly, the training effect and all the transfer effects were stable at the 2-month follow-up session. Further analyses found that a significant correlation between character recognition performance and learning rate mainly existed in the slow learning phase, the consolidation stage of perceptual learning, and this effect was modulated by an individuals' executive function. These findings indicate that adaptive auditory temporal perceptual learning can lead to learning and transfer effects on reading performance, and shed further light on the potential role of basic perceptual learning in the remediation and prevention of developmental dyslexia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Perceptual learning shapes multisensory causal inference via two distinct mechanisms.

    Science.gov (United States)

    McGovern, David P; Roudaia, Eugenie; Newell, Fiona N; Roach, Neil W

    2016-04-19

    To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a degree of tolerance for temporal discrepancies. Recent research suggests that the width of this 'temporal binding window' can be reduced through perceptual learning, however, little is known about the mechanisms underlying these experience-dependent effects. Here, in separate experiments, we measure the temporal and spatial binding windows of human participants before and after training on an audiovisual temporal discrimination task. We show that training leads to two distinct effects on multisensory integration in the form of (i) a specific narrowing of the temporal binding window that does not transfer to spatial binding and (ii) a general reduction in the magnitude of crossmodal interactions across all spatiotemporal disparities. These effects arise naturally from a Bayesian model of causal inference in which learning improves the precision of audiovisual timing estimation, whilst concomitantly decreasing the prior expectation that stimuli emanate from a common source.

  14. Supramodal processing optimizes visual perceptual learning and plasticity.

    Science.gov (United States)

    Zilber, Nicolas; Ciuciu, Philippe; Gramfort, Alexandre; Azizi, Leila; van Wassenhove, Virginie

    2014-06-01

    Multisensory interactions are ubiquitous in cortex and it has been suggested that sensory cortices may be supramodal i.e. capable of functional selectivity irrespective of the sensory modality of inputs (Pascual-Leone and Hamilton, 2001; Renier et al., 2013; Ricciardi and Pietrini, 2011; Voss and Zatorre, 2012). Here, we asked whether learning to discriminate visual coherence could benefit from supramodal processing. To this end, three groups of participants were briefly trained to discriminate which of a red or green intermixed population of random-dot-kinematograms (RDKs) was most coherent in a visual display while being recorded with magnetoencephalography (MEG). During training, participants heard no sound (V), congruent acoustic textures (AV) or auditory noise (AVn); importantly, congruent acoustic textures shared the temporal statistics - i.e. coherence - of visual RDKs. After training, the AV group significantly outperformed participants trained in V and AVn although they were not aware of their progress. In pre- and post-training blocks, all participants were tested without sound and with the same set of RDKs. When contrasting MEG data collected in these experimental blocks, selective differences were observed in the dynamic pattern and the cortical loci responsive to visual RDKs. First and common to all three groups, vlPFC showed selectivity to the learned coherence levels whereas selectivity in visual motion area hMT+ was only seen for the AV group. Second and solely for the AV group, activity in multisensory cortices (mSTS, pSTS) correlated with post-training performances; additionally, the latencies of these effects suggested feedback from vlPFC to hMT+ possibly mediated by temporal cortices in AV and AVn groups. Altogether, we interpret our results in the context of the Reverse Hierarchy Theory of learning (Ahissar and Hochstein, 2004) in which supramodal processing optimizes visual perceptual learning by capitalizing on sensory

  15. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.

    Science.gov (United States)

    Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo

    2014-09-01

    Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus

  16. Perceptual Learning: 12-Month-Olds' Discrimination of Monkey Faces

    Science.gov (United States)

    Fair, Joseph; Flom, Ross; Jones, Jacob; Martin, Justin

    2012-01-01

    Six-month-olds reliably discriminate different monkey and human faces whereas 9-month-olds only discriminate different human faces. It is often falsely assumed that perceptual narrowing reflects a permanent change in perceptual abilities. In 3 experiments, ninety-six 12-month-olds' discrimination of unfamiliar monkey faces was examined. Following…

  17. Gains following perceptual learning are closely linked to the initial visual acuity.

    Science.gov (United States)

    Yehezkel, Oren; Sterkin, Anna; Lev, Maria; Levi, Dennis M; Polat, Uri

    2016-04-28

    The goal of the present study was to evaluate the dependence of perceptual learning gains on initial visual acuity (VA), in a large sample of subjects with a wide range of VAs. A large sample of normally sighted and presbyopic subjects (N = 119; aged 40 to 63) with a wide range of uncorrected near visual acuities (VA, -0.12 to 0.8 LogMAR), underwent perceptual learning. Training consisted of detecting briefly presented Gabor stimuli under spatial and temporal masking conditions. Consistent with previous findings, perceptual learning induced a significant improvement in near VA and reading speed under conditions of limited exposure duration. Our results show that the improvements in VA and reading speed observed following perceptual learning are closely linked to the initial VA, with only a minor fraction of the observed improvement that may be attributed to the additional sessions performed by those with the worse VA.

  18. Neuroanatomical and cognitive mediators of age-related differences in perceptual priming and learning

    OpenAIRE

    Kennedy, Kristen M.; Rodrigue, Karen M.; Head, Denise; Gunning-Dixon, Faith; Raz, Naftali

    2009-01-01

    Our objectives were to assess age differences in perceptual repetition priming and perceptual skill learning, and to determine whether they are mediated by cognitive resources and regional cerebral volume differences. Fragmented picture identification paradigm allows the study of both priming and learning within the same task. We presented this task to 169 adults (ages 18–80), assessed working memory and fluid intelligence, and measured brain volumes of regions that were deemed relevant to th...

  19. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Directory of Open Access Journals (Sweden)

    David Alais

    2010-06-01

    Full Text Available An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question.Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ. Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones was slightly weaker than visual learning (lateralised grating patches. Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes.The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order

  20. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Science.gov (United States)

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be

  1. Neural plasticity underlying visual perceptual learning in aging.

    Science.gov (United States)

    Mishra, Jyoti; Rolle, Camarin; Gazzaley, Adam

    2015-07-01

    Healthy aging is associated with a decline in basic perceptual abilities, as well as higher-level cognitive functions such as working memory. In a recent perceptual training study using moving sweeps of Gabor stimuli, Berry et al. (2010) observed that older adults significantly improved discrimination abilities on the most challenging perceptual tasks that presented paired sweeps at rapid rates of 5 and 10 Hz. Berry et al. further showed that this perceptual training engendered transfer-of-benefit to an untrained working memory task. Here, we investigated the neural underpinnings of the improvements in these perceptual tasks, as assessed by event-related potential (ERP) recordings. Early visual ERP components time-locked to stimulus onset were compared pre- and post-training, as well as relative to a no-contact control group. The visual N1 and N2 components were significantly enhanced after training, and the N1 change correlated with improvements in perceptual discrimination on the task. Further, the change observed for the N1 and N2 was associated with the rapidity of the perceptual challenge; the visual N1 (120-150 ms) was enhanced post-training for 10 Hz sweep pairs, while the N2 (240-280 ms) was enhanced for the 5 Hz sweep pairs. We speculate that these observed post-training neural enhancements reflect improvements by older adults in the allocation of attention that is required to accurately dissociate perceptually overlapping stimuli when presented in rapid sequence. This article is part of a Special Issue entitled SI: Memory Å. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Broad-based visual benefits from training with an integrated perceptual-learning video game.

    Science.gov (United States)

    Deveau, Jenni; Lovcik, Gary; Seitz, Aaron R

    2014-06-01

    Perception is the window through which we understand all information about our environment, and therefore deficits in perception due to disease, injury, stroke or aging can have significant negative impacts on individuals' lives. Research in the field of perceptual learning has demonstrated that vision can be improved in both normally seeing and visually impaired individuals, however, a limitation of most perceptual learning approaches is their emphasis on isolating particular mechanisms. In the current study, we adopted an integrative approach where the goal is not to achieve highly specific learning but instead to achieve general improvements to vision. We combined multiple perceptual learning approaches that have individually contributed to increasing the speed, magnitude and generality of learning into a perceptual-learning based video-game. Our results demonstrate broad-based benefits of vision in a healthy adult population. Transfer from the game includes; improvements in acuity (measured with self-paced standard eye-charts), improvement along the full contrast sensitivity function, and improvements in peripheral acuity and contrast thresholds. The use of this type of this custom video game framework built up from psychophysical approaches takes advantage of the benefits found from video game training while maintaining a tight link to psychophysical designs that enable understanding of mechanisms of perceptual learning and has great potential both as a scientific tool and as therapy to help improve vision. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Shape-specific perceptual learning in a figure-ground segregation task.

    Science.gov (United States)

    Yi, Do-Joon; Olson, Ingrid R; Chun, Marvin M

    2006-03-01

    What does perceptual experience contribute to figure-ground segregation? To study this question, we trained observers to search for symmetric dot patterns embedded in random dot backgrounds. Training improved shape segmentation, but learning did not completely transfer either to untrained locations or to untrained shapes. Such partial specificity persisted for a month after training. Interestingly, training on shapes in empty backgrounds did not help segmentation of the trained shapes in noisy backgrounds. Our results suggest that perceptual training increases the involvement of early sensory neurons in the segmentation of trained shapes, and that successful segmentation requires perceptual skills beyond shape recognition alone.

  4. Visual Perceptual Learning and its Specificity and Transfer: A New Perspective

    Directory of Open Access Journals (Sweden)

    Cong Yu

    2011-05-01

    Full Text Available Visual perceptual learning is known to be location and orientation specific, and is thus assumed to reflect the neuronal plasticity in the early visual cortex. However, in recent studies we created “Double training” and “TPE” procedures to demonstrate that these “fundamental” specificities of perceptual learning are in some sense artifacts and that learning can completely transfer to a new location or orientation. We proposed a rule-based learning theory to reinterpret perceptual learning and its specificity and transfer: A high-level decision unit learns the rules of performing a visual task through training. However, the learned rules cannot be applied to a new location or orientation automatically because the decision unit cannot functionally connect to new visual inputs with sufficient strength because these inputs are unattended or even suppressed during training. It is double training and TPE training that reactivate these new inputs, so that the functional connections can be strengthened to enable rule application and learning transfer. Currently we are investigating the properties of perceptual learning free from the bogus specificities, and the results provide some preliminary but very interesting insights into how training reshapes the functional connections between the high-level decision units and sensory inputs in the brain.

  5. Metacognitive Confidence Increases with, but Does Not Determine, Visual Perceptual Learning.

    Science.gov (United States)

    Zizlsperger, Leopold; Kümmel, Florian; Haarmeier, Thomas

    2016-01-01

    While perceptual learning increases objective sensitivity, the effects on the constant interaction of the process of perception and its metacognitive evaluation have been rarely investigated. Visual perception has been described as a process of probabilistic inference featuring metacognitive evaluations of choice certainty. For visual motion perception in healthy, naive human subjects here we show that perceptual sensitivity and confidence in it increased with training. The metacognitive sensitivity-estimated from certainty ratings by a bias-free signal detection theoretic approach-in contrast, did not. Concomitant 3Hz transcranial alternating current stimulation (tACS) was applied in compliance with previous findings on effective high-low cross-frequency coupling subserving signal detection. While perceptual accuracy and confidence in it improved with training, there were no statistically significant tACS effects. Neither metacognitive sensitivity in distinguishing between their own correct and incorrect stimulus classifications, nor decision confidence itself determined the subjects' visual perceptual learning. Improvements of objective performance and the metacognitive confidence in it were rather determined by the perceptual sensitivity at the outset of the experiment. Post-decision certainty in visual perceptual learning was neither independent of objective performance, nor requisite for changes in sensitivity, but rather covaried with objective performance. The exact functional role of metacognitive confidence in human visual perception has yet to be determined.

  6. Exogenous and endogenous attention during perceptual learning differentially affect post-training target thresholds

    Science.gov (United States)

    Mukai, Ikuko; Bahadur, Kandy; Kesavabhotla, Kartik; Ungerleider, Leslie G.

    2012-01-01

    There is conflicting evidence in the literature regarding the role played by attention in perceptual learning. To further examine this issue, we independently manipulated exogenous and endogenous attention and measured the rate of perceptual learning of oriented Gabor patches presented in different quadrants of the visual field. In this way, we could track learning at attended, divided-attended, and unattended locations. We also measured contrast thresholds of the Gabor patches before and after training. Our results showed that, for both exogenous and endogenous attention, accuracy in performing the orientation discrimination improved to a greater extent at attended than at unattended locations. Importantly, however, only exogenous attention resulted in improved contrast thresholds. These findings suggest that both exogenous and endogenous attention facilitate perceptual learning, but that these two types of attention may be mediated by different neural mechanisms. PMID:21282340

  7. The Birth of Words: Ten-Month-Olds Learn Words through Perceptual Salience

    Science.gov (United States)

    Pruden, Shannon M.; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick; Hennon, Elizabeth A.

    2006-01-01

    A core task in language acquisition is mapping words onto objects, actions, and events. Two studies investigated how children learn to map novel labels onto novel objects. Study 1 investigated whether 10-month-olds use both perceptual and social cues to learn a word. Study 2, a control study, tested whether infants paired the label with a…

  8. Perceptual Learning in Early Mathematics: Interacting with Problem Structure Improves Mapping, Solving and Fluency

    Science.gov (United States)

    Thai, Khanh-Phuong; Son, Ji Y.; Hoffman, Jessica; Devers, Christopher; Kellman, Philip J.

    2014-01-01

    Mathematics is the study of structure but students think of math as solving problems according to rules. Students can learn procedures, but they often have trouble knowing when to apply learned procedures, especially to problems unlike those they trained with. In this study, the authors rely on the psychological mechanism of perceptual learning…

  9. Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences.

    Science.gov (United States)

    Chang, Acer Y-C; Schwartzman, David J; VanRullen, Rufin; Kanai, Ryota; Seth, Anil K

    2017-08-30

    A novel neural signature of active visual processing has recently been described in the form of the "perceptual echo", in which the cross-correlation between a sequence of randomly fluctuating luminance values and occipital electrophysiological signals exhibits a long-lasting periodic (∼100 ms cycle) reverberation of the input stimulus (VanRullen and Macdonald, 2012). As yet, however, the mechanisms underlying the perceptual echo and its function remain unknown. Reasoning that natural visual signals often contain temporally predictable, though nonperiodic features, we hypothesized that the perceptual echo may reflect a periodic process associated with regularity learning. To test this hypothesis, we presented subjects with successive repetitions of a rapid nonperiodic luminance sequence, and examined the effects on the perceptual echo, finding that echo amplitude linearly increased with the number of presentations of a given luminance sequence. These data suggest that the perceptual echo reflects a neural signature of regularity learning.Furthermore, when a set of repeated sequences was followed by a sequence with inverted luminance polarities, the echo amplitude decreased to the same level evoked by a novel stimulus sequence. Crucially, when the original stimulus sequence was re-presented, the echo amplitude returned to a level consistent with the number of presentations of this sequence, indicating that the visual system retained sequence-specific information, for many seconds, even in the presence of intervening visual input. Altogether, our results reveal a previously undiscovered regularity learning mechanism within the human visual system, reflected by the perceptual echo. SIGNIFICANCE STATEMENT How the brain encodes and learns fast-changing but nonperiodic visual input remains unknown, even though such visual input characterizes natural scenes. We investigated whether the phenomenon of "perceptual echo" might index such learning. The perceptual echo is a

  10. The role of experience-based perceptual learning in the face inversion effect.

    Science.gov (United States)

    Civile, Ciro; Obhi, Sukhvinder S; McLaren, I P L

    2018-04-03

    Perceptual learning of the type we consider here is a consequence of experience with a class of stimuli. It amounts to an enhanced ability to discriminate between stimuli. We argue that it contributes to the ability to distinguish between faces and recognize individuals, and in particular contributes to the face inversion effect (better recognition performance for upright vs inverted faces). Previously, we have shown that experience with a prototype defined category of checkerboards leads to perceptual learning, that this produces an inversion effect, and that this effect can be disrupted by Anodal tDCS to Fp3 during pre-exposure. If we can demonstrate that the same tDCS manipulation also disrupts the inversion effect for faces, then this will strengthen the claim that perceptual learning contributes to that effect. The important question, then, is whether this tDCS procedure would significantly reduce the inversion effect for faces; stimuli that we have lifelong expertise with and for which perceptual learning has already occurred. Consequently, in the experiment reported here we investigated the effects of anodal tDCS at Fp3 during an old/new recognition task for upright and inverted faces. Our results show that stimulation significantly reduced the face inversion effect compared to controls. The effect was one of reducing recognition performance for upright faces. This result is the first to show that tDCS affects perceptual learning that has already occurred, disrupting individuals' ability to recognize upright faces. It provides further support for our account of perceptual learning and its role as a key factor in face recognition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process.

    Science.gov (United States)

    Hamamé, Carlos M; Cosmelli, Diego; Henriquez, Rodrigo; Aboitiz, Francisco

    2011-04-26

    Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.

  12. Incidental orthographic learning during a color detection task.

    Science.gov (United States)

    Protopapas, Athanassios; Mitsi, Anna; Koustoumbardis, Miltiadis; Tsitsopoulou, Sofia M; Leventi, Marianna; Seitz, Aaron R

    2017-09-01

    Orthographic learning refers to the acquisition of knowledge about specific spelling patterns forming words and about general biases and constraints on letter sequences. It is thought to occur by strengthening simultaneously activated visual and phonological representations during reading. Here we demonstrate that a visual perceptual learning procedure that leaves no time for articulation can result in orthographic learning evidenced in improved reading and spelling performance. We employed task-irrelevant perceptual learning (TIPL), in which the stimuli to be learned are paired with an easy task target. Assorted line drawings and difficult-to-spell words were presented in red color among sequences of other black-colored words and images presented in rapid succession, constituting a fast-TIPL procedure with color detection being the explicit task. In five experiments, Greek children in Grades 4-5 showed increased recognition of words and images that had appeared in red, both during and after the training procedure, regardless of within-training testing, and also when targets appeared in blue instead of red. Significant transfer to reading and spelling emerged only after increased training intensity. In a sixth experiment, children in Grades 2-3 showed generalization to words not presented during training that carried the same derivational affixes as in the training set. We suggest that reinforcement signals related to detection of the target stimuli contribute to the strengthening of orthography-phonology connections beyond earlier levels of visually-based orthographic representation learning. These results highlight the potential of perceptual learning procedures for the reinforcement of higher-level orthographic representations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Generalization of perceptual and motor learning: a causal link with memory encoding and consolidation?

    Science.gov (United States)

    Censor, N

    2013-10-10

    In both perceptual and motor learning, numerous studies have shown specificity of learning to the trained eye or hand and to the physical features of the task. However, generalization of learning is possible in both perceptual and motor domains. Here, I review evidence for perceptual and motor learning generalization, suggesting that generalization patterns are affected by the way in which the original memory is encoded and consolidated. Generalization may be facilitated during fast learning, with possible engagement of higher-order brain areas recurrently interacting with the primary visual or motor cortices encoding the stimuli or movements' memories. Such generalization may be supported by sleep, involving functional interactions between low and higher-order brain areas. Repeated exposure to the task may alter generalization patterns of learning and overall offline learning. Development of unifying frameworks across learning modalities and better understanding of the conditions under which learning can generalize may enable to gain insight regarding the neural mechanisms underlying procedural learning and have useful clinical implications. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Pure perceptual-based learning of second-, third-, and fourth-order sequential probabilities.

    Science.gov (United States)

    Remillard, Gilbert

    2011-07-01

    There is evidence that sequence learning in the traditional serial reaction time task (SRTT), where target location is the response dimension, and sequence learning in the perceptual SRTT, where target location is not the response dimension, are handled by different mechanisms. The ability of the latter mechanism to learn sequential contingencies that can be learned by the former mechanism was examined. Prior research has established that people can learn second-, third-, and fourth-order probabilities in the traditional SRTT. The present study reveals that people can learn such probabilities in the perceptual SRTT. This suggests that the two mechanisms may have similar architectures. A possible neural basis of the two mechanisms is discussed.

  15. Practice makes it better: A psychophysical study of visual perceptual learning and its transfer effects on aging.

    Science.gov (United States)

    Li, Xuan; Allen, Philip A; Lien, Mei-Ching; Yamamoto, Naohide

    2017-02-01

    Previous studies on perceptual learning, acquiring a new skill through practice, appear to stimulate brain plasticity and enhance performance (Fiorentini & Berardi, 1981). The present study aimed to determine (a) whether perceptual learning can be used to compensate for age-related declines in perceptual abilities, and (b) whether the effect of perceptual learning can be transferred to untrained stimuli and subsequently improve capacity of visual working memory (VWM). We tested both healthy younger and older adults in a 3-day training session using an orientation discrimination task. A matching-to-sample psychophysical method was used to measure improvements in orientation discrimination thresholds and reaction times (RTs). Results showed that both younger and older adults improved discrimination thresholds and RTs with similar learning rates and magnitudes. Furthermore, older adults exhibited a generalization of improvements to 3 untrained orientations that were close to the training orientation and benefited more compared with younger adults from the perceptual learning as they transferred learning effects to the VWM performance. We conclude that through perceptual learning, older adults can partially counteract age-related perceptual declines, generalize the learning effect to other stimulus conditions, and further overcome the limitation of using VWM capacity to perform a perceptual task. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Heterogeneity in Perceptual Category Learning by High Functioning Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Eduardo eMercado

    2015-06-01

    Full Text Available Previous research suggests that high functioning children with Autism Spectrum Disorder (ASD sometimes have problems learning categories, but often appear to perform normally in categorization tasks. The deficits that individuals with ASD show when learning categories have been attributed to executive dysfunction, general deficits in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and abilities. Several of these psychological explanations for category learning deficits have been associated with neural abnormalities such as cortical underconnectivity. The present study evaluated how well existing neurally-based theories account for atypical perceptual category learning shown by high functioning children with ASD across multiple category learning tasks involving novel, abstract shapes. Consistent with earlier results, children’s performances revealed two distinct patterns of learning and generalization associated with ASD: one was indistinguishable from performance in typically developing children; the other revealed dramatic impairments. These two patterns were evident regardless of training regimen or stimulus set. Surprisingly, some children with ASD showed both patterns. Simulations of perceptual category learning could account for the two observed patterns in terms of differences in neural plasticity. However, no current psychological or neural theory adequately explains why a child with ASD might show such large fluctuations in category learning ability across training conditions or stimulus sets.

  17. Heterogeneity in perceptual category learning by high functioning children with autism spectrum disorder.

    Science.gov (United States)

    Mercado, Eduardo; Church, Barbara A; Coutinho, Mariana V C; Dovgopoly, Alexander; Lopata, Christopher J; Toomey, Jennifer A; Thomeer, Marcus L

    2015-01-01

    Previous research suggests that high functioning (HF) children with autism spectrum disorder (ASD) sometimes have problems learning categories, but often appear to perform normally in categorization tasks. The deficits that individuals with ASD show when learning categories have been attributed to executive dysfunction, general deficits in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and abilities. Several of these psychological explanations for category learning deficits have been associated with neural abnormalities such as cortical underconnectivity. The present study evaluated how well existing neurally based theories account for atypical perceptual category learning shown by HF children with ASD across multiple category learning tasks involving novel, abstract shapes. Consistent with earlier results, children's performances revealed two distinct patterns of learning and generalization associated with ASD: one was indistinguishable from performance in typically developing children; the other revealed dramatic impairments. These two patterns were evident regardless of training regimen or stimulus set. Surprisingly, some children with ASD showed both patterns. Simulations of perceptual category learning could account for the two observed patterns in terms of differences in neural plasticity. However, no current psychological or neural theory adequately explains why a child with ASD might show such large fluctuations in category learning ability across training conditions or stimulus sets.

  18. A perceptual learning deficit in Chinese developmental dyslexia as revealed by visual texture discrimination training.

    Science.gov (United States)

    Wang, Zhengke; Cheng-Lai, Alice; Song, Yan; Cutting, Laurie; Jiang, Yuzheng; Lin, Ou; Meng, Xiangzhi; Zhou, Xiaolin

    2014-08-01

    Learning to read involves discriminating between different written forms and establishing connections with phonology and semantics. This process may be partially built upon visual perceptual learning, during which the ability to process the attributes of visual stimuli progressively improves with practice. The present study investigated to what extent Chinese children with developmental dyslexia have deficits in perceptual learning by using a texture discrimination task, in which participants were asked to discriminate the orientation of target bars. Experiment l demonstrated that, when all of the participants started with the same initial stimulus-to-mask onset asynchrony (SOA) at 300 ms, the threshold SOA, adjusted according to response accuracy for reaching 80% accuracy, did not show a decrement over 5 days of training for children with dyslexia, whereas this threshold SOA steadily decreased over the training for the control group. Experiment 2 used an adaptive procedure to determine the threshold SOA for each participant during training. Results showed that both the group of dyslexia and the control group attained perceptual learning over the sessions in 5 days, although the threshold SOAs were significantly higher for the group of dyslexia than for the control group; moreover, over individual participants, the threshold SOA negatively correlated with their performance in Chinese character recognition. These findings suggest that deficits in visual perceptual processing and learning might, in part, underpin difficulty in reading Chinese. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Perceptual statistical learning over one week in child speech production.

    Science.gov (United States)

    Richtsmeier, Peter T; Goffman, Lisa

    2017-07-01

    What cognitive mechanisms account for the trajectory of speech sound development, in particular, gradually increasing accuracy during childhood? An intriguing potential contributor is statistical learning, a type of learning that has been studied frequently in infant perception but less often in child speech production. To assess the relevance of statistical learning to developing speech accuracy, we carried out a statistical learning experiment with four- and five-year-olds in which statistical learning was examined over one week. Children were familiarized with and tested on word-medial consonant sequences in novel words. There was only modest evidence for statistical learning, primarily in the first few productions of the first session. This initial learning effect nevertheless aligns with previous statistical learning research. Furthermore, the overall learning effect was similar to an estimate of weekly accuracy growth based on normative studies. The results implicate other important factors in speech sound development, particularly learning via production. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Factors of Predicted Learning Disorders and their Interaction with Attentional and Perceptual Training Procedures.

    Science.gov (United States)

    Friar, John T.

    Two factors of predicted learning disorders were investigated: (1) inability to maintain appropriate classroom behavior (BEH), (2) perceptual discrimination deficit (PERC). Three groups of first-graders (BEH, PERC, normal control) were administered measures of impulse control, distractability, auditory discrimination, and visual discrimination.…

  1. The Relationship between Perceptual Learning Style Preferences and Multiple Intelligences among Iranian EFL Learners

    Science.gov (United States)

    Baleghizadeh, Sasan; Shayeghi, Rose

    2014-01-01

    The purpose of the present study is to investigate the relationships between preferences of Multiple Intelligences and perceptual/social learning styles. Two self-report questionnaires were administered to a total of 207 male and female participants. Pearson correlation results revealed statistically significant positive relations between…

  2. Exploring the Differences of Undergraduate Students' Perceptual Learning Styles in International Business Study

    Science.gov (United States)

    Ding, Ning; Lin, Wei

    2013-01-01

    More than 45,000 international students are now studying for bachelor programs in The Netherlands. The number of Asian students increased dramatically in the past decade. The current research aims at examining the differences between Western European and Asian students' perceptual learning styles, and exploring the relationships between students'…

  3. Exploring the differences of undergraduate students’ perceptual learning styles in international business study

    NARCIS (Netherlands)

    Ding, Ning; Lin, Wei

    2013-01-01

    More than 45,000 international students are now studying for bachelor programs in the Netherlands. The number of Asian students increased dramatically in the past decade. The current research aims at examining the differences between Western European and Asian students’ perceptual learning styles,

  4. Semantic Features, Perceptual Expectations, and Frequency as Factors in the Learning of Polar Spatial Adjective Concepts.

    Science.gov (United States)

    Dunckley, Candida J. Lutes; Radtke, Robert C.

    Two semantic theories of word learning, a perceptual complexity hypothesis (H. Clark, 1970) and a quantitative complexity hypothesis (E. Clark, 1972) were tested by teaching 24 preschoolers and 16 college students CVC labels for five polar spatial adjective concepts having single word representations in English, and for three having no direct…

  5. Learning perceptual aspects of diagnosis in medicine via eye movement modeling examples on patient video cases

    NARCIS (Netherlands)

    Jarodzka, Halszka; Balslev, Thomas; Holmqvist, Kenneth; Nyström, Marcus; Scheiter, Katharina; Gerjets, Peter; Eika, Berit

    2010-01-01

    Jarodzka, H., Balslev, T., Holmqvist, K., Nyström, M., Scheiter, K., Gerjets, P., & Eika, B. (2010). Learning perceptual aspects of diagnosis in medicine via eye movement modeling examples on patient video cases. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the

  6. Learning perceptual aspects of diagnosis in medicine via eye movement modeling examples on patient video cases

    NARCIS (Netherlands)

    Jarodzka, Halszka; Balslev, Thomas; Holmqvist, Kenneth; Nyström, Marcus; Scheiter, Katharina; Gerjets, Peter; Eika, Berit

    2010-01-01

    Jarodzka, H., Balslev, T., Holmqvist, K., Nyström, M., Scheiter, K., Gerjets, P., & Eika, B. (2010, August). Learning perceptual aspects of diagnosis in medicine via eye movement modeling examples on patient video cases. Poster presented at the 32nd Annual Conference of the Cognitive Science

  7. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, Bianca; Boonstra, F. Nienke; Cox, Ralf F. A.; van Rens, Ger; Cillessen, Antonius H. N.

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  8. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.A.; van Rens, G.H.M.B.; Cillessen, A.H.N.

    2013-01-01

    Purpose. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. Methods. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  9. Perceptual learning in children with visual impairment improves near visual acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.; Rens, G. van; Cillessen, A.H.

    2013-01-01

    PURPOSE: This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. METHODS: Participants were 45 children with visual impairment and 29 children with normal vision. Children

  10. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.A.; Rens, G.H.M.B. van; Cillessen, A.H.N.

    2013-01-01

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  11. Trial-dependent psychometric functions accounting for perceptual learning in 2-AFC discrimination tasks.

    Science.gov (United States)

    Kattner, Florian; Cochrane, Aaron; Green, C Shawn

    2017-09-01

    The majority of theoretical models of learning consider learning to be a continuous function of experience. However, most perceptual learning studies use thresholds estimated by fitting psychometric functions to independent blocks, sometimes then fitting a parametric function to these block-wise estimated thresholds. Critically, such approaches tend to violate the basic principle that learning is continuous through time (e.g., by aggregating trials into large "blocks" for analysis that each assume stationarity, then fitting learning functions to these aggregated blocks). To address this discrepancy between base theory and analysis practice, here we instead propose fitting a parametric function to thresholds from each individual trial. In particular, we implemented a dynamic psychometric function whose parameters were allowed to change continuously with each trial, thus parameterizing nonstationarity. We fit the resulting continuous time parametric model to data from two different perceptual learning tasks. In nearly every case, the quality of the fits derived from the continuous time parametric model outperformed the fits derived from a nonparametric approach wherein separate psychometric functions were fit to blocks of trials. Because such a continuous trial-dependent model of perceptual learning also offers a number of additional advantages (e.g., the ability to extrapolate beyond the observed data; the ability to estimate performance on individual critical trials), we suggest that this technique would be a useful addition to each psychophysicist's analysis toolkit.

  12. Time course influences transfer of visual perceptual learning across spatial location.

    Science.gov (United States)

    Larcombe, S J; Kennard, C; Bridge, H

    2017-06-01

    Visual perceptual learning describes the improvement of visual perception with repeated practice. Previous research has established that the learning effects of perceptual training may be transferable to untrained stimulus attributes such as spatial location under certain circumstances. However, the mechanisms involved in transfer have not yet been fully elucidated. Here, we investigated the effect of altering training time course on the transferability of learning effects. Participants were trained on a motion direction discrimination task or a sinusoidal grating orientation discrimination task in a single visual hemifield. The 4000 training trials were either condensed into one day, or spread evenly across five training days. When participants were trained over a five-day period, there was transfer of learning to both the untrained visual hemifield and the untrained task. In contrast, when the same amount of training was condensed into a single day, participants did not show any transfer of learning. Thus, learning time course may influence the transferability of perceptual learning effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Increase in MST activity correlates with visual motion learning: A functional MRI study of perceptual learning.

    Science.gov (United States)

    Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly

    2018-01-01

    Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  14. Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning.

    Science.gov (United States)

    Molloy, Katharine; Moore, David R; Sohoglu, Ediz; Amitay, Sygal

    2012-01-01

    The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple training sessions provided benefit over a single session. We investigated the efficacy of different regimens that varied in the distribution of practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While learning was relatively robust to variations in regimen, the group with the shortest training sessions (∼8 min) had significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the longest training sessions (>1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following cessation of training, whereas the multi-session group showed no further improvement once training had ceased. Shorter training sessions were advantageous because they allowed for more latent, between-session and post-training learning to emerge. These findings suggest that efficient regimens should use short training sessions, and optimized spacing between sessions.

  15. Perceptual Learning as a potential treatment for amblyopia: a mini-review

    Science.gov (United States)

    Levi, Dennis M.; Li, Roger W.

    2009-01-01

    Amblyopia is a developmental abnormality that results from physiological alterations in the visual cortex and impairs form vision. It is a consequence of abnormal binocular visual experience during the “sensitive period” early in life. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. A number of studies over the last twelve years or so suggest that Perceptual Learning (PL) may provide an important new method for treating amblyopia. The aim of this mini-review is to provide a critical review and “meta-analysis” of perceptual learning in adults and children with amblyopia, with a view to extracting principles that might make PL more effective and efficient. Specifically we evaluate: What factors influence the outcome of perceptual learning?Specificity and generalization – two sides of the coin.Do the improvements last?How does PL improve visual function?Should PL be part of the treatment armamentarium? A review of the extant studies makes it clear that practicing a visual task results in a long-lasting improvement in performance in an amblyopic eye. The improvement is generally strongest for the trained eye, task, stimulus and orientation, but appears to have a broader spatial frequency bandwidth than in normal vision. Importantly, practicing on a variety of different tasks and stimuli seems to transfer to improved visual acuity. Perceptual learning operates via a reduction of internal neural noise and/or through more efficient use of the stimulus information by retuning the weighting of the information. The success of PL raises the question of whether it should become a standard part of the armamentarium for the clinical treatment of amblyopia, and suggests several important principles for effective perceptual learning in amblyopia. PMID:19250947

  16. Tensor Voting A Perceptual Organization Approach to Computer Vision and Machine Learning

    CERN Document Server

    Mordohai, Philippos

    2006-01-01

    This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organiza

  17. Dissociation of rapid response learning and facilitation in perceptual and conceptual networks of person recognition.

    Science.gov (United States)

    Valt, Christian; Klein, Christoph; Boehm, Stephan G

    2015-08-01

    Repetition priming is a prominent example of non-declarative memory, and it increases the accuracy and speed of responses to repeatedly processed stimuli. Major long-hold memory theories posit that repetition priming results from facilitation within perceptual and conceptual networks for stimulus recognition and categorization. Stimuli can also be bound to particular responses, and it has recently been suggested that this rapid response learning, not network facilitation, provides a sound theory of priming of object recognition. Here, we addressed the relevance of network facilitation and rapid response learning for priming of person recognition with a view to advance general theories of priming. In four experiments, participants performed conceptual decisions like occupation or nationality judgments for famous faces. The magnitude of rapid response learning varied across experiments, and rapid response learning co-occurred and interacted with facilitation in perceptual and conceptual networks. These findings indicate that rapid response learning and facilitation in perceptual and conceptual networks are complementary rather than competing theories of priming. Thus, future memory theories need to incorporate both rapid response learning and network facilitation as individual facets of priming. © 2014 The British Psychological Society.

  18. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training.

    Science.gov (United States)

    Bernstein, Lynne E; Auer, Edward T; Eberhardt, Silvio P; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.

  19. Predictive codes of familiarity and context during the perceptual learning of facial identities

    Science.gov (United States)

    Apps, Matthew A. J.; Tsakiris, Manos

    2013-11-01

    Face recognition is a key component of successful social behaviour. However, the computational processes that underpin perceptual learning and recognition as faces transition from unfamiliar to familiar are poorly understood. In predictive coding, learning occurs through prediction errors that update stimulus familiarity, but recognition is a function of both stimulus and contextual familiarity. Here we show that behavioural responses on a two-option face recognition task can be predicted by the level of contextual and facial familiarity in a computational model derived from predictive-coding principles. Using fMRI, we show that activity in the superior temporal sulcus varies with the contextual familiarity in the model, whereas activity in the fusiform face area covaries with the prediction error parameter that updated facial familiarity. Our results characterize the key computations underpinning the perceptual learning of faces, highlighting that the functional properties of face-processing areas conform to the principles of predictive coding.

  20. The role of alpha-rhythm states in perceptual learning: insights from experiments and computational models

    Science.gov (United States)

    Sigala, Rodrigo; Haufe, Sebastian; Roy, Dipanjan; Dinse, Hubert R.; Ritter, Petra

    2014-01-01

    During the past two decades growing evidence indicates that brain oscillations in the alpha band (~10 Hz) not only reflect an “idle” state of cortical activity, but also take a more active role in the generation of complex cognitive functions. A recent study shows that more than 60% of the observed inter-subject variability in perceptual learning can be ascribed to ongoing alpha activity. This evidence indicates a significant role of alpha oscillations for perceptual learning and hence motivates to explore the potential underlying mechanisms. Hence, it is the purpose of this review to highlight existent evidence that ascribes intrinsic alpha oscillations a role in shaping our ability to learn. In the review, we disentangle the alpha rhythm into different neural signatures that control information processing within individual functional building blocks of perceptual learning. We further highlight computational studies that shed light on potential mechanisms regarding how alpha oscillations may modulate information transfer and connectivity changes relevant for learning. To enable testing of those model based hypotheses, we emphasize the need for multidisciplinary approaches combining assessment of behavior and multi-scale neuronal activity, active modulation of ongoing brain states and computational modeling to reveal the mathematical principles of the complex neuronal interactions. In particular we highlight the relevance of multi-scale modeling frameworks such as the one currently being developed by “The Virtual Brain” project. PMID:24772077

  1. The role of alpha-rhythm states in perceptual learning: insights from experiments and computational models

    Directory of Open Access Journals (Sweden)

    Rodrigo eSigala

    2014-04-01

    Full Text Available During the past two decades growing evidence indicates that brain oscillations in the alpha band (~10 Hz not only reflect an ‘idle’ state of cortical activity, but also take a more active role in the generation of complex cognitive functions. A recent study shows that more than 60% of the observed inter-subject variability in perceptual learning can be ascribed to ongoing alpha activity. This evidence indicates a significant role of alpha oscillations for perceptual learning and hence motivates to explore the potential underlying mechanisms. Hence, it is the purpose of this review to highlight existent evidence that ascribes intrinsic alpha oscillations a role in shaping our ability to learn. In the review, we disentangle the alpha rhythm into different neural signatures that control information processing within individual functional building blocks of perceptual learning. We further highlight computational studies that shed light on potential mechanisms regarding how alpha oscillations may modulate information transfer and connectivity changes relevant for learning. To enable testing of those model based hypotheses, we emphasize the need for multidisciplinary approaches combining assessment of behavior and multi-scale neuronal activity, active modulation of ongoing brain states and computational modeling to reveal the mathematical principles of the complex neuronal interactions. In particular we highlight the relevance of multi-scale modeling frameworks such as the one currently being developed by The Virtual Brain project.

  2. Perceptual-motor skill learning in Gilles de la Tourette syndrome. Evidence for multiple procedural learning and memory systems.

    Science.gov (United States)

    Marsh, Rachel; Alexander, Gerianne M; Packard, Mark G; Zhu, Hongtu; Peterson, Bradley S

    2005-01-01

    Procedural learning and memory systems likely comprise several skills that are differentially affected by various illnesses of the central nervous system, suggesting their relative functional independence and reliance on differing neural circuits. Gilles de la Tourette syndrome (GTS) is a movement disorder that involves disturbances in the structure and function of the striatum and related circuitry. Recent studies suggest that patients with GTS are impaired in performance of a probabilistic classification task that putatively involves the acquisition of stimulus-response (S-R)-based habits. Assessing the learning of perceptual-motor skills and probabilistic classification in the same samples of GTS and healthy control subjects may help to determine whether these various forms of procedural (habit) learning rely on the same or differing neuroanatomical substrates and whether those substrates are differentially affected in persons with GTS. Therefore, we assessed perceptual-motor skill learning using the pursuit-rotor and mirror tracing tasks in 50 patients with GTS and 55 control subjects who had previously been compared at learning a task of probabilistic classifications. The GTS subjects did not differ from the control subjects in performance of either the pursuit rotor or mirror-tracing tasks, although they were significantly impaired in the acquisition of a probabilistic classification task. In addition, learning on the perceptual-motor tasks was not correlated with habit learning on the classification task in either the GTS or healthy control subjects. These findings suggest that the differing forms of procedural learning are dissociable both functionally and neuroanatomically. The specific deficits in the probabilistic classification form of habit learning in persons with GTS are likely to be a consequence of disturbances in specific corticostriatal circuits, but not the same circuits that subserve the perceptual-motor form of habit learning.

  3. Perceptual Learning Style Matching and L2 Vocabulary Acquisition

    Science.gov (United States)

    Tight, Daniel G.

    2010-01-01

    This study explored learning and retention of concrete nouns in second language Spanish by first language English undergraduates (N = 128). Each completed a learning style (visual, auditory, tactile/kinesthetic, mixed) assessment, took a vocabulary pretest, and then studied 12 words each through three conditions (matching, mismatching, mixed…

  4. The Perceptual Basis of the Modality Effect in Multimedia Learning

    Science.gov (United States)

    Rummer, Ralf; Schweppe, Judith; Furstenberg, Anne; Scheiter, Katharina; Zindler, Antje

    2011-01-01

    Various studies have demonstrated an advantage of auditory over visual text modality when learning with texts and pictures. To explain this modality effect, two complementary assumptions are proposed by cognitive theories of multimedia learning: first, the visuospatial load hypothesis, which explains the modality effect in terms of visuospatial…

  5. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  6. Interaction between age and perceptual similarity in olfactory discrimination learning in F344 rats: relationships with spatial learning

    Science.gov (United States)

    Yoder, Wendy M.; Gaynor, Leslie S.; Burke, Sara N.; Setlow, Barry; Smith, David W.; Bizon, Jennifer L.

