WorldWideScience

Sample records for penetrating radar imaging

  1. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Science.gov (United States)

    2010-10-01

    ..., fire fighting, emergency rescue, scientific research, commercial mining, or construction. (1) Parties... radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...

  2. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    Science.gov (United States)

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  3. Advanced ground-penetrating, imaging radar for bridge inspection

    International Nuclear Information System (INIS)

    Warhus, J.P.; Nelson, S.D.; Mast, J.E.; Johansson, E.M.

    1994-01-01

    During FY-93, the authors continued with development and experimental evaluation of components and system concepts aimed at improving ground-penetrating imaging radar (GPIR) for nondestructive evaluation of bridge decks and other high-value concrete structures. They developed and implemented a laboratory test bed, including features to facilitate component testing antenna system configuration evaluation, and collection of experimental data from realistic test objects. In addition, they developed pulse generators and antennas for evaluation and use in antenna configuration studies. This project was part of a cooperative effort with the Computational Electronics and Electromagnetics and Remote Imaging and Signal Engineering Thrust Areas, which contributed signal- and image-processing algorithm and software development and modeling support

  4. Ground penetrating radar images of selected fluvial deposits in the Netherlands

    NARCIS (Netherlands)

    Berghe, J. van den; Overmeeren, R.A. van

    1999-01-01

    Ground penetrating radar (GPR) surveys have been carried out in order to characterise reflection patterns and to assess the method's potential for imaging palaeofluvial sediments in the Mass-Rhine former confluence area in the southern Netherlands. The results show that the deposits of meandering,

  5. Ground penetrating radar images of selected fluvial deposits in the Netherlands.

    NARCIS (Netherlands)

    Vandenberghe, J.; van Overmeeren, R.A.

    1999-01-01

    Ground penetrating radar (GPR) surveys have been carried out in order to characterise reflection patterns and to assess the method's potential for imaging palaeofluvial sediments in the Mass-Rhine former confluence area in the southern Netherlands. The results show that the deposits of meandering,

  6. Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara

    Science.gov (United States)

    Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Olhoeft, G. R.

    1986-01-01

    Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.

  7. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  8. Ground Penetrating Radar Imaging of Buried Metallic Objects

    DEFF Research Database (Denmark)

    Polat, A. Burak; Meincke, Peter

    2001-01-01

    During the past decade there has been considerable research on ground penetrating radar (GPR) tomography for detecting objects such as pipes, cables, mines and barrels buried under the surface of the Earth. While the earlier researches were all based on the assumption of a homogeneous background...

  9. Three-dimensional architecture and development of Danianbryozoan mounds at Limhamn, south-west Sweden, usingground-penetrating radar

    DEFF Research Database (Denmark)

    Nielsen, Lars; Schack von Brockdorff, A.; Bjerager, Morten Gustav Erik

    2009-01-01

    in the Limhamn limestone quarry, south-west Sweden, obtained from combined reflected ground-penetrating radar signals and outcrop analysis provide new information about the architecture and growth development of such mounds. The mounds are composed of bryozoan limestone and dark-grey to black flint bands which...... outline mound geometries. Ground-penetrating radar data sections are collected over a 120 m by 60 m grid of data lines with trace spacing of 0·25 m, providing a depth penetration of 7 to 12 m and a vertical resolution of ca 0·30 m. The ground-penetrating radar images outline the geometry of the internal...... layering of the mounds which, typically, have widths and lengths of 30 to 60 m and heights of 5 to 10 m. Mound architecture and growth show great variability in the ground-penetrating radar images. Small-scale mound structures with a palaeorelief of only a few metres may constitute the basis for growth...

  10. A forward model for ground penetrating radar imaging of buried perfect electric conductors within the physical optics approximation

    DEFF Research Database (Denmark)

    Polat, Burak; Meincke, Peter

    2004-01-01

    A forward model for ground penetrating radar imaging of buried 3-D perfect electric conductors is addressed within the framework of diffraction tomography. The similarity of the present forward model derived within the physical optics approximation with that derived within the first Born...

  11. Forestry applications of ground-penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, H.; Perez-Gracia, V.; Novo, A.; Armesto, J.

    2010-07-01

    Ground-penetrating radar (GPR) is a geophysical and close-range remote sensing technique based on the use of radar pulses to obtain cross-section images of underground features. This method is characterized by the transmission of an electromagnetic short length pulse (1-2 ns), presenting a centre frequency ranging from 10 MHz to 2.5 GHz. The principles of GPR operation are based on the ability of low frequency radar waves to penetrate into a non-conductive medium, usually subsoil, but also walls, concrete or wood. Those waves are detected after suffering a reflection in electromagnetic discontinuities of the propagation medium. Therefore, this is a suitable method to study changes in those physical properties, and also to characterize different mediums and the reflective targets providing information about their physical properties. The aim of this work is to describe and demonstrate different applications of GPR in forestry, showing the obtained results together with their interpretation. Firstly, in this paper, it is illustrated how GPR is able to map shallow bedrock, subsoil stratigraphy and also to estimate shallow water table depth. Secondly, different tree trunks as well as dry timber are analyzed, evaluating the different radar data obtained in each particular case, and observing differences in their electromagnetic properties related to the GPR response. Finally, several measurements were taken in order to analyze the use of GPR to detect tree root systems using polarimetric techniques, being possible to detect medium and big size roots, together with groups of small roots. (Author) 39 refs.

  12. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    Science.gov (United States)

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the

  13. The penetrating depth analysis of Lunar Penetrating Radar onboard Chang’e-3 rover

    Science.gov (United States)

    Xing, Shu-Guo; Su, Yan; Feng, Jian-Qing; Dai, Shun; Xiao, Yuan; Ding, Chun-Yu; Li, Chun-Lai

    2017-04-01

    Lunar Penetrating Radar (LPR) has successfully been used to acquire a large amount of scientific data during its in-situ detection. The analysis of penetrating depth can help to determine whether the target is within the effective detection range and contribute to distinguishing useful echoes from noise. First, this study introduces two traditional methods, both based on a radar transmission equation, to calculate the penetrating depth. The only difference between the two methods is that the first method adopts system calibration parameters given in the calibration report and the second one uses high-voltage-off radar data. However, some prior knowledge and assumptions are needed in the radar equation and the accuracy of assumptions will directly influence the final results. Therefore, a new method termed the Correlation Coefficient Method (CCM) is provided in this study, which is only based on radar data without any a priori assumptions. The CCM can obtain the penetrating depth according to the different correlation between reflected echoes and noise. To be exact, there is a strong correlation in the useful reflected echoes and a random correlation in the noise between adjacent data traces. In addition, this method can acquire a variable penetrating depth along the profile of the rover, but only one single depth value can be obtained from traditional methods. Through a simulation, the CCM has been verified as an effective method to obtain penetration depth. The comparisons and analysis of the calculation results of these three methods are also implemented in this study. Finally, results show that the ultimate penetrating depth of Channel 1 and the estimated penetrating depth of Channel 2 range from 136.9 m to 165.5 m ({\\varepsilon }r=6.6) and from 13.0 m to 17.5 m ({\\varepsilon }r=2.3), respectively.

  14. Three-dimensional ground penetrating radar imaging using multi-frequency diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mast, J.E.; Johansson, E.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    In this talk we present results from a three-dimensional image reconstruction algorithm for impulse radar operating in monostatic pule-echo mode. The application of interest to us is the nondestructive evaluation of civil structures such as bridge decks. We use a multi-frequency diffraction tomography imaging technique in which coherent backward propagations of the received reflected wavefield form a spatial image of the scattering interfaces within the region of interest. This imaging technique provides high-resolution range and azimuthal visualization of the subsurface region. We incorporate the ability to image in planarly layered conductive media and apply the algorithm to experimental data from an offset radar system in which the radar antenna is not directly coupled to the surface of the region. We present a rendering in three-dimensions of the resulting image data which provides high-detail visualization.

  15. Near-field three-dimensional radar imaging techniques and applications.

    Science.gov (United States)

    Sheen, David; McMakin, Douglas; Hall, Thomas

    2010-07-01

    Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  16. A Review on Migration Methods in B-Scan Ground Penetrating Radar Imaging

    Directory of Open Access Journals (Sweden)

    Caner Özdemir

    2014-01-01

    Full Text Available Even though ground penetrating radar has been well studied and applied by many researchers for the last couple of decades, the focusing problem in the measured GPR images is still a challenging task. Although there are many methods offered by different scientists, there is not any complete migration/focusing method that works perfectly for all scenarios. This paper reviews the popular migration methods of the B-scan GPR imaging that have been widely accepted and applied by various researchers. The brief formulation and the algorithm steps for the hyperbolic summation, the Kirchhoff migration, the back-projection focusing, the phase-shift migration, and the ω-k migration are presented. The main aim of the paper is to evaluate and compare the migration algorithms over different focusing methods such that the reader can decide which algorithm to use for a particular application of GPR. Both the simulated and the measured examples that are used for the performance comparison of the presented algorithms are provided. Other emerging migration methods are also pointed out.

  17. Introduction to ground penetrating radar inverse scattering and data processing

    CERN Document Server

    Persico, Raffaele

    2014-01-01

    This book presents a comprehensive treatment of ground penetrating radar using both forward and inverse scattering mathematical techniques. Use of field data instead of laboratory data enables readers to envision real-life underground imaging; a full color insert further clarifies understanding. Along with considering the practical problem of achieving interpretable underground images, this book also features significant coverage of the problem's mathematical background. This twofold approach provides a resource that will appeal both to application oriented geologists and testing specialists,

  18. Use of ground-penetrating radar techniques in archaeological investigations

    Science.gov (United States)

    Doolittle, James A.; Miller, W. Frank

    1991-01-01

    Ground-penetrating radar (GPR) techniques are increasingly being used to aid reconnaissance and pre-excavation surveys at many archaeological sites. As a 'remote sensing' tool, GPR provides a high resolution graphic profile of the subsurface. Radar profiles are used to detect, identify, and locate buried artifacts. Ground-penetrating radar provides a rapid, cost effective, and nondestructive method for identification and location analyses. The GPR can be used to facilitate excavation strategies, provide greater areal coverage per unit time and cost, minimize the number of unsuccessful exploratory excavations, and reduce unnecessary or unproductive expenditures of time and effort.

  19. Ground Penetrating Radar Technologies in Ukraine

    Science.gov (United States)

    Pochanin, Gennadiy P.; Masalov, Sergey A.

    2014-05-01

    projects on the delineation of a diamond deposit in Karelia, on the localisation of unauthorized penetrations in product pipelines, and others. Since 2007, in close cooperation with researchers from V. N. Karazin Kharkiv National University (www.univer.kharkov.ua/en) and Kharkiv National Automobile and Highway University (www.khadi.kharkov.ua), we have been developing a GPR to monitor road conditions. The main objective is the creation of an equipment suitable to determine the strength characteristics of pavements. A GPR allowing to measure thicknesses of asphalt pavement layers with an accuracy better than 3 mm has already been created; it was transferred to services responsible for maintaining roads in good condition. Specific standards and guidelines for the use of GPR has not been adopted in Ukraine, yet. GPRs are rarely used by public services. Nevertheless, recently the Ukrainian government has funded several projects on GPR technologies. Ukrainians seek to maintain old and to establish new relationships with colleagues around the world. We were partners of the Ultrawideband Radar Working Group, which developed the standard "IEEE P1672 TM Ultrawideband Radar Definitions." LLC "Transient Technologies" has cooperation agreements with more than a dozen of GPR companies all over the world. A group of scientists from IRE is working in cooperation with researchers from Italy, Holland, Turkey, Brazil, Russia and Ukraine on the project of FP-7-PEOPLE-2010-IRSES no 269157 "Active and Passive Microwaves for Security and Subsurface Imaging" (for more details, please visit www.irea.cnr.it/en/index.php?option=com_k2&view=item&id=342:progetto-amiss&Itemid=165). In recent years, many representative companies have appeared, offering GPRs of foreign production on the market of Ukraine. The authors acknowledge COST for funding Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar," supporting this work.

  20. Miniature Ground Penetrating Radar, CRUX GPR

    Science.gov (United States)

    Kim, Soon Sam; Carnes, Steven R.; Haldemann, Albert F.; Ulmer, Christopher T.; Ng, Eddie; Arcone, Steven A.

    2006-01-01

    Under NASA instrument development programs (PIDDP 2000-2002, MIPD 2003-2005, ESR and T, 2005) we have been developing miniature ground penetrating radars (GPR) for use in mapping subsurface stratigraphy from planetary rovers for Mars and lunar applications. The Mars GPR is for deeper penetration (up to 50 m depth) into the Martian subsurface at moderate resolution (0.5 m) for a geological characterization. As a part of the CRUX (Construction and Resource Utilization Explorer) instrument suite, the CRUX GPR is optimized for a lunar prospecting application. It will have shallower penetration (5 m depth) with higher resolution (10 cm) for construction operations including ISRU (in-situ resource utilization).

  1. Dielectric properties estimation of the lunar regolith at CE-3 landing site using lunar penetrating radar data

    Science.gov (United States)

    Feng, Jianqing; Su, Yan; Ding, Chunyu; Xing, Shuguo; Dai, Shun; Zou, Yongliao

    2017-03-01

    The second channel (CH2) of the Lunar Penetrating Radar (LPR) carried on the Chang'e-3 (CE-3) Yutu Rover was used to determine the thickness and structure of the lunar regolith. Accurately revealing the true structure beneath the surface requires knowledge of the dielectric permittivity of the regolith, which allows one to properly apply migration to the radar image. In contrast to simple assumptions in previous studies, this paper takes account of heterogeneity of the regolith and derives regolith's permittivity distribution laterally and vertically by a method widely used in data processing of terrestrial Ground Penetrating Radar (GPR). We find that regolith permittivity at the landing site increases with depth more quickly than previously recognized. At a depth of ∼2.5-3 m, the dielectric constant reaches the value of solid basalt. The radar image was migrated on the basis of the permittivity profile. We do not find any continuous distinct layers or an apparent regolith/rock interface in the migrated radargram, which implies that this area is covered by relatively young, poorly layered deposits.

  2. Foliage penetration radar detection and characterization of objects under trees

    CERN Document Server

    Davis, Mark

    2011-01-01

    This book covers all aspects of foliage penetration (FOPEN) radar, concentrating on both airborne military radar systems as well as earth resource mapping radars. It is the first concise and thorough treatment of FOPEN, covering the results of a decade-long investment by DARPA in characterizing foliage and earth surface with ultrawideband UHF and VHF synthetic aperture radar (SAR).

  3. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    Energy Technology Data Exchange (ETDEWEB)

    John H. Bradford; Stephen Holbrook; Scott B. Smithson

    2004-12-09

    The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.

  4. Ground-penetrating radar study of the Rahivere peat bog, eastern Estonia

    Directory of Open Access Journals (Sweden)

    Jüri Plado

    2011-03-01

    Full Text Available The current case study presents results of the ground-penetrating radar (GPR profiling at one of the Saadjärve drumlin field interstitial troughs, the Rahivere bog, eastern Estonia. The study was conducted in order to identify the bog morphology, and the thickness and geometry of the peat body. The method was also used to describe the applicability of GPR in the evaluation of the peat deposit reserve as the Rahivere bog belongs among the officially registered peat reserves. Fourteen GPR profiles, ~ 100 m apart and oriented perpendicular to the long axis of the depression, covering the bog and its surrounding areas, were acquired. In order to verify the radar image interpretation as well as to evaluate the velocity of electromagnetic waves in peat, a common source configuration was utilized and thirteen boreholes were drilled on the GPR profiles. A mean value of 0.036 m ns–1 corresponding to relative dielectric permittivity of 69.7 was used for the time–depth conversion. Radar images reveal major reflection from the peat–soil interface up to a depth of about 4 m, whereas drillings showed a maximum thickness of 4.5 m of peat. Minor reflections appear from the upper peat and mineral soil. According to the borehole data, undecomposed peat is underlain by decomposed one, but identifying them by GPR is complicated. Mineral soil consists of glaciolimnic silty sand in the peripheral areas of the trough, overlain by limnic clay in the central part. The calculated peat volumes (1 200 000 m3 were found to exceed the earlier estimation (979 000 m3 that was based solely on drilling data. Ground-penetrating radar, as a method that allows mapping horizontal continuity of the sub-peat interface in a non-destructive way, was found to provide detailed information for evaluating peat depth and extent.

  5. Identifying structural damage with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2008-07-01

    Full Text Available Ground penetrating radar (GPR) and electrical resistance tomography (ERT) surveys were conducted in an urban environment in an attempt to identify the cause of severe structural damage to a historically significant residential property...

  6. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    Energy Technology Data Exchange (ETDEWEB)

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  7. Tree root mapping with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2009-09-01

    Full Text Available In this paper, the application of ground penetrating radar (GPR) for the mapping of near surface tree roots is demonstrated. GPR enables tree roots to be mapped in a non-destructive and cost-effective manner and is therefore a useful prospecting...

  8. The Use of Ground Penetrating Radar to Exploring Sedimentary Ore In North-Central Saudi Arabia

    Science.gov (United States)

    Almutairi, Yasir; Almutair, Muteb

    2015-04-01

    Ground Penetrating Radar (GPR) is a non-destructive geophysical method that provides a continuous subsurface profile, without drilling. This geophysical technique has great potential in delineating the extension of bauxites ore in north-central Saudi Arabia. Bauxite is from types sedimentary ores. This study aim to evaluate the effectiveness of Ground Penetrating Radar (GPR) to illustrate the subsurface feature of the Bauxite deposits at some selected mining areas north-central Saudi Arabia. Bauxite is a heterogeneous material that consists of complex metals such as alumina and aluminum. An efficient and cost-effect exploration method for bauxite mine in Saudi Arabia is required. Ground penetrating radar (GPR) measurements have been carrying out along outcrop in order to assess the potential of GPR data for imaging and characterising different lithological facies. To do so, we have tested different antenna frequencies to acquire the electromagnetic signals along a 90 m profile using the IDS system. This system equipped with a 25 MHz antenna that allows investigating the Bauxite layer at shallow depths where the clay layers may existed. Therefore, the 25 MHz frequency antenna has been used in this study insure better resolution of the subsurface and to get more penetration to image the Bauxite layer. After the GPR data acquisition, this data must be processed in order to be more easily visualized and interpreted. Data processing was done using Reflex 6.0 software. A series of tests were carried out in frequency filtering on a sample of radar sections, which was considered to better represent the entire set of data. Our results indicated that the GPR profiling has a very good agreement for mapping the bauxite layer depth at range of 7 m to 11 m. This study has emphasized that the high-resolution GPR method is the robust and cost-effect technique to map the Bauxite layer. The exploration of Bauxite resource using the GPR technique could reduce the number of holes to

  9. Ground penetrating radar evaluation of new pavement density.

    Science.gov (United States)

    2015-02-01

    The objective of this project was to map pavement surface density variations using dielectric : measurements from ground penetrating radar (GPR). The work was carried out as part of an : Asphalt Intelligent Compaction demonstration project on SR 539 ...

  10. Ground-penetrating radar and electromagnetic surveys at the Monroe Crossroads battlefield site, Fort Bragg, North Carolina

    Science.gov (United States)

    Kessler, Richard; Strain, R.E.; Marlowe, J. I.; Currin, K.B.

    1996-01-01

    A ground-penetrating radar survey was conducted at the Monroe Crossroads Battlefield site at Fort Bragg, North Carolina, to determine possible locations of subsurface archaeological features. An electromagnetic survey also was conducted at the site to verify and augment the ground-penetrating radar data. The surveys were conducted over a 67,200-square-foot grid with a grid point spacing of 20 feet. During the ground-penetrating radar survey, 87 subsurface anomalies were detected based on visual inspection of the field records. These anomalies were flagged in the field as they appeared on the ground-penetrating radar records and were located by a land survey. The electromagnetic survey produced two significant readings at ground-penetrating radar anomaly locations. The National Park Service excavated 44 of the 87 anomaly locations at the Civil War battlefield site. Four of these excavations produced significant archaeological features, including one at an abandoned well.

  11. Suitability of ground penetrating radar for locating large fractures

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, E. [Poeyry Finland Oy, Vantaa (Finland); Kantia, P. [Roadscanners Oy, Rovaniemi (Finland)

    2011-12-15

    Posiva Oy is responsible for preparation of final disposal of spent nuclear fuel in Olkiluoto. The knowledge about existing network of fractures is important for the safety and feasibility of the final repository. The bedrock properties essential for safety case are analysed in investigations of Rock Suitability Criteria (RSC). One subtask in RSC is avoidance of large (long) fractures adjacent to disposal holes. The long fractures have been defined in tunnel mapping to indicate tunnel cross-cutting features (TCF) or full perimeter intersections (FPI). Suitability of ground penetrating radar (GPR) method for locating large fractures was assessed. The assessment used data measured with 100 MHz and 270 MHz radar tool on ONKALO access tunnel right-hand wall, chainage 3344 - 3578 and on TKU-3 niche floor chainage 15 - 55 and 25 - 67 m. GPR images were processed to enhance reflections and suppress interference and diffractions. Images were placed on measurement position in 3D presentation software. The tunnel wall and floor mapping data was presented along with GPR images. A review of observed GPR reflections, and assessment of visibility of large fractures, was drawn on basis of 3D view examination. The GPR tool can detect reflections from cleaned and dry rock floor and wall. Depth of penetration is 8-12 m for 270 MHz antenna. The antenna has high resolution. Coupling on rock surface is good, which suppresses ringing and interference. Penetration is 20-24 m for 100 MHz antenna, which has a trade off of higher interference due to weaker contact to surface caused by large antenna. There are observed many kind of reflecting surfaces and diffractors in the images, like for example lithological contacts and high grade shearing, and also fractures. Proper manner to apply the method is to use raw and processed images during geological mapping to confirm the origin of reflections. Reflections deemed to be caused by fractures are useful to be compiled to 3D model objects. The

  12. Suitability of ground penetrating radar for locating large fractures

    International Nuclear Information System (INIS)

    Heikkinen, E.; Kantia, P.

    2011-12-01

    Posiva Oy is responsible for preparation of final disposal of spent nuclear fuel in Olkiluoto. The knowledge about existing network of fractures is important for the safety and feasibility of the final repository. The bedrock properties essential for safety case are analysed in investigations of Rock Suitability Criteria (RSC). One subtask in RSC is avoidance of large (long) fractures adjacent to disposal holes. The long fractures have been defined in tunnel mapping to indicate tunnel cross-cutting features (TCF) or full perimeter intersections (FPI). Suitability of ground penetrating radar (GPR) method for locating large fractures was assessed. The assessment used data measured with 100 MHz and 270 MHz radar tool on ONKALO access tunnel right-hand wall, chainage 3344 - 3578 and on TKU-3 niche floor chainage 15 - 55 and 25 - 67 m. GPR images were processed to enhance reflections and suppress interference and diffractions. Images were placed on measurement position in 3D presentation software. The tunnel wall and floor mapping data was presented along with GPR images. A review of observed GPR reflections, and assessment of visibility of large fractures, was drawn on basis of 3D view examination. The GPR tool can detect reflections from cleaned and dry rock floor and wall. Depth of penetration is 8-12 m for 270 MHz antenna. The antenna has high resolution. Coupling on rock surface is good, which suppresses ringing and interference. Penetration is 20-24 m for 100 MHz antenna, which has a trade off of higher interference due to weaker contact to surface caused by large antenna. There are observed many kind of reflecting surfaces and diffractors in the images, like for example lithological contacts and high grade shearing, and also fractures. Proper manner to apply the method is to use raw and processed images during geological mapping to confirm the origin of reflections. Reflections deemed to be caused by fractures are useful to be compiled to 3D model objects. The

  13. High performance ground penetrating radar survey of TA-49/Area 2. Final report

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Rangel, M.J. III

    1994-09-01

    The results of high performance ground penetrating radar study of Area 2 at Technical Area 49 are presented. The survey was commissioned as part of Los Alamos Laboratory's continuing Environmental Remediation program and was completed and analyzed before borehole studies in Area 2 were started. Based upon the ground penetrating radar results, the location of one of the planned boreholes was moved to assure the drilling area was as safe as possible. While earlier attempts to use commercial radar devices at this facility had not been successful, the radar and digital processing system developed at Los Alamos were able to significantly improve the buried physical detail of the site

  14. Progress on Ultra-Wideband (UWB Multi-Antenna radar imaging for MIGA

    Directory of Open Access Journals (Sweden)

    Yedlin Matthew

    2016-01-01

    Full Text Available Progress on the development of the multi-channel, ground penetrating radar imaging system is presented from hardware and software perspectives. A new exponentially tapered slot antenna, with an operating bandwidth from 100 MHz to 1.5 GHz was fabricated and tested using the eight-port vector network analyzer, designed by Rhode and Schwarz Incorporated for this imaging project. An eight element antenna array mounted on two carts with automatic motor drive, was designed for optimal common midpoint (CMP data acquisition. Data acquisition scenarios were tested using the acoustic version of the NORSAR2D seismic ray-tracing software. This package enables the synthesis and analysis of multi-channel, multi-offset data acquisitions comprising more than a hundred thousand traces. Preliminary processing is in good agreement with published bistatic ground-penetrating radar images obtained in the tunnels of the Low-noise Underground Laboratory (LSBB at Rustrel, France.

  15. COST Action TU1208 - Working Group 3 - Electromagnetic modelling, inversion, imaging and data-processing techniques for Ground Penetrating Radar

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonios; Sesnic, Silvestar; Randazzo, Andrea; Lambot, Sébastien; Benedetto, Francesco; Economou, Nikos

    2017-04-01

    opportunity of testing and validating, against reliable data, their electromagnetic-modelling, inversion, imaging and processing algorithms. One of the most interesting dataset comes from the IFSTTAR Geophysical Test Site, in Nantes (France): this is an open-air laboratory including a large and deep area, filled with various materials arranged in horizontal compacted slices, separated by vertical interfaces and water-tighted in surface; several objects as pipes, polystyrene hollows, boulders and masonry are embedded in the field. Data were collected by using nine different GPR systems and at different frequencies ranging from 200 MHz to 1 GHz. Moreover, some sections of this test site were modelled by using gprMax and the commercial software CST Microwave Studio. Hence, both experimental and synthetic data are available. Further interesting datasets were collected on roads, bridges, concrete cells, columns - and more. (v) WG3 contributed to the TU1208 Education Pack, an open educational package conceived to teach GPR in University courses. (vi) WG3 was very active in offering training activities. The following courses were successfully organised: Training School (TS) "Microwave Imaging and Diagnostics" (in cooperation with the European School of Antennas; 1st edition: Madonna di Campiglio, Italy, March 2014, 2nd edition: Taormina, Italy, October 2016); TS "Numerical modelling of Ground Penetrating Radar using gprMax" (Thessaloniki, Greece, November 2015); TS "Electromagnetic Modelling Techniques for Ground Penetrating Radar" (Split, Croatia, November 2016). Moreover, WG3 organized a workshop on "Electromagnetic modelling with the Finite-Difference Time-Domain technique" (Nantes, France, February 2014) and a workshop on "Electromagnetic modelling and inversion techniques for GPR" (Davos, Switzerland, April 2016) within the 2016 European Conference on Antennas and Propagation (EuCAP). Acknowledgement: The Authors are deeply grateful to COST (European COoperation in Science and

  16. Ground-Penetrating Radar Prospecting in the Peinan Archaeological Site, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2013-01-01

    Full Text Available The Peinan archaeological site is the largest prehistoric village in Taiwan. Only small-scale pits are allowed for research purposes because the Peinan site is protected by the Cultural Heritage Preservation Act. Careful selection of the pit locations is crucial for future archaeological research at this site. In this study, a ground-penetrating radar (GPR survey was applied near the stone pillar to understand the GPR signatures of the subsurface remains. Seven GPR signatures were categorized based on the radar characters shown on the GPR image. A detailed GPR survey with dense parallel survey lines was subsequently conducted in the area of northern extent of the onsite exhibition to map the subsurface ancient buildings. The results were verified by two test pits, which indicate that the distribution of the subsurface building structures can be well recognized from GPR depth slices. It will be very helpful for setting proper pits priorities for future archaeological research, and for making proper design of the new onsite exhibition.

  17. Portable concealed weapon detection using millimeter-wave FMCW radar imaging

    Science.gov (United States)

    Johnson, Michael A.; Chang, Yu-Wen

    2001-02-01

    Unobtrusive detection of concealed weapons on persons or in abandoned bags would provide law enforcement a powerful tool to focus resources and increase traffic throughput in high- risk situations. We have developed a fast image scanning 94 GHz radar system that is suitable for portable operation and remote viewing of radar data. This system includes a novel fast image-scanning antenna that allows for the acquisition of medium resolution 3D millimeter wave images of stationary targets with frame times on order of one second. The 3D radar data allows for potential isolation of concealed weapons from body and environmental clutter such as nearby furniture or other people. The radar is an active system so image quality is not affected indoors, emitted power is however very low so there are no health concerns for operator or targets. The low power operation is still sufficient to penetrate heavy clothing or material. Small system size allows for easy transport and rapid deployment of the system as well as an easy migration path to future hand held systems.

  18. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Science.gov (United States)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  19. Civil engineering applications of ground penetrating radar

    CERN Document Server

    Pajewski, Lara

    2015-01-01

    This book, based on Transport and Urban Development COST Action TU1208, presents the most advanced applications of ground penetrating radar (GPR) in a civil engineering context, with documentation of instrumentation, methods, and results. It explains clearly how GPR can be employed for the surveying of critical transport infrastructure, such as roads, pavements, bridges, and tunnels, and for the sensing and mapping of underground utilities and voids. Detailed attention is also devoted to use of GPR in the inspection of geological structures and of construction materials and structures, including reinforced concrete, steel reinforcing bars, and pre/post-tensioned stressing ducts. Advanced methods for solution of electromagnetic scattering problems and new data processing techniques are also presented. Readers will come to appreciate that GPR is a safe, advanced, nondestructive, and noninvasive imaging technique that can be effectively used for the inspection of composite structures and the performance of diagn...

  20. Near-surface Imaging of a Maya Plaza Complex using Ground-Penetrating Radar

    Science.gov (United States)

    Aitken, J. A.; Stewart, R. R.

    2005-05-01

    The University of Calgary has conducted a number of ground-penetrating radar surveys at a Maya archaeological site. The purpose of the study is to discern the near-surface structure and stratigraphy of the plaza, and to assist the archaeologists in focusing their excavation efforts. The area of study is located in Belize, Central America at the ancient Maya site of Maax Na. Flanked by structures believed to be temples to the north and west, the archaeologists were interested in determining how many levels of plaza were built and if there was any discernable slope to the plaza. Over the last three years, both 2-D lines and 3-D grids were acquired at the plaza using a Sensors and Software Inc. Noggin Plus system at an antenna frequency of 250 MHz. The processing flow consisted of the application of gain, various filtering techniques and a diffraction stack migration using Reflexw. Interpolation of the gridded data was investigated using simple averaging, F-K migration, pre-stack migration and inversion techniques. As this study has evolved over different field seasons, measured velocities appear to change with the saturation level of the shallow section. Velocity measurements ranged from 0.058 - .106 m/ns during the wet conditions encountered in 2002 and 2004, while velocities of 1.22 - 1.40 m/ns were measured in the drought of 2003. The GPR images to date indicate continuous and interpretable images of the subsurface, showing evidence of structure, discontinuities and amplitude variations. A number of interesting anomalies have been identified, and prioritized for excavation.

  1. Development of Stepped-Frequency Ground-Penetrating Radar

    DEFF Research Database (Denmark)

    Jakobsen, Kaj Bjarne

    1998-01-01

    The status of the development of a multi-monostatic stepped-frequency ground-penetrating radar (GPR) at The Department of Applied Electronics (IAE), The Technical University of Denmark (DTU) is presented. The feasibility of the used approach is demonstrated by the successful detection of small me...... metallic and non-metallic objects with a diameter of 54 mm buried in loamy soil....

  2. Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals

    Science.gov (United States)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2017-11-01

    The thickness of lunar regolith is an important index of evaluating the quantity of lunar resources such as 3He and relative geologic ages. Lunar penetrating radar (LPR) experiment of Chang'E-3 mission provided an opportunity of in situ lunar subsurface structure measurement in the northern mare imbrium area. However, prior work on analyzing LPR data obtained quite different conclusions of lunar regolith structure mainly because of the missing of clear interface reflectors in radar image. In this paper, we utilized finite-difference time-domain (FDTD) method and three models of regolith structures with different rock density, number of layers, shapes of interfaces, and etc. to simulate the LPR signals for the interpretation of radar image. The simulation results demonstrate that the scattering signals caused by numerous buried rocks in the regolith can mask the horizontal reflectors, and the die-out of radar echo does not indicate the bottom of lunar regolith layer and data processing such as migration method could recover some of the subsurface information but also result in fake signals. Based on analysis of simulation results, we conclude that LPR results uncover the subsurface layered structure containing the rework zone with multiple ejecta blankets of small crater, the ejecta blanket of Chang'E-3 crater, and the transition zone and estimate the thickness of the detected layer is about 3.25 m.

  3. Ground-penetrating radar for sedimentology: methodological advances and examples from the Usumacinta-Grijalva delta plain, Tabasco, México

    NARCIS (Netherlands)

    Van Dam, Remke; Nooren, Kees|info:eu-repo/dai/nl/33761430X; Dogan, Mine; Hoek, Wim|info:eu-repo/dai/nl/163819394

    2014-01-01

    Ground-penetrating radar (GPR) is widely used as a tool for imaging sedimentary structures and reconstructing depositional history in a range of settings. Most GPR systems use a pair of dipole antennas to transmit and receive electromagnetic energy, typically in the frequency range of 0.025-1 GHz.

  4. Efficient Calculation of Born Scattering for Fixed-Offset Ground-Penetrating Radar Surveys

    DEFF Research Database (Denmark)

    Meincke, Peter

    2007-01-01

    A formulation is presented for efficient calculation of linear electromagnetic scattering by buried penetrable objects, as involved in the analysis of fixed-offset ground-penetrating radar (GPR) systems. The actual radiation patterns of the GPR antennas are incorporated in the scattering...

  5. Pipe Penetrating Radar: a New Tool for the Assessment of Critical Infrastructure

    Science.gov (United States)

    Ekes, C.; Neducz, B.

    2012-04-01

    This paper describes the development of Pipe Penetrating Radar (PPR), the underground in-pipe application of GPR, a non-destructive testing method that can detect defects and cavities within and outside mainline diameter (>18 in / 450mm) non-metallic (concrete, PVC, HDPE, etc.) underground pipes. The method uses two or more high frequency GPR antennae carried by a robot into underground pipes. The radar data is transmitted to the surface via fibre optic cable and is recorded together with the output from CCTV (and optionally sonar and laser). Proprietary software analyzes the data and pinpoints defects or cavities within and outside the pipe. Thus the testing can identify existing pipe and pipe bedding symptoms that can be addressed to prevent catastrophic failure due to sinkhole development and can provide useful information about the remaining service life of the pipe. The key innovative aspect is the unique ability to map pipe wall thickness and deterioration including cracks and voids outside the pipe, enabling accurate predictability of needed intervention or the timing of replacement. This reliable non-destructive testing method significantly impacts subsurface infrastructure condition based asset management by supplying previously unattainable measurable conditions. Keywords: pipe penetrating radar (PPR), ground penetrating radar (GPR), pipe inspection, concrete deterioration, municipal engineering

  6. Ku-Band radar penetration into Snow over Arctic Sea Ice

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    is the snow/air interface, whereas radar waves interact with the variable physical properties of the snow cover on the Arctic sea ice. In addition, radar elevation measurements may vary for different retracker algorithms, which determine the track point of the scattered echo power distribution. Since accurate...... knowledge of the reflection horizon is critical for sea ice thickness retrieval, validation data is necessary to investigate the penetration of radar waves into the snow for the upcoming CryoSat-2 mission. Furthermore, the combination of both optical and RF wavelengths might be used to derive snow thickness......, if radar altimeters are capable of measuring the distance to the snow-ice interface reliably. We present the results of aircraft campaigns in the Arctic with a scanning laser altimeter and the Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) of the European Space Agency. The elevation...

  7. Space Radar Image of Maui, Hawaii

    Science.gov (United States)

    1994-01-01

    This spaceborne radar image shows the 'Valley Island' of Maui, Hawaii. The cloud-penetrating capabilities of radar provide a rare view of many parts of the island, since the higher elevations are frequently shrouded in clouds. The light blue and yellow areas in the lowlands near the center are sugar cane fields. The three major population centers, Lahaina on the left at the western tip of island, Wailuku left of center, and Kihei in the lower center appear as small yellow, white or purple mottled areas. West Maui volcano, in the lower left, is 1800 meters high (5900 feet) and is considered extinct. The entire eastern half of the island consists of East Maui volcano, which rises to an elevation of 3200 meters (10,500 feet) and features a spectacular crater called Haleakala at its summit. Haleakala Crater was produced by erosion during previous ice ages rather than by volcanic activity, although relatively recent small eruptions have produced the numerous volcanic cones and lava flows that can be seen on the floor of the crater. The most recent eruption took place near the coast at the southwestern end of East Maui volcano in the late 1700s. Such a time frame indicates that East Maui should be considered a dormant, rather than an extinct volcano. A new eruption is therefore possible in the next few hundred years. The multi-wavelength capability of the SIR-C radar also permits differences in the vegetation cover on the middle flanks of East Maui to be identified. Rain forests appear in yellow, while grassland is shown in dark green, pink and blue. Radar images such as this one are being used by scientists to understand volcanic processes and to assess potential threats that future activity may pose to local populations. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 16, 1994. The image is 73.7 kilometers by 48.7 kilometers (45.7 miles by 30.2 miles) and is centered at 20

  8. Deep Ground Penetrating Radar (GPR) WIPL-D Models of Buried Sub-Surface Radiators

    National Research Council Canada - National Science Library

    Norgard, John D; Wicks, Michael C; Musselman, Randy L

    2005-01-01

    .... A new Ground Penetrating Radar (GPR) concept is proposed in this paper to use subsurface radiators, delivered as earth penetrating non-explosive, electronic e-bombs, as the source of strong radiated transmissions for GPR experiments...

  9. Applications of Surface Penetrating Radar for Mars Exploration

    Science.gov (United States)

    Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.

    2015-12-01

    Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the

  10. A new ground-penetrating radar system for remote site characterization

    International Nuclear Information System (INIS)

    Davis, K.C.; Sandness, G.A.

    1994-08-01

    The cleanup of waste burial sites and military bombing ranges involves the risk of exposing field personnel to toxic chemicals, radioactive materials, or unexploded munitions. Time-consuming and costly measures are required to provide protection from those hazards. Therefore, there is a growing interest in developing remotely controlled sensors and sensor platforms that can be employed in site characterization surveys. A specialized ground-penetrating radar has been developed to operate on a remotely controlled vehicle for the non-intrusive subsurface characterization of buried waste sites. Improved radar circuits provide enhanced performance, and an embedded microprocessor dynamically optimizes operation. The radar unit is packaged to survive chemical contamination and decontamination

  11. Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar

    Science.gov (United States)

    Pauli, Mario; Wiesbeck, Werner

    2015-04-01

    developed [4]. If OFDM signals are used for the radiation, the carriers can be split in even and odd carriers and fed to the two orthogonally polarized transmit antennas. By using OFDM, the de-correlation of the two subcarrier groups becomes inherently high. Due to the orthogonality of OFDM subcarriers the de-correlation only depends on the quality of the hardware and the signal processing. They can be simultaneously radiated and received by the two antennas. This could result in a significant improvement of the GPR sensor system. The antenna has been realized and first measurements have been conducted. During the forthcoming EGU 2015 General Assembly the detailed electromagnetic background and the function of the dual linear, orthogonal polarized antenna will be presented as well as results in GPR relevant frequencies. Also, an approach of a planar feeding network will be presented. This abstract is a contribution to Session GI3.1 "Civil Engineering Applications of Ground Penetrating Radar," organized by the COST Action TU1208. References [1] Carin, L.; Kapoor, R.; Baum, C.E., "Polarimetric SAR imaging of buried landmines," IEEE Transactions on Geoscience and Remote Sensing, vol. 36 iss. 6, pp.1985-1988, 1998. [2] T. Schultze, M. Porebska, W. Wiesbeck, and I. Willms, "Onsets for the recognition of objects and image refinement using UWB Radar," in Proceedings of the German Microwave Conference GeMiC 2008, CD-ROM, Hamburg-Harburg, Germany, Mar. 2008. [3] G. Adamiuk, S. Beer, W. Wiesbeck, and T. Zwick, "Dual-Orthogonal Polarized Antenna for UWB-IR Technology," IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 981-984, Jul. 2009. [4] Adamiuk, W. Wiesbeck, and T. Zwick, "Differential Feeding as a Concept for the Realization of Broadband Dual-Polarized Antennas with Very High Polarization Purity," in 2009 IEEE International Symposium on Antennas & Propagation, Charleston, South Carolina, USA, Jun. 2009.

  12. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  13. Accurate Antenna Models in Ground Penetrating Radar Diffraction Tomography

    DEFF Research Database (Denmark)

    Meincke, Peter; Kim, Oleksiy S.

    2002-01-01

    are modeled by their plane-wave receiving and transmitting spectra. We find these spectra numerically for a resistively loaded dipole using the method of moments. Also, we illustrate, through a numerical example, the importance of taking into account the correct antenna pattern in GPR diffraction tomography.......Linear inversion schemes based on the concept of diffraction tomography have proven successful for ground penetrating radar (GPR) imaging. In many GPR surveys, the antennas of the GPR are located close to the air-soil interface and, therefore, it is important to incorporate the presence...... of this interface in the inversion scheme (see Hansen, T.B. and Meincke Johansen, P., IEEE Trans. Geoscience and Remote Sensing, vol.38, p.496-506, 2000). Hansen and Meincke Johansen modeled the antennas as ideal (Hertzian) electric dipoles. Since practical GPR antennas are not ideal, it is of interest...

  14. Ground penetrating radar documents short-term near-surface hydrological changes around Old Faithful Geyser, Yellowstone National Park, USA

    Science.gov (United States)

    Lynne, Bridget Y.; Heasler, Henry; Jaworowski, Cheryl; Smith, Gary J.; Smith, Isaac J.; Foley, Duncan

    2018-04-01

    In April 2015, Ground Penetrating Radar (GPR) was used to characterize the shallow subsurface (images were collected between two eruptions of Old Faithful Geyser. Each set of time-sequence GPR recordings consisted of four transects aligned to provide coverage near the potential location of the inferred 15 m deep geyser chamber. However, the deepest penetration we could achieve with a 200 MHz GPR antennae was 5 m. Seven time-sequence events were collected over a 48-minute interval to image changes in the near-surface, during pre- and post-eruptive cycles. Time-sequence GPR images revealed a series of possible micro-fractures in a highly porous siliceous sinter in the near-surface that fill and drain repetitively, immediately after an eruption and during the recharge period prior to the next main eruptive event.

  15. Modeling and Experimental Validation for 3D mm-wave Radar Imaging

    Science.gov (United States)

    Ghazi, Galia

    As the problem of identifying suicide bombers wearing explosives concealed under clothing becomes increasingly important, it becomes essential to detect suspicious individuals at a distance. Systems which employ multiple sensors to determine the presence of explosives on people are being developed. Their functions include observing and following individuals with intelligent video, identifying explosives residues or heat signatures on the outer surface of their clothing, and characterizing explosives using penetrating X-rays, terahertz waves, neutron analysis, or nuclear quadrupole resonance. At present, mm-wave radar is the only modality that can both penetrate and sense beneath clothing at a distance of 2 to 50 meters without causing physical harm. Unfortunately, current mm-wave radar systems capable of performing high-resolution, real-time imaging require using arrays with a large number of transmitting and receiving modules; therefore, these systems present undesired large size, weight and power consumption, as well as extremely complex hardware architecture. The overarching goal of this thesis is the development and experimental validation of a next generation inexpensive, high-resolution radar system that can distinguish security threats hidden on individuals located at 2-10 meters range. In pursuit of this goal, this thesis proposes the following contributions: (1) Development and experimental validation of a new current-based, high-frequency computational method to model large scattering problems (hundreds of wavelengths) involving lossy, penetrable and multi-layered dielectric and conductive structures, which is needed for an accurate characterization of the wave-matter interaction and EM scattering in the target region; (2) Development of combined Norm-1, Norm-2 regularized imaging algorithms, which are needed for enhancing the resolution of the images while using a minimum number of transmitting and receiving antennas; (3) Implementation and experimental

  16. Ground penetrating radar antenna measurements based on plane-wave expansions

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  17. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  18. Ground penetrating radar survey across the Bok Bak fault, Kedah, Malaysia

    International Nuclear Information System (INIS)

    Yuniarti Ulfa; Nur Fathin Mohd Jamel; Mardiana Samsuardi

    2013-01-01

    A ground penetrating radar (GPR) survey was done across the Bok Bak Fault zone in Baling, Kedah in order to investigate the shallow subsurface geology of the Bok Bak fault zone, its extension and associated weak zones within the study area. GPR data acquisition was compared with visual inspection on the slope of the outcrop. Ten GPR profiles were acquired using 250 MHz GPR frequency. Basic data processing and filtering to reduce some noise and unwanted signal was done using MALA RAMAC Ground Vision software. The data penetrate around 2 meters in depth for all survey lines. In most lines shows clear images of shallowest Bok Bak Fault (NW trending) as detected at distance of 28 m horizontal marker. It also exhibits several sets of faults as a result of Bok Bak Fault deformation, including the conjugate NE trending fault (Lubok Merbau Fault). Active seismicity encompasses the Malay-Thai Peninsular trigger the changes of Bok Bak Fault dipping direction, steeper dips of conjugate faults and faults or fractures rotational movement. (author)

  19. Broadband Ground Penetrating Radar with conformal antennas for subsurface imaging from a rover

    Science.gov (United States)

    Stillman, D. E.; Oden, C. P.; Grimm, R. E.; Ragusa, M.

    2015-12-01

    Ground-Penetrating Radar (GPR) allows subsurface imaging to provide geologic context and will be flown on the next two martian rovers (WISDOM on ExoMars and RIMFAX on Mars 2020). The motivation of our research is to minimize the engineering challenges of mounting a GPR antenna to a spacecraft, while maximizing the scientific capabilities of the GPR. The scientific capabilities increase with the bandwidth as it controls the resolution. Furthermore, ultra-wide bandwidth surveys allow certain mineralogies and rock units to be discriminated based on their frequency-dependent EM or scattering properties. We have designed and field-tested a prototype GPR that utilizes bi-static circularly polarized spiral antennas. Each antenna has a physical size of 61 x 61 x 4 cm, therefore two antennas could be mounted to the underbelly of a MSL-class rover. Spiral antennas were chosen because they have an inherent broadband response and provide a better low frequency response compared with similarly sized linearly polarized antennas. A horizontal spiral radiator emits energy both upward and downward directions. After the radiator is mounted to a metal surface (i.e. the underside of a rover), a cavity is formed that causes the upward traveling energy to reverberate and cause unwanted interference. This interference is minimized by 1) using a high metallization ratio on the spiral to reduce cavity emissions, and 2) placing absorbing material inside the cavity. The resulting antennas provide high gain (0 to 8 dBi) from 200 to 1000 MHz. The low frequency response can be improved by increasing the antenna thickness (i.e., cavity depth). In an initial field test, the antennas were combined with impulse GPR electronics that had ~140 dB of dynamic range (not including antennas) and a sand/clay interface 7 feet deep was detected. To utilize the full bandwidth the antennas, a gated Frequency Modulated Continuous Waveform system will be developed - similar to RIMFAX. The goal is to reach a

  20. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    DEFF Research Database (Denmark)

    Zibar, Majken Caroline Looms

    2007-01-01

    was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently....... The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...

  1. Data processing and initial results of Chang'e-3 lunar penetrating radar

    Science.gov (United States)

    Su, Yan; Fang, Guang-You; Feng, Jian-Qing; Xing, Shu-Guo; Ji, Yi-Cai; Zhou, Bin; Gao, Yun-Ze; Li, Han; Dai, Shun; Xiao, Yuan; Li, Chun-Lai

    2014-12-01

    To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsurface to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the configuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.

  2. Ground penetrating radar results at the Box Canyon Site - 1996 survey as part of infiltration test

    International Nuclear Information System (INIS)

    Peterson, J.E. Jr.; Williams, K.H.

    1997-08-01

    This data report presents a discussion of the borehole radar tomography experiment conducted at Box Canyon, Idaho. Discussion concentrates on the survey methodology, data acquisition procedures, and the resulting tomographic images and interpretations. The entire geophysics field effort for FY96 centered around the collection of the borehole radar data within the inclined boreholes R1, R2, R3, and R4 before, during, and after the ponded infiltration experiment. The well pairs R1-R2, R2-R4, and R3-R4 comprised the bulk of the field survey; however, additional data were collected between vertical boreholes within and around the infiltration basin. The intent of the inclined boreholes was to allow access beneath the infiltration basin and to enhance the ability of the radar method to image both vertical and horizontal features where flow may dominate. This data report will concentrate on the inclined borehole data and the resulting tomograms. The borehole radar method is one in which modified ground penetrating radar antennas are lowered into boreholes and high frequency electromagnetic signals are transmitted through subsurface material to a receiving antenna. The transmitted signals may be represented as multiple raypaths crossing through the zone of interest. If sufficient raypaths are recorded, a tomographic image may be obtained through computer processing. The data normally recorded are signal amplitude versus time. The information extracted from such data includes the following: (a) the transit time which depends on the wave velocity, (b) the amplitude which depends on the wave attenuation, the dispersion which indicates a change in velocity and attenuation with frequency

  3. The Processing and Analysis of Lunar Penetrating Radar Channel-1 Data from Chang'E-3

    OpenAIRE

    Gao Yun-ze; Dong Ze-hua; Fang Guang-you; Ji Yi-cai; Zhou Bin

    2015-01-01

    Lunar Penetrating Radar (LPR), which is one of the most important science payloads onboard the Chang'E-3 (CE-3) rover, is used to obtain electromagnetic image less than 100 m beneath the lunar surface. This paper describes the system composition and working mechanism of the LPR and presents a detailed analysis of its data. We investigated special signal-processing methods and present the result of channel-1 data. The result shows that the effective echo occurs at depths greater than 100 m. Mo...

  4. German Radar Observation Shuttle Experiment (ROSE)

    Science.gov (United States)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  5. On thin ice: ground penetrating radar improves safety for seismic crews in frigid arctic darkness

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2002-02-01

    The fact that workers are pushing the limits of the Canadian Arctic's ice is more than act of faith; it is the result of rapidly advancing technologies that are taking the guesswork, and therefore the risk, out of icetop exploration. The most important element to improve safety in recent years has been the increased use of ground penetrating radar (GPR) which allows the most detailed images yet of ice thickness. It is an absolutely invaluable tool for allowing vehicles to drive along the ice roads up the rivers and offshore, with significantly reduced risk for the people involved. GPR is an essential part of the equipment usually tied into global positioning system (GPS) and and geographic information system (GIS). The collected GPS and GPR data are loaded into the workstation and merged to produce a GIS map where the colored map of ice thickness is overlaid over satellite image or aerial photographs. Ground penetrating radar was first used in Austria in 1929 to measure glacial ice thickness. It fell into disuse during the 1950s but the technology advanced rapidly in subsequent years; it was used as part of Apollo 17's lunar sounder experiment in 1972. It is particularly useful in northern Arctic regions to determine near-surface thickness. With pipeline developments in the active planning stages, measuring the thickness of ice is more vital than ever; investors will not commit to multi-billion dollar projects before the resource base is fully delineated.

  6. Lunar Penetrating Radar onboard the Chang'e-3 mission

    Science.gov (United States)

    Fang, Guang-You; Zhou, Bin; Ji, Yi-Cai; Zhang, Qun-Ying; Shen, Shao-Xiang; Li, Yu-Xi; Guan, Hong-Fei; Tang, Chuan-Jun; Gao, Yun-Ze; Lu, Wei; Ye, Sheng-Bo; Han, Hai-Dong; Zheng, Jin; Wang, Shu-Zhi

    2014-12-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.

  7. Simulation model study of limitation on the locating distance of a ground penetrating radar; Chichu tansa radar no tansa kyori genkai ni kansuru simulation model no kochiku

    Energy Technology Data Exchange (ETDEWEB)

    Nakauchi, T; Tsunasaki, M; Kishi, M; Hayakawa, H [Osaka Gas Co. Ltd., Osaka (Japan)

    1996-10-01

    Various simulations were carried out under various laying conditions to obtain the limitation of locating distance for ground penetrating radar. Recently, ground penetrating radar has been remarked as location technology of obstacles such as the existing buried objects. To enhance the theoretical model (radar equation) of a maximum locating distance, the following factors were examined experimentally using pulse ground penetrating radar: ground surface conditions such as asphalt pavement, diameter of buried pipes, material of buried pipes, effect of soil, antenna gain. The experiment results well agreed with actual field experiment ones. By adopting the antenna gain and effect of the ground surface, the more practical simulation using underground models became possible. The maximum locating distance was more improved by large antenna than small one in actual field. It is assumed that large antenna components contributed to improvement of gain and reduction of attenuation during passing through soil. 5 refs., 12 figs.