    2017-01-01

    Emerging evidence suggests that aging is associated with a reduced ability to distinguish perceptually similar stimuli in one’s environment. As the ability to accurately perceive and encode sensory information is foundational for explicit memory, understanding the neurobiological underpinnings of discrimination impairments that emerge with advancing age could help elucidate the mechanisms of mnemonic decline. To this end, there is a need for preclinical approaches that robustly and reliably model age-associated perceptual discrimination deficits. Taking advantage of rodents’ exceptional olfactory abilities, the present study applied rigorous psychophysical techniques to the evaluation of discrimination learning in young and aged F344 rats. Aging did not influence odor detection thresholds or the ability to discriminate between perceptually distinct odorants. In contrast, aged rats were disproportionately impaired relative to young on problems that required discriminations between perceptually similar olfactory stimuli. Importantly, these disproportionate impairments in discrimination learning did not simply reflect a global learning impairment in aged rats, as they performed other types of difficult discriminations on par with young rats. Among aged rats, discrimination deficits were strongly associated with spatial learning deficits. These findings reveal a new, sensitive behavioral approach for elucidating the neural mechanisms of cognitive decline associated with normal aging. PMID:28259065

  7. The impact of memory load and perceptual cues on puzzle learning by 24-month olds.

    Science.gov (United States)

    Barr, Rachel; Moser, Alecia; Rusnak, Sylvia; Zimmermann, Laura; Dickerson, Kelly; Lee, Herietta; Gerhardstein, Peter

    2016-11-01

    Early childhood is characterized by memory capacity limitations and rapid perceptual and motor development [Rovee-Collier (1996). Infant Behavior & Development, 19, 385-400]. The present study examined 2-year olds' reproduction of a sliding action to complete an abstract fish puzzle under different levels of memory load and perceptual feature support. Experimental groups were compared to baseline controls to assess spontaneous rates of production of the target actions; baseline production was low across all experiments. Memory load was manipulated in Exp. 1 by adding pieces to the puzzle, increasing sequence length from 2 to 3 items, and to 3 items plus a distractor. Although memory load did not influence how toddlers learned to manipulate the puzzle pieces, it did influence toddlers' achievement of the goal-constructing the fish. Overall, girls were better at constructing the puzzle than boys. In Exp. 2, the perceptual features of the puzzle were altered by changing shape boundaries to create a two-piece horizontally cut puzzle (displaying bilateral symmetry), and by adding a semantically supportive context to the vertically cut puzzle (iconic). Toddlers were able to achieve the goal of building the fish equally well across the 2-item puzzle types (bilateral symmetry, vertical, iconic), but how they learned to manipulate the puzzle pieces varied as a function of the perceptual features. Here, as in Exp. 1, girls showed a different pattern of performance from the boys. This study demonstrates that changes in memory capacity and perceptual processing influence both goal-directed imitation learning and motoric performance. © 2016 Wiley Periodicals, Inc.

  8. Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.

    Science.gov (United States)

    Byers, Anna; Serences, John T

    2014-09-01

    Learning to better discriminate a specific visual feature (i.e., a specific orientation in a specific region of space) has been associated with plasticity in early visual areas (sensory modulation) and with improvements in the transmission of sensory information from early visual areas to downstream sensorimotor and decision regions (enhanced readout). However, in many real-world scenarios that require perceptual expertise, observers need to efficiently process numerous exemplars from a broad stimulus class as opposed to just a single stimulus feature. Some previous data suggest that perceptual learning leads to highly specific neural modulations that support the discrimination of specific trained features. However, the extent to which perceptual learning acts to improve the discriminability of a broad class of stimuli via the modulation of sensory responses in human visual cortex remains largely unknown. Here, we used functional MRI and a multivariate analysis method to reconstruct orientation-selective response profiles based on activation patterns in the early visual cortex before and after subjects learned to discriminate small offsets in a set of grating stimuli that were rendered in one of nine possible orientations. Behavioral performance improved across 10 training sessions, and there was a training-related increase in the amplitude of orientation-selective response profiles in V1, V2, and V3 when orientation was task relevant compared with when it was task irrelevant. These results suggest that generalized perceptual learning can lead to modified responses in the early visual cortex in a manner that is suitable for supporting improved discriminability of stimuli drawn from a large set of exemplars. Copyright © 2014 the American Physiological Society.

  9. Pretraining Cortical Thickness Predicts Subsequent Perceptual Learning Rate in a Visual Search Task.

    Science.gov (United States)

    Frank, Sebastian M; Reavis, Eric A; Greenlee, Mark W; Tse, Peter U

    2016-03-01

    We report that preexisting individual differences in the cortical thickness of brain areas involved in a perceptual learning task predict the subsequent perceptual learning rate. Participants trained in a motion-discrimination task involving visual search for a "V"-shaped target motion trajectory among inverted "V"-shaped distractor trajectories. Motion-sensitive area MT+ (V5) was functionally identified as critical to the task: after 3 weeks of training, activity increased in MT+ during task performance, as measured by functional magnetic resonance imaging. We computed the cortical thickness of MT+ from anatomical magnetic resonance imaging volumes collected before training started, and found that it significantly predicted subsequent perceptual learning rates in the visual search task. Participants with thicker neocortex in MT+ before training learned faster than those with thinner neocortex in that area. A similar association between cortical thickness and training success was also found in posterior parietal cortex (PPC). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Reduction in the retinotopic early visual cortex with normal aging and magnitude of perceptual learning.

    Science.gov (United States)

    Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Consequences of comorbidity of developmental coordination disorders and learning disabilities for severity and pattern of perceptual-motor dysfunction

    NARCIS (Netherlands)

    Jongmans, MJ; Smits-Engelsman, BCM; Schoemaker, MM

    2003-01-01

    Children with developmental coordination disorder (DCD) have difficulty learning and performing age-appropriate perceptual-motor skills in the absence of diagnosable neurological disorders. Descriptive studies have shown that comorbidity of DCD exists with attention-deficit/hyperactivity disorder

  12. Monocular perceptual learning of contrast detection facilitates binocular combination in adults with anisometropic amblyopia

    OpenAIRE

    Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin

    2016-01-01

    Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n?=?13) were asked to complete two psychophysical supra-threshold binoc...

  13. Transfer of Perceptual Learning of Depth Discrimination Between Local and Global Stereograms

    OpenAIRE

    Gantz, Liat; Bedell, Harold

    2010-01-01

    Several previous studies reported differences when stereothresholds are assessed with local-contour stereograms vs. complex random-dot stereograms (RDSs). Dissimilar thresholds may be due to differences in the properties of the stereograms (e.g., spatial frequency content, contrast, inter-element separation, area) or to different underlying processing mechanisms. This study examined the transfer of perceptual learning of depth discrimination between local and global RDSs with similar properti...

  14. Perceptual learning rules based on reinforcers and attention

    NARCIS (Netherlands)

    Roelfsema, Pieter R.; van Ooyen, Arjen; Watanabe, Takeo

    2010-01-01

    How does the brain learn those visual features that are relevant for behavior? In this article, we focus on two factors that guide plasticity of visual representations. First, reinforcers cause the global release of diffusive neuromodulatory signals that gate plasticity. Second, attentional feedback

  15. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning.

    Science.gov (United States)

    Bonaccorsi, Joyce; Berardi, Nicoletta; Sale, Alessandro

    2014-01-01

    Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1-5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat.

  16. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning

    Science.gov (United States)

    Bonaccorsi, Joyce; Berardi, Nicoletta; Sale, Alessandro

    2014-01-01

    Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1–5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat. PMID:25076874

  17. Perceptual learning eases crowding by reducing recognition errors but not position errors.

    Science.gov (United States)

    Xiong, Ying-Zi; Yu, Cong; Zhang, Jun-Yun

    2015-08-01

    When an observer reports a letter flanked by additional letters in the visual periphery, the response errors (the crowding effect) may result from failure to recognize the target letter (recognition errors), from mislocating a correctly recognized target letter at a flanker location (target misplacement errors), or from reporting a flanker as the target letter (flanker substitution errors). Crowding can be reduced through perceptual learning. However, it is not known how perceptual learning operates to reduce crowding. In this study we trained observers with a partial-report task (Experiment 1), in which they reported the central target letter of a three-letter string presented in the visual periphery, or a whole-report task (Experiment 2), in which they reported all three letters in order. We then assessed the impact of training on recognition of both unflanked and flanked targets, with particular attention to how perceptual learning affected the types of errors. Our results show that training improved target recognition but not single-letter recognition, indicating that training indeed affected crowding. However, training did not reduce target misplacement errors or flanker substitution errors. This dissociation between target recognition and flanker substitution errors supports the view that flanker substitution may be more likely a by-product (due to response bias), rather than a cause, of crowding. Moreover, the dissociation is not consistent with hypothesized mechanisms of crowding that would predict reduced positional errors.

  18. Prediction of HDR quality by combining perceptually transformed display measurements with machine learning

    Science.gov (United States)

    Choudhury, Anustup; Farrell, Suzanne; Atkins, Robin; Daly, Scott

    2017-09-01

    We present an approach to predict overall HDR display quality as a function of key HDR display parameters. We first performed subjective experiments on a high quality HDR display that explored five key HDR display parameters: maximum luminance, minimum luminance, color gamut, bit-depth and local contrast. Subjects rated overall quality for different combinations of these display parameters. We explored two models | a physical model solely based on physically measured display characteristics and a perceptual model that transforms physical parameters using human vision system models. For the perceptual model, we use a family of metrics based on a recently published color volume model (ICT-CP), which consists of the PQ luminance non-linearity (ST2084) and LMS-based opponent color, as well as an estimate of the display point spread function. To predict overall visual quality, we apply linear regression and machine learning techniques such as Multilayer Perceptron, RBF and SVM networks. We use RMSE and Pearson/Spearman correlation coefficients to quantify performance. We found that the perceptual model is better at predicting subjective quality than the physical model and that SVM is better at prediction than linear regression. The significance and contribution of each display parameter was investigated. In addition, we found that combined parameters such as contrast do not improve prediction. Traditional perceptual models were also evaluated and we found that models based on the PQ non-linearity performed better.

  19. Influence of cue word perceptual information on metamemory accuracy in judgement of learning.

    Science.gov (United States)

    Hu, Xiao; Liu, Zhaomin; Li, Tongtong; Luo, Liang

    2016-01-01

    Previous studies have suggested that perceptual information regarding to-be-remembered words in the study phase affects the accuracy of judgement of learning (JOL). However, few have investigated whether the perceptual information in the JOL phase influences JOL accuracy. This study examined the influence of cue word perceptual information in the JOL phase on immediate and delayed JOL accuracy through changes in cue word font size. In Experiment 1, large-cue word pairs had significantly higher mean JOL magnitude than small-cue word pairs in immediate JOLs and higher relative accuracy than small-cue pairs in delayed JOLs, but font size had no influence on recall performance. Experiment 2 increased the JOL time, and mean JOL magnitude did not reliably differ for large-cue compared with small-cue pairs in immediate JOLs. However, the influence on relative accuracy still existed in delayed JOLs. Experiment 3 increased the familiarity of small-cue words in the delayed JOL phase by adding a lexical decision task. The results indicated that cue word font size no longer affected relative accuracy in delayed JOLs. The three experiments in our study indicated that the perceptual information regarding cue words in the JOL phase affects immediate and delayed JOLs in different ways.

  20. The effect of normal aging and age-related macular degeneration on perceptual learning.

    Science.gov (United States)

    Astle, Andrew T; Blighe, Alan J; Webb, Ben S; McGraw, Paul V

    2015-01-01

    We investigated whether perceptual learning could be used to improve peripheral word identification speed. The relationship between the magnitude of learning and age was established in normal participants to determine whether perceptual learning effects are age invariant. We then investigated whether training could lead to improvements in patients with age-related macular degeneration (AMD). Twenty-eight participants with normal vision and five participants with AMD trained on a word identification task. They were required to identify three-letter words, presented 10° from fixation. To standardize crowding across each of the letters that made up the word, words were flanked laterally by randomly chosen letters. Word identification performance was measured psychophysically using a staircase procedure. Significant improvements in peripheral word identification speed were demonstrated following training (71% ± 18%). Initial task performance was correlated with age, with older participants having poorer performance. However, older adults learned more rapidly such that, following training, they reached the same level of performance as their younger counterparts. As a function of number of trials completed, patients with AMD learned at an equivalent rate as age-matched participants with normal vision. Improvements in word identification speed were maintained at least 6 months after training. We have demonstrated that temporal aspects of word recognition can be improved in peripheral vision with training across a range of ages and these learned improvements are relatively enduring. However, training targeted at other bottlenecks to peripheral reading ability, such as visual crowding, may need to be incorporated to optimize this approach.

  1. Perceptual learning of basic visual features remains task specific with Training-Plus-Exposure (TPE) training.

    Science.gov (United States)

    Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun

    2016-01-01

    Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.

  2. Perceptual learning to reduce sensory eye dominance beyond the focus of top-down visual attention.

    Science.gov (United States)

    Xu, Jingping P; He, Zijiang J; Ooi, Teng Leng

    2012-05-15

    Perceptual learning is an important means for the brain to maintain its agility in a dynamic environment. Top-down focal attention, which selects task-relevant stimuli against competing ones in the background, is known to control and select what is learned in adults. Still unknown, is whether the adult brain is able to learn highly visible information beyond the focus of top-down attention. If it is, we should be able to reveal a purely stimulus-driven perceptual learning occurring in functions that are largely determined by the early cortical level, where top-down attention modulation is weak. Such an automatic, stimulus-driven learning mechanism is commonly assumed to operate only in the juvenile brain. We performed perceptual training to reduce sensory eye dominance (SED), a function that taps on the eye-of-origin information represented in the early visual cortex. Two retinal locations were simultaneously stimulated with suprathreshold, dichoptic orthogonal gratings. At each location, monocular cueing triggered perception of the grating images of the weak eye and suppression of the strong eye. Observers attended only to one location and performed orientation discrimination of the gratings seen by the weak eye, while ignoring the highly visible gratings at the second, unattended, location. We found SED was not only reduced at the attended location, but also at the unattended location. Furthermore, other untrained visual functions mediated by higher cortical levels improved. An automatic, stimulus-driven learning mechanism causes synaptic alterations in the early cortical level, with a far-reaching impact on the later cortical levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Perceptual category learning and visual processing: An exercise in computational cognitive neuroscience.

    Science.gov (United States)

    Cantwell, George; Riesenhuber, Maximilian; Roeder, Jessica L; Ashby, F Gregory

    2017-05-01

    The field of computational cognitive neuroscience (CCN) builds and tests neurobiologically detailed computational models that account for both behavioral and neuroscience data. This article leverages a key advantage of CCN-namely, that it should be possible to interface different CCN models in a plug-and-play fashion-to produce a new and biologically detailed model of perceptual category learning. The new model was created from two existing CCN models: the HMAX model of visual object processing and the COVIS model of category learning. Using bitmap images as inputs and by adjusting only a couple of learning-rate parameters, the new HMAX/COVIS model provides impressively good fits to human category-learning data from two qualitatively different experiments that used different types of category structures and different types of visual stimuli. Overall, the model provides a comprehensive neural and behavioral account of basal ganglia-mediated learning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Learning of perceptual grouping for object segmentation on RGB-D data.

    Science.gov (United States)

    Richtsfeld, Andreas; Mörwald, Thomas; Prankl, Johann; Zillich, Michael; Vincze, Markus

    2014-01-01

    Object segmentation of unknown objects with arbitrary shape in cluttered scenes is an ambitious goal in computer vision and became a great impulse with the introduction of cheap and powerful RGB-D sensors. We introduce a framework for segmenting RGB-D images where data is processed in a hierarchical fashion. After pre-clustering on pixel level parametric surface patches are estimated. Different relations between patch-pairs are calculated, which we derive from perceptual grouping principles, and support vector machine classification is employed to learn Perceptual Grouping. Finally, we show that object hypotheses generation with Graph-Cut finds a globally optimal solution and prevents wrong grouping. Our framework is able to segment objects, even if they are stacked or jumbled in cluttered scenes. We also tackle the problem of segmenting objects when they are partially occluded. The work is evaluated on publicly available object segmentation databases and also compared with state-of-the-art work of object segmentation.

  5. The application of online transcranial random noise stimulation and perceptual learning in the improvement of visual functions in mild myopia.

    Science.gov (United States)

    Camilleri, Rebecca; Pavan, Andrea; Campana, Gianluca

    2016-08-01

    It has recently been demonstrated how perceptual learning, that is an improvement in a sensory/perceptual task upon practice, can be boosted by concurrent high-frequency transcranial random noise stimulation (tRNS). It has also been shown that perceptual learning can generalize and produce an improvement of visual functions in participants with mild refractive defects. By using three different groups of participants (single-blind study), we tested the efficacy of a short training (8 sessions) using a single Gabor contrast-detection task with concurrent hf-tRNS in comparison with the same training with sham stimulation or hf-tRNS with no concurrent training, in improving visual acuity (VA) and contrast sensitivity (CS) of individuals with uncorrected mild myopia. A short training with a contrast detection task is able to improve VA and CS only if coupled with hf-tRNS, whereas no effect on VA and marginal effects on CS are seen with the sole administration of hf-tRNS. Our results support the idea that, by boosting the rate of perceptual learning via the modulation of neuronal plasticity, hf-tRNS can be successfully used to reduce the duration of the perceptual training and/or to increase its efficacy in producing perceptual learning and generalization to improved VA and CS in individuals with uncorrected mild myopia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Differences in perceptual learning transfer as a function of training task.

    Science.gov (United States)

    Green, C Shawn; Kattner, Florian; Siegel, Max H; Kersten, Daniel; Schrater, Paul R

    2015-01-01

    A growing body of research--including results from behavioral psychology, human structural and functional imaging, single-cell recordings in nonhuman primates, and computational modeling--suggests that perceptual learning effects are best understood as a change in the ability of higher-level integration or association areas to read out sensory information in the service of particular decisions. Work in this vein has argued that, depending on the training experience, the "rules" for this read-out can either be applicable to new contexts (thus engendering learning generalization) or can apply only to the exact training context (thus resulting in learning specificity). Here we contrast learning tasks designed to promote either stimulus-specific or stimulus-general rules. Specifically, we compare learning transfer across visual orientation following training on three different tasks: an orientation categorization task (which permits an orientation-specific learning solution), an orientation estimation task (which requires an orientation-general learning solution), and an orientation categorization task in which the relevant category boundary shifts on every trial (which lies somewhere between the two tasks above). While the simple orientation-categorization training task resulted in orientation-specific learning, the estimation and moving categorization tasks resulted in significant orientation learning generalization. The general framework tested here--that task specificity or generality can be predicted via an examination of the optimal learning solution--may be useful in building future training paradigms with certain desired outcomes.

  7. Object-based implicit learning in visual search: perceptual segmentation constrains contextual cueing.

    Science.gov (United States)

    Conci, Markus; Müller, Hermann J; von Mühlenen, Adrian

    2013-07-09

    In visual search, detection of a target is faster when it is presented within a spatial layout of repeatedly encountered nontarget items, indicating that contextual invariances can guide selective attention (contextual cueing; Chun & Jiang, 1998). However, perceptual regularities may interfere with contextual learning; for instance, no contextual facilitation occurs when four nontargets form a square-shaped grouping, even though the square location predicts the target location (Conci & von Mühlenen, 2009). Here, we further investigated potential causes for this interference-effect: We show that contextual cueing can reliably occur for targets located within the region of a segmented object, but not for targets presented outside of the object's boundaries. Four experiments demonstrate an object-based facilitation in contextual cueing, with a modulation of context-based learning by relatively subtle grouping cues including closure, symmetry, and spatial regularity. Moreover, the lack of contextual cueing for targets located outside the segmented region was due to an absence of (latent) learning of contextual layouts, rather than due to an attentional bias towards the grouped region. Taken together, these results indicate that perceptual segmentation provides a basic structure within which contextual scene regularities are acquired. This in turn argues that contextual learning is constrained by object-based selection.

  8. The role of training structure in perceptual learning of accented speech.

    Science.gov (United States)

    Tzeng, Christina Y; Alexander, Jessica E D; Sidaras, Sabrina K; Nygaard, Lynne C

    2016-11-01

    Foreign-accented speech contains multiple sources of variation that listeners learn to accommodate. Extending previous findings showing that exposure to high-variation training facilitates perceptual learning of accented speech, the current study examines to what extent the structure of training materials affects learning. During training, native adult speakers of American English transcribed sentences spoken in English by native Spanish-speaking adults. In Experiment 1, training stimuli were blocked by speaker, sentence, or randomized with respect to speaker and sentence (Variable training). At test, listeners transcribed novel English sentences produced by unfamiliar Spanish-accented speakers. Listeners' transcription accuracy was highest in the Variable condition, suggesting that varying both speaker identity and sentence across training trials enabled listeners to generalize their learning to novel speakers and linguistic content. Experiment 2 assessed the extent to which ordering of training tokens by a single factor, speaker intelligibility, would facilitate speaker-independent accent learning, finding that listeners' test performance did not reliably differ from that in the no-training control condition. Overall, these results suggest that the structure of training exposure, specifically trial-to-trial variation on both speaker's voice and linguistic content, facilitates learning of the systematic properties of accented speech. The current findings suggest a crucial role of training structure in optimizing perceptual learning. Beyond characterizing the types of variation listeners encode in their representations of spoken utterances, theories of spoken language processing should incorporate the role of training structure in learning lawful variation in speech. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease.

    Science.gov (United States)

    Gobel, Eric W; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandra; Reber, Paul J

    2013-05-01

    Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.

  10. A novel perceptual discrimination training task: Reducing fear overgeneralization in the context of fear learning.

    Science.gov (United States)

    Ginat-Frolich, Rivkah; Klein, Zohar; Katz, Omer; Shechner, Tomer

    2017-06-01

    Generalization is an adaptive learning mechanism, but it can be maladaptive when it occurs in excess. A novel perceptual discrimination training task was therefore designed to moderate fear overgeneralization. We hypothesized that improvement in basic perceptual discrimination would translate into lower fear overgeneralization in affective cues. Seventy adults completed a fear-conditioning task prior to being allocated into training or placebo groups. Predesignated geometric shape pairs were constructed for the training task. A target shape from each pair was presented. Thereafter, participants in the training group were shown both shapes and asked to identify the image that differed from the target. Placebo task participants only indicated the location of each shape on the screen. All participants then viewed new geometric pairs and indicated whether they were identical or different. Finally, participants completed a fear generalization test consisting of perceptual morphs ranging from the CS + to the CS-. Fear-conditioning was observed through physiological and behavioural measures. Furthermore, the training group performed better than the placebo group on the assessment task and exhibited decreased fear generalization in response to threat/safety cues. The findings offer evidence for the effectiveness of the novel discrimination training task, setting the stage for future research with clinical populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Functional consequences of experience-dependent plasticity on tactile perception following perceptual learning.

    Science.gov (United States)

    Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S

    2016-09-01

    Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for 9 days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants' discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.

    Science.gov (United States)

    Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies

    2016-01-01

    During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.

  13. Perceptual Learning in Children With Infantile Nystagmus: Effects on Visual Performance.

    Science.gov (United States)

    Huurneman, Bianca; Boonstra, F Nienke; Goossens, Jeroen

    2016-08-01

    To evaluate whether computerized training with a crowded or uncrowded letter-discrimination task reduces visual impairment (VI) in 6- to 11-year-old children with infantile nystagmus (IN) who suffer from increased foveal crowding, reduced visual acuity, and reduced stereopsis. Thirty-six children with IN were included. Eighteen had idiopathic IN and 18 had oculocutaneous albinism. These children were divided in two training groups matched on age and diagnosis: a crowded training group (n = 18) and an uncrowded training group (n = 18). Training occurred two times per week during 5 weeks (3500 trials per training). Eleven age-matched children with normal vision were included to assess baseline differences in task performance and test-retest learning. Main outcome measures were task-specific performance, distance and near visual acuity (DVA and NVA), intensity and extent of (foveal) crowding at 5 m and 40 cm, and stereopsis. Training resulted in task-specific improvements. Both training groups also showed uncrowded and crowded DVA improvements (0.10 ± 0.02 and 0.11 ± 0.02 logMAR) and improved stereopsis (670 ± 249″). Crowded NVA improved only in the crowded training group (0.15 ± 0.02 logMAR), which was also the only group showing a reduction in near crowding intensity (0.08 ± 0.03 logMAR). Effects were not due to test-retest learning. Perceptual learning with or without distractors reduces the extent of crowding and improves visual acuity in children with IN. Training with distractors improves near vision more than training with single optotypes. Perceptual learning also transfers to DVA and NVA under uncrowded and crowded conditions and even stereopsis. Learning curves indicated that improvements may be larger after longer training.

  14. Alpha-gamma phase amplitude coupling subserves information transfer during perceptual sequence learning.

    Science.gov (United States)

    Tzvi, Elinor; Bauhaus, Leon J; Kessler, Till U; Liebrand, Matthias; Wöstmann, Malte; Krämer, Ulrike M

    2018-03-01

    Cross-frequency coupling is suggested to serve transfer of information between wide-spread neuronal assemblies and has been shown to underlie many cognitive functions including learning and memory. In previous work, we found that alpha (8-13 Hz) - gamma (30-48 Hz) phase amplitude coupling (αγPAC) is decreased during sequence learning in bilateral frontal cortex and right parietal cortex. We interpreted this to reflect decreased demands for visuo-motor mapping once the sequence has been encoded. In the present study, we put this hypothesis to the test by adding a "simple" condition to the standard serial reaction time task (SRTT) with minimal needs for visuo-motor mapping. The standard SRTT in our paradigm entailed a perceptual sequence allowing for implicit learning of a sequence of colors with randomly assigned motor responses. Sequence learning in this case was thus not associated with reduced demands for visuo-motor mapping. Analysis of oscillatory power revealed a learning-related alpha decrease pointing to a stronger recruitment of occipito-parietal areas when encoding the perceptual sequence. Replicating our previous findings but in contrast to our hypothesis, αγPAC was decreased in sequence compared to random trials over right frontal and parietal cortex. It also tended to be smaller compared to trials requiring a simple motor sequence. We additionally analyzed αγPAC in resting-state data of a separate cohort. PAC in electrodes over right parietal cortex was significantly stronger compared to sequence trials and tended to be higher compared to simple and random trials of the SRTT data. We suggest that αγPAC in right parietal cortex reflects a "default-mode" brain state, which gets perturbed to allow for encoding of visual regularities into memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The Effect of Semantic Mapping as a Vocabulary Instruction Technique on EFL Learners with Different Perceptual Learning Styles

    Directory of Open Access Journals (Sweden)

    Esmaeel Abdollahzadeh

    2009-05-01

    Full Text Available Traditional and modern vocabulary instruction techniques have been introduced in the past few decades to improve the learners’ performance in reading comprehension. Semantic mapping, which entails drawing learners’ attention to the interrelationships among lexical items through graphic organizers, is claimed to enhance vocabulary learning significantly. However, whether this technique suits all types of learners has not been adequately investigated. This study examines the effectiveness of employing semantic mapping versus traditional approaches in vocabulary instruction to EFL learners with different perceptual modalities. A modified version of Reid’s (1987 perceptual learning style questionnaire was used to determine the learners’ modality types. The results indicate that semantic mapping in comparison to the traditional approaches significantly enhances vocabulary learning of EFL learners. However, although visual learners slightly outperformed other types of learners on the post-test, no significant differences were observed among intermediate learners with different perceptual modalities employing semantic mapping for vocabulary practice.

  16. Thalamocortical dynamics of the McCollough effect: boundary-surface alignment through perceptual learning.

    Science.gov (United States)

    Grossberg, Stephen; Hwang, Seungwoo; Mingolla, Ennio

    2002-05-01

    This article further develops the FACADE neural model of 3-D vision and figure-ground perception to quantitatively explain properties of the McCollough effect (ME). The model proposes that many ME data result from visual system mechanisms whose primary function is to adaptively align, through learning, boundary and surface representations that are positionally shifted due to the process of binocular fusion. For example, binocular boundary representations are shifted by binocular fusion relative to monocular surface representations, yet the boundaries must become positionally aligned with the surfaces to control binocular surface capture and filling-in. The model also includes perceptual reset mechanisms that use habituative transmitters in opponent processing circuits. Thus the model shows how ME data may arise from a combination of mechanisms that have a clear functional role in biological vision. Simulation results with a single set of parameters quantitatively fit data from 13 experiments that probe the nature of achromatic/chromatic and monocular/binocular interactions during induction of the ME. The model proposes how perceptual learning, opponent processing, and habituation at both monocular and binocular surface representations are involved, including early thalamocortical sites. In particular, it explains the anomalous ME utilizing these multiple processing sites. Alternative models of the ME are also summarized and compared with the present model.

  17. Incremental learning of perceptual and conceptual representations and the puzzle of neural repetition suppression.

    Science.gov (United States)

    Gotts, Stephen J

    2016-08-01

    Incremental learning models of long-term perceptual and conceptual knowledge hold that neural representations are gradually acquired over many individual experiences via Hebbian-like activity-dependent synaptic plasticity across cortical connections of the brain. In such models, variation in task relevance of information, anatomic constraints, and the statistics of sensory inputs and motor outputs lead to qualitative alterations in the nature of representations that are acquired. Here, the proposal that behavioral repetition priming and neural repetition suppression effects are empirical markers of incremental learning in the cortex is discussed, and research results that both support and challenge this position are reviewed. Discussion is focused on a recent fMRI-adaptation study from our laboratory that shows decoupling of experience-dependent changes in neural tuning, priming, and repetition suppression, with representational changes that appear to work counter to the explicit task demands. Finally, critical experiments that may help to clarify and resolve current challenges are outlined.

  18. [Improvement of vision through perceptual learning in the case of refractive errors and presbyopia : A critical valuation].

    Science.gov (United States)

    Heinrich, S P

    2017-02-01

    The idea of compensating or even rectifying refractive errors and presbyopia with the help of vision training is not new. For most approaches, however, scientific evidence is insufficient. A currently promoted method is "perceptual learning", which is assumed to improve stimulus processing in the brain. The basic phenomena of perceptual learning have been demonstrated by a multitude of studies. Some of these specifically address the case of refractive errors and presbyopia. However, many open questions remain, in particular with respect to the transfer of practice effects to every-day vision. At present, the method should therefore be judged with caution.

  19. Multisensory training can promote or impede visual perceptual learning of speech stimuli: visual-tactile vs. visual-auditory training.

    Science.gov (United States)

    Eberhardt, Silvio P; Auer, Edward T; Bernstein, Lynne E

    2014-01-01

    In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).

  20. Learning-induced uncertainty reduction in perceptual decisions is task-dependent

    Directory of Open Access Journals (Sweden)

    Feitong eYang

    2014-05-01

    Full Text Available Perceptual decision making in which decisions are reached primarily from extracting and evaluating sensory information requires close interactions between the sensory system and decision-related networks in the brain. Uncertainty pervades every aspect of this process and can be considered related to either the stimulus signal or decision criterion. Here, we investigated the learning-induced reduction of both the signal and criterion uncertainty in two perceptual decision tasks based on two Glass pattern stimulus sets. This was achieved by manipulating spiral angle and signal level of radial and concentric Glass patterns. The behavioral results showed that the participants trained with a task based on criterion comparison improved their categorization accuracy for both tasks, whereas the participants who were trained on a task based on signal detection improved their categorization accuracy only on their trained task. We fitted the behavioral data with a computational model that can dissociate the contribution of the signal and criterion uncertainties. The modeling results indicated that the participants trained on the criterion comparison task reduced both the criterion and signal uncertainty. By contrast, the participants who were trained on the signal detection task only reduced their signal uncertainty after training. Our results suggest that the signal uncertainty can be resolved by training participants to extract signals from noisy environments and to discriminate between clear signals, which are evidenced by reduced perception variance after both training procedures. Conversely, the criterion uncertainty can only be resolved by the training of fine discrimination. These findings demonstrate that uncertainty in perceptual decision-making can be reduced with training but that the reduction of different types of uncertainty is task-dependent.

  1. Learning-Based Just-Noticeable-Quantization- Distortion Modeling for Perceptual Video Coding.

    Science.gov (United States)

    Ki, Sehwan; Bae, Sung-Ho; Kim, Munchurl; Ko, Hyunsuk

    2018-07-01

    Conventional predictive video coding-based approaches are reaching the limit of their potential coding efficiency improvements, because of severely increasing computation complexity. As an alternative approach, perceptual video coding (PVC) has attempted to achieve high coding efficiency by eliminating perceptual redundancy, using just-noticeable-distortion (JND) directed PVC. The previous JNDs were modeled by adding white Gaussian noise or specific signal patterns into the original images, which were not appropriate in finding JND thresholds due to distortion with energy reduction. In this paper, we present a novel discrete cosine transform-based energy-reduced JND model, called ERJND, that is more suitable for JND-based PVC schemes. Then, the proposed ERJND model is extended to two learning-based just-noticeable-quantization-distortion (JNQD) models as preprocessing that can be applied for perceptual video coding. The two JNQD models can automatically adjust JND levels based on given quantization step sizes. One of the two JNQD models, called LR-JNQD, is based on linear regression and determines the model parameter for JNQD based on extracted handcraft features. The other JNQD model is based on a convolution neural network (CNN), called CNN-JNQD. To our best knowledge, our paper is the first approach to automatically adjust JND levels according to quantization step sizes for preprocessing the input to video encoders. In experiments, both the LR-JNQD and CNN-JNQD models were applied to high efficiency video coding (HEVC) and yielded maximum (average) bitrate reductions of 38.51% (10.38%) and 67.88% (24.91%), respectively, with little subjective video quality degradation, compared with the input without preprocessing applied.

  2. Analysis of previous perceptual and motor experience in breaststroke kick learning

    Directory of Open Access Journals (Sweden)

    Ried Bettina

    2015-12-01

    Full Text Available One of the variables that influence motor learning is the learner’s previous experience, which may provide perceptual and motor elements to be transferred to a novel motor skill. For swimming skills, several motor experiences may prove effective. Purpose. The aim was to analyse the influence of previous experience in playing in water, swimming lessons, and music or dance lessons on learning the breaststroke kick. Methods. The study involved 39 Physical Education students possessing basic swimming skills, but not the breaststroke, who performed 400 acquisition trials followed by 50 retention and 50 transfer trials, during which stroke index as well as rhythmic and spatial configuration indices were mapped, and answered a yes/no questionnaire regarding previous experience. Data were analysed by ANOVA (p = 0.05 and the effect size (Cohen’s d ≥0.8 indicating large effect size. Results. The whole sample improved their stroke index and spatial configuration index, but not their rhythmic configuration index. Although differences between groups were not significant, two types of experience showed large practical effects on learning: childhood water playing experience only showed major practically relevant positive effects, and no experience in any of the three fields hampered the learning process. Conclusions. The results point towards diverse impact of previous experience regarding rhythmic activities, swimming lessons, and especially with playing in water during childhood, on learning the breaststroke kick.

  3. The benefits of cholinergic enhancement during perceptual learning are long-lasting

    Directory of Open Access Journals (Sweden)

    Ariel eRokem

    2013-05-01

    Full Text Available The neurotransmitter acetylcholine (ACh regulates many aspects of cognition, including attention and memory. Previous research in animal models has shown that plasticity in sensory systems often depends on the behavioral relevance of a stimulus and/or task. However, experimentally increasing ACh release in the cortex can result in experience-dependent plasticity, even in the absence of behavioral relevance. In humans, the pharmacological enhancement of ACh transmission by administration of the cholinesterase inhibitor donepezil during performance of a perceptual task increases the magnitude of perceptual learning (PL and its specificity to physical parameters of the stimuli used for training. Behavioral effects of PL have previously been shown to persist for many months. In the present study, we tested whether enhancement of PL by donepezil is also long-lasting. Healthy human subjects were trained on a motion direction discrimination task during cholinergic enhancement, and follow-up testing was performed 5-15 months after the end of training and without additional drug administration. Increases in performance associated with training under donepezil were evident in follow-up retesting, indicating that cholinergic enhancement has beneficial long-term effects on PL. These findings suggest that cholinergic enhancement of training procedures used to treat clinical disorders should improve long-term outcomes of these procedures.

  4. Perceptual learning increases the strength of the earliest signals in visual cortex.

    Science.gov (United States)

    Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A

    2010-11-10

    Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.

  5. Profiling Perceptual Learning Styles of Chinese as a Second Language Learners in University Settings.

    Science.gov (United States)

    Sun, Peijian Paul; Teng, Lin Sophie

    2017-12-01

    This study revisited Reid's (1987) perceptual learning style preference questionnaire (PLSPQ) in an attempt to answer whether the PLSPQ fits in the Chinese-as-a-second-language (CSL) context. If not, what are CSL learners' learning styles drawing on the PLSPQ? The PLSPQ was first re-examined through reliability analysis and confirmatory factor analysis (CFA) with 224 CSL learners. The results showed that Reid's six-factor PLSPQ could not satisfactorily explain the CSL learners' learning styles. Exploratory factor analyses were, therefore, performed to explore the dimensionality of the PLSPQ in the CSL context. A four-factor PLSPQ was successfully constructed including auditory/visual, kinaesthetic/tactile, group, and individual styles. Such a measurement model was cross-validated through CFAs with 118 CSL learners. The study not only lends evidence to the literature that Reid's PLSPQ lacks construct validity, but also provides CSL teachers and learners with insightful and practical guidance concerning learning styles. Implications and limitations of the present study are discussed.

  6. Effects of Semantic Context and Feedback on Perceptual Learning of Speech Processed through an Acoustic Simulation of a Cochlear Implant

    Science.gov (United States)

    Loebach, Jeremy L.; Pisoni, David B.; Svirsky, Mario A.

    2010-01-01

    The effect of feedback and materials on perceptual learning was examined in listeners with normal hearing who were exposed to cochlear implant simulations. Generalization was most robust when feedback paired the spectrally degraded sentences with their written transcriptions, promoting mapping between the degraded signal and its acoustic-phonetic…

  7. Visual perceptual learning by operant conditioning training follows rules of contingency

    Science.gov (United States)

    Kim, Dongho; Seitz, Aaron R; Watanabe, Takeo

    2015-01-01

    Visual perceptual learning (VPL) can occur as a result of a repetitive stimulus-reward pairing in the absence of any task. This suggests that rules that guide Conditioning, such as stimulus-reward contingency (e.g. that stimulus predicts the likelihood of reward), may also guide the formation of VPL. To address this question, we trained subjects with an operant conditioning task in which there were contingencies between the response to one of three orientations and the presence of reward. Results showed that VPL only occurred for positive contingencies, but not for neutral or negative contingencies. These results suggest that the formation of VPL is influenced by similar rules that guide the process of Conditioning. PMID:26028984

  8. Monocular perceptual learning of contrast detection facilitates binocular combination in adults with anisometropic amblyopia.

    Science.gov (United States)

    Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin

    2016-02-01

    Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination.

  9. A perceptual advantage for onomatopoeia in early word learning: Evidence from eye-tracking.

    Science.gov (United States)

    Laing, Catherine E

    2017-09-01

    A perceptual advantage for iconic forms in infant language learning has been widely reported in the literature, termed the "sound symbolism bootstrapping hypothesis" by Imai and Kita (2014). However, empirical research in this area is limited mainly to sound symbolic forms, which are very common in languages such as Japanese but less so in Indo-European languages such as English. In this study, we extended this body of research to onomatopoeia-words that are thought to be present across most of the world's languages and that are known to be dominant in infants' early lexicons. In a picture-mapping task, 10- and 11-month-old infants showed a processing advantage for onomatopoeia (e.g., woof woof) over their conventional counterparts (e.g., doggie). However, further analysis suggests that the input may play a key role in infants' experience and processing of these forms. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Visual perceptual learning by operant conditioning training follows rules of contingency.

    Science.gov (United States)

    Kim, Dongho; Seitz, Aaron R; Watanabe, Takeo

    2015-01-01

    Visual perceptual learning (VPL) can occur as a result of a repetitive stimulus-reward pairing in the absence of any task. This suggests that rules that guide Conditioning, such as stimulus-reward contingency (e.g. that stimulus predicts the likelihood of reward), may also guide the formation of VPL. To address this question, we trained subjects with an operant conditioning task in which there were contingencies between the response to one of three orientations and the presence of reward. Results showed that VPL only occurred for positive contingencies, but not for neutral or negative contingencies. These results suggest that the formation of VPL is influenced by similar rules that guide the process of Conditioning.

  11. Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.

    Science.gov (United States)

    Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara

    2017-01-01

    Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.

  12. The Effect of Perceptual Learning on L2 Vocabulary Learning and Retention

    OpenAIRE

    BEDİR, Gülay; BEKTAŞ BEDİR, Sevgi

    2018-01-01

    It is thought that learning styles have an effecton learning foreign language. This study aims to determine effects ofperceptual learning styles on L2 vocabulary learning and retention. Learningstyle preferences were assessed in the current study through the section ofCohen et al.’s Learning Style Survey (LSS) corresponding to the perceptualmodalities and achievement tests developed by the researcher was used to assessvocabulary learning and retention. And an open-ended question is tried toan...

  13. Auditory perceptual learning in adults with and without age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Hanin eKarawani

    2016-02-01

    Full Text Available Introduction: Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL. Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL.Methods: 56 listeners (60-72 y/o, 35 participants with ARHL and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training and no-training group. Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1 Speech-in-noise (2 time compressed speech and (3 competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results: Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions: ARHL did not preclude auditory perceptual learning but there was little generalization to

  14. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.

    Science.gov (United States)

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  15. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Zhang

    2017-06-01

    Full Text Available Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  16. Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations.

    Science.gov (United States)

    Eisner, Frank; McGettigan, Carolyn; Faulkner, Andrew; Rosen, Stuart; Scott, Sophie K

    2010-05-26

    This study investigated the neural plasticity associated with perceptual learning of a cochlear implant (CI) simulation. Normal-hearing listeners were trained with vocoded and spectrally shifted speech simulating a CI while cortical responses were measured with functional magnetic resonance imaging (fMRI). A condition in which the vocoded speech was spectrally inverted provided a control for learnability and adaptation. Behavioral measures showed considerable individual variability both in the ability to learn to understand the degraded speech, and in phonological working memory capacity. Neurally, left-lateralized regions in superior temporal sulcus and inferior frontal gyrus (IFG) were sensitive to the learnability of the simulations, but only the activity in prefrontal cortex correlated with interindividual variation in intelligibility scores and phonological working memory. A region in left angular gyrus (AG) showed an activation pattern that reflected learning over the course of the experiment, and covariation of activity in AG and IFG was modulated by the learnability of the stimuli. These results suggest that variation in listeners' ability to adjust to vocoded and spectrally shifted speech is partly reflected in differences in the recruitment of higher-level language processes in prefrontal cortex, and that this variability may further depend on functional links between the left inferior frontal gyrus and angular gyrus. Differences in the engagement of left inferior prefrontal cortex, and its covariation with posterior parietal areas, may thus underlie some of the variation in speech perception skills that have been observed in clinical populations of CI users.

  17. Transfer of tactile perceptual learning to untrained neighboring fingers reflects natural use relationships.

    Science.gov (United States)

    Dempsey-Jones, Harriet; Harrar, Vanessa; Oliver, Jonathan; Johansen-Berg, Heidi; Spence, Charles; Makin, Tamar R

    2016-03-01

    Tactile learning transfers from trained to untrained fingers in a pattern that reflects overlap between the representations of fingers in the somatosensory system (e.g., neurons with multifinger receptive fields). While physical proximity on the body is known to determine the topography of somatosensory representations, tactile coactivation is also an established organizing principle of somatosensory topography. In this study we investigated whether tactile coactivation, induced by habitual inter-finger cooperative use (use pattern), shapes inter-finger overlap. To this end, we used psychophysics to compare the transfer of tactile learning from the middle finger to its adjacent fingers. This allowed us to compare transfer to two fingers that are both physically and cortically adjacent to the middle finger but have differing use patterns. Specifically, the middle finger is used more frequently with the ring than with the index finger. We predicted this should lead to greater representational overlap between the former than the latter pair. Furthermore, this difference in overlap should be reflected in differential learning transfer from the middle to index vs. ring fingers. Subsequently, we predicted temporary learning-related changes in the middle finger's representation (e.g., cortical magnification) would cause transient interference in perceptual thresholds of the ring, but not the index, finger. Supporting this, longitudinal analysis revealed a divergence where learning transfer was fast to the index finger but relatively delayed to the ring finger. Our results support the theory that tactile coactivation patterns between digits affect their topographic relationships. Our findings emphasize how action shapes perception and somatosensory organization. Copyright © 2016 the American Physiological Society.

  18. Optimization of perceptual learning: effects of task difficulty and external noise in older adults.

    Science.gov (United States)

    DeLoss, Denton J; Watanabe, Takeo; Andersen, George J

    2014-06-01

    Previous research has shown a wide array of age-related declines in vision. The current study examined the effects of perceptual learning (PL), external noise, and task difficulty in fine orientation discrimination with older individuals (mean age 71.73, range 65-91). Thirty-two older subjects participated in seven 1.5-h sessions conducted on separate days over a three-week period. A two-alternative forced choice procedure was used in discriminating the orientation of Gabor patches. Four training groups were examined in which the standard orientations for training were either easy or difficult and included either external noise (additive Gaussian noise) or no external noise. In addition, the transfer to an untrained orientation and noise levels were examined. An analysis of the four groups prior to training indicated no significant differences between the groups. An analysis of the change in performance post-training indicated that the degree of learning was related to task difficulty and the presence of external noise during training. In addition, measurements of pupil diameter indicated that changes in orientation discrimination were not associated with changes in retinal illuminance. These results suggest that task difficulty and training in noise are factors important for optimizing the effects of training among older individuals. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    Science.gov (United States)

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience

  20. Baseline performance and learning rate of conceptual and perceptual skill-learning tasks: the effect of moderate to severe traumatic brain injury.

    Science.gov (United States)

    Vakil, Eli; Lev-Ran Galon, Carmit

    2014-01-01

    Existing literature presents a complex and inconsistent picture of the specific deficiencies involved in skill learning following traumatic brain injury (TBI). In an attempt to address this difficulty, individuals with moderate to severe TBI (n = 29) and a control group (n = 29) were tested with two different skill-learning tasks: conceptual (i.e., Tower of Hanoi Puzzle, TOHP) and perceptual (i.e., mirror reading, MR). Based on previous studies of the effect of divided attention on these tasks and findings regarding the effect of TBI on conceptual and perceptual priming tasks, it was predicted that the group with TBI would show impaired baseline performance compared to controls in the TOHP task though their learning rate would be maintained, while both baseline performance and learning rate on the MR task would be maintained. Consistent with our predictions, overall baseline performance of the group with TBI was impaired in the TOHP test, while the learning rate was not. The learning rate on the MR task was preserved but, contrary to our prediction, response time of the group with TBI was slower than that of controls. The pattern of results observed in the present study was interpreted to possibly reflect an impairment of both the frontal lobes as well as that of diffuse axonal injury, which is well documented as being affected by TBI. The former impairment affects baseline performance of the conceptual learning skill, while the latter affects the overall slower performance of the perceptual learning skill.

  1. Perceptual Learning Style and Learning Proficiency: A Test of the Hypothesis

    Science.gov (United States)

    Kratzig, Gregory P.; Arbuthnott, Katherine D.

    2006-01-01

    Given the potential importance of using modality preference with instruction, the authors tested whether learning style preference correlated with memory performance in each of 3 sensory modalities: visual, auditory, and kinesthetic. In Study 1, participants completed objective measures of pictorial, auditory, and tactile learning and learning…

  2. The Relationship Between the Learning Style Perceptual Preferences of Urban Fourth Grade Children and the Acquisition of Selected Physical Science Concepts Through Learning Cycle Instructional Methodology.

    Science.gov (United States)

    Adams, Kenneth Mark

    The purpose of this research was to investigate the relationship between the learning style perceptual preferences of fourth grade urban students and the attainment of selected physical science concepts for three simple machines as taught using learning cycle methodology. The sample included all fourth grade children from one urban elementary school (N = 91). The research design followed a quasi-experimental format with a single group, equivalent teacher demonstration and student investigation materials, and identical learning cycle instructional treatment. All subjects completed the Understanding Simple Machines Test (USMT) prior to instructional treatment, and at the conclusion of treatment to measure student concept attainment related to the pendulum, the lever and fulcrum, and the inclined plane. USMT pre and post-test scores, California Achievement Test (CAT-5) percentile scores, and Learning Style Inventory (LSI) standard scores for four perceptual elements for each subject were held in a double blind until completion of the USMT post-test. The hypothesis tested in this study was: Learning style perceptual preferences of fourth grade students as measured by the Dunn, Dunn, and Price Learning Style Inventory (LSI) are significant predictors of success in the acquisition of physical science concepts taught through use of the learning cycle. Analysis of pre and post USMT scores, 18.18 and 30.20 respectively, yielded a significant mean gain of +12.02. A controlled stepwise regression was employed to identify significant predictors of success on the USMT post-test from among USMT pre-test, four CAT-5 percentile scores, and four LSI perceptual standard scores. The CAT -5 Total Math and Total Reading accounted for 64.06% of the variance in the USMT post-test score. The only perceptual element to act as a significant predictor was the Kinesthetic standard score, accounting for 1.72% of the variance. The study revealed that learning cycle instruction does not appear

  3. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex

    OpenAIRE

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and p...

  4. Aesthetic concepts, perceptual learning, and linguistic enculturation: considerations from Wittgenstein, language, and music.

    Science.gov (United States)

    Croom, Adam M

    2012-03-01

    Aesthetic non-cognitivists deny that aesthetic statements express genuinely aesthetic beliefs and instead hold that they work primarily to express something non-cognitive, such as attitudes of approval or disapproval, or desire. Non-cognitivists deny that aesthetic statements express aesthetic beliefs because they deny that there are aesthetic features in the world for aesthetic beliefs to represent. Their assumption, shared by scientists and theorists of mind alike, was that language-users possess cognitive mechanisms with which to objectively grasp abstract rules fixed independently of human responses, and that cognizers are thereby capable of grasping rules for the correct application of aesthetic concepts without relying on evaluation or enculturation. However, in this article I use Wittgenstein's rule-following considerations to argue that psychological theories grounded upon this so-called objective model of rule-following fail to adequately account for concept acquisition and mastery. I argue that this is because linguistic enculturation, and the perceptual learning that's often involved, influences and enables the mastery of aesthetic concepts. I argue that part of what's involved in speaking aesthetically is to belong to a cultural practice of making sense of things aesthetically, and that it's within a socio-linguistic community, and that community's practices, that such aesthetic sense can be made intelligible.

  5. Auditory-visual stimulus pairing enhances perceptual learning in a songbird.

    Science.gov (United States)

    Hultsch; Schleuss; Todt

    1999-07-01

    In many oscine birds, song learning is affected by social variables, for example the behaviour of a tutor. This implies that both auditory and visual perceptual systems should be involved in the acquisition process. To examine whether and how particular visual stimuli can affect song acquisition, we tested the impact of a tutoring design in which the presentation of auditory stimuli (i.e. species-specific master songs) was paired with a well-defined nonauditory stimulus (i.e. stroboscope light flashes: Strobe regime). The subjects were male hand-reared nightingales, Luscinia megarhynchos. For controls, males were exposed to tutoring without a light stimulus (Control regime). The males' singing recorded 9 months later showed that the Strobe regime had enhanced the acquisition of song patterns. During this treatment birds had acquired more songs than during the Control regime; the observed increase in repertoire size was from 20 to 30% in most cases. Furthermore, the copy quality of imitations acquired during the Strobe regime was better than that of imitations developed from the Control regime, and this was due to a significant increase in the number of 'perfect' song copies. We conclude that these effects were mediated by an intrinsic component (e.g. attention or arousal) which specifically responded to the Strobe regime. Our findings also show that mechanisms of song learning are well prepared to process information from cross-modal perception. Thus, more detailed enquiries into stimulus complexes that are usually referred to as social variables are promising. Copyright 1999 The Association for the Study of Animal Behaviour.

  6. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex.

    Science.gov (United States)

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  7. A mouse model of visual perceptual learning reveals alterations in neuronal coding and dendritic spine density in the visual cortex

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2016-03-01

    Full Text Available Visual perceptual learning (VPL can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS and a 55% gain in visual acuity (VA. Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1 than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  8. Creating Objects and Object Categories for Studying Perception and Perceptual Learning

    Science.gov (United States)

    Hauffen, Karin; Bart, Eugene; Brady, Mark; Kersten, Daniel; Hegdé, Jay

    2012-01-01

    In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2. Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created

  9. Transfer of perceptual learning of depth discrimination between local and global stereograms.

    Science.gov (United States)

    Gantz, Liat; Bedell, Harold E

    2010-08-23

    Several previous studies reported differences when stereothresholds are assessed with local-contour stereograms vs. complex random-dot stereograms (RDSs). Dissimilar thresholds may be due to differences in the properties of the stereograms (e.g. spatial frequency content, contrast, inter-element separation, area) or to different underlying processing mechanisms. This study examined the transfer of perceptual learning of depth discrimination between local and global RDSs with similar properties, and vice versa. If global and local stereograms are processed by separate neural mechanisms, then the magnitude and rate of training for the two types of stimuli are likely to differ, and the transfer of training from one stimulus type to the other should be minimal. Based on previous results, we chose RDSs with element densities of 0.17% and 28.3% to serve as the local and global stereograms, respectively. Fourteen inexperienced subjects with normal binocular vision were randomly assigned to either a local- or global- RDS training group. Stereothresholds for both stimulus types were measured before and after 7700 training trials distributed over 10 sessions. Stereothresholds for the trained condition improve for approximately 3000 trials, by an average of 0.36+/-0.08 for local and 0.29+/-0.10 for global RDSs, and level off thereafter. Neither the rate nor the magnitude of improvement differ statistically between the local- and global-training groups. Further, no significant difference exists in the amount of improvement on the trained vs. the untrained targets for either training group. These results are consistent with the operation of a single mechanism to process both local and global stereograms. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. The effect of electroconvulsive therapy (ECT) on implicit memory: skill learning and perceptual priming in patients with major depression.

    Science.gov (United States)

    Vakil, E; Grunhaus, L; Nagar, I; Ben-Chaim, E; Dolberg, O T; Dannon, P N; Schreiber, S

    2000-01-01

    While explicit memory in amnesics is impaired, their implicit memory remains preserved. Memory impairment is one of the side effects of electroconvulsive therapy (ECT). ECT patients are expected to show impairment on explicit but not implicit tasks. The present study examined 17 normal controls and 17 patients with severe major depressive disorder who underwent right unilateral ECT. Patients were tested in three sessions: 24-48 hours prior to, 24-48 hours following the first ECT, and 24-48 hours following the eighth ECT. The controls were tested in three sessions, at time intervals that paralleled those of the patients. Implicit memory was tested by the perceptual priming task - Partial Picture-Identification (PPI). The skill learning task used entailed solving the Tower of Hanoi puzzle (TOHP). Explicit memory was tested by picture recall from the PPI task, verbal recall of information regarding the TOHP, and by the Visual Paired Association (VPA) test. Results showed that explicit questions about the implicit tasks were impaired following ECT treatment. Patients' learning ability, as measured by the VPA task, was only impaired in the first testing session, prior to ECT treatment, reflecting the effect of depression. In addition, groups only differed in the first session on the learning rate of the skill learning task. Perceptual priming was preserved in the patients' group in all sessions, indicating that it is resilient to the effect of depression and ECT. The results are interpreted in terms of the differential effect of depression and ECT on explicit and implicit memory.

  11. The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation.

    Science.gov (United States)

    Pirulli, Cornelia; Fertonani, Anna; Miniussi, Carlo

    2013-07-01

    Transcranial electric stimulation (tES) protocols are able to induce neuromodulation, offering important insights to focus and constrain theories of the relationship between brain and behavior. Previous studies have shown that different types of tES (i.e., direct current stimulation - tDCS, and random noise stimulation - tRNS) induce different facilitatory behavioral effects. However to date is not clear which is the optimal timing to apply tES in relation to the induction of robust facilitatory effects. The goal of this work was to investigate how different types of tES (tDCS and tRNS) can modulate behavioral performance in the healthy adult brain in relation to their timing of application. We applied tES protocols before (offline) or during (online) the execution of a visual perceptual learning (PL) task. PL is a form of implicit memory that is characterized by an improvement in sensory discrimination after repeated exposure to a particular type of stimulus and is considered a manifestation of neural plasticity. Our aim was to understand if the timing of tES is critical for the induction of differential neuromodulatory effects in the primary visual cortex (V1). We applied high-frequency tRNS, anodal tDCS and sham tDCS on V1 before or during the execution of an orientation discrimination task. The experimental design was between subjects and performance was measured in terms of d' values. The ideal timing of application varied depending on the stimulation type. tRNS facilitated task performance only when it was applied during task execution, whereas anodal tDCS induced a larger facilitation if it was applied before task execution. The main result of this study is the finding that the timing of identical tES protocols yields opposite effects on performance. These results provide important guidelines for designing neuromodulation induction protocols and highlight the different optimal timing of the two excitatory techniques. Copyright © 2013 Elsevier Inc. All

  12. Deficiencies within the education system with regard to perceptual motor learning

    Directory of Open Access Journals (Sweden)

    Myrtle Erasmus

    2011-12-01

    needs within the education environment and that many schools are under-supplied in terms of resources and equipment. It is recommended that these teachers receive inservice training on learners’ perceptual motor development and that the Department of Education should provide schools with resources and equipment to prevent these deficiencies in the education system.

  13. Perceptual learning of motion direction discrimination with suppressed and unsuppressed MT in humans: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Benjamin Thompson

    Full Text Available The middle temporal area of the extrastriate visual cortex (area MT is integral to motion perception and is thought to play a key role in the perceptual learning of motion tasks. We have previously found, however, that perceptual learning of a motion discrimination task is possible even when the training stimulus contains locally balanced, motion opponent signals that putatively suppress the response of MT. Assuming at least partial suppression of MT, possible explanations for this learning are that 1 training made MT more responsive by reducing motion opponency, 2 MT remained suppressed and alternative visual areas such as V1 enabled learning and/or 3 suppression of MT increased with training, possibly to reduce noise. Here we used fMRI to test these possibilities. We first confirmed that the motion opponent stimulus did indeed suppress the BOLD response within hMT+ compared to an almost identical stimulus without locally balanced motion signals. We then trained participants on motion opponent or non-opponent stimuli. Training with the motion opponent stimulus reduced the BOLD response within hMT+ and greater reductions in BOLD response were correlated with greater amounts of learning. The opposite relationship between BOLD and behaviour was found at V1 for the group trained on the motion-opponent stimulus and at both V1 and hMT+ for the group trained on the non-opponent motion stimulus. As the average response of many cells within MT to motion opponent stimuli is the same as their response to non-directional flickering noise, the reduced activation of hMT+ after training may reflect noise reduction.

  14. One Way or Another: Evidence for Perceptual Asymmetry in Pre-attentive Learning of Non-native Contrasts

    Directory of Open Access Journals (Sweden)

    Liquan Liu

    2018-03-01

    Full Text Available Research investigating listeners’ neural sensitivity to speech sounds has largely focused on segmental features. We examined Australian English listeners’ perception and learning of a supra-segmental feature, pitch direction in a non-native tonal contrast, using a passive oddball paradigm and electroencephalography. The stimuli were two contours generated from naturally produced high-level and high-falling tones in Mandarin Chinese, differing only in pitch direction (Liu and Kager, 2014. While both contours had similar pitch onsets, the pitch offset of the falling contour was lower than that of the level one. The contrast was presented in two orientations (standard and deviant reversed and tested in two blocks with the order of block presentation counterbalanced. Mismatch negativity (MMN responses showed that listeners discriminated the non-native tonal contrast only in the second block, reflecting indications of learning through exposure during the first block. In addition, listeners showed a later MMN peak for their second block of test relative to listeners who did the same block first, suggesting linguistic (as opposed to acoustic processing or a misapplication of perceptual strategies from the first to the second block. The results also showed a perceptual asymmetry for change in pitch direction: listeners who encountered a falling tone deviant in the first block had larger frontal MMN amplitudes than listeners who encountered a level tone deviant in the first block. The implications of our findings for second language speech and the developmental trajectory for tone perception are discussed.

  15. Effects of semantic context and feedback on perceptual learning of speech processed through an acoustic simulation of a cochlear implant.

    Science.gov (United States)

    Loebach, Jeremy L; Pisoni, David B; Svirsky, Mario A

    2010-02-01

    The effect of feedback and materials on perceptual learning was examined in listeners with normal hearing who were exposed to cochlear implant simulations. Generalization was most robust when feedback paired the spectrally degraded sentences with their written transcriptions, promoting mapping between the degraded signal and its acoustic-phonetic representation. Transfer-appropriate processing theory suggests that such feedback was most successful because the original learning conditions were reinstated at testing: Performance was facilitated when both training and testing contained degraded stimuli. In addition, the effect of semantic context on generalization was assessed by training listeners on meaningful or anomalous sentences. Training with anomalous sentences was as effective as that with meaningful sentences, suggesting that listeners were encouraged to use acoustic-phonetic information to identify speech than to make predictions from semantic context.

  16. Can perceptual learning be used to treat amblyopia beyond the critical period of visual development?

    Science.gov (United States)

    Astle, Andrew T; Webb, Ben S; McGraw, Paul V

    2011-11-01

    Amblyopia presents early in childhood and affects approximately 3% of western populations. The monocular visual acuity loss is conventionally treated during the 'critical periods' of visual development by occluding or penalising the fellow eye to encourage use of the amblyopic eye. Despite the measurable success of this approach in many children, substantial numbers of people still suffer with amblyopia later in life because either they were never diagnosed in childhood, did not respond to the original treatment, the amblyopia was only partially remediated, or their acuity loss returned after cessation of treatment. In this review, we consider whether the visual deficits of this largely overlooked amblyopic group are amenable to conventional and innovative therapeutic interventions later in life, well beyond the age at which treatment is thought to be effective. There is a considerable body of evidence that residual plasticity is present in the adult visual brain and this can be harnessed to improve function in adults with amblyopia. Perceptual training protocols have been developed to optimise visual gains in this clinical population. Results thus far are extremely encouraging; marked visual improvements have been demonstrated, the perceptual benefits transfer to new visual tasks and appear to be relatively enduring. The essential ingredients of perceptual training protocols are being incorporated into video game formats, facilitating home-based interventions. Many studies support perceptual training as a tool for improving vision in amblyopes beyond the critical period. Should this novel form of treatment stand up to the scrutiny of a randomised controlled trial, clinicians may need to re-evaluate their therapeutic approach to adults with amblyopia. Ophthalmic & Physiological Optics © 2011 The College of Optometrists.

  17. Can perceptual learning be used to treat amblyopia beyond the critical period of visual development?

    Science.gov (United States)

    Astle, Andrew T.; Webb, Ben S.; McGraw, Paul V.

    2012-01-01

    Background Amblyopia presents early in childhood and affects approximately 3% of western populations. The monocular visual acuity loss is conventionally treated during the “critical periods” of visual development by occluding or penalising the fellow eye to encourage use of the amblyopic eye. Despite the measurable success of this approach in many children, substantial numbers of people still suffer with amblyopia later in life because either they were never diagnosed in childhood, did not respond to the original treatment, the amblyopia was only partially remediated, or their acuity loss returned after cessation of treatment. Purpose In this review, we consider whether the visual deficits of this largely overlooked amblyopic group are amenable to conventional and innovative therapeutic interventions later in life, well beyond the age at which treatment is thought to be effective. Recent findings There is a considerable body of evidence that residual plasticity is present in the adult visual brain and this can be harnessed to improve function in adults with amblyopia. Perceptual training protocols have been developed to optimise visual gains in this clinical population. Results thus far are extremely encouraging: marked visual improvements have been demonstrated, the perceptual benefits transfer to new visual tasks and appear to be relatively enduring. The essential ingredients of perceptual training protocols are being incorporated into video game formats, facilitating home-based interventions. Summary Many studies support perceptual training as a tool for improving vision in amblyopes beyond the critical period. Should this novel form of treatment stand up to the scrutiny of a randomised controlled trial, clinicians may need to re-evaluate their therapeutic approach to adults with amblyopia. PMID:21981034

  18. Birth of projection neurons in adult avian brain may be related to perceptual or motor learning

    International Nuclear Information System (INIS)

    Alvarez-Buylla, A.; Kirn, J.R.; Nottebohm, F.

    1990-01-01

    Projection neurons that form part of the motor pathway for song control continue to be produced and to replace older projection neurons in adult canaries and zebra finches. This is shown by combining [3H]thymidine, a cell birth marker, and fluorogold, a retrogradely transported tracer of neuronal connectivity. Species and seasonal comparisons suggest that this process is related to the acquisition of perceptual or motor memories. The ability of an adult brain to produce and replace projection neurons should influence our thinking on brain repair

  19. Perceptual Learning of Intonation Contour Categories in Adults and 9- to 11-Year-Old Children: Adults Are More Narrow-Minded

    Science.gov (United States)

    Kapatsinski, Vsevolod; Olejarczuk, Paul; Redford, Melissa A.

    2017-01-01

    We report on rapid perceptual learning of intonation contour categories in adults and 9- to 11-year-old children. Intonation contours are temporally extended patterns, whose perception requires temporal integration and therefore poses significant working memory challenges. Both children and adults form relatively abstract representations of…

  20. The Effect of Feedback Delay on Perceptual Category Learning and Item Memory: Further Limits of Multiple Systems.

    Science.gov (United States)

    Stephens, Rachel G; Kalish, Michael L

    2018-02-01

    Delayed feedback during categorization training has been hypothesized to differentially affect 2 systems that underlie learning for rule-based (RB) or information-integration (II) structures. We tested an alternative possibility: that II learning requires more precise item representations than RB learning, and so is harmed more by a delay interval filled with a confusable mask. Experiments 1 and 2 examined the effect of feedback delay on memory for RB and II exemplars, both without and with concurrent categorization training. Without the training, II items were indeed more difficult to recognize than RB items, but there was no detectable effect of delay on item memory. In contrast, with concurrent categorization training, there were effects of both category structure and delayed feedback on item memory, which were related to corresponding changes in category learning. However, we did not observe the critical selective impact of delay on II classification performance that has been shown previously. Our own results were also confirmed in a follow-up study (Experiment 3) involving only categorization training. The selective influence of feedback delay on II learning appears to be contingent on the relative size of subgroups of high-performing participants, and in fact does not support that RB and II category learning are qualitatively different. We conclude that a key part of successfully solving perceptual categorization problems is developing more precise item representations, which can be impaired by delayed feedback during training. More important, the evidence for multiple systems of category learning is even weaker than previously proposed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Changes in Olfactory Sensory Neuron Physiology and Olfactory Perceptual Learning After Odorant Exposure in Adult Mice.

    Science.gov (United States)

    Kass, Marley D; Guang, Stephanie A; Moberly, Andrew H; McGann, John P

    2016-02-01

    The adult olfactory system undergoes experience-dependent plasticity to adapt to the olfactory environment. This plasticity may be accompanied by perceptual changes, including improved olfactory discrimination. Here, we assessed experience-dependent changes in the perception of a homologous aldehyde pair by testing mice in a cross-habituation/dishabituation behavioral paradigm before and after a week-long ester-odorant exposure protocol. In a parallel experiment, we used optical neurophysiology to observe neurotransmitter release from olfactory sensory neuron (OSN) terminals in vivo, and thus compared primary sensory representations of the aldehydes before and after the week-long ester-odorant exposure in individual animals. Mice could not discriminate between the aldehydes during pre-exposure testing, but ester-exposed subjects spontaneously discriminated between the homologous pair after exposure, whereas home cage control mice cross-habituated. Ester exposure did not alter the spatial pattern, peak magnitude, or odorant-selectivity of aldehyde-evoked OSN input to olfactory bulb glomeruli, but did alter the temporal dynamics of that input to make the time course of OSN input more dissimilar between odorants. Together, these findings demonstrate that odor exposure can induce both physiological and perceptual changes in odor processing, and suggest that changes in the temporal patterns of OSN input to olfactory bulb glomeruli could induce differences in odor quality. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. More Is Generally Better: Higher Working Memory Capacity Does Not Impair Perceptual Category Learning

    Science.gov (United States)

    Kalish, Michael L.; Newell, Ben R.; Dunn, John C.

    2017-01-01

    It is sometimes supposed that category learning involves competing explicit and procedural systems, with only the former reliant on working memory capacity (WMC). In 2 experiments participants were trained for 3 blocks on both filtering (often said to be learned explicitly) and condensation (often said to be learned procedurally) category…

  3. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    Science.gov (United States)

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  4. Top-down inputs enhance orientation selectivity in neurons of the primary visual cortex during perceptual learning.

    Directory of Open Access Journals (Sweden)

    Samat Moldakarimov

    2014-08-01

    Full Text Available Perceptual learning has been used to probe the mechanisms of cortical plasticity in the adult brain. Feedback projections are ubiquitous in the cortex, but little is known about their role in cortical plasticity. Here we explore the hypothesis that learning visual orientation discrimination involves learning-dependent plasticity of top-down feedback inputs from higher cortical areas, serving a different function from plasticity due to changes in recurrent connections within a cortical area. In a Hodgkin-Huxley-based spiking neural network model of visual cortex, we show that modulation of feedback inputs to V1 from higher cortical areas results in shunting inhibition in V1 neurons, which changes the response properties of V1 neurons. The orientation selectivity of V1 neurons is enhanced without changing orientation preference, preserving the topographic organizations in V1. These results provide new insights to the mechanisms of plasticity in the adult brain, reconciling apparently inconsistent experiments and providing a new hypothesis for a functional role of the feedback connections.

  5. Age-related changes in consolidation of perceptual and muscle-based learning of motor skills

    Directory of Open Access Journals (Sweden)

    Rebecca M. C. Spencer

    2013-11-01

    Full Text Available Improvements in motor sequence learning come about via goal-based learning of the sequence of visual stimuli and muscle-based learning of the sequence of movement responses. In young adults, consolidation of goal-based learning is observed after intervals of sleep but not following wake, whereas consolidation of muscle-based learning is greater following intervals with wake compared to sleep. While the benefit of sleep on motor sequence learning has been shown to decline with age, how sleep contributes to consolidation of goal-based versus muscle-based learning in older adults has not been disentangled. We trained young (n=62 and older (n=50 adults on a motor sequence learning task and re-tested learning following 12 hr intervals containing overnight sleep or daytime wake. To probe consolidation of goal-based learning of the sequence, half of the participants were re-tested in a configuration in which the stimulus sequence was the same but, due to a shift in stimulus-response mapping, the movement response sequence differed. To probe consolidation of muscle-based learning, the remaining participants were tested in a configuration in which the stimulus sequence was novel, but now the sequence of movements used for responding was unchanged. In young adults, there was a significant condition (goal-based v. muscle-based learning by interval (sleep v. wake interaction, F(1,58=6.58, p=.013: Goal-based learning tended to be greater following sleep compared to wake, t(29=1.47, p=.072. Conversely, muscle-based learning was greater following wake than sleep, t(29=2.11, p=.021. Unlike young adults, this interaction was not significant in older adults, F(1,46=.04, p=.84, nor was there a main effect of interval, F(1,46=1.14, p=.29. Thus, older adults do not preferentially consolidate sequence learning over wake or sleep.

  6. Caudate nucleus reactivity predicts perceptual learning rate for visual feature conjunctions.

    Science.gov (United States)

    Reavis, Eric A; Frank, Sebastian M; Tse, Peter U

    2015-04-15

    Useful information in the visual environment is often contained in specific conjunctions of visual features (e.g., color and shape). The ability to quickly and accurately process such conjunctions can be learned. However, the neural mechanisms responsible for such learning remain largely unknown. It has been suggested that some forms of visual learning might involve the dopaminergic neuromodulatory system (Roelfsema et al., 2010; Seitz and Watanabe, 2005), but this hypothesis has not yet been directly tested. Here we test the hypothesis that learning visual feature conjunctions involves the dopaminergic system, using functional neuroimaging, genetic assays, and behavioral testing techniques. We use a correlative approach to evaluate potential associations between individual differences in visual feature conjunction learning rate and individual differences in dopaminergic function as indexed by neuroimaging and genetic markers. We find a significant correlation between activity in the caudate nucleus (a component of the dopaminergic system connected to visual areas of the brain) and visual feature conjunction learning rate. Specifically, individuals who showed a larger difference in activity between positive and negative feedback on an unrelated cognitive task, indicative of a more reactive dopaminergic system, learned visual feature conjunctions more quickly than those who showed a smaller activity difference. This finding supports the hypothesis that the dopaminergic system is involved in visual learning, and suggests that visual feature conjunction learning could be closely related to associative learning. However, no significant, reliable correlations were found between feature conjunction learning and genotype or dopaminergic activity in any other regions of interest. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. When more is less: Feedback effects in perceptual category learning

    Science.gov (United States)

    Maddox, W. Todd; Love, Bradley C.; Glass, Brian D.; Filoteo, J. Vincent

    2008-01-01

    Rule-based and information-integration category learning were compared under minimal and full feedback conditions. Rule-based category structures are those for which the optimal rule is verbalizable. Information-integration category structures are those for which the optimal rule is not verbalizable. With minimal feedback subjects are told whether their response was correct or incorrect, but are not informed of the correct category assignment. With full feedback subjects are informed of the correctness of their response and are also informed of the correct category assignment. An examination of the distinct neural circuits that subserve rule-based and information-integration category learning leads to the counterintuitive prediction that full feedback should facilitate rule-based learning but should also hinder information-integration learning. This prediction was supported in the experiment reported below. The implications of these results for theories of learning are discussed. PMID:18455155

  8. Incremental Learning of Perceptual Categories for Open-Domain Sketch Recognition

    National Research Council Canada - National Science Library

    Lovett, Andrew; Dehghani, Morteza; Forbus, Kenneth

    2007-01-01

    .... This paper describes an incremental learning technique for opendomain recognition. Our system builds generalizations for categories of objects based upon previous sketches of those objects and uses those generalizations to classify new sketches...

  9. Action Speaks Louder than Words: Young Children Differentially Weight Perceptual, Social, and Linguistic Cues to Learn Verbs

    Science.gov (United States)

    Brandone, Amanda C.; Pence, Khara L.; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy

    2007-01-01

    This paper explores how children use two possible solutions to the verb-mapping problem: attention to perceptually salient actions and attention to social and linguistic information (speaker cues). Twenty-two-month-olds attached a verb to one of two actions when perceptual cues (presence/absence of a result) coincided with speaker cues but not…

  10. Anodal tDCS to V1 blocks visual perceptual learning consolidation.

    Science.gov (United States)

    Peters, Megan A K; Thompson, Benjamin; Merabet, Lotfi B; Wu, Allan D; Shams, Ladan

    2013-06-01

    This study examined the effects of visual cortex transcranial direct current stimulation (tDCS) on visual processing and learning. Participants performed a contrast detection task on two consecutive days. Each session consisted of a baseline measurement followed by measurements made during active or sham stimulation. On the first day, one group received anodal stimulation to primary visual cortex (V1), while another received cathodal stimulation. Stimulation polarity was reversed for these groups on the second day. The third (control) group of subjects received sham stimulation on both days. No improvements or decrements in contrast sensitivity relative to the same-day baseline were observed during real tDCS, nor was any within-session learning trend observed. However, task performance improved significantly from Day 1 to Day 2 for the participants who received cathodal tDCS on Day 1 and for the sham group. No such improvement was found for the participants who received anodal stimulation on Day 1, indicating that anodal tDCS blocked overnight consolidation of visual learning, perhaps through engagement of inhibitory homeostatic plasticity mechanisms or alteration of the signal-to-noise ratio within stimulated cortex. These results show that applying tDCS to the visual cortex can modify consolidation of visual learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Explicit Pre-Training Instruction Does Not Improve Implicit Perceptual-Motor Sequence Learning

    Science.gov (United States)

    Sanchez, Daniel J.; Reber, Paul J.

    2013-01-01

    Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key…

  12. Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia

    Science.gov (United States)

    Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue

    2011-01-01

    Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…

  13. Audiovisual spoken word training can promote or impede auditory-only perceptual learning: prelingually deafened adults with late-acquired cochlear implants versus normal hearing adults.

    Science.gov (United States)

    Bernstein, Lynne E; Eberhardt, Silvio P; Auer, Edward T

    2014-01-01

    Training with audiovisual (AV) speech has been shown to promote auditory perceptual learning of vocoded acoustic speech by adults with normal hearing. In Experiment 1, we investigated whether AV speech promotes auditory-only (AO) perceptual learning in prelingually deafened adults with late-acquired cochlear implants. Participants were assigned to learn associations between spoken disyllabic C(=consonant)V(=vowel)CVC non-sense words and non-sense pictures (fribbles), under AV and then AO (AV-AO; or counter-balanced AO then AV, AO-AV, during Periods 1 then 2) training conditions. After training on each list of paired-associates (PA), testing was carried out AO. Across all training, AO PA test scores improved (7.2 percentage points) as did identification of consonants in new untrained CVCVC stimuli (3.5 percentage points). However, there was evidence that AV training impeded immediate AO perceptual learning: During Period-1, training scores across AV and AO conditions were not different, but AO test scores were dramatically lower in the AV-trained participants. During Period-2 AO training, the AV-AO participants obtained significantly higher AO test scores, demonstrating their ability to learn the auditory speech. Across both orders of training, whenever training was AV, AO test scores were significantly lower than training scores. Experiment 2 repeated the procedures with vocoded speech and 43 normal-hearing adults. Following AV training, their AO test scores were as high as or higher than following AO training. Also, their CVCVC identification scores patterned differently than those of the cochlear implant users. In Experiment 1, initial consonants were most accurate, and in Experiment 2, medial consonants were most accurate. We suggest that our results are consistent with a multisensory reverse hierarchy theory, which predicts that, whenever possible, perceivers carry out perceptual tasks immediately based on the experience and biases they bring to the task. We

  14. Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning

    OpenAIRE

    Sanchez, Daniel J.; Reber, Paul J.

    2012-01-01

    Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key question is whether this observation reflects parallel intact memory systems or an integrated representation of memory in healthy participants. Lea...

  15. Cerebellar tDCS dissociates the timing of perceptual decisions from perceptual change in speech

    NARCIS (Netherlands)

    Lametti, D.R.; Oostwoud Wijdenes, L.; Bonaiuto, J.; Bestmann, S.; Rothwell, J.C.

    2016-01-01

    Neuroimaging studies suggest that the cerebellum might play a role in both speech perception and speech perceptual learning. However, it remains unclear what this role is: does the cerebellum directly contribute to the perceptual decision? Or does it contribute to the timing of perceptual decisions?

  16. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    Science.gov (United States)

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  17. A Self-Synthesis Approach to Perceptual Learning for Multisensory Fusion in Robotics

    Science.gov (United States)

    Axenie, Cristian; Richter, Christoph; Conradt, Jörg

    2016-01-01

    Biological and technical systems operate in a rich multimodal environment. Due to the diversity of incoming sensory streams a system perceives and the variety of motor capabilities a system exhibits there is no single representation and no singular unambiguous interpretation of such a complex scene. In this work we propose a novel sensory processing architecture, inspired by the distributed macro-architecture of the mammalian cortex. The underlying computation is performed by a network of computational maps, each representing a different sensory quantity. All the different sensory streams enter the system through multiple parallel channels. The system autonomously associates and combines them into a coherent representation, given incoming observations. These processes are adaptive and involve learning. The proposed framework introduces mechanisms for self-creation and learning of the functional relations between the computational maps, encoding sensorimotor streams, directly from the data. Its intrinsic scalability, parallelisation, and automatic adaptation to unforeseen sensory perturbations make our approach a promising candidate for robust multisensory fusion in robotic systems. We demonstrate this by applying our model to a 3D motion estimation on a quadrotor. PMID:27775621

  18. A Self-Synthesis Approach to Perceptual Learning for Multisensory Fusion in Robotics

    Directory of Open Access Journals (Sweden)

    Cristian Axenie

    2016-10-01

    Full Text Available Biological and technical systems operate in a rich multimodal environment. Due to the diversity of incoming sensory streams a system perceives and the variety of motor capabilities a system exhibits there is no single representation and no singular unambiguous interpretation of such a complex scene. In this work we propose a novel sensory processing architecture, inspired by the distributed macro-architecture of the mammalian cortex. The underlying computation is performed by a network of computational maps, each representing a different sensory quantity. All the different sensory streams enter the system through multiple parallel channels. The system autonomously associates and combines them into a coherent representation, given incoming observations. These processes are adaptive and involve learning. The proposed framework introduces mechanisms for self-creation and learning of the functional relations between the computational maps, encoding sensorimotor streams, directly from the data. Its intrinsic scalability, parallelisation, and automatic adaptation to unforeseen sensory perturbations make our approach a promising candidate for robust multisensory fusion in robotic systems. We demonstrate this by applying our model to a 3D motion estimation on a quadrotor.

  19. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?

    Directory of Open Access Journals (Sweden)

    Bianca Alert

    Full Text Available Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.

  20. Improvement of uncorrected visual acuity (UCVA and contrast sensitivity (UCCS with perceptual learning and transcranial random noise stimulation (tRNS in individuals with mild myopia

    Directory of Open Access Journals (Sweden)

    Rebecca eCamilleri

    2014-10-01

    Full Text Available Perceptual learning has been shown to produce an improvement of visual acuity (VA and contrast sensitivity (CS both in subjects with amblyopia and refractive defects such as myopia or presbyopia. Transcranial random noise stimulation (tRNS has proven to be efficacious in accelerating neural plasticity and boosting perceptual learning in healthy participants. In this study we investigated whether a short behavioural training regime using a contrast detection task combined with online tRNS was as effective in improving visual functions in participants with mild myopia compared to a two-month behavioural training regime without tRNS (Camilleri et al., 2014. After two weeks of perceptual training in combination with tRNS, participants showed an improvement of 0.15 LogMAR in uncorrected VA (UCVA that was comparable with that obtained after eight weeks of training with no tRNS, and an improvement in uncorrected CS (UCCS at various spatial frequencies (whereas no UCCS improvement was seen after eight weeks of training with no tRNS. On the other hand, a control group that trained for two weeks without stimulation did not show any significant UCVA or UCCS improvement. These results suggest that the combination of behavioural and neuromodulatory techniques can be fast and efficacious in improving sight in individuals with mild myopia.

  1. Perceptual-cognitive changes during motor learning: The influence of mental and physical practice on mental representation, gaze behavior, and performance of a complex action

    Directory of Open Access Journals (Sweden)

    Cornelia eFrank

    2016-01-01

    Full Text Available Despite the wealth of research on differences between experts and novices with respect to their perceptual-cognitive background (e.g., mental representations, gaze behavior, little is known about the change of these perceptual-cognitive components over the course of motor learning. In the present study, changes in one’s mental representation, quiet eye behavior, and outcome performance were examined over the course of skill acquisition as it related to physical and mental practice. Novices (N = 45 were assigned to one of three conditions: physical practice, physical practice plus mental practice, and no practice. Participants in the practice groups trained on a golf putting task over the course of three days, either by repeatedly executing the putt, or by both executing and imaging the putt. Findings revealed improvements in putting performance across both practice conditions. Regarding the perceptual-cognitive changes, participants practicing mentally and physically revealed longer quiet eye durations as well as more elaborate representation structures in comparison to the control group, while this was not the case for participants who underwent physical practice only. Thus, in the present study, combined mental and physical practice led to both formation of mental representations in long-term memory and longer quiet eye durations. Interestingly, the length of the quiet eye directly related to the degree of elaborateness of the underlying mental representation, supporting the notion that the quiet eye reflects cognitive processing. This study is the first to show that the quiet eye becomes longer in novices practicing a motor action. Moreover, the findings of the present study suggest that perceptual and cognitive adaptations co-occur over the course of motor learning.

  2. Perceptual inference.

    Science.gov (United States)

    Aggelopoulos, Nikolaos C

    2015-08-01

    Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Sharpened cortical tuning and enhanced cortico-cortical communication contribute to the long-term neural mechanisms of visual motion perceptual learning.

    Science.gov (United States)

    Chen, Nihong; Bi, Taiyong; Zhou, Tiangang; Li, Sheng; Liu, Zili; Fang, Fang

    2015-07-15

    Much has been debated about whether the neural plasticity mediating perceptual learning takes place at the sensory or decision-making stage in the brain. To investigate this, we trained human subjects in a visual motion direction discrimination task. Behavioral performance and BOLD signals were measured before, immediately after, and two weeks after training. Parallel to subjects' long-lasting behavioral improvement, the neural selectivity in V3A and the effective connectivity from V3A to IPS (intraparietal sulcus, a motion decision-making area) exhibited a persistent increase for the trained direction. Moreover, the improvement was well explained by a linear combination of the selectivity and connectivity increases. These findings suggest that the long-term neural mechanisms of motion perceptual learning are implemented by sharpening cortical tuning to trained stimuli at the sensory processing stage, as well as by optimizing the connections between sensory and decision-making areas in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Frequent video game players resist perceptual interference.

    Directory of Open Access Journals (Sweden)

    Aaron V Berard

    Full Text Available Playing certain types of video games for a long time can improve a wide range of mental processes, from visual acuity to cognitive control. Frequent gamers have also displayed generalized improvements in perceptual learning. In the Texture Discrimination Task (TDT, a widely used perceptual learning paradigm, participants report the orientation of a target embedded in a field of lines and demonstrate robust over-night improvement. However, changing the orientation of the background lines midway through TDT training interferes with overnight improvements in overall performance on TDT. Interestingly, prior research has suggested that this effect will not occur if a one-hour break is allowed in between the changes. These results have suggested that after training is over, it may take some time for learning to become stabilized and resilient against interference. Here, we tested whether frequent gamers have faster stabilization of perceptual learning compared to non-gamers and examined the effect of daily video game playing on interference of training of TDT with one background orientation on perceptual learning of TDT with a different background orientation. As a result, we found that non-gamers showed overnight performance improvement only on one background orientation, replicating previous results with the interference in TDT. In contrast, frequent gamers demonstrated overnight improvements in performance with both background orientations, suggesting that they are better able to overcome interference in perceptual learning. This resistance to interference suggests that video game playing not only enhances the amplitude and speed of perceptual learning but also leads to faster and/or more robust stabilization of perceptual learning.

  5. Frequent video game players resist perceptual interference.

    Science.gov (United States)

    Berard, Aaron V; Cain, Matthew S; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Playing certain types of video games for a long time can improve a wide range of mental processes, from visual acuity to cognitive control. Frequent gamers have also displayed generalized improvements in perceptual learning. In the Texture Discrimination Task (TDT), a widely used perceptual learning paradigm, participants report the orientation of a target embedded in a field of lines and demonstrate robust over-night improvement. However, changing the orientation of the background lines midway through TDT training interferes with overnight improvements in overall performance on TDT. Interestingly, prior research has suggested that this effect will not occur if a one-hour break is allowed in between the changes. These results have suggested that after training is over, it may take some time for learning to become stabilized and resilient against interference. Here, we tested whether frequent gamers have faster stabilization of perceptual learning compared to non-gamers and examined the effect of daily video game playing on interference of training of TDT with one background orientation on perceptual learning of TDT with a different background orientation. As a result, we found that non-gamers showed overnight performance improvement only on one background orientation, replicating previous results with the interference in TDT. In contrast, frequent gamers demonstrated overnight improvements in performance with both background orientations, suggesting that they are better able to overcome interference in perceptual learning. This resistance to interference suggests that video game playing not only enhances the amplitude and speed of perceptual learning but also leads to faster and/or more robust stabilization of perceptual learning.