  8. Three dimensional numerical modeling for ground penetrating radar using finite difference time domain (FDTD) method; Jikan ryoiki yugen sabunho ni yoru chika radar no sanjigen suchi modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y; Ashida, Y; Sassa, K [Kyoto University, Kyoto (Japan)

    1996-10-01

    3-D numerical modeling by FDTD method was studied for ground penetrating radar. Radar radiates electromagnetic wave, and determines the existence and distance of objects by reflection wave. Ground penetrating radar uses the above functions for underground surveys, however, its resolution and velocity analysis accuracy are problems. In particular, propagation characteristics of electromagnetic wave in media such as heterogeneous and anisotropic soil and rock are essential. The behavior of electromagnetic wave in the ground could be precisely reproduced by 3-D numerical modeling using FDTD method. FDTD method makes precise analysis in time domain and electric and magnetic fields possible by sequentially calculating the difference equation of Maxwell`s equation. Because of the high calculation efficiency of FDTD method, more precise complicated analysis can be expected by using the latest advanced computers. The numerical model and calculation example are illustrated for surface type electromagnetic pulse ground penetrating radar assuming the survey of steel pipes of 1m deep. 4 refs., 3 figs., 1 tab.

  9. Data processing and initial results of Chang'e-3 lunar penetrating radar

    International Nuclear Information System (INIS)

    Su Yan; Feng Jian-Qing; Xing Shu-Guo; Li Han; Dai Shun; Xiao Yuan; Li Chun-Lai; Fang Guang-You; Ji Yi-Cai; Zhou Bin; Gao Yun-Ze

    2014-01-01

    To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsurface to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the configuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected

  10. Three-dimensional subsurface imaging synthetic aperture radar

    International Nuclear Information System (INIS)

    Moussally, G.J.

    1995-01-01

    The objective of this applied research and development project is to develop a system known as '3-D SISAR'. This system consists of a ground penetrating radar with software algorithms designed for the detection, location, and identification of buried objects in the underground hazardous waste environments found at DOE storage sites. Three-dimensional maps of the object locations will be produced which can assist the development of remediation strategies and the characterization of the digface during remediation operations. It is expected that the 3-D SISAR will also prove useful for monitoring hydrocarbon based contaminant migration after remediation. The underground imaging technique being developed under this contract utilizes a spotlight mode Synthetic Aperture Radar (SAR) approach which, due to its inherent stand-off capability, will permit the rapid survey of a site and achieve a high degree of productivity over large areas. When deployed from an airborne platform, the stand-off techniques is also seen as a way to overcome practical survey limitations encountered at vegetated sites

  11. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer

    Science.gov (United States)

    Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean

    2014-07-01

    The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.

  12. Sedimentology and Ground-Penetrating Radar Characteristics of a Pleistocene Sandur Deposit

    DEFF Research Database (Denmark)

    Olsen, Henrik; Andreasen, Frank Erik

    1995-01-01

    -upward lithology, terminating with a jökulhlaup episode characterized by large compound dune migration and slack-water draping. Mapping of a more than 200 m long well exposed pitwall and ground-penetrating radar measurements in a 50 × 200 m grid along the pitwall made it possible to outline the three...

  13. Lunar Penetrating Radar onboard the Chang'e-3 mission

    International Nuclear Information System (INIS)

    Fang Guang-You; Zhou Bin; Ji Yi-Cai; Zhang Qun-Ying; Shen Shao-Xiang; Li Yu-Xi; Guan Hong-Fei; Tang Chuan-Jun; Gao Yun-Ze; Lu Wei; Ye Sheng-Bo; Han Hai-Dong; Zheng Jin; Wang Shu-Zhi

    2014-01-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed

  14. Ground Penetrating Radar investigation of depositional architecture: the São Sebastião and Marizal formations in the Cretaceous Tucano Basin (Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Larissa Natsumi Tamura

    Full Text Available ABSTRACT: One key factor for the advance in the study of fluvial deposits is the application of geophysical methods, being the Ground Penetrating Radar one of special value. Although applied to active rivers, the method is not extensively tested on the rock record, bearing interest for hydrocarbon reservoir analogue models. The São Sebastião and Marizal formations were the subject of previous studies, which made possible the comparison of Ground Penetrating Radar survey to previous stratigraphic studies in order to identify the best combination of resolution, penetration and antenna frequency for the studied subject. Eight radar facies were identified, being six of them related to fluvial sedimentary environments, one related to eolian sedimentary environment and one radar facies interpreted as coastal sedimentary environment. The Ground Penetrating Radar data showed compatibility to sedimentary structures in the outcrops, like planar and trough cross-stratified beds. It is noted that the obtained resolution was efficient in the identification of structures up to 0.3 m using a 100 MHz antenna. In this way, the Ground Penetrating Radar survey in outcrops bears great potential for further works on fluvial depositional architecture.

  15. Application of Ground-Penetrating Radar for Detecting Internal Anomalies in Tree Trunks with Irregular Contours.

    Science.gov (United States)

    Li, Weilin; Wen, Jian; Xiao, Zhongliang; Xu, Shengxia

    2018-02-22

    To assess the health conditions of tree trunks, it is necessary to estimate the layers and anomalies of their internal structure. The main objective of this paper is to investigate the internal part of tree trunks considering their irregular contour. In this respect, we used ground penetrating radar (GPR) for non-invasive detection of defects and deteriorations in living trees trunks. The Hilbert transform algorithm and the reflection amplitudes were used to estimate the relative dielectric constant. The point cloud data technique was applied as well to extract the irregular contours of trunks. The feasibility and accuracy of the methods were examined through numerical simulations, laboratory and field measurements. The results demonstrated that the applied methodology allowed for accurate characterizations of the internal inhomogeneity. Furthermore, the point cloud technique resolved the trunk well by providing high-precision coordinate information. This study also demonstrated that cross-section tomography provided images with high resolution and accuracy. These integrated techniques thus proved to be promising for observing tree trunks and other cylindrical objects. The applied approaches offer a great promise for future 3D reconstruction of tomographic images with radar wave.

  16. Textural features for radar image analysis

    Science.gov (United States)

    Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.

    1981-01-01

    Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.

  17. Integrating ground-penetrating radar and borehole data from a Wadden Sea barrier island

    DEFF Research Database (Denmark)

    Nielsen, Lars; Møller, I.; Nielsen, L. H.

    2009-01-01

    Sea level rise may have large implications for low-gradient barrier coastal systems. This problem motivated an integrated ground-penetrating radar (GPR) and sedimentological study of the Rømø Wadden Sea barrier island. Crossing W-E and N-S-oriented 100 MHz GPR reflection profiles with a total...... island. We document different standard processing steps which lead to increased signal-to-noise ratio, improved resolution and trustworthy GPR-to-borehole correlation. The GPR signals image the subsurface layering with a vertical resolution of ~ 0.2-0.3 m. The penetration depth of the GPR reflection...... conversion of the reflection profiles. The GPR reflections are correlated with sedimentological facies logs, and we test to which extent it is possible to map the architecture of different sedimentary units of the Rømø barrier island based on joint interpretation of the GPR and core data. Detailed...

  18. Quantitative analysis of ground penetrating radar data in the Mu Us Sandland

    Science.gov (United States)

    Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong

    2018-06-01

    Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.

  19. A 2.5-D Diffraction Tomography Inversion Scheme for Ground Penetrating Radar

    DEFF Research Database (Denmark)

    Meincke, Peter

    1999-01-01

    A new 2.5-D inversion scheme is derived for ground penetrating radar (GPR) that applies to a monostatic fixed-offset measurement configuration. The inversion scheme, which is based upon the first Born approximation and the pseudo-inverse operator, takes rigorously into account the planar air...

  20. THE IMAGES OF SUBSURFACE TERTIARY – QUARTENARY DEPOSITS BASED ON GROUND PENETRATING RADAR RECORDS OF SUBI KECIL ISLAND COAST, NATUNA DISTRICT, RIAU ARCHIPELAGO PROVINCE

    Directory of Open Access Journals (Sweden)

    Kris Budiono

    2017-07-01

    Full Text Available Subsurface Tertiary to Quaternary deposits from coast of Subi Kecil Island, Natuna Distric, Riau Archipelago Province, were imaged with Ground Penetrating Radar (GPR. The GPR survey was carried out by using GSSI Surveyor III/20 with 270 MHz and 40 MHz of 3200 MLF antennas. GPR data were processed using software GSSI’s RADAN for Windows NT™. The interpretation were done by using the radar facies as a groups of radar reflections. The GPR images of study area can be recoqnized in to several facies such as parallel, sub parallel, chaotic, oblique, mound and reflection-free. The calibration were done with geological data along the coast (cliff and outcrop. Unit A is the uppermost layer which is characterized by continous to non continous pararel reflection, srong reflector and high amplitude and is interpreted as alluvium deposits. Below the unit A is unit B which is characterized by non continous sub parallel, chaotic and mound reflector, strong reflector and high amplitude. Unit C and D (Mio-Oligocene are overlain by unit A and B include chaotic, reflection-free and, locally, discontinuous parallel, oblique mound reflector radar facies, correlatable at the cliff face to massive sands, mostly representing near coastal deposits. These units are bounded by continuous, high amplitude reflections that can be easily correlatable throughout the GPR profiles, serving as important stratigraphic markers. The GPR survey may improve the reconstruction of the depositional environments through the recognition of massive and unconsolidated sand deposits within unit A and B (Holocene. The stratigraphic framework was also improved through the recognition of the discontinuity surface between Units C and D.

  1. Through the looking glass: Applications of ground-penetrating radar in archaeology

    Science.gov (United States)

    Stamos, Antonia

    The focus of this dissertation is to present the results of four years' worth of geophysical surveying at four major archaeological sites in Greece and the benefits to the archaeological community. The ground penetrating radar offers an inexpensive, non-destructive solution to the problem of deciding how much of a site is worth excavating and which areas would yield the most promising results. An introduction to the ground penetrating radar, or GPR, the equipment necessary to conduct a geophysical survey in the field, and the methods of data collection and subsequent data processing are all addressed. The benefits to the archeological community are many, and future excavations will incorporate such an important tool for a greater understanding of the site. The history of GPR work in the archaeological field has grown at an astounding rate from its beginnings as a simple tool for petroleum and mining services in the beginning of the twentieth century. By mid-century, the GPR was first applied to archaeological sites rather than its common use by utility companies in locating pipes, cables, tunnels, and shafts. Although the preliminary surveys were little more than a search to locate buried walls, the success of these initial surveys paved the ground for future surveys at other archaeological sites, many testing the radar's efficacy with a myriad of soil conditions and properties. The four sites in which geophysical surveys with a ground penetrating radar were conducted are Azorias on the island of Crete, Kolonna on the island of Aegina, Mochlos Island and Coastal Mochlos on the island of Crete, and Mycenae in the Peloponnese on mainland Greece. These case studies are first presented in terms of their geographical location, their mythology and etymology, where applicable, along with a brief history of excavation and occupation of the site. Additional survey methods were used at Mycenae, including aerial photography and ERDAS Imagine, a silo locating program now

  2. Electromagnetic modelling of Ground Penetrating Radar responses to complex targets

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonis

    2014-05-01

    defined through a constant real value, or else its frequency-dispersion properties can be taken into account by incorporating into the model Debye approximations. The electromagnetic source can be represented as a simple line of current (in the case of two-dimensional models), a Hertzian dipole, a bow tie antenna, or else, the realistic description of a commercial antenna can be included in the model [2]. Preliminary results for some of the proposed cells are presented, obtained by using GprMax [3], a freeware tool which solves Maxwell's equations by using a second order in space and time Finite-Difference Time-Domain algorithm. B-Scans and A-Scans are calculated at 1.5 GHz, for the total electric field and for the field back-scattered by targets embedded in the cells. A detailed description of the structures, together with the relevant numerical results obtained to date, are available for the scientific community on the website of COST Action TU1208, www.GPRadar.eu. Research groups working on the development of electromagnetic forward- and inverse-scattering techniques, as well as on imaging methods, might test and compare the accuracy and applicability of their approaches on the proposed set of scenarios. The aim of this initiative is not that of identifying the best methods, but more properly to indicate the range of reliability of each approach, highlighting its advantages and drawbacks. In the future, the realisation of the proposed concrete cells and the acquisition of GPR experimental data would allow a very effective benchmark for forward and inverse scattering methods. References [1] R. Yelf, A. Ward, "Nine steps to concrete wisdom." Proc. 13th International Conference on Ground Penetrating Radar, Lecce, Italy, 21-25 June 2010, pp. 1-8. [2] C. Warren, A. Giannopoulos, "Creating FDTD models of commercial GPR antennas using Taguchi's optimisation method." Geophysics (2011), 76, article ID G37. [3] A. Giannopoulos, "Modelling ground penetrating radar by GPRMAX

  3. Image Registration Methode in Radar Interferometry

    Directory of Open Access Journals (Sweden)

    S. Chelbi

    2015-08-01

    Full Text Available This article presents a methodology for the determination of the registration of an Interferometric Synthetic radar (InSAR pair images with half pixel precision. Using the two superposed radar images Single Look complexes (SLC [1-4], we developed an iterative process to superpose these two images according to their correlation coefficient with a high coherence area. This work concerns the exploitation of ERS Tandem pair of radar images SLC of the Algiers area acquired on 03 January and 04 January 1994. The former is taken as a master image and the latter as a slave image.

  4. Space Radar Image of Bahia

    Science.gov (United States)

    1994-01-01

    limited by the nearly continuous cloud cover in the region and heavy rainfall, which occurs more than 150 days each year. The ability of the shuttle radars to 'see' through the forest canopy to the cultivated cacao below -- independent of weather or sunlight conditions --will allow researchers to distinguish forest from cabruca in unprecedented detail. This SIR-C/X-SAR image was produced by assigning red to the L-band, green to the C-band and blue to the X-band. The Una Reserve is located in the middle of the image west of the coastline and slightly northwest of Comandatuba River. The reserve's primary forests are easily detected by the pink areas in the image. The intensity of red in these areas is due to the high density of forest vegetation (biomass) detected by the radar's L-band (horizontally transmitted and vertically received) channel. Secondary forest is visible along the reserve's eastern border. The Serrado Mar mountain range is located in the top left portion of the image. Cabruca forest to the west of Una Reserve has a different texture and a yellow color. The removal of understory in cabruca forest reduces its biomass relative to primary forest, which changes the L-band and C-band penetration depth and returns, and produces a different texture and color in the image. The region along the Atlantic is mainly mangrove swamp, agricultural fields and urban areas. The high intensity of blue in this region is a result of increasing X-band return in areas covered with swamp and low vegetation. The image clearly separates the mangrove region (east of coastal Highway 001, shown in blue) from the taller and dryer forest west of the highway. The high resolution capability of SIR-C/X-SAR imaging and the sensitivity of its frequency and polarization channels to various land covers will be used for monitoring and mapping areas of importance for conservation. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar(SIR-C/X-SAR) is part of NASA's Mission to Planet Earth

  5. The Processing and Analysis of Lunar Penetrating Radar Channel-1 Data from Chang'E-3

    Directory of Open Access Journals (Sweden)

    Gao Yun-ze

    2015-10-01

    Full Text Available Lunar Penetrating Radar (LPR, which is one of the most important science payloads onboard the Chang'E-3 (CE-3 rover, is used to obtain electromagnetic image less than 100 m beneath the lunar surface. This paper describes the system composition and working mechanism of the LPR and presents a detailed analysis of its data. We investigated special signal-processing methods and present the result of channel-1 data. The result shows that the effective echo occurs at depths greater than 100 m. Moreover, an unusual reflection exists at depth of 40 m, which may be the boundary of two geological units beneath the lunar surface.

  6. Use of Ground Penetrating Radar for Locating Contraband Aboard Ocean Going Vessels: Feasibility Study

    National Research Council Canada - National Science Library

    Llopis, Jose

    2001-01-01

    Ground Penetrating Radar (GPR) surveys were conducted over various stockpiled materials at the Alabama state Docks located in Mobile, AL, to determine whether GPR is a viable method for rapidly detecting contraband materials...

  7. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  8. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  9. The study of fresh-water lake ice using multiplexed imaging radar

    Science.gov (United States)

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  10. Automated Ground Penetrating Radar hyperbola detection in complex environment

    Science.gov (United States)

    Mertens, Laurence; Lambot, Sébastien

    2015-04-01

    Ground Penetrating Radar (GPR) systems are commonly used in many applications to detect, amongst others, buried targets (various types of pipes, landmines, tree roots ...), which, in a cross-section, present theoretically a particular hyperbolic-shaped signature resulting from the antenna radiation pattern. Considering the large quantity of information we can acquire during a field campaign, a manual detection of these hyperbolas is barely possible, therefore we have a real need to have at our disposal a quick and automated detection of these hyperbolas. However, this task may reveal itself laborious in real field data because these hyperbolas are often ill-shaped due to the heterogeneity of the medium and to instrumentation clutter. We propose a new detection algorithm for well- and ill-shaped GPR reflection hyperbolas especially developed for complex field data. This algorithm is based on human recognition pattern to emulate human expertise to identify the hyperbolas apexes. The main principle relies in a fitting process of the GPR image edge dots detected with Canny filter to analytical hyperbolas, considering the object as a punctual disturbance with a physical constraint of the parameters. A long phase of observation of a large number of ill-shaped hyperbolas in various complex media led to the definition of smart criteria characterizing the hyperbolic shape and to the choice of accepted value ranges acceptable for an edge dot to correspond to the apex of a specific hyperbola. These values were defined to fit the ambiguity zone for the human brain and present the particularity of being functional in most heterogeneous media. Furthermore, the irregularity is particularly taken into account by defining a buffer zone around the theoretical hyperbola in which the edge dots need to be encountered to belong to this specific hyperbola. First, the method was tested in laboratory conditions over tree roots and over PVC pipes with both time- and frequency-domain radars

  11. THE RESULTS OF THE DEFECT PLACES INVESTIGATION OF DONETSK RAILWAY ROAD BED BY GROUND PENETRATING RADAR COMPLEX

    Directory of Open Access Journals (Sweden)

    V. D. Petrenko

    2014-10-01

    Full Text Available Purpose. Defective places definition of road bed at ground penetrating radar is examined. Methodology. For achievement of this goal the experimental research on ground penetrating radar inspection of road bed defective places of the Donetsk Railway, which are caused by a complex of various reasons of geotechnical and constructive character, were conducted. Findings. According to these diagnostic results of road bed on the three districts of the Donetsk Railway is revealed the main causes which lead to the defects appearance, deformities and injuries in it, there is abuse of process parameters and modify its physic mechanical soil properties of natural and technology-related factors. As it is established, the use of ground penetrating radar of series “Losa” on the railways of Ukraine allows searching ballast tank in the body of road bed, defining damp places in soil road bed and foundations, to find arrangement of foreign matter in the soil road bed and work search heterogeneity and places weakening soil. In addition, the use of ground penetrating radar provides rapid detection of defects, deformation and damage of railway track, especially in areas the most dangerous for rolling stock that creates the high level security at the main and auxiliary lines of Ukrzaliznytsia. In conducting the research was justified the high level of reliability and performance with autonomous use of ground penetrating radar. Originality. In modern conditions of defects determination, deformations and damages by traditional methods with application of engineering-geological investigations, it is impossible in connection with their insufficient efficiency. Therefore the using of highly effective methodology of expeditious tool identification of defective places allows reducing significantly the periods of repair of a railway track which is very important for introduction of the high-speed movement on the Ukrainian Railways. Practical value. On the basis of the

  12. Detection of Leaks in Water Mains Using Ground Penetrating Radar

    OpenAIRE

    Alaa Al Hawari; Mohammad Khader; Tarek Zayed; Osama Moselhi

    2016-01-01

    Ground Penetrating Radar (GPR) is one of the most effective electromagnetic techniques for non-destructive non-invasive subsurface features investigation. Water leak from pipelines is the most common undesirable reason of potable water losses. Rapid detection of such losses is going to enhance the use of the Water Distribution Networks (WDN) and decrease threatens associated with water mains leaks. In this study, GPR approach was developed to detect leaks by implementing an appropriate imagin...

  13. Ground penetrating radar for determining volumetric soil water content ; results of comparative measurements at two test sites

    NARCIS (Netherlands)

    Overmeeren, R.A. van; Sariowan, S.V.; Gehrels, J.C.

    1997-01-01

    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test

  14. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    Science.gov (United States)

    Dai, Shun; Su, Yan; Xiao, Yuan; Feng, Jian-Qing; Xing, Shu-Guo; Ding, Chun-Yu

    2014-12-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.

  15. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Dai Shun; Su Yan; Xiao Yuan; Feng Jian-Qing; Xing Shu-Guo; Ding Chun-Yu

    2014-01-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  16. Advies voor de toepassing van ground-penetrating radar bij de inventarisatie van de grondwaterdynamiek

    NARCIS (Netherlands)

    Knotters, M.

    2001-01-01

    Ground-penetrating radar (GPR) biedt mogelijk een nauwkeurig alternatief voor arbeidsintensieve metingen van de grondwaterstand in boorgaten. De GPR-metingen kunnen als hulpinformatie dienen bij geostatistische interpolatie van grondwaterstanden. Op basis van literatuurstudie en verkenning van het

  17. A controlled monitoring study of simulated clandestine graves using 3D ground penetrating radar

    CSIR Research Space (South Africa)

    van Schoor, Michael

    2017-06-01

    Full Text Available A controlled three-dimensional ground penetrating radar monitoring study over simulated clandestine graves was conducted near Pretoria, South Africa, in which the detectability of graves as a function of post-burial interval was assessed...

  18. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    OpenAIRE

    N. N. Halimshah; A. Yusup; Z. Mat Amin; M. D. Ghazalli

    2015-01-01

    Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and effic...

  19. Imaging the Mariánské Lázně Fault (Czech Republic) by 3-D ground-penetrating radar and electric resistivity tomography

    Czech Academy of Sciences Publication Activity Database

    Fischer, Tomáš; Štěpančíková, Petra; Karousová, M.; Tábořík, P.; Flechsig, C.; Gaballah, M.

    2012-01-01

    Roč. 56, č. 4 (2012), s. 1019-1036 ISSN 0039-3169 R&D Projects: GA AV ČR IAA300120905 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z30460519 Keywords : fault tectonics * resistivity tomography * ground penetrating radar Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.975, year: 2012

  20. Onboard Data Processors for Planetary Ice-Penetrating Sounding Radars

    Science.gov (United States)

    Tan, I. L.; Friesenhahn, R.; Gim, Y.; Wu, X.; Jordan, R.; Wang, C.; Clark, D.; Le, M.; Hand, K. P.; Plaut, J. J.

    2011-12-01

    Among the many concerns faced by outer planetary missions, science data storage and transmission hold special significance. Such missions must contend with limited onboard storage, brief data downlink windows, and low downlink bandwidths. A potential solution to these issues lies in employing onboard data processors (OBPs) to convert raw data into products that are smaller and closely capture relevant scientific phenomena. In this paper, we present the implementation of two OBP architectures for ice-penetrating sounding radars tasked with exploring Europa and Ganymede. Our first architecture utilizes an unfocused processing algorithm extended from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS, Jordan et. al. 2009). Compared to downlinking raw data, we are able to reduce data volume by approximately 100 times through OBP usage. To ensure the viability of our approach, we have implemented, simulated, and synthesized this architecture using both VHDL and Matlab models (with fixed-point and floating-point arithmetic) in conjunction with Modelsim. Creation of a VHDL model of our processor is the principle step in transitioning to actual digital hardware, whether in a FPGA (field-programmable gate array) or an ASIC (application-specific integrated circuit), and successful simulation and synthesis strongly indicate feasibility. In addition, we examined the tradeoffs faced in the OBP between fixed-point accuracy, resource consumption, and data product fidelity. Our second architecture is based upon a focused fast back projection (FBP) algorithm that requires a modest amount of computing power and on-board memory while yielding high along-track resolution and improved slope detection capability. We present an overview of the algorithm and details of our implementation, also in VHDL. With the appropriate tradeoffs, the use of OBPs can significantly reduce data downlink requirements without sacrificing data product fidelity. Through the development

  1. Mars, accessing the third dimension: a software tool to exploit Mars ground penetrating radars data.

    Science.gov (United States)

    Cantini, Federico; Ivanov, Anton B.

    2016-04-01

    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), on board the ESA's Mars Express and the SHAllow RADar (SHARAD), on board the NASA's Mars Reconnaissance Orbiter are two ground penetrating radars (GPRs) aimed to probe the crust of Mars to explore the subsurface structure of the planet. By now they are collecting data since about 10 years covering a large fraction of the Mars surface. On the Earth GPRs collect data by sending electromagnetic (EM) pulses toward the surface and listening to the return echoes occurring at the dielectric discontinuities on the planet's surface and subsurface. The wavelengths used allow MARSIS EM pulses to penetrate the crust for several kilometers. The data products (Radargrams) are matrices where the x-axis spans different sampling points on the planet surface and the y-axis is the power of the echoes over time in the listening window. No standard way to manage this kind of data is established in the planetary science community and data analysis and interpretation require very often some knowledge of radar signal processing. Our software tool is aimed to ease the access to this data in particular to scientists without a specific background in signal processing. MARSIS and SHARAD geometrical data such as probing point latitude and longitude and spacecraft altitude, are stored, together with relevant acquisition metadata, in a geo-enabled relational database implemented using PostgreSQL and PostGIS. Data are extracted from official ESA and NASA released data using self-developed python classes and scripts and inserted in the database using OGR utilities. This software is also aimed to be the core of a collection of classes and script to implement more complex GPR data analysis. Geometrical data and metadata are exposed as WFS layers using a QGIS server, which can be further integrated with other data, such as imaging, spectroscopy and topography. Radar geometry data will be available as a part of the iMars Web

  2. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1998-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  3. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1999-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  4. Ground Penetrating Radar (GPR) for Detection of Underground Objects

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Kamal Shah Shamsuddin; Wan Zainal Abidin; Awang Sarfarudin Awang Putra

    2011-01-01

    Ground Penetrating Radar (GPR) utilizes an electromagnetic microwave that is transmitted into the matter under investigation. Any objects with different dielectric properties from the medium of the matter under investigation will reflect the waves and will be picked up by the receivers embedded in the antenna. We have applied GPR in various application such as concrete inspection, underground utility detection, grave detection, archaeology, oil contamination of soil, soil layer thickness measurement and etc. This paper will give general findings of the application of GPR to provide solutions to the industry and public. The results of the GPR surveys will be discussed. (author)

  5. Radar Image, Hokkaido, Japan

    Science.gov (United States)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62

  6. The Preliminary Processing and Geological Interpretation of Lunar Penetrating Radar Channel-1 Data from Chang'E-3

    Science.gov (United States)

    Yuan, Y.; Zhu, P.; Zhao, N.; Guo, S.; Xiao, L.; Xiao, Z.

    2014-12-01

    This is the first time to obtain the subsurface profiles using the lunar penetrating radar (LPR) on the Moon surface. Two types of antennas, channel-1 and channel-2, with different resolutions were equipped on the LPR, which detected the lunar subsurface structure with low frequency and the thickness of regolith with high frequency, respectively. We focus on the study of the lunar subsurface structure using channel-1 data. Considering the propagation characteristics of radar wave, the processing of amplitude compensation and filtering are applied to improve the imaging quality, and the processed profile clearly represents deeper than 300 meters of layered information. Based on the geological background around landing site, we present the preliminary geological interpretation for the lunar subsurface structure. More than 5 obvious reflecting events should be concerned along the track of the Yutu rover, which infer different lava sequences, including the Eratosthenian basalts, paleo-regolith formed between Eratosthenian and Imbrium, and multistage infilled lavas formed inter-layers among the Imbrium basalts.

  7. Space Radar Image of Wenatchee, Washington

    Science.gov (United States)

    1994-01-01

    This spaceborne radar image shows a segment of the Columbia River as it passes through the area of Wenatchee, Washington, about 220 kilometers (136 miles) east of Seattle. The Wenatchee Mountains, part of the Cascade Range, are shown in green at the lower left of the image. The Cascades create a 'rain shadow' for the region, limiting rainfall east of the range to less than 26 centimeters (10 inches) per year. The radar's ability to see different types of vegetation is highlighted in the contrast between the pine forests, that appear in green and the dry valley plain that shows up as dark purple. The cities of Wenatchee and East Wenatchee are the grid-like areas straddling the Columbia River in the left center of the image. With a population of about 60,000, the region produces about half of Washington state's lucrative apple crop. Several orchard areas appear as green rectangular patches to the right of the river in the lower right center. Radar images such as these can be used to monitor land use patterns in areas such as Wenatchee, that have diverse and rapidly changing urban, agricultural and wild land pressures. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 10, 1994. The image is 38 kilometers by 45 kilometers (24 miles by 30 miles) and is centered at 47.3 degrees North latitude, 120.1 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  8. INVESTIGATION OF GROUND PENETRATING RADAR FOR DETECTION OF ROAD SUBSIDENCE NORTHCOAST OF JAKARTA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Kris Budiono

    2017-07-01

    Full Text Available A survey of Ground Penetrating Radar (GPR was conducted in the coastal zone of northern part of Jakarta, Indonesia. The purpose of this survey was to provide the subsurface of coastal Quaternary sedimentary features and stratigraphy disturbances associated with induce post road subsidence 2009. The possibility of subsurface lithology disturbance shown by the GPR record. This record resulted from GPR methods using SIR system 20 GSSI, 270 MHz and 400 MHz and MLF 3200 transducer. The method is a promising tool for resolving changes of physical properties in subsurface lithology condition at the natural scale due to composition changes of physical properties.The reflection data resulted that GPR can distinguish between image the basic geometry forms such as lithology , structure geology , soil and subsurface utilities condition

  9. Civil Engineering Applications of Ground Penetrating Radar Recent Advances @ the ELEDIA Research Center

    Science.gov (United States)

    Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea

    2014-05-01

    The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level

  10. Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field

    Science.gov (United States)

    Xiuwei Liu; Xuejun Dong; Qingwu Xue; Daniel I. Leskovar; John Jifon; John R. Butnor; Thomas Marek

    2018-01-01

    Aim Ground penetrating radar (GPR) as a non-invasive technique is widely used in coarse root detection. However, the applicability of the technique to detect fine roots of agricultural crops is unknown. The objective of this study was to assess the feasibility of utilizing GPR to detect fine roots in the field.

  11. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  12. Improving mine recognition through processing and Dempster-Shafer fusion of ground-penetrating radar data

    NARCIS (Netherlands)

    Milisavljević, N.; Bloch, I.; Broek, S.P. van den; Acheroy, M.

    2003-01-01

    A methodfor modeling andcombination of measures extractedfrom a ground-penetrating radar (GPR) in terms of belief functions within the Dempster-Shafer framework is presentedandillustratedon a real GPR data set. A starting point in the analysis is a preprocessed C-scan of a sand-lane containing some

  13. Ground-penetrating radar observations for estimating the vertical displacement of rotational landslides

    OpenAIRE

    C. Lissak; O. Maquaire; J.-P. Malet; F. Lavigne; C. Virmoux; C. Gomez; R. Davidson

    2014-01-01

    The objective of this paper is to demonstrate the applicability of Ground Penetrating Radar (GPR) for monitoring the displacement of slow-moving landslides. GPR data is used to estimate the vertical movement of rotational slides in combination with other surveying techniques. The experimental site is located along the Normandy coast (North East France) here several rotational landslides are continuously affected by a seasonal kinematic pattern (low displacem...

  14. Quantifying snow and vegetation interactions in the high arctic based on ground penetrating radar (GPR)

    DEFF Research Database (Denmark)

    Gacitúa, G.; Bay, C.; Tamstorf, M.

    2013-01-01

    Arctic in Northeast Greenland. We used ground penetrating radar (GPR) for snow thickness measurements across the Zackenberg valley. Measurements were integrated to the physical conditions that support the vegetation distribution. Descriptive statistics and correlations of the distribution of each...

  15. Ground-penetrating radar in characterizing and monitoring waste-burial sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Kimball, C.S.

    1982-02-01

    Potential environmental hazards are associated with buried chemical and nuclear wastes because of the possibilities of inadvertent excavation or migration of toxic chemicals or radionuclides into groundwater or surface water bodies. Concern is often related to the fact that many existing waste burial sites have been found to be inadequately designed and/or poorly documented. New technology and innovative applications of current technology are needed to locate, characterize, and monitor the wastes contained in such sites. The work described in this paper is focused on the use of ground-penetrating radar (GPR) for those purposes

  16. Global Research Patterns on Ground Penetrating Radar (GPR)

    Science.gov (United States)

    Gizzi, Fabrizio Terenzio; Leucci, Giovanni

    2018-05-01

    The article deals with the analysis of worldwide research patterns concerning ground penetrating radar (GPR) during 1995-2014. To do this, the Thomson Reuters' Science Citation Index Expanded (SCI-EXPANDED) and the Social Sciences Citation Index accessed via the Web of Science Core Collection were the two bibliographic databases taken as a reference. We pay attention to the document typology and language, the publication trend and citations, the subject categories and journals, the collaborations between authors, the productivity of the authors, the most cited articles, the countries and the institutions involved, and other hot issues. Concerning the main research subfields involving GPR use, there were five, physical-mathematical, sedimentological-stratigraphical, civil engineering/engineering geology/cultural heritage, hydrological (HD), and glaciological (GL), subfields.

  17. Civil Engineering Applications of Ground Penetrating Radar in Finland

    Science.gov (United States)

    Pellinen, Terhi; Huuskonen-Snicker, Eeva; Olkkonen, Martta-Kaisa; Eskelinen, Pekka

    2014-05-01

    Ground penetrating radar (GPR) has been used in Finland since 1980's for civil engineering applications. First applications in this field were road surveys and dam inspections. Common GPR applications in road surveys include the thickness evaluation of the pavement, subgrade soil evaluation and evaluation of the soil moisture and frost susceptibility. Since the 1990's, GPR has been used in combination with other non-destructive testing (NDT) methods in road surveys. Recently, more GPR applications have been adopted, such as evaluating bridges, tunnels, railways and concrete elements. Nowadays, compared with other countries GPR is relatively widely used in Finland for road surveys. Quite many companies, universities and research centers in Finland have their own GPR equipment and are involved in the teaching and research of the GPR method. However, further research and promotion of the GPR techniques are still needed since GPR could be used more routinely. GPR has been used to evaluate the air void content of asphalt pavements for years. Air void content is an important quality measure of pavement condition for both the new and old asphalt pavements. The first Finnish guideline was released in 1999 for the method. Air void content is obtained from the GPR data by measuring the dielectric value as continuous record. To obtain air void content data, few pavement cores must be taken for calibration. Accuracy of the method is however questioned because there are other factors that affect the dielectric value of the asphalt layer, in addition to the air void content. Therefore, a research project is currently carried out at Aalto University in Finland. The overall objective is to investigate if the existing GPR technique used in Finland is accurate enough to be used as QC/QA tool in assessing the compaction of asphalt pavements. The project is funded by the Finnish Transport Agency. Further research interests at Aalto University include developing new microwave asphalt

  18. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  19. Preliminary results of sequential monitoring of simulated clandestine graves in Colombia, South America, using ground penetrating radar and botany.

    Science.gov (United States)

    Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Hernández, Orlando

    2015-03-01

    In most Latin American countries there are significant numbers of missing people and forced disappearances, 68,000 alone currently in Colombia. Successful detection of shallow buried human remains by forensic search teams is difficult in varying terrain and climates. This research has created three simulated clandestine burial styles at two different depths commonly encountered in Latin America to gain knowledge of optimum forensic geophysics detection techniques. Repeated monitoring of the graves post-burial was undertaken by ground penetrating radar. Radar survey 2D profile results show reasonable detection of ½ clothed pig cadavers up to 19 weeks of burial, with decreasing confidence after this time. Simulated burials using skeletonized human remains were not able to be imaged after 19 weeks of burial, with beheaded and burnt human remains not being able to be detected throughout the survey period. Horizontal radar time slices showed good early results up to 19 weeks of burial as more area was covered and bi-directional surveys were collected, but these decreased in amplitude over time. Deeper burials were all harder to image than shallower ones. Analysis of excavated soil found soil moisture content almost double compared to those reported from temperate climate studies. Vegetation variations over the simulated graves were also noted which would provide promising indicators for grave detection. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. High-resolution mapping, modeling, and evolution of subsurface geomorphology using ground-penetrating radar techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Gujar, A.R.

    subsurface. It has been useful to decipher shallow geomorphic structures having various options to use different antennas for different depth penetration (0-30 m) with higher resolution.   7.2 Principles of GPR  Ground Penetrating Radar (GPR) was invented... about 90m. Flat and plain land is being used, at present, for agriculture (paddy cultivation) practice. Sand dunes are low lying and highly reworked due to social forestry plantation (acacia) activities. 13    7.8.6 Paleo­Lagoon  GPR data shows two...

  1. Wideband Cavity Backed Spiral Antenna for Stepped Frequency Ground Penetrating Radar

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Lenler-Eriksen, Hans-Rudolph

    2005-01-01

    A 1.7 turn cavity backed coplanar waveguide to coplanar strip-fed logarithmic uniplanar spiral antenna is presented and compared to a 1.5 turn spiral antenna. The 1.7 turn spiral antenna has a wide beamwidth, are circular polarised and has a bandwidth with a return loss better than 6 dB in the fr......B in the frequency band from 0.25 GHz to 4.5 GHz (18:1). The antenna is useful for Ground Penetrating Radar (GPR)....

  2. Beach-ridge architecture constrained by beach topography and Ground-Penetrating Radar, Itilleq (Lakse Bugt), Disko, Greenland – Implications for sea-level reconstructions

    DEFF Research Database (Denmark)

    Emerich Souza, Priscila; Kroon, Aart; Nielsen, Lars

    2018-01-01

    Detailed topographical data and high-resolution ground-penetrating radar (GPR) reflection data are presented from the present-day beach and across successive raised beach-ridges at Itilleq (Disko, West Greenland). In the western part of our study area, the present low-tide level is well-marked by......Detailed topographical data and high-resolution ground-penetrating radar (GPR) reflection data are presented from the present-day beach and across successive raised beach-ridges at Itilleq (Disko, West Greenland). In the western part of our study area, the present low-tide level is well...... beach-ridge GPR profiles. Most of them are located at the boundary between a unit with reflection characteristics representing palaeo foreshore deposits, and a deeper and more complex radar unit characterized by diffractions, which, however, is not penetrated to large depths by the GPR signals. Based...

  3. Satellite-generated radar images of the earth

    International Nuclear Information System (INIS)

    Schanda, E.

    1980-01-01

    The Synthetic Aperture Radar (SAR) on board of SEASAT was the first non-military satellite-borne radar producing high-resolution images of the earth. Several examples of European scenes are discussed to demonstrate the properties of presently available optically processes images. (orig.)

  4. Radar facies of unconsolidated sediments in The Netherlands : A radar stratigraphy interpretation method for hydrogeology

    NARCIS (Netherlands)

    Overmeeren, R.A. van

    1998-01-01

    Since 1990, The Netherlands Institute of Applied Geoscience TNO has been carrying out ground penetrating radar (GPR) measurements to assess the potential for imaging and characterising different hydrogeological targets in more than 30 pilot areas in The Netherlands. The experience gained by

  5. Investigation of Underground Hydrocarbon Leakage using Ground Penetrating Radar

    Science.gov (United States)

    Srigutomo, Wahyu; Trimadona; Agustine, Eleonora

    2016-08-01

    Ground Penetrating Radar (GPR) survey was carried out in several petroleum plants to investigate hydrocarbon contamination beneath the surface. The hydrocarbon spills are generally recognized as Light Non-Aqueous Phase Liquids (LNAPL) if the plume of leakage is distributed in the capillary fringe above the water table and as Dense Non-Aqueous Phase Liquids (DNAPL) if it is below the water table. GPR antennas of 200 MHz and 400 MHz were deployed to obtain clear radargrams until 4 m deep. In general, the interpreted radargram sections indicate the presence of surface concrete layer, the compacted silty soill followed by sand layer and the original clayey soil as well as the water table. The presence of hydrocarbon plumes are identified as shadow zones (radar velocity and intensity contrasts) in the radargram that blur the layering pattern with different intensity of reflected signal. Based on our results, the characteristic of the shadow zones in the radargram is controlled by several factors: types of hydrocarbon (fresh or bio-degraded), water moisture in the soil, and clay content which contribute variation in electrical conductivity and dielectric constants of the soil.

  6. Significant wave height retrieval from synthetic radar images

    NARCIS (Netherlands)

    Wijaya, Andreas Parama; van Groesen, Embrecht W.C.

    2014-01-01

    In many offshore activities radar imagery is used to observe and predict ocean waves. An important issue in analyzing the radar images is to resolve the significant wave height. Different from 3DFFT methods that use an estimate related to the square root of the signal-to-noise ratio of radar images,

  7. Using FDFD Technique in Two-Dimensional TE Analysis for Modeling Clutter in Wall Penetrating Radar

    Directory of Open Access Journals (Sweden)

    David Insana

    2014-01-01

    Full Text Available Finite difference frequency domain (FDFD computational electromagnetic modeling is implemented to perform a two-dimensional TEz analysis for the application of wall penetrating radar (WPR. Resolving small targets of interest, embedded in a strong clutter environment of unknown configuration, is difficult. Field interaction between clutter elements will dominate the received fields back-scattered from the scene. Removing the effects of clutter ultimately relies on the accuracy of the model. Analysis starts with a simple model that continues to build based on the dominant scattering features of the scene. FDFD provides a steady state frequency response to a discrete excitation. Taking the fast Fourier transform of the wideband response of the scene, at several external transmit/receive locations, produces 2D images of the clutter, which are used to mature the model.

  8. Performance of ground-penetrating radar on granitic regoliths with different mineral composition

    Science.gov (United States)

    Breiner, J.M.; Doolittle, James A.; Horton, Radley M.; Graham, R.C.

    2011-01-01

    Although ground-penetrating radar (GPR) is extensively used to characterize the regolith, few studies have addressed the effects of chemical and mineralogical compositions of soils and bedrock on its performance. This investigation evaluated the performance of GPR on two different granitic regoliths of somewhat different mineralogical composition in the San Jacinto Mountains of southern California. Radar records collected at a site where soils are Alfisols were more depth restricted than the radar record obtained at a site where soils are Entisols. Although the Alfisols contain an argillic horizon, and the Entisols have no such horizon of clay accumulation, the main impact on GPR effectiveness is related to mineralogy. The bedrock at the Alfisol site, which contains more mafic minerals (5% hornblende and 20% biotite), is more attenuating to GPR than the bedrock at the Entisol site, where mafic mineral content is less (<1% hornblende and 10% biotite). Thus, a relatively minor variation in bedrock mineralogy, specifically the increased biotite content, severely restricts the performance of GPR. Copyright ?? 2011 by Lippincott Williams & Wilkins.

  9. Noise Tomography and Adaptive Illumination in Noise Radar

    Science.gov (United States)

    2015-10-01

    transform of scatu , defined in (2.15), in y–direction can be written as 2 ( , , ) ( , ) 2 j dn n scat n y scat n y k EU k x d k e O k k j...and J. A. Henning , "Radar penetration imaging using ultra- wideband (UWB) random noise waveforms," IEE Proceedings-Radar Sonar and Navigation, vol

  10. Integrity inspection of main access tunnel using ground penetrating radar

    Science.gov (United States)

    Ismail, M. A.; Abas, A. A.; Arifin, M. H.; Ismail, M. N.; Othman, N. A.; Setu, A.; Ahmad, M. R.; Shah, M. K.; Amin, S.; Sarah, T.

    2017-11-01

    This paper discusses the Ground Penetrating Radar (GPR) survey performed to determine the integrity of wall of tunnel at a hydroelectric power generation facility. GPR utilises electromagnetic waves that are transmitted into the medium of survey. Any reflectors in the medium will reflect the transmitted waves and picked up by the GPR antenna. The survey was done using MALA GeoScience RAMAC CUII with 250MHz antenna. Survey was done on the left, the crown and the right walls of the underground tunnels. Distance was measured using wheel encoders. The results of the survey is discussed in this paper.

  11. Space Radar Image of West Texas - SAR scan

    Science.gov (United States)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the

  12. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  13. Space Radar Image of Manaus, Brazil

    Science.gov (United States)

    1999-01-01

    These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those

  14. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Science.gov (United States)

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  15. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    International Nuclear Information System (INIS)

    Handayani, Gunawan

    2015-01-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented

  16. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Gunawan [The Earth Physics and Complex Systems Research Group (Jl. Ganesa 10 Bandung Indonesia) gunawanhandayani@gmail.com (Indonesia)

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  17. Bistatic Forward Scattering Radar Detection and Imaging

    Directory of Open Access Journals (Sweden)

    Hu Cheng

    2016-06-01

    Full Text Available Forward Scattering Radar (FSR is a special type of bistatic radar that can implement image detection, imaging, and identification using the forward scattering signals provided by the moving targets that cross the baseline between the transmitter and receiver. Because the forward scattering effect has a vital significance in increasing the targets’ Radar Cross Section (RCS, FSR is quite advantageous for use in counter stealth detection. This paper first introduces the front line technology used in forward scattering RCS, FSR detection, and Shadow Inverse Synthetic Aperture Radar (SISAR imaging and key problems such as the statistical characteristics of forward scattering clutter, accurate parameter estimation, and multitarget discrimination are then analyzed. Subsequently, the current research progress in FSR detection and SISAR imaging are described in detail, including the theories and experiments. In addition, with reference to the BeiDou navigation satellite, the results of forward scattering experiments in civil aircraft detection are shown. Finally, this paper considers future developments in FSR target detection and imaging and presents a new, promising technique for stealth target detection.

  18. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    Science.gov (United States)

    2016-08-01

    along either massive ice surfaces or within sections of segregated ice. The uninsulated ice surface at Tok in Figure 17B is irregular. All of the...ER D C/ CR RE L TR -1 6- 14 ERDC’s Center-Directed Research Program Ground -Penetrating-Radar Profiles of Interior Alaska Highways...August 2016 Ground -Penetrating-Radar Profiles of Interior Alaska Highways Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw

  19. Radar application in void and bar detection

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2003-01-01

    Radar is one of the new non-destructive testing techniques for concrete and structures inspection. Radar is a non-ionizing electromagnetic wave that can penetrate deep into concrete or soil in about several tenths of meters. Method of inspection using radar enables us to perform high resolution detection, imaging and mapping of subsurface concrete and soil condition. This paper will discuss the use of radar for void and bar detection and sizing. The samples used in this paper are custom made samples and comparison will be made to validate the use of radar in detecting, locating and also size determination of voids and bars. (Author)

  20. Application of ground penetrating radar in placer mineral exploration for mapping subsurface sand layers: A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Barnwal, R.P.; Singh, V.K.; Gujar, A.R.; Rajamanickam, G.V.

    radar reflections using time-domain reflectometry and sedimentological analyses, Sedimentology, v. 47, p. 435-449. Jol, H.M. & Bristow, C.S., 2003. GPR in sediments: advice on data collection, basic processing and interpretation, a good practice... guide, In: Bristow, C.S. and Jol, H.M. (Eds.), GPR in sediments, Geological Society of London, Special Publication, 211. Neal, A., 2004. Ground Penetrating Radar and its use in sedimentology: Principles, Problems and Progress. Earth-Science Reviews...

  1. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  2. Space Radar Image of Central Sumatra, Indonesia

    Science.gov (United States)

    1994-01-01

    This is a radar image of the central part of the island of Sumatra in Indonesia that shows how the tropical rainforest typical of this country is being impacted by human activity. Native forest appears in green in this image, while prominent pink areas represent places where the native forest has been cleared. The large rectangular areas have been cleared for palm oil plantations. The bright pink zones are areas that have been cleared since 1989, while the dark pink zones are areas that were cleared before 1989. These radar data were processed as part of an effort to assist oil and gas companies working in the area to assess the environmental impact of both their drilling operations and the activities of the local population. Radar images are useful in these areas because heavy cloud cover and the persistent smoke and haze associated with deforestation have prevented usable visible-light imagery from being acquired since 1989. The dark shapes in the upper right (northeast) corner of the image are a chain of lakes in flat coastal marshes. This image was acquired in October 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. Environmental changes can be easily documented by comparing this image with visible-light data that were acquired in previous years by the Landsat satellite. The image is centered at 0.9 degrees north latitude and 101.3 degrees east longitude. The area shown is 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is L-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  3. Application of Coupled-Wave Wentzel-Kramers-Brillouin Approximation to Ground Penetrating Radar

    OpenAIRE

    Igor Prokopovich; Alexei Popov; Lara Pajewski; Marian Marciniak

    2017-01-01

    This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR) applications. For the analytical description of the s...

  4. Three-dimensional subsurface imaging synthetic aperture radar (3D SISAR). Final report, September 22, 1993--September 22, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The concept developed under this applied research and development contract is a novel Ground Penetrating Radar system capable of remotely detecting, analyzing, and mapping buried waste containers from a mobile platform. From the testing and analysis performed to date, the 3-D SISAR has achieved the detection, accurate location, and three-dimensional imaging of buried test objects from a stand-off geometry. Tests have demonstrated that underground objects have been located to within 0.1 meter of their actual position. This work validates that the key elements of the approach are performing as anticipated. The stand-off synthetic aperture radar (SAR) methodology has been demonstrated to be a feasible approach as a remote sensing technique. The radar sensor constructed under this project is providing adequate quality data for imaging, and the matched filters have been demonstrated to provide enhanced target detection. Additional work is on-going in the area of underground propagation and scattering phenomena to provide enhanced depth performance, as the current imaging results have been limited to a few feet of depth underground.

  5. Three-dimensional subsurface imaging synthetic aperture radar (3D SISAR). Final report, September 22, 1993 - September 22, 1996

    International Nuclear Information System (INIS)

    1998-01-01

    The concept developed under this applied research and development contract is a novel Ground Penetrating Radar system capable of remotely detecting, analyzing, and mapping buried waste containers from a mobile platform. From the testing and analysis performed to date, the 3-D SISAR has achieved the detection, accurate location, and three-dimensional imaging of buried test objects from a stand-off geometry. Tests have demonstrated that underground objects have been located to within 0.1 meter of their actual position. This work validates that the key elements of the approach are performing as anticipated. The stand-off synthetic aperture radar (SAR) methodology has been demonstrated to be a feasible approach as a remote sensing technique. The radar sensor constructed under this project is providing adequate quality data for imaging, and the matched filters have been demonstrated to provide enhanced target detection. Additional work is on-going in the area of underground propagation and scattering phenomena to provide enhanced depth performance, as the current imaging results have been limited to a few feet of depth underground

  6. Characterization of concrete properties from dielectric properties using ground penetrating radar

    International Nuclear Information System (INIS)

    Lai, W.L.; Kou, S.C.; Tsang, W.F.; Poon, C.S.

    2009-01-01

    This paper presents the experimental results of a study of the relationships between light-weight (LWAC) and normal aggregate concrete (NAC) properties, as well as radar wave properties that are derived by using ground penetrating radar (GPR). The former (LWAC) refers to compressive strength, apparent porosity and saturated density, while the latter (NAC) refers to real part of dielectric permittivity (ε' or real permittivity) and wave energy level (E). Throughout the test period of the newly cast concrete cured for 90 days, the above mentioned material properties gradually changed which can be attributed to the effects of cement hydration, different types of aggregates and initial water to binder ratios. A number of plots describing various properties of concrete such as dielectric, strength and porosity perspectives were established. From these plots, we compare the characteristics of how much and how fast free water was turned to absorbed water in LWAC and NAC. The underlying mechanisms and a mechanistic model are then developed.

  7. The Use of Ground Penetrating Radar to extend the Results of Archaeological Excavation

    Science.gov (United States)

    Utsi, E.

    2009-04-01

    The condition of the Romano-British archaeological site in Wortley, Gloucestershire, UK is typical of sites of the period in that it has been heavily robbed out since it first fell into disuse. Building materials taken from the site have been re-used over the centuries to construct other local buildings. This makes both preservation of the extant remains and interpretation of the excavation problematic. Following the accidental discovery of the site in the 1980s, a programme of excavation was set in place. This excavation was run as a practical archaeological training school and, as a result, a wide range of archaeological and geophysical techniques were applied to the site. This included the introduction of Ground Penetrating Radar (GPR). The preliminary results of the first GPR used on site were not entirely satisfactory which led to the development of a new radar in the early 1990s, specifically developed for use on archaeological sites. The excavation and GPR results were published in a series of excavation reports [1] [2]. It was not possible to excavate fully for two reasons. Firstly the site crossed present day ownership boundaries and secondly the ownership of the excavation area changed. At this point the excavation was summarily terminated. In 2007, permission was given by the owner of an adjacent property to carry out a GPR survey over their land in order to derive additional information, if possible. An area survey was carried out in May 2007 with reduced transect spacing [3]. The radar data showed similar patterning to that of the original investigation i.e. substantial remains which had been subject to a high degree of post-occupational attrition. Time slices from the radar survey were matched to the principal excavation plans. It proved possible to deduce the full extent of certain partially excavated features, notably the courtyard and bath house. It was also possible to demonstrate that one part of the adjacent property did not contain similar

  8. Spectral Properties of Homogeneous and Nonhomogeneous Radar Images

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang

    1987-01-01

    On the basis of a two-dimensional, nonstationary white noisemodel for the complex radar backscatter, the spectral properties ofa one-look synthetic-aperture radar (SAR) system is derived. It isshown that the power spectrum of the complex SAR image is sceneindependent. It is also shown that the sp......On the basis of a two-dimensional, nonstationary white noisemodel for the complex radar backscatter, the spectral properties ofa one-look synthetic-aperture radar (SAR) system is derived. It isshown that the power spectrum of the complex SAR image is sceneindependent. It is also shown...... that the spectrum of the intensityimage is in general related to the radar scene spectrum by a linearintegral equation, a Fredholm's integral equation of the third kind.Under simplifying assumptions, a closed-form equation giving theradar scene spectrum as a function of the SAR image spectrum canbe derived....