  6. Motivational Gaps and Perceptual Bias of Initial Motivation Additional Indicators of Quality for e-Learning Courses

    Science.gov (United States)

    Cação, Rosário

    2017-01-01

    We describe a study on the motivation of trainees in e-learning-based professional training and on the effect of their motivation upon the perceptions they build about the quality of the courses. We propose the concepts of "perceived motivational gap" and "real motivational gap" as indicators of e-learning quality, which…

  7. Dissociable mechanisms of speed-accuracy tradeoff during visual perceptual learning are revealed by a hierarchical drift diffusion model

    Directory of Open Access Journals (Sweden)

    Jiaxiang eZhang

    2014-04-01

    Full Text Available Two phenomena are commonly observed in decision-making. First, there is a speed-accuracy tradeoff such that decisions are slower and more accurate when instructions emphasize accuracy over speed, and vice versa. Second, decision performance improves with practice, as a task is learnt. The speed-accuracy tradeoff and learning effects have been explained under a well-established evidence-accumulation framework for decision-making, which suggests that evidence supporting each choice is accumulated over time, and a decision is committed to when the accumulated evidence reaches a decision boundary. This framework suggests that changing the decision boundary creates the tradeoff between decision speed and accuracy, while increasing the rate of accumulation leads to more accurate and faster decisions after learning. However, recent studies challenged the view that speed-accuracy tradeoff and learning are associated with changes in distinct, single decision parameters. Further, the influence of speed-accuracy instructions over the course of learning remains largely unknown. Here, we used a hierarchical drift-diffusion model to examine the speed-accuracy tradeoff during learning of a coherent motion discrimination task across multiple training sessions, and a transfer test session. The influence of speed-accuracy instructions was robust over training and generalized across untrained stimulus features. Emphasizing decision accuracy rather than speed was associated with increased boundary separation, drift rate and non-decision time at the beginning of training. However, after training, an emphasis on decision accuracy was only associated with increased boundary separation. In addition, faster and more accurate decisions after learning were due to a gradual decrease in boundary separation and an increase in drift rate. The results suggest that speed-accuracy instructions and learning differentially shape decision-making processes at different time scales.

  8. Perceptual Robust Design

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard

    The research presented in this PhD thesis has focused on a perceptual approach to robust design. The results of the research and the original contribution to knowledge is a preliminary framework for understanding, positioning, and applying perceptual robust design. Product quality is a topic...... been presented. Therefore, this study set out to contribute to the understanding and application of perceptual robust design. To achieve this, a state-of-the-art and current practice review was performed. From the review two main research problems were identified. Firstly, a lack of tools...... for perceptual robustness was found to overlap with the optimum for functional robustness and at most approximately 2.2% out of the 14.74% could be ascribed solely to the perceptual robustness optimisation. In conclusion, the thesis have offered a new perspective on robust design by merging robust design...

  9. Perceptual Grouping via Untangling Gestalt Principles

    DEFF Research Database (Denmark)

    Qi, Yonggang; Guo, Jun; Li, Yi

    2013-01-01

    the importance of Gestalt rules by solving a learning to rank problem, and formulate a multi-label graph-cuts algo- rithm to group image primitives while taking into account the learned Gestalt confliction. Our experiment results confirm the existence of Gestalt confliction in perceptual grouping and demonstrate...... confliction, i.e., the relative importance of each rule compared with another, remains unsolved. In this paper, we investigate the problem of perceptual grouping by quantifying the confliction among three commonly used rules: similarity, continuity and proximity. More specifically, we propose to quantify...... an improved performance when such a conflic- tion is accounted for via the proposed grouping algorithm. Finally, a novel cross domain image classification method is proposed by exploiting perceptual grouping as representation....

  10. Mechanism of Perceptual Attention

    National Research Council Canada - National Science Library

    Lu, Zhong-Lin

    2000-01-01

    .... Attention may affect the perceived clarity of visual displays and improve performance. In this project, a powerful external noise method was developed to identify and characterize the effect of attention on perceptual performance in visual tasks...

  11. Mechanisms of Perceptual Attention

    National Research Council Canada - National Science Library

    Dosher, Barbara

    2000-01-01

    .... Attention may affect the perceived clarity of visual displays and improve performance. In this project, a powerful external noise method was developed to identify and characterize the effect of attention on perceptual performance in visual tasks...

  12. A systematic review on ‘Foveal Crowding’ in visually impaired children and perceptual learning as a method to reduce Crowding

    Directory of Open Access Journals (Sweden)

    Huurneman Bianca

    2012-07-01

    compare crowding ratios and it shows that charts with 50% interoptotype spacing were most sensitive to capture crowding effects. The groups that showed the largest crowding effects were individuals with CN, VI adults with central scotomas and children with CVI. Perceptual Learning seems to be a promising technique to reduce excessive foveal crowding effects.

  13. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  14. Perceptual dimensions differentiate emotions.

    Science.gov (United States)

    Cavanaugh, Lisa A; MacInnis, Deborah J; Weiss, Allen M

    2015-08-26

    Individuals often describe objects in their world in terms of perceptual dimensions that span a variety of modalities; the visual (e.g., brightness: dark-bright), the auditory (e.g., loudness: quiet-loud), the gustatory (e.g., taste: sour-sweet), the tactile (e.g., hardness: soft vs. hard) and the kinaesthetic (e.g., speed: slow-fast). We ask whether individuals use perceptual dimensions to differentiate emotions from one another. Participants in two studies (one where respondents reported on abstract emotion concepts and a second where they reported on specific emotion episodes) rated the extent to which features anchoring 29 perceptual dimensions (e.g., temperature, texture and taste) are associated with 8 emotions (anger, fear, sadness, guilt, contentment, gratitude, pride and excitement). Results revealed that in both studies perceptual dimensions differentiate positive from negative emotions and high arousal from low arousal emotions. They also differentiate among emotions that are similar in arousal and valence (e.g., high arousal negative emotions such as anger and fear). Specific features that anchor particular perceptual dimensions (e.g., hot vs. cold) are also differentially associated with emotions.

  15. From Perceptual Categories to Concepts: What Develops?

    Science.gov (United States)

    Sloutsky, Vladimir M.

    2010-01-01

    People are remarkably smart: they use language, possess complex motor skills, make non-trivial inferences, develop and use scientific theories, make laws, and adapt to complex dynamic environments. Much of this knowledge requires concepts and this paper focuses on how people acquire concepts. It is argued that conceptual development progresses from simple perceptual grouping to highly abstract scientific concepts. This proposal of conceptual development has four parts. First, it is argued that categories in the world have different structure. Second, there might be different learning systems (sub-served by different brain mechanisms) that evolved to learn categories of differing structures. Third, these systems exhibit differential maturational course, which affects how categories of different structures are learned in the course of development. And finally, an interaction of these components may result in the developmental transition from perceptual groupings to more abstract concepts. This paper reviews a large body of empirical evidence supporting this proposal. PMID:21116483

  16. Natural texture retrieval based on perceptual similarity measurement

    Science.gov (United States)

    Gao, Ying; Dong, Junyu; Lou, Jianwen; Qi, Lin; Liu, Jun

    2018-04-01

    A typical texture retrieval system performs feature comparison and might not be able to make human-like judgments of image similarity. Meanwhile, it is commonly known that perceptual texture similarity is difficult to be described by traditional image features. In this paper, we propose a new texture retrieval scheme based on texture perceptual similarity. The key of the proposed scheme is that prediction of perceptual similarity is performed by learning a non-linear mapping from image features space to perceptual texture space by using Random Forest. We test the method on natural texture dataset and apply it on a new wallpapers dataset. Experimental results demonstrate that the proposed texture retrieval scheme with perceptual similarity improves the retrieval performance over traditional image features.

  17. Perceptual Fluency, Auditory Generation, and Metamemory: Analyzing the Perceptual Fluency Hypothesis in the Auditory Modality

    Science.gov (United States)

    Besken, Miri; Mulligan, Neil W.

    2014-01-01

    Judgments of learning (JOLs) are sometimes influenced by factors that do not impact actual memory performance. One recent proposal is that perceptual fluency during encoding affects metamemory and is a basis of metacognitive illusions. In the present experiments, participants identified aurally presented words that contained inter-spliced silences…

  18. Adaptation and perceptual norms

    Science.gov (United States)

    Webster, Michael A.; Yasuda, Maiko; Haber, Sara; Leonard, Deanne; Ballardini, Nicole

    2007-02-01

    We used adaptation to examine the relationship between perceptual norms--the stimuli observers describe as psychologically neutral, and response norms--the stimulus levels that leave visual sensitivity in a neutral or balanced state. Adapting to stimuli on opposite sides of a neutral point (e.g. redder or greener than white) biases appearance in opposite ways. Thus the adapting stimulus can be titrated to find the unique adapting level that does not bias appearance. We compared these response norms to subjectively defined neutral points both within the same observer (at different retinal eccentricities) and between observers. These comparisons were made for visual judgments of color, image focus, and human faces, stimuli that are very different and may depend on very different levels of processing, yet which share the property that for each there is a well defined and perceptually salient norm. In each case the adaptation aftereffects were consistent with an underlying sensitivity basis for the perceptual norm. Specifically, response norms were similar to and thus covaried with the perceptual norm, and under common adaptation differences between subjectively defined norms were reduced. These results are consistent with models of norm-based codes and suggest that these codes underlie an important link between visual coding and visual experience.

  19. Perceptual Processing Affects Conceptual Processing

    Science.gov (United States)

    van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.

    2008-01-01

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…

  20. Implicit Recognition Based on Lateralized Perceptual Fluency

    OpenAIRE

    Vargas, Iliana M.; Voss, Joel L.; Paller, Ken A.

    2012-01-01

    In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this “implicit recognition” results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention enc...

  1. Working memory does not dissociate between different perceptual categorization tasks.

    Science.gov (United States)

    Lewandowsky, Stephan; Yang, Lee-Xieng; Newell, Ben R; Kalish, Michael L

    2012-07-01

    Working memory is crucial for many higher level cognitive functions, ranging from mental arithmetic to reasoning and problem solving. Likewise, the ability to learn and categorize novel concepts forms an indispensable part of human cognition. However, very little is known about the relationship between working memory and categorization. This article reports 2 studies that related people's working memory capacity (WMC) to their learning performance on multiple rule-based and information-integration perceptual categorization tasks. In both studies, structural equation modeling revealed a strong relationship between WMC and category learning irrespective of the requirement to integrate information across multiple perceptual dimensions. WMC was also uniformly related to people's ability to focus on the most task-appropriate strategy, regardless of whether or not that strategy involved information integration. Contrary to the predictions of the multiple systems view of categorization, working memory thus appears to underpin performance in both major classes of perceptual category-learning tasks. 2012 APA, all rights reserved

  2. PERCEPTUAL HOLISTIC APPROACH IN TEACHING LEARNING OF ATHLETICS THROUGH GAMES / ENFOQUE HOLÍSTICO PERCEPTUAL EN LA ENSEÑANZA-APRENDIZAJE DEL ATLETISMO A TRAVÉS DEL JUEGO

    Directory of Open Access Journals (Sweden)

    Rolando Castro Marcelo

    2013-04-01

    Full Text Available The game as a teaching learning method of athletics in ages ranging from nine to eleven years in Las Tunas province brings about the movement development in school children who can show themselves in a conscious and spontaneous manner. It contributes to their interest and necessities satisfaction through the closed sport in a developing environment which allows to dead with the fundamental dimensions and links with the purpose of reaching the right levels in the formation, education and development of personality in life, here, it is where the talented ones emerge and became high performance athletes. Methodological, epistemological, axiological and critical element in the game declivity; sustained apron theoretical bases are integrated with the intention of permitting the holistic, historic, multifunctional, humanistic and the developing conceptual character. On this point, the unity of theoretical elements and the sport practice is revealed in correspondence with the individual characteristics and peculiarities of catch schoolchild. RESUMEN: El juego como método de enseñanza-aprendizaje del atletismo en las edades de nueve a once años en la provincia de Las Tunas, propicia el desarrollo de los movimientos del escolar, que se pueden manifestar en forma espontánea y consciente, lo que contribuye a la satisfacción por esa vía de sus necesidades e intereses a través del deporte elegido, en un ambiente desarrollador que permite abordar las dimensiones y eslabones fundamentales con el propósito de lograr los niveles deseados de educación, formación y desarrollo de la personalidad, que ha aporte las vías indispensables en su preparación para la vida, de donde emergen los que poseen talento para convertirse en atletas de alto rendimiento. En la actividad del juego se integraron los elementos metodológicos, axiológicos, epistemológicos y críticos, los cuales se sustentan sobre bases teóricas que permiten el carácter holístico, hist

  3. Perceptual organization and visual attention.

    Science.gov (United States)

    Kimchi, Ruth

    2009-01-01

    Perceptual organization--the processes structuring visual information into coherent units--and visual attention--the processes by which some visual information in a scene is selected--are crucial for the perception of our visual environment and to visuomotor behavior. Recent research points to important relations between attentional and organizational processes. Several studies demonstrated that perceptual organization constrains attentional selectivity, and other studies suggest that attention can also constrain perceptual organization. In this chapter I focus on two aspects of the relationship between perceptual organization and attention. The first addresses the question of whether or not perceptual organization can take place without attention. I present findings demonstrating that some forms of grouping and figure-ground segmentation can occur without attention, whereas others require controlled attentional processing, depending on the processes involved and the conditions prevailing for each process. These findings challenge the traditional view, which assumes that perceptual organization is a unitary entity that operates preattentively. The second issue addresses the question of whether perceptual organization can affect the automatic deployment of attention. I present findings showing that the mere organization of some elements in the visual field by Gestalt factors into a coherent perceptual unit (an "object"), with no abrupt onset or any other unique transient, can capture attention automatically in a stimulus-driven manner. Taken together, the findings discussed in this chapter demonstrate the multifaceted, interactive relations between perceptual organization and visual attention.

  4. Perceptual Audio Hashing Functions

    Directory of Open Access Journals (Sweden)

    Emin Anarım

    2005-07-01

    Full Text Available Perceptual hash functions provide a tool for fast and reliable identification of content. We present new audio hash functions based on summarization of the time-frequency spectral characteristics of an audio document. The proposed hash functions are based on the periodicity series of the fundamental frequency and on singular-value description of the cepstral frequencies. They are found, on one hand, to perform very satisfactorily in identification and verification tests, and on the other hand, to be very resilient to a large variety of attacks. Moreover, we address the issue of security of hashes and propose a keying technique, and thereby a key-dependent hash function.

  5. Perceptual integration without conscious access

    NARCIS (Netherlands)

    Fahrenfort, Johannes J.; Van Leeuwen, Jonathan; Olivers, Christian N.L.; Hogendoorn, Hinze

    2017-01-01

    The visual system has the remarkable ability to integrate fragmentary visual input into a perceptually organized collection of surfaces and objects, a process we refer to as perceptual integration. Despite a long tradition of perception research, it is not known whether access to consciousness is

  6. Reactive agents and perceptual ambiguity

    NARCIS (Netherlands)

    Dartel, M. van; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.; Herik, H.J. van den

    2005-01-01

    Reactive agents are generally believed to be incapable of coping with perceptual ambiguity (i.e., identical sensory states that require different responses). However, a recent finding suggests that reactive agents can cope with perceptual ambiguity in a simple model (Nolfi, 2002). This paper

  7. Opposite influence of perceptual memory on initial and prolonged perception of sensory ambiguity

    NARCIS (Netherlands)

    de Jong, M.C.; Knapen, T.; van Ee, R.

    2012-01-01

    Observers continually make unconscious inferences about the state of the world based on ambiguous sensory information. This process of perceptual decision-making may be optimized by learning from experience. We investigated the influence of previous perceptual experience on the interpretation of

  8. EFFECT OF PERCEPTUAL TRAINING ON INTELLIGENCE AND ACHIEVEMENT.

    Science.gov (United States)

    CHANSKY, NORMAN M.

    THE PERCEPTUAL-MOTOR BEHAVIOR IN LEARNING WAS STUDIED IN RELATIONSHIP TO INTELLIGENCE AND SCHOOL ACHIEVEMENT. THE SAMPLE CONSISTED OF 178 THIRD-GRADE PUPILS, WHO WERE MATCHED ON RACE, SEX, INTELLIGENCE AND ACHIEVEMENT, RESULTING IN FOUR EQUIVALENT GROUPS. TRAINING METHODS INCLUDED BLOCKS, PUZZLES, AND READING. POST-TEST PROCEDURES WERE EMPLOYED…

  9. Making Connections among Multiple Visual Representations: How Do Sense-Making Skills and Perceptual Fluency Relate to Learning of Chemistry Knowledge?

    Science.gov (United States)

    Rau, Martina A.

    2018-01-01

    To learn content knowledge in science, technology, engineering, and math domains, students need to make connections among visual representations. This article considers two kinds of connection-making skills: (1) "sense-making skills" that allow students to verbally explain mappings among representations and (2) "perceptual…

  10. Perceptual integration without conscious access.

    Science.gov (United States)

    Fahrenfort, Johannes J; van Leeuwen, Jonathan; Olivers, Christian N L; Hogendoorn, Hinze

    2017-04-04

    The visual system has the remarkable ability to integrate fragmentary visual input into a perceptually organized collection of surfaces and objects, a process we refer to as perceptual integration. Despite a long tradition of perception research, it is not known whether access to consciousness is required to complete perceptual integration. To investigate this question, we manipulated access to consciousness using the attentional blink. We show that, behaviorally, the attentional blink impairs conscious decisions about the presence of integrated surface structure from fragmented input. However, despite conscious access being impaired, the ability to decode the presence of integrated percepts remains intact, as shown through multivariate classification analyses of electroencephalogram (EEG) data. In contrast, when disrupting perception through masking, decisions about integrated percepts and decoding of integrated percepts are impaired in tandem, while leaving feedforward representations intact. Together, these data show that access consciousness and perceptual integration can be dissociated.

  11. Where's Waldo? How perceptual, cognitive, and emotional brain processes cooperate during learning to categorize and find desired objects in a cluttered scene

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2014-06-01

    Full Text Available The Where’s Waldo problem concerns how individuals can rapidly learn to search a scene to detect, attend, recognize, and look at a valued target object in it. This article develops the ARTSCAN Search neural model to clarify how brain mechanisms across the What and Where cortical streams are coordinated to solve the Where's Waldo problem. The What stream learns positionally-invariant object representations, whereas the Where stream controls positionally-selective spatial and action representations. The model overcomes deficiencies of these computationally complementary properties through What and Where stream interactions. Where stream processes of spatial attention and predictive eye movement control modulate What stream processes whereby multiple view- and positionally-specific object categories are learned and associatively linked to view- and positionally-invariant object categories through bottom-up and attentive top-down interactions. Gain fields control the coordinate transformations that enable spatial attention and predictive eye movements to carry out this role. What stream cognitive-emotional learning processes enable the focusing of motivated attention upon the invariant object categories of desired objects. What stream cognitive names or motivational drives can prime a view- and positionally-invariant object category of a desired target object. A volitional signal can convert these primes into top-down activations that can, in turn, prime What stream view- and positionally-specific categories. When it also receives bottom-up activation from a target, such a positionally-specific category can cause an attentional shift in the Where stream to the positional representation of the target, and an eye movement can then be elicited to foveate it. These processes describe interactions among brain regions that include visual cortex, parietal cortex inferotemporal cortex, prefrontal cortex, amygdala, basal ganglia, and superior colliculus.

  12. Perceptual classification in a rapidly-changing environment

    OpenAIRE

    Summerfield, Christopher; Behrens, Timothy E.; Koechlin, Etienne

    2011-01-01

    Humans and monkeys can learn to classify perceptual information in a statistically optimal fashion if the functional groupings remain stable over many hundreds of trials, but little is known about categorisation when the environment changes rapidly. Here, we used a combination of computational modelling and functional neuroimaging to understand how humans classify visual stimuli drawn from categories whose mean and variance jumped unpredictably. Models based on optimal learning (Bayesian mode...

  13. Action video game play facilitates the development of better perceptual templates

    Science.gov (United States)

    Bejjanki, Vikranth R.; Zhang, Ruyuan; Li, Renjie; Pouget, Alexandre; Green, C. Shawn; Lu, Zhong-Lin; Bavelier, Daphne

    2014-01-01

    The field of perceptual learning has identified changes in perceptual templates as a powerful mechanism mediating the learning of statistical regularities in our environment. By measuring threshold-vs.-contrast curves using an orientation identification task under varying levels of external noise, the perceptual template model (PTM) allows one to disentangle various sources of signal-to-noise changes that can alter performance. We use the PTM approach to elucidate the mechanism that underlies the wide range of improvements noted after action video game play. We show that action video game players make use of improved perceptual templates compared with nonvideo game players, and we confirm a causal role for action video game play in inducing such improvements through a 50-h training study. Then, by adapting a recent neural model to this task, we demonstrate how such improved perceptual templates can arise from reweighting the connectivity between visual areas. Finally, we establish that action gamers do not enter the perceptual task with improved perceptual templates. Instead, although performance in action gamers is initially indistinguishable from that of nongamers, action gamers more rapidly learn the proper template as they experience the task. Taken together, our results establish for the first time to our knowledge the development of enhanced perceptual templates following action game play. Because such an improvement can facilitate the inference of the proper generative model for the task at hand, unlike perceptual learning that is quite specific, it thus elucidates a general learning mechanism that can account for the various behavioral benefits noted after action game play. PMID:25385590

  14. Action video game play facilitates the development of better perceptual templates.

    Science.gov (United States)

    Bejjanki, Vikranth R; Zhang, Ruyuan; Li, Renjie; Pouget, Alexandre; Green, C Shawn; Lu, Zhong-Lin; Bavelier, Daphne

    2014-11-25

    The field of perceptual learning has identified changes in perceptual templates as a powerful mechanism mediating the learning of statistical regularities in our environment. By measuring threshold-vs.-contrast curves using an orientation identification task under varying levels of external noise, the perceptual template model (PTM) allows one to disentangle various sources of signal-to-noise changes that can alter performance. We use the PTM approach to elucidate the mechanism that underlies the wide range of improvements noted after action video game play. We show that action video game players make use of improved perceptual templates compared with nonvideo game players, and we confirm a causal role for action video game play in inducing such improvements through a 50-h training study. Then, by adapting a recent neural model to this task, we demonstrate how such improved perceptual templates can arise from reweighting the connectivity between visual areas. Finally, we establish that action gamers do not enter the perceptual task with improved perceptual templates. Instead, although performance in action gamers is initially indistinguishable from that of nongamers, action gamers more rapidly learn the proper template as they experience the task. Taken together, our results establish for the first time to our knowledge the development of enhanced perceptual templates following action game play. Because such an improvement can facilitate the inference of the proper generative model for the task at hand, unlike perceptual learning that is quite specific, it thus elucidates a general learning mechanism that can account for the various behavioral benefits noted after action game play.

  15. Perceptual Biases in Relation to Paranormal and Conspiracy Beliefs.

    Science.gov (United States)

    van Elk, Michiel

    2015-01-01

    Previous studies have shown that one's prior beliefs have a strong effect on perceptual decision-making and attentional processing. The present study extends these findings by investigating how individual differences in paranormal and conspiracy beliefs are related to perceptual and attentional biases. Two field studies were conducted in which visitors of a paranormal conducted a perceptual decision making task (i.e. the face/house categorization task; Experiment 1) or a visual attention task (i.e. the global/local processing task; Experiment 2). In the first experiment it was found that skeptics compared to believers more often incorrectly categorized ambiguous face stimuli as representing a house, indicating that disbelief rather than belief in the paranormal is driving the bias observed for the categorization of ambiguous stimuli. In the second experiment, it was found that skeptics showed a classical 'global-to-local' interference effect, whereas believers in conspiracy theories were characterized by a stronger 'local-to-global interference effect'. The present study shows that individual differences in paranormal and conspiracy beliefs are associated with perceptual and attentional biases, thereby extending the growing body of work in this field indicating effects of cultural learning on basic perceptual processes.

  16. Perceptual Biases in Relation to Paranormal and Conspiracy Beliefs.

    Directory of Open Access Journals (Sweden)

    Michiel van Elk

    Full Text Available Previous studies have shown that one's prior beliefs have a strong effect on perceptual decision-making and attentional processing. The present study extends these findings by investigating how individual differences in paranormal and conspiracy beliefs are related to perceptual and attentional biases. Two field studies were conducted in which visitors of a paranormal conducted a perceptual decision making task (i.e. the face/house categorization task; Experiment 1 or a visual attention task (i.e. the global/local processing task; Experiment 2. In the first experiment it was found that skeptics compared to believers more often incorrectly categorized ambiguous face stimuli as representing a house, indicating that disbelief rather than belief in the paranormal is driving the bias observed for the categorization of ambiguous stimuli. In the second experiment, it was found that skeptics showed a classical 'global-to-local' interference effect, whereas believers in conspiracy theories were characterized by a stronger 'local-to-global interference effect'. The present study shows that individual differences in paranormal and conspiracy beliefs are associated with perceptual and attentional biases, thereby extending the growing body of work in this field indicating effects of cultural learning on basic perceptual processes.

  17. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma

    2012-02-01

    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  18. Auditory perceptual load: A review.

    Science.gov (United States)

    Murphy, Sandra; Spence, Charles; Dalton, Polly

    2017-09-01

    Selective attention is a crucial mechanism in everyday life, allowing us to focus on a portion of incoming sensory information at the expense of other less relevant stimuli. The circumstances under which irrelevant stimuli are successfully ignored have been a topic of scientific interest for several decades now. Over the last 20 years, the perceptual load theory (e.g. Lavie, 1995) has provided one robust framework for understanding these effects within the visual modality. The suggestion is that successful selection depends on the perceptual demands imposed by the task-relevant information. However, less research has addressed the question of whether the same principles hold in audition and, to date, the existing literature provides a mixed picture. Here, we review the evidence for and against the applicability of perceptual load theory in hearing, concluding that this question still awaits resolution. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. The development of perceptual grouping biases in infancy: a Japanese-English cross-linguistic study.

    Science.gov (United States)

    Yoshida, Katherine A; Iversen, John R; Patel, Aniruddh D; Mazuka, Reiko; Nito, Hiromi; Gervain, Judit; Werker, Janet F

    2010-05-01

    Perceptual grouping has traditionally been thought to be governed by innate, universal principles. However, recent work has found differences in Japanese and English speakers' non-linguistic perceptual grouping, implicating language in non-linguistic perceptual processes (Iversen, Patel, & Ohgushi, 2008). Two experiments test Japanese- and English-learning infants of 5-6 and 7-8 months of age to explore the development of grouping preferences. At 5-6 months, neither the Japanese nor the English infants revealed any systematic perceptual biases. However, by 7-8 months, the same age as when linguistic phrasal grouping develops, infants developed non-linguistic grouping preferences consistent with their language's structure (and the grouping biases found in adulthood). These results reveal an early difference in non-linguistic perception between infants growing up in different language environments. The possibility that infants' linguistic phrasal grouping is bootstrapped by abstract perceptual principles is discussed. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Implicit Recognition Based on Lateralized Perceptual Fluency

    Directory of Open Access Journals (Sweden)

    Iliana M. Vargas

    2012-02-01

    Full Text Available In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this “implicit recognition” results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention encoding. Presentation in the same visual hemifield at test produced higher recognition accuracy than presentation in the opposite visual hemifield, but only for guess responses. These correct guesses likely reflect a contribution from implicit recognition, given that when the stimulated visual hemifield was the same at study and test, recognition accuracy was higher for guess responses than for responses with any level of confidence. The dramatic difference in guessing accuracy as a function of lateralized perceptual overlap between study and test suggests that implicit recognition arises from memory storage in visual cortical networks that mediate repetition-induced fluency increments.

  1. Implicit recognition based on lateralized perceptual fluency.

    Science.gov (United States)

    Vargas, Iliana M; Voss, Joel L; Paller, Ken A

    2012-02-06

    In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this "implicit recognition" results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention encoding. Presentation in the same visual hemifield at test produced higher recognition accuracy than presentation in the opposite visual hemifield, but only for guess responses. These correct guesses likely reflect a contribution from implicit recognition, given that when the stimulated visual hemifield was the same at study and test, recognition accuracy was higher for guess responses than for responses with any level of confidence. The dramatic difference in guessing accuracy as a function of lateralized perceptual overlap between study and test suggests that implicit recognition arises from memory storage in visual cortical networks that mediate repetition-induced fluency increments.

  2. Perceptual categories enable pattern generalization in songbirds.

    Science.gov (United States)

    Comins, Jordan A; Gentner, Timothy Q

    2013-08-01

    Since Chomsky's pioneering work on syntactic structures, comparative psychologists interested in the study of language evolution have targeted pattern complexity, using formal mathematical grammars, as the key to organizing language-relevant cognitive processes across species. This focus on formal syntactic complexity, however, often disregards the close interaction in real-world signals between the structure of a pattern and its constituent elements. Whether such features of natural auditory signals shape pattern generalization is unknown. In the present paper, we train birds to recognize differently patterned strings of natural signals (song motifs). Instead of focusing on the complexity of the overtly reinforced patterns, we ask how the perceptual groupings of pattern elements influence the generalization pattern knowledge. We find that learning and perception of training patterns is agnostic to the perceptual features of underlying elements. Surprisingly, however, these same features constrain the generalization of pattern knowledge, and thus its broader use. Our results demonstrate that the restricted focus of comparative language research on formal models of syntactic complexity is, at best, insufficient to understand pattern use. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Perceptual incongruence influences bistability and cortical activation

    NARCIS (Netherlands)

    Brouwer, G.J.; Tong, F.; Hagoort, P.; van Ee, R.

    2009-01-01

    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability

  4. Perceptual transparency from image deformation.

    Science.gov (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  5. Learning Disabilities and the School Health Worker

    Science.gov (United States)

    Freeman, Stephen W.

    1973-01-01

    This article offers three listings of signs and symptoms useful in detection of learning and perceptual deficiencies. The first list presents symptoms of the learning-disabled child; the second gives specific visual perceptual deficits (poor discrimination, figure-ground problems, reversals, etc.); and the third gives auditory perceptual deficits…

  6. Perceptual processing of a complex musical context

    DEFF Research Database (Denmark)

    Quiroga Martinez, David Ricardo; Hansen, Niels Christian; Højlund, Andreas

    play a fundamental role in music perception. The mismatch negativity (MMN) is a brain response that offers a unique insight into these processes. The MMN is elicited by deviants in a series of repetitive sounds and reflects the perception of change in physical and abstract sound regularities. Therefore......, it is regarded as a prediction error signal and a neural correlate of the updating of predictive perceptual models. In music, the MMN has been particularly valuable for the assessment of musical expectations, learning and expertise. However, the MMN paradigm has an important limitation: its ecological validity....... To this aim we will develop a new paradigm using more real-sounding stimuli. Our stimuli will be two-part music excerpts made by adding a melody to a previous design based on the Alberti bass (Vuust et al., 2011). Our second goal is to determine how the complexity of this context affects the predictive...

  7. Perceptual basis of evolving Western musical styles.

    Science.gov (United States)

    Rodriguez Zivic, Pablo H; Shifres, Favio; Cecchi, Guillermo A

    2013-06-11

    The brain processes temporal statistics to predict future events and to categorize perceptual objects. These statistics, called expectancies, are found in music perception, and they span a variety of different features and time scales. Specifically, there is evidence that music perception involves strong expectancies regarding the distribution of a melodic interval, namely, the distance between two consecutive notes within the context of another. The recent availability of a large Western music dataset, consisting of the historical record condensed as melodic interval counts, has opened new possibilities for data-driven analysis of musical perception. In this context, we present an analytical approach that, based on cognitive theories of music expectation and machine learning techniques, recovers a set of factors that accurately identifies historical trends and stylistic transitions between the Baroque, Classical, Romantic, and Post-Romantic periods. We also offer a plausible musicological and cognitive interpretation of these factors, allowing us to propose them as data-driven principles of melodic expectation.

  8. Referenceless Prediction of Perceptual Fog Density and Perceptual Image Defogging.

    Science.gov (United States)

    Choi, Lark Kwon; You, Jaehee; Bovik, Alan Conrad

    2015-11-01

    We propose a referenceless perceptual fog density prediction model based on natural scene statistics (NSS) and fog aware statistical features. The proposed model, called Fog Aware Density Evaluator (FADE), predicts the visibility of a foggy scene from a single image without reference to a corresponding fog-free image, without dependence on salient objects in a scene, without side geographical camera information, without estimating a depth-dependent transmission map, and without training on human-rated judgments. FADE only makes use of measurable deviations from statistical regularities observed in natural foggy and fog-free images. Fog aware statistical features that define the perceptual fog density index derive from a space domain NSS model and the observed characteristics of foggy images. FADE not only predicts perceptual fog density for the entire image, but also provides a local fog density index for each patch. The predicted fog density using FADE correlates well with human judgments of fog density taken in a subjective study on a large foggy image database. As applications, FADE not only accurately assesses the performance of defogging algorithms designed to enhance the visibility of foggy images, but also is well suited for image defogging. A new FADE-based referenceless perceptual image defogging, dubbed DEnsity of Fog Assessment-based DEfogger (DEFADE) achieves better results for darker, denser foggy images as well as on standard foggy images than the state of the art defogging methods. A software release of FADE and DEFADE is available online for public use: http://live.ece.utexas.edu/research/fog/index.html.

  9. The roles of perceptual and conceptual information in face recognition.

    Science.gov (United States)

    Schwartz, Linoy; Yovel, Galit

    2016-11-01

    The representation of familiar objects is comprised of perceptual information about their visual properties as well as the conceptual knowledge that we have about them. What is the relative contribution of perceptual and conceptual information to object recognition? Here, we examined this question by designing a face familiarization protocol during which participants were either exposed to rich perceptual information (viewing each face in different angles and illuminations) or with conceptual information (associating each face with a different name). Both conditions were compared with single-view faces presented with no labels. Recognition was tested on new images of the same identities to assess whether learning generated a view-invariant representation. Results showed better recognition of novel images of the learned identities following association of a face with a name label, but no enhancement following exposure to multiple face views. Whereas these findings may be consistent with the role of category learning in object recognition, face recognition was better for labeled faces only when faces were associated with person-related labels (name, occupation), but not with person-unrelated labels (object names or symbols). These findings suggest that association of meaningful conceptual information with an image shifts its representation from an image-based percept to a view-invariant concept. They further indicate that the role of conceptual information should be considered to account for the superior recognition that we have for familiar faces and objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Visual training improves perceptual grouping based on basic stimulus features.

    Science.gov (United States)

    Kurylo, Daniel D; Waxman, Richard; Kidron, Rachel; Silverstein, Steven M

    2017-10-01

    Training on visual tasks improves performance on basic and higher order visual capacities. Such improvement has been linked to changes in connectivity among mediating neurons. We investigated whether training effects occur for perceptual grouping. It was hypothesized that repeated engagement of integration mechanisms would enhance grouping processes. Thirty-six participants underwent 15 sessions of training on a visual discrimination task that required perceptual grouping. Participants viewed 20 × 20 arrays of dots or Gabor patches and indicated whether the array appeared grouped as vertical or horizontal lines. Across trials stimuli became progressively disorganized, contingent upon successful discrimination. Four visual dimensions were examined, in which grouping was based on similarity in luminance, color, orientation, and motion. Psychophysical thresholds of grouping were assessed before and after training. Results indicate that performance in all four dimensions improved with training. Training on a control condition, which paralleled the discrimination task but without a grouping component, produced no improvement. In addition, training on only the luminance and orientation dimensions improved performance for those conditions as well as for grouping by color, on which training had not occurred. However, improvement from partial training did not generalize to motion. Results demonstrate that a training protocol emphasizing stimulus integration enhanced perceptual grouping. Results suggest that neural mechanisms mediating grouping by common luminance and/or orientation contribute to those mediating grouping by color but do not share resources for grouping by common motion. Results are consistent with theories of perceptual learning emphasizing plasticity in early visual processing regions.

  11. Perceptual and conceptual similarities facilitate the generalization of instructed fear.

    Science.gov (United States)

    Bennett, Marc; Vervoort, Ellen; Boddez, Yannick; Hermans, Dirk; Baeyens, Frank

    2015-09-01

    Learned fear can generalize to neutral events due their perceptual and conceptual similarity with threat relevant stimuli. This study simultaneously examined these forms of generalization to model the expansion of fear in anxiety disorders. First, artificial categories involving sounds, nonsense words and animal-like objects were established. Next, the words from one category were paired with threatening information while the words from the other category were paired with safety information. Lastly, we examined if fear generalized to (i) the conceptually related animal-like objects and (ii) other animal like-objects that were perceptually similar. This was measured using behavioral avoidance, US expectancy ratings and self-reported stimulus valence. Animal-like objects conceptually connected to the aversive words evoked heightened fear. Perceptual variants of these animal-like objects also elicit fear. Future research would benefit from the use of online-US expectancy ratings and physiological measures of fear. Investigating the role of both perceptual and conceptual fear generalization is important to better understand the etiology of anxiety disorders symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Mutual information, perceptual independence, and holistic face perception.

    Science.gov (United States)

    Fitousi, Daniel

    2013-07-01

    The concept of perceptual independence is ubiquitous in psychology. It addresses the question of whether two (or more) dimensions are perceived independently. Several authors have proposed perceptual independence (or its lack thereof) as a viable measure of holistic face perception (Loftus, Oberg, & Dillon, Psychological Review 111:835-863, 2004; Wenger & Ingvalson, Learning, Memory, and Cognition 28:872-892, 2002). According to this notion, the processing of facial features occurs in an interactive manner. Here, I examine this idea from the perspective of two theories of perceptual independence: the multivariate uncertainty analysis (MUA; Garner & Morton, Definitions, models, and experimental paradigms. Psychological Bulletin 72:233-259, 1969), and the general recognition theory (GRT; Ashby & Townsend, Psychological Review 93:154-179, 1986). The goals of the study were to (1) introduce the MUA, (2) examine various possible relations between MUA and GRT using numerical simulations, and (3) apply the MUA to two consensual markers of holistic face perception(-)recognition of facial features (Farah, Wilson, Drain, & Tanaka, Psychological Review 105:482-498, 1998) and the composite face effect (Young, Hellawell, & Hay, Perception 16:747-759, 1987). The results suggest that facial holism is generated by violations of several types of perceptual independence. They highlight the important theoretical role played by converging operations in the study of holistic face perception.

  13. Does perceptual learning require consciousness or attention?

    NARCIS (Netherlands)

    Meuwese, J.D.I.; Post, R.A.G.; Scholte, H.S.; Lamme, V.A.F.

    2013-01-01

    It has been proposed that visual attention and consciousness are separate [Koch, C., & Tsuchiya, N. Attention and consciousness:Two distinct brain processes. Trends in Cognitive Sciences, 11, 16-22, 2007] and possibly even orthogonal processes [Lamme, V. A. F. Why visual attention and awareness are

  14. Perceptual consciousness overflows cognitive access.

    Science.gov (United States)

    Block, Ned

    2011-12-01

    One of the most important issues concerning the foundations of conscious perception centers on the question of whether perceptual consciousness is rich or sparse. The overflow argument uses a form of 'iconic memory' to argue that perceptual consciousness is richer (i.e., has a higher capacity) than cognitive access: when observing a complex scene we are conscious of more than we can report or think about. Recently, the overflow argument has been challenged both empirically and conceptually. This paper reviews the controversy, arguing that proponents of sparse perception are committed to the postulation of (i) a peculiar kind of generic conscious representation that has no independent rationale and (ii) an unmotivated form of unconscious representation that in some cases conflicts with what we know about unconscious representation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Perceptual Color Characterization of Cameras

    Directory of Open Access Journals (Sweden)

    Javier Vazquez-Corral

    2014-12-01

    Full Text Available Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as \\(XYZ\\, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a \\(3 \\times 3\\ matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson al., to perform a perceptual color characterization. In particular, we search for the \\(3 \\times 3\\ matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE \\(\\Delta E\\ error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3for the \\(\\Delta E\\ error, 7& for the S-CIELAB error and 13% for the CID error measures.

  16. Perceptual context and individual differences in the language proficiency of preschool children.

    Science.gov (United States)

    Banai, Karen; Yifat, Rachel

    2016-02-01

    Although the contribution of perceptual processes to language skills during infancy is well recognized, the role of perception in linguistic processing beyond infancy is not well understood. In the experiments reported here, we asked whether manipulating the perceptual context in which stimuli are presented across trials influences how preschool children perform visual (shape-size identification; Experiment 1) and auditory (syllable identification; Experiment 2) tasks. Another goal was to determine whether the sensitivity to perceptual context can explain part of the variance in oral language skills in typically developing preschool children. Perceptual context was manipulated by changing the relative frequency with which target visual (Experiment 1) and auditory (Experiment 2) stimuli were presented in arrays of fixed size, and identification of the target stimuli was tested. Oral language skills were assessed using vocabulary, word definition, and phonological awareness tasks. Changes in perceptual context influenced the performance of the majority of children on both identification tasks. Sensitivity to perceptual context accounted for 7% to 15% of the variance in language scores. We suggest that context effects are an outcome of a statistical learning process. Therefore, the current findings demonstrate that statistical learning can facilitate both visual and auditory identification processes in preschool children. Furthermore, consistent with previous findings in infants and in older children and adults, individual differences in statistical learning were found to be associated with individual differences in language skills of preschool children. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Minimalist approach to perceptual interactions.

    Science.gov (United States)

    Lenay, Charles; Stewart, John

    2012-01-01

    WORK AIMED AT STUDYING SOCIAL COGNITION IN AN INTERACTIONIST PERSPECTIVE OFTEN ENCOUNTERS SUBSTANTIAL THEORETICAL AND METHODOLOGICAL DIFFICULTIES: identifying the significant behavioral variables; recording them without disturbing the interaction; and distinguishing between: (a) the necessary and sufficient contributions of each individual partner for a collective dynamics to emerge; (b) features which derive from this collective dynamics and escape from the control of the individual partners; and (c) the phenomena arising from this collective dynamics which are subsequently appropriated and used by the partners. We propose a minimalist experimental paradigm as a basis for this conceptual discussion: by reducing the sensory inputs to a strict minimum, we force a spatial and temporal deployment of the perceptual activities, which makes it possible to obtain a complete recording and control of the dynamics of interaction. After presenting the principles of this minimalist approach to perception, we describe a series of experiments on two major questions in social cognition: recognizing the presence of another intentional subject; and phenomena of imitation. In both cases, we propose explanatory schema which render an interactionist approach to social cognition clear and explicit. Starting from our earlier work on perceptual crossing we present a new experiment on the mechanisms of reciprocal recognition of the perceptual intentionality of the other subject: the emergent collective dynamics of the perceptual crossing can be appropriated by each subject. We then present an experimental study of opaque imitation (when the subjects cannot see what they themselves are doing). This study makes it possible to characterize what a properly interactionist approach to imitation might be. In conclusion, we draw on these results, to show how an interactionist approach can contribute to a fully social approach to social cognition.

  18. A look at Behaviourism and Perceptual Control Theory in Interface Design

    Science.gov (United States)

    1998-02-01

    behaviours such as response variability, instinctive drift, autoshaping , etc. Perceptual Control Theory (PCT) postulates that behaviours result from the...internal variables. Behaviourism, on the other hand, can not account for variability in responses, instinctive drift, autoshaping , etc. Researchers... Autoshaping . Animals appear to learn without reinforcement. However, conditioning theory speculates that learning results only when reinforcement

  19. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  20. Perceptual fluency and judgments of vocal aesthetics and stereotypicality.

    Science.gov (United States)

    Babel, Molly; McGuire, Grant

    2015-05-01

    Research has shown that processing dynamics on the perceiver's end determine aesthetic pleasure. Specifically, typical objects, which are processed more fluently, are perceived as more attractive. We extend this notion of perceptual fluency to judgments of vocal aesthetics. Vocal attractiveness has traditionally been examined with respect to sexual dimorphism and the apparent size of a talker, as reconstructed from the acoustic signal, despite evidence that gender-specific speech patterns are learned social behaviors. In this study, we report on a series of three experiments using 60 voices (30 females) to compare the relationship between judgments of vocal attractiveness, stereotypicality, and gender categorization fluency. Our results indicate that attractiveness and stereotypicality are highly correlated for female and male voices. Stereotypicality and categorization fluency were also correlated for male voices, but not female voices. Crucially, stereotypicality and categorization fluency interacted to predict attractiveness, suggesting the role of perceptual fluency is present, but nuanced, in judgments of human voices. © 2014 Cognitive Science Society, Inc.