  9. Ground Penetrating Radar employment for searching ancient cisterns.

    Science.gov (United States)

    Semeraro, Grazia; Notario, Corrado; Persico, Raffaele

    2017-04-01

    Ground Penetrating Radar technology and methodology can provide support for the archaeological research. In particular, investigations in archaeological sites [1-3] and monuments of historical interest [4-6] have provided in many cases information of interest about the presence, the size, the shape and the depth of embedded anomalies, that can range from foundations to crypts, or also walled passages, walled doors, embedded voids or reinforcement bars, fractures and so on. In this contribution we will focus on the possibility to identify ancient cisterns with the aid of a GPR prospection. In particular, the attention will be focused on Messapic cisterns. The Messapians were a population that used to reside in the southern part of the Apulia region (the so called Salento), Their remains dates back from the 8th century B.C. up to the Roman conquest, in the 3rd century B.C. They used to build cisterns for gathering the rain water, both for drinking and for agricultural purposes. The shape of the cisterns can be quite different from case to case, and rarely they are found empty. Rether, in most cases the remains shows a structure with the roof collapsed and filled up with loose materials, which makes their identification with a GPR a challenging issue. At the conference, the results and the interpretation of GPR data gathered in the two Messapic sites of San Vito dei Normanni and Cavallino (both in the Salento area) will be shown and discussed. References 1) R. Lasaponara, G. Leucci, N. Masini, R. Persico, Investigating archaeological looting using satellite images and GEORADAR: the experience in Lambayeque in North Peru, Journal of Archaeological Science, vol. 42, pp. 216-230, 2014. 2) R. Castaldo, L. Crocco, M. Fedi, B. Garofalo, R. Persico, A. Rossi, F. Soldovieri, GPR Microwave Tomography for Diagnostic of Archaeological Sites: the Case of a high-way construction in Pontecagnano (Southern Italy), Archaeological Prospection, vol. 16, pp. 203-217, 2009. 3) L. Matera

  10. Forward modeling of seepage of reservoir dam based on ground penetrating radar

    Directory of Open Access Journals (Sweden)

    Xueli WU

    2017-08-01

    Full Text Available The risk of the reservoir dam seepage will bring the waste of water resources and the loss of life and property. The ground penetrating radar (GPR is designed as a daily inspection system of dams to improve the existing technology which can't determine the actual situation of the dam seepage tunnel coordinates. The finite difference time domain (FDTD is used to solve the Yee's grids discreatization in two-dimensional space, and its electromagnetic distribution equation is obtained as well. Based on the actual structure of reservoir dam foundation, the ideal model of air layer, concrete layer, clay layer and two water seepage holes is described in detail, and the concrete layer interference model with limestone interference point is established. The system architecture is implemented by using MATLAB, and the forward modeling is performed. The results indicate that ground penetrating radar can be used for deep target detection. Through comparing the detection spectrum of three kinds of frequency electromagnetic wave by changing the center frequency of the GPR electromagnetic wave of 50 MHz, 100 MHz and 200 MHz, it is concluded that the scanning result is more accurate at 100 MHz. At the same time, the simulation results of the interference model show that this method can be used for the detection of complex terrain.

  11. Space Radar Image of Harvard Forest

    Science.gov (United States)

    1999-01-01

    This is a radar image of the area surrounding the Harvard Forest in north-central Massachusetts that has been operated as a ecological research facility by Harvard University since 1907. At the center of the image is the Quabbin Reservoir, and the Connecticut River is at the lower left of the image. The Harvard Forest itself is just above the reservoir. Researchers are comparing the naturally occurring physical disturbances in the forest and the recent and projected chemical disturbances and their effects on the forest ecosystem. Agricultural land appears dark blue/purple, along with low shrub vegetation and some wetlands. Urban development is bright pink; the yellow to green tints are conifer-dominated vegetation with the pitch pine sand plain at the middle left edge of the image appearing very distinctive. The green tint may indicate pure pine plantation stands, and deciduous broadleaf trees appear gray/pink with perhaps wetter sites being pinker. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 42.50 degrees North latitude and 72.33 degrees West longitude and covers an area of 53 kilometers 63 by kilometers (33 miles by 39 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; and blue is C-band horizontally transmitted and horizontally received.

  12. Inspection of a large concrete block containing embedded defects using ground penetrating radar

    Science.gov (United States)

    Eisenmann, David; Margetan, Frank J.; Koester, Lucas; Clayton, Dwight

    2016-02-01

    Ground penetrating radar (GPR), also known as impulse response radar, was used to examine a thick concrete block containing reinforcing steel bars (rebar) and embedded defects. The block was located at the University of Minnesota, measured approximately 7 feet tall by 7 feet wide by 40 inches deep, and was intended to simulate certain aspects of a concrete containment wall at a nuclear power plant. This paper describes the measurements that were made and various analyses of the data. We begin with a description of the block itself and the GPR equipment and methods used in our inspections. The methods include the application of synthetic aperture focusing techniques (SAFT). We then present and discuss GPR images of the block's interior made using 1600-MHz, 900-MHz, and 400-MHz antennas operating in pulse/echo mode. A number of the embedded defects can be seen, and we discuss how their relative detectability can be quantified by comparison to the response from nearby rebar. We next discuss through-transmission measurements made using pairs of 1600-MHz and 900-MHz antennas, and the analysis of that data to deduce the average electromagnetic (EM) wave speed and attenuation of the concrete. Through the 40-inch thickness, attenuation rises approximately linearly with frequency at a rate near 0.7 dB/inch/GHz. However, there is evidence that EM properties vary with depth in the block. We conclude with a brief summary and a discussion of possible future work.

  13. Nondestructive Evaluation of Concrete Bridge Decks with Automated Acoustic Scanning System and Ground Penetrating Radar.

    Science.gov (United States)

    Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying

    2018-06-16

    Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.

  14. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar

    Science.gov (United States)

    Maas, Christian; Schmalzl, Jörg

    2013-08-01

    Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.

  15. Synthetic aperture radar imaging simulator for pulse envelope evaluation

    Science.gov (United States)

    Balster, Eric J.; Scarpino, Frank A.; Kordik, Andrew M.; Hill, Kerry L.

    2017-10-01

    A simulator for spotlight synthetic aperture radar (SAR) image formation is presented. The simulator produces radar returns from a virtual radar positioned at an arbitrary distance and altitude. The radar returns are produced from a source image, where the return is a weighted summation of linear frequency-modulated (LFM) pulse signals delayed by the distance of each pixel in the image to the radar. The imagery is resampled into polar format to ensure consistent range profiles to the position of the radar. The SAR simulator provides a capability enabling the objective analysis of formed SAR imagery, comparing it to an original source image. This capability allows for analysis of various SAR signal processing techniques previously determined by impulse response function (IPF) analysis. The results suggest that IPF analysis provides results that may not be directly related to formed SAR image quality. Instead, the SAR simulator uses image quality metrics, such as peak signal-to-noise ratio (PSNR) and structured similarity index (SSIM), for formed SAR image quality analysis. To showcase the capability of the SAR simulator, it is used to investigate the performance of various envelopes applied to LFM pulses. A power-raised cosine window with a power p=0.35 and roll-off factor of β=0.15 is shown to maximize the quality of the formed SAR images by improving PSNR by 0.84 dB and SSIM by 0.06 from images formed utilizing a rectangular pulse, on average.

  16. Developing an Efficient and Cost Effective Ground-Penetrating Radar Field Methodology for Subsurface Exploration and Mapping of Cultural Resources on Public Lands

    National Research Council Canada - National Science Library

    Conyers, Lawrence B

    2006-01-01

    .... A new, emerging technology is the use of ground penetrating radar (GPR). However, in using this device due to the number of variables that can impact energy penetration and resolution, researchers are often not guaranteed a successful survey...

  17. High-resolution geophysical profiling using a stepped-frequency ground penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Noon, D; Longstaff, D [The University of Queensland, (Australia)

    1996-05-01

    This paper describes the results of a ground penetrating radar (GPR) system which uses stepped-frequency waveforms to obtain high-resolution geophysical profiles. The main application for this system is the high-resolution mapping of thin coal seam structures, in order to assist surface mining operations in open-cut coal mines. The required depth of penetration is one meter which represents the maximum thickness of coal seams that are designated `thin`. A resolution of five centimeters is required to resolve the minimum thickness of coal (or shale partings) which can be economically recovered in an open-cut coal mine. For this application, a stepped-frequency GPR system has been developed, because of its ultrawide bandwidth (1 to 2 GHz) and high external loop sensitivity (155 dB). The field test results of the stepped-frequency GPR system on a concrete pavement and at two Australian open-cut coal mines are also presented. 7 refs., 5 figs.

  18. Space Radar Image of Flevoland, Netherlands

    Science.gov (United States)

    1999-01-01

    This is a three-frequency false color image of Flevoland, The Netherlands, centered at 52.4 degrees north latitude, 5.4 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard space shuttle Endeavour on April 14, 1994. It was produced by combining data from the X-band, C-band and L-band radars. The area shown is approximately 25 kilometers by 28 kilometers (15-1/2 by 17-1/2 miles). Flevoland, which fills the lower two-thirds of the image, is a very flat area that is made up of reclaimed land that is used for agriculture and forestry. At the top of the image, across the canal from Flevoland, is an older forest shown in red; the city of Harderwijk is shown in white on the shore of the canal. At this time of the year, the agricultural fields are bare soil, and they show up in this image in blue. The changes in the brightness of the blue areas are equal to the changes in roughness. The dark blue areas are water and the small dots in the canal are boats. This SIR-C/X-SAR supersite is being used for both calibration and agricultural studies. Several soil and crop ground-truth studies will be conducted during the shuttle flight. In addition, about 10calibration devices and 10 corner reflectors have been deployed to calibrate and monitor the radar signal. One of these transponders can be seen as a bright star in the lower right quadrant of the image. This false-color image was made using L-band total power in the red channel, C-band total power in the green channel, and X-band VV polarization in the blue channel. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by

  19. Large-scale, high-definition Ground Penetrating Radar prospection in archaeology

    Science.gov (United States)

    Trinks, I.; Kucera, M.; Hinterleitner, A.; Löcker, K.; Nau, E.; Neubauer, W.; Zitz, T.

    2012-04-01

    The future demands on professional archaeological prospection will be its ability to cover large areas in a time and cost efficient manner with very high spatial resolution and accuracy. The objective of the 2010 in Vienna established Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (LBI ArchPro) in collaboration with its eight European partner organisations is the advancement of state-of-the-art archaeological sciences. The application and specific further development of remote sensing, geophysical prospection and virtual reality applications, as well as of novel integrated interpretation approaches dedicated to non-invasive spatial archaeology combining near-surface prospection methods with advanced computer science is crucial for modern archaeology. Within the institute's research programme different areas for distinct case studies in Austria, Germany, Norway, Sweden and the UK have been selected as basis for the development and testing of new concepts for efficient and universally applicable tools for spatial, non-invasive archaeology. In terms of geophysical prospection the investigation of entire archaeological landscapes for the exploration and protection of Europe's buried cultural heritage requires new measurement devices, which are fast, accurate and precise. Therefore the further development of motorized, multichannel survey systems and advanced navigation solutions is required. The use of motorized measurement devices for archaeological prospection implicates several technological and methodological challenges. Latest multichannel Ground Penetrating Radar (GPR) arrays mounted in front off, or towed behind motorized survey vehicles permit large-scale GPR prospection surveys with unprecedented spatial resolution. In particular the motorized 16 channel 400 MHz MALÅ Imaging Radar Array (MIRA) used by the LBI ArchPro in combination with latest automatic data positioning and navigation solutions permits the reliable high

  20. Space Radar Image of County Kerry, Ireland

    Science.gov (United States)

    1994-01-01

    The Iveragh Peninsula, one of the four peninsulas in southwestern Ireland, is shown in this spaceborne radar image. The lakes of Killarney National Park are the green patches on the left side of the image. The mountains to the right of the lakes include the highest peaks (1,036 meters or 3,400 feet) in Ireland. The patchwork patterns between the mountains are areas of farming and grazing. The delicate patterns in the water are caused by refraction of ocean waves around the peninsula edges and islands, including Skellig Rocks at the right edge of the image. The Skelligs are home to a 15th century monastery and flocks of puffins. The region is part of County Kerry and includes a road called the 'Ring of Kerry' that is one of the most famous tourist routes in Ireland. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on April 12, 1994. The image is 82 kilometers by 42 kilometers (51 miles by 26 miles) and is centered at 52.0 degrees north latitude, 9.9 degrees west longitude. North is toward the lower left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, vertically transmitted and received; and blue is C-band, vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  1. High resolution imaging of vadose zone transport using crosswell radar and seismic methods; TOPICAL

    International Nuclear Information System (INIS)

    Majer, Ernest L.; Williams, Kenneth H.; Peterson, John E.; Daley, Thomas E.

    2001-01-01

    The summary and conclusions are that overall the radar and seismic results were excellent. At the time of design of the experiments we did not know how well these two methods could penetrate or resolve the moisture content and structure. It appears that the radar could easily go up to 5, even 10 meters between boreholes at 200 Mhz and even father (up to 20 to 40 m) at 50 Mhz. The seismic results indicate that at several hundred hertz propagation of 20 to 30 meters giving high resolution is possible. One of the most important results, however is that together the seismic and radar are complementary in their properties estimation. The radar being primarily sensitive to changes in moisture content, and the seismic being primarily sensitive to porosity. Taken in a time lapse sense the radar can show the moisture content changes to a high resolution, with the seismic showing high resolution lithology. The significant results for each method are: Radar: (1) Delineated geological layers 0.25 to 3.5 meters thick with 0.25 m resolution; (2) Delineated moisture movement and content with 0.25 m resolution; (3) Compared favorably with neutron probe measurements; and (4) Penetration up to 30 m. Radar results indicate that the transport of the riverwater is different from that of the heavier and more viscous sodium thiosulfate. It appears that the heavier fluids are not mixing readily with the in-situ fluids and the transport may be influenced by them. Seismic: (1) Delineated lithology at .25 m resolution; (2) Penetration over 20 meters, with a possibility of up to 30 or more meters; and (3) Maps porosity and density differences of the sediments. Overall the seismic is mapping the porosity and density distribution. The results are consistent with the flow field mapped by the radar, there is a change in flow properties at the 10 to 11 meter depth in the flow cell. There also appears to be break through by looking at the radar data with the denser sodium thiosulfate finally

  2. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  3. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-05-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  4. Application of ground-penetrating radar at McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station

  5. Space Radar Image of Sydney, Australia

    Science.gov (United States)

    1994-01-01

    This spaceborne radar image is dominated by the metropolitan area of Australia's largest city, Sydney. Sydney Harbour, with numerous coves and inlets, is seen in the upper center of the image, and the roughly circular Botany Bay is shown in the lower right. The downtown business district of Sydney appears as a bright white area just above the center of the image. The Sydney Harbour Bridge is a white line adjacent to the downtown district. The well-known Sydney Opera House is the small, white dot to the right of the bridge. Urban areas appear yellow, blue and brown. The purple areas are undeveloped areas and park lands. Manly, the famous surfing beach, is shown in yellow at the top center of the image. Runways from the Sydney Airport are the dark features that extend into Botany Bay in the lower right. Botany Bay is the site where Captain James Cook first landed his ship, Endeavour, in 1770. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 20, 1994, onboard the space shuttle Endeavour. The area shown is 33 kilometers by 38kilometers (20 miles by 23 miles) and is centered at 33.9 degrees south latitude, 151.2 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequenciesand polarizations as follows: red is L-band, vertically transmittedand horizontally received; green is C-band, vertically transmitted and horizontally received; and blue is C-band, vertically transmittedand received. SIR-C/X-SAR, a joint mission of the German, Italianand United States space agencies, is part of NASA's Mission to Planet Earth. #####

  6. Surveillance Unattended Foliage Penetrating Radar for Border Control and Homeland Protection

    Directory of Open Access Journals (Sweden)

    Felicia Amato

    2013-06-01

    Full Text Available The increasing request for safety, security and environment protection at local and national level reveal the deficiency of the traditional surveillance and control centers to satisfy the needs and requirements of modern border control systems for homeland protection where land border is expected to be monitored as well as the maritime one. This is, for instance, the case of any land border affected by hidden immigration and/or illegal traffics as well as any small areas such as critical infrastructures or military/ civilian posts in forest or jungle environment characterized by vegetation. In such challenging environment, logistics constraints strongly recommend to have very low power devices able to operate months or years without maintenance. A such scenario should be the perfect place for implementing an Unattended Ground Sensors (UGS network making use FOliage PENetration (FOPEN radar for border control. The paper aims to present the basic characteristics and preliminary results of a Surveillance Unattended FOPEN (SUF radar suitable for detecting moving targets, people or vehicles, in dense forest environment.

  7. Structural analysis of lunar subsurface with Chang'E-3 lunar penetrating radar

    Science.gov (United States)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2016-01-01

    Geological structure of the subsurface of the Moon provides valuable information on lunar evolution. Recently, Chang'E-3 has utilized lunar penetrating radar (LPR), which is equipped on the lunar rover named as Yutu, to detect the lunar geological structure in Northern Imbrium (44.1260N, 19.5014W) for the first time. As an in situ detector, Chang'E-3 LPR has relative higher horizontal and vertical resolution and less clutter impact compared to spaceborne radars and earth-based radars. In this work, we analyze the LPR data at 500 MHz transmission frequency to obtain the shallow subsurface structure of the landing area of Chang'E-3 in Mare Imbrium. Filter method and amplitude recovery algorithms are utilized to alleviate the adverse effects of environment and system noises and compensate the amplitude losses during signal propagation. Based on the processed radar image, we observe numerous diffraction hyperbolae, which may be caused by discrete reflectors beneath the lunar surface. Hyperbolae fitting method is utilized to reverse the average dielectric constant to certain depth (ε bar). Overall, the estimated ε bar increases with the depth and ε bar could be classified into three categories. Average ε bar of each category is 2.47, 3.40 and 6.16, respectively. Because of the large gap between the values of ε bar of neighboring categories, we speculate a three-layered structure of the shallow surface of LPR exploration region. One possible geological picture of the speculated three-layered structure is presented as follows. The top layer is weathered layer of ejecta blanket with its average thickness and bound on error is 0.95±0.02 m. The second layer is the ejecta blanket of the nearby impact crater, and the corresponding average thickness is about 2.30±0.07 m, which is in good agreement with the two primary models of ejecta blanket thickness as a function of distance from the crater center. The third layer is regarded as a mixture of stones and soil. The

  8. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  9. Ground penetrating radar system and method for detecting an object on or below a ground surface

    NARCIS (Netherlands)

    De Jongth, R.; Yarovoy, A.; Schukin, A.

    2001-01-01

    Ground penetrating radar system for detecting objects (17) on or below a ground surface (18), comprising at least one transmit antenna (13) having a first foot print (14) at the ground surface, at least one receive antenna (15) having a second foot print (16) at the ground surface, and processing

  10. Numerical Design of Ultra-Wideband Printed Antenna for Surface Penetrating Radar Application

    Directory of Open Access Journals (Sweden)

    Achmad Munir

    2011-08-01

    Full Text Available Surface penetrating radar (SPR is an imaging device of electromagnetic wave that works by emitting and transmitting a narrow period pulse through the antenna. Due to the use of narrow period pulse, according to the Fourier transform duality, therefore ultra-wideband (UWB antenna becomes one of the most important needs in SPR system. In this paper, a novel UWB printed antenna is proposed to be used for SPR application. Basically, the proposed antenna is developed from a rectangular microstrip antenna fed by symmetric T-shaped. Some investigation methods such as resistive loading, abrupt transition, and ground plane modification are attempted to achieve required characteristics of bandwidth, radiation efficiency, and compactness needed by the system. To obtain the optimum design, the characteristics of proposed antenna are numerically investigated through the physical parameters of antenna. It is shown that proposed antenna deployed on an FR-4 Epoxy substrate with permittivity of 4.3 and thickness of 1.6mm has a compact size of 72.8mm x 60.0mm and a large bandwidth of 50MHz-5GHz which is suitable for SPR application.

  11. Surveying glacier bedrock topography with a helicopter-borne dual-polarization ground-penetrating radar system

    Science.gov (United States)

    Langhammer, L.; Rabenstein, L.; Schmid, L.; Bauder, A.; Schaer, P.; Maurer, H.

    2017-12-01

    Glacier mass estimations are crucial for future run-off projections in the Swiss Alps. Traditionally, ice thickness modeling approaches and ground-based radar transects have been the tools of choice for estimating glacier volume in high mountain areas, but these methods either contain high uncertainties or are logistically expensive and offer mostly only sparse subsurface information. We have developed a helicopter-borne dual-polarization ground-penetrating radar (GPR) system, which enhances operational feasibility in rough, high-elevation terrain and increases the data output per acquisition campaign significantly. Our system employs a prototype pulseEKKO device with two broadside 25-MHz antenna pairs fixed to a helicopter-towed wooden frame. Additionally attached to the system are a laser altimeter for measuring the flight height above ground, three GPS receivers for accurate positioning and a GoPro camera for obtaining visual images of the surface. Previous investigations have shown the significant impact of the antenna dipole orientation on the detectability of the bedrock reflection. For optimal results, the dipoles of the GPR should be aligned parallel to the strike direction of the surrounding mountain walls. In areas with a generally unknown bedrock topography, such as saddle areas or diverging zones, a dual-polarization system is particularly useful. This could be demonstrated with helicopter-borne GPR profiles acquired on more than 25 glaciers in the Swiss Alps. We observed significant differences in ice-bedrock interface visibility depending on the orientation of the antennas.

  12. The Processing of Lunar Penetrating Radar Channel-2B Data from Chang'E-3

    Science.gov (United States)

    Zhu, P.; Zhao, N.; Yang, K.; Yuan, Y.; Guo, S.

    2014-12-01

    The Lunar Penetrating Radar (LPR) carried by Chang'E-3 has imaged the shallow subsurface of the landing site at the northern Mare Imbrium. The antenna B of the Channel-2 onboard the LPR (LPR Channel-2B) has collected more than 20000 traces of raw data. The raw LPR data could not be directly used for geological interpretation because of the operation mode of the LPR, noise and fast attenuation of radar wave. This study focuses data preprocessing and processing methods to obtain higher quality data. A section of usable LPR data of over 2000 traces is gained after the preprocessing of selecting, splicing, removing delay time and fine-correcting to raw data, but only a few shallow geological structures are visible. To further improve the resolution and the signal-to-noise ratio of the LPR data, we have processed the LPR data including amplitude compensation, filtering, and deconvolution processes based on electromagnetic wave theory. The processing results reveal that (1) the spherical spreading compensation and auto gain control enhance the amplitude of reflection echoes from deeper strata and make the geological structures more obvious, (2) the spiking deconvolution applied to narrow reflection events down makes it possible to identify thin layers with 30% improved resolution, and (3) the band-pass filtering removes the multiple reflections and, consequently, improves the signal-to-noise ratio of LPR data. The processing results will lay the foundation for the subsequent geological interpretation and physical property inversion of lunar materials.

  13. The Use of Ground Penetrating Radar and Electrical Resistivity Imaging for the Characterisation of Slope Movements in Expansive Marls

    Science.gov (United States)

    Rey, Isabel; Martínez, Julián; Cortada, Unai; Hildago, Mª Carmen

    2017-04-01

    Slope movements are one of the natural hazards that most affect linear projects, becoming an important waste of money and time for building companies. Thus, studies to identify the processes that provoke these movements, as well as to characterise the landslides are necessary. For this purpose, geophysical prospecting techniques as Ground Penetrating Radar (GPR) and Electrical Resistivity Imaging (ERI) could become useful. However, the effectiveness of these techniques in slope movement characterisation is affected by many factors, like soil humidity, grain size or failure plane depth. Therefore, studies that determine the usefulness of these techniques in different kind of soils and slope movements are required. In this study, GPR and ERI techniques efficiency for the analysis of slope movements in Upper Miocene expansive marls was evaluated. In particular, two landslides in an old regional road in the province of Jaen (Spain) were studied. A total of 53 GPR profiles were made, 31 with a 250 MHz frequency antenna and 22 with an 800 MHz frequency antenna. Marl facies rapidly attenuated the signal of the electromagnetic waves, which means that this technique only provided information of the first two meters of the subsoil. In spite of this low depth of penetration, it is necessary to point out the precision and detail undertaken. Thus, both GPR antennas gave information of the thicknesses and quality-continuity of the different soil layers. In addition, several restoration phases of the linear work were detected. Therefore, this technique was useful to detect the current state and history of the structure, even though it could not detect the shear surface of the slope movement. On the other hand, two profiles of electrical tomography were made, one in each studied sector. The profiles were configured with a total length of 189 m, with 64 electrodes and a spacing of 3 m. This allowed investigating up to 35 m depth. This penetration capability enabled to detect the

  14. Space Radar Image of Kilauea Volcano, Hawaii

    Science.gov (United States)

    1994-01-01

    This is a deformation map of the south flank of Kilauea volcano on the big island of Hawaii, centered at 19.5 degrees north latitude and 155.25 degrees west longitude. The map was created by combining interferometric radar data -- that is data acquired on different passes of the space shuttle which are then overlayed to obtain elevation information -- acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar during its first flight in April 1994 and its second flight in October 1994. The area shown is approximately 40 kilometers by 80 kilometers (25 miles by 50 miles). North is toward the upper left of the image. The colors indicate the displacement of the surface in the direction that the radar instrument was pointed (toward the right of the image) in the six months between images. The analysis of ground movement is preliminary, but appears consistent with the motions detected by the Global Positioning System ground receivers that have been used over the past five years. The south flank of the Kilauea volcano is among the most rapidly deforming terrains on Earth. Several regions show motions over the six-month time period. Most obvious is at the base of Hilina Pali, where 10 centimeters (4 inches) or more of crustal deformation can be seen in a concentrated area near the coastline. On a more localized scale, the currently active Pu'u O'o summit also shows about 10 centimeters (4 inches) of change near the vent area. Finally, there are indications of additional movement along the upper southwest rift zone, just below the Kilauea caldera in the image. Deformation of the south flank is believed to be the result of movements along faults deep beneath the surface of the volcano, as well as injections of magma, or molten rock, into the volcano's 'plumbing' system. Detection of ground motions from space has proven to be a unique capability of imaging radar technology. Scientists hope to use deformation data acquired by SIR-C/X-SAR and future imaging

  15. Electromagnetic simulators for Ground Penetrating Radar applications developed in COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonios; Warren, Craig; Antonijevic, Sinisa; Doric, Vicko; Poljak, Dragan

    2017-04-01

    Founded in 1971, COST (European COoperation in Science and Technology) is the first and widest European framework for the transnational coordination of research activities. It operates through Actions, science and technology networks with a duration of four years. The main objective of the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (4 April 2013 - 3 October 2017) is to exchange and increase knowledge and experience on Ground-Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe a wider use of this technique. Research activities carried out in TU1208 include all aspects of the GPR technology and methodology: design, realization and testing of radar systems and antennas; development and testing of surveying procedures for the monitoring and inspection of structures; integration of GPR with other non-destructive testing approaches; advancement of electromagnetic-modelling, inversion and data-processing techniques for radargram analysis and interpretation. GPR radargrams often have no resemblance to the subsurface or structures over which the profiles were recorded. Various factors, including the innate design of the survey equipment and the complexity of electromagnetic propagation in composite scenarios, can disguise complex structures recorded on reflection profiles. Electromagnetic simulators can help to understand how target structures get translated into radargrams. They can show the limitations of GPR technique, highlight its capabilities, and support the user in understanding where and in what environment GPR can be effectively used. Furthermore, electromagnetic modelling can aid the choice of the most proper GPR equipment for a survey, facilitate the interpretation of complex datasets and be used for the design of new antennas. Electromagnetic simulators can be employed to produce synthetic radargrams with the purposes of testing new data-processing, imaging and inversion algorithms, or assess

  16. A statistical model for radar images of agricultural scenes

    Science.gov (United States)

    Frost, V. S.; Shanmugan, K. S.; Holtzman, J. C.; Stiles, J. A.

    1982-01-01

    The presently derived and validated statistical model for radar images containing many different homogeneous fields predicts the probability density functions of radar images of entire agricultural scenes, thereby allowing histograms of large scenes composed of a variety of crops to be described. Seasat-A SAR images of agricultural scenes are accurately predicted by the model on the basis of three assumptions: each field has the same SNR, all target classes cover approximately the same area, and the true reflectivity characterizing each individual target class is a uniformly distributed random variable. The model is expected to be useful in the design of data processing algorithms and for scene analysis using radar images.

  17. A 24GHz Radar Receiver in CMOS

    NARCIS (Netherlands)

    Kwok, K.C.

    2015-01-01

    This thesis investigates the system design and circuit implementation of a 24GHz-band short-range radar receiver in CMOS technology. The propagation and penetration properties of EM wave offer the possibility of non-contact based remote sensing and through-the-wall imaging of distance stationary or

  18. Simulation for ground penetrating radar (GPR) study of the subsurface structure of the Moon

    Science.gov (United States)

    Fa, Wenzhe

    2013-12-01

    Ground penetrating radar (GPR) is currently within the scope of China's Chang-E 3 lunar mission, to study the shallow subsurface of the Moon. In this study, key factors that could affect a lunar GPR performance, such as frequency, range resolution, and antenna directivity, are discussed firstly. Geometrical optics and ray tracing techniques are used to model GPR echoes, considering the transmission, attenuation, reflection, geometrical spreading of radar waves, and the antenna directivity. The influence on A-scope GPR echoes and on the simulated radargrams for the Sinus Iridum region by surface and subsurface roughness, dielectric loss of the lunar regolith, radar frequency and bandwidth, and the distance between the transmit and receive antennas are discussed. Finally, potential scientific return about lunar subsurface properties from GPR echoes is also discussed. Simulation results suggest that subsurface structure from several to hundreds of meters can be studied from GPR echoes at P and VHF bands, and information about dielectric permittivity and thickness of subsurface layers can be estimated from GPR echoes in combination with regolith composition data.

  19. Space radar image of Mauna Loa, Hawaii

    Science.gov (United States)

    1995-01-01

    This image of the Mauna Loa volcano on the Big Island of Hawaii shows the capability of imaging radar to map lava flows and other volcanic structures. Mauna Loa has erupted more than 35 times since the island was first visited by westerners in the early 1800s. The large summit crater, called Mokuaweoweo Caldera, is clearly visible near the center of the image. Leading away from the caldera (towards top right and lower center) are the two main rift zones shown here in orange. Rift zones are areas of weakness within the upper part of the volcano that are often ripped open as new magma (molten rock) approaches the surface at the start of an eruption. The most recent eruption of Mauna Loa was in March and April 1984, when segments of the northeast rift zones were active. If the height of the volcano was measured from its base on the ocean floor instead of from sea level, Mauna Loa would be the tallest mountain on Earth. Its peak (center of the image) rises more than 8 kilometers (5 miles) above the ocean floor. The South Kona District, known for cultivation of macadamia nuts and coffee, can be seen in the lower left as white and blue areas along the coast. North is toward the upper left. The area shown is 41.5 by 75 kilometers (25.7 by 46.5 miles), centered at 19.5 degrees north latitude and 155.6 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 36th orbit on October 2, 1994. The radar illumination is from the left of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). The resulting color combinations in this radar image are caused by differences in surface roughness of the lava flows. Smoother flows

  20. Investigating hydrocarbon contamination using ground penetrating radar

    International Nuclear Information System (INIS)

    Roest, P.B. van der; Brasser, D.J.S.; Wagebaert, A.P.J.; Stam, P.H.

    1996-01-01

    The increasing costs of remediating contaminated sites has stimulated research for cost reducing techniques in soil investigation and clean-up techniques. Under the traditional approach soil borings and groundwater wells are used to investigate contaminated soil. These are useful tools to determine the amount and characteristics of the contamination, but they are inefficient and costly in providing information on the location and extent of contamination as they only give information on one point. This often leads to uncertainty in estimating clean-up costs or, even worse, to unsuccessful clean-ups. MAP Environmental Research has developed a technology using Ground Penetrating Radar (GPR) in combination with in-house developed software to locate and define the extent of hydrocarbon contamination. With this technology, the quality of site investigation is increased while costs are reduced. Since 1994 MAP has been improving its technology and has applied it to over 100 projects, which all have been checked afterwards by conventional drilling. This paper gives some general characteristics of the method and presents a case study. The emphasis of this paper lies on the practical application of GPR to hydrocarbon contamination detection

  1. Estimation of soil hydraulic parameters in the field by integrated hydrogeophysical inversion of time-lapse ground-penetrating radar data

    KAUST Repository

    Jadoon, Khan; Weihermü ller, Lutz; Scharnagl, Benedikt; Kowalsky, Michael B.; Bechtold, Michel; Hubbard, Susan S.; Vereecken, Harry; Lambot, Sé bastien

    2012-01-01

    An integrated hydrogeophysical inversion approach was used to remotely infer the unsaturated soil hydraulic parameters from time-lapse ground-penetrating radar (GPR) data collected at a fixed location over a bare agricultural field. The GPR model

  2. Classification of Agricultural Crops in Radar Images

    NARCIS (Netherlands)

    Hoogeboom, P.

    1983-01-01

    For the past few years an accurate X-band SLAR system with digital recording has been available in The Netherlands. The images of this system are corrected to indicate radar backscatter coefficients (gamma) instead of arbitrary greytones. In 1980 a radar measurement campaign was organized in the

  3. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  4. Space Radar Image of Chernobyl

    Science.gov (United States)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  5. Space Radar Image of Manaus region of Brazil

    Science.gov (United States)

    1994-01-01

    These L-band images of the Manaus region of Brazil were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. The left image was acquired on April 12, 1994, and the middle image was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (top) and the Rio Solimoes (bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The differences in brightness between the images reflect changes in the scattering of the radar channel. In this case, the changes are indicative of flooding. A flooded forest has a higher backscatter at L-band (horizontally transmitted and received) than an unflooded river. The extent of the flooding is much greater in the April image than in the October image, and corresponds to the annual, 10-meter (33-foot) rise and fall of the Amazon River. A third image at right shows the change in the April and October images and was created by determining which areas had significant decreases in the intensity of radar returns. These areas, which appear blue on the third image at right, show the dramatic decrease in the extent of flooded forest, as the level of the Amazon River falls. The flooded forest is a vital habitat for fish and floating meadows are an important source of atmospheric methane. This demonstrates the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies obscure monitoring of floods. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas Estaciais, during

  6. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    Science.gov (United States)

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital

  7. Imaging of Archaeological Remains at Barcombe Roman Villa using Microwave Tomographic Depictions of Ground Penetrating Radar Data

    Science.gov (United States)

    Soldovieri, F.; Utsi, E.; Alani, A.; Persico, R.

    2012-04-01

    The site of the Barcombe Romano-British villa lies in a field on the perimeter of Barcombe village in East Sussex, England. The site came to the attention of the Mid Sussex Field Archaeological Team (MSFAT) and the University College London Field Archaeological Unit (UCL, subsequently replaced by the Centre for Continuing Education of the University of Sussex, CCE) because it was in danger of disappearing altogether without being adequately recorded [1]. In common with many other UK sites of the period, the villa had been extensively robbed out in the centuries following its demise in order to provide building material for the adjacent village and its associated farms, a common problem with Romano-British sites in the UK [2]. In addition, the site is positioned on the ridge of a field in agricultural use and has therefore been extensively ploughed out. As a result, the archaeological evidence was sparse and the little that remained was being rapidly eroded. In April 2001, a Ground Penetrating Radar (GPR) survey was carried out jointly by the Department of Engineering, Portsmouth and Utsi Electronics Ltd on behalf of the archaeological team in order to investigate the possibility of mapping both the villa and earlier prehistoric remains on the same ridge. Using a 40m by 60m grid laid out by the archaeological team, a Groundvue 1, with antennas of central frequency 400MHz, was used to survey along a series of parallel transects at intervals of 50cm. The sampling interval along the line of survey was 5cm and probing was carried out to 40ns. The results of the GPR survey, including a comparison with the evidence from the resistivity work, were published in 2002 [3]. The original GPR data were processed (using the ReflexW package) by applying background removal, adding time based gain, averaging over 2 traces in order to reduce noise resulting from the relative movement of the antennas across the ploughed field and finally applying a Bandpass Butterworth filter of 200

  8. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar:" ongoing research activities and mid-term results

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2015-04-01

    This work aims at presenting the ongoing activities and mid-term results of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.' Almost three hundreds experts are participating to the Action, from 28 COST Countries (Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Malta, Macedonia, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom), and from Albania, Armenia, Australia, Egypt, Hong Kong, Jordan, Israel, Philippines, Russia, Rwanda, Ukraine, and United States of America. In September 2014, TU1208 has been praised among the running Actions as 'COST Success Story' ('The Cities of Tomorrow: The Challenges of Horizon 2020,' September 17-19, 2014, Torino, IT - A COST strategic workshop on the development and needs of the European cities). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of buried objects

  9. Magnetometry and Ground-Penetrating Radar Studies in the Sihuas Valley, Peru

    Science.gov (United States)

    Wisnicki, E.; Papadimitrios, K.; Bank, C.

    2013-12-01

    The Quillcapampa la Antigua site in Peru's Sihuas Valley is a settlement from Peru's Middle Horizon (600-100 A.D.). Archaeological interest in the area stems from the question of whether ancient civilizations were able to have extensive state control of distant groups, or whether state influence occurred through less direct ties (e.g., marriage, religion, or trade). Our geophysical surveys are preliminary to archaeological digging in the area. Ground-penetrating radar and magnetometry attempt to locate areas of interest for focused archaeological excavation, characterize the design of architectural remains and burial mounds in the area, and allow archaeologists to interpret the amount of influence the Wari civilization had on the local residents.

  10. Borehole radar survey at the granite quarry mine, Pocheon, Kyounggi province

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Ho; Cho, Seong Jun; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il; Shin, In Chul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Borehole radar survey in combination with the reflection and tomography methods was conducted at the Donga granite quarry mine of Pocheon area in Kyounggi province. The purpose of radar survey in quarry mine is to delineate the inhomogeneities including fractures and to estimate the freshness of rock. 20 MHz was adopted as the central frequency for the radar reflection and tomography surveys for the longer distance of penetration. The reflection survey using the direction finding antenna was also conducted to get the information on the spatial orientation of reflectors. Besides the various kinds of radar borehole survey, two surface geophysical methods, dipole-dipole resistivity survey and ground penetrating radar, were also applied to delineate the hidden parts of geological structures which was confirmed by geological mapping. The reflection data processing package, RADPRO ver. 2.2, developed continuously through in this study, was used to process the borehole reflection radar data. The new programs to process radar reflection data using directional antenna were devised and used to calculate and image the orientation of reflectors. The major dip angle of fractured zones were determined from the radar reflection images. With the aid of direction finding antenna and the newly developed algorithm to image the orientation of reflectors, it was possible to get the three dimensional attitudes of reflectors. Detailed interpretation results of the surveyed area are included in this report. Through the interpretation of borehole reflection data using dipole and direction finding antenna, we could determine the orientation of the major fractured zone, the boundary of two mining areas. Many of hidden inhomogeneities were found by borehole radar methods. By the image of direction finding antenna, it was confirmed that nearly all of them were located at the outside of the planned mining area or were situated very deeply. Therefore, the surveyed area consists of very fresh and

  11. Radar image enhancement and simulation as an aid to interpretation and training

    Science.gov (United States)

    Frost, V. S.; Stiles, J. A.; Holtzman, J. C.; Dellwig, L. F.; Held, D. N.

    1980-01-01

    Greatly increased activity in the field of radar image applications in the coming years demands that techniques of radar image analysis, enhancement, and simulation be developed now. Since the statistical nature of radar imagery differs from that of photographic imagery, one finds that the required digital image processing algorithms (e.g., for improved viewing and feature extraction) differ from those currently existing. This paper addresses these problems and discusses work at the Remote Sensing Laboratory in image simulation and processing, especially for systems comparable to the formerly operational SEASAT synthetic aperture radar.

  12. ONKALO EDZ-measurements using ground penetrating radar (GPR) method

    Energy Technology Data Exchange (ETDEWEB)

    Silvast, M.; Wiljanen, B. (Roadscanners Oy, Rovaniemi (Finland))

    2008-09-15

    This report presents pilot project results from various Ground Penetrating Radar (GPR) tests performed on bedrock in ONKALO, the research tunnel system being built for the final disposal of spent nuclear fuel (in Finland). In recent years the GPR technology for structure inspection has improved to faster systems and higher frequencies. Processing and interpretation software has been developed for better visualization of processed data. GPR is a powerful non-destructive testing method with major advantages such as fast measurement speed and continuous survey lines. The purpose of the tests was to determine the capacity of GPR in identifying the Excavation Damaged or Disturbed Zone (EDZ). Topics included comparison of different types of GPR systems and antennas in select locations in the tunnel system and data presentation. High quality GPR data was obtained from all systems that were used on surfaces without concrete or steel reinforcement. Data processed using Geo Doctor software, which enables integrated analysis of available datasets on a single screen, provided promising results. (orig.)

  13. ONKALO EDZ-measurements using ground penetrating radar (GPR) method

    International Nuclear Information System (INIS)

    Silvast, M.; Wiljanen, B.

    2008-09-01

    This report presents pilot project results from various Ground Penetrating Radar (GPR) tests performed on bedrock in ONKALO, the research tunnel system being built for the final disposal of spent nuclear fuel (in Finland). In recent years the GPR technology for structure inspection has improved to faster systems and higher frequencies. Processing and interpretation software has been developed for better visualization of processed data. GPR is a powerful non-destructive testing method with major advantages such as fast measurement speed and continuous survey lines. The purpose of the tests was to determine the capacity of GPR in identifying the Excavation Damaged or Disturbed Zone (EDZ). Topics included comparison of different types of GPR systems and antennas in select locations in the tunnel system and data presentation. High quality GPR data was obtained from all systems that were used on surfaces without concrete or steel reinforcement. Data processed using Geo Doctor software, which enables integrated analysis of available datasets on a single screen, provided promising results. (orig.)

  14. Fusion of Satellite Multispectral Images Based on Ground-Penetrating Radar (GPR Data for the Investigation of Buried Concealed Archaeological Remains

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-06-01

    Full Text Available The paper investigates the superficial layers of an archaeological landscape based on the integration of various remote sensing techniques. It is well known in the literature that shallow depths may be rich in archeological remains, which generate different signal responses depending on the applied technique. In this study three main technologies are examined, namely ground-penetrating radar (GPR, ground spectroscopy, and multispectral satellite imagery. The study aims to propose a methodology to enhance optical remote sensing satellite images, intended for archaeological research, based on the integration of ground based and satellite datasets. For this task, a regression model between the ground spectroradiometer and GPR is established which is then projected to a high resolution sub-meter optical image. The overall methodology consists of nine steps. Beyond the acquirement of the in-situ measurements and their calibration (Steps 1–3, various regression models are examined for more than 70 different vegetation indices (Steps 4–5. The specific data analysis indicated that the red-edge position (REP hyperspectral index was the most appropriate for developing a local fusion model between ground spectroscopy data and GPR datasets (Step 6, providing comparable results with the in situ GPR measurements (Step 7. Other vegetation indices, such as the normalized difference vegetation index (NDVI, have also been examined, providing significant correlation between the two datasets (R = 0.50. The model is then projected to a high-resolution image over the area of interest (Step 8. The proposed methodology was evaluated with a series of field data collected from the Vésztő-Mágor Tell in the eastern part of Hungary. The results were compared with in situ magnetic gradiometry measurements, indicating common interpretation results. The results were also compatible with the preliminary archaeological investigations of the area (Step 9. The overall

  15. Survey of Electrical Imaging and Geo radar on Landslides Investigation at Taman Hillview, Ampang, Selangor

    International Nuclear Information System (INIS)

    Umar Hamzah; Nurul Fairuz Diyana Bahrudin; Mohd Azmi Ismail; Amry Amin Abbas

    2009-01-01

    Electrical resistivity and Ground Penetrating Radar (GPR) surveys were carried out at Taman Hill View, Ampang, Selangor landslide area. This landslide site was a part of three similar landslides which occurred at Bukit Antarabangsa, Hulu Klang, Selangor. The landslide had occurred along the road to Bukit Antarabangsa and Athenaeum Tower. The objectives of these studies were to characterise the sliding material and to determine the depth of bedrock below the sliding surface using the electrical resistivity imaging technique as well as to recognise the fractured or weak zone using the GPR technique. The spacing between electrodes used in the survey was 2 to 2.5 m and the survey lines were chosen close to the borehole locations. With a total of 41 electrodes and spacing between each electrode of 2 to 2.5 m, the maximum current electrode spacing in this survey would be between 80-100 m resulting in the deepest subsurface depth investigated approximately at 20 to 25 m. A 100 MHz electromagnetic wave was used in the Ground Penetration Radar survey. The resistivity imaging result showed the weathered granite profile with resistivity value ranging from 2 to 7000 Ωm. The patterns also show that this area had a lot of fractured or weak zones up to a depth of 4 to 5 m based on the occurrence of low resistivities zones in between the high resistivities. These highly fractured and faulted zones also appeared in the GPR sections as shown by the presence of shifted reflectors and layer discontinuity. (author)

  16. Ground penetrating radar using a microwave radiated from laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, H; Tanaka, K A [Graduate School of Engineering and Institute of Laser Engineering, Suita, Osaka University (Japan); Yamaura, M; Shimada, Y; Fujita, M [Institute for Laser Technology, Suita, Osaka (Japan)], E-mail: nakajima-h@ile.osaka-u.ac.jp

    2008-05-01

    A plasma column radiates a microwave to surroundings when generated with laser irradiation. Using such a microwave, we are able to survey underground objects and architectures from a remote place. In this paper, the microwave radiated from a plasma column induced by an intense laser ({approx} 10{sup 9} W/cm{sup 2}) were measured. Additionally, a proof test of this method was performed by searching an underground aluminum disk (26 cm in diameter, 1 cm in depth, and 1 m apart from a receiving antenna). As the result, the characteristics of the radiated microwave were clarified, and strong echoes corresponding to the edges of an aluminum disk were found. Based on these results, the feasibility of a ground penetrating radar was verified.

  17. Inversion and sensitivity analysis of ground penetrating radar data with waveguide dispersion using deterministic and Markov chain Monte Carlo methods

    NARCIS (Netherlands)

    Bikowski, J.; Huisman, J.A.; Vrugt, J.A.; Vereecken, H.; van der Kruk, J.

    2012-01-01

    Ground-penetrating radar (GPR) data affected by waveguide dispersion are not straightforward to analyse. Therefore, waveguide dispersed common midpoint measurements are typically interpreted using so-called dispersion curves, which describe the phase velocity as a function of frequency. These

  18. San Gabriel Mountains, California, Radar image, color as height

    Science.gov (United States)

    2000-01-01

    This topographic radar image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the

  19. Pengolahan data Ground Penetrating Radar (GPR dengan menggunakan software MATGPR R-3.5

    Directory of Open Access Journals (Sweden)

    Elfarabi Amien

    2017-03-01

    Full Text Available Alat Ground Penetration Radar (GPR memancarkan sinyal gelombang elektromagnetik yang dipancarkan kedalam bumi kemudian gelombang elektromagnetik di tangkap saat sudah sampai permukaan bumi. Alat GPR ini dapat memetakan kondisi bawah permukaan yang dilewatinya, selain itu alat ini sangat sensitif terhadap benda-benda yang memiliki komponen atau muatan listrik dan magnet yang besar. Benda-benda tersebut dapat dikatakan sebagai sumber noise. Pengaruh noise ini akan mempengaruhi pada hasil yang keluarkan, oleh karena itu diperlukan pengolahan data untuk menfilter noise tersebut agar dapat menghasilkan hasil yang baik dan tidak menimbulkan kebingungan pada saat proses interpretasi data.

  20. Three-dimensional, subsurface imaging synthetic aperture radar

    International Nuclear Information System (INIS)

    Moussally, G.J.

    1994-01-01

    The objective of this applied research and devolpment project is to develop a system known as 3-D SISAR. This sytem consists of a gound penetrating radar with software algorithms designed for detection, location, and identification of buried objects in the underground hazardous waste environments found at US DOE storage sites. Three-dimensional maps can assist the development of remdiation strategies and characterization of the digface during remediation. The system should also be useful for monitoring hydrocarbon-based contaminant migration after remediation. 5 figs

  1. High Resolution Radar Imaging using Coherent MultiBand Processing Techniques

    NARCIS (Netherlands)

    Dorp, Ph. van; Ebeling, R.P.; Huizing, A.G.

    2010-01-01

    High resolution radar imaging techniques can be used in ballistic missile defence systems to determine the type of ballistic missile during the boost phase (threat typing) and to discriminate different parts of a ballistic missile after the boost phase. The applied radar imaging technique is 2D

  2. Use of the SAR (Synthetic Aperture Radar) P band for detection of the Moche and Lambayeque canal networks in the Apurlec region, Perù

    Science.gov (United States)

    Ilaria Pannaccione Apa, Maria; Santovito, Maria Rosaria; Pica, Giulia; Catapano, Ilaria; Fornaro, Gianfranco; Lanari, Riccardo; Soldovieri, Francesco; Wester La Torre, Carlos; Fernandez Manayalle, Marco Antonio; Longo, Francesco; Facchinetti, Claudia; Formaro, Roberto

    2016-04-01

    In recent years, research attention has been devoted to the development of a new class of airborne radar systems using low frequency bands ranging from VHF/UHF to P and L ones. In this frame, the Italian Space Agency (ASI) has promoted the development of a new multi-mode and multi-band airborne radar system, which can be considered even a "proof-of-concept" for the next space-borne missions. In particular, in agreement with the ASI, the research consortium CO.RI.S.T.A. has in charge the design, development and flight validation of such a kind of system, which is the first airborne radar entirely built in Italy. The aim was to design and realize a radar system able to work in different modalities as: nadir-looking sounder at VHF band (163 MHz); side-looking imager (SAR) at P band with two channels at 450 MHz and 900 MHz. The P-band is a penetration radar. Exploiting penetration features of low frequency electromagnetic waves, dielectric discontinuities of observed scene due to inhomogeneous materials rise up and can be detected on the resulting image. Therefore buried objects or targets placed under vegetation may be detected. Penetration capabilities essentially depend on microwave frequency. Typically, penetration distance is inversely proportional to microwave frequency. The higher the frequency, the lower the penetration depth. Terrain characteristics affect penetration capabilities. Humidity acts as a shield to microwave penetration. Hence terrain with high water content are not good targets for P-band applicability. Science community, governments and space agencies have increased their interest about low frequency radar for their useful applicability in climatology, ecosystem monitoring, glaciology, archaeology. The combination of low frequency and high relative bandwidth of such a systems has a large applicability in both military and civilian applications, ranging from forestry applications, biomass measuring, archaeological and geological exploration

  3. Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test

    Directory of Open Access Journals (Sweden)

    A. R. Mangel

    2012-11-01

    Full Text Available A lab scale infiltration experiment was conducted in a sand tank to evaluate the use of time-lapse multi-offset ground-penetrating radar (GPR data for monitoring dynamic hydrologic events in the vadose zone. Sets of 21 GPR traces at offsets between 0.44–0.9 m were recorded every 30 s during a 3 h infiltration experiment to produce a data cube that can be viewed as multi-offset gathers at unique times or common offset images, tracking changes in arrivals through time. Specifically, we investigated whether this data can be used to estimate changes in average soil water content during wetting and drying and to track the migration of the wetting front during an infiltration event. For the first problem we found that normal-moveout (NMO analysis of the GPR reflection from the bottom of the sand layer provided water content estimates ranging between 0.10–0.30 volumetric water content, which underestimated the value determined by depth averaging a vertical array of six moisture probes by 0.03–0.05 volumetric water content. Relative errors in the estimated depth to the bottom of the 0.6 m thick sand layer were typically on the order of 2%, though increased as high as 25% as the wetting front approached the bottom of the tank. NMO analysis of the wetting front reflection during the infiltration event generally underestimated the depth of the front with discrepancies between GPR and moisture probe estimates approaching 0.15 m. The analysis also resulted in underestimates of water content in the wetted zone on the order of 0.06 volumetric water content and a wetting front velocity equal to about half the rate inferred from the probe measurements. In a parallel modeling effort we found that HYDRUS-1D also underestimates the observed average tank water content determined from the probes by approximately 0.01–0.03 volumetric water content, despite the fact that the model was calibrated to the probe data. This error suggests that the assumed conceptual

  4. Radar sensing via a Micro-UAV-borne system

    Science.gov (United States)

    Catapano, Ilaria; Ludeno, Giovanni; Gennarelli, Gianluca; Soldovieri, Francesco; Rodi Vetrella, Amedeo; Fasano, Giancarmine

    2017-04-01

    In recent years, the miniaturization of flight control systems and payloads has contributed to a fast and widespread diffusion of micro-UAV (Unmanned Aircraft Vehicle). While micro-UAV can be a powerful tool in several civil applications such as environmental monitoring and surveillance, unleashing their full potential for societal benefits requires augmenting their sensing capability beyond the realm of active/passive optical sensors [1]. In this frame, radar systems are drawing attention since they allow performing missions in all-weather and day/night conditions and, thanks to the microwave ability to penetrate opaque media, they enable the detection and localization not only of surface objects but also of sub-surface/hidden targets. However, micro-UAV-borne radar imaging represents still a new frontier, since it is much more than a matter of technology miniaturization or payload installation, which can take advantage of the newly developed ultralight systems. Indeed, micro-UAV-borne radar imaging entails scientific challenges in terms of electromagnetic modeling and knowledge of flight dynamics and control. As a consequence, despite Synthetic Aperture Radar (SAR) imaging is a traditional remote sensing tool, its adaptation to micro-UAV is an open issue and so far only few case studies concerning the integration of SAR and UAV technologies have been reported worldwide [2]. In addition, only early results concerning subsurface imaging by means of an UAV-mounted radar are available [3]. As a contribution to radar imaging via autonomous micro-UAV, this communication presents a proof-of-concept experiment. This experiment represents the first step towards the development of a general methodological approach that exploits expertise about (sub-)surface imaging and aerospace systems with the aim to provide high-resolution images of the surveyed scene. In details, at the conference, we will present the results of a flight campaign carried out by using a single radar

  5. Hurricane Rita Track Radar Image with Topographic Overlay

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Animation About the animation: This simulated view of the potential effects of storm surge flooding on Galveston and portions of south Houston was generated with data from the Shuttle Radar Topography Mission. Although it is protected by a 17-foot sea wall against storm surges, flooding due to storm surges caused by major hurricanes remains a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments. About the image: The Gulf Coast from the Mississippi Delta through the Texas coast is shown in this satellite image from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) overlain with data from the Shuttle Radar Topography Mission (SRTM), and the predicted storm track for Hurricane Rita. The prediction from the National Weather Service was published Sept. 22 at 4 p.m. Central Time, and shows the expected track center in black with the lighter shaded area indicating the range of potential tracks the storm could take. Low-lying terrain along the coast has been highlighted using the SRTM elevation data, with areas within 15 feet of sea level shown in red, and within 30 feet in yellow. These areas are more at risk for flooding and the destructive effects of storm surge and high waves. Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial

  6. USING GROUND PENETRATING RADAR TO DETERMINE THE TUNNEL LOCATION BURIED UNDER THE GLACIER

    Directory of Open Access Journals (Sweden)

    Deryuga Andrey Mikhaylovich

    2013-09-01

    Full Text Available The works were carried out with the help of ground penetrating radar “Grot-10”. Doublet broadband antennas with the central frequency of 100 MHz were used. Georadar measures the speed of EM waves v in ice-saturated soil and then the value ε′ is calculated. The radargrams received as a result of georadar survey, which represents stacked data (the two-way time is indicated on vertical scale, were transformed into depth sections, which reflect the space structure located below ground. The distance between the bottom landing and buried mountain road near the north tunnel portal is 78,5 m (profile # 1, and the distance from the upper landing is 84,5 m (profile no. 2. Later, in the April 2003 during the hole boring with the diameter 1,2 m the vertical distance between the upper landing, where ground penetrating works were carried out, and the carpet road of the tunnel was calculated. This distance appeared to be 83 m, that means, the discrepancy between boring and georadar data (84,5 m was only 1,5 m. Thus, the results of ground penetrating investigations helped the workers of glacier to make the correct conclusion on time about the location and burial depth of the tunnel.

  7. Three Decades of Volume Change of a Small Greenlandic Glacier Using Ground Penetrating Radar, Structure from Motion, and Aerial Photogrammetry

    DEFF Research Database (Denmark)

    Marcer, M.; Stentoft, Peter Alexander; Bjerre, Elisa

    2017-01-01

    Glaciers in the Arctic are losing mass at an increasing rate. Here we use surface topography derived from Structure from Motion (SfM) and ice volume from ground penetrating radar (GPR) to describe the 2014 state of Aqqutikitsoq glacier (2.85 km) on Greenland's west coast. A photogrammetrically...... derived 1985 digital elevation model (DEM) was subtracted from a 2014 DEM obtained using land-based SfM to calculate geodetic glacier mass balance. Furthermore, a detailed 2014 ground penetrating radar survey was performed to assess ice volume. From 1985 to 2014, the glacier has lost 49.8 ± 9.4 10 m...... aerial photography. To address this issue, surface elevation in low contrast areas was measured manually at point locations and interpolated using a universal kriging approach. We conclude that ground-based SfM is well suited to establish high-quality DEMs of smaller glaciers. Provided favorable...

  8. Subsurface characterization by the ground penetrating radar WISDOM/ExoMars 2020

    Science.gov (United States)

    Hervé, Y.; Ciarletti, V.; Le Gall, A. A.; Oudart, N.; Loizeau, D.; Guiffaut, C.; Dorizon, S.

    2017-12-01

    The main objective of the ExoMars 2020 mission is to search for signs of past and/or present life on Mars. Toward this goal, a rover was designed to investigate the shallow subsurface which is the most likely place where signs of life may be preserved, beneath the hostile surface of Mars. The rover of the ExoMars 2020 mission has on board a polarimetric ground penetrating radar called WISDOM (Water Ice Subsurface Deposits Observation on Mars). Thanks to its large frequency bandwidth of 2.5 GHz, WISDOM is able to probe down to a depth of approximately 3 m on sedimentary rock with a vertical resolution of a few centimeters.The main scientific objectives of WISDOM are to characterize the shallow subsurface of Mars, to help understand the local geological context and to identify the most promising location for drilling. The WISDOM team is currently working on the preparation of the scientific return of the ExoMars 2020 mission. In particular, tools are developed to interpret WISDOM experimental data and, more specifically, to extract information from the radar signatures of expected buried reflectors. Insights into the composition of the ground (through the retrieval of its permittivity) and the geological context of the site can be inferred from the radar signature of buried rocks since the shape and the density of rocks in the subsurface is related to the geological processes that have shaped and placed them there (impact, fluvial processes, volcanism). This paper presents results obtained by automatic detection of structures of interest on a radargram, especially radar signature of buried rocks. The algorithm we developed uses a neural network to identify the position of buried rocks/blocs and then a Hough transform to characterize each signature and to estimate the local permittivity of the medium. Firstly, we will test the performances of the algorithm on simulated data constructed with a 3D FDTD code. This code allows us to simulate radar operation in realistic

  9. Radar imaging of Saturn's rings

    Science.gov (United States)

    Nicholson, Philip D.; French, Richard G.; Campbell, Donald B.; Margot, Jean-Luc; Nolan, Michael C.; Black, Gregory J.; Salo, Heikki J.

    2005-09-01

    We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°⩽|B|⩽26.7°. The average radar cross-section of the A ring is ˜77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal

  10. Multi-Feature Based Multiple Landmine Detection Using Ground Penetration Radar

    Directory of Open Access Journals (Sweden)

    S. Park

    2014-06-01

    Full Text Available This paper presents a novel method for detection of multiple landmines using a ground penetrating radar (GPR. Conventional algorithms mainly focus on detection of a single landmine, which cannot linearly extend to the multiple landmine case. The proposed algorithm is composed of four steps; estimation of the number of multiple objects buried in the ground, isolation of each object, feature extraction and detection of landmines. The number of objects in the GPR signal is estimated by using the energy projection method. Then signals for the objects are extracted by using the symmetry filtering method. Each signal is then processed for features, which are given as input to the support vector machine (SVM for landmine detection. Three landmines buried in various ground conditions are considered for the test of the proposed method. They demonstrate that the proposed method can successfully detect multiple landmines.

  11. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    Science.gov (United States)

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all

  12. Data Processing and Primary results of Lunar Penetrating Radar on Board the Chinese Yutu Rover

    Science.gov (United States)

    Su, Yan; Xing, Shuguo; Feng, Jianqing; Dai, Shun; Ding, Chunyu; Xiao, Yuan; Zhang, Hongbo; Zhao, Shu; Xue, Xiping; Zhang, Xiaoxia; Liu, Bin; Yao, Meijuan; Li, Chunlai

    2015-04-01

    Radar is an attractive and powerful technique to observe the Moon. Radar mapping of the Moon's topography was first done by the Arecibo telescope at a wave- length of 70 cm in 1964 (Thompson & Dyce 1966). Chang'e-3 (CE-3) was successfully launched on 2013 December 2, and the landing place is in Mare Imbrium, about 40km south of the 6km diameter Laplace F crater, at 44.1214ON, 19.5116OW. The Lunar ground-Penetrating Radar (LPR) is one of scientific payloads of the Yutu rover, aiming to achieve the first direct measurements and explore the lunar subsurface structure. Compared with ALSE and LRS, LPR works at higher frequencies of 60 MHz and 500 MHz. Thus it can probe regions with shallower depth including the regolith and lunar crust at higher range resolution. The LPR uses one transmitting and one receiving dipole antenna for 60 MHz which are installed at the back of the rover. For 500 MHz, one transmitting and two bow-tie receiving antennas are attached to the bottom of the rover. It transmits a pulsed signal and receives the radar echo signal along the path that the Yutu rover traverses. The free space range resolutions are ~ 50 cm and ~ 25 m for 60 MHz and 500 MHz respectively. The radar data stop being sampled and are sent back to Earth when Yutu is stationary. Observations are simultaneously carried out at frequencies of 60 MHz and 500 MHz. Since the Yutu rover had severe problems during its second lunar day, it is pity that the Yutu rover only transversed a limited distance of 114.8m. In total, 566 MB of data were obtained. The scientific data are archived and distributed by National Astronomical Observatories, Chinese Academy of Sciences. Data processing has been done in order to eliminate the effect of the instrument. To obtain clear radar images, more data processing need to be applied such as coordinate transformation, data editing, background removal, the operations of smoothing and gain resetting. The radar signal could detect hundreds of meters deep at

  13. Regolith thickness at the Chang'E-3 landing site from the Lunar Penetrating Radar and impact craters

    Science.gov (United States)

    Fa, W.; Zhu, M.-H.; Liu, T.

    2015-10-01

    The Chang'E-3 lunar penetrating radar (LPR) observations reveal a newly formed regolith layer (<1 m), an ejecta layer (~2-6 m), and a palaeoregolith layer (~4-9 m) from the surface to a depth of ~ 20 m. The thicknesses of the newly formed regolith layer and the palaeoregolith layer are consistent with the estimations based on the excavation depth and morphology of small fresh craters.

  14. Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar

    Directory of Open Access Journals (Sweden)

    S. Westermann

    2010-11-01

    Full Text Available Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted in gravelly soil over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded in sediments on Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated.

    The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the

  15. Penetrating power of resonant electromagnetic induction imaging

    Directory of Open Access Journals (Sweden)

    Roberta Guilizzoni

    2016-09-01

    Full Text Available The possibility of revealing the presence and identifying the nature of conductive targets is of central interest in many fields, including security, medicine, industry, archaeology and geophysics. In many applications, these targets are shielded by external materials and thus cannot be directly accessed. Hence, interrogation techniques are required that allow penetration through the shielding materials, in order for the target to be identified. Electromagnetic interrogation techniques represent a powerful solution to this challenge, as they enable penetration through conductive shields. In this work, we demonstrate the power of resonant electromagnetic induction imaging to penetrate through metallic shields (1.5-mm-thick and image targets (having conductivities σ ranging from 0.54 to 59.77 MSm−1 concealed behind them.

  16. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar": first-year activities and results

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2014-05-01

    focuses on the design of innovative GPR equipment, on the building of prototypes and on the testing and optimisation of new systems. The second WG focuses on the GPR surveying of pavement, bridges, tunnels and buildings, as well as on the sensing of underground utilities and voids. The third WG deals with the development of electromagnetic forward and inverse scattering methods, for the characterization of GPR scenarios, as well as with data- processing algorithms for the elaboration of the data collected during GPR surveys. The fourth WG works on the use of GPR in fields different from the civil engineering, as well as on the integration of GPR with other non-destructive testing techniques. Each WG includes several Projects. COST Action TU1208 is active through a range of networking tools: meetings, workshops, conferences, training schools, short-term scientific missions, dissemination activities. During the first year of activities, a First General Meeting was organized in Rome, in July 2013, a second meeting took place in Nantes, in February 2014, and the Second General Meeting is being held jointly with the 2014 EGU General Assembly. A training school on "Microwave Imaging and Diagnostics: Theory, Techniques, and Applications", held in March 2014, was co-organised with the European School of Antennas. Four Short-Term Scientific Missions were funded, allowing young researchers to spend a period of time in an institution abroad, in order to carry out a research project contributing to the scientific objectives of the Action. The Action's activities were disseminated in international conferences [1]-[4], as well as in further workshops and meetings. Two volumes were published [5]-[6], and several scientific papers on peer-reviewed journals. A Springer book presenting the state of the art on civil engineering applications of Ground Penetrating Radar is being prepared and is going to be published in summer 2014. A COST Action is a wide bottom-up interdisciplinary science

  17. Three Decades of Volume Change of a Small Greenlandic Glacier Using Ground Penetrating Radar, Structure from Motion, and Aerial Photogrammetry

    DEFF Research Database (Denmark)

    Marcer, M.; Stentoft, Peter Alexander; Bjerre, Elisa

    2017-01-01

    of ice, corresponding to roughly a quarter of its 1985 volume (148.6 ± 47.6 10 m) and a thinning rate of 0.60 ± 0.11 m a. The computations are challenged by a relatively large fraction of the 1985 DEM (∼50% of the glacier surface) being deemed unreliable owing to low contrast (snow cover) in the 1985......Glaciers in the Arctic are losing mass at an increasing rate. Here we use surface topography derived from Structure from Motion (SfM) and ice volume from ground penetrating radar (GPR) to describe the 2014 state of Aqqutikitsoq glacier (2.85 km) on Greenland's west coast. A photogrammetrically...... derived 1985 digital elevation model (DEM) was subtracted from a 2014 DEM obtained using land-based SfM to calculate geodetic glacier mass balance. Furthermore, a detailed 2014 ground penetrating radar survey was performed to assess ice volume. From 1985 to 2014, the glacier has lost 49.8 ± 9.4 10 m...

  18. Detection and delineation of underground septic tanks in sandy terrain using ground penetrating radar

    Science.gov (United States)

    Omolaiye, Gabriel Efomeh; Ayolabi, Elijah A.

    2010-09-01

    A ground penetrating radar (GPR) survey was conducted on the Lekki Peninsula, Lagos State, Nigeria. The primary target of the survey was the delineation of underground septic tanks (ST). A total of four GPR profiles were acquired on the survey site using Ramac X3M GPR equipment with a 250MHz antenna, chosen based on the depth of interest and resolution. An interpretable depth of penetration of 4.5m below the surface was achieved after processing. The method accurately delineated five underground ST. The tops of the ST were easily identified on the radargram based on the strong-amplitude anomalies, the length and the depths to the base of the ST were estimated with 99 and 73 percent confidence respectively. The continuous vertical profiles provide uninterrupted subsurface data along the lines of traverse, while the non-intrusive nature makes it an ideal tool for the accurate mapping and delineation of underground utilities.

  19. Fundamentals of ground penetrating radar in environmental and engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Casas, A.; Pinto, V.; Rivero, L. [Barcelona Univ., Barcelona (Spain). Faculty of Geology, Dept. of Geochemistry, Petrology and Geological Prospecting

    2000-12-01

    Ground Penetrating Radar (GPR) is a high frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. The method operates on the simple principle that electromagnetic waves, emitted from a transmitter antenna, are reflected from buried objects and detected at another antenna, acting as receiver. GPR data is presented in the form of time-distance plots that are analogous to conventional reflection seismic records, and in fact the method has many similarities to seismic reflection method with a pulse of electromagnetic energy substituting for the elastic (seismic) energy. Nevertheless, the principles and theory of the method are based on the wave equation derived from Maxwell's equations for electromagnetic wave propagation. This paper has been written for tutorial purposes, and it is hoped that it will provide the reader with a good outline of GPR presenting an overview of its theoretical basis, guidelines for interpretation and some practical field examples.

  20. Fundamentals of ground penetrating radar in environmental and engineering applications

    International Nuclear Information System (INIS)

    Casas, A.; Pinto, V.; Rivero, L.

    2000-01-01

    Ground Penetrating Radar (GPR) is a high frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. The method operates on the simple principle that electromagnetic waves, emitted from a transmitter antenna, are reflected from buried objects and detected at another antenna, acting as receiver. GPR data is presented in the form of time-distance plots that are analogous to conventional reflection seismic records, and in fact the method has many similarities to seismic reflection method with a pulse of electromagnetic energy substituting for the elastic (seismic) energy. Nevertheless, the principles and theory of the method are based on the wave equation derived from Maxwell's equations for electromagnetic wave propagation. This paper has been written for tutorial purposes, and it is hoped that it will provide the reader with a good outline of GPR presenting an overview of its theoretical basis, guidelines for interpretation and some practical field examples

  1. Fundamental of ground penetrating radar in environmental and engineering applications

    Directory of Open Access Journals (Sweden)

    L. Rivero

    2000-06-01

    Full Text Available Ground Penetrating Radar (GPR is a high frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. The method operates on the simple principle that electromagnetic waves, emitted from a transmitter antenna, are reflected from buried objects and detected at another antenna, acting as receiver. GPR data is presented in the form of time-distance plots that are analogous to conventional reflection seismic records, and in fact the method has many similarities to seismic reflection method with a pulse of electromagnetic energy substituting for the elastic (seismic energy. Nevertheless, the principles and theory of the method are based on the wave equation derived from Maxwell's equations for electromagnetic wave propagation. This paper has been written for tutorial purposes, and it is hoped that it will provide the reader with a good outline of GPR presenting an overview of its theoretical basis, guidelines for interpretation and some practical field examples.

  2. COST Action TU1208 - Working Group 1 - Design and realisation of Ground Penetrating Radar equipment for civil engineering applications

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; D'Amico, Sebastiano; Ferrara, Vincenzo; Frezza, Fabrizio; Persico, Raffaele; Tosti, Fabio

    2017-04-01

    frequency-modulated continuous-wave GPR prototype was designed and realized by an Italian research team; detailled instructions, describing how to build this radar step-by-step, will be available by the end of the Action. The idea behind this initiative is to support and encourage institutes in less research-intensive Countries, who cannot afford a commercial system, to build their own prototype for training purposes and to start familiarizing with the GPR technique. 5. A new stepped-frequency ground-coupled multi-antenna GPR system for road and bridge inspection was developed by 3d-radar (manufacturer based in Norway) and presented during the GPR 2014 conference as a contribution to COST Action TU1208. The starting point was an analogous commercial system, with air-coupled antennas. For road inspection, air-coupled antennas offer practical advantages over ground-coupled antennas (mainly, the possibility to carry out measurements at higher speeds); moreover, they allow enhanced detection of shallow layers inside the road structure. On the other hand, data from ground-coupled array contain much more details from individual scatterers, making them more suitable to image the granularity of the road base materials and for bridge deck inspection, where reinforcement rebar has to be imaged. Ground-coupled GPR systems also provide higher penetrating depth due to a stronger coupling of energy into the ground. The novel stepped-frequency ground-coupled GPR exploits an array of boomerang-shaped monopole elements. 6. Recommendations for the safety of people and equipment during GPR prospecting were produced. Despite the increasing demand of GPR surveys all over the world, safety matters are rarely considered. The Action put efforts into debating them, with scientists and professionals performing GPR surveys. As an outcome of this activity, a book was published where a series of recommendations are provided. These include general hints, recommendations for surveys carried out in

  3. Ground penetrating radar applied to rebar corrosion inspection

    Science.gov (United States)

    Eisenmann, David; Margetan, Frank; Chiou, Chien-Ping T.; Roberts, Ron; Wendt, Scott

    2013-01-01

    In this paper we investigate the use of ground penetrating radar (GPR) to detect corrosion-induced thinning of rebar in concrete bridge structures. We consider a simple pulse/echo amplitude-based inspection, positing that the backscattered response from a thinned rebar will be smaller than the similar response from a fully-intact rebar. Using a commercial 1600-MHz GPR system we demonstrate that, for laboratory specimens, backscattered amplitude measurements can detect a thinning loss of 50% in rebar diameter over a short length. GPR inspections on a highway bridge then identify several rebar with unexpectedly low amplitudes, possibly signaling thinning. To field a practical amplitude-based system for detecting thinned rebar, one must be able to quantify and assess the many factors that can potentially contribute to GPR signal amplitude variations. These include variability arising from the rebar itself (e.g., thinning) and from other factors (concrete properties, antenna orientation and liftoff, etc.). We report on early efforts to model the GPR instrument and the inspection process so as to assess such variability and to optimize inspections. This includes efforts to map the antenna radiation pattern, to predict how backscattered responses will vary with rebar size and location, and to assess detectability improvements via synthetic aperture focusing techniques (SAFT).

  4. New Processing of Spaceborne Imaging Radar-C (SIR-C) Data

    Science.gov (United States)

    Meyer, F. J.; Gracheva, V.; Arko, S. A.; Labelle-Hamer, A. L.

    2017-12-01

    The Spaceborne Imaging Radar-C (SIR-C) was a radar system, which successfully operated on two separate shuttle missions in April and October 1994. During these two missions, a total of 143 hours of radar data were recorded. SIR-C was the first multifrequency and polarimetric spaceborne radar system, operating in dual frequency (L- and C- band) and with quad-polarization. SIR-C had a variety of different operating modes, which are innovative even from today's point of view. Depending on the mode, it was possible to acquire data with different polarizations and carrier frequency combinations. Additionally, different swaths and bandwidths could be used during the data collection and it was possible to receive data with two antennas in the along-track direction.The United States Geological Survey (USGS) distributes the synthetic aperture radar (SAR) images as single-look complex (SLC) and multi-look complex (MLC) products. Unfortunately, since June 2005 the SIR-C processor has been inoperable and not repairable. All acquired SLC and MLC images were processed with a course resolution of 100 m with the goal of generating a quick look. These images are however not well suited for scientific analysis. Only a small percentage of the acquired data has been processed as full resolution SAR images and the unprocessed high resolution data cannot be processed any more at the moment.At the Alaska Satellite Facility (ASF) a new processor was developed to process binary SIR-C data to full resolution SAR images. ASF is planning to process the entire recoverable SIR-C archive to full resolution SLCs, MLCs and high resolution geocoded image products. ASF will make these products available to the science community through their existing data archiving and distribution system.The final paper will describe the new processor and analyze the challenges of reprocessing the SIR-C data.

  5. Space Radar Image of Bebedauro, Brazil, seasonal

    Science.gov (United States)

    1994-01-01

    This is an X-band image showing seasonal changes at the hydrological test site of Bebedouro in Brazil. The image is centered at 9 degrees south latitude and 40.2 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994, during the first flight of the radar system, and on October 1, 1994, during the second mission. The swath width is approximately 16.5 kilometers (10.5 miles) wide. The image channels have the following color assignments: red represents data acquired on April 10; green represents data acquired on October 1; blue corresponds to the ratio of the two data sets. Agriculture plays an important economic and social role in Brazil. One of the major problems related to Brazilian agriculture is estimating the size of planting areas and their productivity. Due to cloud cover and the rainy season, which occurs from November through April, optical and infrared Earth observations are seldom used to survey the region. An additional goal of monitoring this region is to watch the floodplains of rivers like Rio Sao Francisco in order to determine suitable locations for additional agricultural fields. This area belongs to the semi-arid northeastern region of Brazil, where estimates have suggested that about 10 times more land could be used for agriculture, including some locations which could be used for irrigation projects. Monitoring of soil moisture during the important summer crop season is of high priority for the future development and productivity of this region. In April the area was covered with vegetation because of the moisture of the soil and only small differences could be seen in X-band data. In October the run-off channels of this hilly region stand out quite clearly because the greenish areas indicated much less soil moisture and water content in plants. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR

  6. UAV-Borne Profiling Radar for Forest Research

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2017-01-01

    Full Text Available Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV-borne profiling (i.e., waveform radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy

  7. The 3-D geological model around Chang'E-3 landing site based on lunar penetrating radar Channel 1 data

    Science.gov (United States)

    Yuan, Yuefeng; Zhu, Peimin; Zhao, Na; Xiao, Long; Garnero, Edward; Xiao, Zhiyong; Zhao, Jiannan; Qiao, Le

    2017-07-01

    High-frequency lunar penetrating radar (LPR) data from an instrument on the lunar rover Yutu, from the Chang'E-3 (CE-3) robotic lander, were used to build a three-dimensional (3-D) geological model of the lunar subsurface structure. The CE-3 landing site is in the northern Mare Imbrium. More than five significant reflection horizons are evident in the LPR profile, which we interpret as different period lava flow sequences deposited on the lunar surface. The most probable directions of these flows were inferred from layer depths, thicknesses, and other geological information. Moreover, the apparent Imbrian paleoregolith homogeneity in the profile supports the suggestion of a quiescent period of lunar surface evolution. Similar subsurface structures are found at the NASA Apollo landing sites, indicating that the cause and time of formation of the imaged phenomena may be similar between the two distant regions.

  8. Innovative operating modes and techniques for the spaceborne imaging radar-C instrument

    Science.gov (United States)

    Huneycutt, Bryan L.

    1990-01-01

    The operation of the spaceborne imaging radar-C (SIR-C) is discussed. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar which will be flown during at least two different seasons. The instrument has been designed to operate in innovative modes such as the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument has been designed to demonstrate innovative engineering techniques such as beam nulling for echo tracking, pulse-repetition frquency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.

  9. Ground-penetrating radar study of the Cena Bog, Latvia: linkage of reflections with peat moisture content

    Directory of Open Access Journals (Sweden)

    Karušs, J.

    2015-12-01

    Full Text Available Present work illustrates results of the ground-penetrating radar (GPR study of the Cena Bog, Latvia. Six sub-horizontal reflections that most probably correspond to boundaries between sediments with different electromagnetic properties were identified. One of the reflections corresponds to bog peat mineral bottom interface but the rest are linked to boundaries within the peat body. The radar profiles are incorporated with sediment cores and studies of peat moisture and ash content, and degree of decomposition. Most of the electromagnetic wave reflections are related to changes in peat moisture content. The obtained data show that peat moisture content changes of at least 3 % are required to cause GPR signal reflection. However, there exist reflections that do not correlate with peat moisture content. As a result, authors disagree with a dominant opinion that all reflections in bogs are solely due to changes in volumetric peat moisture content.

  10. Sea Ice Thickness Measurement by Ground Penetrating Radar for Ground Truth of Microwave Remote Sensing Data

    Science.gov (United States)

    Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H.

    2018-04-01

    Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR) can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately) aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  11. Alaska Orthorectified Radar Intensity Image - USGS National Map 3DEP Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are orthorectified radar intensity images (ORI) derived from interferometric synthetic aperture radar (ifsar) data. An ORI is a high-resolution image...

  12. Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar

    Science.gov (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon

    2016-04-01

    The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was

  13. Signal Processing of Ground Penetrating Radar Using Spectral Estimation Techniques to Estimate the Position of Buried Targets

    Directory of Open Access Journals (Sweden)

    Shanker Man Shrestha

    2003-11-01

    Full Text Available Super-resolution is very important for the signal processing of GPR (ground penetration radar to resolve closely buried targets. However, it is not easy to get high resolution as GPR signals are very weak and enveloped by the noise. The MUSIC (multiple signal classification algorithm, which is well known for its super-resolution capacity, has been implemented for signal and image processing of GPR. In addition, conventional spectral estimation technique, FFT (fast Fourier transform, has also been implemented for high-precision receiving signal level. In this paper, we propose CPM (combined processing method, which combines time domain response of MUSIC algorithm and conventional IFFT (inverse fast Fourier transform to obtain a super-resolution and high-precision signal level. In order to support the proposal, detailed simulation was performed analyzing SNR (signal-to-noise ratio. Moreover, a field experiment at a research field and a laboratory experiment at the University of Electro-Communications, Tokyo, were also performed for thorough investigation and supported the proposed method. All the simulation and experimental results are presented.

  14. Features of Ground Penetrating Radars for the exploration of planetary subsurface

    Science.gov (United States)

    Burghignoli, P.; Cereti, A.; Fiore, E.; Galli, A.; Pajewski, L.; Pettinelli, E.; Pisani, A.; Schettini, G.; Ticconi, F.

    2003-04-01

    Among the various applications of Surface or Ground Penetrating Radars (GPRs), the possibility of achieving useful information about the characterization of planetary soils represents a topic which has deserved particular interest in recent times [1]. The present work intends to analyze various critical aspects related to the GPR capability of properly investigating the subsurface structure, also emphasizing what kind of practical solutions seem to be more suitable to this purpose. Some basic aspects have to be considered, which are peculiar of this type of problem, e.g.: i) the poor information achievable up to now on both the composition and the stratigraphy of planet soils; ii) the typical bulk and weight limitations for instruments when used in onboard rovers for in-situ measurements. As regards the first aspect, additional knowledge should generally be required on the electromagnetic parameters (permittivity, permeability, and conductivity) of the upper subsoil layers in order to extract useful information from the GPR data. The use of different types of sensors, which can be integrated in an overall "sounding package" [1], is a useful way of characterizing more precisely such electromagnetic parameters. Consequently, GPR can primarily be used to get data on the unknown stratigraphy. The second aspect implies fundamental constraints in the design of GPR, involving the choice of the type of radar, the relevant electronic equipment for signal processing, the antenna design, etc. In addition to standard types of "pulsed" GPR, a specific study has been performed on "step-frequency" GPRs, which appear to be attractive due to their low-cost and simple electronic circuitry. As concerns the choice of the radiating elements, the most suitable configurations of GPR antennas have been investigated and compared in terms of dimensions and radiation parameters. New specific antenna configurations have been proposed, designed, and tested. Finally, numerical simulations have

  15. GROUND PENETRATING RADAR INVESTIGATIONS FOR ARCHITECTURAL HERITAGE PRESERVATION OF THE HABIB SAKAKINI PALACE, CAIRO, EGYPT

    Directory of Open Access Journals (Sweden)

    Sayed HEMEDA

    2012-09-01

    Full Text Available The modern architectural heritage of Egypt is both varied and vast. It covers all nonecclesiastical buildings, important monumental structures (mansions, municipal buildings in the history of architecture, as well as more common buildings. They include houses (from mansions to simple dwellings, public buildings (schools, administrative buildings, hospitals, industrial buildings (factories, warehouses, mills, bridges, monastic dependencies (drinking foundations, gardens and any other modern structures that fall within the category of monuments and comprise the Egyptian cultural heritage. We present herein a comprehensive Ground Penetration Radar (GPR investigation and hazard assessment for the rehabilitation and strengthening of Habib Sakakini’s Palace, in Cairo, considered one of the most significant architectural heritage sites in Egypt. The palace is located on an ancient water pond at the eastern side of the Egyptian gulf, beside the Sultan Bebris Al-Bondoqdary mosque, a place also called “Prince Qraja al-Turkumany pond”. That pond was drained by Habib Sakakini in 1892, to construct his famous palace in 1897. Eight hundred meters of Ground Penetration Radar (GPR profiling were conducted, to monitor the subsurface conditions. 600 meters were made in the surrounding area of the Palace and 200 m at the basement. The aim was to monitor the soil conditions beneath and around the Palace and to identify potential geological discontinuities, or the presence of faults and cavities. A suitable single and dual antenna were used (500-100 MHZ to penetrate to the desired depth of 7 meters (ASTM D6432. The GPR was also used to detect the underground water. At the building basement the GPR was used to identify the foundation thickness and the soil - basement interface, as well as for the inspection of cracks in some supporting columns, piers and masonry walls. All the results, together with the seismic hazard analysis, will be used for a complete

  16. Performance evaluation of lunar penetrating radar onboard the rover of CE-3 probe based on results from ground experiments

    Science.gov (United States)

    Zhang, Hong-Bo; Zheng, Lei; Su, Yan; Fang, Guang-You; Zhou, Bin; Feng, Jian-Qing; Xing, Shu-Guo; Dai, Shun; Li, Jun-Duo; Ji, Yi-Cai; Gao, Yun-Ze; Xiao, Yuan; Li, Chun-Lai

    2014-12-01

    Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetration depth and resolution of LPR are related to the scientific objectives of this mission, a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm.

  17. Groundwater penetrating radar and high resolution seismic for locating shallow faults in unconsolidated sediments

    International Nuclear Information System (INIS)

    Wyatt, D.E.

    1993-01-01

    Faults in shallow, unconsolidated sediments, particularly in coastal plain settings, are very difficult to discern during subsurface exploration yet have critical impact to groundwater flow, contaminant transport and geotechnical evaluations. This paper presents a case study using cross-over geophysical technologies in an area where shallow faulting is probable and known contamination exists. A comparison is made between Wenner and dipole-dipole resistivity data, ground penetrating radar, and high resolution seismic data. Data from these methods were verified with a cone penetrometer investigation for subsurface lithology and compared to existing monitoring well data. Interpretations from these techniques are compared with actual and theoretical shallow faulting found in the literature. The results of this study suggests that (1) the CPT study, combined with the monitoring well data may suggest that discontinuities in correlatable zones may indicate that faulting is present (2) the addition of the Wenner and dipole-dipole data may further suggest that offset zones exist in the shallow subsurface but not allow specific fault planes or fault stranding to be mapped (3) the high resolution seismic data will image faults to within a few feet of the surface but does not have the resolution to identify the faulting on the scale of our models, however it will suggest locations for upward continuation of faulted zones (4) offset 100 MHz and 200 MHz CMP GPR will image zones and features that may be fault planes and strands similar to our models (5) 300 MHz GPR will image higher resolution features that may suggest the presence of deeper faults and strands, and (6) the combination of all of the tools in this study, particularly the GPR and seismic may allow for the mapping of small scale, shallow faulting in unconsolidated sediments

  18. Antenna characteristics and air-ground interface deembedding methods for stepped-frequency ground-penetrating radar measurements

    DEFF Research Database (Denmark)

    Karlsen, Brian; Larsen, Jan; Jakobsen, Kaj Bjarne

    2000-01-01

    The result from field-tests using a Stepped-Frequency Ground Penetrating Radar (SF-GPR) and promising antenna and air-ground deembedding methods for a SF-GPR is presented. A monostatic S-band rectangular waveguide antenna was used in the field-tests. The advantages of the SF-GPR, e.g., amplitude...... and phase information in the SF-GPR signal, is used to deembed the characteristics of the antenna. We propose a new air-to-ground interface deembedding technique based on Principal Component Analysis which enables enhancement of the SF-GPR signal from buried objects, e.g., anti-personal landmines...

  19. Stakeholder needs for ground penetrating radar utility location

    Science.gov (United States)

    Thomas, A. M.; Rogers, C. D. F.; Chapman, D. N.; Metje, N.; Castle, J.

    2009-04-01

    In the UK alone there are millions of miles of underground utilities with often inaccurate, incomplete, or non-existent location records that cause significant health and safety problems for maintenance personnel, together with the potential for large, unnecessary, social and financial costs for their upkeep and repair. This has led to increasing use of Ground Penetrating Radar (GPR) for utility location, but without detailed consideration of the degree of location accuracy required by stakeholders — i.e. all those directly involved in streetworks ranging from utility owners to contractors and surveyors and government departments. In order to ensure that stakeholder requirements are incorporated into a major new UK study, entitled Mapping the Underworld, a questionnaire has been used to determine the current and future utility location accuracy requirements. The resulting data indicate that stakeholders generally require location tolerances better than 100 mm at depths usually extending down to 3 m, and more occasionally to 5 m, below surface level, providing significant challenges to GPR if their needs are to be met in all ground conditions. As well as providing much useful data on stakeholder needs, these data are also providing a methodology for assessment of GPR utility location in terms of the factor most important to them — the degree to which the equipment provides location within their own accuracy requirements.

  20. A systematic method for characterizing the time-range performance of ground penetrating radar

    International Nuclear Information System (INIS)

    Strange, A D

    2013-01-01

    The fundamental performance of ground penetrating radar (GPR) is linked to the ability to measure the signal time-of-flight in order to provide an accurate radar-to-target range estimate. Having knowledge of the actual time range and timing nonlinearities of a trace is therefore important when seeking to make quantitative range estimates. However, very few practical methods have been formally reported in the literature to characterize GPR time-range performance. This paper describes a method to accurately measure the true time range of a GPR to provide a quantitative assessment of the timing system performance and detect and quantify the effects of timing nonlinearity due to timing jitter. The effect of varying the number of samples per trace on the true time range has also been investigated and recommendations on how to minimize the effects of timing errors are described. The approach has been practically applied to characterize the timing performance of two commercial GPR systems. The importance of the method is that it provides the GPR community with a practical method to readily characterize the underlying accuracy of GPR systems. This in turn leads to enhanced target depth estimation as well as facilitating the accuracy of more sophisticated GPR signal processing methods. (paper)

  1. An Iterative Approach to Ground Penetrating Radar at the Maya Site of Pacbitun, Belize

    Directory of Open Access Journals (Sweden)

    Sheldon Skaggs

    2016-09-01

    Full Text Available Ground penetrating radar (GPR surveys provide distinct advantages for archaeological prospection in ancient, complex, urban Maya sites, particularly where dense foliage or modern debris may preclude other remote sensing or geophysical techniques. Unidirectional GPR surveys using a 500 MHz shielded antenna were performed at the Middle Preclassic Maya site of Pacbitun, Belize. The survey in 2012 identified numerous linear and circular anomalies between 1 m and 2 m deep. Based on these anomalies, one 1 m × 4 m unit and three smaller units were excavated in 2013. These test units revealed a curved plaster surface not previously found at Pacbitun. Post-excavation, GPR data were reprocessed to best match the true nature of excavated features. Additional GPR surveys oriented perpendicular to the original survey confirmed previously detected anomalies and identified new anomalies. The excavations provided information on the sediment layers in the survey area, which allowed better identification of weak radar reflections of the surfaces of a burnt, Middle Preclassic temple in the northern end of the survey area. Additional excavations of the area in 2014 and 2015 revealed it to be a large square structure, which was named El Quemado.

  2. Simulations of Aperture Synthesis Imaging Radar for the EISCAT_3D Project

    Science.gov (United States)

    La Hoz, C.; Belyey, V.

    2012-12-01

    EISCAT_3D is a project to build the next generation of incoherent scatter radars endowed with multiple 3-dimensional capabilities that will replace the current EISCAT radars in Northern Scandinavia. Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. To demonstrate the feasibility of the antenna configurations and the imaging inversion algorithms a simulation of synthetic incoherent scattering data has been performed. The simulation algorithm incorporates the ability to control the background plasma parameters with non-homogeneous, non-stationary components over an extended 3-dimensional space. Control over the positions of a number of separated receiving antennas, their signal-to-noise-ratios and arriving phases allows realistic simulation of a multi-baseline interferometric imaging radar system. The resulting simulated data is fed into various inversion algorithms. This simulation package is a powerful tool to evaluate various antenna configurations and inversion algorithms. Results applied to realistic design alternatives of EISCAT_3D will be described.

  3. San Andreas Fault, Southern California , Radar Image, Wrapped Color as Height

    Science.gov (United States)

    2000-01-01

    This topographic radar image vividly displays California's famous San Andreas Fault along the southwestern edge of the Mojave Desert, 75 kilometers (46 miles) north of downtown Los Angeles. The entire segment of the fault shown in this image last ruptured during the Fort Tejon earthquake of 1857. This was one of the greatest earthquakes ever recorded in the U.S., and it left an amazing surface rupture scar over 350 kilometers in length along the San Andreas. Were the Fort Tejon shock to happen today, the damage would run into billions of dollars, and the loss of life would likely be substantial, as the communities of Wrightwood, Palmdale, and Lancaster (among others) all lie upon or near the 1857 rupture area. The Lancaster/Palmdale area appears as bright patches just below the center of the image and the San Gabriel Mountains fill the lower left half of the image. At the extreme lower left is Pasadena. High resolution topographic data such as these are used by geologists to study the role of active tectonics in shaping the landscape, and to produce earthquake hazard maps.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Each cycle of colors (from pink through blue back to pink) represents an equal amount of elevation difference (400 meters, or 1300 feet) similar to contour lines on a standard topographic map. This image contains about 2400 meters (8000 feet) of total relief.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an

  4. Non destructive testing of heterogeneous structures with a step frequency radar

    International Nuclear Information System (INIS)

    Cattin, V.; Chaillout, J.J.

    1998-01-01

    Ground penetrating radar have shown increasing potential in diagnostic of soils or concrete, but the realisation of such a system and the interpretation of data produced by this technique require a clear understanding of the physical electromagnetic processes that appear between media and waves. In this paper are studied the performances of a step frequency radar as a nondestructive technique to evaluate different heterogeneous laboratory size structures. Some critical points are studied like material properties, antenna effect and image reconstruction algorithm, to determine its viability to distinguish smallest region of interest

  5. MAPPING SPATIAL MOISTURE CONTENT OF UNSATURATED AGRICULTURAL SOILS WITH GROUND-PENETRATING RADAR

    Directory of Open Access Journals (Sweden)

    O. Shamir

    2016-06-01

    Full Text Available Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf, common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf, common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  6. Ground-penetrating radar investigations conducted in the 100 areas, Hanford Site: Fiscal Year 1992

    International Nuclear Information System (INIS)

    Bergstrom, K.A.

    1994-01-01

    During Fiscal Year 1992, the Geophysics Group conducted forty- five Ground-Penetrating Radar (GPR) surveys in the 100 Areas (Figure 1) - Objectives for the investigations varied, from locating cribs, trenches and septic systems to helping site boreholes. The results of each investigation were delivered to clients in the form of a map that summarized the interpretation of a given site. No formal reports were prepared. The purpose of this document is to show where and why each of the surveys was conducted. The data and interpretation of each survey are available by contacting the Westinghouse Hanford Company, Geophysics Group. A map showing the location and basic parameters of each survey can be found in the Appendices of this report

  7. Performance evaluation of lunar penetrating radar onboard the rover of CE-3 probe based on results from ground experiments

    International Nuclear Information System (INIS)

    Zhang Hong-Bo; Zheng Lei; Su Yan; Feng Jian-Qing; Xing Shu-Guo; Dai Shun; Li Jun-Duo; Xiao Yuan; Li Chun-Lai; Fang Guang-You; Zhou Bin; Ji Yi-Cai; Gao Yun-Ze

    2014-01-01

    Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetration depth and resolution of LPR are related to the scientific objectives of this mission, a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm

  8. Nearshore Processes, Currents and Directional Wave Spectra Monitoring Using Coherent and Non-coherent Imaging Radars

    Science.gov (United States)

    Trizna, D.; Hathaway, K.

    2007-05-01

    Two new radar systems have been developed for real-time measurement of near-shore processes, and results are presented for measurements of ocean wave spectra, near-shore sand bar structure, and ocean currents. The first is a non-coherent radar based on a modified version of the Sitex radar family, with a data acquisition system designed around an ISR digital receiver card. The card operates in a PC computer with inputs from a Sitex radar modified for extraction of analogue signals for digitization. Using a 9' antenna and 25 kW transmit power system, data were collected during 2007 at the U.S. Army Corps of Engineers Field Research Facility (FRF), Duck, NC during winter and spring of 2007. The directional wave spectrum measurements made are based on using a sequence of 64 to 640 antenna rotations to form a snapshot series of radar images of propagating waves. A square window is extracted from each image, typically 64 x 64 pixels at 3-m resolution. Then ten sets of 64 windows are submitted to a three-dimensional Fast Fourier Transform process to generate radar image spectra in the frequency-wavenumber space. The relation between the radar image spectral intensity and wave spectral intensity derived from the FRF pressure gauge array was used for a test set of data, in order to establish a modulation transfer function (MTF) for each frequency component. For 640 rotations, 10 of such spectra are averaged for improved statistics. The wave spectrum so generated was compared for extended data sets beyond those used to establish the MTF, and those results are presented here. Some differences between the radar and pressure sensor data that are observed are found to be due to the influence of the wind field, as the radar echo image weakens for light winds. A model is developed to account for such an effect to improve the radar estimate of the directional wave spectrum. The radar ocean wave imagery is severely influenced only by extremely heavy rain-fall rates, so that

  9. The SUMO Ship Detector Algorithm for Satellite Radar Images

    Directory of Open Access Journals (Sweden)

    Harm Greidanus

    2017-03-01

    Full Text Available Search for Unidentified Maritime Objects (SUMO is an algorithm for ship detection in satellite Synthetic Aperture Radar (SAR images. It has been developed over the course of more than 15 years, using a large amount of SAR images from almost all available SAR satellites operating in L-, C- and X-band. As validated by benchmark tests, it performs very well on a wide range of SAR image modes (from Spotlight to ScanSAR and resolutions (from 1–100 m and for all types and sizes of ships, within the physical limits imposed by the radar imaging. This paper describes, in detail, the algorithmic approach in all of the steps of the ship detection: land masking, clutter estimation, detection thresholding, target clustering, ship attribute estimation and false alarm suppression. SUMO is a pixel-based CFAR (Constant False Alarm Rate detector for multi-look radar images. It assumes a K distribution for the sea clutter, corrected however for deviations of the actual sea clutter from this distribution, implementing a fast and robust method for the clutter background estimation. The clustering of detected pixels into targets (ships uses several thresholds to deal with the typically irregular distribution of the radar backscatter over a ship. In a multi-polarization image, the different channels are fused. Azimuth ambiguities, a common source of false alarms in ship detection, are removed. A reliability indicator is computed for each target. In post-processing, using the results of a series of images, additional false alarms from recurrent (fixed targets including range ambiguities are also removed. SUMO can run in semi-automatic mode, where an operator can verify each detected target. It can also run in fully automatic mode, where batches of over 10,000 images have successfully been processed in less than two hours. The number of satellite SAR systems keeps increasing, as does their application to maritime surveillance. The open data policy of the EU

  10. Space Radar Image of Central African Gorilla Habitat

    Science.gov (United States)

    1999-01-01

    This is a false-color radar image of Central Africa, showing the Virunga Volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. This C-band L-band image was acquired on April 12, 1994, on orbit 58 of space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). The area is centered at about 1.75 degrees south latitude and 29.5 degrees east longitude. The image covers an area 58 kilometers by 178 kilometers (48 miles by 178 miles). The false-color composite is created by displaying the L-band HH return in red, the L-band HV return in green and the C-band HH return in blue. The dark area in the bottom of the image is Lake Kivu, which forms the border between Zaire (to the left) and Rwanda (to the right). The airport at Goma, Zaire is shown as a dark line just above the lake in the bottom left corner of the image. Volcanic flows from the 1977 eruption of Mt. Nyiragongo are shown just north of the airport. Mt. Nyiragongo is not visible in this image because it is located just to the left of the image swath. Very fluid lava flows from the 1977 eruption killed 70 people. Mt. Nyiragongo is currently erupting (August 1994) and will be a target of observation during the second flight of SIR-C/X-SAR. The large volcano in the center of the image is Mt. Karisimbi (4,500 meters or 14,800 feet). This radar image highlights subtle differences in the vegetation and volcanic flows of the region. The faint lines shown in the purple regions are believed to be the result of agriculture terracing by the people who live in the region. The vegetation types are an important factor in the habitat of the endangered mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce vegetation maps of the area to aid in their study of the remaining 650 gorillas in the region. SIR-C was developed by NASA's Jet

  11. Civil Engineering Applications of Ground Penetrating Radar: Research Perspectives in COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2013-04-01

    Ground Penetrating Radar (GPR) is a safe, non-destructive and non-invasive imaging technique that can be effectively used for advanced inspection of composite structures and for diagnostics affecting the whole life-cycle of civil engineering works. GPR provides high resolution images of structures and subsurface through wide-band electromagnetic waves. It can be employed for the surveying of roads, pavements, bridges, tunnels, for detecting underground cavities and voids, for utility sensing, for the inspection of buildings, reinforced concrete and pre-cast concrete structures, for geotechnical investigation, in foundation design, as well as for several other purposes. Penetration and resolution of GPR depend primarily on the transmitting frequency of the equipment, the antenna characteristics, the electrical properties of the ground or of the surveyed material, and the contrasting electrical properties of the targets with respect to the surrounding medium. Generally there is a direct relationship between the transmitter frequency and the resolution that can be obtained; conversely there is an inverse relationship between frequency and penetration depth. GPR works best in dry ground environments, but can also give good results in wet, saturated materials; it does not work well in saline conditions, in high-conductivity media and through dense clays which limit signal penetration. Different approaches can be employed in the processing of collected GPR data. Once data have been processed, they still have to be analysed. This is a challenging problem, since interpretation of GPR radargrams is typically non-intuitive and considerable expertise is needed. In the presence of a complex scenario, an accurate electromagnetic forward solver is a fundamental tool for the validation of data interpretation. It can be employed for the characterization of scenarios, as a preliminary step that precedes a survey, or to gain a posteriori a better understanding of measured data. It

  12. IoSiS: a radar system for imaging of satellites in space

    Science.gov (United States)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.

    2017-05-01

    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  13. A low-cost, high-resolution, video-rate imaging optical radar

    Energy Technology Data Exchange (ETDEWEB)

    Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

    1998-04-01

    Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

  14. Design of Wireless Automatic Synchronization for the Low-Frequency Coded Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Zhenghuan Xia

    2015-01-01

    Full Text Available Low-frequency coded ground penetrating radar (GPR with a pair of wire dipole antennas has some advantages for deep detection. Due to the large distance between the two antennas, the synchronization design is a major challenge of implementing the GPR system. This paper proposes a simple and stable wireless automatic synchronization method based on our developed GPR system, which does not need any synchronization chips or modules and reduces the cost of the hardware system. The transmitter omits the synchronization preamble and pseudorandom binary sequence (PRBS at an appropriate time interval, while receiver automatically estimates the synchronization time and receives the returned signal from the underground targets. All the processes are performed in a single FPGA. The performance of the proposed synchronization method is validated with experiment.

  15. SEA ICE THICKNESS MEASUREMENT BY GROUND PENETRATING RADAR FOR GROUND TRUTH OF MICROWAVE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    M. Matsumoto

    2018-04-01

    Full Text Available Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  16. Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method

    Science.gov (United States)

    Kadioglu, S.

    2009-04-01

    Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method Selma KADIOGLU Ankara University, Faculty of Engineering, Department of Geophysical Engineering, 06100 Tandogan/ANKARA-TURKEY kadioglu@eng.ankara.edu.tr Anatolia has always been more the point of transit, a bridge between West and East. Anatolia has been a home for ideas moving from all directions. So it is that in the Roman and post-Roman periods the role of Anatolia in general and of Ancyra (the Roman name of Ankara) in particular was of the greatest importance. Now, the visible archaeological remains of Roman period in Ankara are Roman Bath, Gymnasium, the Temple of Augustus of Rome, Street, Theatre, City Defence-Wall. The Caesar Augustus, the first Roman Emperor, conquered Asia Minor in 25 BC. Then a marble temple was built in Ancyra, the administrative capital of province, today the capital of Turkish Republic, Ankara. This monument was consecrated to the Empreror and to the Goddess Rome. This temple is supposed to have built over an earlier temple dedicated to Kybele and Men between 25 -20 BC. After the death of the Augustus in 14AD, a copy of the text of "Res Gestae Divi Augusti" was inscribed on the interior of the pronaos in Latin, whereas a Greek translation is also present on an exterior wall of the cella. In the 5th century, it was converted in to a church by the Byzantines. The aim of this study is to determine old buried archaeological remains in the Augustus temple, Roman Bath and in the governorship agora in Ulus district. These remains were imaged with transparent three dimensional (3D) visualization of the ground penetrating radar (GPR) data. Parallel two dimensional (2D) GPR profile data were acquired in the study areas, and then a 3D data volume were built using parallel 2D GPR data. A simplified amplitude-colour range and appropriate opacity function were constructed and transparent 3D image were obtained to activate buried

  17. Spatially Extensive Ground-Penetrating Radar Observations during NASA's 2017 SnowEx campaign

    Science.gov (United States)

    McGrath, D.; Webb, R.; Marshall, H. P.; Hale, K.; Molotch, N. P.

    2017-12-01

    Quantifying snow water equivalent (SWE) from space remains a significant challenge, particularly in regions of forest cover or complex topography that result in high spatial variability and present difficulties for existing remote sensing techniques. Here we use extensive ground-penetrating radar (GPR) surveys during the NASA SnowEx 2017 campaign to characterize snow depth, density, and SWE across the Grand Mesa field site with a wide range of varying canopy and topographical conditions. GPR surveys, which are sensitive to snow density and microstructure, provide independent information that can effectively constrain leading airborne and spaceborne SWE retrieval approaches. We find good agreement between GPR observations and a suite of supporting in situ measurements, including snowpits, probe lines, and terrestrial LiDAR. Preliminary results illustrate the role of vegetation in controlling SWE variability, with the greatest variability found in dense forests and lowest variability found in open meadows.