  1. Dynamics of individual perceptual decisions

    Science.gov (United States)

    Clark, Torin K.; Lu, Yue M.; Karmali, Faisal

    2015-01-01

    Perceptual decision making is fundamental to a broad range of fields including neurophysiology, economics, medicine, advertising, law, etc. Although recent findings have yielded major advances in our understanding of perceptual decision making, decision making as a function of time and frequency (i.e., decision-making dynamics) is not well understood. To limit the review length, we focus most of this review on human findings. Animal findings, which are extensively reviewed elsewhere, are included when beneficial or necessary. We attempt to put these various findings and data sets, which can appear to be unrelated in the absence of a formal dynamic analysis, into context using published models. Specifically, by adding appropriate dynamic mechanisms (e.g., high-pass filters) to existing models, it appears that a number of otherwise seemingly disparate findings from the literature might be explained. One hypothesis that arises through this dynamic analysis is that decision making includes phasic (high pass) neural mechanisms, an evidence accumulator and/or some sort of midtrial decision-making mechanism (e.g., peak detector and/or decision boundary). PMID:26467513

  2. Building online brand perceptual map.

    Science.gov (United States)

    Chiang, I-Ping; Lin, Chih-Ying; Wang, Kaisheng M

    2008-10-01

    Many companies have launched their products or services online as a new business focus, but only a few of them have survived the competition and made profits. The most important key to an online business's success is to create "brand value" for the customers. Although the concept of online brand has been discussed in previous studies, there is no empirical study on the measurement of online branding. As Web 2.0 emerges to be critical to online branding, the purpose of this study was to measure Taiwan's major Web sites with a number of personality traits to build a perceptual map for online brands. A pretest identified 10 most representative online brand perceptions. The results of the correspondence analysis showed five groups in the perceptual map. This study provided a practical view of the associations and similarities among online brands for potential alliance or branding strategies. The findings also suggested that brand perceptions can be used with identified consumer needs and behaviors to better position online services. The brand perception map in the study also contributed to a better understanding of the online brands in Taiwan.

  3. Collapse models and perceptual processes

    International Nuclear Information System (INIS)

    Ghirardi, Gian Carlo; Romano, Raffaele

    2014-01-01

    Theories including a collapse mechanism have been presented various years ago. They are based on a modification of standard quantum mechanics in which nonlinear and stochastic terms are added to the evolution equation. Their principal merits derive from the fact that they are mathematically precise schemes accounting, on the basis of a unique universal dynamical principle, both for the quantum behavior of microscopic systems as well as for the reduction associated to measurement processes and for the classical behavior of macroscopic objects. Since such theories qualify themselves not as new interpretations but as modifications of the standard theory they can be, in principle, tested against quantum mechanics. Recently, various investigations identifying possible crucial test have been discussed. In spite of the extreme difficulty to perform such tests it seems that recent technological developments allow at least to put precise limits on the parameters characterizing the modifications of the evolution equation. Here we will simply mention some of the recent investigations in this direction, while we will mainly concentrate our attention to the way in which collapse theories account for definite perceptual process. The differences between the case of reductions induced by perceptions and those related to measurement procedures by means of standard macroscopic devices will be discussed. On this basis, we suggest a precise experimental test of collapse theories involving conscious observers. We make plausible, by discussing in detail a toy model, that the modified dynamics can give rise to quite small but systematic errors in the visual perceptual process.

  4. Perceptual Fusion in Humans and Machines

    NARCIS (Netherlands)

    A.A. Salah (Albert Ali); O. Tanrı dağ

    2008-01-01

    htmlabstractHumans perceive the world through different perceptual modalities, which are processed in the brain by modality-specific areas and structures. However, there also exist multimodal neurons and areas, specialized in integrating perceptual information to enhance or suppress brain response.

  5. Modelling the Perceptual Components of Loudspeaker Distortion

    DEFF Research Database (Denmark)

    Olsen, Sune L.; Agerkvist, Finn T.; MacDonald, Ewen

    2016-01-01

    While non-linear distortion in loudspeakers decreases audio quality, the perceptual consequences can vary substantially. This paper investigates the metric Rnonlin [1] which was developed to predict subjective measurements of sound quality in nonlinear systems. The generalisability of the metric...... the perceptual consequences of non-linear distortion....

  6. Semantic Representations in 3D Perceptual Space

    Directory of Open Access Journals (Sweden)

    Suncica Zdravkovic

    2011-05-01

    Full Text Available Barsalou's (1999 perceptual theory of knowledge echoes the pre-20th century tradition of conceptualizing all knowledge as inherently perceptual. Hence conceptual space has an infinite number of dimensions and heavily relies on perceptual experience. Osgood's (1952 semantic differential technique was developed as a bridge between perception and semantics. We updated Osgood's methodology in order to investigate current issues in visual cognition by: (1 using a 2D rather than a 1D space to place the concepts, (2 having dimensions that were perceptual while the targets were conceptual, (3 coupling visual experience with another two perceptual domains (audition and touch, (4 analyzing the data using MDS (not factor analysis. In three experiments, subjects (N = 57 judged five concrete and five abstract words on seven bipolar scales in three perceptual modalities. The 2D space led to different patterns of response compared to the classic 1D space. MDS revealed that perceptual modalities are not equally informative for mapping word-meaning distances (Mantel min = −.23; Mantel max = .88. There was no reliable differences due to test administration modality (paper vs. computer, nor scale orientation. The present findings are consistent with multidimensionality of conceptual space, a perceptual basis for knowledge, and dynamic characteristics of concepts discussed in contemporary theories.

  7. Adaptable history biases in human perceptual decisions.

    Science.gov (United States)

    Abrahamyan, Arman; Silva, Laura Luz; Dakin, Steven C; Carandini, Matteo; Gardner, Justin L

    2016-06-21

    When making choices under conditions of perceptual uncertainty, past experience can play a vital role. However, it can also lead to biases that worsen decisions. Consistent with previous observations, we found that human choices are influenced by the success or failure of past choices even in a standard two-alternative detection task, where choice history is irrelevant. The typical bias was one that made the subject switch choices after a failure. These choice history biases led to poorer performance and were similar for observers in different countries. They were well captured by a simple logistic regression model that had been previously applied to describe psychophysical performance in mice. Such irrational biases seem at odds with the principles of reinforcement learning, which would predict exquisite adaptability to choice history. We therefore asked whether subjects could adapt their irrational biases following changes in trial order statistics. Adaptability was strong in the direction that confirmed a subject's default biases, but weaker in the opposite direction, so that existing biases could not be eradicated. We conclude that humans can adapt choice history biases, but cannot easily overcome existing biases even if irrational in the current context: adaptation is more sensitive to confirmatory than contradictory statistics.

  8. Tuned by experience: How orientation probability modulates early perceptual processing.

    Science.gov (United States)

    Jabar, Syaheed B; Filipowicz, Alex; Anderson, Britt

    2017-09-01

    Probable stimuli are more often and more quickly detected. While stimulus probability is known to affect decision-making, it can also be explained as a perceptual phenomenon. Using spatial gratings, we have previously shown that probable orientations are also more precisely estimated, even while participants remained naive to the manipulation. We conducted an electrophysiological study to investigate the effect that probability has on perception and visual-evoked potentials. In line with previous studies on oddballs and stimulus prevalence, low-probability orientations were associated with a greater late positive 'P300' component which might be related to either surprise or decision-making. However, the early 'C1' component, thought to reflect V1 processing, was dampened for high-probability orientations while later P1 and N1 components were unaffected. Exploratory analyses revealed a participant-level correlation between C1 and P300 amplitudes, suggesting a link between perceptual processing and decision-making. We discuss how these probability effects could be indicative of sharpening of neurons preferring the probable orientations, due either to perceptual learning, or to feature-based attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Gaze-contingent training enhances perceptual skill acquisition.

    Science.gov (United States)

    Ryu, Donghyun; Mann, David L; Abernethy, Bruce; Poolton, Jamie M

    2016-01-01

    The purpose of this study was to determine whether decision-making skill in perceptual-cognitive tasks could be enhanced using a training technique that impaired selective areas of the visual field. Recreational basketball players performed perceptual training over 3 days while viewing with a gaze-contingent manipulation that displayed either (a) a moving window (clear central and blurred peripheral vision), (b) a moving mask (blurred central and clear peripheral vision), or (c) full (unrestricted) vision. During the training, participants watched video clips of basketball play and at the conclusion of each clip made a decision about to which teammate the player in possession of the ball should pass. A further control group watched unrelated videos with full vision. The effects of training were assessed using separate tests of decision-making skill conducted in a pretest, posttest, and 2-week retention test. The accuracy of decision making was greater in the posttest than in the pretest for all three intervention groups when compared with the control group. Remarkably, training with blurred peripheral vision resulted in a further improvement in performance from posttest to retention test that was not apparent for the other groups. The type of training had no measurable impact on the visual search strategies of the participants, and so the training improvements appear to be grounded in changes in information pickup. The findings show that learning with impaired peripheral vision offers a promising form of training to support improvements in perceptual skill.

  10. Empirical Support for Perceptual Conceptualism

    Directory of Open Access Journals (Sweden)

    Nicolás Alejandro Serrano

    2018-03-01

    Full Text Available The main objective of this paper is to show that perceptual conceptualism can be understood as an empirically meaningful position and, furthermore, that there is some degree of empirical support for its main theses. In order to do this, I will start by offering an empirical reading of the conceptualist position, and making three predictions from it. Then, I will consider recent experimental results from cognitive sciences that seem to point towards those predictions. I will conclude that, while the evidence offered by those experiments is far from decisive, it is enough not only to show that conceptualism is an empirically meaningful position but also that there is empirical support for it.

  11. Relationships between academic performance, SES school type and perceptual-motor skills in first grade South African learners: NW-CHILD study

    NARCIS (Netherlands)

    Pienaar, A.E.; Barhorst, R.; Twisk, J.W.R.

    2014-01-01

    Background: Perceptual-motor skills contribute to a variety of basic learning skills associated with normal academic success. This study aimed to determine the relationship between academic performance and perceptual-motor skills in first grade South African learners and whether low SES

  12. Interdisciplinary Adventures in Perceptual Ecology

    Science.gov (United States)

    Bocast, Christopher S.

    A portfolio dissertation that began as acoustic ecology and matured into perceptual ecology, centered on ecomusicology, bioacoustics, and translational audio-based media works with environmental perspectives. The place of music in Western eco-cosmology through time provides a basis for structuring an environmental history of human sound perception. That history suggests that music may stabilize human mental activity, and that an increased musical practice may be essential for the human project. An overview of recent antecedents preceding the emergence of acoustic ecology reveals structural foundations from 20th century culture that underpin modern sound studies. The contextual role that Aldo Leopold, Jacob von Uexkull, John Cage, Marshall McLuhan, and others played in anticipating the development of acoustic ecology as an interdiscipline is detailed. This interdisciplinary aspect of acoustic ecology is defined and defended, while new developments like soundscape ecology are addressed, though ultimately sound studies will need to embrace a broader concept of full-spectrum "sensory" or "perceptual" ecology. The bioacoustic fieldwork done on spawning sturgeon emphasized this necessity. That study yielded scientific recordings and spectrographic analyses of spawning sounds produced by lake sturgeon, Acipenser fulvescens, during reproduction in natural habitats in the Lake Winnebago watershed in Wisconsin. Recordings were made on the Wolf and Embarrass River during the 2011-2013 spawning seasons. Several specimens were dissected to investigate possible sound production mechanisms; no sonic musculature was found. Drumming sounds, ranging from 5 to 7 Hz fundamental frequency, verified the infrasonic nature of previously undocumented "sturgeon thunder". Other characteristic noises of sturgeon spawning including low-frequency rumbles and hydrodynamic sounds were identified. Intriguingly, high-frequency signals resembling electric organ discharges were discovered. These

  13. Attentional capture under high perceptual load.

    Science.gov (United States)

    Cosman, Joshua D; Vecera, Shaun P

    2010-12-01

    Attentional capture by abrupt onsets can be modulated by several factors, including the complexity, or perceptual load, of a scene. We have recently demonstrated that observers are less likely to be captured by abruptly appearing, task-irrelevant stimuli when they perform a search that is high, as opposed to low, in perceptual load (Cosman & Vecera, 2009), consistent with perceptual load theory. However, recent results indicate that onset frequency can influence stimulus-driven capture, with infrequent onsets capturing attention more often than did frequent onsets. Importantly, in our previous task, an abrupt onset was present on every trial, and consequently, attentional capture might have been affected by both onset frequency and perceptual load. In the present experiment, we examined whether onset frequency influences attentional capture under conditions of high perceptual load. When onsets were presented frequently, we replicated our earlier results; attentional capture by onsets was modulated under conditions of high perceptual load. Importantly, however, when onsets were presented infrequently, we observed robust capture effects. These results conflict with a strong form of load theory and, instead, suggest that exposure to the elements of a task (e.g., abrupt onsets) combines with high perceptual load to modulate attentional capture by task-irrelevant information.

  14. Probing the Perceptual and Cognitive Underpinnings of Braille Reading. An Estonian Population Study

    Science.gov (United States)

    Veispak, Anneli; Boets, Bart; Mannamaa, Mairi; Ghesquiere, Pol

    2012-01-01

    Similar to many sighted children who struggle with learning to read, a proportion of blind children have specific difficulties related to reading braille which cannot be easily explained. A lot of research has been conducted to investigate the perceptual and cognitive processes behind (impairments in) print reading. Very few studies, however, have…

  15. Automatic Priming Effects for New Associations in Lexical Decision and Perceptual Identification

    NARCIS (Netherlands)

    D. Pecher (Diane); J.G.W. Raaijmakers (Jeroen)

    1999-01-01

    textabstractInformation storage in semantic memory was investigated by looking at automatic priming effects for new associations in two experiments. In the study phase word pairs were presented in a paired-associate learning task. Lexical decision and perceptual identification were used to examine

  16. Structured Activities in Perceptual Training to Aid Retention of Visual and Auditory Images.

    Science.gov (United States)

    Graves, James W.; And Others

    The experimental program in structured activities in perceptual training was said to have two main objectives: to train children in retention of visual and auditory images and to increase the children's motivation to learn. Eight boys and girls participated in the program for two hours daily for a 10-week period. The age range was 7.0 to 12.10…

  17. Greater perceptual sensitivity to happy facial expression.

    Science.gov (United States)

    Maher, Stephen; Ekstrom, Tor; Chen, Yue

    2014-01-01

    Perception of subtle facial expressions is essential for social functioning; yet it is unclear if human perceptual sensitivities differ in detecting varying types of facial emotions. Evidence diverges as to whether salient negative versus positive emotions (such as sadness versus happiness) are preferentially processed. Here, we measured perceptual thresholds for the detection of four types of emotion in faces--happiness, fear, anger, and sadness--using psychophysical methods. We also evaluated the association of the perceptual performances with facial morphological changes between neutral and respective emotion types. Human observers were highly sensitive to happiness compared with the other emotional expressions. Further, this heightened perceptual sensitivity to happy expressions can be attributed largely to the emotion-induced morphological change of a particular facial feature (end-lip raise).

  18. Perceptual incongruence influences bistability and cortical activation.

    Directory of Open Access Journals (Sweden)

    Gijs Joost Brouwer

    Full Text Available We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry. Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict.

  19. Studying Real-World Perceptual Expertise

    Directory of Open Access Journals (Sweden)

    Jianhong eShen

    2014-08-01

    Full Text Available Significant insights into visual cognition have come from studying real-world perceptual expertise. Many have previously reviewed empirical findings and theoretical developments from this work. Here we instead provide a brief perspective on approaches, considerations, and challenges to studying real-world perceptual expertise. We discuss factors like choosing to use real-world versus artificial object domains of expertise, selecting a target domain of real-world perceptual expertise, recruiting experts, evaluating their level of expertise, and experimentally testing experts in the lab and online. Throughout our perspective, we highlight expert birding (also called birdwatching as an example, as it has been used as a target domain for over two decades in the perceptual expertise literature.

  20. Animacy, perceptual load, and inattentional blindness.

    Science.gov (United States)

    Calvillo, Dustin P; Jackson, Russell E

    2014-06-01

    Inattentional blindness is the failure to notice unexpected objects in a visual scene while engaging in an attention-demanding task. We examined the effects of animacy and perceptual load on inattentional blindness. Participants searched for a category exemplar under low or high perceptual load. On the last trial, the participants were exposed to an unexpected object that was either animate or inanimate. Unexpected objects were detected more frequently when they were animate rather than inanimate, and more frequently with low than with high perceptual loads. We also measured working memory capacity and found that it predicted the detection of unexpected objects, but only with high perceptual loads. The results are consistent with the animate-monitoring hypothesis, which suggests that animate objects capture attention because of the importance of the detection of animate objects in ancestral hunter-gatherer environments.

  1. Can Attention be Divided Between Perceptual Groups?

    Science.gov (United States)

    McCann, Robert S.; Foyle, David C.; Johnston, James C.; Hart, Sandra G. (Technical Monitor)

    1994-01-01

    Previous work using Head-Up Displays (HUDs) suggests that the visual system parses the HUD and the outside world into distinct perceptual groups, with attention deployed sequentially to first one group and then the other. New experiments show that both groups can be processed in parallel in a divided attention search task, even though subjects have just processed a stimulus in one perceptual group or the other. Implications for models of visual attention will be discussed.

  2. Effect of practice on perceptual load

    OpenAIRE

    Mejia-Ramirez, Manuel

    2013-01-01

    Within attention studies, Lavie's load theory (Lavie & Tsal, 1994; Lavie, Hirst, de Fockert, & Viding, 2004) presented an account that could settle the question whether attention selects stimuli to be processed at an early or late stage of cognitive processing. This theory relied on the concepts of "perceptual load" and "attentional capacity", proposing that attentional resources are automatically allocated to stimuli, but when the perceptual load of the stimuli exceeds person's capacity, tas...

  3. A perceptual study of Scottish dialects

    OpenAIRE

    Tichenor, Sydney

    2012-01-01

    Perceptual dialectology is dedicated to the formal study of folk linguistic perceptions. Through an amalgamation of social psychology, ethnography, dialectology, sociolinguistics, cultural geography and myriad other fields, perceptual dialectology provides a methodology to gain insight to overt folk language attitudes, knowledge of regional distribution, and the importance of language variation and change (Preston 1989, 1999a). This study conducts the first investigation of folk percept...

  4. Hippocampal-cortical contributions to strategic exploration during perceptual discrimination.

    Science.gov (United States)

    Voss, Joel L; Cohen, Neal J

    2017-06-01

    The hippocampus is crucial for long-term memory; its involvement in short-term or immediate expressions of memory is more controversial. Rodent hippocampus has been implicated in an expression of memory that occurs on-line during exploration termed "vicarious trial-and-error" (VTE) behavior. VTE occurs when rodents iteratively explore options during perceptual discrimination or at choice points. It is strategic in that it accelerates learning and improves later memory. VTE has been associated with activity of rodent hippocampal neurons, and lesions of hippocampus disrupt VTE and associated learning and memory advantages. Analogous findings of VTE in humans would support the role of hippocampus in active use of short-term memory to guide strategic behavior. We therefore measured VTE using eye-movement tracking during perceptual discrimination and identified relevant neural correlates with functional magnetic resonance imaging. A difficult perceptual-discrimination task was used that required visual information to be maintained during a several second trial, but with no long-term memory component. VTE accelerated discrimination. Neural correlates of VTE included robust activity of hippocampus and activity of a network of medial prefrontal and lateral parietal regions involved in memory-guided behavior. This VTE-related activity was distinct from activity associated with simply viewing visual stimuli and making eye movements during the discrimination task, which occurred in regions frequently associated with visual processing and eye-movement control. Subjects were mostly unaware of performing VTE, thus further distancing VTE from explicit long-term memory processing. These findings bridge the rodent and human literatures on neural substrates of memory-guided behavior, and provide further support for the role of hippocampus and a hippocampal-centered network of cortical regions in the immediate use of memory in on-line processing and the guidance of behavior. © 2017

  5. Evaluative pressure overcomes perceptual load effects.

    Science.gov (United States)

    Normand, Alice; Autin, Frédérique; Croizet, Jean-Claude

    2015-06-01

    Perceptual load has been found to be a powerful bottom-up determinant of distractibility, with high perceptual load preventing distraction by any irrelevant information. However, when under evaluative pressure, individuals exert top-down attentional control by giving greater weight to task-relevant features, making them more distractible from task-relevant distractors. One study tested whether the top-down modulation of attention under evaluative pressure overcomes the beneficial bottom-up effect of high perceptual load on distraction. Using a response-competition task, we replicated previous findings that high levels of perceptual load suppress task-relevant distractor response interference, but only for participants in a control condition. Participants under evaluative pressure (i.e., who believed their intelligence was assessed) showed interference from task-relevant distractor at all levels of perceptual load. This research challenges the assumptions of the perceptual load theory and sheds light on a neglected determinant of distractibility: the self-relevance of the performance situation in which attentional control is solicited.

  6. Exploration and Navigation for Mobile Robots With Perceptual Limitations

    Directory of Open Access Journals (Sweden)

    Leonardo Romero

    2006-09-01

    Full Text Available To learn a map of an environment a mobile robot has to explore its workspace using its sensors. Sensors are noisy and have perceptual limitations that must be considered while learning a map. This paper considers a mobile robot with sensor perceptual limitations and introduces a new method for exploring and navigating autonomously in indoor environments. To minimize the risk of collisions as well as to not exceed the range of sensors, we introduce the concept of a travel space as a way to associate costs to grid cells of the map, based on distances to obstacles. During exploration the mobile robot minimizes its movements, including rotations, to reach the nearest unexplored region of the environment, using a dynamic programming algorithm. Once the exploration ends, the travel space is used to form a roadmap, a net of safe roads that the mobile robot can use for navigation. These exploration and navigation method are tested using a simulated and a real mobile robot with promising results.

  7. Exploration and Navigation for Mobile Robots With Perceptual Limitations

    Directory of Open Access Journals (Sweden)

    Eduardo F. Morales

    2008-11-01

    Full Text Available To learn a map of an environment a mobile robot has to explore its workspace using its sensors. Sensors are noisy and have perceptual limitations that must be considered while learning a map. This paper considers a mobile robot with sensor perceptual limitations and introduces a new method for exploring and navigating autonomously in indoor environments. To minimize the risk of collisions as well as to not exceed the range of sensors, we introduce the concept of a travel space as a way to associate costs to grid cells of the map, based on distances to obstacles. During exploration the mobile robot minimizes its movements, including rotations, to reach the nearest unexplored region of the environment, using a dynamic programming algorithm. Once the exploration ends, the travel space is used to form a roadmap, a net of safe roads that the mobile robot can use for navigation. These exploration and navigation method are tested using a simulated and a real mobile robot with promising results.

  8. Does expert perceptual anticipation transfer to a dissimilar domain?

    Science.gov (United States)

    Müller, Sean; McLaren, Michelle; Appleby, Brendyn; Rosalie, Simon M

    2015-06-01

    The purpose of this experiment was to extend theoretical understanding of transfer of learning by investigating whether expert perceptual anticipation skill transfers to a dissimilar domain. The capability of expert and near-expert rugby players as well as novices to anticipate skill type within rugby (learning sport) was first examined using a temporal occlusion paradigm. Participants watched video footage of an opponent performing rugby skill types that were temporally occluded at different points in the opponent's action and then made a written prediction. Thereafter, the capability of participants to transfer their anticipation skill to predict pitch type in baseball (transfer sport) was examined. Participants watched video footage of a pitcher throwing different pitch types that were temporally occluded and made a written prediction. Results indicated that expert and near-expert rugby players anticipated significantly better than novices across all occlusion conditions. However, none of the skill groups were able to transfer anticipation skill to predict pitch type in baseball. The findings of this paper, along with existing literature, support the theoretical prediction that transfer of perceptual anticipation is expertise dependent and restricted to similar domains. (c) 2015 APA, all rights reserved).

  9. Comparing the benefits of Caffeine, Naps and Placebo on Verbal, Motor and Perceptual Memory

    OpenAIRE

    Mednick, Sara C.; Cai, Denise J.; Kanady, Jennifer; Drummond, Sean P.A.

    2008-01-01

    Caffeine, the world’s most common psychoactive substance, is used by approximately 90% of North Americans everyday. Little is known, however, about its benefits for memory. Napping has been shown to increase alertness and promote learning on some memory tasks. We directly compared caffeine (200mg) with napping (60–90 minutes) and placebo on three distinct memory processes: declarative verbal memory, procedural motor skills, and perceptual learning. In the verbal task, recall and recognition f...

  10. Disruptive colouration and perceptual grouping.

    Science.gov (United States)

    Espinosa, Irene; Cuthill, Innes C

    2014-01-01

    Camouflage is the primary defence of many animals and includes multiple strategies that interfere with figure-ground segmentation and object recognition. While matching background colours and textures is widespread and conceptually straightforward, less well explored are the optical 'tricks', collectively called disruptive colouration, that exploit perceptual grouping mechanisms. Adjacent high contrast colours create false edges, but this is not sufficient for an object's shape to be broken up; some colours must blend with the background. We test the novel hypothesis that this will be particularly effective when the colour patches on the animal appear to belong to, not merely different background colours, but different background objects. We used computer-based experiments where human participants had to find cryptic targets on artificial backgrounds. Creating what appeared to be bi-coloured foreground objects on bi-coloured backgrounds, we generated colour boundaries that had identical local contrast but either lay within or between (illusory) objects. As predicted, error rates for targets matching what appeared to be different background objects were higher than for targets which had otherwise identical local contrast to the background but appeared to belong to single background objects. This provides evidence for disruptive colouration interfering with higher-level feature integration in addition to previously demonstrated low-level effects involving contour detection. In addition, detection was impeded in treatments where targets were on or in close proximity to multiple background colour or tone boundaries. This is consistent with other studies which show a deleterious influence of visual 'clutter' or background complexity on search.

  11. Disruptive colouration and perceptual grouping.

    Directory of Open Access Journals (Sweden)

    Irene Espinosa

    Full Text Available Camouflage is the primary defence of many animals and includes multiple strategies that interfere with figure-ground segmentation and object recognition. While matching background colours and textures is widespread and conceptually straightforward, less well explored are the optical 'tricks', collectively called disruptive colouration, that exploit perceptual grouping mechanisms. Adjacent high contrast colours create false edges, but this is not sufficient for an object's shape to be broken up; some colours must blend with the background. We test the novel hypothesis that this will be particularly effective when the colour patches on the animal appear to belong to, not merely different background colours, but different background objects. We used computer-based experiments where human participants had to find cryptic targets on artificial backgrounds. Creating what appeared to be bi-coloured foreground objects on bi-coloured backgrounds, we generated colour boundaries that had identical local contrast but either lay within or between (illusory objects. As predicted, error rates for targets matching what appeared to be different background objects were higher than for targets which had otherwise identical local contrast to the background but appeared to belong to single background objects. This provides evidence for disruptive colouration interfering with higher-level feature integration in addition to previously demonstrated low-level effects involving contour detection. In addition, detection was impeded in treatments where targets were on or in close proximity to multiple background colour or tone boundaries. This is consistent with other studies which show a deleterious influence of visual 'clutter' or background complexity on search.

  12. Perceptual Image Compression in Telemedicine

    Science.gov (United States)

    Watson, Andrew B.; Ahumada, Albert J., Jr.; Eckstein, Miguel; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    The next era of space exploration, especially the "Mission to Planet Earth" will generate immense quantities of image data. For example, the Earth Observing System (EOS) is expected to generate in excess of one terabyte/day. NASA confronts a major technical challenge in managing this great flow of imagery: in collection, pre-processing, transmission to earth, archiving, and distribution to scientists at remote locations. Expected requirements in most of these areas clearly exceed current technology. Part of the solution to this problem lies in efficient image compression techniques. For much of this imagery, the ultimate consumer is the human eye. In this case image compression should be designed to match the visual capacities of the human observer. We have developed three techniques for optimizing image compression for the human viewer. The first consists of a formula, developed jointly with IBM and based on psychophysical measurements, that computes a DCT quantization matrix for any specified combination of viewing distance, display resolution, and display brightness. This DCT quantization matrix is used in most recent standards for digital image compression (JPEG, MPEG, CCITT H.261). The second technique optimizes the DCT quantization matrix for each individual image, based on the contents of the image. This is accomplished by means of a model of visual sensitivity to compression artifacts. The third technique extends the first two techniques to the realm of wavelet compression. Together these two techniques will allow systematic perceptual optimization of image compression in NASA imaging systems. Many of the image management challenges faced by NASA are mirrored in the field of telemedicine. Here too there are severe demands for transmission and archiving of large image databases, and the imagery is ultimately used primarily by human observers, such as radiologists. In this presentation I will describe some of our preliminary explorations of the applications

  13. Turkish- and English-speaking children display sensitivity to perceptual context in the referring expressions they produce in speech and gesture

    Science.gov (United States)

    Demir, Özlem Ece; So, Wing-Chee; Özyürek, Asli; Goldin-Meadow, Susan

    2012-01-01

    Speakers choose a particular expression based on many factors, including availability of the referent in the perceptual context. We examined whether, when expressing referents, monolingual English- and Turkish-speaking children: (1) are sensitive to perceptual context, (2) express this sensitivity in language-specific ways, and (3) use co-speech gestures to specify referents that are underspecified. We also explored the mechanisms underlying children’s sensitivity to perceptual context. Children described short vignettes to an experimenter under two conditions: The characters in the vignettes were present in the perceptual context (perceptual context); the characters were absent (no perceptual context). Children routinely used nouns in the no perceptual context condition, but shifted to pronouns (English-speaking children) or omitted arguments (Turkish-speaking children) in the perceptual context condition. Turkish-speaking children used underspecified referents more frequently than English-speaking children in the perceptual context condition; however, they compensated for the difference by using gesture to specify the forms. Gesture thus gives children learning structurally different languages a way to achieve comparable levels of specification while at the same time adhering to the referential expressions dictated by their language. PMID:22904588

  14. Generation and Perceptual Implicit Memory: Different Generation Tasks Produce Different Effects on Perceptual Priming

    Science.gov (United States)

    Mulligan, Neil W.; Dew, Ilana T. Z.

    2009-01-01

    The generation manipulation has been critical in delineating differences between implicit and explicit memory. In contrast to past research, the present experiments indicate that generating from a rhyme cue produces as much perceptual priming as does reading. This is demonstrated for 3 visual priming tasks: perceptual identification, word-fragment…

  15. Pupil size tracks perceptual content and surprise.

    Science.gov (United States)

    Kloosterman, Niels A; Meindertsma, Thomas; van Loon, Anouk M; Lamme, Victor A F; Bonneh, Yoram S; Donner, Tobias H

    2015-04-01

    Changes in pupil size at constant light levels reflect the activity of neuromodulatory brainstem centers that control global brain state. These endogenously driven pupil dynamics can be synchronized with cognitive acts. For example, the pupil dilates during the spontaneous switches of perception of a constant sensory input in bistable perceptual illusions. It is unknown whether this pupil dilation only indicates the occurrence of perceptual switches, or also their content. Here, we measured pupil diameter in human subjects reporting the subjective disappearance and re-appearance of a physically constant visual target surrounded by a moving pattern ('motion-induced blindness' illusion). We show that the pupil dilates during the perceptual switches in the illusion and a stimulus-evoked 'replay' of that illusion. Critically, the switch-related pupil dilation encodes perceptual content, with larger amplitude for disappearance than re-appearance. This difference in pupil response amplitude enables prediction of the type of report (disappearance vs. re-appearance) on individual switches (receiver-operating characteristic: 61%). The amplitude difference is independent of the relative durations of target-visible and target-invisible intervals and subjects' overt behavioral report of the perceptual switches. Further, we show that pupil dilation during the replay also scales with the level of surprise about the timing of switches, but there is no evidence for an interaction between the effects of surprise and perceptual content on the pupil response. Taken together, our results suggest that pupil-linked brain systems track both the content of, and surprise about, perceptual events. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Explaining the Timing of Natural Scene Understanding with a Computational Model of Perceptual Categorization

    Science.gov (United States)

    Sofer, Imri; Crouzet, Sébastien M.; Serre, Thomas

    2015-01-01

    Observers can rapidly perform a variety of visual tasks such as categorizing a scene as open, as outdoor, or as a beach. Although we know that different tasks are typically associated with systematic differences in behavioral responses, to date, little is known about the underlying mechanisms. Here, we implemented a single integrated paradigm that links perceptual processes with categorization processes. Using a large image database of natural scenes, we trained machine-learning classifiers to derive quantitative measures of task-specific perceptual discriminability based on the distance between individual images and different categorization boundaries. We showed that the resulting discriminability measure accurately predicts variations in behavioral responses across categorization tasks and stimulus sets. We further used the model to design an experiment, which challenged previous interpretations of the so-called “superordinate advantage.” Overall, our study suggests that observed differences in behavioral responses across rapid categorization tasks reflect natural variations in perceptual discriminability. PMID:26335683

  17. Differentiation of perceptual and semantic subsequent memory effects using an orthographic paradigm.

    Science.gov (United States)

    Kuo, Michael C C; Liu, Karen P Y; Ting, Kin Hung; Chan, Chetwyn C H

    2012-11-27

    This study aimed to differentiate perceptual and semantic encoding processes using subsequent memory effects (SMEs) elicited by the recognition of orthographs of single Chinese characters. Participants studied a series of Chinese characters perceptually (by inspecting orthographic components) or semantically (by determining the object making sounds), and then made studied or unstudied judgments during the recognition phase. Recognition performance in terms of d-prime measure in the semantic condition was higher, though not significant, than that of the perceptual condition. The between perceptual-semantic condition differences in SMEs at P550 and late positive component latencies (700-1000ms) were not significant in the frontal area. An additional analysis identified larger SME in the semantic condition during 600-1000ms in the frontal pole regions. These results indicate that coordination and incorporation of orthographic information into mental representation is essential to both task conditions. The differentiation was also revealed in earlier SMEs (perceptual>semantic) at N3 (240-360ms) latency, which is a novel finding. The left-distributed N3 was interpreted as more efficient processing of meaning with semantically learned characters. Frontal pole SMEs indicated strategic processing by executive functions, which would further enhance memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. ViA: a perceptual visualization assistant

    Science.gov (United States)

    Healey, Chris G.; St. Amant, Robert; Elhaddad, Mahmoud S.

    2000-05-01

    This paper describes an automated visualized assistant called ViA. ViA is designed to help users construct perceptually optical visualizations to represent, explore, and analyze large, complex, multidimensional datasets. We have approached this problem by studying what is known about the control of human visual attention. By harnessing the low-level human visual system, we can support our dual goals of rapid and accurate visualization. Perceptual guidelines that we have built using psychophysical experiments form the basis for ViA. ViA uses modified mixed-initiative planning algorithms from artificial intelligence to search of perceptually optical data attribute to visual feature mappings. Our perceptual guidelines are integrated into evaluation engines that provide evaluation weights for a given data-feature mapping, and hints on how that mapping might be improved. ViA begins by asking users a set of simple questions about their dataset and the analysis tasks they want to perform. Answers to these questions are used in combination with the evaluation engines to identify and intelligently pursue promising data-feature mappings. The result is an automatically-generated set of mappings that are perceptually salient, but that also respect the context of the dataset and users' preferences about how they want to visualize their data.

  19. Comparing perceptual and preferential decision making.

    Science.gov (United States)

    Dutilh, Gilles; Rieskamp, Jörg

    2016-06-01

    Perceptual and preferential decision making have been studied largely in isolation. Perceptual decisions are considered to be at a non-deliberative cognitive level and have an outside criterion that defines the quality of decisions. Preferential decisions are considered to be at a higher cognitive level and the quality of decisions depend on the decision maker's subjective goals. Besides these crucial differences, both types of decisions also have in common that uncertain information about the choice situation has to be processed before a decision can be made. The present work aims to acknowledge the commonalities of both types of decision making to lay bare the crucial differences. For this aim we examine perceptual and preferential decisions with a novel choice paradigm that uses the identical stimulus material for both types of decisions. This paradigm allows us to model the decisions and response times of both types of decisions with the same sequential sampling model, the drift diffusion model. The results illustrate that the different incentive structure in both types of tasks changes people's behavior so that they process information more efficiently and respond more cautiously in the perceptual as compared to the preferential task. These findings set out a perspective for further integration of perceptual and preferential decision making in a single ramework.

  20. Perceptual reasoning predicts handwriting impairments in adolescents with autism

    Science.gov (United States)

    Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.

    2010-01-01

    Background: We have previously shown that children with autism spectrum disorder (ASD) have specific handwriting deficits consisting of poor form, and that these deficits are predicted by their motor abilities. It is not known whether the same handwriting impairments persist into adolescence and whether they remain linked to motor deficits. Methods: A case-control study of handwriting samples from adolescents with and without ASD was performed using the Minnesota Handwriting Assessment. Samples were scored on an individual letter basis in 5 categories: legibility, form, alignment, size, and spacing. Subjects were also administered an intelligence test and the Physical and Neurological Examination for Subtle (Motor) Signs (PANESS). Results: We found that adolescents with ASD, like children, show overall worse performance on a handwriting task than do age- and intelligence-matched controls. Also comparable to children, adolescents with ASD showed motor impairments relative to controls. However, adolescents with ASD differ from children in that Perceptual Reasoning Indices were significantly predictive of handwriting performance whereas measures of motor skills were not. Conclusions: Like children with ASD, adolescents with ASD have poor handwriting quality relative to controls. Despite still demonstrating motor impairments, in adolescents perceptual reasoning is the main predictor of handwriting performance, perhaps reflecting subjects' varied abilities to learn strategies to compensate for their motor impairments. GLOSSARY ASD = autism spectrum disorder; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, 4th edition; PANESS = Physical and Neurological Examination for Subtle (Motor) Signs; PRI = Perceptual Reasoning Index; WASI = Wechsler Abbreviated Scale of Intelligence; WISC = Wechsler Intelligence Scale for Children IV. PMID:21079184

  1. Who can you trust? Behavioral and neural differences between perceptual and memory-based influences

    Directory of Open Access Journals (Sweden)

    John D Rudoy

    2009-08-01

    Full Text Available Decisions about whether to trust someone can be influenced by competing sources of information, such as analysis of facial features versus remembering specific information about the person. We hypothesized that such sources can differentially influence trustworthiness judgments depending on the circumstances in which judgments are made. In our experiments, subjects first learned face-word associations. Stimuli were trustworthy and untrustworthy faces selected on the basis of consensus judgments and personality attributes that carried either the same valence (consistent with face or the opposite valence (inconsistent with face. Subsequently, subjects rated the trustworthiness of each face. Both learned and perceptual information influenced ratings, but learned information was less influential under speeded than under non-speeded conditions. EEG data further revealed neural evidence of the processing of these two competing sources. Perceptual influences were apparent earlier than memory influences, substantiating the conclusion that time pressure can selectively disrupt memory retrieval relevant to trustworthiness attributions.

  2. Visible digital watermarking system using perceptual models

    Science.gov (United States)

    Cheng, Qiang; Huang, Thomas S.

    2001-03-01

    This paper presents a visible watermarking system using perceptual models. %how and why A watermark image is overlaid translucently onto a primary image, for the purposes of immediate claim of copyright, instantaneous recognition of owner or creator, or deterrence to piracy of digital images or video. %perceptual The watermark is modulated by exploiting combined DCT-domain and DWT-domain perceptual models. % so that the watermark is visually uniform. The resulting watermarked image is visually pleasing and unobtrusive. The location, size and strength of the watermark vary randomly with the underlying image. The randomization makes the automatic removal of the watermark difficult even though the algorithm is known publicly but the key to the random sequence generator. The experiments demonstrate that the watermarked images have pleasant visual effect and strong robustness. The watermarking system can be used in copyright notification and protection.

  3. Reproducibility of somatosensory spatial perceptual maps.

    Science.gov (United States)

    Steenbergen, Peter; Buitenweg, Jan R; Trojan, Jörg; Veltink, Peter H

    2013-02-01

    Various studies have shown subjects to mislocalize cutaneous stimuli in an idiosyncratic manner. Spatial properties of individual localization behavior can be represented in the form of perceptual maps. Individual differences in these maps may reflect properties of internal body representations, and perceptual maps may therefore be a useful method for studying these representations. For this to be the case, individual perceptual maps need to be reproducible, which has not yet been demonstrated. We assessed the reproducibility of localizations measured twice on subsequent days. Ten subjects participated in the experiments. Non-painful electrocutaneous stimuli were applied at seven sites on the lower arm. Subjects localized the stimuli on a photograph of their own arm, which was presented on a tablet screen overlaying the real arm. Reproducibility was assessed by calculating intraclass correlation coefficients (ICC) for the mean localizations of each electrode site and the slope and offset of regression models of the localizations, which represent scaling and displacement of perceptual maps relative to the stimulated sites. The ICCs of the mean localizations ranged from 0.68 to 0.93; the ICCs of the regression parameters were 0.88 for the intercept and 0.92 for the slope. These results indicate a high degree of reproducibility. We conclude that localization patterns of non-painful electrocutaneous stimuli on the arm are reproducible on subsequent days. Reproducibility is a necessary property of perceptual maps for these to reflect properties of a subject's internal body representations. Perceptual maps are therefore a promising method for studying body representations.

  4. Perceptual Experience and Seeing-as

    Directory of Open Access Journals (Sweden)

    Daniel Enrique Kalpokas

    2015-07-01

    Full Text Available According to Rorty, Davidson and Brandom, to have an experience is to be caused by our senses to hold a perceptual belief. This article argues that the phenomenon of seeing-as cannot be explained by such a conception of perceptual experience. First, the notion of experience defended by the aforementioned authors is reconstructed. Second, the main features of what Wittgenstein called “seeing aspects” are briefly presented. Finally, several arguments are developed in order to support the main thesis of the article: seeing-as cannot be explained by the conception of experience defended by Rorty, Davidson and Brandom.

  5. Perceptual and Cognitive Impairments and Driving

    Science.gov (United States)

    Korner-Bitensky, Nicol; Coopersmith, Henry; Mayo, Nancy; Leblanc, Ginette; Kaizer, Franceen

    1990-01-01

    Perceptual and cognitive disorders that frequently accompany stroke and head injury influence an individual's ability to drive a motor vehicle. Canadian physicians are legally responsible for identifying patients who are potentially unsafe to drive and, if they fail to do so, may be held liable in a civil action suit. The authors review the guidelines for physicians evaluating a patient's fitness to drive after brain injury. They also examine the actions a physician should take when a patient with perceptual and cognitive problems wants to drive. Ultimately, by taking these actions, physicians will help to prevent driving accidents. PMID:21234047

  6. Perceptually Valid Facial Expressions for Character-Based Applications

    Directory of Open Access Journals (Sweden)

    Ali Arya

    2009-01-01

    Full Text Available This paper addresses the problem of creating facial expression of mixed emotions in a perceptually valid way. The research has been done in the context of a “game-like” health and education applications aimed at studying social competency and facial expression awareness in autistic children as well as native language learning, but the results can be applied to many other applications such as games with need for dynamic facial expressions or tools for automating the creation of facial animations. Most existing methods for creating facial expressions of mixed emotions use operations like averaging to create the combined effect of two universal emotions. Such methods may be mathematically justifiable but are not necessarily valid from a perceptual point of view. The research reported here starts by user experiments aiming at understanding how people combine facial actions to express mixed emotions, and how the viewers perceive a set of facial actions in terms of underlying emotions. Using the results of these experiments and a three-dimensional emotion model, we associate facial actions to dimensions and regions in the emotion space, and create a facial expression based on the location of the mixed emotion in the three-dimensional space. We call these regionalized facial actions “facial expression units.”

  7. More than a boundary shift: Perceptual adaptation to foreign-accented speech reshapes the internal structure of phonetic categories.