  18. Ground penetrating radar and microwave tomography for the safety management of a cultural heritage site: Miletos Ilyas Bey Mosque (Turkey)

    International Nuclear Information System (INIS)

    Kadioglu, Selma; Kadioglu, Yusuf Kagan; Catapano, Ilaria; Soldovieri, Francesco

    2013-01-01

    Detection and assessment of structural damage affecting foundation robustness is of significant relevance for the safety management of cultural heritage sites. In this framework, ground penetrating radar (GPR) is worth consideration owing to its capability of providing high resolution and detailed information about the inner status of a structure, without involving significant invasive actions and ensuring a fast survey. On the other hand, the effectiveness of a GPR diagnostic survey can be impaired by the low interpretability of the raw data radargrams; thus huge interest is currently focused on the development of advanced and application-oriented data processing strategies. In this paper, a data processing chain based on the combined use of the commercial REFLEXW program and a microwave tomography approach is presented. An assessment of the achievable imaging capabilities is provided by processing measurements collected during a survey at the Great Mosque of Ilyas Bey (Ilyas Bey Mosque), one of the most important cultural heritages in ancient Miletos-Iona in Söke-Aydin city (Turkey). (paper)

  19. Non-Cooperative Target Imaging and Parameter Estimation with Narrowband Radar Echoes

    Directory of Open Access Journals (Sweden)

    Chun-mao Yeh

    2016-01-01

    Full Text Available This study focuses on the rotating target imaging and parameter estimation with narrowband radar echoes, which is essential for radar target recognition. First, a two-dimensional (2D imaging model with narrowband echoes is established in this paper, and two images of the target are formed on the velocity-acceleration plane at two neighboring coherent processing intervals (CPIs. Then, the rotating velocity (RV is proposed to be estimated by utilizing the relationship between the positions of the scattering centers among two images. Finally, the target image is rescaled to the range-cross-range plane with the estimated rotational parameter. The validity of the proposed approach is confirmed using numerical simulations.

  20. Efficiency evaluation of ground-penetrating radar by the results of measurement of dielectric properties of soils

    Energy Technology Data Exchange (ETDEWEB)

    Khakiev, Zelimkhan; Kislitsa, Konstantin; Yavna, Victor [Rostov State Transport University, Rostov-on-Don (Russian Federation)

    2012-12-15

    The work considers the depth evaluation of ground penetrating radar (GPR) surveys using the attenuation factor of electromagnetic radiation in a medium. A method of determining the attenuation factor of low-conductive non-magnetic soils is developed based on the results of direct measurements of permittivity and conductivity of soils in the range of typical frequencies of GPR. The method relies on measuring the shift and width of the resonance line after a soil sample is being placed into a tunable cavity resonator. The advantage of this method is the preservation of soil structure during the measurement.

  1. Exploring inner structure of Titan's dunes from Cassini Radar observations

    Science.gov (United States)

    Sharma, P.; Heggy, E.; Farr, T. G.

    2013-12-01

    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive

  2. Radar Imaging of Stationary and Moving Targets

    Science.gov (United States)

    2012-06-28

    Sciences Research Institute. Member of Organizing Committee for introductory workshop at MSRI • June 14-18, 2010, arranged for AFRL (Matt Ferrara ) to...Schneible, Vincent Amuso, SciTech Publishing, Inc., 2010. 2. K. Voccola, B. Yazici, M. Ferrara , and M. Cheney, “On the relationship between the generalized...echo imaging using distributed apertures in multi-path,” IEEE Radar Conference, May, 2008, Rome, Italy . 14 10. “Wideband pulse-echo imaging using

  3. Shaded Relief and Radar Image with Color as Height, Madrid, Spain

    Science.gov (United States)

    2002-01-01

    The white, mottled area in the right-center of this image from NASA's Shuttle Radar Topography Mission (SRTM) is Madrid, the capital of Spain. Located on the Meseta Central, a vast plateau covering about 40 percent of the country, this city of 3 million is very near the exact geographic center of the Iberian Peninsula. The Meseta is rimmed by mountains and slopes gently to the west and to the series of rivers that form the boundary with Portugal. The plateau is mostly covered with dry grasslands, olive groves and forested hills.Madrid is situated in the middle of the Meseta, and at an elevation of 646 meters (2,119 feet) above sea level is the highest capital city in Europe. To the northwest of Madrid, and visible in the upper left of the image, is the Sistema Central mountain chain that forms the 'dorsal spine' of the Meseta and divides it into northern and southern subregions. Rising to about 2,500 meters (8,200 feet), these mountains display some glacial features and are snow-capped for most of the year. Offering almost year-round winter sports, the mountains are also important to the climate of Madrid.Three visualization methods were combined to produce this image: shading and color coding of topographic height and radar image intensity. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and brown to white at the highest elevations. The shade image was combined with the radar intensity image in the flat areas.Elevation data used in this image was acquired by the SRTM aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to

  4. Potential for observing and discriminating impact craters and comparable volcanic landforms on Magellan radar images

    International Nuclear Information System (INIS)

    Ford, J.P.

    1989-01-01

    Observations of small terrestrial craters by Seasat synthetic aperture radar (SAR) at high resolution (approx. 25 m) and of comparatively large Venusian craters by Venera 15/16 images at low resolution (1000 to 2000 m) and shorter wavelength show similarities in the radar responses to crater morphology. At low incidence angles, the responses are dominated by large scale slope effects on the order of meters; consequently it is difficult to locate the precise position of crater rims on the images. Abrupt contrasts in radar response to changing slope (hence incidence angle) across a crater produce sharp tonal boundaries normal to the illumination. Crater morphology that is radially symmetrical appears on images to have bilateral symmetry parallel to the illumination vector. Craters are compressed in the distal sector and drawn out in the proximal sector. At higher incidence angles obtained with the viewing geometry of SIR-A, crater morphology appears less compressed on the images. At any radar incidence angle, the distortion of a crater outline is minimal across the medial sector, in a direction normal to the illumination. Radar bright halos surround some craters imaged by SIR-A and Venera 15 and 16. The brightness probably denotes the radar response to small scale surface roughness of the surrounding ejecta blankets. Similarities in the radar responses of small terrestrial impact craters and volcanic craters of comparable dimensions emphasize the difficulties in discriminating an impact origin from a volcanic origin in the images. Similar difficulties will probably apply in discriminating the origin of small Venusian craters, if they exist. Because of orbital considerations, the nominal incidence angel of Magellan radar at the center of the imaging swath will vary from about 45 deg at 10 deg N latitude to about 16 deg at the north pole and at 70 deg S latitude. Impact craters and comparable volcanic landforms will show bilateral symmetry

  5. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    Science.gov (United States)

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method.

  6. [Radar as imaging tool in ecology and conservation biology].

    Science.gov (United States)

    Matyjasiak, Piotr

    2017-01-01

    Migrations and dispersal are among the most important ecological processes that shape ecosystems and influence our economy, health and safety. Movements of birds, bats and insects occur in a large spatial scale - regional, continental, or intercontinental. However, studies of these phenomena using classic methods are usually local. Breakthrough came with the development of radar technology, which enabled researchers to study animal movements in the atmosphere in a large spatial and temporal scale. The aim of this article was to present the radar imaging methods used in the research of aerial movements of birds, bats and insects. The types of radars used in research are described, and examples of the use of radar in basic research and in conservation biology are discussed. Radar visualizations are used in studies on the effect of meteorological conditions on bird migration, on spatial and temporal dynamics of movements of birds, bats and insects, and on the mechanism of orientation of migrating birds and insects. In conservation biology research radars are used in the monitoring of endangered species of birds and bats, to monitor bird activity at airports, as well as in assessing the impact of high constructions on flying birds and bats.

  7. SRTM Radar Image, Wrapped Color as Height/EarthKam Optical Honolulu, Hawaii

    Science.gov (United States)

    2000-01-01

    These two images of the eastern part of the island of Oahu, Hawaii provide information on regional topography and show the relationship between urban development and sensitive ecosystems. On the left is a topographic radar image collected by the Shuttle Radar Topography Mission (SRTM.) On the right is an optical image acquired by a digital camera on the Space Shuttle Endeavour, which carried SRTM. Features of interest in this scene include Diamond Head (an extinct volcano at the lower center), Waikiki Beach (just left of Diamond Head), the Punchbowl National Cemetery (another extinct volcano, at the foot of the Koolau Mountains), downtown Honolulu and Honolulu airport (lower left of center), and Pearl Harbor (at the left edge.)The topography shows the steep, high central part of the island surrounded by flatter coastal areas. The optical image shows the urban areas and a darker, forested region on the mountain slopes. The clouds in the optical image and the black areas on the topographic image are both a result of the steep topography. In this tropical region, high mountain peaks are usually covered in clouds. These steep peaks also cause shadows in the radar data, resulting in missing data 'holes.' A second pass over the island was obtained by SRTM and will be used to fill in the holes.The left image combines two types of SRTM data. Brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation. Each color cycle (from pink through blue and back to pink) represents 400 meters (1,300 feet) of elevation difference, like the contour lines on a topographic map. This image contains about 2,400 meters (8,000 feet) of total relief. The optical image was acquired by the Shuttle Electronic Still Camera with a lens focal length of 64 millimeters (2.5 inches) for the Earth Knowledge Acquired by Middle school students (EarthKAM) project. EarthKAM has flown on five space shuttle missions since 1996. Additional information

  8. Detecting and characterizing unroofed caves by ground penetrating radar

    Science.gov (United States)

    Čeru, Teja; Šegina, Ela; Knez, Martin; Benac, Čedomir; Gosar, Andrej

    2018-02-01

    The bare karst surface in the southeastern part of Krk Island (Croatia) is characterized by different surface karst features, such as valley-like shallow linear depressions and partially or fully sediment-filled depressions of various shapes and sizes. They were noticed due to locally increased thickness of sediment and enhanced vegetation but had not yet been systematically studied and defined. Considering only the geometry of the investigated surface features and the rare traces of cave environments detected by field surveys, it was unclear which processes (surface karstification and/or speleogenesis) contributed most to their formation. The low-frequency ground penetrating radar (GPR) method using a special 50 MHz RTA antenna was applied to study and describe these karst features. Three study sites were chosen and 5 km of GPR profiles were positioned to include various surface features. The results obtained from the GPR investigation lead to the following conclusions: (1) an increased thickness of sediment was detected in all the investigated depressions indicating their considerable depth; (2) areas between different depressions expressed as attenuated zones in GPR images reveal their interconnection; (3) transitions between surface and underground features are characterized by a collapsed passage visible in the GPR data; and (4) an underground continuation of surface valley-like depressions was detected, proving the speleogenetic origin of such features. Subsurface information obtained using GPR indicates that the valley-like depressions, irregular depressions completely or partially filled with sediment, and some dolines are associated with a nearly 4 km-long unroofed cave and developed as a result of karst denudation. In the regional context, these results suggest long-lasting karstification processes in the area, in contrast to the pre-karstic fluvial phase previously assumed to have occurred here. This research is the first application of the GPR method to

  9. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning

    Directory of Open Access Journals (Sweden)

    Xing Shu-guang

    2015-04-01

    Full Text Available A new method of Radar Cross Section (RCS measurement based on near-field imaging of cylindrical scanning surface is proposed. The method is based on the core assumption that the target consists of ideal isotropic scattered centers. Three-dimensional radar scattered images are obtained by using the proposed method, and then to obtain the RCS of the target, the scattered far field is calculated by summing the fields generated by the equivalent scattered centers. Not only three dimensional radar reflectivity images but also the RCS of targets in certain three dimensional angle areas can be obtained. Compared with circular scanning that can only obtain twodimensional radar reflectivity images and RCS results in two-dimensional angle areas, cylindrical scanning can provide more information about the scattering properties of the targets. The method has strong practicability and its validity is verified by simulations.

  10. Radar Images of the Earth and the World Wide Web

    Science.gov (United States)

    Chapman, B.; Freeman, A.

    1995-01-01

    A perspective of NASA's Jet Propulsion Laboratory as a center of planetary exploration, and its involvement in studying the earth from space is given. Remote sensing, radar maps, land topography, snow cover properties, vegetation type, biomass content, moisture levels, and ocean data are items discussed related to earth orbiting satellite imaging radar. World Wide Web viewing of this content is discussed.

  11. Radar image and data fusion for natural hazards characterisation

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Jixian; Zhang, Yonghong

    2010-01-01

    Fusion of synthetic aperture radar (SAR) images through interferometric, polarimetric and tomographic processing provides an all - weather imaging capability to characterise and monitor various natural hazards. This article outlines interferometric synthetic aperture radar (InSAR) processing and products and their utility for natural hazards characterisation, provides an overview of the techniques and applications related to fusion of SAR/InSAR images with optical and other images and highlights the emerging SAR fusion technologies. In addition to providing precise land - surface digital elevation maps, SAR - derived imaging products can map millimetre - scale elevation changes driven by volcanic, seismic and hydrogeologic processes, by landslides and wildfires and other natural hazards. With products derived from the fusion of SAR and other images, scientists can monitor the progress of flooding, estimate water storage changes in wetlands for improved hydrological modelling predictions and assessments of future flood impacts and map vegetation structure on a global scale and monitor its changes due to such processes as fire, volcanic eruption and deforestation. With the availability of SAR images in near real - time from multiple satellites in the near future, the fusion of SAR images with other images and data is playing an increasingly important role in understanding and forecasting natural hazards.

  12. Model track studies on fouled ballast using ground penetrating radar and multichannel analysis of surface wave

    Science.gov (United States)

    Anbazhagan, P.; Lijun, Su; Buddhima, Indraratna; Cholachat, Rujikiatkamjorn

    2011-08-01

    Ballast fouling is created by the breakdown of aggregates or outside contamination by coal dust from coal trains, or from soil intrusion beneath rail track. Due to ballast fouling, the conditions of rail track can be deteriorated considerably depending on the type of fouling material and the degree of fouling. So far there is no comprehensive guideline available to identify the critical degree of fouling for different types of fouling materials. This paper presents the identification of degree of fouling and types of fouling using non-destructive testing, namely seismic surface-wave and ground penetrating radar (GPR) survey. To understand this, a model rail track with different degree of fouling has been constructed in Civil engineering laboratory, University of Wollongong, Australia. Shear wave velocity obtained from seismic survey has been employed to identify the degree of fouling and types of fouling material. It is found that shear wave velocity of fouled ballast increases initially, reaches optimum fouling point (OFP), and decreases when the fouling increases. The degree of fouling corresponding after which the shear wave velocity of fouled ballast will be smaller than that of clean ballast is called the critical fouling point (CFP). Ground penetrating radar with four different ground coupled antennas (500 MHz, 800 MHz, 1.6 GHz and 2.3 GHz) was also used to identify the ballast fouling condition. It is found that the 800 MHz ground coupled antenna gives a better signal in assessing the ballast fouling condition. Seismic survey is relatively slow when compared to GPR survey however it gives quantifiable results. In contrast, GPR survey is faster and better in estimating the depth of fouling.

  13. Enhanced Imaging of Building Interior for Portable MIMO Through-the-wall Radar

    Science.gov (United States)

    Song, Yongping; Zhu, Jiahua; Hu, Jun; Jin, Tian; Zhou, Zhimin

    2018-01-01

    Portable multi-input multi-output (MIMO) radar system is able to imaging the building interior through aperture synthesis. However, significant grating lobes are invoked in the directly imaging results, which may deteriorate the imaging quality of other targets and influence the detail information extraction of imaging scene. In this paper, a two-stage coherence factor (CF) weighting method is proposed to enhance the imaging quality. After obtaining the sub-imaging results of each spatial sampling position using conventional CF approach, a window function is employed to calculate the proposed “enhanced CF” adaptive to the spatial variety effect behind the wall for the combination of these sub-images. The real data experiment illustrates the better performance of proposed method on grating lobes suppression and imaging quality enhancement compare to the traditional radar imaging approach.

  14. Bispectral methods of signal processing applications in radar, telecommunications and digital image restoration

    CERN Document Server

    Totsky, Alexander V; Kravchenko, Victor F

    2015-01-01

    By studying applications in radar, telecommunications and digital image restoration, this monograph discusses signal processing techniques based on bispectral methods. Improved robustness against different forms of noise as well as preservation of phase information render this method a valuable alternative to common power-spectrum analysis used in radar object recognition, digital wireless communications, and jitter removal in images.

  15. Data Fusion and Fuzzy Clustering on Ratio Images for Change Detection in Synthetic Aperture Radar Images

    Directory of Open Access Journals (Sweden)

    Wenping Ma

    2014-01-01

    Full Text Available The unsupervised approach to change detection via synthetic aperture radar (SAR images becomes more and more popular. The three-step procedure is the most widely used procedure, but it does not work well with the Yellow River Estuary dataset obtained by two synthetic aperture radars. The difference of the two radars in imaging techniques causes severe noise, which seriously affects the difference images generated by a single change detector in step two, producing the difference image. To deal with problem, we propose a change detector to fuse the log-ratio (LR and the mean-ratio (MR images by a context independent variable behavior (CIVB operator and can utilize the complement information in two ratio images. In order to validate the effectiveness of the proposed change detector, the change detector will be compared with three other change detectors, namely, the log-ratio (LR, mean-ratio (MR, and the wavelet-fusion (WR operator, to deal with three datasets with different characteristics. The four operators are applied not only in a widely used three-step procedure but also in a new approach. The experiments show that the false alarms and overall errors of change detection are greatly reduced, and the kappa and KCC are improved a lot. And its superiority can also be observed visually.

  16. A compressive sensing-based computational method for the inversion of wide-band ground penetrating radar data

    Science.gov (United States)

    Gelmini, A.; Gottardi, G.; Moriyama, T.

    2017-10-01

    This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.

  17. A 10-year Ground-Based Radar Climatology of Convective Penetration of Stratospheric Intrusions and Associated Large-Scale Transport over the CONUS

    Science.gov (United States)

    Homeyer, C. R.

    2017-12-01

    Deep convection reaching the upper troposphere and lower stratosphere (UTLS) and its impact on atmospheric composition through rapid vertical transport of lower troposphere air and stratosphere-troposphere exchange has received increasing attention in the past 5-10 years. Most efforts focused on convection have been directed toward storms that reach and/or penetrate the coincident environmental lapse-rate tropopause. However, convection has also been shown to reach into large-scale stratospheric intrusions (depressions of stratospheric air lying well below the lapse-rate tropopause on the cyclonic side of upper troposphere jet streams). Such convective penetration of stratospheric intrusions is not captured by studies of lapse-rate tropopause-penetrating convection. In this presentation, it will be shown using hourly, high-quality mergers of ground-based radar observations from 2004 to 2013 in the contiguous United States (CONUS) and forward large-scale trajectory analysis that convective penetration of stratospheric intrusions: 1) is more frequent than lapse-rate tropopause-penetrating convection, 2) occurs over a broader area of the CONUS than lapse-rate tropopause-penetrating convection, and 3) can influence the composition of the lower stratosphere through large-scale advection of convectively influenced air to altitudes above the lapse-rate tropopause, which we find to occur for about 8.5% of the intrusion volumes reached by convection.

  18. Application of ground penetrating radar in detecting the hazards and risks of termites and ants in soil levees.

    Science.gov (United States)

    Yang, Xiuhao; Henderson, Gregg; Mao, Lixin; Evans, Ahmad

    2009-08-01

    A ground penetrating radar (GPR) technique was used to detect Formosan subterranean termite (Coptotermes formosanus) and red imported fire ant (Solenopsis invicta) hazards and risks (targets) in a soil levee at the London Avenue Canal in New Orleans, LA. To make this assessment, GPR signal scans were examined for features produced by termite or ant activities and potential sources of food and shelter such as nests, tree roots, and voids (tunnels). The total scanned length of the soil levee was 4,125 m. The average velocity and effective depth of the radar penetration was 0.080 m/ns and 0.61 m, respectively. Four hundred twenty-seven targets were identified. Tree roots (38), voids (31), fire ant nests (209), and metal objects (149) were detected, but no Formosan termite carton nests were identified. The lack of identified termite nests may be related to drowning events at the time to the flood. Based on the target density (TD), the two new floodwall and levee sections that were rebuilt or reinforced after they were destroyed by Hurricane Katrina in 2005 were determined to be at low potential risk from termites and ants. A merging target density (MTD) method indicated a high potential risk near one of the breached sections still remains. Foraging and nesting activity of Formosan subterranean termites and red imported fire ants may be a contributory factor to the levee failure at the London Avenue Canal.

  19. Ground penetrating radar utilization in exploring inadequate concrete covers in a new bridge deck

    Directory of Open Access Journals (Sweden)

    Md. Istiaque Hasan

    2014-01-01

    Full Text Available The reinforced concrete cast in place four span deck of a concrete bridge near Roanoke, Texas, was recently completed. Due to possible construction errors, it was suspected that the concrete covers in the deck did not conform to drawings and specifications. A full scale non-destructive evaluation of the concrete covers was carried out using ground penetrating radar (GPR equipment. Cover values were determined from the radargram generated from the scan. The estimated covers were plotted on contour maps. Migration data can substitute the drilling based ground truth data without compromising the concrete cover estimations, except for areas with very high cover values. Areas with high water content may result in inaccurate concrete dielectric constants. Based on the results, significant retrofitting of the bridge deck, such as additional overlay, was recommended.

  20. Inverse synthetic aperture radar imaging principles, algorithms and applications

    CERN Document Server

    Chen , Victor C

    2014-01-01

    Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications is based on the latest research on ISAR imaging of moving targets and non-cooperative target recognition (NCTR). With a focus on the advances and applications, this book will provide readers with a working knowledge on various algorithms of ISAR imaging of targets and implementation with MATLAB. These MATLAB algorithms will prove useful in order to visualize and manipulate some simulated ISAR images.

  1. Arecibo and Goldstone radar images of near-Earth Asteroid (469896) 2005 WC1

    Science.gov (United States)

    Lawrence, Kenneth J.; Benner, Lance A. M.; Brozovic, Marina; Ostro, Steven J.; Jao, Joseph S.; Giorgini, Jon D.; Slade, Martin A.; Jurgens, Raymond F.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A.

    2018-01-01

    We report radar observations of near-Earth asteroid (469896) 2005 WC1 that were obtained at Arecibo (2380 MHz, 13 cm) and Goldstone (8560 MHz, 3.5 cm) on 2005 December 14-15 during the asteroid's approach within 0.020 au The asteroid was a strong radar target. Delay-Doppler images with resolutions as fine as 15 m/pixel were obtained with 2 samples per baud giving a correlated pixel resolution of 7.5 m. The radar images reveal an angular object with 100 m-scale surface facets, radar-dark regions, and an estimated diameter of 400 ± 50 m. The rotation of the facets in the images gives a rotation period of ∼2.6 h that is consistent with the estimated period of 2.582 h ± 0.002 h from optical lightcurves reported by Miles (private communication). 2005 WC1 has a circular polarization ratio of 1.12 ± 0.05 that is one of the highest values known, suggesting a structurally-complex near-surface at centimeter to decimeter spatial scales. It is the first asteroid known with an extremely high circular polarization ratio, relatively low optical albedo, and high radar albedo.

  2. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    Science.gov (United States)

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  3. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

    Directory of Open Access Journals (Sweden)

    Shuanghui Zhang

    2016-04-01

    Full Text Available This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP estimation and the maximum likelihood estimation (MLE are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  4. Seismic-reflection and ground penetrating radar for environmental site characterization. 1998 annual progress report

    International Nuclear Information System (INIS)

    Plumb, R.; Steeples, D.W.

    1998-01-01

    'The project''s goals are threefold: (1) to examine the complementary site-characterization capabilities of modern, three-component shallow-seismic techniques and ground-penetrating radar (GPR) methods at depths ranging from 2 to 8 m at an existing test site; (2) to demonstrate the usefulness of the two methods when used in concert to characterize, in three-dimensions, the cone of depression of a pumping well, which will serve as a proxy site for fluid-flow at an actual, polluted site; and (3) to use the site as an outdoor mesoscale laboratory to validate existing three-dimensional ground-penetrating radar and seismic-reflection computer models developed at the Univ. of Kansas. To do this, useful seismic and GPR data are being collected along the same line(s) and within the same depth range. The principal investigators selected a site in central Kansas as a primary location and, although the site itself is not environmentally sensitive, the location chosen offers particularly useful attributes for this research and will serve as a proxy site for areas that are contaminated. As part of an effort to evaluate the strengths of each method, the authors will repeat the seismic and GPR surveys on a seasonal basis to establish how the complementary information obtained varies over time. Because the water table fluctuates at this site on a seasonal basis, variations in the two types of data over time also can be observed. Such noninvasive in-situ methods of identifying and characterizing the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies in the near future. As of the end of May 1998, the project is on schedule. The first field work was conducted using both of the geophysical survey methods in October of 1997, and the second field survey employed both methods in March of 1998. One of the stated tasks is to reoccupy the same survey line on a quarterly basis for two years to examine change in both

  5. ACCELERATION OF TOPOGRAPHIC MAP PRODUCTION USING SEMI-AUTOMATIC DTM FROM DSM RADAR DATA

    Directory of Open Access Journals (Sweden)

    A. Rizaldy

    2016-06-01

    Full Text Available Badan Informasi Geospasial (BIG is government institution in Indonesia which is responsible to provide Topographic Map at several map scale. For medium map scale, e.g. 1:25.000 or 1:50.000, DSM from Radar data is very good solution since Radar is able to penetrate cloud that usually covering tropical area in Indonesia. DSM Radar is produced using Radargrammetry and Interferrometry technique. The conventional method of DTM production is using “stereo-mate”, the stereo image created from DSM Radar and ORRI (Ortho Rectified Radar Image, and human operator will digitizing masspoint and breakline manually using digital stereoplotter workstation. This technique is accurate but very costly and time consuming, also needs large resource of human operator. Since DSMs are already generated, it is possible to filter DSM to DTM using several techniques. This paper will study the possibility of DSM to DTM filtering using technique that usually used in point cloud LIDAR filtering. Accuracy of this method will also be calculated using enough numbers of check points. If the accuracy meets the requirement, this method is very potential to accelerate the production of Topographic Map in Indonesia.

  6. Visual Inspection of Water Leakage from Ground Penetrating Radar Radargram

    Science.gov (United States)

    Halimshah, N. N.; Yusup, A.; Mat Amin, Z.; Ghazalli, M. D.

    2015-10-01

    Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD) of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  7. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    Directory of Open Access Journals (Sweden)

    N. N. Halimshah

    2015-10-01

    Full Text Available Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  8. Parameters and structure of lunar regolith in Chang'E-3 landing area from lunar penetrating radar (LPR) data

    Science.gov (United States)

    Dong, Zehua; Fang, Guangyou; Ji, Yicai; Gao, Yunze; Wu, Chao; Zhang, Xiaojuan

    2017-01-01

    Chang'E-3 (CE-3) landed in the northwest Mare Imbrium, a region that has not been explored before. Yutu rover that released by CE-3 lander carried the first lunar surface penetrating radar (LPR) for exploring lunar regolith thickness and subsurface shallow geological structures. In this paper, based on the LPR data and the Panoramic Camera (PC) data, we first calculate the lunar surface regolith parameters in CE-3 landing area including its permittivity, density, conductivity and FeO + TiO2 content. LPR data provides a higher spatial resolution and more accuracy for the lunar regolith parameters comparing to other remote sensing techniques, such as orbit radar sounder and microwave sensing or earth-based powerful radar. We also derived the regolith thickness and its weathered rate with much better accuracy in the landing area. The results indicate that the regolith growth rate is much faster than previous estimation, the regolith parameters are not uniform even in such a small study area and the thickness and growth rate of lunar regolith here are different from other areas in Mare Imbrium. We infer that the main reason should be geological deformation that caused by multiple impacts of meteorites in different sizes.

  9. Ground penetrating radar and differential global positioning system data collected in April 2016 from Fire Island, New York

    Science.gov (United States)

    Forde, Arnell S.; Bernier, Julie C.; Miselis, Jennifer L.

    2018-02-22

    Researchers from the U.S. Geological Survey (USGS) conducted a long-term coastal morphologic-change study at Fire Island, New York, prior to and after Hurricane Sandy impacted the area in October 2012. The Fire Island Coastal Change project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. In April 2016, scientists from the USGS St. Petersburg Coastal and Marine Science Center conducted geophysical and sediment sampling surveys on Fire Island to characterize and quantify spatial variability in the subaerial geology with the goal of subsequently integrating onshore geology with other surf zone and nearshore datasets.  This report, along with the associated USGS data release, serves as an archive of ground penetrating radar (GPR) and post-processed differential global positioning system (DGPS) data collected from beach and back-barrier environments on Fire Island, April 6–13, 2016 (USGS Field Activity Number 2016-322-FA). Data products, including unprocessed GPR trace data, processed DGPS data, elevation-corrected subsurface profile images, geographic information system files, and accompanying Federal Geographic Data Committee metadata are available for download.

  10. Synthetic-aperture radar imaging through dispersive media

    International Nuclear Information System (INIS)

    Varslot, Trond; Morales, J Héctor; Cheney, Margaret

    2010-01-01

    In this paper we develop a method for synthetic-aperture radar (SAR) imaging through a dispersive medium. We consider the case when the sensor and scatterers are embedded in a known homogeneous dispersive material, the scene to be imaged lies on a known surface and the radar antenna flight path is an arbitrary but known smooth curve. The scattering is modeled using a linearized (Born) scalar model. We assume that the measurements are polluted with additive noise. Furthermore, we assume that we have prior knowledge about the power-spectral densities of the scene and the noise. This leads us to formulate the problem in a statistical framework. We develop a filtered-back-projection imaging algorithm in which we choose the filter according to the statistical properties of the scene and noise. We present numerical simulations for a case where the scene consists of point-like scatterers located on the ground, and demonstrate how the ability to resolve the targets depends on a quantity which we call the noise-to-target ratio. In our simulations, the dispersive material is modeled with the Fung–Ulaby equations for leafy vegetation. However, the method is also applicable to other dielectric materials where the dispersion is considered relevant in the frequency range of the transmitted signals

  11. Generic framework for vessel detection and tracking based on distributed marine radar image data

    Science.gov (United States)

    Siegert, Gregor; Hoth, Julian; Banyś, Paweł; Heymann, Frank

    2018-04-01

    Situation awareness is understood as a key requirement for safe and secure shipping at sea. The primary sensor for maritime situation assessment is still the radar, with the AIS being introduced as supplemental service only. In this article, we present a framework to assess the current situation picture based on marine radar image processing. Essentially, the framework comprises a centralized IMM-JPDA multi-target tracker in combination with a fully automated scheme for track management, i.e., target acquisition and track depletion. This tracker is conditioned on measurements extracted from radar images. To gain a more robust and complete situation picture, we are exploiting the aspect angle diversity of multiple marine radars, by fusing them a priori to the tracking process. Due to the generic structure of the proposed framework, different techniques for radar image processing can be implemented and compared, namely the BLOB detector and SExtractor. The overall framework performance in terms of multi-target state estimation will be compared for both methods based on a dedicated measurement campaign in the Baltic Sea with multiple static and mobile targets given.

  12. Imaging assessment of penetrating craniocerebral and spinal trauma

    International Nuclear Information System (INIS)

    Offiah, C.; Twigg, S.

    2009-01-01

    Craniocerebral and spinal penetrating trauma, which may be either missile (most typically gun-related) or non-missile (most typically knife-related), is becoming an increasingly common presentation to the urban general and specialized radiology service in the UK. These injuries carry significant morbidity and mortality with a number of criteria for prognosis identifiable on cross-sectional imaging. Potential complications can also be pre-empted by awareness of certain neuroradiological features. Not all of these injuries are criminal in origin, however, a significant proportion will be, requiring, on occasion, provision of both ante-mortem and post-mortem radiological opinion to the criminal investigative procedure. This review aims to highlight certain imaging features of penetrating craniocerebral and spinal trauma including important prognostic, therapeutic, and forensic considerations.

  13. Ground penetrating radar and seismic refraction investigation of fracture patterns in the basalt of Lucky Peak near Boise, Idaho

    International Nuclear Information System (INIS)

    Dougherty, M.E.; Hudson, W.K.; Kay, S.E.; Vincent, R.J.

    1994-01-01

    In hard rock environments, fluid flow and basement integrity are often controlled by the degree and connectivity of fracturing on an outcrop scale, rather than strictly by laboratory values of the permeability and competence of the matrix rock. Therefore, in many cases it is important to have a subsurface image of fracture characteristics of rock units in addition to an image of gross rock type. Fortunately, within a single rock type, many physical properties on outcrop scale are greatly influenced by fracturing, and changes in these physical properties should be detectable through the innovative use of geophysical methods. Work presented here is an attempt to use surface geophysical methods to delineate areas within a basalt flow which display different fracture characteristics and which have different electrical and seismic properties. The Basalt of Luck Peak is an intracanyon basalt flow exposed in cliffs around Lucky Peak Reservoir and in a terrace downstream from Lucky Peak Dam near Boise, Idaho. Visible in the face of the terrace below Lucky Peak Dam are the colonnade and entablature structures characteristic of differential cooling rates within basalt flows. Exposure of structural units within the cliff face is used to ground truth results from ground penetrating radar (GPR) and seismic refraction data collected along a line running perpendicular and away from the top edge of the cliff. 19 refs., 6 figs

  14. 3D high-resolution radar imaging of small body interiors

    Science.gov (United States)

    Sava, Paul; Asphaug, Erik

    2017-10-01

    Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their interior structure in detail and at high resolution (Asphaug, 2009). We often infer internal structure from surface observations, e.g. that comet 67P/Churyumov-Gerasimenko is a primordial agglomeration of cometesimals (Massironi et al., 2015). However, the interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data, as suggested by the CONSERT experiment on Rosetta. Interior imaging depends on observations from multiple viewpoints, as in medical tomography.We discuss radar imaging using methodology adapted from terrestrial exploration seismology (Sava et al., 2015). We primarily focus on full wavefield methods that facilitate high quality imaging of small body interiors characterized by complex structure and large contrasts of physical properties. We consider the case of a monostatic system (co-located transmitters and receivers) operated at two frequency bands, centered around 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Assuming that the spin period is significantly (e.g. 5x) faster than the orbital period, this configuration allows repeated views from multiple directions (Safaeinili et al., 2002)Using realistic numerical experiments, we argue that (1) the comet/asteroid imaging problem is intrinsically 3D and conventional SAR methodology does not satisfy imaging, sampling and resolution requirements; (2) imaging at different frequency bands can provide information about internal surfaces (through migration) and internal volumes (through tomography); (3) interior imaging can be accomplished progressively as data are being acquired through successive orbits around the studied object; (4) imaging resolution can go beyond the apparent radar frequency band by deconvolution of the point-spread-function characterizing the imaging system; and (5

  15. Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array

    Science.gov (United States)

    Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.

    2011-01-01

    A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.

  16. 3D Ground Penetrating Radar to Detect Tree Roots and Estimate Root Biomass in the Field

    Directory of Open Access Journals (Sweden)

    Shiping Zhu

    2014-06-01

    Full Text Available The objectives of this study were to detect coarse tree root and to estimate root biomass in the field by using an advanced 3D Ground Penetrating Radar (3D GPR system. This study obtained full-resolution 3D imaging results of tree root system using 500 MHz and 800 MHz bow-tie antennas, respectively. The measurement site included two larch trees, and one of them was excavated after GPR measurements. In this paper, a searching algorithm, based on the continuity of pixel intensity along the root in 3D space, is proposed, and two coarse roots whose diameters are more than 5 cm were detected and delineated correctly. Based on the detection results and the measured root biomass, a linear regression model is proposed to estimate the total root biomass in different depth ranges, and the total error was less than 10%. Additionally, based on the detected root samples, a new index named “magnitude width” is proposed to estimate the root diameter that has good correlation with root diameter compared with other common GPR indexes. This index also provides direct measurement of the root diameter with 13%–16% error, providing reasonable and practical root diameter estimation especially in the field.

  17. Holocene relative sea level variations at the spit system Feddet (Denmark) resolved by ground-penetrating radar and geomorphological data

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Bendixen, Mette; Clemmensen, Lars B

    Estimates of Holocene sea-level variations have been presented in a range of studies based on different approaches, including interpretation of internal beach ridge characteristics from ground-penetrating radar (GPR) and geomorphological data. We present GPR data and geomorphological observations...... of independent GPR and geomorphologic data collected across the recent and sub-recent beach ridge deposits. The data analyses include coastal topography, internal dips of beach ridge layers, and sea-level measurements. A clear change in characteristic layer dip is observed between beach face and upper shoreface...

  18. Proceedings of the Government Users Workshop on Ground Penetrating Radar Applications and Equipment 26-27 March 1992 Vicksburg, Mississippi

    Science.gov (United States)

    1992-12-01

    Allison P.O. Box 946 USDA Tifton , GA 31794 Box 946 Phone: 912-386-3899 Tifton , GA 31794 FAX: 912-386-7215 Phone: 912-386-7075 FAX: 912-386-7215 Paul...FAX: 603-889-3984 FAX: 071-724-1433 Ricky Fletcher S. V. Cosvay USDA-ARS-SEWRL Sensors and Software, Inc. Rt. 4, Box 1390 5566 Tomken Road Tifton , GA ... Tifton , GA 31793 Phone: 305-634-4507 Phone: 912-386-7174 FAX: 305-635-4901 FAX: 912-386-7215 8 GOVERNMENT USERS WORKSHOP ON GROUND PENETRATING RADAR

  19. A Novel Compact Wideband TSA Array for Near-Surface Ice Sheet Penetrating Radar Applications

    Science.gov (United States)

    Zhang, Feng; Liu, Xiaojun; Fang, Guangyou

    2014-03-01

    A novel compact tapered slot antenna (TSA) array for near-surface ice sheet penetrating radar applications is presented. This TSA array is composed of eight compact antenna elements which are etched on two 480mm × 283mm FR4 substrates. Each antenna element is fed by a wideband coplanar waveguide (CPW) to coupled strip-line (CPS) balun. The two antenna substrates are connected together with a metallic baffle. To obtain wideband properties, another two metallic baffles are used along broadsides of the array. This array is fed by a 1 × 8 wideband power divider. The measured S11 of the array is less than -10dB in the band of 500MHz-2GHz, and the measured gain is more than 6dBi in the whole band which agrees well with the simulated results.

  20. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    DEFF Research Database (Denmark)

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...... information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an operational nowcasting product called 'Precipitating Clouds' based on Meteosat-8 input is used. A scale...

  1. Velocity Field of the McMurdo Shear Zone from Annual Three-Dimensional Ground Penetrating Radar Imaging and Crevasse Matching

    Science.gov (United States)

    Ray, L.; Jordan, M.; Arcone, S. A.; Kaluzienski, L. M.; Koons, P. O.; Lever, J.; Walker, B.; Hamilton, G. S.

    2017-12-01

    The McMurdo Shear Zone (MSZ) is a narrow, intensely crevassed strip tens of km long separating the Ross and McMurdo ice shelves (RIS and MIS) and an important pinning feature for the RIS. We derive local velocity fields within the MSZ from two consecutive annual ground penetrating radar (GPR) datasets that reveal complex firn and marine ice crevassing; no englacial features are evident. The datasets were acquired in 2014 and 2015 using robot-towed 400 MHz and 200 MHz GPR over a 5 km x 5.7 km grid. 100 west-to-east transects at 50 m spacing provide three-dimensional maps that reveal the length of many firn crevasses, and their year-to-year structural evolution. Hand labeling of crevasse cross sections near the MSZ western and eastern boundaries reveal matching firn and marine ice crevasses, and more complex and chaotic features between these boundaries. By matching crevasse features from year to year both on the eastern and western boundaries and within the chaotic region, marine ice crevasses along the western and eastern boundaries are shown to align directly with firn crevasses, and the local velocity field is estimated and compared with data from strain rate surveys and remote sensing. While remote sensing provides global velocity fields, crevasse matching indicates greater local complexity attributed to faulting, folding, and rotation.

  2. Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes

    Science.gov (United States)

    Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.

    2013-01-01

    Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.

  3. Statistical problems with weather-radar images, I: Clutter identification

    International Nuclear Information System (INIS)

    Fernandez-Duran, Juan-Jose; Upton, Graham

    2003-01-01

    A Markov Chain Monte Carlo (MCMC) procedure is presented for the identification of clutter in weather-radar images. The key attributes of the image are the spatial coherence of the areas of clutter (noise) and cloud and the high spatial autocorrelation of the values in areas of cloud. A form of simulated annealing provides the possibility of fast clutter removal

  4. Imaging of concrete specimens using inverse synthetic aperture radar

    International Nuclear Information System (INIS)

    Rhim, Hong C.; Buyukozturk, Oral

    2000-01-01

    Radar Measurement results of laboratory size concrete specimens are presented in this paper. The purpose of this research work is to study various aspects of the radar method in an effort to develop an improved radar system for nondestructive testing of concrete structures. The radar system used for the study is an Inverse Synthetic Aperture Radar (ISAR), which is capable of transmitting microwaves at three different frequency ranges of 2-3.4, 3.4-5.8, and 8-12 GHz. Radar measurement setup is such that the radar is locates 14.4 m away from a concrete target to satisfy a far-field criterion. The concrete target is rotated for 20 degrees during the measurements for the generation of two-dimensional (cross-range) imagery. Concrete targets used for the measurements have the dimensions of 305 mm (width)x305 mm (height)x92 mm (thickness) with different inside configurations. Comparisons are made for dry and wet specimens, specimens with and without inclusions. Each specimen is made to model various situations that a concrete structure can have in reality. Results show that center frequency, frequency bandwidth, and polarization of the incident wave have different effects on identifying the thickness or inclusions inside concrete specimens. Results also suggest that a certain combination of measurement parameters is suitable for a specific application area. Thus, measurement parameters can be optimized for a specific problem. The findings are presented and discussed in details in the paper. Signal processing schemes implemented for imaging of the specimens are also discussed

  5. Radar Image with Color as Height, Sman Teng, Temple, Cambodia

    Science.gov (United States)

    2002-01-01

    This image of Cambodia's Angkor region, taken by NASA's Airborne Synthetic Aperture Radar (AIRSAR), reveals a temple (upper-right) not depicted on early 19th Century French archeological survey maps and American topographic maps. The temple, known as 'Sman Teng,' was known to the local Khmer people, but had remained unknown to historians due to the remoteness of its location. The temple is thought to date to the 11th Century: the heyday of Angkor. It is an important indicator of the strategic and natural resource contributions of the area northwest of the capitol, to the urban center of Angkor. Sman Teng, the name designating one of the many types of rice enjoyed by the Khmer, was 'discovered' by a scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., working in collaboration with an archaeological expert on the Angkor region. Analysis of this remote area was a true collaboration of archaeology and technology. Locating the temple of Sman Teng required the skills of scientists trained to spot the types of topographic anomalies that only radar can reveal.This image, with a pixel spacing of 5 meters (16.4 feet), depicts an area of approximately 5 by 4.7 kilometers (3.1 by 2.9 miles). North is at top. Image brightness is from the P-band (68 centimeters, or 26.8 inches) wavelength radar backscatter, a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 25 meters (82 feet) of elevation change, so going from blue to red to yellow to green and back to blue again corresponds to 25 meters (82 feet) of elevation change.AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate elevation data. Built

  6. The aperture synthesis imaging capability of the EISCAT_3D radars

    Science.gov (United States)

    La Hoz, Cesar; Belyey, Vasyl

    2010-05-01

    The built-in Aperture Synthesis Imaging Radar (ASIR) capabilities of the EISCAT_3D system, complemented with multiple beams and rapid beam scanning, is what will make the new radar truly three dimensional and justify its name. With the EISCAT_3D radars it will be possible to make investigations in 3-dimensions of several important phenomena such as Natural Enhanced Ion Acoustic Lines (NEIALs), Polar Mesospheric Summer and Winter Echoes (PMSE and PMWE), meteors, space debris, atmospheric waves and turbulence in the mesosphere, upper troposphere and possibly the lower stratosphere. Of particular interest and novelty is the measurement of the structure in electron density created by aurora that produce incoherent scatter. With scale sizes of the order of tens of meters, the imaging of these structures will be conditioned only by the signal to noise ratio which is expected to be high during some of these events, since the electron density can be significantly enhanced. The electron density inhomogeneities and plasma structures excited by artificial ionospheric heating could conceivable be resolved by the radars provided that their variation during the integration time is not great.

  7. Using ground-penetrating radar and sidescan sonar to compare lake bottom geology in New England

    Science.gov (United States)

    Nesbitt, I. M.; Campbell, S. W.; Arcone, S. A.; Smith, S. M.

    2017-12-01

    Post-Laurentide Ice Sheet erosion and re-deposition has had a significant influence on the geomorphology of New England. Anthropogenic activities such as forestry, farming, and construction of infrastructure such as dams and associated lake reservoirs, has further contributed to near surface changes. Unfortunately, these surface dynamics are difficult to constrain, both in space and time. One analog that can be used to estimate erosion and deposition, lake basin sedimentation, is typically derived from lake bottom sediment core samples. Reliance on core records assumes that derived sedimentation rates are representative of the broader watershed, despite being only a single point measurement. Geophysical surveys suggest that this assumption can be highly erroneous and unrepresentative of an entire lake basin. Herein, we conducted ground-penetrating radar (GPR) and side-scan sonar (SSS) surveys of multiple lakes in Maine, New Hampshire, and Vermont which are representative of different basin types to estimate sedimentation rates since Laurentide retreat. Subsequent age constraints from cores on multiple GPR-imaged horizons could be used to refine estimates of sedimentation rate change caused by evolving physical, biological, and chemical processes that control erosion, transport, and re-deposition. This presentation will provide a summary of GPR and SSS data collection methods, assumptions and limitations, structural and surficial interpretations, and key findings from multiple lake basins in New England. Results show that GPR and SSS are efficient, cost effective, and relatively accurate tools for helping to constrain lake erosion and deposition processes.

  8. Broadband Counter-Wound Spiral Antenna for Subsurface Radar Applications

    National Research Council Canada - National Science Library

    Yong, Lim

    2003-01-01

    Subsurface radar also known as ground-penetrating radar is increasingly being used for the detection and location of buried objects such as mines and structure that are found within the upper regions...

  9. An Algorithm for Surface Current Retrieval from X-band Marine Radar Images

    Directory of Open Access Journals (Sweden)

    Chengxi Shen

    2015-06-01

    Full Text Available In this paper, a novel current inversion algorithm from X-band marine radar images is proposed. The routine, for which deep water is assumed, begins with 3-D FFT of the radar image sequence, followed by the extraction of the dispersion shell from the 3-D image spectrum. Next, the dispersion shell is converted to a polar current shell (PCS using a polar coordinate transformation. After removing outliers along each radial direction of the PCS, a robust sinusoidal curve fitting is applied to the data points along each circumferential direction of the PCS. The angle corresponding to the maximum of the estimated sinusoid function is determined to be the current direction, and the amplitude of this sinusoidal function is the current speed. For validation, the algorithm is tested against both simulated radar images and field data collected by a vertically-polarized X-band system and ground-truthed with measurements from an acoustic Doppler current profiler (ADCP. From the field data, it is observed that when the current speed is less than 0.5 m/s, the root mean square differences between the radar-derived and the ADCP-measured current speed and direction are 7.3 cm/s and 32.7°, respectively. The results indicate that the proposed procedure, unlike most existing current inversion schemes, is not susceptible to high current speeds and circumvents the need to consider aliasing. Meanwhile, the relatively low computational cost makes it an excellent choice in practical marine applications.

  10. INTERPRETATION OF COAL POTENTION USING GROUND PENETRATING RADAR (GPR METHOD

    Directory of Open Access Journals (Sweden)

    Rohmatul Wahidah

    2018-01-01

    Full Text Available Coal exposure founded at Klatak Kebo Ireng village in Besuki Tulungagung precisely in the vicinity of the river. Energy needs is increasing so the coal used for one of alternative energy source that can be used by society. This study was conducted to determine of the potential distribution coal modeling on geological structure. Identification of coal structure is using Ground Penetrating Radar (GPR 2005 it conducted because this method is more suitable for shallow of surveys. The location for taking data is around the river that showed to exposure. There are 5th lines of taken data with length about 50 until 100 meters. Data processing was done using of software Future series 2005. The data displayed with software in the color pattern to obtain based on the constant of dielectric and conductivity. The results of interpretation study are the data indicates that there is a coal on the overall trajectory. Only in 2nd track contain little of coal. The Coal layers are appear in processing the results of data is thickness about 6 at the top. In the area of study also found the cavity (cavity area which contained of several tracks. On the bottom of the track there is a pattern of coal reddish of yellow color which indicates that material contains of minerals.

  11. Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project

    Science.gov (United States)

    Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.

    2017-12-01

    As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.

  12. Design and Implementation of a FPGA and DSP Based MIMO Radar Imaging System

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-06-01

    Full Text Available The work presented in this paper is aimed at the implementation of a real-time multiple-input multiple-output (MIMO imaging radar used for area surveillance. In this radar, the equivalent virtual array method and time-division technique are applied to make 16 virtual elements synthesized from the MIMO antenna array. The chirp signal generater is based on a combination of direct digital synthesizer (DDS and phase locked loop (PLL. A signal conditioning circuit is used to deal with the coupling effect within the array. The signal processing platform is based on an efficient field programmable gates array (FPGA and digital signal processor (DSP pipeline where a robust beamforming imaging algorithm is running on. The radar system was evaluated through a real field experiment. Imaging capability and real-time performance shown in the results demonstrate the practical feasibility of the implementation.

  13. Radar Determination of Fault Slip and Location in Partially Decorrelated Images

    Science.gov (United States)

    Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Stough, Timothy; Pierce, Marlon; Wang, Jun

    2017-06-01

    Faced with the challenge of thousands of frames of radar interferometric images, automated feature extraction promises to spur data understanding and highlight geophysically active land regions for further study. We have developed techniques for automatically determining surface fault slip and location using deformation images from the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), which is similar to satellite-based SAR but has more mission flexibility and higher resolution (pixels are approximately 7 m). This radar interferometry provides a highly sensitive method, clearly indicating faults slipping at levels of 10 mm or less. But interferometric images are subject to decorrelation between revisit times, creating spots of bad data in the image. Our method begins with freely available data products from the UAVSAR mission, chiefly unwrapped interferograms, coherence images, and flight metadata. The computer vision techniques we use assume no data gaps or holes; so a preliminary step detects and removes spots of bad data and fills these holes by interpolation and blurring. Detected and partially validated surface fractures from earthquake main shocks, aftershocks, and aseismic-induced slip are shown for faults in California, including El Mayor-Cucapah (M7.2, 2010), the Ocotillo aftershock (M5.7, 2010), and South Napa (M6.0, 2014). Aseismic slip is detected on the San Andreas Fault from the El Mayor-Cucapah earthquake, in regions of highly patterned partial decorrelation. Validation is performed by comparing slip estimates from two interferograms with published ground truth measurements.

  14. Artifacts in Radar Imaging of Moving Targets

    Science.gov (United States)

    2012-09-01

    CA, USA, 2007. [11] B. Borden, Radar imaging of airborne targets: A primer for Applied mathematicians and Physicists . New York, NY: Taylor and... Project (0704–0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 21 September 2012 3. REPORT TYPE AND DATES COVERED...CW Continuous Wave DAC Digital to Analog Convertor DFT Discrete Fourier Transform FBP Filtered Back Projection FFT Fast Fourier Transform GPS

  15. Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

    Science.gov (United States)

    Injun, Song

    2015-04-01

    The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.

  16. Investigating the internal structure of four Azorean Sphagnum bogs using ground-penetrating radar

    Directory of Open Access Journals (Sweden)

    D. Pereira

    2017-08-01

    Full Text Available This study evaluates the applicability of ground penetrating radar (GPR as a technique for determining the thickness and internal structure of four peat deposits on Terceira Island (Azores archipelago, mid-Atlantic region. The peatlands studied are all Sphagnum mires located above 500 m a.s.l., but they differ hydrogenetically and in their degree of naturalness. Radargrams for all four bogs, obtained using both 100 MHz and 500 MHz GPR antennae, are presented and compared. The radargram data were validated against peat characteristics (bulk density, von Post H, US method obtained by direct sampling (‘open cores’ across the whole peat profile at each site. A scheme of ‘soft scoring’ for degree of naturalness (DN of the peatland was developed and used as an additional validation factor. The GPR data were positively correlated with DN, and relationships between GPR data, peat bulk density and degree of humification (H were also found. From the radargrams it was possible to distinguish the interface between the peat and the mineral substratum as well as some of the internal structure of the peat deposit, and thus to derive the total thickness of the peat deposit and (in some cases the thicknesses of its constituent layers. The first evaluation of the propagation velocity of electromagnetic waves in Azorean peat yielded a value of 0.04 m ns-1 for 100 MHz and 500 MHz radar antennae. For one of the study sites, the GPR data were analysed using GIS software to produce tridimensional models and thus to estimate the volumes of peat layers. This type of analysis has potential utility for quantifying some of the ecosystem services provided by peatlands.