    Science.gov (United States)

    Xie, Xin; Theodore, Rachel M; Myers, Emily B

    2017-01-01

    The literature on perceptual learning for speech shows that listeners use lexical information to disambiguate phonetically ambiguous speech sounds and that they maintain this new mapping for later recognition of ambiguous sounds for a given talker. Evidence for this kind of perceptual reorganization has focused on phonetic category boundary shifts. Here, we asked whether listeners adjust both category boundaries and internal category structure in rapid adaptation to foreign accents. We investigated the perceptual learning of Mandarin-accented productions of word-final voiced stops in English. After exposure to a Mandarin speaker's productions, native-English listeners' adaptation to the talker was tested in 3 ways: a cross-modal priming task to assess spoken word recognition (Experiment 1), a category identification task to assess shifts in the phonetic boundary (Experiment 2), and a goodness rating task to assess internal category structure (Experiment 3). Following exposure, both category boundary and internal category structure were adjusted; moreover, these prelexical changes facilitated subsequent word recognition. Together, the results demonstrate that listeners' sensitivity to acoustic-phonetic detail in the accented input promoted a dynamic, comprehensive reorganization of their perceptual response as a consequence of exposure to the accented input. We suggest that an examination of internal category structure is important for a complete account of the mechanisms of perceptual learning. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Infant Memory for Primitive Perceptual Features.

    Science.gov (United States)

    Adler, Scott A.

    Textons are elongated blobs of specific color, angular orientation, ends of lines, and crossings of line segments that are proposed to be the perceptual building blocks of the visual system. A study was conducted to explore the relative memorability of different types and arrangements of textons, exploring the time course for the discrimination…

  9. Understanding perceptual boundaries in laparoscopic surgery.

    Science.gov (United States)

    Lamata, Pablo; Gomez, Enrique J; Hernández, Félix Lamata; Oltra Pastor, Alfonso; Sanchez-Margallo, Francisco Miquel; Del Pozo Guerrero, Francisco

    2008-03-01

    Human perceptual capabilities related to the laparoscopic interaction paradigm are not well known. Its study is important for the design of virtual reality simulators, and for the specification of augmented reality applications that overcome current limitations and provide a supersensing to the surgeon. As part of this work, this article addresses the study of laparoscopic pulling forces. Two definitions are proposed to focalize the problem: the perceptual fidelity boundary, limit of human perceptual capabilities, and the Utile fidelity boundary, that encapsulates the perceived aspects actually used by surgeons to guide an operation. The study is then aimed to define the perceptual fidelity boundary of laparoscopic pulling forces. This is approached with an experimental design in which surgeons assess the resistance against pulling of four different tissues, which are characterized with both in vivo interaction forces and ex vivo tissue biomechanical properties. A logarithmic law of tissue consistency perception is found comparing subjective valorizations with objective parameters. A model of this perception is developed identifying what the main parameters are: the grade of fixation of the organ, the tissue stiffness, the amount of tissue bitten, and the organ mass being pulled. These results are a clear requirement analysis for the force feedback algorithm of a virtual reality laparoscopic simulator. Finally, some discussion is raised about the suitability of augmented reality applications around this surgical gesture.

  10. Perceptual processing of a complex auditory context

    DEFF Research Database (Denmark)

    Quiroga Martinez, David Ricardo; Hansen, Niels Christian; Højlund, Andreas

    The mismatch negativity (MMN) is a brain response elicited by deviants in a series of repetitive sounds. It reflects the perception of change in low-level sound features and reliably measures perceptual auditory memory. However, most MMN studies use simple tone patterns as stimuli, failing...

  11. Well-Founded Belief and Perceptual Justification

    DEFF Research Database (Denmark)

    Broncano-Berrocal, Fernando

    2016-01-01

    According to Alan Millar, justified beliefs are well-founded beliefs. Millar cashes out the notion of well-foundedness in terms of having an adequate reason to believe something and believing it for that reason. To make his account of justified belief compatible with perceptual justification he...

  12. Prior expectations facilitate metacognition for perceptual decision.

    Science.gov (United States)

    Sherman, M T; Seth, A K; Barrett, A B; Kanai, R

    2015-09-01

    The influential framework of 'predictive processing' suggests that prior probabilistic expectations influence, or even constitute, perceptual contents. This notion is evidenced by the facilitation of low-level perceptual processing by expectations. However, whether expectations can facilitate high-level components of perception remains unclear. We addressed this question by considering the influence of expectations on perceptual metacognition. To isolate the effects of expectation from those of attention we used a novel factorial design: expectation was manipulated by changing the probability that a Gabor target would be presented; attention was manipulated by instructing participants to perform or ignore a concurrent visual search task. We found that, independently of attention, metacognition improved when yes/no responses were congruent with expectations of target presence/absence. Results were modeled under a novel Bayesian signal detection theoretic framework which integrates bottom-up signal propagation with top-down influences, to provide a unified description of the mechanisms underlying perceptual decision and metacognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Fusion of perceptions for perceptual robotics

    NARCIS (Netherlands)

    Ciftcioglu, O.; Bittermann, M.S.; Sariyildiz, I.S.

    2006-01-01

    Fusion of perception information for perceptual robotics is described. The visual perception is mathematically modelled as a probabilistic process obtaining and interpreting visual data from an environment. The visual data is processed in a multiresolutional form via wavelet transform and optimally

  14. Perceptual Load Influences Selective Attention across Development

    Science.gov (United States)

    Couperus, Jane W.

    2011-01-01

    Research suggests that visual selective attention develops across childhood. However, there is relatively little understanding of the neurological changes that accompany this development, particularly in the context of adult theories of selective attention, such as N. Lavie's (1995) perceptual load theory of attention. This study examined visual…

  15. Comparison and Contrast in Perceptual Categorization

    Science.gov (United States)

    Hampton, James A.; Estes, Zachary; Simmons, Claire L.

    2005-01-01

    People categorized pairs of perceptual stimuli that varied in both category membership and pairwise similarity. Experiments 1 and 2 showed categorization of 1 color of a pair to be reliably contrasted from that of the other. This similarity-based contrast effect occurred only when the context stimulus was relevant for the categorization of the…

  16. Perceptual Articulation in Three Middle Eastern Culture

    Science.gov (United States)

    Amir, Yehuda

    1975-01-01

    Noting that one would expect that members of cultural groups whose modes of child rearing foster individual autonomy would achieve more articulated perceptual functioning rather than persons reared in societies where conformity and emotional dependence are stressed, this article discusses a study which compared two Israeli sub-groups and two…

  17. Reliability in perceptual analysis of voice quality.

    Science.gov (United States)

    Bele, Irene Velsvik

    2005-12-01

    This study focuses on speaking voice quality in male teachers (n = 35) and male actors (n = 36), who represent untrained and trained voice users, because we wanted to investigate normal and supranormal voices. In this study, both substantial and methodologic aspects were considered. It includes a method for perceptual voice evaluation, and a basic issue was rater reliability. A listening group of 10 listeners, 7 experienced speech-language therapists, and 3 speech-language therapist students evaluated the voices by 15 vocal characteristics using VA scales. Two sets of voice signals were investigated: text reading (2 loudness levels) and sustained vowel (3 levels). The results indicated a high interrater reliability for most perceptual characteristics. Connected speech was evaluated more reliably, especially at the normal level, but both types of voice signals were evaluated reliably, although the reliability for connected speech was somewhat higher than for vowels. Experienced listeners tended to be more consistent in their ratings than did the student raters. Some vocal characteristics achieved acceptable reliability even with a smaller panel of listeners. The perceptual characteristics grouped in 4 factors reflected perceptual dimensions.

  18. Perceptual evaluation of different image fusion schemes

    NARCIS (Netherlands)

    Toet, A.; IJspeert, J.K.

    2001-01-01

    Human perceptual performance was tested with images of nighttime outdoor scenes. The scenes were registered both with a dual band (visual and near infrared) image intensified low-light CCD camera (DII) and with a thermal middle wavelength band (3-5 μm) infrared (IR) camera. Fused imagery was

  19. Grey scale, the 'crispening effect', and perceptual linearization

    NARCIS (Netherlands)

    Belaïd, N.; Martens, J.B.

    1998-01-01

    One way of optimizing a display is to maximize the number of distinguishable grey levels, which in turn is equivalent to perceptually linearizing the display. Perceptual linearization implies that equal steps in grey value evoke equal steps in brightness sensation. The key to perceptual

  20. Reinforcement of perceptual inference: reward and punishment alter conscious visual perception during binocular rivalry

    Directory of Open Access Journals (Sweden)

    Gregor eWilbertz

    2014-12-01

    Full Text Available Perception is an inferential process, which becomes immediately evident when sensory information is conflicting or ambiguous and thus allows for more than one perceptual interpretation. Thinking the idea of perception as inference through to the end results in a blurring of boundaries between perception and action selection, as perceptual inference implies the construction of a percept as an active process. Here we therefore wondered whether perception shares a key characteristic of action selection, namely that it is shaped by reinforcement learning. In two behavioral experiments, we used binocular rivalry to examine whether perceptual inference can be influenced by the association of perceptual outcomes with reward or punishment, respectively, in analogy to instrumental conditioning. Binocular rivalry was evoked by two orthogonal grating stimuli presented to the two eyes, resulting in perceptual alternations between the two gratings. Perception was tracked indirectly and objectively through a target detection task, which allowed us to preclude potential reporting biases. Monetary rewards or punishments were given repeatedly during perception of only one of the two rivalling stimuli. We found an increase in dominance durations for the percept associated with reward, relative to the non-rewarded percept. In contrast, punishment led to an increase of the non-punished compared to a relative decrease of the punished percept. Our results show that perception shares key characteristics with action selection, in that it is influenced by reward and punishment in opposite directions, thus narrowing the gap between the conceptually separated domains of perception and action selection. We conclude that perceptual inference is an adaptive process that is shaped by its consequences.

  1. Effects of Acute Cortisol Administration on Perceptual Priming of Trauma-Related Material

    Science.gov (United States)

    Streb, Markus; Pfaltz, Monique; Michael, Tanja

    2014-01-01

    Intrusive memories are a hallmark symptom of posttraumatic stress disorder (PTSD). They reflect excessive and uncontrolled retrieval of the traumatic memory. Acute elevations of cortisol are known to impair the retrieval of already stored memory information. Thus, continuous cortisol administration might help in reducing intrusive memories in PTSD. Strong perceptual priming for neutral stimuli associated with a “traumatic” context has been shown to be one important learning mechanism that leads to intrusive memories. However, the memory modulating effects of cortisol have only been shown for explicit declarative memory processes. Thus, in our double blind, placebo controlled study we aimed to investigate whether cortisol influences perceptual priming of neutral stimuli that appeared in a “traumatic” context. Two groups of healthy volunteers (N = 160) watched either neutral or “traumatic” picture stories on a computer screen. Neutral objects were presented in between the pictures. Memory for these neutral objects was tested after 24 hours with a perceptual priming task and an explicit memory task. Prior to memory testing half of the participants in each group received 25 mg of cortisol, the other half received placebo. In the placebo group participants in the “traumatic” stories condition showed more perceptual priming for the neutral objects than participants in the neutral stories condition, indicating a strong perceptual priming effect for neutral stimuli presented in a “traumatic” context. In the cortisol group this effect was not present: Participants in the neutral stories and participants in the “traumatic” stories condition in the cortisol group showed comparable priming effects for the neutral objects. Our findings show that cortisol inhibits perceptual priming for neutral stimuli that appeared in a “traumatic” context. These findings indicate that cortisol influences PTSD-relevant memory processes and thus further support

  2. The Effects of Meaning-Based Auditory Training on Behavioral Measures of Perceptual Effort in Individuals with Impaired Hearing.

    Science.gov (United States)

    Sommers, Mitchell S; Tye-Murray, Nancy; Barcroft, Joe; Spehar, Brent P

    2015-11-01

    There has been considerable interest in measuring the perceptual effort required to understand speech, as well as to identify factors that might reduce such effort. In the current study, we investigated whether, in addition to improving speech intelligibility, auditory training also could reduce perceptual or listening effort. Perceptual effort was assessed using a modified version of the n-back memory task in which participants heard lists of words presented without background noise and were asked to continually update their memory of the three most recently presented words. Perceptual effort was indexed by memory for items in the three-back position immediately before, immediately after, and 3 months after participants completed the Computerized Learning Exercises for Aural Rehabilitation (clEAR), a 12-session computerized auditory training program. Immediate posttraining measures of perceptual effort indicated that participants could remember approximately one additional word compared to pretraining. Moreover, some training gains were retained at the 3-month follow-up, as indicated by significantly greater recall for the three-back item at the 3-month measurement than at pretest. There was a small but significant correlation between gains in intelligibility and gains in perceptual effort. The findings are discussed within the framework of a limited-capacity speech perception system.

  3. Mapping the perceptual grain of the human retina.

    Science.gov (United States)

    Harmening, Wolf M; Tuten, William S; Roorda, Austin; Sincich, Lawrence C

    2014-04-16

    In humans, experimental access to single sensory receptors is difficult to achieve, yet it is crucial for learning how the signals arising from each receptor are transformed into perception. By combining adaptive optics microstimulation with high-speed eye tracking, we show that retinal function can be probed at the level of the individual cone photoreceptor in living eyes. Classical psychometric functions were obtained from cone-sized microstimuli targeted to single photoreceptors. Revealed psychophysically, the cone mosaic also manifests a variable sensitivity to light across its surface that accords with a simple model of cone light capture. Because this microscopic grain of vision could be detected on the perceptual level, it suggests that photoreceptors can act individually to shape perception, if the normally suboptimal relay of light by the eye's optics is corrected. Thus the precise arrangement of cones and the exact placement of stimuli onto those cones create the initial retinal limits on signals mediating spatial vision.

  4. Audiomotor Perceptual Training Enhances Speech Intelligibility in Background Noise.

    Science.gov (United States)

    Whitton, Jonathon P; Hancock, Kenneth E; Shannon, Jeffrey M; Polley, Daniel B

    2017-11-06

    Sensory and motor skills can be improved with training, but learning is often restricted to practice stimuli. As an exception, training on closed-loop (CL) sensorimotor interfaces, such as action video games and musical instruments, can impart a broad spectrum of perceptual benefits. Here we ask whether computerized CL auditory training can enhance speech understanding in levels of background noise that approximate a crowded restaurant. Elderly hearing-impaired subjects trained for 8 weeks on a CL game that, like a musical instrument, challenged them to monitor subtle deviations between predicted and actual auditory feedback as they moved their fingertip through a virtual soundscape. We performed our study as a randomized, double-blind, placebo-controlled trial by training other subjects in an auditory working-memory (WM) task. Subjects in both groups improved at their respective auditory tasks and reported comparable expectations for improved speech processing, thereby controlling for placebo effects. Whereas speech intelligibility was unchanged after WM training, subjects in the CL training group could correctly identify 25% more words in spoken sentences or digit sequences presented in high levels of background noise. Numerically, CL audiomotor training provided more than three times the benefit of our subjects' hearing aids for speech processing in noisy listening conditions. Gains in speech intelligibility could be predicted from gameplay accuracy and baseline inhibitory control. However, benefits did not persist in the absence of continuing practice. These studies employ stringent clinical standards to demonstrate that perceptual learning on a computerized audio game can transfer to "real-world" communication challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Using perceptual control theory to analyse technology integration in teaching

    Directory of Open Access Journals (Sweden)

    D W Govender

    2013-07-01

    Full Text Available Contrary to the more traditional scenario of instructor-focused presentation, contemporary education allows individuals to embrace modern technological advances such as computers to concur with, conceptualize and substantiate matters presented before them. Transition from instructor-focused to student-centred presentation is prone to dissension and strife, motivating educators to assess elements of learner-centred teaching in conjunction with traditional teaching mechanisms and how individuals perceive and comprehend information (Andersson, 2008; Kiboss, 2010; United Nations Educational, Scientific and Cultural Organization (UNESCO, 2004. Computers can assist when used in the traditional teacher-student interface, but consideration must be given to teaching method variations and the students embracing these learning applications. If learner-centred teaching is to become accepted certain elements need to be introduced: revision of educators’ learning and teaching applications, time to facilitate knowledge and use of applicable contemporary technologies, and methods compatible with various technologies (Kiboss, 2010. Change is often not easy – while acknowledging the need to alter and revise methods they were taught to instil, educators may fail to embrace incorporation of technology into their teaching platform. Why are educators, who are quite knowledgeable and competent in computer applications and their merits, failing to embrace the benefits of technology in the classroom? A critical assessment of this mandates a transdisciplinary disposition in order to come to an amenable resolution. Perception, inhibition, ignorance and goals are just some reasons why educators are reluctant to incorporate technology despite their proficiency. Perceptual control theory (PCT will be implemented to assess these reasons as a means towards achieving change and assessing how to move forward. Issues associated with educators’ short- and long-term goals as

  6. From perceptual to lexico-semantic analysis--cortical plasticity enabling new levels of processing.

    Science.gov (United States)

    Schlaffke, Lara; Rüther, Naima N; Heba, Stefanie; Haag, Lauren M; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian; Schmidt-Wilcke, Tobias

    2015-11-01

    Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico-semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico-semantic analysis). Perceptual and lexico-semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico-semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico-semantic stimulus analysis. Importantly, the activation pattern remains task-related LOP and is thus the result of a decision process as to which LOP to engage in. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  7. Perceptual uncertainty supports design reasoning

    Science.gov (United States)

    Tseng, Winger S. W.

    2018-06-01

    The unstructured, ambiguous figures used as design cues in the experiment were classified as being at high, moderate, and low ambiguity. Participants were required to use the ideas suggested by the visual cues to design a novel table. Results showed that different levels of ambiguity within the cues significantly influenced the quantity of idea development of expert designers, but not novice designers, whose idea generation remained relatively low across all levels of ambiguity. For experts, as the level of ambiguity in the cue increased so did the number of design ideas that were generated. Most design interpretations created by both experts and novices were affected by geometric contours within the figures. In addition, when viewing cues of high ambiguity, experts produced more interpretative transformations than when viewing cues of moderate or low ambiguity. Furthermore, experts produced significantly more new functions or meanings than novices. We claim that increased ambiguity within presented visual cues engenders uncertainty in designers that facilitates flexible transformations and interpretations that prevent premature commitment to uncreative solutions. Such results could be applied in design learning and education, focused on differences between experts and novices, to generalize the principles and strategies of interpretations by experts during concept sketching to train novices when face design problems, and the development of CACD tools to support designers.

  8. Towards representation of a perceptual color manifold using associative memory for color constancy.

    Science.gov (United States)

    Seow, Ming-Jung; Asari, Vijayan K

    2009-01-01

    In this paper, we propose the concept of a manifold of color perception through empirical observation that the center-surround properties of images in a perceptually similar environment define a manifold in the high dimensional space. Such a manifold representation can be learned using a novel recurrent neural network based learning algorithm. Unlike the conventional recurrent neural network model in which the memory is stored in an attractive fixed point at discrete locations in the state space, the dynamics of the proposed learning algorithm represent memory as a nonlinear line of attraction. The region of convergence around the nonlinear line is defined by the statistical characteristics of the training data. This learned manifold can then be used as a basis for color correction of the images having different color perception to the learned color perception. Experimental results show that the proposed recurrent neural network learning algorithm is capable of color balance the lighting variations in images captured in different environments successfully.

  9. Action video games do not improve the speed of information processing in simple perceptual tasks.

    Science.gov (United States)

    van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U; Ratcliff, Roger; Wagenmakers, Eric-Jan

    2014-10-01

    Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks.

  10. Monocular depth effects on perceptual fading.

    Science.gov (United States)

    Hsu, Li-Chuan; Kramer, Peter; Yeh, Su-Ling

    2010-08-06

    After prolonged viewing, a static target among moving non-targets is perceived to repeatedly disappear and reappear. An uncrossed stereoscopic disparity of the target facilitates this Motion-Induced Blindness (MIB). Here we test whether monocular depth cues can affect MIB too, and whether they can also affect perceptual fading in static displays. Experiment 1 reveals an effect of interposition: more MIB when the target appears partially covered by, than when it appears to cover, its surroundings. Experiment 2 shows that the effect is indeed due to interposition and not to the target's contours. Experiment 3 induces depth with the watercolor illusion and replicates Experiment 1. Experiments 4 and 5 replicate Experiments 1 and 3 without the use of motion. Since almost any stimulus contains a monocular depth cue, we conclude that perceived depth affects perceptual fading in almost any stimulus, whether dynamic or static. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. A perceptual metric for photo retouching.

    Science.gov (United States)

    Kee, Eric; Farid, Hany

    2011-12-13

    In recent years, advertisers and magazine editors have been widely criticized for taking digital photo retouching to an extreme. Impossibly thin, tall, and wrinkle- and blemish-free models are routinely splashed onto billboards, advertisements, and magazine covers. The ubiquity of these unrealistic and highly idealized images has been linked to eating disorders and body image dissatisfaction in men, women, and children. In response, several countries have considered legislating the labeling of retouched photos. We describe a quantitative and perceptually meaningful metric of photo retouching. Photographs are rated on the degree to which they have been digitally altered by explicitly modeling and estimating geometric and photometric changes. This metric correlates well with perceptual judgments of photo retouching and can be used to objectively judge by how much a retouched photo has strayed from reality.

  12. Perceptual digital imaging methods and applications

    CERN Document Server

    Lukac, Rastislav

    2012-01-01

    Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of tradition

  13. Explaining seeing? Disentangling qualia from perceptual organization.

    Science.gov (United States)

    Ibáñez, Agustin; Bekinschtein, Tristan

    2010-09-01

    Abstract Visual perception and integration seem to play an essential role in our conscious phenomenology. Relatively local neural processing of reentrant nature may explain several visual integration processes (feature binding or figure-ground segregation, object recognition, inference, competition), even without attention or cognitive control. Based on the above statements, should the neural signatures of visual integration (via reentrant process) be non-reportable phenomenological qualia? We argue that qualia are not required to understand this perceptual organization.

  14. Space and time in perceptual causality

    Directory of Open Access Journals (Sweden)

    Benjamin Straube

    2010-04-01

    Full Text Available Inferring causality is a fundamental feature of human cognition that allows us to theorize about and predict future states of the world. Michotte suggested that humans automatically perceive causality based on certain perceptual features of events. However, individual differences in judgments of perceptual causality cast doubt on Michotte’s view. To gain insights in the neural basis of individual difference in the perception of causality, our participants judged causal relationships in animations of a blue ball colliding with a red ball (a launching event while fMRI-data were acquired. Spatial continuity and temporal contiguity were varied parametrically in these stimuli. We did not find consistent brain activation differences between trials judged as caused and those judged as non-caused, making it unlikely that humans have universal instantiation of perceptual causality in the brain. However, participants were slower to respond to and showed greater neural activity for violations of causality, suggesting that humans are biased to expect causal relationships when moving objects appear to interact. Our participants demonstrated considerable individual differences in their sensitivity to spatial and temporal characteristics in perceiving causality. These qualitative differences in sensitivity to time or space in perceiving causality were instantiated in individual differences in activation of the left basal ganglia or right parietal lobe, respectively. Thus, the perception that the movement of one object causes the movement of another is triggered by elemental spatial and temporal sensitivities, which themselves are instantiated in specific distinct neural networks.

  15. Audiovisual speech perception development at varying levels of perceptual processing.

    Science.gov (United States)

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-04-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children.

  16. Competition explains limited attention and perceptual resources: implications for perceptual load and dilution theories

    Directory of Open Access Journals (Sweden)

    Paige E. Scalf

    2013-05-01

    Full Text Available Both perceptual load theory and dilution theory purport to explain when and why task-irrelevant information, or so-called distractors are processed. Central to both explanations is the notion of limited resources, although the theories differ in the precise way in which those limitations affect distractor processing. We have recently proposed a neurally plausible explanation of limited resources in which neural competition among stimuli hinders their representation in the brain. This view of limited capacity can also explain distractor processing, whereby the competitive interactions and bias imposed to resolve the competition determine the extent to which a distractor is processed. This idea is compatible with aspects of both perceptual load and dilution models of distractor processing, but also serves to highlight their differences. Here we review the evidence in favor of a biased competition view of limited resources and relate these ideas to both classic perceptual load theory and dilution theory.

  17. Competition explains limited attention and perceptual resources: implications for perceptual load and dilution theories.

    Science.gov (United States)

    Scalf, Paige E; Torralbo, Ana; Tapia, Evelina; Beck, Diane M

    2013-01-01

    Both perceptual load theory and dilution theory purport to explain when and why task-irrelevant information, or so-called distractors are processed. Central to both explanations is the notion of limited resources, although the theories differ in the precise way in which those limitations affect distractor processing. We have recently proposed a neurally plausible explanation of limited resources in which neural competition among stimuli hinders their representation in the brain. This view of limited capacity can also explain distractor processing, whereby the competitive interactions and bias imposed to resolve the competition determine the extent to which a distractor is processed. This idea is compatible with aspects of both perceptual load and dilution models of distractor processing, but also serves to highlight their differences. Here we review the evidence in favor of a biased competition view of limited resources and relate these ideas to both classic perceptual load theory and dilution theory.

  18. Perceptual impairment and psychomotor control in virtual laparoscopic surgery.

    Science.gov (United States)

    Wilson, Mark R; McGrath, John S; Vine, Samuel J; Brewer, James; Defriend, David; Masters, Richard S W

    2011-07-01

    It is recognised that one of the major difficulties in performing laparoscopic surgery is the translation of two-dimensional video image information to a three-dimensional working area. However, research has tended to ignore the gaze and eye-hand coordination strategies employed by laparoscopic surgeons as they attempt to overcome these perceptual constraints. This study sought to examine if measures related to tool movements, gaze strategy, and eye-hand coordination (the quiet eye) differentiate between experienced and novice operators performing a two-handed manoeuvres task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Twenty-five right-handed surgeons were categorised as being either experienced (having led more than 60 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The 10 experienced and 15 novice surgeons completed the "two-hand manoeuvres" task from the LAP Mentor basic skills learning environment while wearing a gaze registration system. Performance, movement, gaze, and eye-hand coordination parameters were recorded and compared between groups. The experienced surgeons completed the task significantly more quickly than the novices, used significantly fewer movements, and displayed shorter tool paths. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. A more detailed analysis of a difficult subcomponent of the task revealed that experienced operators used a significantly longer aiming fixation (the quiet eye period) to guide precision grasping movements and hence needed fewer grasp attempts. The findings of the study provide further support for the utility of examining strategic gaze behaviour and eye-hand coordination measures to help further our understanding of how experienced surgeons attempt to overcome the perceptual difficulties inherent in

  19. Differential effect of visual masking in perceptual categorization.

    Science.gov (United States)

    Hélie, Sébastien; Cousineau, Denis

    2015-06-01

    This article explores the visual information used to categorize stimuli drawn from a common stimulus space into verbal and nonverbal categories using 2 experiments. Experiment 1 explores the effect of target duration on verbal and nonverbal categorization using backward masking to interrupt visual processing. With categories equated for difficulty for long and short target durations, intermediate target duration shows an advantage for verbal categorization over nonverbal categorization. Experiment 2 tests whether the results of Experiment 1 can be explained by shorter target duration resulting in a smaller signal-to-noise ratio of the categorization stimulus. To test for this possibility, Experiment 2 used integration masking with the same stimuli, categories, and masks as Experiment 1 with a varying level of mask opacity. As predicted, low mask opacity yielded similar results to long target duration while high mask opacity yielded similar results to short target duration. Importantly, intermediate mask opacity produced an advantage for verbal categorization over nonverbal categorization, similar to intermediate target duration. These results suggest that verbal and nonverbal categorization are affected differently by manipulations affecting the signal-to-noise ratio of the stimulus, consistent with multiple-system theories of categorizations. The results further suggest that verbal categorization may be more digital (and more robust to low signal-to-noise ratio) while the information used in nonverbal categorization may be more analog (and less robust to lower signal-to-noise ratio). This article concludes with a discussion of how these new results affect the use of masking in perceptual categorization and multiple-system theories of perceptual category learning. (c) 2015 APA, all rights reserved).

  20. Perceptual load in sport and the heuristic value of the perceptual load paradigm in examining expertise-related perceptual-cognitive adaptations.

    Science.gov (United States)

    Furley, Philip; Memmert, Daniel; Schmid, Simone

    2013-03-01

    In two experiments, we transferred perceptual load theory to the dynamic field of team sports and tested the predictions derived from the theory using a novel task and stimuli. We tested a group of college students (N = 33) and a group of expert team sport players (N = 32) on a general perceptual load task and a complex, soccer-specific perceptual load task in order to extend the understanding of the applicability of perceptual load theory and further investigate whether distractor interference may differ between the groups, as the sport-specific processing task may not exhaust the processing capacity of the expert participants. In both, the general and the specific task, the pattern of results supported perceptual load theory and demonstrates that the predictions of the theory also transfer to more complex, unstructured situations. Further, perceptual load was the only determinant of distractor processing, as we neither found expertise effects in the general perceptual load task nor the sport-specific task. We discuss the heuristic utility of using response-competition paradigms for studying both general and domain-specific perceptual-cognitive adaptations.

  1. RELATIONSHIP BETWEEN PERCEPTION AND LEARNING IN THE MENTALLY RETARDED.

    Science.gov (United States)

    JOHNSON, G. ORVILLE

    SUPPORTIVE EVIDENCE IS GIVEN AGAINST PERCEPTUAL DISORDERS CREATING INTERFERENCE IN LEARNING. THE CONTENTION THAT A PERCEPTUAL FIGURE GROUND DISTURBANCE NECESSARILY INTERFERES WITH THE LEARNING PROCESS IS NOT SUPPORTED BY THE EVIDENCE. THERE ARE INDICATIONS, HOWEVER, THAT BACKGROUND INTERFERENCE SEEMS TO AFFECT SOME CHILDREN MORE THAN OTHERS. TWO…

  2. Profiling & Utilizing Learning Style.

    Science.gov (United States)

    Keefe, James W., Ed.

    The purpose of the National Association of Secondary School Principals (NASSP) Learning Style Profile is to provide educators with a well-validated and easy-to-use instrument for diagnosing the cognitive styles, perceptual response tendencies, and study/instructional preferences of middle level and senior high school students. The Learning Style…

  3. Beta oscillations define discrete perceptual cycles in the somatosensory domain.

    Science.gov (United States)

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2015-09-29

    Whether seeing a movie, listening to a song, or feeling a breeze on the skin, we coherently experience these stimuli as continuous, seamless percepts. However, there are rare perceptual phenomena that argue against continuous perception but, instead, suggest discrete processing of sensory input. Empirical evidence supporting such a discrete mechanism, however, remains scarce and comes entirely from the visual domain. Here, we demonstrate compelling evidence for discrete perceptual sampling in the somatosensory domain. Using magnetoencephalography (MEG) and a tactile temporal discrimination task in humans, we find that oscillatory alpha- and low beta-band (8-20 Hz) cycles in primary somatosensory cortex represent neurophysiological correlates of discrete perceptual cycles. Our results agree with several theoretical concepts of discrete perceptual sampling and empirical evidence of perceptual cycles in the visual domain. Critically, these results show that discrete perceptual cycles are not domain-specific, and thus restricted to the visual domain, but extend to the somatosensory domain.

  4. Converging prefrontal pathways support associative and perceptual features of conditioned stimuli.

    Science.gov (United States)

    Howard, James D; Kahnt, Thorsten; Gottfried, Jay A

    2016-05-04

    Perceptually similar stimuli often predict vastly different outcomes, requiring the brain to maintain specific associations in the face of potential ambiguity. This could be achieved either through local changes in stimulus representations, or through modulation of functional connections between stimulus-coding and outcome-coding regions. Here we test these competing hypotheses using classical conditioning of perceptually similar odours in the context of human fMRI. Pattern-based analyses of odour-evoked fMRI activity reveal that odour category, identity and value are coded in piriform (PC), orbitofrontal (OFC) and ventromedial prefrontal (vmPFC) cortices, respectively. However, we observe no learning-related reorganization of category or identity representations. Instead, changes in connectivity between vmPFC and OFC are correlated with learning-related changes in value, whereas connectivity changes between vmPFC and PC predict changes in perceived odour similarity. These results demonstrate that dissociable neural pathways support associative and perceptual representations of sensory stimuli.

  5. P2-17: Individual Differences in Dynamic Criterion Shifts during Perceptual Decision Making

    Directory of Open Access Journals (Sweden)

    Issac Rhim

    2012-10-01

    Full Text Available Perceptual decision-making involves placing an optimal criterion on the axis of encoded sensory evidence to maximize outcomes for choices. Optimal criterion setting becomes critical particularly when neural representations of sensory inputs are noisy and feedbacks for perceptual choices vary over time in an unpredictable manner. Here we monitored time courses of decision criteria that are adopted by human subjects while abruptly shifting the criterion of stochastic feedback to perceptual choices with certain amounts in an unpredictable direction and at an unpredictable point of time. Subjects viewed a brief (0.3 s, thin (.07 deg annulus around the fixation and were forced to judge whether the annulus was smaller or larger than an unknown boundary. We estimated moment-to-moment criteria by fitting a cumulative Gaussian function to the data within a sliding window of trials that are locked to a shift in feedback criterion. Unpredictable shifts in feedback criterion successfully induced shifts in actual decision criterion towards an optimal criterion for many of subjects, but with time delay and amount of shifts varying across individual subjects. There were disproportionately more numbers of overshooters (reaching and then surpassing the optimal criterion required than undershooters (subpar reach, with a significant anti-correlation with sensory sensitivity. To find a mechanism that generates these individual differences, we developed a dynamic criterion learning model by modifying a reinforcement learning model, which assumes that a criterion is adjusted every trial by a weighted discrepancy between actual and expected rewards.

  6. Circuit mechanisms of sensorimotor learning

    Science.gov (United States)

    Makino, Hiroshi; Hwang, Eun Jung; Hedrick, Nathan G.; Komiyama, Takaki

    2016-01-01

    SUMMARY The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process in three hierarchical levels with distinct goals: 1) sensory perceptual learning, 2) sensorimotor associative learning, and 3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior. PMID:27883902

  7. Learning during Processing: Word Learning Doesn't Wait for Word Recognition to Finish

    Science.gov (United States)

    Apfelbaum, Keith S.; McMurray, Bob

    2017-01-01

    Previous research on associative learning has uncovered detailed aspects of the process, including what types of things are learned, how they are learned, and where in the brain such learning occurs. However, perceptual processes, such as stimulus recognition and identification, take time to unfold. Previous studies of learning have not addressed…

  8. Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory.

    Science.gov (United States)

    Mednick, Sara C; Cai, Denise J; Kanady, Jennifer; Drummond, Sean P A

    2008-11-03

    Caffeine, the world's most common psychoactive substance, is used by approximately 90% of North Americans everyday. Little is known, however, about its benefits for memory. Napping has been shown to increase alertness and promote learning on some memory tasks. We directly compared caffeine (200mg) with napping (60-90min) and placebo on three distinct memory processes: declarative verbal memory, procedural motor skills, and perceptual learning. In the verbal task, recall and recognition for unassociated words were tested after a 7h retention period (with a between-session nap or drug intervention). A second, different, word list was administered post-intervention and memory was tested after a 20min retention period. The non-declarative tasks (finger tapping task (FTT) and texture discrimination task (TDT)) were trained before the intervention and then retested afterwards. Naps enhanced recall of words after a 7h and 20min retention interval relative to both caffeine and placebo. Caffeine significantly impaired motor learning compared to placebo and naps. Napping produced robust perceptual learning compared with placebo; however, naps and caffeine were not significantly different. These findings provide evidence of the limited benefits of caffeine for memory improvement compared with napping. We hypothesize that impairment from caffeine may be restricted to tasks that contain explicit information; whereas strictly implicit learning is less compromised.

  9. Metamemory and memory for a wide range of font sizes: What is the contribution of perceptual fluency?

    Science.gov (United States)

    Undorf, Monika; Zimdahl, Malte F

    2018-04-26

    Words printed in a larger 48-point font are judged to be more memorable than words printed in a smaller 18-point font, although font size does not affect actual memory. To clarify the basis of this font size effect on metamemory and memory, 4 experiments investigated how presenting words in 48 (Experiment 1) or 4 (Experiments 2 to 4) font sizes between 6 point and 500 point affected judgments of learning (JOLs) and recall performance. Response times in lexical decision tasks were used to measure perceptual fluency. In all experiments, perceptual fluency was lower for words presented in very small and very large font sizes than for words presented in intermediate font sizes. In contrast, JOLs increased monotonically with font size, even beyond the point where a large font impaired perceptual fluency. Assessments of people's metacognitive beliefs about font size revealed that the monotonic increase in JOLs was not due to beliefs masking perceptual fluency effects (Experiment 3). Also, JOLs still increased across the whole range of font sizes when perceptual fluency was made salient at study (Experiment 4). In all experiments but Experiment 4, recall performance increased with increasing font size, although to a lesser extent than JOLs. Overall, the current study supports the idea that metacognitive beliefs underlie font size effects in metamemory. As important, it reveals that people's font size beliefs have some accuracy. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Enhanced association between perceptual stimuli and trauma-related information in individuals with posttraumatic stress disorder symptoms.

    Science.gov (United States)

    Lin, Muyu; Hofmann, Stefan G; Qian, Mingyi; Li, Songwei

    2015-03-01

    Intrusive memories in traumatized individuals are often triggered by stimuli that are perceptually (rather than conceptually) similar to those present just before or during the trauma. The present study examined whether those individuals with high levels of Posttraumatic Stress Disorder (PTSD) symptoms show a memory bias recall to perceptual cues and trauma target words compared to those with low levels of PTSD. The sample consisted of 30 adult participants who were involved in motor-vehicle or work-related accidents; 15 of the participants endorsed clinically elevated symptoms of PTSD, while a comparison group of 15 participants reported low levels of symptoms. Participants performed an associative recognition task with conceptual or perceptual cue words and trauma-related or neutral target words. Participants were tested for their recognition accuracy by reporting the corresponding target when a cue was given. Both groups performed better for the perceptual word pairs than for the conceptual word pairs, irrespective of the target word type. However, only the high PTSD symptoms group exhibited an additional enhancement in performance for the perceptual word pairs with trauma-related target words. A nonclinical sample was utilized for this study; although PTSD was assessed, diagnoses were not confirmed. In addition, there was lack of a healthy non-traumatized control group. These results provide partial support for the cognitive model and the notion that intrusive memories are specific to the trauma-related event rather than to a general associative learning bias.

  11. Conceptual and methodological concerns in the theory of perceptual load.

    Science.gov (United States)

    Benoni, Hanna; Tsal, Yehoshua

    2013-01-01

    The present paper provides a short critical review of the theory of perceptual load. It closely examines the basic tenets and assumptions of the theory and identifies major conceptual and methodological problems that have been largely ignored in the literature. The discussion focuses on problems in the definition of the concept of perceptual load, on the circularity in the characterization and manipulation of perceptual load and the confusion between the concept of perceptual load and its operationalization. The paper also selectively reviews evidence supporting the theory as well as inconsistent evidence which proposed alternative dominant factors influencing the efficacy of attentional selection.

  12. Perceptual load corresponds with factors known to influence visual search.

    Science.gov (United States)

    Roper, Zachary J J; Cosman, Joshua D; Vecera, Shaun P

    2013-10-01

    One account of the early versus late selection debate in attention proposes that perceptual load determines the locus of selection. Attention selects stimuli at a late processing level under low-load conditions but selects stimuli at an early level under high-load conditions. Despite the successes of perceptual load theory, a noncircular definition of perceptual load remains elusive. We investigated the factors that influence perceptual load by using manipulations that have been studied extensively in visual search, namely target-distractor similarity and distractor-distractor similarity. Consistent with previous work, search was most efficient when targets and distractors were dissimilar and the displays contained homogeneous distractors; search became less efficient when target-distractor similarity increased irrespective of display heterogeneity. Importantly, we used these same stimuli in a typical perceptual load task that measured attentional spillover to a task-irrelevant flanker. We found a strong correspondence between search efficiency and perceptual load; stimuli that generated efficient searches produced flanker interference effects, suggesting that such displays involved low perceptual load. Flanker interference effects were reduced in displays that produced less efficient searches. Furthermore, our results demonstrate that search difficulty, as measured by search intercept, has little bearing on perceptual load. We conclude that rather than be arbitrarily defined, perceptual load might be defined by well-characterized, continuous factors that influence visual search. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. Conceptual and Methodological Concerns in the Theory of Perceptual Load

    Directory of Open Access Journals (Sweden)

    Hanna eBenoni

    2013-08-01

    Full Text Available The present paper provides a short critical review of the theory of perceptual load. It closely examines the basic tenets and assumptions of the theory and identifies major conceptual and methodological problems that have been largely ignored in the literature. The discussion focuses on problems in the definition of the concept of perceptual load, on the circularity in the characterization and manipulation of perceptual load and the confusion between the concept of perceptual load and its operationalization. The paper also selectively reviews evidence supporting the theory as well as inconsistent evidence which proposed alternative dominant factors influencing the efficacy of attentional selection.

  14. Perceptual dimensions of style in paintings

    Directory of Open Access Journals (Sweden)

    Marković Slobodan

    2007-01-01

    Full Text Available The main purpose of this study is to specify the basic perceptual dimensions underlying the judgments of the physical features which define the style in paintings (e.g. salient form, colorful surface, oval contours etc.. The other aim of the study is to correlate these dimensions with the subjective (affective dimensions of the experience of paintings. In the preliminary study a set of 25 pairs of elementary perceptual descriptors were empirically specified, and a set of 25 bipolar scales were made (e.g. uncolored-multicolored. In the experiment 30 subjects judged 24 paintings (paintings were taken from the study of Radonjić and Marković, 2004 on 25 scales. Factor analysis revealed the four factors: form (scales: precise, neat, salient form etc., color (color contrast, lightness contrast, vivid colors, space (voluminosity, depth and oval contours and complexity (multicolored, ornate, detailed. Obtained factors reflected the nature of the phenomenological and neural segregation of form, color, depth processing, and partially of complexity processing (e.g. spatial frequency processing within both the form and color subsystem. The aim of the next step of analysis was to specify the correlations between two groups of judgments: (a mean judgments of 24 paintings on perceptual factors and (b mean judgments of the same set of 24 paintings on subjective (affective experience factors, i.e. regularity, attraction, arousal and relaxation (judgments taken from Radonjić and Marković, 2005. The following significant correlations were obtained: regularity-form, regularity-space, attraction-form and arousal-complexity (negative correlation. The reasons for the unexpected negative correlation between arousal and complexity should be specified in further studies.

  15. Visual-perceptual mismatch in robotic surgery.

    Science.gov (United States)

    Abiri, Ahmad; Tao, Anna; LaRocca, Meg; Guan, Xingmin; Askari, Syed J; Bisley, James W; Dutson, Erik P; Grundfest, Warren S

    2017-08-01

    The principal objective of the experiment was to analyze the effects of the clutch operation of robotic surgical systems on the performance of the operator. The relative coordinate system introduced by the clutch operation can introduce a visual-perceptual mismatch which can potentially have negative impact on a surgeon's performance. We also assess the impact of the introduction of additional tactile sensory information on reducing the impact of visual-perceptual mismatch on the performance of the operator. We asked 45 novice subjects to complete peg transfers using the da Vinci IS 1200 system with grasper-mounted, normal force sensors. The task involves picking up a peg with one of the robotic arms, passing it to the other arm, and then placing it on the opposite side of the view. Subjects were divided into three groups: aligned group (no mismatch), the misaligned group (10 cm z axis mismatch), and the haptics-misaligned group (haptic feedback and z axis mismatch). Each subject performed the task five times, during which the grip force, time of completion, and number of faults were recorded. Compared to the subjects that performed the tasks using a properly aligned controller/arm configuration, subjects with a single-axis misalignment showed significantly more peg drops (p = 0.011) and longer time to completion (p sensors showed no difference between the different groups. The visual-perceptual mismatch created by the misalignment of the robotic controls relative to the robotic arms has a negative impact on the operator of a robotic surgical system. Introduction of other sensory information and haptic feedback systems can help in potentially reducing this effect.