  17. Precision Near-Field Reconstruction in the Time Domain via Minimum Entropy for Ultra-High Resolution Radar Imaging

    Directory of Open Access Journals (Sweden)

    Jiwoong Yu

    2017-05-01

    Full Text Available Ultra-high resolution (UHR radar imaging is used to analyze the internal structure of objects and to identify and classify their shapes based on ultra-wideband (UWB signals using a vector network analyzer (VNA. However, radar-based imaging is limited by microwave propagation effects, wave scattering, and transmit power, thus the received signals are inevitably weak and noisy. To overcome this problem, the radar may be operated in the near-field. The focusing of UHR radar signals over a close distance requires precise geometry in order to accommodate the spherical waves. In this paper, a geometric estimation and compensation method that is based on the minimum entropy of radar images with sub-centimeter resolution is proposed and implemented. Inverse synthetic aperture radar (ISAR imaging is used because it is applicable to several fields, including medical- and security-related applications, and high quality images of various targets have been produced to verify the proposed method. For ISAR in the near-field, the compensation for the time delay depends on the distance from the center of rotation and the internal RF circuits and cables. Required parameters for the delay compensation algorithm that can be used to minimize the entropy of the radar images are determined so that acceptable results can be achieved. The processing speed can be enhanced by performing the calculations in the time domain without the phase values, which are removed after upsampling. For comparison, the parameters are also estimated by performing random sampling in the data set. Although the reduced data set contained only 5% of the observed angles, the parameter optimization method is shown to operate correctly.

  18. Characterization of the range effect in synthetic aperture radar images of concrete specimens for width estimation

    Science.gov (United States)

    Alzeyadi, Ahmed; Yu, Tzuyang

    2018-03-01

    Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.

  19. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    Science.gov (United States)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  20. Integrating Radar Image Data with Google Maps

    Science.gov (United States)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  1. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  2. Void detection beneath reinforced concrete sections: The practical application of ground-penetrating radar and ultrasonic techniques

    Science.gov (United States)

    Cassidy, Nigel J.; Eddies, Rod; Dods, Sam

    2011-08-01

    Ground-penetrating radar (GPR) and ultrasonic 'pulse echo' techniques are well-established methods for the imaging, investigation and analysis of steel reinforced concrete structures and are important civil engineering survey tools. GPR is, arguably, the more widely-used technique as it is suitable for a greater range of problem scenarios (i.e., from rebar mapping to moisture content determination). Ultrasonic techniques are traditionally associated with the engineering-based, non-destructive testing of concrete structures and their integrity analyses (e.g., flaw detection, shear/longitudinal velocity determination, etc). However, when used in an appropriate manner, both techniques can be considered complementary and provide a unique way of imaging the sub-surface that is suited to a range of geotechnical problems. In this paper, we present a comparative study between mid-to-high frequency GPR (450 MHz and 900 MHz) and array-based, shear wave, pulse-echo ultrasonic surveys using proprietary instruments and conventional GPR data processing and visualisation techniques. Our focus is the practical detection of sub-metre scale voids located under steel reinforced concrete sections in realistic survey conditions (e.g., a capped, relict mine shaft or vent). Representative two-dimensional (2D) sections are presented for both methods illustrating the similarities/differences in signal response and the temporal-spatial target resolutions achieved with each technique. The use of three-dimensional data volumes and time slices (or 'C-scans') for advanced interpretation is also demonstrated, which although common in GPR applications is under-utilised as a technique in general ultrasonic surveys. The results show that ultrasonic methods can perform as well as GPR for this specific investigation scenario and that they have the potential of overcoming some of the inherent limitations of GPR investigations (i.e., the need for careful antenna frequency selection and survey design in

  3. Radio frequency absorption and penetration depth limits in whole body MR imaging

    International Nuclear Information System (INIS)

    Roschmann, P.

    1986-01-01

    There is a continual debate over the ultimate limits to MR imaging at higher field strengths owing to the problems of increasing radio frequency (RF) power deposition and decreasing depth of B/sub 1/ field penetration in the patient. The authors present experimental results of RF absorption and penetration studies in humans for frequencies (f) of 30 to 220 MHz. Results were mostly derived from RF measurements of the effects of loading different types of head, body, and surface coils during imaging of volunteers and metal phantoms. Imaging at 2 T (85 MHz) does not exhibit significant RF problems; the local SAR amounts to 0.06 W/kg for a π-pulse of 1 msec and a TR of 1 sec. RF measurements of coil loading yield SAR -- f/sup 2.2/. The derived effective penetration depth drops from 17 cm at 85 MHz to 7 cm at 220 MHz. Head imaging appears possible up to 220 MHz (5 T). Body and surface coil imaging is subjected to increasing limitations in size or depth above 100 MHz

  4. Searching for the IRA "disappeared": ground-penetrating radar investigation of a churchyard burial site, Northern Ireland.

    Science.gov (United States)

    Ruffell, Alastair

    2005-11-01

    A search for the body of a victim of terrorist abduction and murder was made in a graveyard on the periphery of a major conurbation in Northern Ireland. The area is politically sensitive and the case of high profile. This required non-invasive, completely non-destructive and rapid assessment of the scene. A MALA RAMAC ground-penetrating radar system was used to achieve these objectives. Unprocessed and processed 400 MHz data show the presence of a collapse feature above and around a known 1970s burial with no similar collapse above the suspect location. In the saturated, clay-rich sediments of the site, 200 MHz data offered no advantage over 400 MHz data. Unprocessed 100 MHz data shows a series of multiples in the known burial with no similar features in the suspect location. Processed 100 MHz lines defined the shape of the collapse around the known burial to 2 m depth, together with the geometry of the platform (1 m depth) the gravedigger used in the 1970s to construct the site. In addition, processed 100 MHz data showed both the dielectric contrast in and internal reflection geometry of the soil imported above the known grave. Thus the sequence, geometry, difference in infill and infill direction of the grave was reconstructed 30 years after burial. The suspect site showed no evidence of shallow or deep inhumation. Subsequently, the missing person's body was found some distance from this site, vindicating the results and interpretation from ground-penetrating radar. The acquisition, processing, collapse feature and sequence stratigraphic interpretation of the known burial and empty (suspect) burial site may be useful proxies for other, similar investigations. GPR was used to evaluate this site within 3 h of the survey commencing, using unprocessed data. An additional day of processing established that the suspect body did not reside here, which was counter to police and community intelligence.

  5. Modelling of ground penetrating radar data in stratified media using the reflectivity technique

    International Nuclear Information System (INIS)

    Sena, Armando R; Sen, Mrinal K; Stoffa, Paul L

    2008-01-01

    Horizontally layered media are often encountered in shallow exploration geophysics. Ground penetrating radar (GPR) data in these environments can be modelled by techniques that are more efficient than finite difference (FD) or finite element (FE) schemes because the lateral homogeneity of the media allows us to reduce the dependence on the horizontal spatial variables through Fourier transforms on these coordinates. We adapt and implement the invariant embedding or reflectivity technique used to model elastic waves in layered media to model GPR data. The results obtained with the reflectivity and FDTD modelling techniques are in excellent agreement and the effects of the air–soil interface on the radiation pattern are correctly taken into account by the reflectivity technique. Comparison with real wide-angle GPR data shows that the reflectivity technique can satisfactorily reproduce the real GPR data. These results and the computationally efficient characteristics of the reflectivity technique (compared to FD or FE) demonstrate its usefulness in interpretation and possible model-based inversion schemes of GPR data in stratified media

  6. Ice thickness profile surveying with ground penetrating radar at Artesonraju Glacier, Peru

    Science.gov (United States)

    Chisolm, Rachel; Rabatel, Antoine; McKinney, Daene; Condom, Thomas; Cochacin, Alejo; Davila Roller, Luzmilla

    2014-05-01

    Tropical glaciers are an essential component of the water resource systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glaciers in terms of thickness changes. In the upper Paron Valley (Cordillera Blanca, Peru), an emerging lake has begun to form at the terminus of the Artesonraju Glacier, and this lake has key features, including overhanging ice and loose rock likely to create slides, that could trigger a catastrophic GLOF if the lake continues to grow. Because the glacier mass balance and lake mass balance are closely linked, ice thickness measurements and measurements of the bed slope of the Artesonraju Glacier and underlying bedrock can give us an idea of how the lake is likely to evolve in the coming decades. This study presents GPR data taken in July 2013 at the Artesonraju Glacier as part of a collaboration between the Unidad de Glaciologia y Recursos Hidricos (UGRH) of Peru, the Institut de Recherche pour le Développement (IRD) of France and the University of Texas at Austin (UT) of the United States of America. Two different GPR units belonging to UGRH and UT were used for subsurface imaging to create ice thickness profiles and to characterize the total volume of ice in the glacier. A common midpoint

  7. Capacitive Imaging For Skin Characterization and Solvent Penetration

    OpenAIRE

    Xiao, P; Zhang, X; Bontozoglou, C

    2016-01-01

    Capacitive contact imaging has shown potential in measuring skin properties including hydration, micro relief analysis, as well as solvent penetration measurements . Through calibration we can also measure the absolute permittivity of the skin, and from absolute permittivity we then work out the absolute water content (or solvent content) in skin. In this paper, we present our latest study of capacitive contact imaging for skin characterization, i.e. skin hydration and skin damages etc. The r...

  8. Collection, processing, and interpretation of ground-penetrating radar data to determine sediment thickness at selected locations in Deep Creek Lake, Garrett County, Maryland, 2007

    Science.gov (United States)

    Banks, William S.L.; Johnson, Carole D.

    2011-01-01

    The U.S. Geological Survey collected geophysical data in Deep Creek Lake in Garrett County, Maryland, between September 17 through October 4, 2007 to assist the Maryland Department of Natural Resources to better manage resources of the Lake. The objectives of the geophysical surveys were to provide estimates of sediment thickness in shallow areas around the Lake and to test the usefulness of three geophysical methods in this setting. Ground-penetrating radar (GPR), continuous seismic-reflection profiling (CSP), and continuous resistivity profiling (CRP) were attempted. Nearly 90 miles of GPR radar data and over 70 miles of CSP data were collected throughout the study area. During field deployment and testing, CRP was determined not to be practical and was not used on a large scale. Sediment accumulation generally could be observed in the radar profiles in the shallow coves. In some seismic profiles, a thin layer of sediment could be observed at the water bottom. The radar profiles appeared to be better than the seismic profiles for the determination of sediment thickness. Although only selected data profiles were processed, all data were archived for future interpretation.

  9. Ground penetrating radar study of a thickness of biogenic sediments in the vicinity of the Czechowskie Lake

    Science.gov (United States)

    Lamparski, Piotr

    2014-05-01

    The paper present results of investigations, which have made on a biogenic plain in the north-east part of the vicinity of the Czechowskie Lake. The basin of Lake Czechowskie occupies a deep depression located in the immediate hinterland of the maximum range of the Pomeranian Phase ice sheet in the northern part of Poland (Błaszkiewicz 2005). Drillings carried out within the peat plain in the western part of the lake basin indicate that there are relatively diversified lake sediments of up to 12 m in thickness. The ground penetrating radar profiling method (GPR) was used to determine a thickness of biogenic sediments. To tests was used GSS'I SIR SYSTEM-2000™ radar device with two antennae - the high resolution 400 MHz central frequency - for shallow prospecting of the subsurface layers and the low resolution 35 MHz - for determining the shape of the mineral bedrock. Overall, 33 GPR profiles was made all in all more than 3000 meters along and crosswise the longer axis of the biogenic plain. The range of radar penetration was set to 200 ns for 400 MHz antenna and 600 ns for the 35 MHz one, what is the equivalent respectively 4 m and 12,5 m in depth of biogenic sediments thickness. Horizontal scaling was made by GSSI survey wheel device. The thickness of biogenic sediments recognized by GPR reaches 10 meters only using 35 MHz antenna. In the case of the 400 MHz antenna, relatively high conductivity water-saturated peat and gyttia did not allow for the achievement of greater thickness than 3-4 meters testing. In a large part of the profiles was able to see the shape of the mineral bedrock in the form of a former lake basin. Also observed elevations and thresholds in the bedrock. Depth of the mineral deposits forming former lake bottom was confirmed by drillings. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association. References: Błaszkiewicz M, 2005. Późnoglacjalna i

  10. Shaded Relief and Radar Image with Color as Height, Bosporus Strait and Istanbul, Turkey

    Science.gov (United States)

    2002-01-01

    The Bosporus (also spelled Bosphorus) is a strait that connects the Black Sea with the Sea of Marmara in the center of this view of northwest Turkey, taken during the Shuttle Radar Topography Mission. The water of the Black Sea at the top of the image and Sea of Marmara below the center are colored blue in this image, along with several large lakes. The largest lake, to the lower right of the Sea of Marmara, is Iznik Lake. The Bosporus (Turkish Bogazici) Strait is considered to be the boundary between Europe and Asia, and the large city of Istanbul, Turkey is located on both sides of the southern end of the strait, visible as a brighter (light green to white) area on the image due to its stronger reflection of radar. Istanbul is the modern name for a city with along history, previously called Constantinople and Byzantium. It was rebuilt as the capital of the Roman Empire in 330 A.D. by Constantine on the site of an earlier Greek city, and it was later the capital of the Byzantine and Ottoman empires until 1922.The Gulf of Izmit is the narrow gulf extending to the east (right) from the Sea of Marmara. The city of Izmit at the end of the gulf was heavily damaged by a large magnitude 7.4 earthquake on August 17,1999, often called the Izmit earthquake (also known as the Kocaeli, Turkey, earthquake), that killed at least 17,000 people. A previous earthquake under the Gulf of Izmit in 1754 killed at least 2,000people. The Izmit earthquake ruptured a long section of the North Anatolian Fault system from off the right side of this image continuing under the Gulf of Izmit. Another strand of the North Anatolian Fault system is visible as a sharp linear feature in the topography south of Iznik Lake. Bathymetric surveys show that the north Anatolian Fault system extends beneath and has formed the Sea of Marmara, in addition to the Gulf of Izmit and Iznik Lake. Scientists are studying the North Anatolian Fault system to determine the risk of a large earthquake on the faults

  11. Spatial Variability of accumulation across the Western Greenland Ice Sheet Percolation Zone from ground-penetrating-radar and shallow firn cores

    Science.gov (United States)

    Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Marshall, H. P.; Birkel, S. D.; Meehan, T. G.; Graeter, K.; Overly, T. B.; McCarthy, F.

    2017-12-01

    The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. Increased melting in the GrIS percolation zone over the past several decades has led to increased mass loss at lower elevations due to recent warming. Uncertainties in mass balance are especially large in regions with sparse and/or outdated in situ measurements. This study is the first to calculate in situ accumulation over a large region of western Greenland since the Program for Arctic Regional Climate Assessment campaign during the 1990s. Here we analyze 5000 km of 400 MHz ground penetrating radar data and sixteen 25-33 m-long firn cores in the western GrIS percolation zone to determine snow accumulation over the past 50 years. The cores and radar data were collected as part of the 2016-2017 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS). With the cores and radar profiles we capture spatial accumulation gradients between 1850-2500 m a.s.l and up to Summit Station. We calculate accumulation rates and use them to validate five widely used regional climate models and to compare with IceBridge snow and accumulation radars. Our results indicate that while the models capture most regional spatial climate patterns, they lack the small-scale spatial variability captured by in situ measurements. Additionally, we evaluate temporal trends in accumulation at ice core locations and throughout the traverse. Finally, we use empirical orthogonal function and correlation analyses to investigate the principal drivers of radar-derived accumulation rates across the western GrIS percolation zone, including major North Atlantic climate modes such as the North Atlantic Oscillation, Atlantic Multidecadal Oscillation, and Greenland Blocking Index.

  12. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar radar science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage radar to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars radars mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the radar implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 16×8×8 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by ˜10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at ˜ 4 × 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only ˜2% of its surface. The dust environment is well known, producing a factor of ˜100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p

  13. Residual translation compensations in radar target narrowband imaging based on trajectory information

    Science.gov (United States)

    Yue, Wenjue; Peng, Bo; Wei, Xizhang; Li, Xiang; Liao, Dongping

    2018-05-01

    High velocity translation will result in defocusing scattering centers in radar imaging. In this paper, we propose a Residual Translation Compensations (RTC) method based on target trajectory information to eliminate the translation effects in radar imaging. Translation could not be simply regarded as a uniformly accelerated motion in reality. So the prior knowledge of the target trajectory is introduced to enhance compensation precision. First we use the two-body orbit model to figure out the radial distance. Then, stepwise compensations are applied to eliminate residual propagation delay based on conjugate multiplication method. Finally, tomography is used to confirm the validity of the method. Compare with translation parameters estimation method based on the spectral peak of the conjugate multiplied signal, RTC method in this paper enjoys a better tomography result. When the Signal Noise Ratio (SNR) of the radar echo signal is 4dB, the scattering centers can also be extracted clearly.

  14. Comparison of classification algorithms for various methods of preprocessing radar images of the MSTAR base

    Science.gov (United States)

    Borodinov, A. A.; Myasnikov, V. V.

    2018-04-01

    The present work is devoted to comparing the accuracy of the known qualification algorithms in the task of recognizing local objects on radar images for various image preprocessing methods. Preprocessing involves speckle noise filtering and normalization of the object orientation in the image by the method of image moments and by a method based on the Hough transform. In comparison, the following classification algorithms are used: Decision tree; Support vector machine, AdaBoost, Random forest. The principal component analysis is used to reduce the dimension. The research is carried out on the objects from the base of radar images MSTAR. The paper presents the results of the conducted studies.

  15. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils

  16. Mapping Palaeohydrography in Deserts: Contribution from Space-Borne Imaging Radar

    Directory of Open Access Journals (Sweden)

    Philippe Paillou

    2017-03-01

    Full Text Available Space-borne Synthetic Aperture Radar (SAR has the capability to image subsurface features down to several meters in arid regions. A first demonstration of this capability was performed in the Egyptian desert during the early eighties, thanks to the first Shuttle Imaging Radar mission. Global coverage provided by recent SARs, such as the Japanese ALOS/PALSAR sensor, allowed the mapping of vast ancient hydrographic systems in Northern Africa. We present a summary of palaeohydrography results obtained using PALSAR data over large deserts such as the Sahara and the Gobi. An ancient river system was discovered in eastern Lybia, connecting in the past the Kufrah oasis to the Mediterranean Sea, and the terminal part of the Tamanrasett river was mapped in western Mauritania, ending with a large submarine canyon. In southern Mongolia, PALSAR images combined with topography analysis allowed the mapping of the ancient Ulaan Nuur lake. We finally show the potentials of future low frequency SAR sensors by comparing L-band (1.25 GHz and P-band (435 MHz airborne SAR acquisitions over a desert site in southern Tunisia.

  17. A Parasitic Array Receiver for ISAR Imaging of Ship Targets Using a Coastal Radar

    Directory of Open Access Journals (Sweden)

    Fabrizio Santi

    2016-01-01

    Full Text Available The detection and identification of ship targets navigating in coastal areas are essential in order to prevent maritime accidents and to take countermeasures against illegal activities. Usually, coastal radar systems are employed for the detection of vessels, whereas noncooperative ship targets as well as ships not equipped with AIS transponders can be identified by means of dedicated active radar imaging system by means of ISAR processing. In this work, we define a parasitic array receiver for ISAR imaging purposes based on the signal transmitted by an opportunistic coastal radar over its successive scans. In order to obtain the proper cross-range resolution, the physical aperture provided by the array is combined with the synthetic aperture provided by the target motion. By properly designing the array of passive devices, the system is able to correctly observe the signal reflected from the ships over successive scans of the coastal radar. Specifically, the upper bounded interelement spacing provides a correct angular sampling accordingly to the Nyquist theorem and the lower bounded number of elements of the array ensures the continuity of the observation during multiple scans. An ad hoc focusing technique has been then proposed to provide the ISAR images of the ships. Simulated analysis proved the effectiveness of the proposed system to provide top-view images of ship targets suitable for ATR procedures.

  18. Joint application of Geoelectrical Resistivity and Ground Penetrating Radar techniques for the study of hyper-saturated zones. Case study in Egypt

    Directory of Open Access Journals (Sweden)

    Hany S. Mesbah

    2017-06-01

    Full Text Available This paper presents the results of the application of the Geoelectrical Resistivity Sounding (GRS and Ground Penetrating Radar (GPR for outlining and investigating of surface springing out (flow of groundwater to the base of an service building site, and determining the reason(s for the zone of maximum degree of saturation; in addition to provide stratigraphic information for this site. The studied economic building is constructed lower than the ground surface by about 7 m. A Vertical Electrical Sounding (VES survey was performed at 12 points around the studied building in order to investigate the vertical and lateral extent of the subsurface sequence, three VES's were conducted at each side of the building at discrete distances. And a total of 9 GPR profiles with 100- and 200-MHz antennae were conducted, with the objective of evaluating the depth and the degree of saturation of the subsurface layers. The qualitative and quantitative interpretation of the acquired VES's showed easily the levels of saturations close to and around the studied building. From the interpretation of GPR profiles, it was possible to locate and determine the saturated layers. The radar signals are penetrated and enabled the identification of the subsurface reflectors. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology. Finally, the new constructed geoelectrical resistivity cross-sections (in contoured-form, are easily clarifying the direction of groundwater flow toward the studied building.

  19. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  20. Interpretation of the distortion of ground-penetrating radar propagated and reflected waves - development of a multi-frequency tomography

    International Nuclear Information System (INIS)

    Hollender, F.

    1999-01-01

    Within the framework of research for waste disposal in deep geological formations, the French agency for nuclear waste management (ANDRA) has to dispose of non-destructive investigation methods to characterize the medium. Ground penetrating radar (GPR) could be used for this purpose in the case of granitic sites. The work presented here deals with this geophysical method. The classical interpretation of GPR data consists in the localization of geological discontinuities by signal amplitude or arrival time analysis. The main objective of our studies is the interpretation of the radar wave distortion (due to propagation and reflection phenomena), not only to localize discontinuities but also to contribute to their identification. Three preliminary studies have been carried out in order to understand on the one hand, the complexity of the electromagnetic phenomena in the geological medium at radar frequency, and on the other hand, the radar equipment constraints. First, the dispersion and the attenuation characterized by a Q variable factor of the GPR waves are shown with the support of dielectric laboratory measurements. A model, which only requires three parameters, is proposed in order to describe this behavior. Second, the radiation patterns of borehole radar antenna are studied. We show that the amplitude and frequency content of the emitted signal are variable versus the emission angle. An analytical method is proposed to study these phenomena. Finally, instrumental drifts of GPR equipment are studied. Emission time, sampling frequency and amplitude fluctuations are described. These elements are taken into account for the processing of propagated signals by tomographic inversion. Medium anisotropy and borehole trajectory errors are inserted in algorithms in order to cancel artifacts which compromised the previous interpretation. A pre-processing method, based on wave separation algorithm, is applied on data in order to increase tomogram resolution. A new

  1. Ground penetrating radar data used in discovery of the early Christian church of Notre Dame de Baudes near Labastide-du-Temple, France.

    Science.gov (United States)

    Gragson, Ted L; Thompson, Victor D; Leigh, David S; Hautefeuille, Florent

    2016-06-01

    Data on ground-penetrating radar transect files are provided that support the research presented in "Discovery and Appraisal of the Early Christian Church of Notre Dame de Baudes near Labastide-du-Temple, France" [1]. Data consist of 102 transect files obtained with a GSSI SIR-3000 controller and a 400 MHz center frequency antenna in two grid blocks covering ca. 2700 m(2). The data are distributed raw without post-processing in SEG-Y rev. 1 format (little endian).

  2. Demonstration of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets

    Science.gov (United States)

    Heister, Anton; Scheiber, Rolf

    2017-04-01

    Conventional processing of ice-sounder data produces 2-D images of the ice sheet and bed, where the two dimensions are along-track and depth, while the across-track direction is fixed to nadir. The 2-D images contain information about the topography and radar reflectivity of the ice sheet's surface, bed, and internal layers in the along-track direction. Having multiple antenna phase centers in the across-track direction enables the production of 3-D images of the ice sheet and bed. Compared to conventional 2-D images, these contain additional information about the surface and bed topography, and orientation of the internal layers over a swath in the across-track direction. We apply a 3-D SAR tomographic ice-sounding method based on sparse signal reconstruction [1] to the data collected by Center for Remote Sensing of Ice Sheets (CReSIS) in 2008 in Greenland [2] using their multichannel coherent radar depth sounder (MCoRDS). The MCoRDS data have 16 effective phase centers which allows us to better understand the performance of the method. Lastly we offer sparsity improvement by including wavelet dictionaries into the reconstruction.The results show improved scene feature resolvability in across-track direction compared to MVDR beamformer. References: [1] A. Heister, R. Scheiber, "First Analysis of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets". In: Proceedings of EUSAR, pp. 788-791, June 2016. [2] X. Wu, K. C. Jezek, E. Rodriguez, S. Gogineni, F. Rodriguez-Morales, and A. Freeman, "Ice sheet bed mapping with airborne SAR tomography". IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 10 Part 1, pp. 3791-3802, 2011.

  3. A HWIL test facility of infrared imaging laser radar using direct signal injection

    Science.gov (United States)

    Wang, Qian; Lu, Wei; Wang, Chunhui; Wang, Qi

    2005-01-01

    Laser radar has been widely used these years and the hardware-in-the-loop (HWIL) testing of laser radar become important because of its low cost and high fidelity compare with On-the-Fly testing and whole digital simulation separately. Scene generation and projection two key technologies of hardware-in-the-loop testing of laser radar and is a complicated problem because the 3D images result from time delay. The scene generation process begins with the definition of the target geometry and reflectivity and range. The real-time 3D scene generation computer is a PC based hardware and the 3D target models were modeled using 3dsMAX. The scene generation software was written in C and OpenGL and is executed to extract the Z-buffer from the bit planes to main memory as range image. These pixels contain each target position x, y, z and its respective intensity and range value. Expensive optical injection technologies of scene projection such as LDP array, VCSEL array, DMD and associated scene generation is ongoing. But the optical scene projection is complicated and always unaffordable. In this paper a cheaper test facility was described that uses direct electronic injection to provide rang images for laser radar testing. The electronic delay and pulse shaping circuits inject the scenes directly into the seeker's signal processing unit.

  4. Septal penetration correction in I-131 imaging following thyroid cancer treatment

    Science.gov (United States)

    Barrack, Fiona; Scuffham, James; McQuaid, Sarah

    2018-04-01

    Whole body gamma camera images acquired after I-131 treatment for thyroid cancer can suffer from collimator septal penetration artefacts because of the high energy of the gamma photons. This results in the appearance of ‘spoke’ artefacts, emanating from regions of high activity concentration, caused by the non-isotropic attenuation of the collimator. Deconvolution has the potential to reduce such artefacts, by taking into account the non-Gaussian point-spread-function (PSF) of the system. A Richardson–Lucy deconvolution algorithm, with and without prior scatter-correction was tested as a method of reducing septal penetration in planar gamma camera images. Phantom images (hot spheres within a warm background) were acquired and deconvolution using a measured PSF was applied. The results were evaluated through region-of-interest and line profile analysis to determine the success of artefact reduction and the optimal number of deconvolution iterations and damping parameter (λ). Without scatter-correction, the optimal results were obtained with 15 iterations and λ  =  0.01, with the counts in the spokes reduced to 20% of the original value, indicating a substantial decrease in their prominence. When a triple-energy-window scatter-correction was applied prior to deconvolution, the optimal results were obtained with six iterations and λ  =  0.02, which reduced the spoke counts to 3% of the original value. The prior application of scatter-correction therefore produced the best results, with a marked change in the appearance of the images. The optimal settings were then applied to six patient datasets, to demonstrate its utility in the clinical setting. In all datasets, spoke artefacts were substantially reduced after the application of scatter-correction and deconvolution, with the mean spoke count being reduced to 10% of the original value. This indicates that deconvolution is a promising technique for septal penetration artefact reduction that

  5. Apodized RFI filtering of synthetic aperture radar images

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  6. Synergistic Use of Spacecraft Telecom Links for Collection of Planetary Radar Science Data

    Science.gov (United States)

    Asmar, S.; Bell, D. J.; Chahat, N. E.; Decrossas, E.; Dobreva, T.; Duncan, C.; Ellliot, H.; Jin, C.; Lazio, J.; Miller, J.; Preston, R.

    2017-12-01

    On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. Example spacecraft radar instruments are the 90 MHz CONSERT radar used to probe the interior of Comet 67P/Churyumov-Gerasimenko to a depth of 760m, the 20 MHz SHARAD instrument used to investigate Mars subsurface ice features from Mars orbit at depths of 300 to 3000 meters and the upcoming RIMFAX 150 MHz to 1200 MHz ground penetrating radar that will ride on the Mars 2020 rover investigating to a depth of 10m below the rover. In all of these applications, the radar frequency and signal structures were chosen to match science goals of desired depth of penetration and spatial resolution combined with the expected subsurface materials and structures below the surface. Recently, JPL investigators have proposed a new radar science paradigm, synergistic use of the telecom hardware and telecom links to collect bistatic or monostatic radar signatures. All JPL spacecraft employ telecom hardware that operates at UHF (400 MHz and 900 MHz), X-band (8 GHz) or Ka-band (32 GHz). Using existing open-loop record functions in these radios, the telecom hardware can be used to capture opportunistic radar signatures from telecom signals penetrating the surface and reflecting off of subsurface structures. This paper reports on telecom strategies, radar science applications and recent laboratory and field tests to demonstrate the effectiveness of telecom link based radar data collection.

  7. Mapping submarine sand waves with multiband imaging radar - 2. Experimental results and model comparison

    NARCIS (Netherlands)

    Vogelzang, J.; Wensink, G.J.; Calkoen, C.J.; Kooij, M.W.A. van der

    1997-01-01

    On August 16, 1989, and on July 12, 1991, experiments were performed to study the mapping of submarine sand waves with the airborne imaging radar, a polarimetric (and, in 1991, interferometric) airborne P, L, and C band synthetic aperture radar system. The experiments took place in an area 30 km off

  8. Agile beam laser radar using computational imaging for robotic perception

    Science.gov (United States)

    Powers, Michael A.; Stann, Barry L.; Giza, Mark M.

    2015-05-01

    This paper introduces a new concept that applies computational imaging techniques to laser radar for robotic perception. We observe that nearly all contemporary laser radars for robotic (i.e., autonomous) applications use pixel basis scanning where there is a one-to-one correspondence between world coordinates and the measurements directly produced by the instrument. In such systems this is accomplished through beam scanning and/or the imaging properties of focal-plane optics. While these pixel-basis measurements yield point clouds suitable for straightforward human interpretation, the purpose of robotic perception is the extraction of meaningful features from a scene, making human interpretability and its attendant constraints mostly unnecessary. The imposing size, weight, power and cost of contemporary systems is problematic, and relief from factors that increase these metrics is important to the practicality of robotic systems. We present a system concept free from pixel basis sampling constraints that promotes efficient and adaptable sensing modes. The cornerstone of our approach is agile and arbitrary beam formation that, when combined with a generalized mathematical framework for imaging, is suited to the particular challenges and opportunities of robotic perception systems. Our hardware concept looks toward future systems with optical device technology closely resembling modern electronically-scanned-array radar that may be years away from practicality. We present the design concept and results from a prototype system constructed and tested in a laboratory environment using a combination of developed hardware and surrogate devices for beam formation. The technological status and prognosis for key components in the system is discussed.

  9. Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation

    Science.gov (United States)

    Nakata, Robert

    Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.

  10. Quantifying reinforced concrete bridge deck deterioration using ground penetrating radar

    Science.gov (United States)

    Martino, Nicole Marie

    Bridge decks are deteriorating at an alarming rate due to corrosion of the reinforcing steel, requiring billions of dollars to repair and replace them. Furthermore, the techniques used to assess the decks don't provide enough quantitative information. In recent years, ground penetrating radar (GPR) has been used to quantify deterioration by comparing the rebar reflection amplitudes to technologies serving as ground truth, because there is not an available amplitude threshold to distinguish healthy from corroded areas using only GPR. The goal of this research is to understand the relationship between GPR and deck deterioration, and develop a model to determine deterioration quantities with GPR alone. The beginning of this research determines that not only is the relationship between GPR and rebar corrosion stronger than the relationship between GPR and delaminations, but that the two are exceptionally correlated (90.2% and 86.6%). Next, multiple bridge decks were assessed with GPR and half-cell potential (HCP). Statistical parameters like the mean and skewness were computed for the GPR amplitudes of each deck, and coupled with actual corrosion quantities based on the HCP measurements to form a future bridge deck model that can be used to assess any deck with GPR alone. Finally, in order to understand exactly which component of rebar corrosion (rust, cracking or chloride) attenuates the GPR data, computational modeling was carried out to isolate each variable. The results indicate that chloride is the major contributor to the rebar reflection attenuation, and that computational modeling can be used to accurately simulate GPR attenuation due to chloride.

  11. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ''error'' in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand

  12. Interpretation of Ground Penetrating Radar data at the Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, K.A.; Mitchell, T.H.; Kunk, J.R.

    1993-07-01

    Ground Penetrating Radar (GPR) is being used extensively during characterization and remediation of chemical and radioactive waste sites at the Hanford Site in Washington State. Time and money for GPR investigations are often not included during the planning and budgeting phase. Therefore GPR investigations must be inexpensive and quick to minimize impact on already established budgets and schedules. An approach to survey design, data collection, and interpretation has been developed which emphasizes speed and budget with minimal impact on the integrity of the interpretation or quality of the data. The following simple rules of thumb can be applied: (1) Assemble as much pre-survey information as possible, (2) Clearly define survey objectives prior to designing the survey and determine which combination of geophysical methods will best meet the objectives, (3) Continuously communicate with the client, before, during and after the investigation, (4) Only experienced GPR interpreters should acquire the field data, (5) Use real-time monitoring of the data to determine where and how much data to collect and assist in the interpretation, (6) Always ``error`` in favor of collecting too much data, (7) Surveys should have closely spaced (preferably 5 feet, no more than 10 feet), orthogonal profiles, (8) When possible, pull the antenna by hand.

  13. Ground penetrating radar data used in discovery of the early Christian church of Notre Dame de Baudes near Labastide-du-Temple, France

    Directory of Open Access Journals (Sweden)

    Ted L Gragson

    2016-06-01

    Full Text Available Data on ground-penetrating radar transect files are provided that support the research presented in "Discovery and Appraisal of the Early Christian Church of Notre Dame de Baudes near Labastide-du-Temple, France" [1]. Data consist of 102 transect files obtained with a GSSI SIR-3000 controller and a 400 MHz center frequency antenna in two grid blocks covering ca. 2700 m2. The data are distributed raw without post-processing in SEG-Y rev. 1 format (little endian.

  14. Effects of surface roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar altimeter

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    2010-01-01

    to investigate sea ice volume changes on an Arctic wide scale. Freeboard retrieval requires precise radar range measurements to the ice surface, therefore we investigate the penetration of the Ku-Band radar waves into the overlying snow cover as well as the effects of sub-footprint-scale surface roughness using...... airborne radar and laser altimeters. We find regional variable penetration of the radar signal at late spring conditions, where the difference of the radar and the reference laser range measurement never agrees with the expected snow thickness. In addition, a rough surface can lead to biases...

  15. Regolith stratigraphy at the Chang'E-3 landing site as seen by lunar penetrating radar

    Science.gov (United States)

    Fa, Wenzhe; Zhu, Meng-Hua; Liu, Tiantian; Plescia, Jeffrey B.

    2015-12-01

    The Chang'E-3 lunar penetrating radar (LPR) observations at 500 MHz reveal four major stratigraphic zones from the surface to a depth of ~20 m along the survey line: a layered reworked zone (<1 m), an ejecta layer (~2-6 m), a paleoregolith layer (~4-11 m), and the underlying mare basalts. The reworked zone has two to five distinct layers and consists of surface regolith. The paleoregolith buried by the ejecta from a 500 m crater is relatively homogenous and contains only a few rocks. Population of buried rocks increases with depth to ~2 m at first, and then decreases with depth, representing a balance between initial deposition of the ejecta and later turnover of the regolith. Combining with the surface age, the LPR observations indicate a mean accumulation rate of about 5-10 m/Gyr for the surface regolith, which is at least 4-8 times larger than previous estimation.

  16. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  17. Analyse des images satellitales radar RSO-ERS et optique ETM+ de ...

    African Journals Online (AJOL)

    ... l'analyse des images satellitales est un outil¸ au même titre que par exemple, la géophysique de prospection minière. Les spatio-cartes géologiques obtenues peuvent permettre de mieux planifier les travaux miniers sur le terrain. Mots-clés : images satellitales, Radar RSO-ERS, ETM+ - LANDSAT 7, prospection minière, ...

  18. Subsurface Investigation using 2D Resistivity and Ground Penetrating Radar at Teluk Kumbar, Penang

    Science.gov (United States)

    Teoh, YJ; Bruka, MA; Idris, NM; Ismail, NA; Muztaza, NM

    2018-04-01

    The objective of this study is to determine the structure and condition of the subsurface by using 2D resistivity and Ground Penetrating Radar (GPR) methods. The study was conducted at SK Sungai Batu, Teluk Kumbar, Penang Island. For 2D resistivity method, Wenner-Schlumberger array was used while for GPR, 250 MHz antenna was used at the site. The survey consists of 200m length survey line. GPR result shows that there is high intensity of EM. 2D resistivity result shows that the low resistivity region (200 Ωm to 340 Ωm) appears to be at the centre of the survey line from depth 7 m to 13 m. Meanwhile, the higher resistivity region (4000 Ωm to 6000 Ωm) may indicate the bedrock structure of the subsurface, which is the granitic rock. This region is bedrock which rested at depth 14 m and below. In conclusion, data obtained from GPR and 2D resistivity methods can be easily correlated to determine the features of the subsurface.

  19. Ground-penetrating radar investigation of St. Leonard's Crypt under the Wawel Cathedral (Cracow, Poland) - COST Action TU1208

    Science.gov (United States)

    Benedetto, Andrea; Pajewski, Lara; Dimitriadis, Klisthenis; Avlonitou, Pepi; Konstantakis, Yannis; Musiela, Małgorzata; Mitka, Bartosz; Lambot, Sébastien; Żakowska, Lidia

    2016-04-01

    historical interest. The TS presented an insight into the challenges, advantages and potential of GPR prospection in historical cities. Data examples from urban historical centres were presented and discussed. An introduction to electromagnetic modelling of GPR was provided. To widen the perspective, the school included an introduction to urban remote sensing, describing how high-resolution satellite imagery or alternative sources of image date can be exploited for urban feature extraction, to analyse population, energy use, and other aspects of the urban environment. In this work, data collected in St Leonard's Crypt will be presented for the first time. The activities focused on surveying the floor of the crypt, in order to obtain an image of the tomb of Bishop Maurus, verify whether further cavities were present and collect information about the subsurface of the crypt. GPR scans were taken on a 20 cm x 20 cm grid. Subsequently, an interesting area of smaller extent was chosen, where further data were collected on a 10 cm x 10 cm grid. We found out that the tomb of Bishop Maurus is shifted with respect to the inscription placed in the middle of the crypt and supposed to indicate its position. We could also detect the presence of another large cavity and estimate their size. All measurements were performed by using a CX-12 GPR pulsed system of MALA Geoscience. Acknowledgement The Authors are deeply grateful to the Parish of the Cathedral of St. Stanislaus BM and St. Wenceslas M, Cracow, Poland, for authorizing us to carry out the practical sessions of the Training School in St. Leonard's Crypt under the Wawel Cathedral. This was for all Trainers and Trainees a unique, touching and unforgettable experience. The Authors thank COST (www.cost.eu) for funding the Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu) and for its constant support to the Action.

  20. Ground Penetrating Radar for SMART CITIES

    Science.gov (United States)

    Soldovieri, Francesco; Catapano, Ilaria; Gennarelli, Gianluca

    2016-04-01

    The use of monitoring and surveillance technologies is now recognized as a reliable option of the overall smart cities management cycle, for the advantages that they offer in terms of: economically sustainable planning of the ordinary and extraordinary maintenance interventions; situational awareness of possible risks factors in view of a reliable early warning; improvement of the security of the communities especially in public environments. In this frame, the abstract will deal with the recent advances in the development and deployment of radar systems for the urban surveillance, exploitation of the subsurface resources and civil engineering structures. In particular, we will present the recent scientific developments and several examples of use of these systems in operational conditions.

  1. Laser radar cross-section estimation from high-resolution image data.

    Science.gov (United States)

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.

  2. NAPL detection with ground-penetrating radar (Invited)

    Science.gov (United States)

    Bradford, J. H.

    2013-12-01

    Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency

  3. Coherent backscatter radar imaging in Brazil: large-scale waves in the bottomside F-region at the onset of equatorial spread F

    Directory of Open Access Journals (Sweden)

    F. S. Rodrigues

    2008-10-01

    Full Text Available The 30 MHz coherent backscatter radar located at the equatorial observatory in São Luís, Brazil (2.59° S, 44.21° W, −2.35° dip lat has been upgraded to perform coherent backscatter radar imaging. The wide field-of-view of this radar makes it well suited for radar imaging studies of ionospheric irregularities. Radar imaging observations were made in support to the spread F Experiment (SpreadFEx campaign. This paper describes the system and imaging technique and presents results from a bottom-type layer that preceded fully-developed radar plumes on 25 October 2005. The radar imaging technique was able to resolve decakilometric structures within the bottom-type layer. These structures indicate the presence of large-scale waves (~35 km in the bottomside F-region with phases that are alternately stable and unstable to wind-driven gradient drift instabilities. The observations suggest that these waves can also cause the initial perturbation necessary to initiate the Generalized Rayleigh-Taylor instability leading to spread F. The electrodynamic conditions and the scale length of the bottom-type layer structures suggest that the waves were generated by the collisional shear instability. These results indicate that monitoring bottom-type layers may provide helpful diagnostics for spread F forecasting.

  4. Investigation of image enhancement techniques for the development of a self-contained airborne radar navigation system

    Science.gov (United States)

    Phatak, A. V.; Karmali, M. S.

    1983-01-01

    This study was devoted to an investigation of the feasibility of applying advanced image processing techniques to enhance radar image characteristics that are pertinent to the pilot's navigation and guidance task. Millimeter (95 GHz) wave radar images for the overwater (i.e., offshore oil rigs) and overland (Heliport) scenario were used as a data base. The purpose of the study was to determine the applicability of image enhancement and scene analysis algorithms to detect and improve target characteristics (i.e., manmade objects such as buildings, parking lots, cars, roads, helicopters, towers, landing pads, etc.) that would be helpful to the pilot in determining his own position/orientation with respect to the outside world and assist him in the navigation task. Results of this study show that significant improvements in the raw radar image may be obtained using two dimensional image processing algorithms. In the overwater case, it is possible to remove the ocean clutter by thresholding the image data, and furthermore to extract the target boundary as well as the tower and catwalk locations using noise cleaning (e.g., median filter) and edge detection (e.g., Sobel operator) algorithms.

  5. Ground-penetrating radar exploration for ancient monuments at the Valley of Mummies -Kilo 6, Bahariya Oasis, Egypt

    Science.gov (United States)

    Shaaban, Fathy A.; Abbas, Abbas M.; Atya, Magdy A.; Hafez, Mahfouz A.

    2009-06-01

    A Valley of Mummies was discovered recently by an Egyptian team at Bahariya Oasis, located about 380 km west of the pyramids. Four tombs were excavated, and inside them were found one hundred and five mummies (105), many of them beautifully gilded. These mummies, many sumptuously decorated with religious scenes, are the very best Roman-Period mummies ever found in Egypt. These remains are around 2000 years old, but they are in remarkable condition. A Ground-Penetrating Radar (GPR) had proved successful in detecting the cavities in resistive soil in which the mummies were found. The GPR survey conducted near the earlier-discovered tombs at Kilo-6 El-Bahariya to Farafra Oasis road is the focus of this paper. The GPR survey was conducted using the SIR-2000 attached to a 200 MHz monostatic antenna. The two areas to be surveyed were selected by the archaeologists in situ. Area one was 40 m × 40 m and Area two was 30 m × 15 m. A grid pattern survey in one direction; with one-meter profile spacing was done to both areas. In addition, a focusing survey was undertaken over the entire Area one. In addition, twenty long GPR profiles were conducted in an attempt to determine the outer, expected limits of the burial area. After the data acquisition, Reflex software was used for data processing and presentation. The final results of the radar survey: in the form of 2D radar records, time slices and 3D block diagrams; were used to guide the archaeologists during the excavation process. The excavation processes have been completed by the archaeologists, and many tombs and mummies were discovered. It is worthy to mention that, the excavations and location of tombs and cavities matched strongly with the GPR results.

  6. Analysis of the karst aquifer structure of the Lamalou area (Herault, France) with ground penetrating radar

    International Nuclear Information System (INIS)

    Al-Fares, W.; Bakalowicz, M.; Guerin, R.; Dukhan, M.

    2004-01-01

    The study site at Lamalou karst spring Hortus karst plateau) is situated 40 km north of Montpellier in France. It consists of a limestone plateau, drained by a karst conduit discharging as a spring. This conduit extends for a few dozen meters in fractured and karstified limestone rocks, 15 to 70 m below the surface. The conduit is accessible from the surface. The main goal of this study is to analyze the surface part of the karst and to highlight the karstic features and among them the conduit, and to test the performances of ground penetrating radar (GPR) in a karstic environment. This method thus appears particularly well adapted to the analysis of the near-surface (<30 m in depth) structure of a karst, especially when clayey coating or soil that absorbs and attenuates the radar is rare and discontinuous. A GPR pulse EKKO 100 (Sensors and Software) was used on the site with a 50 MHz antenna frequency. The results highlight structures characterizing the karstic environment: The epikarst, bedding planes, fractured and karstified zones, compact and massive rock and karrens, a typical karst landform. One of the sections revealed in detail the main conduit located at a depth of 20 m, and made it possible to determine its geometry. This site offers possibilities of validation of GPR data by giving direct access to the karstic conduit and through two cored boreholes. These direct observations confirm the interpretation of all the GPR sections. (author

  7. Investigating nearby exoplanets via interstellar radar

    Science.gov (United States)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  8. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  9. Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography.

    Science.gov (United States)

    Thiel, F; Kreiseler, D; Seifert, F

    2009-11-01

    Electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. Therefore the reason for using ultrawideband (UWB) radar for probing the human body in the frequency range from 100 MHz up to 10 GHz is obvious and suggests an ability to monitor the motion of organs within the human body as well as obtaining images of internal structures. The specific advantages of UWB sensors are high temporal and spatial resolutions, penetration into object, low integral power, and compatibility with established narrowband systems. The sensitivity to ultralow power signals makes them suitable for human medical applications including mobile and continuous noncontact supervision of vital functions. Since no ionizing radiation is used, and due to the ultralow specific absorption rate applied, UWB techniques permit noninvasive sensing with no potential risks. This research aims at the synergetic use of UWB sounding combined with magnetic resonance imaging (MRI) to gain complementary information for improved functional diagnosis and imaging, especially to accelerate and enhance cardiac MRI by applying UWB radar as a noncontact navigator of myocardial contraction. To this end a sound understanding of how myocardial's mechanic is rendered by reflected and postprocessed UWB radar signals must be achieved. Therefore, we have executed the simultaneous acquisition and evaluation of radar signals with signals from a high-resolution electrocardiogram. The noncontact UWB illumination was done from several radiographic standard positions to monitor selected superficial myocardial areas during the cyclic physiological myocardial deformation in three different respiratory states. From our findings we could conclude that UWB radar can serve as a navigator technique for high and ultrahigh field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it

  10. Quantifying South East Asia's forest degradation using latest generation optical and radar satellite remote sensing

    Science.gov (United States)

    Broich, M.; Tulbure, M. G.; Wijaya, A.; Weisse, M.; Stolle, F.

    2017-12-01

    Deforestation and forest degradation form the 2nd largest source of anthropogenic CO2 emissions. While deforestation is being globally mapped with satellite image time series, degradation remains insufficiently quantified. Previous studies quantified degradation for small scale, local sites. A method suitable for accurate mapping across large areas has not yet been developed due to the variability of the low magnitude and short-lived degradation signal and the absence of data with suitable resolution properties. Here we use a combination of newly available streams of free optical and radar image time series acquired by NASA and ESA, and HPC-based data science algorithms to innovatively quantify degradation consistently across Southeast Asia (SEA). We used Sentinel1 c-band radar data and NASA's new Harmonized Landsat8 (L8) Sentinel2 (S2) product (HLS) for cloud free optical images. Our results show that dense time series of cloud penetrating Sentinel 1 c-band radar can provide degradation alarm flags, while the HLS product of cloud-free optical images can unambiguously confirm degradation alarms. The detectability of degradation differed across SEA. In the seasonal forest of continental SEA the reliability of our radar-based alarm flags increased as the variability in landscape moisture decreases in the dry season. We reliably confirmed alarms with optical image time series during the late dry season, where degradation in open canopy forests becomes detectable once the undergrowth vegetation has died down. Conversely, in insular SEA landscape moisture is low, the radar time series generated degradation alarms flags with moderate to high reliability throughout the year, further confirmed with the HLS product. Based on the HLS product we can now confirm degradation within time series provides better results than either one on its own. Our results provide significant information with application for carbon trading policy and land management.

  11. Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography

    Science.gov (United States)

    Thiel, F.; Kreiseler, D.; Seifert, F.

    2009-11-01

    Electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. Therefore the reason for using ultrawideband (UWB) radar for probing the human body in the frequency range from 100 MHz up to 10 GHz is obvious and suggests an ability to monitor the motion of organs within the human body as well as obtaining images of internal structures. The specific advantages of UWB sensors are high temporal and spatial resolutions, penetration into object, low integral power, and compatibility with established narrowband systems. The sensitivity to ultralow power signals makes them suitable for human medical applications including mobile and continuous noncontact supervision of vital functions. Since no ionizing radiation is used, and due to the ultralow specific absorption rate applied, UWB techniques permit noninvasive sensing with no potential risks. This research aims at the synergetic use of UWB sounding combined with magnetic resonance imaging (MRI) to gain complementary information for improved functional diagnosis and imaging, especially to accelerate and enhance cardiac MRI by applying UWB radar as a noncontact navigator of myocardial contraction. To this end a sound understanding of how myocardial's mechanic is rendered by reflected and postprocessed UWB radar signals must be achieved. Therefore, we have executed the simultaneous acquisition and evaluation of radar signals with signals from a high-resolution electrocardiogram. The noncontact UWB illumination was done from several radiographic standard positions to monitor selected superficial myocardial areas during the cyclic physiological myocardial deformation in three different respiratory states. From our findings we could conclude that UWB radar can serve as a navigator technique for high and ultrahigh field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it

  12. Exact spectrum of non-linear chirp scaling and its application in geosynchronous synthetic aperture radar imaging

    Directory of Open Access Journals (Sweden)

    Chen Qi

    2013-07-01

    Full Text Available Non-linear chirp scaling (NLCS is a feasible method to deal with time-variant frequency modulation (FM rate problem in synthetic aperture radar (SAR imaging. However, approximations in derivation of NLCS spectrum lead to performance decline in some cases. Presented is the exact spectrum of the NLCS function. Simulation with a geosynchronous synthetic aperture radar (GEO-SAR configuration is implemented. The results show that using the presented spectrum can significantly improve imaging performance, and the NLCS algorithm is suitable for GEO-SAR imaging after modification.

  13. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE: RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    International Nuclear Information System (INIS)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-01-01

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity(trademark) surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects

  14. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  15. The use of radar for bathymetry assessment

    OpenAIRE

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered bathymetric data. The paper reviews the concepts of bathymetry assessment by radar, the radar imaging mechanism, and the possibilities and limitations of the use of radar data in rapid assessment.

  16. Analysis of the Gran Desierto, Pinacte Region, Sonora, Mexico, via shuttle imaging radar

    Science.gov (United States)

    Greeley, R.; Christensen, P. R.; Mchone, J. F.; Asmerom, Y.; Zimbelman, J. R.

    1984-01-01

    The radar discriminability of geolian features and their geological setting as imaged by the SIR-A experiment is examined. The Gran Desierto and Pincate volcanio field of Sonora, Mexico was used to analyze the radar characteristics of the interplay of aeolian features and volcano terrain. The area in the Gran Desierto covers 4000 sq. km. and contains sand dunes of several forms. The Pincate volcanio field covers more than 2.000 sq. km. and consists primarily of basaltic lavas. Margins of the field, especially on the western and northern sides, include several maar and maar-like craters; thus obtaining information on their radar characteristics for comparison with impact craters.

  17. Radar Location Equipment Development Program: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  18. Radar Location Equipment Development Program: Phase I

    International Nuclear Information System (INIS)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2 0 , respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1 0 in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs

  19. Understanding earthquakes: The key role of radar images

    International Nuclear Information System (INIS)

    Atzori, Simone

    2013-01-01

    The investigation of the fault rupture underlying earthquakes greatly improved thanks to the spread of radar images. Following pioneer applications in the eighties, Interferometry from Synthetic Aperture Radar (InSAR) gained a prominent role in geodesy. Its capability to measure millimetric deformations for wide areas and the increased data availability from the early nineties, made InSAR a diffused and accepted analysis tool in tectonics, though several factors contribute to reduce the data quality. With the introduction of analytical or numerical modeling, InSAR maps are used to infer the source of an earthquake by means of data inversion. Newly developed algorithms, known as InSAR time-series, allowed to further improve the data accuracy and completeness, strengthening the InSAR contribution even in the study of the inter- and post-seismic phases. In this work we describe the rationale at the base of the whole processing, showing its application to the New Zealand 2010–2011 seismic sequence

  20. Understanding earthquakes: The key role of radar images

    Energy Technology Data Exchange (ETDEWEB)

    Atzori, Simone, E-mail: simone.atzori@ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy)

    2013-08-21

    The investigation of the fault rupture underlying earthquakes greatly improved thanks to the spread of radar images. Following pioneer applications in the eighties, Interferometry from Synthetic Aperture Radar (InSAR) gained a prominent role in geodesy. Its capability to measure millimetric deformations for wide areas and the increased data availability from the early nineties, made InSAR a diffused and accepted analysis tool in tectonics, though several factors contribute to reduce the data quality. With the introduction of analytical or numerical modeling, InSAR maps are used to infer the source of an earthquake by means of data inversion. Newly developed algorithms, known as InSAR time-series, allowed to further improve the data accuracy and completeness, strengthening the InSAR contribution even in the study of the inter- and post-seismic phases. In this work we describe the rationale at the base of the whole processing, showing its application to the New Zealand 2010–2011 seismic sequence.