  16. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  17. Perceptual Plasticity for Auditory Object Recognition

    Science.gov (United States)

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  18. Eliciting Perceptual Ground Truth for Image Segmentation

    OpenAIRE

    Hodge, Victoria Jane; Eakins, John; Austin, Jim

    2006-01-01

    In this paper, we investigate human visual perception and establish a body of ground truth data elicited from human visual studies. We aim to build on the formative work of Ren, Eakins and Briggs who produced an initial ground truth database. Human subjects were asked to draw and rank their perceptions of the parts of a series of figurative images. These rankings were then used to score the perceptions, identify the preferred human breakdowns and thus allow us to induce perceptual rules for h...

  19. False Memories Lack Perceptual Detail: Evidence from Implicit Word-Stem Completion and Perceptual Identification Tests

    Science.gov (United States)

    Hicks, J.L.; Starns, J.J.

    2005-01-01

    We used implicit measures of memory to ascertain whether false memories for critical nonpresented items in the DRM paradigm (Deese, 1959; Roediger & McDermott, 1995) contain structural and perceptual detail. In Experiment 1, we manipulated presentation modality in a visual word-stem-completion task. Critical item priming was significant and…

  20. Perceptual organization at attended and unattended locations

    Institute of Scientific and Technical Information of China (English)

    HAN Shihui; Glyn W. Humphreys

    2005-01-01

    This study examined the effects of attention on forming perceptual units by proximity grouping and by uniform connectedness (UC). In Experiment 1 a row of three global letters defined by either proximity or UC was presented at the center of the visual field. Participants were asked to identify the letter in the middle of stimulus arrays while ignoring the flankers. The stimulus onset asynchrony (SOA) between stimulus arrays and masks varied between 180 and 500 ms. We found that responses to targets defined by proximity grouping were slower than to those defined by UC at median SOAs but there were no differences at short or long SOAs. Incongruent flankers slowed responses to targets and this flanker compatibility effect was larger for UC than for proximity-defined flankers. Experiment 2 examined the effects of spatial precueing on discrimination responses to proximity- and UC-defined targets. The advantage for targets defined by UC over targets defined by proximity grouping was greater at uncued relative to cued locations. The results suggest that the advantage for UC over proximity grouping in forming perceptual units is contingent on the stimuli not being fully attended, and that paying attention to the stimuli differentially benefits proximity grouping.

  1. Revisiting the empirical case against perceptual modularity

    Science.gov (United States)

    Masrour, Farid; Nirshberg, Gregory; Schon, Michael; Leardi, Jason; Barrett, Emily

    2015-01-01

    Some theorists hold that the human perceptual system has a component that receives input only from units lower in the perceptual hierarchy. This thesis, that we shall here refer to as the encapsulation thesis, has been at the center of a continuing debate for the past few decades. Those who deny the encapsulation thesis often rely on the large body of psychological findings that allegedly suggest that perception is influenced by factors such as the beliefs, desires, goals, and the expectations of the perceiver. Proponents of the encapsulation thesis, however, often argue that, when correctly interpreted, these psychological findings are compatible with the thesis. In our view, the debate over the significance and the correct interpretation of these psychological findings has reached an impasse. We hold that this impasse is due to the methodological limitations over psychophysical experiments, and it is very unlikely that such experiments, on their own, could yield results that would settle the debate. After defending this claim, we argue that integrating data from cognitive neuroscience resolves the debate in favor of those who deny the encapsulation thesis. PMID:26583001

  2. Perceptual Specificity Effects in Rereading: Evidence from Eye Movements

    Science.gov (United States)

    Sheridan, Heather; Reingold, Eyal M.

    2012-01-01

    The present experiments examined perceptual specificity effects using a rereading paradigm. Eye movements were monitored while participants read the same target word twice, in two different low-constraint sentence frames. The congruency of perceptual processing was manipulated by either presenting the target word in the same distortion typography…

  3. Perceptual biases in relation to paranormal and conspiracy beliefs

    NARCIS (Netherlands)

    van Elk, M.

    2015-01-01

    Previous studies have shown that one’s prior beliefs have a strong effect on perceptual decision-making and attentional processing. The present study extends these findings by investigating how individual differences in paranormal and conspiracy beliefs are related to perceptual and attentional

  4. A Neural Signature Encoding Decisions under Perceptual Ambiguity.

    Science.gov (United States)

    Sun, Sai; Yu, Rongjun; Wang, Shuo

    2017-01-01

    People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making.

  5. The Role of Perceptual Load in Object Recognition

    Science.gov (United States)

    Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker

    2009-01-01

    Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were…

  6. Perceptual load-dependent neural correlates of distractor interference inhibition.

    Directory of Open Access Journals (Sweden)

    Jiansong Xu

    2011-01-01

    Full Text Available The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits is also smaller at high rather than low perceptual load, as might be predicted based on the load theory.We studied 24 healthy participants using functional magnetic resonance imaging (fMRI during a visual target identification task with two perceptual loads (low vs. high. Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN, striatum, thalamus, and extensive sensory cortices at high load.Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.

  7. The Role of Perceptual Load in Inattentional Blindness

    Science.gov (United States)

    Cartwright-Finch, Ula; Lavie, Nilli

    2007-01-01

    Perceptual load theory offers a resolution to the long-standing early vs. late selection debate over whether task-irrelevant stimuli are perceived, suggesting that irrelevant perception depends upon the perceptual load of task-relevant processing. However, previous evidence for this theory has relied on RTs and neuroimaging. Here we tested the…

  8. Perceptual load-dependent neural correlates of distractor interference inhibition.

    Science.gov (United States)

    Xu, Jiansong; Monterosso, John; Kober, Hedy; Balodis, Iris M; Potenza, Marc N

    2011-01-18

    The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory. We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load. Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load.

  9. A Novel Perceptual Hash Algorithm for Multispectral Image Authentication

    Directory of Open Access Journals (Sweden)

    Kaimeng Ding

    2018-01-01

    Full Text Available The perceptual hash algorithm is a technique to authenticate the integrity of images. While a few scholars have worked on mono-spectral image perceptual hashing, there is limited research on multispectral image perceptual hashing. In this paper, we propose a perceptual hash algorithm for the content authentication of a multispectral remote sensing image based on the synthetic characteristics of each band: firstly, the multispectral remote sensing image is preprocessed with band clustering and grid partition; secondly, the edge feature of the band subsets is extracted by band fusion-based edge feature extraction; thirdly, the perceptual feature of the same region of the band subsets is compressed and normalized to generate the perceptual hash value. The authentication procedure is achieved via the normalized Hamming distance between the perceptual hash value of the recomputed perceptual hash value and the original hash value. The experiments indicated that our proposed algorithm is robust compared to content-preserved operations and it efficiently authenticates the integrity of multispectral remote sensing images.

  10. Neurological evidence linguistic processes precede perceptual simulation in conceptual processing.

    Science.gov (United States)

    Louwerse, Max; Hutchinson, Sterling

    2012-01-01

    There is increasing evidence from response time experiments that language statistics and perceptual simulations both play a role in conceptual processing. In an EEG experiment we compared neural activity in cortical regions commonly associated with linguistic processing and visual perceptual processing to determine to what extent symbolic and embodied accounts of cognition applied. Participants were asked to determine the semantic relationship of word pairs (e.g., sky - ground) or to determine their iconic relationship (i.e., if the presentation of the pair matched their expected physical relationship). A linguistic bias was found toward the semantic judgment task and a perceptual bias was found toward the iconicity judgment task. More importantly, conceptual processing involved activation in brain regions associated with both linguistic and perceptual processes. When comparing the relative activation of linguistic cortical regions with perceptual cortical regions, the effect sizes for linguistic cortical regions were larger than those for the perceptual cortical regions early in a trial with the reverse being true later in a trial. These results map upon findings from other experimental literature and provide further evidence that processing of concept words relies both on language statistics and on perceptual simulations, whereby linguistic processes precede perceptual simulation processes.

  11. Selective Attention to Perceptual Dimensions and Switching between Dimensions

    Science.gov (United States)

    Meiran, Nachshon; Dimov, Eduard; Ganel, Tzvi

    2013-01-01

    In the present experiments, the question being addressed was whether switching attention between perceptual dimensions and selective attention to dimensions are processes that compete over a common resource? Attention to perceptual dimensions is usually studied by requiring participants to ignore a never-relevant dimension. Selection failure…

  12. Attention without awareness: Attentional modulation of perceptual grouping without awareness.

    Science.gov (United States)

    Lo, Shih-Yu

    2018-04-01

    Perceptual grouping is the process through which the perceptual system combines local stimuli into a more global perceptual unit. Previous studies have shown attention to be a modulatory factor for perceptual grouping. However, these studies mainly used explicit measurements, and, thus, whether attention can modulate perceptual grouping without awareness is still relatively unexplored. To clarify the relationship between attention and perceptual grouping, the present study aims to explore how attention interacts with perceptual grouping without awareness. The task was to judge the relative lengths of two centrally presented horizontal bars while a railway-shaped pattern defined by color similarity was presented in the background. Although the observers were unaware of the railway-shaped pattern, their line-length judgment was biased by that pattern, which induced a Ponzo illusion, indicating grouping without awareness. More importantly, an attentional modulatory effect without awareness was manifested as evident by the observer's performance being more often biased when the railway-shaped pattern was formed by an attended color than when it was formed by an unattended one. Also, the attentional modulation effect was shown to be dynamic, being more pronounced with a short presentation time than a longer one. The results of the present study not only clarify the relationship between attention and perceptual grouping but also further contribute to our understanding of attention and awareness by corroborating the dissociation between attention and awareness.

  13. Load theory behind the wheel; perceptual and cognitive load effects.

    Science.gov (United States)

    Murphy, Gillian; Greene, Ciara M

    2017-09-01

    Perceptual Load Theory has been proposed as a resolution to the longstanding early versus late selection debate in cognitive psychology. There is much evidence in support of Load Theory but very few applied studies, despite the potential for the model to shed light on everyday attention and distraction. Using a driving simulator, the effect of perceptual and cognitive load on drivers' visual search was assessed. The findings were largely in line with Load Theory, with reduced distractor processing under high perceptual load, but increased distractor processing under high cognitive load. The effect of load on driving behaviour was also analysed, with significant differences in driving behaviour under perceptual and cognitive load. In addition, the effect of perceptual load on drivers' levels of awareness was investigated. High perceptual load significantly increased inattentional blindness and deafness, for stimuli that were both relevant and irrelevant to driving. High perceptual load also increased RTs to hazards. The current study helps to advance Load Theory by illustrating its usefulness outside of traditional paradigms. There are also applied implications for driver safety and roadway design, as the current study suggests that perceptual and cognitive load are important factors in driver attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Perceptual maps: the good, the bad and the ugly

    NARCIS (Netherlands)

    J.C. Gower (John); P.J.F. Groenen (Patrick); M. van de Velden (Michel); K. Vines (Karen)

    2010-01-01

    textabstractPerceptual maps are often used in marketing to visually study relations between two or more attributes. However, in many perceptual maps published in the recent literature it remains unclear what is being shown and how the relations between the points in the map can be interpreted or

  15. Perceptual Mapping: A Methodology in the Assessment of Environmental Perceptions.

    Science.gov (United States)

    Sergent, Marie T.; Sedlacek, William E.

    1989-01-01

    Describes perceptual mapping, a newly developed method for assessing perceptions of campus environments. Describes evaluation of a student union by students using this method. Discusses the advantages and disadvantages of this perceptual mapping method for assessing college environments. (Author/ABL)

  16. Gaze-contingent training enhances perceptual skill acquisition

    NARCIS (Netherlands)

    Mann, D.L.; Ryu, D.; Abernethy, B.A.; Poolton, J.M.

    2016-01-01

    The purpose of this study was to determine whether decision-making skill in perceptual-cognitive tasks could be enhanced using a training technique that impaired selective areas of the visual field. Recreational basketball players performed perceptual training over 3 days while viewing with a

  17. Multisensory Cues Capture Spatial Attention Regardless of Perceptual Load

    Science.gov (United States)

    Santangelo, Valerio; Spence, Charles

    2007-01-01

    We compared the ability of auditory, visual, and audiovisual (bimodal) exogenous cues to capture visuo-spatial attention under conditions of no load versus high perceptual load. Participants had to discriminate the elevation (up vs. down) of visual targets preceded by either unimodal or bimodal cues under conditions of high perceptual load (in…

  18. Bayesian Face Recognition and Perceptual Narrowing in Face-Space

    Science.gov (United States)

    Balas, Benjamin

    2012-01-01

    During the first year of life, infants' face recognition abilities are subject to "perceptual narrowing", the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in…

  19. The effects of attention on perceptual implicit memory.

    Science.gov (United States)

    Rajaram, S; Srinivas, K; Travers, S

    2001-10-01

    Reports on the effects of dividing attention at study on subsequent perceptual priming suggest that perceptual priming is generally unaffected by attentional manipulations as long as word identity is processed. We tested this hypothesis in three experiments by using the implicit word fragment completion and word stem completion tasks. Division of attention was instantiated with the Stroop task in order to ensure the processing of word identity even when the participant's attention was directed to a stimulus attribute other than the word itself. Under these conditions, we found that even though perceptual priming was significant, it was significantly reduced in magnitude. A stem cued recall test in Experiment 2 confirmed a more deleterious effect of divided attention on explicit memory. Taken together, our findings delineate the relative contributions of perceptual analysis and attentional processes in mediating perceptual priming on two ubiquitously used tasks of word fragment completion and word stem completion.

  20. Motor and Perceptual Recovery in Adult Patients with Mild Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Mariagiovanna Cantone

    2018-01-01

    Full Text Available Introduction. The relationship between intellectual disability (ID and hand motor coordination and speed-accuracy, as well as the effect of aging on fine motor performance in patients with ID, has been previously investigated. However, only a few data are available on the impact of the nonpharmacological interventions in adult patients with long-term hand motor deficit. Methods. Fifty adults with mild ID were enrolled. A group of thirty patients underwent a two-month intensive ergotherapic treatment that included hand motor rehabilitation and visual-perceptual treatment (group A; twenty patients performing conventional motor rehabilitation alone (group B served as a control group. Data on attention, perceptual abilities, hand dexterity, and functional independence were collected by a blind operator, both at entry and at the end of the study. Results. After the interventions, group A showed significantly better performance than group B in all measures related to hand movement from both sides and to independence in activities of daily living. Discussion. Multimodal integrated interventions targeting visual-perceptual abilities and motor skills are an effective neurorehabilitative approach in adult patients with mild ID. Motor learning and memory-mediated mechanisms of neural plasticity might underlie the observed recovery, suggesting the presence of plastic adaptive changes even in the adult brain with ID.

  1. Assessing the applied benefits of perceptual training: Lessons from studies of training working-memory.

    Science.gov (United States)

    Jacoby, Nori; Ahissar, Merav

    2015-01-01

    In the 1980s to 1990s, studies of perceptual learning focused on the specificity of training to basic visual attributes such as retinal position and orientation. These studies were considered scientifically innovative since they suggested the existence of plasticity in the early stimulus-specific sensory cortex. Twenty years later, perceptual training has gradually shifted to potential applications, and research tends to be devoted to showing transfer. In this paper we analyze two key methodological issues related to the interpretation of transfer. The first has to do with the absence of a control group or the sole use of a test-retest group in traditional perceptual training studies. The second deals with claims of transfer based on the correlation between improvement on the trained and transfer tasks. We analyze examples from the general intelligence literature dealing with the impact on general intelligence of training on a working memory task. The re-analyses show that the reports of a significantly larger transfer of the trained group over the test-retest group fail to replicate when transfer is compared to an actively trained group. Furthermore, the correlations reported in this literature between gains on the trained and transfer tasks can be replicated even when no transfer is assumed.

  2. How mechanisms of perceptual decision-making affect the psychometric function.

    Science.gov (United States)

    Gold, Joshua I; Ding, Long

    2013-04-01

    Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the "neurometric" sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Perceptual effects in auralization of virtual rooms

    Science.gov (United States)

    Kleiner, Mendel; Larsson, Pontus; Vastfjall, Daniel; Torres, Rendell R.

    2002-05-01

    By using various types of binaural simulation (or ``auralization'') of physical environments, it is now possible to study basic perceptual issues relevant to room acoustics, as well to simulate the acoustic conditions found in concert halls and other auditoria. Binaural simulation of physical spaces in general is also important to virtual reality systems. This presentation will begin with an overview of the issues encountered in the auralization of room and other environments. We will then discuss the influence of various approximations in room modeling, in particular, edge- and surface scattering, on the perceived room response. Finally, we will discuss cross-modal effects, such as the influence of visual cues on the perception of auditory cues, and the influence of cross-modal effects on the judgement of ``perceived presence'' and the rating of room acoustic quality.

  4. Interaction features for prediction of perceptual segmentation

    DEFF Research Database (Denmark)

    Hartmann, Martin; Lartillot, Olivier; Toiviainen, Petri

    2017-01-01

    As music unfolds in time, structure is recognised and understood by listeners, regardless of their level of musical expertise. A number of studies have found spectral and tonal changes to quite successfully model boundaries between structural sections. However, the effects of musical expertise...... and experimental task on computational modelling of structure are not yet well understood. These issues need to be addressed to better understand how listeners perceive the structure of music and to improve automatic segmentation algorithms. In this study, computational prediction of segmentation by listeners...... was investigated for six musical stimuli via a real-time task and an annotation (non real-time) task. The proposed approach involved computation of novelty curve interaction features and a prediction model of perceptual segmentation boundary density. We found that, compared to non-musicians’, musicians...

  5. Optimizing Word Learning via Links to Perceptual and Motoric Experience

    NARCIS (Netherlands)

    Hald, Lea A.; de Nooijer, Jacqueline; van Gog, Tamara|info:eu-repo/dai/nl/294304975; Bekkering, Harold

    2016-01-01

    The aim of this review is to consider how current vocabulary training methods could be optimized by considering recent scientific insights in how the brain represents conceptual knowledge. We outline the findings from several methods of vocabulary training. In each case, we consider how taking an

  6. Subcortical plasticity following perceptual learning in a pitch discrimination task.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-02-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.

  7. Subcortical plasticity following perceptual learning in a pitch discrimination task

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pi...

  8. Optimizing Word Learning via Links to Perceptual and Motoric Experience

    Science.gov (United States)

    Hald, Lea A.; de Nooijer, Jacqueline; van Gog, Tamara; Bekkering, Harold

    2016-01-01

    The aim of this review is to consider how current vocabulary training methods could be optimized by considering recent scientific insights in how the brain represents conceptual knowledge. We outline the findings from several methods of vocabulary training. In each case, we consider how taking an embodied cognition perspective could impact word…

  9. Cognitive-perceptual deficits and symptom correlates in first-episode schizophrenia

    Directory of Open Access Journals (Sweden)

    Riaan M. Olivier

    2017-08-01

    Full Text Available Background: Thought disorder and visual-perceptual deficits have been well documented, but their relationships with clinical symptoms and cognitive function remain unclear. Cognitive-perceptual deficits may underscore clinical symptoms in schizophrenia patients. Aim: This study aimed to explore how thought disorder and form perception are related with clinical symptoms and cognitive dysfunction in first-episode schizophrenia. Setting: Forty-two patients with a first-episode of schizophrenia, schizophreniform or schizoaffective disorder were recruited from community clinics and state hospitals in the Cape Town area. Methods: Patients were assessed at baseline with the Rorschach Perceptual Thinking Index (PTI, the Positive and Negative Syndrome Scale (PANSS and the MATRICS Cognitive Consensus Battery (MCCB. Spearman correlational analyses were conducted to investigate relationships between PTI scores, PANSS factor analysis-derived domain scores and MCCB composite and subscale scores. Multiple regression models explored these relationships further. Results: Unexpectedly, poor form perception (X- % was inversely correlated with the severity of PANSS positive symptoms (r = -0.42, p = 0.02. Good form perception (XA% correlated significantly with speed of processing (r = 0.59, p < 0.01, working memory (r = 0.48, p < 0.01 and visual learning (r = 0.55, p < 0.01. PTI measures of thought disorder did not correlate significantly with PANSS symptom scores or cognitive performance. Conclusions: Form perception is associated with positive symptoms and impairment in executive function during acute psychosis. These findings suggest that there may be clinical value in including sensory-perceptual processing tasks in cognitive remediation and social cognitive training programmes for schizophrenia patients.

  10. Accurate expectancies diminish perceptual distraction during visual search

    Science.gov (United States)

    Sy, Jocelyn L.; Guerin, Scott A.; Stegman, Anna; Giesbrecht, Barry

    2014-01-01

    The load theory of visual attention proposes that efficient selective perceptual processing of task-relevant information during search is determined automatically by the perceptual demands of the display. If the perceptual demands required to process task-relevant information are not enough to consume all available capacity, then the remaining capacity automatically and exhaustively “spills-over” to task-irrelevant information. The spill-over of perceptual processing capacity increases the likelihood that task-irrelevant information will impair performance. In two visual search experiments, we tested the automaticity of the allocation of perceptual processing resources by measuring the extent to which the processing of task-irrelevant distracting stimuli was modulated by both perceptual load and top-down expectations using behavior, functional magnetic resonance imaging, and electrophysiology. Expectations were generated using a trial-by-trial cue that provided information about the likely load of the upcoming visual search task. When the cues were valid, behavioral interference was eliminated and the influence of load on frontoparietal and visual cortical responses was attenuated relative to when the cues were invalid. In conditions in which task-irrelevant information interfered with performance and modulated visual activity, individual differences in mean blood oxygenation level dependent responses measured from the left intraparietal sulcus were negatively correlated with individual differences in the severity of distraction. These results are consistent with the interpretation that a top-down biasing mechanism interacts with perceptual load to support filtering of task-irrelevant information. PMID:24904374

  11. Perceptual load interacts with stimulus processing across sensory modalities.

    Science.gov (United States)

    Klemen, J; Büchel, C; Rose, M

    2009-06-01

    According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.

  12. Accurate expectancies diminish perceptual distraction during visual search

    Directory of Open Access Journals (Sweden)

    Jocelyn L Sy

    2014-05-01

    Full Text Available The load theory of visual attention proposes that efficient selective perceptual processing of task-relevant information during search is determined automatically by the perceptual demands of the display. If the perceptual demands required to process task-relevant information are not enough to consume all available capacity, then the remaining capacity automatically and exhaustively spills-over to task-irrelevant information. The spill-over of perceptual processing capacity increases the likelihood that task-irrelevant information will impair performance. In two visual search experiments, we tested the automaticity of the allocation of perceptual processing resources by measuring the extent to which the processing of task-irrelevant distracting stimuli was modulated by both perceptual load and top-down expectations using behavior, fMRI, and electrophysiology. Expectations were generated by a trial-by-trial cue that provided information about the likely load of the upcoming visual search task. When the cues were valid, behavioral interference was eliminated and the influence of load on frontoparietal and visual cortical responses was attenuated relative to when the cues were invalid. In conditions in which task-irrelevant information interfered with performance and modulated visual activity, individual differences in mean BOLD responses measured from the left intraparietal sulcus were negatively correlated with individual differences in the severity of distraction. These results are consistent with the interpretation that a top-down biasing mechanism interacts with perceptual load to support filtering of task-irrelevant information.

  13. Attentional sets influence perceptual load effects, but not dilution effects.

    Science.gov (United States)

    Benoni, Hanna; Zivony, Alon; Tsal, Yehoshua

    2014-01-01

    Perceptual load theory [Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451-468.; Lavie, N., & Tsal, Y. (1994) Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56, 183-197.] proposes that interference from distractors can only be avoided in situations of high perceptual load. This theory has been supported by blocked design manipulations separating low load (when the target appears alone) and high load (when the target is embedded among neutral letters). Tsal and Benoni [(2010a). Diluting the burden of load: Perceptual load effects are simply dilution effects. Journal of Experimental Psychology: Human Perception and Performance, 36, 1645-1656.; Benoni, H., & Tsal, Y. (2010). Where have we gone wrong? Perceptual load does not affect selective attention. Vision Research, 50, 1292-1298.] have recently shown that these manipulations confound perceptual load with "dilution" (the mere presence of additional heterogeneous items in high-load situations). Theeuwes, Kramer, and Belopolsky [(2004). Attentional set interacts with perceptual load in visual search. Psychonomic Bulletin & Review, 11, 697-702.] independently questioned load theory by suggesting that attentional sets might also affect distractor interference. When high load and low load were intermixed, and participants could not prepare for the presentation that followed, both the low-load and high-load trials showed distractor interference. This result may also challenge the dilution account, which proposes a stimulus-driven mechanism. In the current study, we presented subjects with both fixed and mixed blocks, including a mix of dilution trials with low-load trials and with high-load trials. We thus separated the effect of dilution from load and tested the influence of attentional sets on each component. The results revealed that whereas

  14. Implicit visual learning and the expression of learning.

    Science.gov (United States)

    Haider, Hilde; Eberhardt, Katharina; Kunde, Alexander; Rose, Michael

    2013-03-01

    Although the existence of implicit motor learning is now widely accepted, the findings concerning perceptual implicit learning are ambiguous. Some researchers have observed perceptual learning whereas other authors have not. The review of the literature provides different reasons to explain this ambiguous picture, such as differences in the underlying learning processes, selective attention, or differences in the difficulty to express this knowledge. In three experiments, we investigated implicit visual learning within the original serial reaction time task. We used different response devices (keyboard vs. mouse) in order to manipulate selective attention towards response dimensions. Results showed that visual and motor sequence learning differed in terms of RT-benefits, but not in terms of the amount of knowledge assessed after training. Furthermore, visual sequence learning was modulated by selective attention. However, the findings of all three experiments suggest that selective attention did not alter implicit but rather explicit learning processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Learning, memory, and synesthesia.

    Science.gov (United States)

    Witthoft, Nathan; Winawer, Jonathan

    2013-03-01

    People with color-grapheme synesthesia experience color when viewing written letters or numerals, usually with a particular color evoked by each grapheme. Here, we report on data from 11 color-grapheme synesthetes who had startlingly similar color-grapheme pairings traceable to childhood toys containing colored letters. These are the first and only data to show learned synesthesia of this kind in more than a single individual. Whereas some researchers have focused on genetic and perceptual aspects of synesthesia, our results indicate that a complete explanation of synesthesia must also incorporate a central role for learning and memory. We argue that these two positions can be reconciled by thinking of synesthesia as the automatic retrieval of highly specific mnemonic associations, in which perceptual contents are brought to mind in a manner akin to mental imagery or the perceptual-reinstatement effects found in memory studies.

  16. Five aspects of maximizing objectivity from perceptual evaluations of loudspeakers

    DEFF Research Database (Denmark)

    Volk, Christer Peter; Bech, Søren; Pedersen, Torben H.

    2015-01-01

    of data from the listening evaluations. This paper addresses the following subset of aspects for increasing the objectivity of data from listening tests: The choice of perceptual attributes, relevance of perceptual attributes, choice of loudness equalisation strategy, optimum listening room specifications......A literature study was conducted focusing on maximizing objectivity of results from listening evaluations aimed at establishing the relationship between physical and perceptual measurements of loudspeakers. The purpose of the study was to identify and examine factors influencing the objectivity......, as well as loudspeaker listening in-situ vs. listening to recordings of loudspeakers over headphones....

  17. Perceptual distortion analysis of color image VQ-based coding

    Science.gov (United States)

    Charrier, Christophe; Knoblauch, Kenneth; Cherifi, Hocine

    1997-04-01

    It is generally accepted that a RGB color image can be easily encoded by using a gray-scale compression technique on each of the three color planes. Such an approach, however, fails to take into account correlations existing between color planes and perceptual factors. We evaluated several linear and non-linear color spaces, some introduced by the CIE, compressed with the vector quantization technique for minimum perceptual distortion. To study these distortions, we measured contrast and luminance of the video framebuffer, to precisely control color. We then obtained psychophysical judgements to measure how well these methods work to minimize perceptual distortion in a variety of color space.

  18. Interwoven fluctuations during intermodal perception: fractality in head sway supports the use of visual feedback in haptic perceptual judgments by manual wielding.

    Science.gov (United States)

    Kelty-Stephen, Damian G; Dixon, James A

    2014-12-01

    Intermodal integration required for perceptual learning tasks is rife with individual differences. Participants vary in how they use perceptual information to one modality. One participant alone might change her own response over time. Participants vary further in their use of feedback through one modality to inform another modality. Two experiments test the general hypothesis that perceptual-motor fluctuations reveal both information use within modality and coordination among modalities. Experiment 1 focuses on perceptual learning in dynamic touch, in which participants use exploratory hand-wielding of unseen objects to make visually guided length judgments and use visual feedback to rescale their judgments of the same mechanical information. Previous research found that the degree of fractal temporal scaling (i.e., "fractality") in hand-wielding moderates the use of mechanical information. Experiment 1 shows that head-sway fractality moderates the use of visual information. Further, experience with feedback increases head-sway fractality and prolongs its effect on later hand-wielding fractality. Experiment 2 replicates effects of head-sway fractality moderating use of visual information in a purely visual-judgment task. Together, these findings suggest that fractal fluctuations may provide a modal-general window onto not just how participants use perceptual information but also how well they may integrate information among different modalities. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. Memory Processes in Learning Disability Subtypes of Children Born Preterm

    OpenAIRE

    McCoy, Thomasin E.; Conrad, Amy L.; Richman, Lynn C.; Nopoulos, Peg C.; Bell, Edward F.

    2012-01-01

    The purpose of this study was to evaluate immediate auditory and visual memory processes in learning disability subtypes of 40 children born preterm. Three subgroups of children were examined: (a) primary language disability group (n = 13), (b) perceptual-motor disability group (n = 14), and (c) no learning disability diagnosis group without identified language or perceptual-motor learning disability (n = 13). Between-group comparisons indicate no significant differences in immediate auditory...

  20. Odor identification: perceptual and semantic dimensions.

    Science.gov (United States)

    Cain, W S; de Wijk, R; Lulejian, C; Schiet, F; See, L C

    1998-06-01

    Five studies explored identification of odors as an aspect of semantic memory. All dealt in one way or another with the accessibility of acquired olfactory information. The first study examined stability and showed that, consistent with personal reports, people can fail to identify an odor one day yet succeed another. Failure turned more commonly to success than vice versa, and once success occurred it tended to recur. Confidence ratings implied that subjects generally knew the quality of their answers. Even incorrect names, though, often carried considerable information which sometimes reflected a semantic and sometimes a perceptual source of errors. The second study showed that profiling odors via the American Society of Testing and Materials list of attributes, an exercise in depth of processing, effected no increment in the identifiability/accessibility beyond an unelaborated second attempt at retrieval. The third study showed that subjects had only a weak ability to predict the relative recognizability of odors they had failed to identify. Whereas the strength of the feeling that they would 'know' an answer if offered choices did not associate significantly with performance for odors, it did for trivia questions. The fourth study demonstrated an association between ability to discriminate among one set of odors and to identify another, but this emerged only after subjects had received feedback about identity, which essentially changed the task to one of recognition and effectively stabilized access. The fifth study illustrated that feedback improves performance dramatically only for odors involved with it, but that mere retrieval leads to some improvement. The studies suggest a research agenda that could include supplemental use of confidence judgments both retrospectively and prospectively in the same subjects to indicate the amount of accessible semantic information; use of second and third guesses to examine subjects' simultaneously held hypotheses about

  1. Modeling Dynamic Perceptual Attention in Complex Virtual Environments

    National Research Council Canada - National Science Library

    Kim, Youngjun; van Velsen, Martin; Hill, Jr, Randall W

    2005-01-01

    An important characteristic of a virtual human is the ability to direct its perceptual attention to entities and areas in a virtual environment in a manner that appears believable and serves a functional purpose...

  2. Memory: Enduring Traces of Perceptual and Reflective Attention

    Science.gov (United States)

    Chun, Marvin M.; Johnson, Marcia K.

    2011-01-01

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: To what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. PMID:22099456

  3. Processing Consequences of Perceptual Grouping in Selective Attention.

    Science.gov (United States)

    Farkas, Mitchell S.; Hoyer, William J.

    1980-01-01

    Examined adult age differences in the effects of perceptual grouping on attentional performance. All three age groups were slowed by the presence of similar irrelevant information, but the elderly were slowed more than were the young adults. (Author)

  4. Perceptual tools for quality-aware video networks

    Science.gov (United States)

    Bovik, A. C.

    2014-01-01

    Monitoring and controlling the quality of the viewing experience of videos transmitted over increasingly congested networks (especially wireless networks) is a pressing problem owing to rapid advances in video-centric mobile communication and display devices that are straining the capacity of the network infrastructure. New developments in automatic perceptual video quality models offer tools that have the potential to be used to perceptually optimize wireless video, leading to more efficient video data delivery and better received quality. In this talk I will review key perceptual principles that are, or could be used to create effective video quality prediction models, and leading quality prediction models that utilize these principles. The goal is to be able to monitor and perceptually optimize video networks by making them "quality-aware."

  5. A new method for mapping perceptual biases across visual space.

    Science.gov (United States)

    Finlayson, Nonie J; Papageorgiou, Andriani; Schwarzkopf, D Samuel

    2017-08-01

    How we perceive the environment is not stable and seamless. Recent studies found that how a person qualitatively experiences even simple visual stimuli varies dramatically across different locations in the visual field. Here we use a method we developed recently that we call multiple alternatives perceptual search (MAPS) for efficiently mapping such perceptual biases across several locations. This procedure reliably quantifies the spatial pattern of perceptual biases and also of uncertainty and choice. We show that these measurements are strongly correlated with those from traditional psychophysical methods and that exogenous attention can skew biases without affecting overall task performance. Taken together, MAPS is an efficient method to measure how an individual's perceptual experience varies across space.

  6. PERCEPTUAL MAPPING BASED ON IDIOSYNCRATIC SETS OF ATTRIBUTES

    NARCIS (Netherlands)

    STEENKAMP, JBEM; VANTRIJP, HCM; TENBERGE, JMF

    The authors describe a compositional perceptual mapping procedure, unrestricted attribute-elicitation mapping (UAM), which allows consumers to describe and rate the brands in their own terminology and thus relaxes the restrictive assumptions of traditional compositional mapping techniques regarding

  7. Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance

    Science.gov (United States)

    Cortese, Aurelio; Amano, Kaoru; Koizumi, Ai; Kawato, Mitsuo; Lau, Hakwan

    2016-01-01

    A central controversy in metacognition studies concerns whether subjective confidence directly reflects the reliability of perceptual or cognitive processes, as suggested by normative models based on the assumption that neural computations are generally optimal. This view enjoys popularity in the computational and animal literatures, but it has also been suggested that confidence may depend on a late-stage estimation dissociable from perceptual processes. Yet, at least in humans, experimental tools have lacked the power to resolve these issues convincingly. Here, we overcome this difficulty by using the recently developed method of decoded neurofeedback (DecNef) to systematically manipulate multivoxel correlates of confidence in a frontoparietal network. Here we report that bi-directional changes in confidence do not affect perceptual accuracy. Further psychophysical analyses rule out accounts based on simple shifts in reporting strategy. Our results provide clear neuroscientific evidence for the systematic dissociation between confidence and perceptual performance, and thereby challenge current theoretical thinking. PMID:27976739

  8. Project ME: A Report on the Learning Wall System.

    Science.gov (United States)

    Heilig, Morton L.

    The learning wall system, which consists primarily of a special wall used instead of a screen for a variety of projection purposes, is described, shown diagrammatically, and pictured. Designed to provide visual perceptual motor training on a level that would fall between gross and fine motor performance for perceptually handicapped children, the…

  9. A New Perceptual Mapping Model Using Lifting Wavelet Transform

    OpenAIRE

    Taha TahaBasheer; Ehkan Phaklen; Ngadiran Ruzelita

    2017-01-01

    Perceptual mappingapproaches have been widely used in visual information processing in multimedia and internet of things (IOT) applications. Accumulative Lifting Difference (ALD) is proposed in this paper as texture mapping model based on low-complexity lifting wavelet transform, and combined with luminance masking for creating an efficient perceptual mapping model to estimate Just Noticeable Distortion (JND) in digital images. In addition to low complexity operations, experiments results sho...

  10. Conceptual and perceptual factors in the picture superiority effect

    OpenAIRE

    Stenberg, Georg

    2006-01-01

    The picture superiority effect, i.e. better memory for pictures than for corresponding words, has been variously ascribed to a conceptual or a perceptual processing advantage. The present study aimed to disentangle perceptual and conceptual contributions. Pictures and words were tested for recognition in both their original formats and translated into participants´ second language. Multinomial Processing Tree (Batchelder & Riefer, 1999) and MINERVA (Hintzman, 1984) models were fitted to t...

  11. Psychophysical indices of perceptual functioning in dyslexia: A psychometric analysis

    OpenAIRE

    Heath, Steve M.; Bishop, Dorothy V. M.; Hogben, John H.; Roach, Neil W.

    2006-01-01

    An influential causal theory attributes dyslexia to visual and/or auditory perceptual deficits. This theory derives from group differences between individuals with dyslexia and controls on a range of psychophysical tasks, but there is substantial variation, both between individuals within a group and from task to task. We addressed two questions. First, do psychophysical measures have sufficient reliability to assess perceptual deficits in individuals? Second, do different psychophysical task...

  12. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions

    OpenAIRE

    Murphy, Gillian; Greene, Ciara M.

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The ...

  13. Perceptual Load Affects Eyewitness Accuracy & Susceptibility to Leading Questions

    OpenAIRE

    Gillian Murphy; Ciara Mary Greene

    2016-01-01

    Load Theory (Lavie, 1995; 2005) states that the level of perceptual load in a task (i.e. the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The c...

  14. Audiovisual speech perception development at varying levels of perceptual processing

    OpenAIRE

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-01-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the le...

  15. Depth image enhancement using perceptual texture priors

    Science.gov (United States)

    Bang, Duhyeon; Shim, Hyunjung

    2015-03-01

    A depth camera is widely used in various applications because it provides a depth image of the scene in real time. However, due to the limited power consumption, the depth camera presents severe noises, incapable of providing the high quality 3D data. Although the smoothness prior is often employed to subside the depth noise, it discards the geometric details so to degrade the distance resolution and hinder achieving the realism in 3D contents. In this paper, we propose a perceptual-based depth image enhancement technique that automatically recovers the depth details of various textures, using a statistical framework inspired by human mechanism of perceiving surface details by texture priors. We construct the database composed of the high quality normals. Based on the recent studies in human visual perception (HVP), we select the pattern density as a primary feature to classify textures. Upon the classification results, we match and substitute the noisy input normals with high quality normals in the database. As a result, our method provides the high quality depth image preserving the surface details. We expect that our work is effective to enhance the details of depth image from 3D sensors and to provide a high-fidelity virtual reality experience.

  16. Confidence Leak in Perceptual Decision Making.

    Science.gov (United States)

    Rahnev, Dobromir; Koizumi, Ai; McCurdy, Li Yan; D'Esposito, Mark; Lau, Hakwan

    2015-11-01

    People live in a continuous environment in which the visual scene changes on a slow timescale. It has been shown that to exploit such environmental stability, the brain creates a continuity field in which objects seen seconds ago influence the perception of current objects. What is unknown is whether a similar mechanism exists at the level of metacognitive representations. In three experiments, we demonstrated a robust intertask confidence leak-that is, confidence in one's response on a given task or trial influencing confidence on the following task or trial. This confidence leak could not be explained by response priming or attentional fluctuations. Better ability to modulate confidence leak predicted higher capacity for metacognition as well as greater gray matter volume in the prefrontal cortex. A model based on normative principles from Bayesian inference explained the results by postulating that observers subjectively estimate the perceptual signal strength in a stable environment. These results point to the existence of a novel metacognitive mechanism mediated by regions in the prefrontal cortex. © The Author(s) 2015.

  17. Visual perceptual load induces inattentional deafness.

    Science.gov (United States)

    Macdonald, James S P; Lavie, Nilli

    2011-08-01

    In this article, we establish a new phenomenon of "inattentional deafness" and highlight the level of load on visual attention as a critical determinant of this phenomenon. In three experiments, we modified an inattentional blindness paradigm to assess inattentional deafness. Participants made either a low- or high-load visual discrimination concerning a cross shape (respectively, a discrimination of line color or of line length with a subtle length difference). A brief pure tone was presented simultaneously with the visual task display on a final trial. Failures to notice the presence of this tone (i.e., inattentional deafness) reached a rate of 79% in the high-visual-load condition, significantly more than in the low-load condition. These findings establish the phenomenon of inattentional deafness under visual load, thereby extending the load theory of attention (e.g., Lavie, Journal of Experimental Psychology. Human Perception and Performance, 25, 596-616, 1995) to address the cross-modal effects of visual perceptual load.

  18. Perceptual deficits of object identification: apperceptive agnosia.

    Science.gov (United States)

    Milner, A David; Cavina-Pratesi, Cristiana

    2018-01-01

    It is argued here that apperceptive object agnosia (generally now known as visual form agnosia) is in reality not a kind of agnosia, but rather a form of "imperception" (to use the term coined by Hughlings Jackson). We further argue that its proximate cause is a bilateral loss (or functional loss) of the visual form processing systems embodied in the human lateral occipital cortex (area LO). According to the dual-system model of cortical visual processing elaborated by Milner and Goodale (2006), area LO constitutes a crucial component of the ventral stream, and indeed is essential for providing the figural qualities inherent in our normal visual perception of the world. According to this account, the functional loss of area LO would leave only spared visual areas within the occipito-parietal dorsal stream - dedicated to the control of visually-guided actions - potentially able to provide some aspects of visual shape processing in patients with apperceptive agnosia. We review the relevant evidence from such individuals, concentrating particularly on the well-researched patient D.F. We conclude that studies of this kind can provide useful pointers to an understanding of the processing characteristics of parietal-lobe visual mechanisms and their interactions with occipitotemporal perceptual systems in the guidance of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Perceptual assessment of fricative--stop coarticulation.

    Science.gov (United States)

    Repp, B H; Mann, V A

    1981-04-01

    The perceptual dependence of stop consonants on preceding fricatives [Mann and Repp, J. Acoust. Soc. Am. 69, 548--558 (1981)] was further investigated in two experiments employing both natural and synthetic speech. These experiments consistently replicated our original finding that listeners, report velar stops following [s]. In addition, our data confirmed earlier reports that natural fricative noises (excerpted from utterances of [st alpha], [sk alpha], [(formula: see text)k alpha]) contain cues to the following stop consonants; this was revealed in subjects' identifications of stops from isolated fricative noises and from stimuli consisting of these noises followed by synthetic CV portions drawn from a [t alpha]--[k alpha] continuum. However, these cues in the noise portion could not account for the contextual effect of fricative identity ([formula: see text] versus [sp) on stop perception (more "k" responses following [s]). Rather, this effect seems to be related to a coarticulatory influence of a preceding fricative on stop production; Subjects' responses to excised natural CV portions (with bursts and aspiration removed) were biased towards a relatively more forward place of stop articulation when the CVs had originally been preceded by [s]; and the identification of a preceding ambiguous fricative was biased in the direction of the original fricative context in which a given CV portion had been produced. These findings support an articulatory explanation for the effect of preceding fricatives on stop consonant perception.