  1. Design and validation of inert homemade explosive simulants for ground penetrating radar

    Science.gov (United States)

    VanderGaast, Brian W.; McFee, John E.; Russell, Kevin L.; Faust, Anthony A.

    2015-05-01

    The Canadian Armed Forces (CAF) identified a requirement for inert simulants to act as improvised, or homemade, explosives (IEs) when training on, or evaluating, ground penetrating radar (GPR) systems commonly used in the detection of buried landmines and improvised explosive devices (IEDs). In response, Defence R and D Canada (DRDC) initiated a project to develop IE simulant formulations using commonly available inert materials. These simulants are intended to approximate the expected GPR response of common ammonium nitrate-based IEs, in particular ammonium nitrate/fuel oil (ANFO) and ammonium nitrate/aluminum (ANAl). The complex permittivity over the range of electromagnetic frequencies relevant to standard GPR systems was measured for bulk quantities of these three IEs that had been fabricated at DRDC Suffield Research Centre. Following these measurements, published literature was examined to find benign materials with both a similar complex permittivity, as well as other physical properties deemed desirable - such as low-toxicity, thermal stability, and commercial availability - in order to select candidates for subsequent simulant formulation. Suitable simulant formulations were identified for ANFO, with resulting complex permittivities measured to be within acceptable limits of target values. These IE formulations will now undergo end-user trials with CAF operators in order to confirm their utility. Investigations into ANAl simulants continues. This progress report outlines the development program, simulant design, and current validation results.

  2. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    Science.gov (United States)

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  3. Structural Analysis of Lunar Subsurface with Chang'E 3 Lunar Penetrating Radar

    Science.gov (United States)

    Xu, Yi; Lai, Jialong; Tang, Zesheng

    2015-04-01

    Geological structure of the subsurface of the Moon provides valuable information for our understanding of lunar evolution. Recently, Chang'E 3 has utilized lunar penetrating radar (LPR), which is equipped on the lunar rover named as Yutu, to detect the lunar geological structure in Northern Imbrium (44.1260N, 19.5014W) for the first time. As an in-situ detector, Chang'E 3 LPR has higher horizontal and vertical resolution and less clutter impact compared to spaceborne radars such as Chandrayaan-1 and Kaguya. In this work, we analyze the LPR data at 500 MHz transmission frequency to obtain the shallow subsurface structure of the landing area of Chang'E 3 in Mare Imbrium. First, filter method and amplitude recover algorithms are introduced for data processing to alleviate the adverse effects of environment and system noises and compensate the amplitude losses during signal propagation. Next, based on the processed LPR data, we present the methods to determine the interfaces between layers. A three-layered structure of the shallow surface of the Moon has been observed. The corresponding real part of relative dielectric constant is inverted with deconvolution method. The average dielectric constants of the surface, second and third layer is 2.8, 3.2 and 3.6, respectively. The phenomenon that the average dielectric constant increases with the depth is consistent with prior art. With the obtained dielectric constants, the thickness of each layer can be calculated. One possible geological picture of the observed three-layered structure is presented as follows. The top layer is lunar regolith with its thickness ranging from 0.59 m to 0.9 m. The second layer is the ejecta blanket of the nearby impact crater, and the corresponding thickness is between 3.6m to 3.9m, which is in good agreement with the model of ejecta blanket thickness (height) as a function of distance from the crater center proposed by Melosh in 1989. The third layer is regarded as early lunar regolith with 4

  4. Airborne and spaceborne radar images for geologic and environmental mapping in the Amazon rain forest, Brazil

    Science.gov (United States)

    Ford, John P.; Hurtak, James J.

    1986-01-01

    Spaceborne and airborne radar image of portions of the Middle and Upper Amazon basin in the state of Amazonas and the Territory of Roraima are compared for purposes of geological and environmental mapping. The contrasted illumination geometries and imaging parameters are related to terrain slope and surface roughness characteristics for corresponding areas that were covered by each of the radar imaging systems. Landforms range from deeply dissected mountain and plateau with relief up to 500 m in Roraima, revealing ancient layered rocks through folded residual mountains to deeply beveled pediplain in Amazonas. Geomorphic features provide distinct textural signatures that are characteristic of different rock associations. The principle drainages in the areas covered are the Rio Negro, Rio Branco, and the Rio Japura. Shadowing effects and low radar sensitivity to subtle linear fractures that are aligned parallel or nearly parallel to the direction of radar illumination illustrate the need to obtain multiple coverage with viewing directions about 90 degrees. Perception of standing water and alluvial forest in floodplains varies with incident angle and with season. Multitemporal data sets acquired over periods of years provide an ideal method of monitoring environmental changes.

  5. Joseph F. Keithley Award For Advances in Measurement Science Lecture: Thermophotonic and Photoacoustic Radar Imaging Methods for Biomedical and Dental Imaging

    Science.gov (United States)

    Mandelis, Andreas

    2012-02-01

    In the first part of this presentation I will introduce thermophotonic radar imaging principles and techniques using chirped or binary-phase-coded modulation, methods which can break through the maximum detection depth/depth resolution limitations of conventional photothermal waves. Using matched-filter principles, a methodology enabling parabolic diffusion-wave energy fields to exhibit energy localization akin to propagating hyperbolic wave-fields has been developed. It allows for deconvolution of individual responses of superposed axially discrete sources, opening a new field: depth-resolved thermal coherence tomography. Several examples from dental enamel caries diagnostic imaging to metal subsurface defect thermographic imaging will be discussed. The second part will introduce the field of photoacoustic radar (or sonar) biomedical imaging. I will report the development of a novel biomedical imaging system that utilizes a continuous-wave laser source with a custom intensity modulation pattern, ultrasonic phased array for signal detection and processing coupled with a beamforming algorithm for reconstruction of photoacoustic correlation images. Utilization of specific chirped modulation waveforms (``waveform engineering'') achieves dramatic signal-to-noise-ratio increase and improved axial resolution over pulsed laser photoacoustics. The talk will conclude with aspects of instrumental sensitivity of the PA Radar to optical contrast using cancerous breast tissue-mimicking phantoms, super paramagnetic iron oxide nanoparticles as contrast enhancement agents and in-vivo tissue samples.

  6. Near-Earth Asteroid 2005 CR37: Radar Images and Photometry of a Candidate Contact Binary

    Science.gov (United States)

    Benner, Lance A. M.; Nolan, Michael C.; Ostro, Steven J.; Giorgini, Jon D.; Pray, Donald P.; Harris, Alan W.; Magri, Christopher; Margot, Jean-Luc

    2006-01-01

    Arecibo (2380 MHz, 13 cm) radar observations of 2005 CR37 provide detailed images of a candidate contact binary: a 1.8-km-long, extremely bifurcated object. Although the asteroid's two lobes are round, there are regions of modest topographic relief, such as an elevated, 200-m-wide facet, that suggest that the lobes are geologically more complex than either coherent fragments or homogeneous rubble piles. Since January 1999, about 9% of NEAs larger than approx.200 m imaged by radar can be described as candidate contact binaries.

  7. Estimating porosity and solid dielectric permittivity in the Miami Limestone using high-frequency ground penetrating radar (GPR) measurements at the laboratory scale

    Science.gov (United States)

    Mount, Gregory J.; Comas, Xavier

    2014-10-01

    Subsurface water flow in South Florida is largely controlled by the heterogeneous nature of the karst limestone in the Biscayne aquifer and its upper formation, the Miami Limestone. These heterogeneities are amplified by dissolution structures that induce changes in the aquifer's material and physical properties (i.e., porosity and dielectric permittivity) and create preferential flow paths. Understanding such patterns are critical for the development of realistic groundwater flow models, particularly in the Everglades, where restoration of hydrological conditions is intended. In this work, we used noninvasive ground penetrating radar (GPR) to estimate the spatial variability in porosity and the dielectric permittivity of the solid phase of the limestone at centimeter-scale resolution to evaluate the potential for field-based GPR studies. A laboratory setup that included high-frequency GPR measurements under completely unsaturated and saturated conditions was used to estimate changes in electromagnetic wave velocity through Miami Limestone samples. The Complex Refractive Index Model was used to derive estimates of porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates of the samples ranged between 45.2 and 66.0% and showed good correspondence with estimates of porosity using analytical and digital image techniques. Solid dielectric permittivity values ranged between 7.0 and 13.0. This study shows the ability of GPR to image the spatial variability of porosity and dielectric permittivity in the Miami Limestone and shows potential for expanding these results to larger scales and other karst aquifers.

  8. Ground Penetrating Radar Investigations in the Noble Hall of São Carlos Theater in Lisbon, Portugal

    Science.gov (United States)

    Fontul, S.; Solla, M.; Cruz, H.; Machado, J. S.; Pajewski, L.

    2018-05-01

    This paper describes a study conducted by the National Laboratory for Civil Engineering of Portugal (LNEC), in cooperation with the Defense University Center at the Spanish Naval Academy and "La Sapienza," University of Rome, to assess the health and safety conditions of the Noble Hall floor in the São Carlos National Theater (Lisbon, Portugal). In a multidisciplinary approach, extensive fieldwork was carried out. The survey included the location and characterization of beams in the various areas of the floor by using two ground penetrating radar (GPR) systems equipped with two different ground- or air-coupled antennas, local inspection openings to visually assess the geometry, timber species and conservation state of structural members, and an assessment of the conservation state of the timber beam ends using drilling equipment. All the tests performed and the results obtained are presented. The potential of using non-destructive tests for the inspection of timber cultural heritage structures, particularly GPR, is discussed, and some practical recommendations are made.

  9. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    Science.gov (United States)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  10. Using ground penetrating radar in levee assessment to detect small scale animal burrows

    Science.gov (United States)

    Chlaib, Hussein K.; Mahdi, Hanan; Al-Shukri, Haydar; Su, Mehmet M.; Catakli, Aycan; Abd, Najah

    2014-04-01

    Levees are civil engineering structures built to protect human lives, property, and agricultural lands during flood events. To keep these important structures in a safe condition, continuous monitoring must be performed regularly and thoroughly. Small rodent burrows are one of the major defects within levees; however, their early detection and repair helps in protecting levees during flooding events. A set of laboratory experiments was conducted to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Ground Penetrating Radar (GPR) surveys using multi frequency antennas (400 MHz and 900 MHz) were conducted along an 875 meter section of the Lollie Levee near Conway, Arkansas, USA, to assess the levee's structural integrity. Many subsurface animal burrows, water-filled cavities, clay clasts, and metallic objects were investigated and identified. These anomalies were located at different depths and have different sizes. To ground truth the observations, hand dug trenches were excavated to confirm several anomalies. Results show an excellent match between GPR interpreted anomalies and the observed features. In-situ dielectric constant measurements were used to calculate the feature depths. The results of this research show that the 900 MHz antenna has more advantages over the 400 MHz antenna.

  11. 3-D Imaging by Laser Radar and Applications in Preventing and Combating Crime and Terrorism

    National Research Council Canada - National Science Library

    Letalick, Dietmar; Ahlberg, Joergen; Andersson, Pierre; Chevalier, Tomas; Groenwall, Christina; Larsson, Hakan; Persson, Asa; Klasen, Lena

    2004-01-01

    This paper describes the ongoing research on 3-dimensional (3-D) imaging at FOI. Specifically, we address the new possibilities brought by laser radars, focusing on systems for high resolution 3-D imaging...

  12. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site

    OpenAIRE

    Ding, Chunyu; Su, Yan; Xing, Shuguo; Dai, Shun; Xiao, Yuan; Feng, Jianqing; Liu, Danqing; Li, Chunlai

    2017-01-01

    In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar) data. In this paper, the random medium theory and Apollo drilling core data are used to co...

  13. High resolution through-the-wall radar image based on beamspace eigenstructure subspace methods

    Science.gov (United States)

    Yoon, Yeo-Sun; Amin, Moeness G.

    2008-04-01

    Through-the-wall imaging (TWI) is a challenging problem, even if the wall parameters and characteristics are known to the system operator. Proper target classification and correct imaging interpretation require the application of high resolution techniques using limited array size. In inverse synthetic aperture radar (ISAR), signal subspace methods such as Multiple Signal Classification (MUSIC) are used to obtain high resolution imaging. In this paper, we adopt signal subspace methods and apply them to the 2-D spectrum obtained from the delay-andsum beamforming image. This is in contrast to ISAR, where raw data, in frequency and angle, is directly used to form the estimate of the covariance matrix and array response vector. Using beams rather than raw data has two main advantages, namely, it improves the signal-to-noise ratio (SNR) and can correctly image typical indoor extended targets, such as tables and cabinets, as well as point targets. The paper presents both simulated and experimental results using synthesized and real data. It compares the performance of beam-space MUSIC and Capon beamformer. The experimental data is collected at the test facility in the Radar Imaging Laboratory, Villanova University.

  14. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    Science.gov (United States)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  15. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  16. An Integration of Ground-Penetrating Radar, Remote Sensing, and Discharge Records of the Modern Kicking Horse River, BC

    Science.gov (United States)

    Cyples, N.; Ielpi, A.; Dirszowsky, R.

    2017-12-01

    The Kicking Horse River is a gravel-bed stream originating from glacial meltwater supplied by the Wapta Icefields in south-eastern British Columbia. An alluvial tract extends for 7 km through Field, BC, where the trunk channel undergoes diurnal and seasonal fluctuations in flow as a result of varying glacial-meltwater supply and runoff recharge. Prior studies erected the Kicking Horse River as a reference for proximal braided systems, and documented bar formation and sediment distribution patterns from ground observations. However, a consistent model of planform evolution and related stratigraphic signature is lacking. Specific objectives of this study are to examine the morphodynamic evolution and stratigraphic signature of channel-bar complexes using high-resolution satellite imagery, sedimentologic and discharge observations, and ground-penetrating radar (GPR). Remote sensing highlights rates of lateral channel migration of as much as 270 meters over eight years ( 34 meters/year), and demonstrates how flood stages are associated with stepwise episodes of channel braiding and anabranching. GPR analysis aided in the identification of five distinct radar facies, including: discontinuous, inclined, planar, trough-shaped, and mounded reflectors, which were respectively related to specific architectural elements and fluvial processes responsible for bar evolution. Across-stream GPR transects demonstrated higher heterogeneity in facies distribution, while downstream-oriented transects yielded a more monotonous distribution in radar facies. Notably, large-scale inclined reflectors related to step-wise bar accretion are depicted only in downstream-oriented transects, while discontinuous reflectors related to bedform stacking appear to be dominant in along-stream transects. Integration of sedimentological data with remote sensing, gauging records, and GPR analysis allows for high-resolution modelling of stepwise changes in alluvial morphology. Conceptual models stemming

  17. The soil classification and the subsurface carbon stock estimation with a ground-penetrating radar

    International Nuclear Information System (INIS)

    Onishi, K.; Rokugawa, S.; Kato, Y.

    2002-01-01

    One of the serious problems of the Kyoto Protocol is that we have no effective method to estimate the carbon stock of the subsurface. To solve this problem, we propose the application of ground-penetrating radar (GPR) to the subsurface soil survey. As a result, it is shown that GPR can detect the soil horizons, stones and roots. The fluctuations of the soil horizons in the forest are cleanly indicated as the reflection pattern of the microwaves. Considering the fact that the physical, chemical, and biological characteristics of each soil layer is almost unique, GPR results can be used to estimate the carbon stock in soil by combining with the vertical soil sample survey at one site. Then as a trial, we demonstrate to estimate the carbon content fixed in soil layers based on the soil samples and GPR survey data. we also compare this result with the carbon stock for the flat horizon case. The advantages of GPR usage for this object are not only the reduction of uncertainty and the cost, but also the environmental friendliness of survey manner. Finally, we summarize the adaptabilities of various antennas having different predominant frequencies for the shallow subsurface zone. (author)

  18. Current uses of ground penetrating radar in groundwater-dependent ecosystems research.

    Science.gov (United States)

    Paz, Catarina; Alcalá, Francisco J; Carvalho, Jorge M; Ribeiro, Luís

    2017-10-01

    Ground penetrating radar (GPR) is a high-resolution technique widely used in shallow groundwater prospecting. This makes GPR ideal to characterize the hydrogeological functioning of groundwater-dependent ecosystems (GDE). This paper reviews current uses of GPR in GDE research through the construction of a database comprising 91 worldwide GPR case studies selected from the literature and classified according to (1) geological environments favouring GDE; (2) hydrogeological research interests; and (3) field technical and (4) hydrogeological conditions of the survey. The database analysis showed that inland alluvial, colluvial, and glacial formations were the most widely covered geological environments. Water-table depth was the most repeated research interest. By contrast, weathered-marl and crystalline-rock environments as well as the delineation of salinity interfaces in coastal and inland areas were less studied. Despite that shallow groundwater propitiated GDE in almost all the GPR case studies compiled, only one case expressly addressed GDE research. Common ranges of prospecting depth, water-table depth, and volumetric water content deduced by GPR and other techniques were identified. Antenna frequency of 100MHz and the common offset acquisition technique predominated in the database. Most of GPR case studies were in 30-50° N temperate latitudes, mainly in Europe and North America. Eight original radargrams were selected from several GPR profiles performed in 2014 and 2015 to document database classes and identified gaps, as well as to define experimental ranges of operability in GDE environments. The results contribute to the design of proper GPR surveys in GDE research. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. I. The effect of volcanic aerosols on ultraviolet radiation in Antarctica. II. A novel method for enhancing subsurface radar imaging using radar interferometry

    Science.gov (United States)

    Tsitas, Steven Ronald

    The theory of radiative transfer is used to explain how a stratospheric aerosol layer may, for large solar zenith angles, increase the flux of UV-B light at the ground. As previous explanations are heuristic and incomplete, I first provide a rigorous and complete explanation of how this occurs. I show that an aerosol layer lying above Antarctica during spring will decrease the integrated daily dose of biologically weighted irradiance, weighted by the erythema action spectrum, by only up to 5%. Thus after a volcanic eruption, life in Antarctica during spring will suffer the combined effects of the spring ozone hole and ozone destruction induced by volcanic aerosols, with the latter effect only slightly offset by aerosol scattering. I extend subsurface radar imaging by considering the additional information that may be derived from radar interferometry. I show that, under the conditions that temporal and spatial decorrelation between observations is small so that the effects of these decorrelations do not swamp the signature expected from a subsurface layer, the depth of burial of the lower surface may be derived. Also, the echoes from the lower and upper surfaces may be separated. The method is tested with images acquired by SIR-C of the area on the Egypt/Sudan border where buried river channels were first observed by SIR-A. Temporal decorrelation between the images, due to some combination of physical changes in the scene, changes in the spacecraft attitude and errors in the processing by NASA of the raw radar echoes into the synthetic aperture radar images, swamps the expected signature for a layer up to 40 meters thick. I propose a test to determine whether or not simultaneous observations are required, and then detail the radar system requirements for successful application of the method for both possible outcomes of the test. I also describe in detail the possible applications of the method. These include measuring the depth of burial of ice in the polar

  20. Pemfokusan Citra Radar untuk Hasil Pemodelan Radar Penembus Permukaan menggunakan Algoritma Migrasi Jarak

    Directory of Open Access Journals (Sweden)

    AZIZAH AZIZAH

    2016-02-01

    Full Text Available ABSTRAK Citra Radar Penembus Permukaan (GPR memberikan gambaran tentang objek dalam bentuk kurva hiperbola. Kurva hiperbola ini memiliki resolusi yang rendah sehingga sulit untuk menganalisis lokasi objek yang sebenarnya. Oleh karena itu diperlukan proses untuk membuat citra menjadi lebih fokus. Proses ini disebut transformasi atau migrasi. Salah satu algoritma migrasi adalah algoritma migrasi jarak. Terdapat beberapa langkah yang dilakukan dalam penelitian ini. Pertama, pemodelan GPR dilakukan menggunakan perangkat lunak. Kemudian, algoritma migrasi jarak diimplementasikan untuk data hasil pemodelan. Terakhir, dilakukan analisis hasil yang didapat. Informasi jumlah dan lokasi objek didapatkan dari citra hasil migrasi ini dengan persentase kesalahan untuk pada sumbu x sebesar 4 % untuk 1 objek, 17 % untuk 2 objek, dan 4 % untuk 3 objek. Sedangkan persentase kesalahan pada sumbu y sebesar 2% untuk 1 objek, 3% untuk 2 objek, dan 8% untuk 3 objek. Kata kunci: GPR, migrasi, algoritma, migrasi jarak, fokus, ABSTRACT Ground Penetrating Radar (GPR image give description about object in hyperbolic curve. This hyperbolic curve has low resolution so it is too difficult to analysis the actual object position. Therefore, we need a process can make the image more focus. This process usually called transformation or migration. One of them is range migration algorithm. There are several steps in this reseacrh. First, GPR modelling done using software. Next, range migration algorithm is implemented for the data result from simulation. Last, the result are analyzed. The information about the number and object position is obtained from the image in this migration process with margin error in x-axis are 4% for 1 object, 17% for 2 object, and 4% for 3 object. On the other side, margin error in y-axis are 2% for 1 object, 4% for 2 object, and 8% for 3 object. Keywords: GPR, migration, algorithm, range migration, focus

  1. Radar Imaging of Binary Near-Earth Asteroid (66391) 1999 KW4

    Czech Academy of Sciences Publication Activity Database

    Ostro, S. J.; Margot, J. L.; Benner, L. A. M.; Giorgini, J. D.; Scheeres, D.J.; Fahnestock, E.G.; Broschart, S.B.; Bellerose, J.; Nolan, M. C.; Magri, C.; Pravec, Petr; Scheirich, Peter; Rose, R.; Jurgens, R. F.; De Jong, E. M.; Suzuki, S.

    2006-01-01

    Roč. 314, č. 5803 (2006), s. 1276-1280 ISSN 0036-8075 R&D Projects: GA ČR GA205/05/0604 Institutional research plan: CEZ:AV0Z10030501 Keywords : binary asteroid * radar imaging Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 30.028, year: 2006

  2. Ice volume changes (1936–1990–2007 and ground-penetrating radar studies of Ariebreen, Hornsund, Spitsbergen

    Directory of Open Access Journals (Sweden)

    Javier Lapazaran

    2013-08-01

    Full Text Available Ariebreen is a small (0.37 km2-valley glacier located in southern Spitsbergen. Our ground-penetrating radar surveys of the glacier show that it is less than 30 m thick on average, with a maximum thickness of 82 m, and it appears to be entirely cold. By analysing digital terrain models of the ice surface from different dates, we determine the area and volume changes during two periods, 1936–1990 and 1990–2007. The total ice volume of the glacier has decreased by 73% during the entire period 1936–2007, which is equivalent to a mean mass balance rate of −0.61±0.17 m y−1 w.eq. The glacier thinning rate has increased markedly between the first and second periods, from −0.50±0.22 to −0.95±0.17 m y−1 w.eq.

  3. 3D visualization of integrated ground penetrating radar data and EM-61 data to determine buried objects and their characteristics

    International Nuclear Information System (INIS)

    Kadioğlu, Selma; Daniels, Jeffrey J

    2008-01-01

    This paper is based on an interactive three-dimensional (3D) visualization of two-dimensional (2D) ground penetrating radar (GPR) data and their integration with electromagnetic induction (EMI) using EM-61 data in a 3D volume. This method was used to locate and identify near-surface buried old industrial remains with shape, depth and type (metallic/non-metallic) in a brownfield site. The aim of the study is to illustrate a new approach to integrating two data sets in a 3D image for monitoring and interpretation of buried remains, and this paper methodically indicates the appropriate amplitude–colour and opacity function constructions to activate buried remains in a transparent 3D view. The results showed that the interactive interpretation of the integrated 3D visualization was done using generated transparent 3D sub-blocks of the GPR data set that highlighted individual anomalies in true locations. Colour assignments and formulating of opacity of the data sets were the keys to the integrated 3D visualization and interpretation. This new visualization provided an optimum visual comparison and an interpretation of the complex data sets to identify and differentiate the metallic and non-metallic remains and to control the true interpretation on exact locations with depth. Therefore, the integrated 3D visualization of two data sets allowed more successful identification of the buried remains

  4. Radar attenuation in Europa's ice shell: obstacles and opportunities for constraining shell thickness and thermal structure

    Science.gov (United States)

    Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe

    2016-10-01

    With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the

  5. GPR Imaging for Deeply Buried Objects: A Comparative Study Based on FDTD Models and Field Experiments

    Science.gov (United States)

    Tilley, roger; Dowla, Farid; Nekoogar, Faranak; Sadjadpour, Hamid

    2012-01-01

    Conventional use of Ground Penetrating Radar (GPR) is hampered by variations in background environmental conditions, such as water content in soil, resulting in poor repeatability of results over long periods of time when the radar pulse characteristics are kept the same. Target objects types might include voids, tunnels, unexploded ordinance, etc. The long-term objective of this work is to develop methods that would extend the use of GPR under various environmental and soil conditions provided an optimal set of radar parameters (such as frequency, bandwidth, and sensor configuration) are adaptively employed based on the ground conditions. Towards that objective, developing Finite Difference Time Domain (FDTD) GPR models, verified by experimental results, would allow us to develop analytical and experimental techniques to control radar parameters to obtain consistent GPR images with changing ground conditions. Reported here is an attempt at developing 20 and 3D FDTD models of buried targets verified by two different radar systems capable of operating over different soil conditions. Experimental radar data employed were from a custom designed high-frequency (200 MHz) multi-static sensor platform capable of producing 3-D images, and longer wavelength (25 MHz) COTS radar (Pulse EKKO 100) capable of producing 2-D images. Our results indicate different types of radar can produce consistent images.

  6. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    Science.gov (United States)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms

  7. Spaceborne Applications of P Band Imaging Radars for Measuring Forest Biomass

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; vanZyl, Jakob J.

    1995-01-01

    In three sites of boreal and temperate forests, P band HH, HV, and VV polarization data combined estimate total aboveground dry woody biomass within 12 to 27% of the values derived from allometric equations, depending on forest complexity. Biomass estimates derived from HV-polarization data only are 2 to 14% less accurate. When the radar operates at circular polarization, the errors exceed 100% over flooded forests, wet or damaged trees and sparse open tall forests because double-bounce reflections of the radar signals yield radar signatures similar to that of tall and massive forests. Circular polarizations, which minimize the effect of Faraday rotation in spaceborne applications, are therefore of limited use for measuring forest biomass. In the tropical rain forest of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 50 kg/sq m in old, undisturbed floodplain stands, the P band horizontal and vertical polarization data combined separate biomass classes in good agreement with forest inventory estimates. The worldwide need for large scale, updated, biomass estimates, achieved with a uniformly applied method, justifies a more in-depth exploration of multi-polarization long wavelength imaging radar applications for tropical forests inventories.

  8. Wave Height Estimation from Shadowing Based on the Acquired X-Band Marine Radar Images in Coastal Area

    Directory of Open Access Journals (Sweden)

    Yanbo Wei

    2017-08-01

    Full Text Available In this paper, the retrieving significant wave height from X-band marine radar images based on shadow statistics is investigated, since the retrieving accuracy can not be seriously affected by environmental factors and the method has the advantage of without any external reference to calibrate. However, the accuracy of the significant wave height estimated from the radar image acquired at the near-shore area is not ideal. To solve this problem, the effect of water depth is considered in the theoretical derivation of estimated wave height based on the sea surface slope. And then, an improved retrieving algorithm which is suitable for both in deep water area and shallow water area is developed. In addition, the radar data are sparsely processed in advance in order to achieve high quality edge image for the requirement of shadow statistic algorithm, since the high resolution radar images will lead to angle-blurred for the image edge detection and time-consuming in the estimation of sea surface slope. The data acquired from Pingtan Test Base in Fujian Province were used to verify the effectiveness of the proposed algorithm. The experimental results demonstrate that the improved method which takes into account the water depth is more efficient and effective and has better performance for retrieving significant wave height in the shallow water area, compared to the in situ buoy data as the ground truth and that of the existing shadow statistic method.

  9. Radar remote sensing in biology

    Science.gov (United States)

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  10. Narrow Band Imaging Enhances the Detection Rate of Penetration and Aspiration in FEES.

    Science.gov (United States)

    Nienstedt, Julie C; Müller, Frank; Nießen, Almut; Fleischer, Susanne; Koseki, Jana-Christiane; Flügel, Till; Pflug, Christina

    2017-06-01

    Narrow band imaging (NBI) is widely used in gastrointestinal, laryngeal, and urological endoscopy. Its original purpose was to visualize vessels and epithelial irregularities. Based on our observation that adding NBI to common white light (WL) improves the contrast of the test bolus in fiberoptic endoscopic evaluation of swallowing (FEES), we now investigated the potential value of NBI in swallowing disorders. 148 FEES images were analyzed from 74 consecutive patients with swallowing disorders, including 74 with and 74 without NBI. All images were evaluated by four dysphagia specialists. Findings were classified according to Rosenbek's penetration-aspiration scale modified for evaluating these FEES images. Intra- and inter-rater reliability was determined as well as observer confidence. A better visualization of the bolus is the main advantage of NBI in FEES. This generally leads to sharper optical contrasts and better detection of small bolus quantities. Accordingly, NBI enhances the detection rate of penetration and aspiration. On average, identification of laryngeal penetration increased from 40 to 73% and of aspiration from 13 to 24% (each p dysphagia evaluation and shortening FEES evaluation time. It leads to a markedly higher detection rate of pathological findings. The significantly better intra- and inter-rater reliability argues further for a better overall reproducibly of FEES interpretation.

  11. Survey of Ultra-wideband Radar

    Science.gov (United States)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  12. Applying NASA Imaging Radar Datasets to Investigate the Geomorphology of the Amazon's Planalto

    Science.gov (United States)

    McDonald, K. C.; Campbell, K.; Islam, R.; Alexander, P. M.; Cracraft, J.

    2016-12-01

    The Amazon basin is a biodiversity rich biome and plays a significant role into shaping Earth's climate, ocean and atmospheric gases. Understanding the history of the formation of this basin is essential to our understanding of the region's biodiversity and its response to climate change. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired during that time over the Planalto, in the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. We employ UAVSAR data collections to assess the utility of these high quality imaging radar data for use in identifying geomorphologic features and vegetation communities within the context of improving the understanding of evolutionary processes, and their utility in aiding interpretation of datasets from Earth-orbiting satellites to support a basin-wide characterization across the Amazon. We derive maps of landcover and river branching structure from UAVSAR imagery. We compare these maps to those derived using imaging radar datasets from the Japanese Space Agency's ALOS PALSAR and Digital Elevation Models (DEMs) from NASA's Shuttle Radar Topography Mission (SRTM). Results provide an understanding of the underlying geomorphology of the Amazon planalto as well as its relationship to geologic processes and will support interpretation of the evolutionary history of the Amazon Basin. Portions of this work have been carried out within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility.This work is carried out with support from the NASA Biodiversity Program and the NSF DIMENSIONS of Biodiversity Program.

  13. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    Science.gov (United States)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  14. Electromagnetic characterization of white spruce at different moisture contents using synthetic aperture radar imaging

    Science.gov (United States)

    Ingemi, Christopher M.; Owusu Twumasi, Jones; Yu, Tzuyang

    2018-03-01

    Detection and quantification of moisture content inside wood (timber) is key to ensuring safety and reliability of timber structures. Moisture inside wood attracts insects and fosters the development of fungi to attack the timber, causing significant damages and reducing the load bearing capacity during their design life. The use of non-destructive evaluation (NDE) techniques (e.g., microwave/radar, ultrasonic, stress wave, and X-ray) for condition assessment of timber structures is a good choice. NDE techniques provide information about the level of deterioration and material properties of timber structures without obstructing their functionality. In this study, microwave/radar NDE technique was selected for the characterization of wood at different moisture contents. A 12 in-by-3.5 in-by-1.5 in. white spruce specimen (picea glauca) was imaged at different moisture contents using a 10 GHz synthetic aperture radar (SAR) sensor inside an anechoic chamber. The presence of moisture was found to increase the SAR image amplitude as expected. Additionally, integrated SAR amplitude was found beneficial in modeling the moisture content inside the wood specimen.

  15. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    Science.gov (United States)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  16. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images.

    Science.gov (United States)

    Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao

    2018-03-01

    We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.

  17. Design of a slimline directional borehole radar antenna using FDTD

    CSIR Research Space (South Africa)

    Vogt, D

    2008-06-01

    Full Text Available , dielectric. I. INTRODUCTION Borehole radar is the application of Ground Penetrating Radar (GPR) within a borehole [11]. GPR is a technique used to delineate structures and features of a subsurface. The borehole radar technique has been used successfully..., the direction of the incoming EM wave can be determined [6]. III. FILLER MATERIAL INSIDE ANTENNA ARRAY Ideally, there is no material between the antenna body and the rock surrounding it. In that case, the filler material would be matched to the dielectric...

  18. Accuracy of conventional imaging of penetrating torso injuries in the trauma resuscitation room

    NARCIS (Netherlands)

    D.S.E. Varin (Dorien); A.N. Ringburg (Akkie); E.M.M. van Lieshout (Esther); P. Patka (Peter); I.B. Schipper (Inger)

    2009-01-01

    textabstractChest X-ray (CXR), abdominal ultrasound, cardiac ultrasound, and abdominal X-ray are the most frequently used imaging modalities to radiologically evaluate patients with penetrating torso trauma. The aim of this study was to evaluate the accuracy of these imaging modalities. From January

  19. Improving buried threat detection in ground-penetrating radar with transfer learning and metadata analysis

    Science.gov (United States)

    Colwell, Kenneth A.; Torrione, Peter A.; Morton, Kenneth D.; Collins, Leslie M.

    2015-05-01

    Ground-penetrating radar (GPR) technology has proven capable of detecting buried threats. The system relies on a binary classifier that is trained to distinguish between two classes: a target class, encompassing many types of buried threats and their components; and a nontarget class, which includes false alarms from the system prescreener. Typically, the training process involves a simple partition of the data into these two classes, which allows for straightforward application of standard classifiers. However, since training data is generally collected in fully controlled environments, it includes auxiliary information about each example, such as the specific type of threat, its purpose, its components, and its depth. Examples from the same specific or general type may be expected to exhibit similarities in their GPR data, whereas examples from different types may differ greatly. This research aims to leverage this additional information to improve overall classification performance by fusing classifier concepts for multiple groups, and to investigate whether structure in this information can be further utilized for transfer learning, such that the amount of expensive training data necessary to learn a new, previously-unseen target type may be reduced. Methods for accomplishing these goals are presented with results from a dataset containing a variety of target types.

  20. Parameterizing road construction in route-based road weather models: can ground-penetrating radar provide any answers?

    International Nuclear Information System (INIS)

    Hammond, D S; Chapman, L; Thornes, J E

    2011-01-01

    A ground-penetrating radar (GPR) survey of a 32 km mixed urban and rural study route is undertaken to assess the usefulness of GPR as a tool for parameterizing road construction in a route-based road weather forecast model. It is shown that GPR can easily identify even the smallest of bridges along the route, which previous thermal mapping surveys have identified as thermal singularities with implications for winter road maintenance. Using individual GPR traces measured at each forecast point along the route, an inflexion point detection algorithm attempts to identify the depth of the uppermost subsurface layers at each forecast point for use in a road weather model instead of existing ordinal road-type classifications. This approach has the potential to allow high resolution modelling of road construction and bridge decks on a scale previously not possible within a road weather model, but initial results reveal that significant future research will be required to unlock the full potential that this technology can bring to the road weather industry. (technical design note)

  1. Imaging radar observations of Farley Buneman waves during the JOULE II experiment

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-07-01

    Full Text Available Vector electric fields and associated E×B drifts measured by a sounding rocket in the auroral zone during the NASA JOULE II experiment in January 2007, are compared with coherent scatter spectra measured by a 30 MHz radar imager in a common volume. Radar imaging permits precise collocation of the spectra with the background electric field. The Doppler shifts and spectral widths appear to be governed by the cosine and sine of the convection flow angle, respectively, and also proportional to the presumptive ion acoustic speed. The neutral wind also contributes to the Doppler shifts. These findings are consistent with those from the JOULE I experiment and also with recent numerical simulations of Farley Buneman waves and instabilities carried out by Oppenheim et al. (2008. Simple linear analysis of the waves offers some insights into the spectral moments. A formula relating the spectral width to the flow angle, ion acoustic speed, and other ionospheric parameters is derived.

  2. Report for fiscal 1982 on comprehensive survey for nationwide geothermal resources. Preparation of lineament density maps - radar image analyses - in north-eastern area; 1982 nendo zenkoku chinetsu shigen sogo chosa hokokusho. Lineament mitsudozu sakusei (radar gazo kaiseki (Tohoku chiiki))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    Geological structure analysis maps and lineament maps were prepared on the north-eastern area and parts of the ancillary areas thereof by analyzing radar images of a 1 to 200,000 scale. With regard to the geological structures, analyses were performed by using as the original data the north look radar images for the three special geothermal areas to have prepared the geological structure analysis maps. The analysis of the radar images identified ground bed boundary lines in more detail than in the existing geological maps, and new discoveries were made available on faults. The lineament maps were compiled by implanting into respectively corresponding topographic maps the 24 N-S lineament maps made by the west look radar images for the whole surveyed areas, and the 16 E-W lineament maps made by the north look radar images for the special geothermal areas. Based on the clarity and characteristics deciphered on the images, the lineaments were classified into the major, minor, and subtle lineaments, which were indicated on the lineament maps. The lineaments were digitized by positions of the edge points, and the histograms and statistical tables were prepared by computer processing. (NEDO)

  3. La mesure de pluie par radar : du calibrage par des pluviomètres vers l'interprétation physique des images

    OpenAIRE

    ANDRIEU, H

    2002-01-01

    Cet article retrace l'évolution des méthodes de traitement des images radar pour la mesure des précipitations. Les études ont tout donné la priorité au calibrage des images radar par des données pluviométriques de façon à bénéficier des avantages supposés de chaque capteur : représentativité ponctuelle du pluviomètre, continuité spatiale de l'image radar. Bien que positifs, les résultats obtenus ont mis en évidence la nécessité d'une détection et d'une correction des principales sources d'err...

  4. The use of Ground Penetrating Radar in coastal research, archeaological investigations, lake studies, peat layer measurments and applied research in Estonia

    Science.gov (United States)

    Vilumaa, Kadri; Tõnisson, Hannes; Orviku, Kaarel

    2014-05-01

    Ground Penetrating Radar (GPR) is mainly used for scientific research in coastal geology in the Institute of Ecology at Tallinn University. We currently use SIR-3000 radar with 100, 270 , 300 and 500 MHz antennae. Our main targets have been detecting the thickness of soil and sand layers and finding out the layers in coastal sediments which reflect extreme storm events. Our GPR studies in various settings have suggested that the internal structures of the ridge-dune complexes are dominated by numerous layers dipping in various directions. Such information helps us to reconstruct and understand prevailing processes during their formation (e.g. seaward dipping lamination in coastal ridge-dune complexes indicating cross-shore and wave-induced transport of the sediments). Currently, we are trying to elaborate methodology for distinguishing the differences between aeolian and wave transported sediments by using GPR. However, paludified landscapes (often covered by water), very rough surface (numerous bushes and soft surface), moderate micro topography has slowed this process significantly. Moreover, we have been able to use GPR during the winter period (applied on ice or snow) and compare the quality of our results with the measurements taken during the summer period. We have found that smooth surface (in winter) helps detecting very strong signal differences (border between different sediment types - sand, peat, silt, etc.) but reduces the quality of the signal to the level where the detection of sedimentation patterns within one material (e.g. tilted layers in sand) is difficult. We have carried out several other science-related studies using GPR. These studies include determining the thickness of peat layer in bogs (to calculate the volume of accumulated peat or to find most suitable locations for coring), measuring the thickness of mud and gyttja layer in lakes (to find most suitable locations for coring, reconstructing initial water level of the lake or calculating

  5. Mapping the Upper Subsurface of MARS Using Radar Polarimetry

    Science.gov (United States)

    Carter, L. M.; Rincon, R.; Berkoski, L.

    2012-01-01

    Future human exploration of Mars will require detailed knowledge of the surface and upper several meters of the subsurface in potential landing sites. Likewise, many of the Planetary Science Decadal Survey science goals, such as understanding the history of Mars climate change, determining how the surface was altered through processes like volcanism and fluvial activity, and locating regions that may have been hospitable to life in the past, would be significantly advanced through mapping of the upper meters of the surface. Synthetic aperture radar (SAR) is the only remote sensing technique capable of penetrating through meters of material and imaging buried surfaces at high (meters to tens-of-meters) spatial resolution. SAR is capable of mapping the boundaries of buried units and radar polarimetry can provide quantitative information about the roughness of surface and subsurface units, depth of burial of stratigraphic units, and density of materials. Orbital SAR systems can obtain broad coverage at a spatial scale relevant to human and robotic surface operations. A polarimetric SAR system would greatly increase the safety and utility of future landed systems including sample caching.

  6. Application of Coupled-Wave Wentzel-Kramers-Brillouin Approximation to Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Igor Prokopovich

    2017-12-01

    Full Text Available This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR applications. For the analytical description of the signal generated by the interaction of the emitted pulse with the environment, we developed and implemented a novel time-domain version of the coupled-wave Wentzel-Kramers-Brillouin approximation. We compared our solution with finite-difference time-domain (FDTD results, achieving a very good agreement. We then applied the proposed technique to two case studies: in particular, our method was employed for the post-processing of experimental radargrams collected on Lake Chebarkul, in Russia, and for the simulation of GPR probing of the Moon surface, to detect smooth gradients of the dielectric permittivity in lunar regolith. The main conclusions resulting from our study are that our semi-analytical method is accurate, radically accelerates calculations compared to simpler mathematical formulations with a mostly numerical nature (such as the FDTD technique, and can be effectively used to aid the interpretation of GPR data. The method is capable to correctly predict the protracted return signals originated by smooth transition layers of the subsurface dielectric medium. The accuracy and numerical efficiency of our computational approach make promising its further development.

  7. Ground-Penetrating Radar Investigations along Hajipur Fault: Himalayan Frontal Thrust—Attempt to Identify Near Subsurface Displacement, NW Himalaya, India

    Directory of Open Access Journals (Sweden)

    Javed N. Malik

    2012-01-01

    Full Text Available The study area falls in the mesoseismal zone of 1905 Kangra earthquake (Mw 7.8. To identify appropriate trenching site for paleoseismic investigation and to understand the faulting geometry, ground-penetrating radar (GPR survey was conducted across a Hajipur Fault (HF2 scarp, a branching out fault of Himalayan Frontal Thrust (HFT in a foot hill zone of NW Himalaya. Several 2D and 3D profiles were collected using 200 MHz antenna with SIR 3000 unit. A 2D GPR profile collected across the HF2 scarp revealed prominent hyperbolas and discontinuous-warped reflections, suggesting a metal pipe and a zone of deformation along a low-angle thrust fault, respectively. The 3D profile revealed remarkable variation in dip of the fault plane and pattern of deformation along the strike of the fault.

  8. Ultra wide band radar holographic imaging of buried waste at DOE sites

    International Nuclear Information System (INIS)

    Collins, H.D.; Gribble, R.P.; Hall, T.E.; Lechelt, W.M.

    1995-04-01

    Ultra wideband linear array holography is a unique real-time imaging technique for in-situ inspection of buried waste at various DOE sites. The array can be mounted on various platforms such as crane booms, pickup trucks, ATVs, and scanned generating ''3-D'' subsurface images in real time. Inspection speeds are 0.5 to 2 meters/sec, if the image is viewed in real time, greater for off-line processing. The Ground Penetrating Holographic (GPH) system developed for inspection of DOE sites employs two 32element arrays of tapered-slot antenna operating at 5-GHz and 2.5-GHz center frequencies. The GPH system, which is mounted on a small trailer with a computer image processor, display, and power supply, is capable of imaging a wide swath (1 to 2 meters) with its linear arrays. The lower frequency array will be used at INEL (for greater depth penetration) because of high soil attenuation. Recent holographic ''3-D'' images of buried waste container lids and dielectrics obtained in Hanford sand and INEL soils at various depths graphically illustrate the unique image resolution capabilities of the system. Experimental results using the 5-GHz array will be presented showing the excellent holographic image quality of various subsurface targets in sand and INEL soil

  9. Forensic Application of FM-CW and Pulse Radar

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Koppenjan; R. S. Freeland; M. L. Miller; R. E. Yoder

    2003-01-01

    Ground-penetrating radar (GPR) technology has supplied vital assistance in criminal investigations. However, law enforcement personnel desire further developments such that the technology is rapidly deployable, and that it provides both a simple user interface and sophisticated target identification. To assist in the development of target identification algorithms, our efforts involve gathering background GPR data for the various site conditions and circumstances that often typify clandestine burials. For this study, forensic anthropologists established shallow-grave plots at The University of Tennessee Anthropological Research Facility (ARF) that are specific to GPR research. These plots contain donated human cadavers lying in various configurations and depths, surrounded by assorted construction material and backfill debris. We scanned the plots using two GPR technologies: (1) a multi-frequency synthetic-aperture FM-CW radar (200-700 MHz) (GPR-X) developed by the U.S. Department of Energy's (DOE) Special Technologies Laboratory (STL), Bechtel Nevada (Koppenjan et al., 2000), and (2) a commercial pulse radar (SIR-20) manufactured by Geophysical Survey Systems, Inc. (400 and 900 MHz)(GSSI). The sweep-frequency data show the large biological mass decomposing within the torso as encircled ''hot spots.'' The 400-MHz pulse radar exhibit major horizontal reflectors above the body, with shadow reflectors (horizontal multiples) occurring beneath the body at 60 cm depth. The 400-MHz antenna was able to discern the grave walls and folded tarp covering the lower body. Under these moist, clay-rich conditions, the 900-MHz antenna was able to penetrate slightly beyond 30 cm beneath the concrete layer. However, neither system was able to penetrate beyond a one meter depth in the moist, clay-rich soil (fine, mixed, thermic Typic Paleudalf). Example scans from each system are provided, along with a discussion of the survey protocol and general performance.

  10. Evaluation of radar imagery for geological and cartographic applications

    Science.gov (United States)

    Moore, Gerald K.; Sheehan, Cynthia A.

    1981-01-01

    The House/Senate conference report on H.R. 4930 (96th Congress), the Department of the Interior and Related Agencies Appropriations bill, 1980, stated that the U.S. Geological Survey should "begin the use of side-looking airborne radar imagery for topographic and geological mapping, and geological resource surveys in promising areas, particularly Alaska." In response to this mandate, the Survey acquired radar data and began scientific studies to analyze and interpret these data. About 70 percent of the project funding was used to acquire radar imagery and to evaluate Alaskan applications. Results of these studies indicate that radar images have a unique incremental value for certain geologic and cartographic applications but that the images are best suited for use as supplemental information sources or as primary data sources in areas of persistent cloud cover.The value of radar data is greatest for geologic mapping and resource surveys, particularly for mineral and petroleum exploration, where the objective is to locate any single feature or group of features that may control the occurrences of these resources. Radar images are considered by oil and gas companies to be worth the cost of data acquisition within a limited area of active exploration.Radar images also have incremental value for geologic site studies and hazard mapping. The need in these cases is TO inventory all geologic hazards to human life, property, resources, and the environment. For other geologic applications, radar images have a relatively small incremental value over a combination of Landsat images and aerial photographs.The value of radar images for cartographic applications is minimal, except when they are used as a substitute for aerial photographs and topographic maps in persistently cloud-covered areas. If conventional data sources are not available, radar images provide useful information on terrain relief, landforms, drainage patterns, and land cover. Screen less lithography is a low

  11. Deep Interior Mission: Imaging the Interior of Near-Earth Asteroids Using Radio Reflection Tomography

    Science.gov (United States)

    Safaeinili, A.; Asphaug, E.; Belton, M.; Klaasen, K.; Ostro, S.; Plaut, J.; Yeomans, D.

    2004-12-01

    Near-Earth asteroids are important exploration targets since they provide clues to the evolution of the solar system. They are also of interest since they present a clear danger to Earth in the future. Our mission objective is to image the internal structure of two NEOs using radio reflection tomography (RRT), in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that these important members of the solar system are rubble piles rather than consolidated bodies. Our mission's RRT technique is analogous to doing a ``CAT scan" of the asteroid from orbit. Closely sampled radar echoes are processed to yield volumetric maps of mechanical and compositional boundaries, and measure interior material dielectric properties. The RRT instrument is a radar that operates at 5 and 15 MHz with two 30-m (tip-to-tip) dipole antennas that are used in a cross-dipole configuration. The radar transmitter and receiver electronics have heritage from JPL's MARSIS contribution to Mars Express, and the antenna is similar to systems used in IMAGE and LACE missions. The 5-MHz channel is designed to penetrate >1 km of basaltic rock, and 15-MHz penetrates a few hundred meters or more. In addition to RRT volumetric imaging, we use a redundant color cameras to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. The camera also yields stereo color imaging for geology and RRT-related compositional analysis. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Deep interior has two targets (S-type 1999 ND43 and V-type Nyx ) whose composition bracket the diversity of solar system materials that we are likely to encounter, and are richly complementary.

  12. Imaging observations of nighttime mid-latitude F-region field-aligned irregularities by an MU radar ultra-multi-channel system

    Directory of Open Access Journals (Sweden)

    S. Saito

    2008-08-01

    Full Text Available Mid-latitude F-region field-aligned irregularities (FAIs were studied by using the middle-and-upper atmosphere (MU radar ultra-multi-channel system with the radar imaging technique. On 12 June 2006, F-region FAI echoes with a period of about one hour were observed intermittently. These echoes were found to be embedded in medium-scale traveling ionospheric disturbances (MSTIDs observed as variations of total electron content (TEC. The echoes drifting away from (toward the radar were observed in the depletion (enhancement phase of the MSTID. The Doppler velocity of the echoes is consistent with the range rates in the the range-time-intensity (RTI maps. Fine scale structures with a spatial scale of 10 km or less were found by the radar imaging analysis. Those structures with positive Doppler velocities (moving away from the radar appeared to drift north- (up- westward, and those with negative Doppler velocities south- (down- eastward approximately along the wavefronts of the MSTID. FAIs with positive Doppler velocities filling TEC depletion regions were observed.

  13. A frequency domain radar interferometric imaging (FII) technique based on high-resolution methods

    Science.gov (United States)

    Luce, H.; Yamamoto, M.; Fukao, S.; Helal, D.; Crochet, M.

    2001-01-01

    In the present work, we propose a frequency-domain interferometric imaging (FII) technique for a better knowledge of the vertical distribution of the atmospheric scatterers detected by MST radars. This is an extension of the dual frequency-domain interferometry (FDI) technique to multiple frequencies. Its objective is to reduce the ambiguity (resulting from the use of only two adjacent frequencies), inherent with the FDI technique. Different methods, commonly used in antenna array processing, are first described within the context of application to the FII technique. These methods are the Fourier-based imaging, the Capon's and the singular value decomposition method used with the MUSIC algorithm. Some preliminary simulations and tests performed on data collected with the middle and upper atmosphere (MU) radar (Shigaraki, Japan) are also presented. This work is a first step in the developments of the FII technique which seems to be very promising.

  14. Investigating Hydrogeologic Controls on Sandhill Wetlands in Covered Karst with 2D Resistivity and Ground Penetrating Radar

    Science.gov (United States)

    Downs, C. M.; Nowicki, R. S.; Rains, M. C.; Kruse, S.