  20. A perceptual space of local image statistics.

    Science.gov (United States)

    Victor, Jonathan D; Thengone, Daniel J; Rizvi, Syed M; Conte, Mary M

    2015-12-01

    Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice - a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4min. In sum, local image statistics form a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Perceptual grouping effects on cursor movement expectations.

    Science.gov (United States)

    Dorneich, Michael C; Hamblin, Christopher J; Lancaster, Jeff A; Olofinboba, Olu

    2014-05-01

    Two studies were conducted to develop an understanding of factors that drive user expectations when navigating between discrete elements on a display via a limited degree-of-freedom cursor control device. For the Orion Crew Exploration Vehicle spacecraft, a free-floating cursor with a graphical user interface (GUI) would require an unachievable level of accuracy due to expected acceleration and vibration conditions during dynamic phases of flight. Therefore, Orion program proposed using a "caged" cursor to "jump" from one controllable element (node) on the GUI to another. However, nodes are not likely to be arranged on a rectilinear grid, and so movements between nodes are not obvious. Proximity between nodes, direction of nodes relative to each other, and context features may all contribute to user cursor movement expectations. In an initial study, we examined user expectations based on the nodes themselves. In a second study, we examined the effect of context features on user expectations. The studies established that perceptual grouping effects influence expectations to varying degrees. Based on these results, a simple rule set was developed to support users in building a straightforward mental model that closely matches their natural expectations for cursor movement. The results will help designers of display formats take advantage of the natural context-driven cursor movement expectations of users to reduce navigation errors, increase usability, and decrease access time. The rules set and guidelines tie theory to practice and can be applied in environments where vibration or acceleration are significant, including spacecraft, aircraft, and automobiles.

  2. Athletic footwear: unsafe due to perceptual illusions.

    Science.gov (United States)

    Robbins, S E; Gouw, G J

    1991-02-01

    Modern athletic footwear provides remarkable plantar comfort when walking, running, or jumping. However, when injurious plantar loads elicit negligible perceived plantar discomfort, a perceptual illusion is created whereby perceived impact is lower than actual impact, which results in inadequate impact-moderating behavior and consequent injury. The objective of this study was to examine how plantar tactile (mechanical) events affect perceived plantar discomfort. Also, we evaluated the feasibility of a footwear safety standard we propose, which requires elimination of the above illusion. Twenty subjects gave numerical estimates of plantar discomfort produced by simulated locomotion (concurrent vertical (0.1-0.7 kg.cm-2) and horizontal (0.1-0.9 kg.cm-2) plantar loads), with the foot supported by either a smooth rigid surface or a rigid surface with 2 mm high rigid irregularities. Vertical or horizontal load alone evoked no discomfort (P greater than 0.05), whereas together, discomfort emanated from loads as low as 0.4 kg.cm-2. Irregularities heightened discomfort by a factor of 1.89. This suggests that the proposed safety standard is feasible, since compliance could be achieved simply by adding surface irregularities to insoles and by other changes that heighten localized plantar loads. However, until this standard is adhered to, it might be more appropriate to classify athletic footwear as "safety hazards" rather than "protective devices".

  3. Perceptual Load Affects Eyewitness Accuracy & Susceptibility to Leading Questions

    Directory of Open Access Journals (Sweden)

    Gillian Murphy

    2016-08-01

    Full Text Available Load Theory (Lavie, 1995; 2005 states that the level of perceptual load in a task (i.e. the amount of information involved in processing task-relevant stimuli determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator, the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

  4. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions.

    Science.gov (United States)

    Murphy, Gillian; Greene, Ciara M

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

  5. Consensus paper: the role of the cerebellum in perceptual processes.

    Science.gov (United States)

    Baumann, Oliver; Borra, Ronald J; Bower, James M; Cullen, Kathleen E; Habas, Christophe; Ivry, Richard B; Leggio, Maria; Mattingley, Jason B; Molinari, Marco; Moulton, Eric A; Paulin, Michael G; Pavlova, Marina A; Schmahmann, Jeremy D; Sokolov, Arseny A

    2015-04-01

    Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.

  6. Learning Style Preferences of Southeast Asian Students.

    Science.gov (United States)

    Park, Clara C.

    2000-01-01

    Investigated the perceptual learning style preferences (auditory, visual, kinesthetic, and tactile) and preferences for group and individual learning of Southeast Asian students compared to white students. Surveys indicated significant differences in learning style preferences between Southeast Asian and white students and between the diverse…

  7. Building Artificial Vision Systems with Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    LeCun, Yann [New York University

    2011-02-23

    Three questions pose the next challenge for Artificial Intelligence (AI), robotics, and neuroscience. How do we learn perception (e.g. vision)? How do we learn representations of the perceptual world? How do we learn visual categories from just a few examples?

  8. Prediction of kindergarteners' behavior on Metropolitan Readiness Tests from preschool perceptual and perceptual-motor performances: a validation study.

    Science.gov (United States)

    Belka, D E

    1981-06-01

    Multiple regression equations were generated to predict cognitive achievement for 40 children (ages 57 to 68 mo.) 1 yr. after administration of a battery of 6 perceptual and perceptual-motor tests to determine if previous results from Toledo could be replicated. Regression equations generated from maximum R2 improvement techniques indicated that performance at prekindergarten is useful for prediction of cognitive performance (total score and total score without the copying subtest on the Metropolitan Readiness Tests) 1 yr. later at the end of kindergarten. The optimal battery included scores on auditory perception, fine perceptual-motor, and gross perceptual-motor tasks. The moderate predictive power of the equations obtained was compared with high predictive power generated in the Toledo study.

  9. Learning what to see in a changing world

    Directory of Open Access Journals (Sweden)

    Katharina eSchmack

    2016-05-01

    Full Text Available Visual perception is strongly shaped by expectations, but it is poorly understood how such perceptual expectations are learned in our dynamic sensory environment. Here, we applied a Bayesian framework to investigate whether perceptual expectations are continuously updated from different aspects of ongoing experience. In two experiments, human observers performed an associative learning task in which rapidly changing expectations about the appearance of ambiguous stimuli were induced. We found that perception of ambiguous stimuli was biased by both learned associations and previous perceptual outcomes. Computational modelling revealed that perception was best explained by amodel that continuously updated priors from associative learning and perceptual history and combined these priors with the current sensory information in a probabilistic manner. Our findings suggest that the construction of visual perception is a highly dynamic process that incorporates rapidly changing expectations from different sources in a manner consistent with Bayesian learning and inference.

  10. Perceptually specific and perceptually non-specific influences on rereading benefits for spatially transformed text: evidence from eye movements.

    Science.gov (United States)

    Sheridan, Heather; Reingold, Eyal M

    2012-12-01

    The present study used eye tracking methodology to examine rereading benefits for spatially transformed text. Eye movements were monitored while participants read the same target word twice, in two different low-constraint sentence frames. The congruency of perceptual processing was manipulated by either applying the same type of transformation to the word during the first and second presentations (i.e., the congruent condition), or employing two different types of transformations across the two presentations of the word (i.e., the incongruent condition). Perceptual specificity effects were demonstrated such that fixation times for the second presentation of the target word were shorter for the congruent condition compared to the incongruent condition. Moreover, we demonstrated an additional perceptually non-specific effect such that second reading fixation times were shorter for the incongruent condition relative to a baseline condition that employed a normal typography (i.e., non-transformed) during the first presentation and a transformation during the second presentation. Both of these effects (i.e., perceptually specific and perceptually non-specific) were similar in magnitude for high and low frequency words, and both effects persisted across a 1 week lag between the first and second readings. We discuss the present findings in the context of the distinction between conscious and unconscious memory, and the distinction between perceptually versus conceptually driven processing. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Low level perceptual, not attentional, processes modulate distractor interference in high perceptual load displays: evidence from neglect/extinction.

    Science.gov (United States)

    Mevorach, Carmel; Tsal, Yehoshua; Humphreys, Glyn W

    2014-01-10

    According to perceptual load theory (Lavie, 2005) distractor interference is determined by the availability of attentional resources. If target processing does not exhaust resources (with low perceptual load) distractor processing will take place resulting in interference with a primary task; however, when target processing uses-up attentional capacity (with high perceptual load) interference can be avoided. An alternative account (Tsal and Benoni, 2010a) suggests that perceptual load effects can be based on distractor dilution by the mere presence of additional neutral items in high-load displays so that the effect is not driven by the amount of attention resources required for target processing. Here we tested whether patients with unilateral neglect or extinction would show dilution effects from neutral items in their contralesional (neglected/extinguished) field, even though these items do not impose increased perceptual load on the target and at the same time attract reduced attentional resources compared to stimuli in the ipsilesional field. Thus, such items do not affect the amount of attention resources available for distractor processing. We found that contralesional neutral elements can eliminate distractor interference as strongly as centrally presented ones in neglect/extinction patients, despite contralesional items being less well attended. The data are consistent with an account in terms of perceptual dilution of distracters rather than available resources for distractor processing. We conclude that distractor dilution can underlie the elimination of distractor interference in visual displays.

  12. Low level perceptual, not attentional, processes modulate distractor interference in high perceptual Load displays: evidence from neglect/extinction

    Directory of Open Access Journals (Sweden)

    Carmel eMevorach

    2014-01-01

    Full Text Available According to perceptual load theory (Lavie, 2005 distractor interference is determined by the availability of attentional resources. If target processing does not exhaust resources (with low perceptual load distractor processing will take place resulting in interference with a primary task; however when target processing uses-up attentional capacity (with high perceptual load interference can be avoided. An alternative account (Tsal & Benoni, 2010 suggests that perceptual load effects can be based on distractor dilution by the mere presence of additional neutral items in high load displays so that the effect is not driven by the amount of attention resources required for target processing. Here we tested whether patients with unilateral neglect or extinction would show dilution effects from neutral items in their contralesional (neglected/extinguished field, even though these items do not impose increased perceptual load on the target and at the same time attract reduced attentional resources compared to stimuli in the ipsilesional field. Thus, such items do not affect the amount of attention resources available for distractor processing. We found that contralesional neutral elements can eliminate distractor interference as strongly as centrally presented ones in neglect/extinction patients, despite contralesional items being less well attended. The data are consistent with an account in terms of perceptual dilution of distracters rather than available resources for distractor processing. We conclude that distractor dilution can underlie the elimination of distractor interference in visual displays.

  13. Perceptual structure of adductor spasmodic dysphonia and its acoustic correlates.

    Science.gov (United States)

    Cannito, Michael P; Doiuchi, Maki; Murry, Thomas; Woodson, Gayle E

    2012-11-01

    To examine the perceptual structure of voice attributes in adductor spasmodic dysphonia (ADSD) before and after botulinum toxin treatment and identify acoustic correlates of underlying perceptual factors. Reliability of perceptual judgments is considered in detail. Pre- and posttreatment trial with comparison to healthy controls, using single-blind randomized listener judgments of voice qualities, as well as retrospective comparison with acoustic measurements. Oral readings were recorded from 42 ADSD speakers before and after treatment as well as from their age- and sex-matched controls. Experienced judges listened to speech samples and rated attributes of overall voice quality, breathiness, roughness, and brokenness, using computer-implemented visual analog scaling. Data were adjusted for regression to the mean and submitted to principal components factor analysis. Acoustic waveforms, extracted from the reading samples, were analyzed and measurements correlated with perceptual factor scores. Four reliable perceptual variables of ADSD voice were effectively reduced to two underlying factors that corresponded to hyperadduction, most strongly associated with roughness, and hypoadduction, most strongly associated with breathiness. After treatment, the hyperadduction factor improved, whereas the hypoadduction factor worsened. Statistically significant (P<0.01) correlations were observed between perceived roughness and four acoustic measures, whereas breathiness correlated with aperiodicity and cepstral peak prominence (CPPs). This study supported a two-factor model of ADSD, suggesting perceptual characterization by both hyperadduction and hypoadduction before and after treatment. Responses of the factors to treatment were consistent with previous research. Correlations among perceptual and acoustic variables suggested that multiple acoustic features contributed to the overall impression of roughness. Although CPPs appears to be a partial correlate of perceived

  14. Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application.

    Science.gov (United States)

    Müller, Sean; Vallence, Ann-Maree; Winstein, Carolee

    2017-12-14

    A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.

  15. Use of Computer Technology for English Language Learning: Do Learning Styles, Gender, and Age Matter?

    Science.gov (United States)

    Lee, Cynthia; Yeung, Alexander Seeshing; Ip, Tiffany

    2016-01-01

    Computer technology provides spaces and locales for language learning. However, learning style preference and demographic variables may affect the effectiveness of technology use for a desired goal. Adapting Reid's pioneering Perceptual Learning Style Preference Questionnaire (PLSPQ), this study investigated the relations of university students'…

  16. Biased and unbiased perceptual decision-making on vocal emotions.

    Science.gov (United States)

    Dricu, Mihai; Ceravolo, Leonardo; Grandjean, Didier; Frühholz, Sascha

    2017-11-24

    Perceptual decision-making on emotions involves gathering sensory information about the affective state of another person and forming a decision on the likelihood of a particular state. These perceptual decisions can be of varying complexity as determined by different contexts. We used functional magnetic resonance imaging and a region of interest approach to investigate the brain activation and functional connectivity behind two forms of perceptual decision-making. More complex unbiased decisions on affective voices recruited an extended bilateral network consisting of the posterior inferior frontal cortex, the orbitofrontal cortex, the amygdala, and voice-sensitive areas in the auditory cortex. Less complex biased decisions on affective voices distinctly recruited the right mid inferior frontal cortex, pointing to a functional distinction in this region following decisional requirements. Furthermore, task-induced neural connectivity revealed stronger connections between these frontal, auditory, and limbic regions during unbiased relative to biased decision-making on affective voices. Together, the data shows that different types of perceptual decision-making on auditory emotions have distinct patterns of activations and functional coupling that follow the decisional strategies and cognitive mechanisms involved during these perceptual decisions.

  17. Is Hand Selection Modulated by Cognitive-perceptual Load?

    Science.gov (United States)

    Liang, Jiali; Wilkinson, Krista; Sainburg, Robert L

    2018-01-15

    Previous studies proposed that selecting which hand to use for a reaching task appears to be modulated by a factor described as "task difficulty". However, what features of a task might contribute to greater or lesser "difficulty" in the context of hand selection decisions has yet to be determined. There has been evidence that biomechanical and kinematic factors such as movement smoothness and work can predict patterns of selection across the workspace, suggesting a role of predictive cost analysis in hand-selection. We hypothesize that this type of prediction for hand-selection should recruit substantial cognitive resources and thus should be influenced by cognitive-perceptual loading. We test this hypothesis by assessing the role of cognitive-perceptual loading on hand selection decisions, using a visual search task that presents different levels of difficulty (cognitive-perceptual load), as established in previous studies on overall response time and efficiency of visual search. Although the data are necessarily preliminary due to small sample size, our data suggested an influence of cognitive-perceptual load on hand selection, such that the dominant hand was selected more frequently as cognitive load increased. Interestingly, cognitive-perceptual loading also increased cross-midline reaches with both hands. Because crossing midline is more costly in terms of kinematic and kinetic factors, our findings suggest that cognitive processes are normally engaged to avoid costly actions, and that the choice not-to-cross midline requires cognitive resources. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Frontoparietal cortex mediates perceptual transitions in bistable perception.

    Science.gov (United States)

    Weilnhammer, Veith A; Ludwig, Karin; Hesselmann, Guido; Sterzer, Philipp

    2013-10-02

    During bistable vision, perception oscillates between two mutually exclusive percepts despite constant sensory input. Greater BOLD responses in frontoparietal cortex have been shown to be associated with endogenous perceptual transitions compared with "replay" transitions designed to closely match bistability in both perceptual quality and timing. It has remained controversial, however, whether this enhanced activity reflects causal influences of these regions on processing at the sensory level or, alternatively, an effect of stimulus differences that result in, for example, longer durations of perceptual transitions in bistable perception compared with replay conditions. Using a rotating Lissajous figure in an fMRI experiment on 15 human participants, we controlled for potential confounds of differences in transition duration and confirmed previous findings of greater activity in frontoparietal areas for transitions during bistable perception. In addition, we applied dynamic causal modeling to identify the neural model that best explains the observed BOLD signals in terms of effective connectivity. We found that enhanced activity for perceptual transitions is associated with a modulation of top-down connectivity from frontal to visual cortex, thus arguing for a crucial role of frontoparietal cortex in perceptual transitions during bistable perception.

  19. A visual perceptual descriptor with depth feature for image retrieval

    Science.gov (United States)

    Wang, Tianyang; Qin, Zhengrui

    2017-07-01

    This paper proposes a visual perceptual descriptor (VPD) and a new approach to extract perceptual depth feature for 2D image retrieval. VPD mimics human visual system, which can easily distinguish regions that have different textures, whereas for regions which have similar textures, color features are needed for further differentiation. We apply VPD on the gradient direction map of an image, capture texture-similar regions to generate a VPD map. We then impose the VPD map on a quantized color map and extract color features only from the overlapped regions. To reflect the nature of perceptual distance in single 2D image, we propose and extract the perceptual depth feature by computing the nuclear norm of the sparse depth map of an image. Extracted color features and the perceptual depth feature are both incorporated to a feature vector, we utilize this vector to represent an image and measure similarity. We observe that the proposed VPD + depth method achieves a promising result, and extensive experiments prove that it outperforms other typical methods on 2D image retrieval.

  20. Cognitive-perceptual examination of remediation approaches to hypokinetic dysarthria.

    Science.gov (United States)

    McAuliffe, Megan J; Kerr, Sarah E; Gibson, Elizabeth M R; Anderson, Tim; LaShell, Patrick J

    2014-08-01

    To determine how increased vocal loudness and reduced speech rate affect listeners' cognitive-perceptual processing of hypokinetic dysarthric speech associated with Parkinson's disease. Fifty-one healthy listener participants completed a speech perception experiment. Listeners repeated phrases produced by 5 individuals with dysarthria across habitual, loud, and slow speaking modes. Listeners were allocated to habitual ( n = 17), loud ( n = 17), or slow ( n = 17) experimental conditions. Transcripts derived from the phrase repetition task were coded for overall accuracy (i.e., intelligibility), and perceptual error analyses examined how these conditions affected listeners' phonemic mapping (i.e., syllable resemblance) and lexical segmentation (i.e., lexical boundary error analysis). Both speech conditions provided obvious perceptual benefits to listeners. Overall, transcript accuracy was highest in the slow condition. In the loud condition, however, improvement was evidenced across the experiment. An error analysis suggested that listeners in the loud condition prioritized acoustic-phonetic cues in their attempts to resolve the degraded signal, whereas those in the slow condition appeared to preferentially weight lexical stress cues. Increased loudness and reduced rate exhibited differential effects on listeners' perceptual processing of dysarthric speech. The current study highlights the insights that may be gained from a cognitive-perceptual approach.

  1. How to minimize perceptual error and maximize expertise in medical imaging

    Science.gov (United States)

    Kundel, Harold L.

    2007-03-01

    Visual perception is such an intimate part of human experience that we assume that it is entirely accurate. Yet, perception accounts for about half of the errors made by radiologists using adequate imaging technology. The true incidence of errors that directly affect patient well being is not known but it is probably at the lower end of the reported values of 3 to 25%. Errors in screening for lung and breast cancer are somewhat better characterized than errors in routine diagnosis. About 25% of cancers actually recorded on the images are missed and cancer is falsely reported in about 5% of normal people. Radiologists must strive to decrease error not only because of the potential impact on patient care but also because substantial variation among observers undermines confidence in the reliability of imaging diagnosis. Observer variation also has a major impact on technology evaluation because the variation between observers is frequently greater than the difference in the technologies being evaluated. This has become particularly important in the evaluation of computer aided diagnosis (CAD). Understanding the basic principles that govern the perception of medical images can provide a rational basis for making recommendations for minimizing perceptual error. It is convenient to organize thinking about perceptual error into five steps. 1) The initial acquisition of the image by the eye-brain (contrast and detail perception). 2) The organization of the retinal image into logical components to produce a literal perception (bottom-up, global, holistic). 3) Conversion of the literal perception into a preferred perception by resolving ambiguities in the literal perception (top-down, simulation, synthesis). 4) Selective visual scanning to acquire details that update the preferred perception. 5) Apply decision criteria to the preferred perception. The five steps are illustrated with examples from radiology with suggestions for minimizing error. The role of perceptual

  2. Volitional action as perceptual detection: predictors of conscious intention in adolescents with tic disorders.

    Science.gov (United States)

    Ganos, Christos; Asmuss, Luisa; Bongert, Jens; Brandt, Valerie; Münchau, Alexander; Haggard, Patrick

    2015-03-01

    Voluntary actions are accompanied by a distinctive subjective experience, so that they feel quite different from physically similar involuntary movements. However, the nature and origin of this experience of volition remain unclear. Voluntary actions emerge during early childhood, in parallel with reduction of involuntary movements. However, the available markers of the experience of volition, notably Libet's mental chronometry of intention, cannot readily be used in young children. In Gilles de la Tourette syndrome (GTS), however, involuntary tic movements may coexist with voluntary control into adulthood. Therefore, adolescents with GTS could potentially confuse the two classes of movement. We have measured the temporal experience of voluntary action in a well-characterised group of adolescents with GTS, and age-matched controls. We replicated previous reports of a conscious intention occurring a few hundred milliseconds prior to voluntary keypress actions. Multiple regression across 25 patients' results showed that age and trait tic severity did not influence the experience of conscious intention. However, patients with stronger premonitory urges prior to tics showed significantly later conscious intentions, suggesting that the anticipatory experience of one's own volition involves a perceptual discrimination between potentially competing pre-movement signals. Patients who were more able to voluntarily suppress their tics showed significantly earlier conscious intention, suggesting that the perceptual discrimination between different action classes may also contribute to voluntary control of tics. We suggest that the brain learns voluntary control by perceptually discriminating a special class of internal 'intentional' signals, allowing them to emerge from motor noise. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Perceptual-motor functioning in children with phenylketonuria.

    Science.gov (United States)

    Koff, E; Boyle, P; Pueschel, S M

    1977-10-01

    Children with treated phenylketonuria (PKU) have been described as being at high risk for perceptual-motor dysfunction. In this study, the Wechsler Intelligence Scale for Children (WISC) and the Bender Gestalt test were administered to 19 school age children with treated PKU and of average intelligence who have been off diet from five months to six years four months. Perceptual-motor performance was evaluated, and school functioning was rated by classroom teachers. Substantial impairment of perceptual-motor functioning as measured by the Bender Gestalt test and lower WISC performance IQs than verbal IQs were observed in children of average intelligence. Quality of dietary control was found to be associated with performance on the Bender Gestalt test. These findings suggest the possibility of a specific deficit that could seriously interfere with academic progress, but which is not signalled by obvious impairment of overall intellectual functioning.

  4. Skilled deaf readers have an enhanced perceptual span in reading.

    Science.gov (United States)

    Bélanger, Nathalie N; Slattery, Timothy J; Mayberry, Rachel I; Rayner, Keith

    2012-07-01

    Recent evidence suggests that, compared with hearing people, deaf people have enhanced visual attention to simple stimuli viewed in the parafovea and periphery. Although a large part of reading involves processing the fixated words in foveal vision, readers also utilize information in parafoveal vision to preprocess upcoming words and decide where to look next. In the study reported here, we investigated whether auditory deprivation affects low-level visual processing during reading by comparing the perceptual span of deaf signers who were skilled and less-skilled readers with the perceptual span of skilled hearing readers. Compared with hearing readers, the two groups of deaf readers had a larger perceptual span than would be expected given their reading ability. These results provide the first evidence that deaf readers' enhanced attentional allocation to the parafovea is used during complex cognitive tasks, such as reading.

  5. Cognitive structure of occupational risks represented by a perceptual map.

    Science.gov (United States)

    Cardoso-Junior, M M; Scarpel, R A

    2012-01-01

    The main focus of risk management is technical and rational analysis about the operational risks and by those imposed by the occupational environment. In this work one seeks to contribute to the risk perception study and to better comprehend how a group of occupational safety students assesses a set of activities and environmental agents. In this way it was used theory sustained by psychometric paradigm and multivariate analysis tools, mainly multidimensional scaling, generalized Procrustes analysis and facets theory, in order to construct the perceptual map of occupational risks. The results obtained showed that the essential characteristics of risks, which were initially splited in 4 facets were detected and maintained in the perceptual map. It was not possible to reveal the cognitive structure of the group, because the variability of the students was too high. Differences among the risks analyzed could not be detected as well in the perceptual map of the group.

  6. Probability shapes perceptual precision: A study in orientation estimation.

    Science.gov (United States)

    Jabar, Syaheed B; Anderson, Britt

    2015-12-01

    Probability is known to affect perceptual estimations, but an understanding of mechanisms is lacking. Moving beyond binary classification tasks, we had naive participants report the orientation of briefly viewed gratings where we systematically manipulated contingent probability. Participants rapidly developed faster and more precise estimations for high-probability tilts. The shapes of their error distributions, as indexed by a kurtosis measure, also showed a distortion from Gaussian. This kurtosis metric was robust, capturing probability effects that were graded, contextual, and varying as a function of stimulus orientation. Our data can be understood as a probability-induced reduction in the variability or "shape" of estimation errors, as would be expected if probability affects the perceptual representations. As probability manipulations are an implicit component of many endogenous cuing paradigms, changes at the perceptual level could account for changes in performance that might have traditionally been ascribed to "attention." (c) 2015 APA, all rights reserved).

  7. Human visual perceptual organization beats thinking on speed.

    Science.gov (United States)

    van der Helm, Peter A

    2017-05-01

    What is the degree to which knowledge influences visual perceptual processes? This question, which is central to the seeing-versus-thinking debate in cognitive science, is often discussed using examples claimed to be proof of one stance or another. It has, however, also been muddled by the usage of different and unclear definitions of perception. Here, for the well-defined process of perceptual organization, I argue that including speed (or efficiency) into the equation opens a new perspective on the limits of top-down influences of thinking on seeing. While the input of the perceptual organization process may be modifiable and its output enrichable, the process itself seems so fast (or efficient) that thinking hardly has time to intrude and is effective mostly after the fact.

  8. Methodical bases of perceptual mapping of printing industry companies

    Directory of Open Access Journals (Sweden)

    Kalinin Pavel

    2017-01-01

    Full Text Available This is to study the methodological foundations of perceptual mapping in printing industry enterprises. This research has a practice focus which affects the choice of its methodological framework. The authors use such scientific research as analysis of cause-effect relationships, synthesis, problem analysis, expert evaluation and image visualization methods. In this paper, the authors present their assessment of the competitive environment of major printing industry companies in Kirov oblast; their assessment employs perceptual mapping enables by Minitab 14. This technique can be used by experts in the field of marketing and branding to assess the competitive environment in any market. The object of research is printing industry in Kirov oblast. The most important conclusion of this study is that in perceptual mapping, all the parameters are integrated in a single system and provide a more objective view of the company’s market situation.

  9. Constructing knowledge through perceptual processes in making craft-art

    Directory of Open Access Journals (Sweden)

    Milla Ojala

    2013-10-01

    Full Text Available The focus of the study is on the knowledge that is constructed through perceptual processes during craft making in the context of the Finnish Basic Education in the Arts (BEA system. Craft studies in the BEA are defined as craft-art. The research method used is the grounded theory. The data consists of seven interviews and participant observations. Participants in the study are adolescents who study craft-art in the BEA system in Visual Art School, Aimo in Hämeenlinna. The aim of the article is to present, define and reflect on the concepts, properties and dimensions concerning perceptual processes that are discovered in this stage of the study following grounded theory procedures. The perceptual processes are an essential means of constructing knowledge in craft-art. Consequently, one aim of the study is to discuss how these processes are connected to various types of knowledge. The perceptual processes are described by seven concepts: imitative, anticipative, evaluative, experimental, emotional, temporal and bodily perceptions. They indicate on a conceptual level the characteristic of knowledge constructed through perceptual processes in craft-art. Further, theconcepts have several properties that can vary dimensionally between two qualities. The properties are activity, function and position. The dimensions of the properties vary from active to passive, formal to informal and internal to external. In conclusion, the concepts can describe a large range of incidents in different situations. They also seem to describe well the practice of  craft-art and there are several connections with pre-existing concepts of knowledge.Keywords: Craft, Knowledge, Perceptual process, Basic Education in the Arts, Grounded Theory 

  10. Perceptual Computing Aiding People in Making Subjective Judgments

    CERN Document Server

    Mendel, Jerry

    2010-01-01

    Explains for the first time how "computing with words" can aid in making subjective judgments. Lotfi Zadeh, the father of fuzzy logic, coined the phrase "computing with words" (CWW) to describe a methodology in which the objects of computation are words and propositions drawn from a natural language. Perceptual Computing explains how to implement CWW to aid in the important area of making subjective judgments, using a methodology that leads to an interactive device—a "Perceptual Computer"—that propagates random and linguistic uncertainties into the subjective judg

  11. Attention affects visual perceptual processing near the hand.

    Science.gov (United States)

    Cosman, Joshua D; Vecera, Shaun P

    2010-09-01

    Specialized, bimodal neural systems integrate visual and tactile information in the space near the hand. Here, we show that visuo-tactile representations allow attention to influence early perceptual processing, namely, figure-ground assignment. Regions that were reached toward were more likely than other regions to be assigned as foreground figures, and hand position competed with image-based information to bias figure-ground assignment. Our findings suggest that hand position allows attention to influence visual perceptual processing and that visual processes typically viewed as unimodal can be influenced by bimodal visuo-tactile representations.

  12. A New Perceptual Mapping Model Using Lifting Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Taha TahaBasheer

    2017-01-01

    Full Text Available Perceptual mappingapproaches have been widely used in visual information processing in multimedia and internet of things (IOT applications. Accumulative Lifting Difference (ALD is proposed in this paper as texture mapping model based on low-complexity lifting wavelet transform, and combined with luminance masking for creating an efficient perceptual mapping model to estimate Just Noticeable Distortion (JND in digital images. In addition to low complexity operations, experiments results show that the proposed modelcan tolerate much more JND noise than models proposed before

  13. Perceptually Aware Image Retargeting for Mobile Devices.

    Science.gov (United States)

    Zhou, Yinzuo; Zhang, Luming; Zhang, Chao; Li, Ping; Li, Xuelong

    2018-05-01

    Retargeting aims at adapting an original high-resolution photograph/video to a low-resolution screen with an arbitrary aspect ratio. Conventional approaches are generally based on desktop PCs, since the computation might be intolerable for mobile platforms (especially when retargeting videos). Typically, only low-level visual features are exploited, and human visual perception is not well encoded. In this paper, we propose a novel retargeting framework that rapidly shrinks a photograph/video by leveraging human gaze behavior. Specifically, we first derive a geometry-preserving graph ranking algorithm, which efficiently selects a few salient object patches to mimic the human gaze shifting path (GSP) when viewing a scene. Afterward, an aggregation-based CNN is developed to hierarchically learn the deep representation for each GSP. Based on this, a probabilistic model is developed to learn the priors of the training photographs that are marked as aesthetically pleasing by professional photographers. We utilize the learned priors to efficiently shrink the corresponding GSP of a retargeted photograph/video to maximize its similarity to those from the training photographs. Extensive experiments have demonstrated that: 1) our method requires less than 35 ms to retarget a photograph (or a video frame) on popular iOS/Android devices, which is orders of magnitude faster than the conventional retargeting algorithms; 2) the retargeted photographs/videos produced by our method significantly outperform those of its competitors based on a paired-comparison-based user study; and 3) the learned GSPs are highly indicative of human visual attention according to the human eye tracking experiments.

  14. Perceptual Real-Time 2D-to-3D Conversion Using Cue Fusion.

    Science.gov (United States)

    Leimkuhler, Thomas; Kellnhofer, Petr; Ritschel, Tobias; Myszkowski, Karol; Seidel, Hans-Peter

    2018-06-01

    We propose a system to infer binocular disparity from a monocular video stream in real-time. Different from classic reconstruction of physical depth in computer vision, we compute perceptually plausible disparity, that is numerically inaccurate, but results in a very similar overall depth impression with plausible overall layout, sharp edges, fine details and agreement between luminance and disparity. We use several simple monocular cues to estimate disparity maps and confidence maps of low spatial and temporal resolution in real-time. These are complemented by spatially-varying, appearance-dependent and class-specific disparity prior maps, learned from example stereo images. Scene classification selects this prior at runtime. Fusion of prior and cues is done by means of robust MAP inference on a dense spatio-temporal conditional random field with high spatial and temporal resolution. Using normal distributions allows this in constant-time, parallel per-pixel work. We compare our approach to previous 2D-to-3D conversion systems in terms of different metrics, as well as a user study and validate our notion of perceptually plausible disparity.

  15. Uncovering Camouflage: Amygdala Activation Predicts Long-Term Memory of Induced Perceptual Insight

    Science.gov (United States)

    Ludmer, Rachel; Dudai, Yadin; Rubin, Nava

    2012-01-01

    What brain mechanisms underlie learning of new knowledge from single events? We studied encoding in long-term memory of a unique type of one-shot experience, induced perceptual insight. While undergoing an fMRI brain scan, participants viewed degraded images of real-world pictures where the underlying objects were hard to recognize (‘camouflage’), followed by brief exposures to the original images (‘solution’), which led to induced insight (“Aha!”). A week later, participants’ memory was tested; a solution image was classified as ‘remembered’ if detailed perceptual knowledge was elicited from the camouflage image alone. During encoding, subsequently remembered images enjoyed higher activity in mid-level visual cortex and medial frontal cortex, but most pronouncedly in the amygdala, whose activity could be used to predict which solutions will remain in long-term memory. Our findings extend the known roles of amygdala in memory to include promoting of long-term memory of the sudden reorganization of internal representations. PMID:21382558

  16. Geometric Form Drawing: A Perceptual-Motor Approach to Preventive Remediation (The Steiner Approach)

    Science.gov (United States)

    Ogletree, Earl J.

    1975-01-01

    Provided is a rationale for geometric form drawing developed by Rudolf Steiner as a tool to develop motor coordination, perceptual skills, and cognition for mentally retarded and perceptually handicapped children. (Author/CL)

  17. Learning

    Directory of Open Access Journals (Sweden)

    Mohsen Laabidi

    2014-01-01

    Full Text Available Nowadays learning technologies transformed educational systems with impressive progress of Information and Communication Technologies (ICT. Furthermore, when these technologies are available, affordable and accessible, they represent more than a transformation for people with disabilities. They represent real opportunities with access to an inclusive education and help to overcome the obstacles they met in classical educational systems. In this paper, we will cover basic concepts of e-accessibility, universal design and assistive technologies, with a special focus on accessible e-learning systems. Then, we will present recent research works conducted in our research Laboratory LaTICE toward the development of an accessible online learning environment for persons with disabilities from the design and specification step to the implementation. We will present, in particular, the accessible version “MoodleAcc+” of the well known e-learning platform Moodle as well as new elaborated generic models and a range of tools for authoring and evaluating accessible educational content.

  18. Beyond perceptual load and dilution: a review of the role of working memory in selective attention

    OpenAIRE

    de Fockert, Jan W.

    2013-01-01

    The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintena...

  19. Perceptual and Subliminal Communication: A Business Teacher's Dream.

    Science.gov (United States)

    Gratz, Elizabeth W.; Gratz, J. E.

    1983-01-01

    Aims to increase awareness of and sensitivity to perceptual and subliminal communication by focusing on selected applications of them in present day society. The basic theories are (1) communication is used to try to change a person's behavior and (2) it is being used primarily for deception rather than information. (JOW)

  20. Memory: enduring traces of perceptual and reflective attention.

    Science.gov (United States)

    Chun, Marvin M; Johnson, Marcia K

    2011-11-17

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: to what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Speech Adaptation to Kinematic Recording Sensors: Perceptual and Acoustic Findings

    Science.gov (United States)

    Dromey, Christopher; Hunter, Elise; Nissen, Shawn L.

    2018-01-01

    Purpose: This study used perceptual and acoustic measures to examine the time course of speech adaptation after the attachment of electromagnetic sensor coils to the tongue, lips, and jaw. Method: Twenty native English speakers read aloud stimulus sentences before the attachment of the sensors, immediately after attachment, and again 5, 10, 15,…

  2. Perceptual Effects of Dynamic Range Compression in Popular Music Recordings

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; Walther-Hansen, Mads

    2014-01-01

    There is a widespread belief that the increasing use of dynamic range compression in music mastering (the loudnesswar) deteriorates sound quality but experimental evidence of perceptual effects is lacking. In this study, normal hearing listeners were asked to evaluate popular music recordings in ...

  3. Identifying the dominating perceptual differences in headphone reproduction

    DEFF Research Database (Denmark)

    Volk, Christer Peter; Lavandier, Mathieu; Bech, Søren

    2016-01-01

    The perceptual differences between the sound reproductions of headphones were investigated in a pair-wise comparison study. Two musical excerpts were reproduced over 21 headphones positioned on a mannequin and recorded. The recordings were then processed and reproduced over one set of headphones ...

  4. Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels

    Science.gov (United States)

    Li, Tianhao; Fu, Qian-Jie

    2011-01-01

    Purpose: To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method: Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the…

  5. Perceptual decision neurosciences: a model-based review

    NARCIS (Netherlands)

    Mulder, M.J.; van Maanen, L.; Forstmann, B.U.

    2014-01-01

    In this review we summarize findings published over the past 10 years focusing on the neural correlates of perceptual decision-making. Importantly, this review highlights only studies that employ a model-based approach, i.e., they use quantitative cognitive models in combination with neuroscientific

  6. Exploring social interaction with everyday object based on perceptual crossing

    NARCIS (Netherlands)

    Anas, S.A.B.; Qiu, S.; Rauterberg, G.W.M.; Hu, J.

    2016-01-01

    Eye gaze plays an essential role in social interaction which influences our perception of others. It is most likely that we can perceive the existence of another intentional subject through the act of cathing one another's eyes. Based on the notion of perceptual crossing, we aim to establish a

  7. Color image segmentation using perceptual spaces through applets ...

    African Journals Online (AJOL)

    Color image segmentation using perceptual spaces through applets for determining and preventing diseases in chili peppers. JL González-Pérez, MC Espino-Gudiño, J Gudiño-Bazaldúa, JL Rojas-Rentería, V Rodríguez-Hernández, VM Castaño ...

  8. Perceptual-Motor Attributes of Mentally Retarded Youth.

    Science.gov (United States)

    Cratty, Bryant J.

    To evaluate six perceptual-motor attributes of trainable and educable mentally retarded children, a battery of tests was constructed which included body perception, gross agility, balance, locomotor ability, throwing, and tracking; 83 retarded subjects provided reliability data, and their scores, with those of 120 additional subjects, provided…

  9. A comparison of multidimensional scaling methods for perceptual mapping

    NARCIS (Netherlands)

    Bijmolt, T.H.A.; Wedel, M.

    Multidimensional scaling has been applied to a wide range of marketing problems, in particular to perceptual mapping based on dissimilarity judgments. The introduction of methods based on the maximum likelihood principle is one of the most important developments. In this article, the authors compare

  10. Cognitive-Perceptual Examination of Remediation Approaches to Hypokinetic Dysarthria

    Science.gov (United States)

    McAuliffe, Megan J.; Kerr, Sarah E.; Gibson, Elizabeth M. R.; Anderson, Tim; LaShell, Patrick J.

    2014-01-01

    Purpose: To determine how increased vocal loudness and reduced speech rate affect listeners' cognitive-perceptual processing of hypokinetic dysarthric speech associated with Parkinson's disease. Method: Fifty-one healthy listener participants completed a speech perception experiment. Listeners repeated phrases produced by 5 individuals…

  11. The Development of Explicit Memory for Basic Perceptual Features.

    Science.gov (United States)

    Gulya, Michelle; Rossi-George, Alba; Hartshorn, Kristen; Vieira, Aurora; Rovee-Collier, Carolyn; Johnson, Marcia K.; Chalfonte, Barbara L.

    2002-01-01

    Three experiments with 164 individuals between 4 and 80 years old examined age-related changes in explicit memory for three perceptual features: item identity, color, and location. Findings indicated that performance on explicit memory tests was not a consistent inverted U-shaped function of age across various features, but depended on the…

  12. Autistic Traits and Enhanced Perceptual Representation of Pitch and Time

    Science.gov (United States)

    Stewart, Mary E.; Griffiths, Timothy D.; Grube, Manon

    2018-01-01

    Enhanced basic perceptual discrimination has been reported for pitch in individuals with autism spectrum conditions. We test whether there is a correlational pattern of enhancement across the broader autism phenotype and whether this correlation occurs for the discrimination of pitch, time and loudness. Scores on the Autism-Spectrum Quotient…

  13. Multiattribute perceptual mapping with idiosyncratic brand and attribute sets

    NARCIS (Netherlands)

    Bijmolt, Tammo H. A.; van de Velden, Michel

    This article proposes an extremely flexible procedure for perceptual mapping based on multiattribute ratings, such that the respondent freely generates sets of both brands and attributes. Therefore, the brands and attributes are known and relevant to each participant. Collecting and analyzing such

  14. Multiattribute perceptual mapping with idiosyncratic brand and attribute sets

    NARCIS (Netherlands)

    T.H.A. Bijmolt (Tammo); M. van de Velden (Michel)

    2012-01-01

    textabstractThis article proposes an extremely flexible procedure for perceptual mapping based on multiattribute ratings, such that the respondent freely generates sets of both brands and attributes. Therefore, the brands and attributes are known and relevant to each participant. Collecting and

  15. Perceptual and Conceptual Priming of Cue Encoding in Task Switching

    Science.gov (United States)

    Schneider, Darryl W.

    2016-01-01

    Transition effects in task-cuing experiments can be partitioned into task switching and cue repetition effects by using multiple cues per task. In the present study, the author shows that cue repetition effects can be partitioned into perceptual and conceptual priming effects. In 2 experiments, letters or numbers in their uppercase/lowercase or…

  16. Teaching perceptual skills in clinical diagnostics using digital media

    NARCIS (Netherlands)

    Scheiter, Katharina; Jarodzka, Halszka

    2011-01-01

    Scheiter, K., & Jarodzka, H. (2011, May). Teaching perceptual skills in clinical diagnostics using digital media. Presentation at the 2nd International Conference “Research in Medical Education”: Shaping diamonds from bench to bedside, Universität Tübingen.

  17. Measuring Perceptual (In) Congruence between Information Service Providers and Users

    Science.gov (United States)

    Boyce, Crystal

    2017-01-01

    Library quality is no longer evaluated solely on the value of its collections, as user perceptions of service quality play an increasingly important role in defining overall library value. This paper presents a retooling of the LibQUAL+ survey instrument, blending the gap measurement model with perceptual congruence model studies from information…

  18. Dissociating sensory from decision processes in human perceptual decision making

    NARCIS (Netherlands)

    Mostert, P.; Kok, P.; Lange, F.P. de

    2015-01-01

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying

  19. Perceptual switching, eye movements, and the bus paradox

    NARCIS (Netherlands)

    Ito, J.; Nikolaev, A.R.; Luman, M.; Aukes, M.F.; Nakatani, C.; Leeuwen, C.

    2003-01-01

    According to a widely cited finding by Ellis and Stark (1978 Perception 7 575-581), the duration of eye fixations is longer at the instant of perceptual reversal of an ambiguous figure than before or after the reversal. However, long fixations are more likely to include samples of an independent

  20. Variance misperception explains illusions of confidence in simple perceptual decisions

    NARCIS (Netherlands)

    Zylberberg, Ariel; Roelfsema, Pieter R.; Sigman, Mariano

    2014-01-01

    Confidence in a perceptual decision is a judgment about the quality of the sensory evidence. The quality of the evidence depends not only on its strength ('signal') but critically on its reliability ('noise'), but the separate contribution of these quantities to the formation of confidence judgments