    2015-12-01

    In west-central Florida, wetland and lake distribution is strongly controlled by karst landforms. Sandhill wetlands and lakes are sand-filled upland basins whose water levels are groundwater driven. Lake dimensions only reach wetland edges during extreme precipitation events. Current wetland classification schemes are inappropriate for identifying sandhill wetlands due to their unique hydrologic regime and ecologic expression. As a result, it is difficult to determine whether or not a wetland is impacted by groundwater pumping, development, and climate change. A better understanding of subsurface structures and how they control the hydrologic regime is necessary for development of an identification and monitoring protocol. Long-term studies record vegetation diversity and distribution, shallow ground water levels and surface water levels. The overall goals are to determine the hydrologic controls (groundwater, seepage, surface water inputs). Most recently a series of geophysical surveys was conducted at select sites in Hernando and Pasco County, Florida. Electrical resistivity and ground penetrating radar were employed to image sand-filled basins and the top of the limestone bedrock and stratigraphy of wetland slopes, respectively. The deepest extent of these sand-filled basins is generally reflected in topography as shallow depressions. Resistivity along inundated wetlands suggests the pools are surface expressions of the surficial aquifer. However, possible breaches in confining clay layers beneath topographic highs between depressions are seen in resistivity profiles as conductive anomalies and in GPR as interruptions in otherwise continuous horizons. These data occur at sites where unconfined and confined water levels are in agreement, suggesting communication between shallow and deep groundwater. Wetland plants are observed outside the historic wetland boundary at many sites, GPR profiles show near-surface layers dipping towards the wetlands at a shallower

  15. A Novel Probability Model for Suppressing Multipath Ghosts in GPR and TWI Imaging: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Tan Yun-hua

    2015-10-01

    Full Text Available A novel concept for suppressing the problem of multipath ghosts in Ground Penetrating Radar (GPR and Through-Wall Imaging (TWI is presented. Ghosts (i.e., false targets mainly arise from the use of the Born or single-scattering approximations that lead to linearized imaging algorithms; however, these approximations neglect the effect of multiple scattering (or multipath between the electromagnetic wavefield and the object under investigation. In contrast to existing methods of suppressing multipath ghosts, the proposed method models for the first time the reflectivity of the probed objects as a probability function up to a normalized factor and introduces the concept of random subaperture by randomly picking up measurement locations from the entire aperture. Thus, the final radar image is a joint probability distribution that corresponds to radar images derived from multiple random subapertures. Finally, numerical experiments are used to demonstrate the performance of the proposed methodology in GPR and TWI imaging.

  16. Material integrity verification radar

    International Nuclear Information System (INIS)

    Koppenjan, S.K.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  17. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  18. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan; Weihermller, Lutz; McCabe, Matthew; Moghadas, Davood; Vereecken, Harry; Lambot, Sbastien

    2015-01-01

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  19. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  20. The use of radar for bathymetry assessment

    NARCIS (Netherlands)

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered

  1. All-weather volume imaging of the boundary layer and troposphere using the MU radar

    OpenAIRE

    Worthington , R. M.

    2004-01-01

    This paper shows the first volume-imaging radar that can run in any weather, revealing the turbulent three-dimensional structure and airflow of convective cells, rain clouds, breaking waves and deep convection as they evolve and move. Precipitation and clear air can be volume-imaged independently. Birds are detected as small high-power echoes moving near horizontal, at different speeds and directions from background wind. The volume-imaging method could be used to create a real-time virtual-r...

  2. Non-invasive monitoring of below ground cassava storage root bulking by ground penetrating radar technology

    Science.gov (United States)

    Ruiz Vera, U. M.; Larson, T. H.; Mwakanyamale, K. E.; Grennan, A. K.; Souza, A. P.; Ort, D. R.; Balikian, R. J.

    2017-12-01

    Agriculture needs a new technological revolution to be able to meet the food demands, to overcome weather and natural hazards events, and to monitor better crop productivity. Advanced technologies used in other fields have recently been applied in agriculture. Thus, imagine instrumentation has been applied to phenotype above-ground biomass and predict yield. However, the capability to monitor belowground biomass is still limited. There are some existing technologies available, for example the ground penetrating radar (GPR) which has been used widely in the area of geology and civil engineering to detect different kind of formations under the ground without the disruption of the soil. GPR technology has been used also to monitor tree roots but as yet not crop roots. Some limitation are that the GPR cannot discern roots smaller than 2 cm in diameter, but it make it feasible for application in tuber crops like Cassava since harvest diameter is greater than 4 cm. The objective of this research is to test the availability to use GPR technology to monitor the growth of cassava roots by testing this technique in the greenhouse and in the field. So far, results from the greenhouse suggest that GPR can detect mature roots of cassava and this data could be used to predict biomass.

  3. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    Science.gov (United States)

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  4. Lunar ground penetrating radar: Minimizing potential data artifacts caused by signal interaction with a rover body

    Science.gov (United States)

    Angelopoulos, Michael; Redman, David; Pollard, Wayne H.; Haltigin, Timothy W.; Dietrich, Peter

    2014-11-01

    Ground-penetrating radar (GPR) is the leading geophysical candidate technology for future lunar missions aimed at mapping shallow stratigraphy (lunar materials, as well as its small size and lightweight components, make it a very attractive option from both a scientific and engineering perspective. However, the interaction between a GPR signal and the rover body is poorly understood and must be investigated prior to a space mission. In doing so, engineering and survey design strategies should be developed to enhance GPR performance in the context of the scientific question being asked. This paper explores the effects of a rover (simulated with a vertical metal plate) on GPR results for a range of heights above the surface and antenna configurations at two sites: (i) a standard GPR testing site with targets of known position, size, and material properties, and; (ii) a frozen lake for surface reflectivity experiments. Our results demonstrate that the GPR antenna configuration is a key variable dictating instrument design, with the XX polarization considered optimal for minimizing data artifact generation. These findings could thus be used to help guide design requirements for an eventual flight instrument.

  5. Estimating Belowground Carbon Stocks in Isolated Wetlands of the Northern Everglades Watershed, Central Florida, Using Ground Penetrating Radar and Aerial Imagery

    Science.gov (United States)

    McClellan, Matthew; Comas, Xavier; Benscoter, Brian; Hinkle, Ross; Sumner, David

    2017-11-01

    Peat soils store a large fraction of the global soil carbon (C) pool and comprise 95% of wetland C stocks. While isolated freshwater wetlands in temperate and tropical biomes account for more than 20% of the global peatland C stock, most studies of wetland soil C have occurred in expansive peatlands in northern boreal and subarctic biomes. Furthermore, the contribution of small depressional wetlands in comparison to larger wetland systems in these environments is very uncertain. Given the fact that these wetlands are numerous and variable in terms of their internal geometry, innovative methods are needed for properly estimating belowground C stocks and their overall C contribution to the landscape. In this study, we use a combination of ground penetrating radar (GPR), aerial imagery, and direct measurements (coring) in conjunction with C core analysis to develop a relation between C stock and surface area, and estimate the contribution of subtropical depressional wetlands to the total C stock of pine flatwoods at the Disney Wilderness Preserve (DWP), Florida. Additionally, GPR surveys were able to image collapse structures underneath the peat basin of depressional wetlands, depicting lithological controls on the formation of depressional wetlands at the DWP. Results indicate the importance of depressional wetlands as critical contributors to the landscape C budget at the DWP and the potential of GPR-based approaches for (1) rapidly and noninvasively estimating the contribution of depressional wetlands to regional C stocks and (2) evaluating the formational processes of depressional wetlands.

  6. Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure

    Science.gov (United States)

    Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.

    2017-03-01

    Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.

  7. Evaluation of 3D Ground Penetrating Radar Efficiency for Abandoned Tailings Pond Internal Structure Analysis and Risk Assessment

    Science.gov (United States)

    Cortada, Unai; Martínez, Julián; Hidalgo, Mª Carmen; Rey, Javier

    2017-04-01

    Evaluation of 3D Ground Penetrating Radar Efficiency for Abandoned Tailings Pond Internal Structure Analysis and Risk Assessment Abandoned tailings ponds constitute a severe environmental problem in old Pb mining districts due to their high contents in metallic and semi-metallic elements. In most of the cases, there is a lack of information about the construction procedures and the previous environmental situation, which hinders the environmental risk evaluation. In these cases, Ground Penetrating Radar (GPR) could be an interesting technique to analyze the internal structure of the tailings ponds and detect vulnerable zones for leaching processes. Consequently, the GPR could help in the abandoned tailings ponds environmental risk assessment. In this study, a GPR 3D campaign was carried out with a 250 MHz frequency antenna in order to evaluate the efficiency of this technique in both the analysis of internal structures and the environmental risk assessment. Subsequently, 2D and 3D models were undertaken to represent graphically the obtained results. The studied tailings pond is located in the Guadiel river bank, a water course draining the mining district of Linares, Spain. The dam is 150 m length and 80 m width. The GPR 3D was done in a selected area near the central part of the pond. The analyzed grid was 25x50 m and the spacing of the slides was 1 m. The study revealed that the contact between the tailings and the substratum is located at 2.5 m. No intermediate layer was found, which means that the tailings pond was heightened on the fluvial terrace without any insulation system. Inside the first meter of the pond, a cross stratification was identified. The orientation of those laminations changed with the depth, which means that the stockpiling was performed from the different sides of the tailings pond. Furthermore, the direction of these stratifications is slightly concentric to the middle of the dam which could be associated with a central drainage system

  8. Informational analysis for compressive sampling in radar imaging.

    Science.gov (United States)

    Zhang, Jingxiong; Yang, Ke

    2015-03-24

    Compressive sampling or compressed sensing (CS) works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs). Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation.

  9. A Method for Quantification of Penetration of Nanoparticles through Skin Layers Using Near-Infrared Optical Imaging

    Directory of Open Access Journals (Sweden)

    Melinda Stees

    2015-07-01

    Full Text Available Our study presents a new method for tracking nanoparticle penetration through different layers of the skin using near-infrared dye-loaded nanoparticles (hydrodynamic diameter = 156 nm and optical imaging. The dye-loaded nanoparticles were mixed in a topical skin cream, applied to human cadaver skin and incubated either for three or 24 h post-application, skin tissue was clipped between glass slides prior to imaging for signal intensity across the skin thickness using an optical imaging system. The data show that nanoparticles penetrate through all the layers of the skin but there is almost an exponential decay in the signal intensity from epidermis to dermis. Depending upon the incubation time, about 55%–59% of the total signal was seen in the epidermis and the remaining through dermis and hypodermis. The advantage of the method is that it allows quantitative analysis of the extent of penetration of nanoparticles through different layers of the skin without interference of any background signal from skin tissue, and without requiring extensive tissue processing. Our method could potentially be used to study the effect of nanoparticle properties and/or the use of different formulation additives on penetration of nanoparticles through different skin layers.

  10. Development of Antennas for Subsurface Radars within ACE

    DEFF Research Database (Denmark)

    Yarovoy, Alexander; Meincke, Peter; Dauvignac, Jean-Yves

    2007-01-01

    The paper gives an overview of the joint activities of the ACE-2 partners in the area of antennas for surface penetrating radar. Main areas of joint research and development are discussed and main results of joint activities are presented. Special attention is given to experimental verification...

  11. Apodization of spurs in radar receivers using multi-channel processing

    Science.gov (United States)

    Doerry, Armin W.; Bickel, Douglas L.

    2017-11-21

    The various technologies presented herein relate to identification and mitigation of spurious energies or signals (aka "spurs") in radar imaging. Spurious energy in received radar data can be a consequence of non-ideal component and circuit behavior. Such behavior can result from I/Q imbalance, nonlinear component behavior, additive interference (e.g. cross-talk, etc.), etc. The manifestation of the spurious energy in a radar image (e.g., a range-Doppler map) can be influenced by appropriate pulse-to-pulse phase modulation. Comparing multiple images which have been processed using the same data but of different signal paths and modulations enables identification of undesired spurs, with subsequent cropping or apodization of the undesired spurs from a radar image. Spurs can be identified by comparison with a threshold energy. Removal of an undesired spur enables enhanced identification of true targets in a radar image.

  12. Radar-eddy current GPR

    OpenAIRE

    A. O. Abramovych

    2014-01-01

    Introduction. At present there are many electrical schematic metal detectors (the most common kind of ground penetrating radar), which are differ in purpose. Each scheme has its own advantages and disadvantages compared to other schemes. Designing metal detector problem of optimal selection of functional units most schemes can only work with a narrow range of special purpose units. Functional units used in circuits can be replaced by better ones, but specialization schemes do not provide such...

  13. Advanced Architectures for Modern Weather/Multifunction Radars

    Science.gov (United States)

    2017-03-01

    Radar (PAIR) system, a mobile , C-band, active phased array with multiple digital beams for imaging (under development). The digital transceiver... backend from Horus is also being used to drive row-based analog subarrays of the future Polarimetric Atmospheric Imaging Radar (PAIR, Fig. 6), which is

  14. Coordinated measurements made by the Sondrestrom radar and the Polar Bear ultraviolet imager

    International Nuclear Information System (INIS)

    Robinson, R.; Vondrak, R.; Dabbs, T.; Vickrey, J.; Eastes, R.; Del Greco, F.; Huffman, R.; Meng, C.; Daniell, R.; Strickland, D.; Vondrak, R.

    1992-01-01

    In 1986 and 1987 the Sondrestrom incoherent scatter radar in Greenland was operated routinely in coordination with selected overpasses of the Polar Bear satellite. For these experiments the auroral ionospheric remote sensor on Polar Bear obtained images of auroral emissions in two far ultraviolet wavelength bands centered at approximately 136 and 160 nm and one visible band centered at 391.4 nm. Measurements at these three wavelengths were extracted from the images for comparison with the coincident radar measurements. Model calculations have shown that for Maxwellian incident electron distributions the ratio between the 136-nm luminosity and 391.4-nm luminosity can be used to estimate the mean energy of precipitating electrons. Once the mean energy is known, then either of the two emissions can be used to determine the total energy flux. This procedure is used to determine the properties of the incident electron distribution during three midnight sector auroral events over Sondre Stromfjord. The incident electron flux is then used to calculate the expected height profile of electron density which is compared with the simultaneous and coincident radar measurements. The results show that the derived profiles agree well with the measured profiles both in the peak electron density and the altitude of the peak. The accuracy with which the peak of the profile is predicted by this technique is such that many important ionospheric parameters can be reliably inferred from remote measurements, including, for example, the height-integrated electrical conductivities

  15. Monitoring soil moisture dynamics via ground-penetrating radar survey of agriculture fields after irrigation

    Science.gov (United States)

    Muro, G.

    2015-12-01

    It is possible to examine the quality of ground-penetrating radar (GPR) as a measure of soil moisture content in the shallow vadose zone, where roots are most abundant and water conservation best management practices are critical in active agricultural fields. By analyzing temporal samplings of 100 Mhz reflection profiles and common-midpoint (CMP) soundings over a full growing season, the variability of vertical soil moisture distribution directly after irrigation events are characterized throughout the lifecycle of a production crop. Reflection profiles produce high-resolution travel time data and summed results of CMP sounding data provide sampling depth estimates for the weak, but coherent reflections amid strong point scatterers. The high ratio of clay in the soil limits the resolution of downward propagation of infiltrating moisture after irrigation; synthetic data analysis compared against soil moisture lysimeter logs throughout the profile allow identification of the discrete soil moisture content variation in the measured GPR data. The nature of short duration irrigation events, evapotranspiration, and drainage behavior in relation to root depths observed in the GPR temporal data allow further examination and comparison with the variable saturation model HYDRUS-1D. After retrieving soil hydraulic properties derived from laboratory measured soil samples and simplified assumptions about boundary conditions, the project aims to achieve good agreement between simulated and measured soil moisture profiles without the need for excessive model calibration for GPR-derived soil moisture estimates in an agricultural setting.

  16. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR)

    Science.gov (United States)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul

    2017-01-01

    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  17. An Entropy-Based Propagation Speed Estimation Method for Near-Field Subsurface Radar Imaging

    Science.gov (United States)

    Flores-Tapia, Daniel; Pistorius, Stephen

    2010-12-01

    During the last forty years, Subsurface Radar (SR) has been used in an increasing number of noninvasive/nondestructive imaging applications, ranging from landmine detection to breast imaging. To properly assess the dimensions and locations of the targets within the scan area, SR data sets have to be reconstructed. This process usually requires the knowledge of the propagation speed in the medium, which is usually obtained by performing an offline measurement from a representative sample of the materials that form the scan region. Nevertheless, in some novel near-field SR scenarios, such as Microwave Wood Inspection (MWI) and Breast Microwave Radar (BMR), the extraction of a representative sample is not an option due to the noninvasive requirements of the application. A novel technique to determine the propagation speed of the medium based on the use of an information theory metric is proposed in this paper. The proposed method uses the Shannon entropy of the reconstructed images as the focal quality metric to generate an estimate of the propagation speed in a given scan region. The performance of the proposed algorithm was assessed using data sets collected from experimental setups that mimic the dielectric contrast found in BMI and MWI scenarios. The proposed method yielded accurate results and exhibited an execution time in the order of seconds.

  18. Estimating belowground carbon stocks in isolated wetlands of the Northern Everglades Watershed, central Florida, using ground penetrating radar (GPR) and aerial imagery

    Science.gov (United States)

    McClellan, Matthew; Comas, Xavier; Hinkle, Ross; Sumner, David M.

    2017-01-01

    Peat soils store a large fraction of the global soil carbon (C) pool and comprise 95% of wetland C stocks. While isolated freshwater wetlands in temperate and tropical biomes account for more than 20% of the global peatland C stock, most studies of wetland soil C have occurred in expansive peatlands in northern boreal and subarctic biomes. Furthermore, the contribution of small depressional wetlands in comparison to larger wetland systems in these environments is very uncertain. Given the fact that these wetlands are numerous and variable in terms of their internal geometry, innovative methods are needed for properly estimating belowground C stocks and their overall C contribution to the landscape. In this study, we use a combination of ground penetrating radar (GPR), aerial imagery, and direct measurements (coring) in conjunction with C core analysis to develop a relation between C stock and surface area, and estimate the contribution of subtropical depressional wetlands to the total C stock of pine flatwoods at the Disney Wilderness Preserve (DWP), Florida. Additionally, GPR surveys were able to image collapse structures underneath the peat basin of depressional wetlands, depicting lithological controls on the formation of depressional wetlands at the DWP. Results indicate the importance of depressional wetlands as critical contributors to the landscape C budget at the DWP and the potential of GPR-based approaches for (1) rapidly and noninvasively estimating the contribution of depressional wetlands to regional C stocks and (2) evaluating the formational processes of depressional wetlands.

  19. Ground-Penetrating Radar Study of Fort Morgan Peninsula Holocene Beach Ridges as Sea-level Indicators

    Science.gov (United States)

    Philbin, A.; Frederick, B.; Blum, M. D.; Tsoflias, G. P.

    2017-12-01

    Holocene sea-level change along the northern Gulf of Mexico (GoM) coast is controversial. One view interprets basal peats from the Mississippi Delta to indicate continual sea-level (SL) rise for the GoM as a whole. An alternate view proposes that data from the subsiding delta is primarily a subsidence signal, and that sandy non-deltaic shorelines indicate that regional SL reached present elevations by the middle Holocene, with minor oscillations since then. In fact, new regional long-term subsidence records from biostratigraphic indicators display significant subsidence in deltaic areas where basal-peat data were collected, and negligible rates along the GoM shoreline to the east. However, the use of sandy progradational shorelines, commonly known as "beach ridge systems", has been criticized for a lack of precise sea-level indicators, and therefore discounted. This research focuses on developing Holocene progradational sandy shorelines along the Alabama coast in the eastern GoM as SL indicators. Sandy shorelines in this area are ideal to examine SL change because they are well preserved, sufficiently distant from the subsiding delta, well mapped, and ages are known from previous work. Two-dimensional ground-penetrating radar imaging of well-dated beach-ridge successions is used here to examine and identify changes through time in the elevation of the shoreface clinoform topset-foreset break, which represents the transition between flat-lying foreshore and seaward-dipping shoreface facies, and forms in the intertidal zone. Beach-ridge successions with optical luminescence ages of ca. 5500-4800 yrs BP display topset-foreset breaks at current mean sea-level elevation, whereas beach-ridge successions from ca. 3500-2400 yrs BP display topset-foreset breaks that are 1 m above present mean SL and the elevation of modern topset-foreset breaks. These data support the view that current sea-level was reached by the middle Holocene, and was higher than present for at least

  20. Radar Echo Scattering Modeling and Image Simulations of Full-scale Convex Rough Targets at Terahertz Frequencies

    Directory of Open Access Journals (Sweden)

    Gao Jingkun

    2018-02-01

    Full Text Available Echo simulation is a precondition for developing radar imaging systems, algorithms, and subsequent applications. Electromagnetic scattering modeling of the target is key to echo simulation. At terahertz (THz frequencies, targets are usually of ultra-large electrical size that makes applying classical electromagnetic calculation methods unpractical. In contrast, the short wavelength makes the surface roughness of targets a factor that cannot be ignored, and this makes the traditional echo simulation methods based on point scattering hypothesis in applicable. Modeling the scattering characteristics of targets and efficiently generating its radar echoes in THz bands has become a problem that must be solved. In this paper, a hierarchical semi-deterministic modeling method is proposed. A full-wave algorithm of rough surfaces is used to calculate the scattered field of facets. Then, the scattered fields of all facets are transformed into the target coordinate system and coherently summed. Finally, the radar echo containing phase information can be obtained. Using small-scale rough models, our method is compared with the standard high-frequency numerical method, which verifies the effectiveness of the proposed method. Imaging results of a full-scale cone-shape target is presented, and the scattering model and echo generation problem of the full-scale convex targets with rough surfaces in THz bands are preliminary solved; this lays the foundation for future research on imaging regimes and algorithms.

  1. Geology of the Venus equatorial region from Pioneer Venus radar imaging

    International Nuclear Information System (INIS)

    Senske, D.A.; Head, J.W.

    1989-01-01

    The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae

  2. Detection of Subsurface Defects in Levees in Correlation to Weather Conditions Utilizing Ground Penetrating Radar

    Science.gov (United States)

    Martinez, I. A.; Eisenmann, D.

    2012-12-01

    Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.

  3. Real-Time Landmine Detection with Ground-Penetrating Radar Using Discriminative and Adaptive Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Ho KC

    2005-01-01

    Full Text Available We propose a real-time software system for landmine detection using ground-penetrating radar (GPR. The system includes an efficient and adaptive preprocessing component; a hidden Markov model- (HMM- based detector; a corrective training component; and an incremental update of the background model. The preprocessing is based on frequency-domain processing and performs ground-level alignment and background removal. The HMM detector is an improvement of a previously proposed system (baseline. It includes additional pre- and postprocessing steps to improve the time efficiency and enable real-time application. The corrective training component is used to adjust the initial model parameters to minimize the number of misclassification sequences. This component could be used offline, or online through feedback to adapt an initial model to specific sites and environments. The background update component adjusts the parameters of the background model to adapt it to each lane during testing. The proposed software system is applied to data acquired from three outdoor test sites at different geographic locations, using a state-of-the-art array GPR prototype. The first collection was used as training, and the other two (contain data from more than 1200 m of simulated dirt and gravel roads for testing. Our results indicate that, on average, the corrective training can improve the performance by about 10% for each site. For individual lanes, the performance gain can reach 50%.

  4. Compact U-Slotted Antenna for Broadband Radar Applications

    Directory of Open Access Journals (Sweden)

    S. Costanzo

    2013-01-01

    Full Text Available The original U-shaped patch antenna is properly modified in this work to provide a compact and broadband antenna configuration with reduced cross-polar effects, well suitable for modern radar applications. The proposed antenna layout is applied to design, realize, and test two different prototypes working at P-band and C-band, typically adopted for ground-penetrating radar. The experimental results successfully demonstrate a large operating bandwidth between 15% and 20%, a significant reduction of size (about half of the standard configuration, and a low cross-polarization level within the operating frequency range.

  5. An investigation of recent storm histories using Ground Penetrating Radar at Bay-Bay Spit, Bicol, Central Philippines

    Science.gov (United States)

    Switzer, Adam D.; Pile, Jeremy; Soria, Janneli Lea A.; Siringan, Fernando; Daag, Arturo; Brill, Dominik

    2016-04-01

    The Philippine archipelago lies in the path of seasonal tropical cyclones, and much of the coast is prone to periodic inundation and overwash during storm surges. On example is typhoon Durian a category 3 storm that made landfall on the 30th November 2006, in Bicol province, on the east central Philippine coast. Satellite imagery from May 2007 reveal that Durian breached a sandy spit that runs southeast from the mouth of the Quinale River at Bay-Bay village towards Tabaco City. The imagery also showed that, although the breach site showed signs of partial recovery, geomorphological evidence of the inundation event associated with typhoon Durian still remains. In 2012 we mapped the geomorphological features of Durian. In June 2013 we returned to conduct Ground Penetrating Radar (GPR) surveys on the Bay-Bay spit to investigate potential subsurface evidence of previous storm events. The GPR surveys comprised five, 1.5 km, longshore profiles and 12 cross-shore profiles, of 50 m - 200 m in length. The GPR system used for this study was a Sensors and Software Noggin with 100 Mhz antennas. Near surface velocities were determine using Hyperbolae matching in order to estimate depth. Topographic and positional data were collected using a dGPS system. After minimal processing depth of penetration during the survey varied from 2 - 8 m. The cross-shore GPR profiles reveal at least two erosional events prior to 2006 typhoon Durian, with approximately 10 m of recovery and progradation between each erosion surface. The GPR profiles that captured the erosional features were revisited in September 2013 for trial pitting, stratigraphic description, and sediment sampling. Sediment cores were taken horizontally from the trench walls and vertically from the trench bases to date sediments using Optically Stimulated Luminescence (OSL), which eventually could constrain the timing of the erosional surfaces.

  6. Slope stability radar for monitoring mine walls

    Science.gov (United States)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  7. Modified echo peak correction for radial acquisition regime (RADAR).

    Science.gov (United States)

    Takizawa, Masahiro; Ito, Taeko; Itagaki, Hiroyuki; Takahashi, Tetsuhiko; Shimizu, Kanichirou; Harada, Junta

    2009-01-01

    Because radial sampling imposes many limitations on magnetic resonance (MR) imaging hardware, such as on the accuracy of the gradient magnetic field or the homogeneity of B(0), some correction of the echo signal is usually needed before image reconstruction. In our previous study, we developed an echo-peak-shift correction (EPSC) algorithm not easily affected by hardware performance. However, some artifacts remained in lung imaging, where tissue is almost absent, or in cardiac imaging, which is affected by blood flow. In this study, we modified the EPSC algorithm to improve the image quality of the radial aquisition regime (RADAR) and expand its application sequences. We assumed the artifacts were mainly caused by errors in the phase map for EPSC and used a phantom on a 1.5-tesla (T) MR scanner to investigate whether to modify the EPSC algorithm. To evaluate the effectiveness of EPSC, we compared results from T(1)- and T(2)-weighted images of a volunteer's lung region using the current and modified EPSC. We then applied the modified EPSC to RADAR spin echo (SE) and RADAR balanced steady-state acquisition with rewound gradient echo (BASG) sequence. The modified EPSC reduced phase discontinuity in the reference data used for EPSC and improved visualization of blood vessels in the lungs. Motion and blood flow caused no visible artifacts in the resulting images in either RADAR SE or RADAR BASG sequence. Use of the modified EPSC eliminated artifacts caused by signal loss in the reference data for EPSC. In addition, the modified EPSC was applied to RADAR SE and RADAR BASG sequences.

  8. Modified echo peak correction for radial acquisition regime (RADAR)

    International Nuclear Information System (INIS)

    Takizawa, Masahiro; Ito, Taeko; Itagaki, Hiroyuki; Takahashi, Tetsuhiko; Shimizu, Kanichirou; Harada, Junta

    2009-01-01

    Because radial sampling imposes many limitations on magnetic resonance (MR) imaging hardware, such as on the accuracy of the gradient magnetic field or the homogeneity of B 0 , some correction of the echo signal is usually needed before image reconstruction. In our previous study, we developed an echo-peak-shift correction (EPSC) algorithm not easily affected by hardware performance. However, some artifacts remained in lung imaging, where tissue is almost absent, or in cardiac imaging, which is affected by blood flow. In this study, we modified the EPSC algorithm to improve the image quality of the radial acquisition regime (RADAR) and expand its application sequences. We assumed the artifacts were mainly caused by errors in the phase map for EPSC and used a phantom on a 1.5-tesla (T) MR scanner to investigate whether to modify the EPSC algorithm. To evaluate the effectiveness of EPSC, we compared results from T 1 -and T 2 -weighted images of a volunteer's lung region using the current and modified EPSC. We then applied the modified EPSC to RADAR spin echo (SE) and RADAR balanced steady-state acquisition with rewound gradient echo (BASG) sequence. The modified EPSC reduced phase discontinuity in the reference data used for EPSC and improved visualization of blood vessels in the lungs. Motion and blood flow caused no visible artifacts in the resulting images in either RADAR SE or RADAR BASG sequence. Use of the modified EPSC eliminated artifacts caused by signal loss in the reference data for EPSC. In addition, the modified EPSC was applied to RADAR SE and RADAR BASG sequences. (author)

  9. Low-Cost Mini Radar: Design Prototyping and Tests

    Directory of Open Access Journals (Sweden)

    Dario Tarchi

    2017-01-01

    Full Text Available Radar systems are largely employed for surveillance of wide and remote areas; the recent advent of drones gives the opportunity to exploit radar sensors on board of unmanned aerial platforms. Nevertheless, whereas drone radars are currently available for military applications, their employment in the civilian domain is still limited. The present research focuses on design, prototyping, and testing of an agile, low-cost, mini radar system, to be carried on board of Remotely Piloted Aircraft (RPAs or tethered aerostats. In particular, the paper faces the challenge to integrate the in-house developed radar sensor with a low-cost navigation board, which is used to estimate attitude and positioning data. In fact, a suitable synchronization between radar and navigation data is essential to properly reconstruct the radar picture whenever the platform is moving or the radar is scanning different azimuthal sectors. Preliminary results, relative to tests conducted in preoperational conditions, are provided and exploited to assert the suitable consistency of the obtained radar pictures. From the results, there is a high consistency between the radar images and the picture of the current environment emerges; finally, the comparison of radar images obtained in different scans shows the stability of the platform.

  10. Orbital radar studies of paleodrainages in the central Namib Desert

    Science.gov (United States)

    Lancaster, N.; Schaber, G.G.; Teller, J.T.

    2000-01-01

    Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area. (C) Elsevier Science Inc., 2000.Orbital radar images of the central Namib Desert show clearly the extent of relict fluvial deposits associated with former courses of the Tsondab and Kuiseb rivers. South of the Kuiseb River, radar data show the existence of a drainage network developed in calcrete-cemented late Tertiary fluvial deposits. The sand-filled paleovalleys are imaged as radar-dark tones in contrast to the radar-bright interfluves where the calcreted gravels occur. The drainage network developed as a result of local runoff from indurated gravels and channeled surface and subsurface flow to the sites of the many interdune lacustrine deposits found in the area.

  11. A blind test of nondestructive underground void detection by ground penetrating radar (GPR)

    Science.gov (United States)

    Lai, Wallace W. L.; Chang, Ray K. W.; Sham, Janet F. C.

    2018-02-01

    Blind test/experiment is widely adopted in various scientific disciplines like medicine drug testing/clinical trials/psychology, but not popular in nondestructive testing and evaluation (NDTE) nor near-surface geophysics (NSG). This paper introduces a blind test of nondestructive underground void detection in highway/pavement using ground penetrating radar (GPR). Purpose of which is to help the Highways Department (HyD) of the Hong Kong Government to evaluate the feasibility of large-scale and nationwide application, and examine the ability of appropriate service providers to carry out such works. In the past failure case of such NDTE/NSG based on lowest bid price, it is not easy to know which part(s) in SWIMS (S - service provider, i.e. people; W - work procedure; I - instrumentation; M - materials in the complex underground; S - specifications by client) fails, and how it/they fail(s). This work attempts to carry out the blind test by burying fit balls (as voids) under a site with reinforced concrete road and paving block by PolyU team A. The blind test about the void centroid, spread and cover depth was then carried out by PolyU team B without prior information given. Then with this baseline, a marking scheme, acceptance criteria and passing mark were set to test six local commercial service providers, determine their scores and evaluate the performance. A pass is a prerequisite of the award of a service contract of similar nature. In this first attempt of the blind test, results were not satisfactory and it is concluded that 'S-service provider' and 'W-work procedure' amongst SWIMS contributed to most part of the unsatisfactory performance.+

  12. Design and testing of Ground Penetrating Radar equipment dedicated for civil engineering applications: ongoing activities in Working Group 1 of COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Manacorda, Guido; Persico, Raffaele

    2015-04-01

    This work aims at presenting the ongoing research activities carried out in Working Group 1 'Novel GPR instrumentation' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Working Group 1 (WG1) of the Action focuses on the development of innovative GPR equipment dedicated for civil engineering applications. It includes three Projects. Project 1.1 is focused on the 'Design, realisation and optimisation of innovative GPR equipment for the monitoring of critical transport infrastructures and buildings, and for the sensing of underground utilities and voids.' Project 1.2 is concerned with the 'Development and definition of advanced testing, calibration and stability procedures and protocols, for GPR equipment.' Project 1.3 deals with the 'Design, modelling and optimisation of GPR antennas.' During the first year of the Action, WG1 Members coordinated between themselves to address the state of the art and open problems in the scientific fields identified by the above-mentioned Projects [1, 2]. In carrying our this work, the WG1 strongly benefited from the participation of IDS Ingegneria dei Sistemi, one of the biggest GPR manufacturers, as well as from the contribution of external experts as David J. Daniels and Erica Utsi, sharing with the Action Members their wide experience on GPR technology and methodology (First General Meeting, July 2013). The synergy with WG2 and WG4 of the Action was useful for a deep understanding of the problems, merits and limits of available GPR equipment, as well as to discuss how to quantify the reliability of GPR results. An

  13. Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    Science.gov (United States)

    Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.

    2009-01-01

    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.

  14. Observations of a Cold Front at High Spatiotemporal Resolution Using an X-Band Phased Array Imaging Radar

    Directory of Open Access Journals (Sweden)

    Andrew Mahre

    2017-02-01

    Full Text Available While the vertical structure of cold fronts has been studied using various methods, previous research has shown that traditional methods of observing meteorological phenomena (such as pencil-beam radars in PPI/volumetric mode are not well-suited for resolving small-scale cold front phenomena, due to relatively low spatiotemporal resolution. Additionally, non-simultaneous elevation sampling within a vertical cross-section can lead to errors in analysis, as differential vertical advection cannot be distinguished from temporal evolution. In this study, a cold front from 19 September 2015 is analyzed using the Atmospheric Imaging Radar (AIR. The AIR transmits a 20-degree fan beam in elevation, and digital beamforming is used on receive to generate simultaneous receive beams. This mobile, X-band, phased-array radar offers temporal sampling on the order of 1 s (while in RHI mode, range sampling of 30 m (37.5 m native resolution, and continuous, arbitrarily oversampled data in the vertical dimension. Here, 0.5-degree sampling is used in elevation (1-degree native resolution. This study is the first in which a cold front has been studied via imaging radar. The ability of the AIR to obtain simultaneous RHIs at high temporal sampling rates without mechanical steering allows for analysis of features such as Kelvin-Helmholtz instabilities and feeder flow.

  15. The use of radar for bathymetry in shallow seas

    NARCIS (Netherlands)

    Greidanus, H.

    1997-01-01

    The bottom topography in shallow seas can be observed by air- and space borne radar. The paper reviews the radar imaging mechanism, and discusses the possibilities and limitations for practical use of radar in bathymetric applications, including the types of radar instruments available for this

  16. Characterization of the spatial distribution of porosity in the eogenetic karst Miami Limestone using ground penetrating radar

    Science.gov (United States)

    Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.

    2014-12-01

    Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features

  17. A technique for the radar cross-section estimation of axisymmetric plasmoid

    International Nuclear Information System (INIS)

    Naumov, N D; Petrovskiy, V P; Sasinovskiy, Yu K; Shkatov, O Yu

    2015-01-01

    A model for the radio waves backscattering from both penetrable plasma and reflecting plasma is developed. The technique proposed is based on Huygens's principle and reduces the radar cross-section estimation to numerical integrations. (paper)

  18. The Comet Radar Explorer Mission

    Science.gov (United States)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  19. Estimation of soil hydraulic parameters in the field by integrated hydrogeophysical inversion of time-lapse ground-penetrating radar data

    KAUST Repository

    Jadoon, Khan

    2012-01-01

    An integrated hydrogeophysical inversion approach was used to remotely infer the unsaturated soil hydraulic parameters from time-lapse ground-penetrating radar (GPR) data collected at a fixed location over a bare agricultural field. The GPR model combines a full-waveform solution of Maxwell\\'s equations for three-dimensional wave propaga- tion in planar layered media together with global reflection and transmission functions to account for the antenna and its interactions with the medium. The hydrological simu- lator HYDRUS-1D was used with a two layer single- and dual-porosity model. The radar model was coupled to the hydrodynamic model, such that the soil electrical properties (permitivity and conductivity) that serve as input to the GPR model become a function of the hydrodynamic model output (water content), thereby permiting estimation of the soil hydraulic parameters from the GPR data in an inversion loop. To monitor the soil water con- tent dynamics, time-lapse GPR and time domain reflectometry (TDR) measurements were performed, whereby only GPR data was used in the inversion. Significant effects of water dynamics were observed in the time-lapse GPR data and in particular precipitation and evaporation events were clearly visible. The dual porosity model provided betier results compared to the single porosity model for describing the soil water dynamics, which is sup- ported by field observations of macropores. Furthermore, the GPR-derived water content profiles reconstructed from the integrated hydrogeophysical inversion were in good agree- ment with TDR observations. These results suggest that the proposed method is promising for non-invasive characterization of the shallow subsurface hydraulic properties and moni- toring water dynamics at the field scale. © Soil Science Society of America.

  20. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  1. Deposits related to supercritical flows in glacifluvial deltas and subaqueous ice-contact fans: Integrating facies analysis and ground-penetrating radar

    Science.gov (United States)

    Lang, Joerg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta

    2017-04-01

    Bedforms related to supercritical flows have recently received much interest and the understanding of flow morphodynamics and depositional processes has been greatly advanced. However, outcrop studies of these bedforms are commonly hampered by their long wavelengths. Therefore, we combined outcrop-based facies analysis with extensive ground-penetrating radar (GPR) measurements. Different GPR antennas (200, 400 and 1500 MHz) were utilised to measure both long profiles and densely spaced grids in order to map the large-scale facies architecture and image the three-dimensional geometry of the deposits. The studied delta and subaqueous ice-contact fan successions were deposited within ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. These glacilacustrine depositional systems are characterised by high aggradation rates due to the rapid expansion and deceleration of high-energy sediment-laden flows, favouring the preservation of bedforms related to supercritical flows. In flow direction, delta foresets commonly display lenticular scours, which are 2 to 6 m wide and 0.15 to 0.5 m deep. Characteristically, scours are filled by upslope dipping backsets, consisting of pebbly sand. In a few cases, massive and deformed strata were observed, passing upflow into backsets. Across flow, scours are 2 to 3 m wide and typically display a concentric infill. The scour fills are commonly associated with subhorizontally or sinusoidal stratified pebbly sand. These facies types are interpreted as deposits of cyclic steps and antidunes, respectively, representing deposition from supercritical density flows, which formed during high meltwater discharge events or regressive slope failures (Winsemann et al., in review). The GPR-sections show that the scour fills form trains along the delta foresets, which can be traced for up to 15 m. The studied subaqueous ice-contact fan succession relates to the zone of flow

  2. Conductive fracture mapping. A study on the correlation between borehole TV- and radar images and difference flow logging results in borehole KLX02

    International Nuclear Information System (INIS)

    Carlsten, S.; Straahle, A.; Ludvigson, Jan-Erik

    2001-10-01

    the recorded borehole length were used as the most important parameters. The accuracy of the recorded length (depth) of the interpreted radar reflectors is rather poor compared to the BIPS-logging. A total number of 6 radar reflectors (of the 12 identified) could be correlated with BIPS-features and DIFF-flow anomalies. As above, the correlated BIPS-features were classified as open fractures or in some cases as veins in the rock. The correlation study indicates that the number of features mapped as 'open fractures' together with 'fractures with cavities' in the BIPS characterisation, correspond to almost 70% of the total number of interpreted flow anomalies from the DIFF-logging in this borehole interval. This figure increases to almost 80% if uncertain flow anomalies below the measurement limit are excluded. The remainder of the flow anomalies correspond to features mapped as 'altered fractures or veins' and 'dull fractures or veins 'in the BIPS- characterisation. The estimated lateral extent of the correlated radar reflectors is about 10-30 m. The latter figure corresponds to the estimated persistence (depth of penetration)of the radar images in this case. The dominant strike of the interpreted flow anomalies is towards WNW-NW as determined from the BIPS- and radar characterisation. This result is in good agreement with previous investigations of the orientation of water-conductive fractures at Aespoe. Thus, it is concluded that the interpreted flow anomalies from the DIFF-log are representative for the dominating hydraulic conditions in the rock. The accuracy of the depth recording is one of the most important parameter and also the one that, in this study, contributes to the largest error when comparing different methods. One of the conclusions of this study is to diminish the error by using efficient measuring wheels in order to avoid sliding of the cable during logging. A new method for making length registration is at present under development. Also, certainty

  3. An Entropy-Based Propagation Speed Estimation Method for Near-Field Subsurface Radar Imaging

    Directory of Open Access Journals (Sweden)

    Pistorius Stephen

    2010-01-01

    Full Text Available During the last forty years, Subsurface Radar (SR has been used in an increasing number of noninvasive/nondestructive imaging applications, ranging from landmine detection to breast imaging. To properly assess the dimensions and locations of the targets within the scan area, SR data sets have to be reconstructed. This process usually requires the knowledge of the propagation speed in the medium, which is usually obtained by performing an offline measurement from a representative sample of the materials that form the scan region. Nevertheless, in some novel near-field SR scenarios, such as Microwave Wood Inspection (MWI and Breast Microwave Radar (BMR, the extraction of a representative sample is not an option due to the noninvasive requirements of the application. A novel technique to determine the propagation speed of the medium based on the use of an information theory metric is proposed in this paper. The proposed method uses the Shannon entropy of the reconstructed images as the focal quality metric to generate an estimate of the propagation speed in a given scan region. The performance of the proposed algorithm was assessed using data sets collected from experimental setups that mimic the dielectric contrast found in BMI and MWI scenarios. The proposed method yielded accurate results and exhibited an execution time in the order of seconds.

  4. Goldstone radar imaging of near-Earth asteroids (469896) 2007 WV4, 2014 JO25, 2017 BQ6, and 2017 CS

    Science.gov (United States)

    Naidu, S.; Benner, L.; Brozovic, M.; Giorgini, J. D.; Busch, M.; Jao, J. S.; Lee, C. G.; Snedeker, L. G.; Silva, M. A.; Slade, M. A.; Lawrence, K. J.

    2017-12-01

    We present Goldstone radar imaging of four near-Earth asteroids during Feb-Jun 2017. The signal-to-noise ratios were very strong for each object and we obtained detailed images with range resolutions as fine as 3.75 m/pixel. 2017 BQ6 was discovered on Jan 26 and approached Earth within 6.5 lunar distances on Feb 7. Radar images show that it is a strikingly angular object roughly 200 m in diameter with a rotation period of 3 h. Its multi-faceted shape challenges the expectation that it is a rubble pile. 2017 CS was discovered on Feb 2 and approached within 8 lunar distances on May 29. It appears rounded on large scales but has considerable fine-scale topography evident along its leading edges. The images suggest a diameter of 1 km and a spin period consistent with the 40 h period obtained from photometry by P. Pravec (pers. comm.). The highest resolution images show evidence for meter-size boulders, ridges, and broad concavities. 2007 WV4 was imaged in late May and early June, has a diameter of 900 meters, and appears distinctly angular with at least three large facets > 100 m in extent. Tracking of features in the images gives a rotation period of about 12 hours. 2014 JO25 approached within 4.6 lunar distances on April 19. This was the closest encounter by an asteroid with an absolute magnitude brighter than 18 known in advance until 2027, when 1999 AN10 will approach within one lunar distance. Radar imaging shows that 2014 JO25 is an irregular object, consisting of two components connected by a narrow neck. The asteroid has pole on dimensions of roughly 1 x 0.6 km in the images. Imaging with 3.75 m/pixel resolution places thousands of pixels on the object and reveals ridges, concavities, flat regions up to 200 meters long, and radar-bright spots suggestive of boulders. Tracking of features in the images yields a rotation period of about 4.5 hours that is among the fastest of the 50 known contact binaries in the near-Earth population.

  5. Use of radars to monitor stream discharge by noncontact methods

    Science.gov (United States)

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods

  6. Device for generation of transversal tomographic images of a body by penetrating radiation

    International Nuclear Information System (INIS)

    Hounsfield, G.N.

    1980-01-01

    An improvement of equipment for the examination of patients using penetrating radiation (e.g. gamma or X-ray radiation) is proposed, in particular of equipment as under US patent 3778614, which avoids undesirable patterns on the reconstructed image. The invention is explained by several models. (orig./PW)

  7. New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images

    Science.gov (United States)

    Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas

    2016-10-01

    Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay

  8. Mapping Pyroclastic Flow Inundation Using Radar and Optical Satellite Images and Lahar Modeling

    Directory of Open Access Journals (Sweden)

    Chang-Wook Lee

    2018-01-01

    Full Text Available Sinabung volcano, located above the Sumatra subduction of the Indo-Australian plate under the Eurasian plate, became active in 2010 after about 400 years of quiescence. We use ALOS/PALSAR interferometric synthetic aperture radar (InSAR images to measure surface deformation from February 2007 to January 2011. We model the observed preeruption inflation and coeruption deflation using Mogi and prolate spheroid sources to infer volume changes of the magma chamber. We interpret that the inflation was due to magma accumulation in a shallow reservoir beneath Mount Sinabung and attribute the deflation due to magma withdrawal from the shallow reservoir during the eruption as well as thermoelastic compaction of erupted material. The pyroclastic flow extent during the eruption is then derived from the LAHARZ model based on the coeruption volume from InSAR modeling and compared to that derived from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ image. The pyroclastic flow inundation extents between the two different methods agree at about 86%, suggesting the capability of mapping pyroclastic flow inundation by combing radar and optical imagery as well as flow modeling.

  9. SAR Ambiguity Study for the Cassini Radar

    Science.gov (United States)

    Hensley, Scott; Im, Eastwood; Johnson, William T. K.

    1993-01-01

    The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.

  10. 5 year radar-based rainfall statistics: disturbances analysis and development of a post-correction scheme for the German radar composite

    Science.gov (United States)

    Wagner, A.; Seltmann, J.; Kunstmann, H.

    2015-02-01

    A radar-based rainfall statistic demands high quality data that provide realistic precipitation amounts in space and time. Instead of correcting single radar images, we developed a post-correction scheme for long-term composite radar data that corrects corrupted areas, but preserves the original precipitation patterns. The post-correction scheme is based on a 5 year statistical analysis of radar composite data and its constituents. The accumulation of radar images reveals artificial effects that are not visible in the individual radar images. Some of them are already inherent to single radar data such as the effect of increasing beam height, beam blockage or clutter remnants. More artificial effects are introduced in the process of compositing such as sharp gradients at the boundaries of overlapping areas due to different beam heights and resolution. The cause of these disturbances, their behaviour with respect to reflectivity level, season or altitude is analysed based on time-series of two radar products: the single radar reflectivity product PX for each of the 16 radar systems of the German Meteorological Service (DWD) for the time span 2000 to 2006 and the radar composite product RX of DWD from 2005 through to 2009. These statistics result in additional quality information on radar data that is not available elsewhere. The resulting robust characteristics of disturbances, e.g. the dependency of the frequencies of occurrence of radar reflectivities on beam height, are then used as a basis for the post-correction algorithm. The scheme comprises corrections for shading effects and speckles, such as clutter remnants or overfiltering, as well as for systematic differences in frequencies of occurrence of radar reflectivities between the near and the far ranges of individual radar sites. An adjustment to rain gauges is also included. Applying this correction, the Root-Mean-Square-Error for the comparison of radar derived annual rain amounts with rain gauge data

  11. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    Science.gov (United States)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  12. Radar Image Simulation: Validation of the Point Scattering Method. Volume 2

    Science.gov (United States)

    1977-09-01

    the Engineer Topographic Labor - atory (ETL), Fort Belvoir, Virginia. This Radar Simulation Study was performed to validate the point tcattering radar...e.n For radar, the number of Independent samples in a given re.-olution cell is given by 5 ,: N L 2w (16) L Acoso where: 0 Radar incidence angle; w

  13. Frozen: The Potential and Pitfalls of Ground-Penetrating Radar for Archaeology in the Alaskan Arctic

    Directory of Open Access Journals (Sweden)

    Thomas M. Urban

    2016-12-01

    Full Text Available Ground-penetrating radar (GPR offers many advantages for assessing archaeological potential in frozen and partially frozen contexts in high latitude and alpine regions. These settings pose several challenges for GPR, including extreme velocity changes at the interface of frozen and active layers, cryogenic patterns resulting in anomalies that can easily be mistaken for cultural features, and the difficulty in accessing sites and deploying equipment in remote settings. In this study we discuss some of these challenges while highlighting the potential for this method by describing recent successful investigations with GPR in the region. We draw on cases from Bering Land Bridge National Preserve, Cape Krusenstern National Monument, Kobuk Valley National Park, and Gates of the Arctic National Park and Preserve. The sites required small aircraft accessibility with light equipment loads and minimal personnel. The substrates we investigate include coastal saturated active layer over permafrost, interior well-drained active layer over permafrost, a frozen thermo-karst lake, and an alpine ice patch. These examples demonstrate that GPR is effective at mapping semi-subterranean house remains in several contexts, including houses with no surface manifestation. GPR is also shown to be effective at mapping anomalies from the skeletal remains of a late Pleistocene mammoth frozen in ice. The potential for using GPR in ice and snow patch archaeology, an area of increasing interest with global environmental change exposing new material each year, is also demonstrated.

  14. Monitoring underground water leakage pattern by ground penetrating radar (GPR) using 800 MHz antenna frequency

    Science.gov (United States)

    Amran, T. S. T.; Ismail, M. P.; Ahmad, M. R.; Amin, M. S. M.; Ismail, M. A.; Sani, S.; Masenwat, N. A.; Basri, N. S. M.

    2018-01-01

    Water is the most treasure natural resources, however, a huge amount of water are lost during its distribution that leads to water leakage problem. The leaks meant the waste of money and created more economic loss to treat and fix the damaged pipe. Researchers and engineers have put tremendous attempts and effort, to solve the water leakage problem especially in water leakage of buried pipeline. An advanced technology of ground penetrating radar (GPR) has been established as one of the non-destructive testing (NDT) method to detect the underground water pipe leaking. This paper focuses on the ability of GPR in water utility field especially on detection of water leaks in the underground pipeline distribution. A series of laboratory experiments were carried out using 800-MHz antenna, where the performance of GPR on detecting underground pipeline and locating water leakage was investigated and validated. A prototype to recreate water-leaking system was constructed using a 4-inch PVC pipe. Different diameter of holes, i.e. ¼ inch, ½ inch, and ¾ inch, were drilled into the pipe to simulate the water leaking. The PVC pipe was buried at the depth of 60 cm into the test bed that was filled with dry sand. 15 litres of water was injected into the PVC pipe. The water leakage patterns in term of radargram data were gathered. The effectiveness of the GPR in locating the underground water leakage was ascertained, after the results were collected and verified.

  15. Structural investigation of the Grenville Province by radar and other imaging and nonimaging sensors

    Science.gov (United States)

    Lowman, P. D., Jr.; Blodget, H. W.; Webster, W. J., Jr.; Paia, S.; Singhroy, V. H.; Slaney, V. R.

    1984-01-01

    The structural investigation of the Canadian Shield by orbital radar and LANDSAT, is outlined. The area includes parts of the central metasedimentary belt and the Ontario gneiss belt, and major structures as well-expressed topographically. The primary objective is to apply SIR-B data to the mapping of this key part of the Grenville orogen, specifically ductile fold structures and associated features, and igneous, metamorphic, and sedimentary rock (including glacial and recent sediments). Secondary objectives are to support the Canadian RADARSAT project by evaluating the baseline parameters of a Canadian imaging radar satellite planned for late in the decade. The baseline parameters include optimum incidence and azimuth angles. The experiment is to develop techniques for the use of multiple data sets.

  16. A utilização das imagens de radar meteorológico em Climatologia

    Directory of Open Access Journals (Sweden)

    Marcelo Fragoso

    1996-05-01

    Full Text Available WEATHER RADAR IMAGE IN CLIMATOLOGY - After a brief overview about weather radar as a remote sensing instrument, some problems concerning the use of radar images are discussed. The great interest of radar images as a tool in Climatology is pointed out. Finally, a case study about two rainfall events in Nancy (France in April 1995 is presented.

  17. Exchanging knowledge and working together in COST Action TU1208: Short-Term Scientific Missions on Ground Penetrating Radar

    Science.gov (United States)

    Santos Assuncao, Sonia; De Smedt, Philippe; Giannakis, Iraklis; Matera, Loredana; Pinel, Nicolas; Dimitriadis, Klisthenis; Giannopoulos, Antonios; Sala, Jacopo; Lambot, Sébastien; Trinks, Immo; Marciniak, Marian; Pajewski, Lara

    2015-04-01

    This work aims at presenting the scientific results stemming from six Short-Term Scientific Missions (STSMs) funded by the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (Action Chair: Lara Pajewski, STSM Manager: Marian Marciniak). STSMs are important means to develop linkages and scientific collaborations between participating institutions involved in a COST Action. Scientists have the possibility to go to an institution abroad, in order to undertake joint research and share techniques/equipment/infrastructures that may not be available in their own institution. STSMs are particularly intended for Early Stage Researchers (ESRs), i.e., young scientists who obtained their PhD since no more than 8 years when they started to be involved in the Action. Duration of a standard STSM can be from 5 to 90 days and the research activities carried out during this short stay shall specifically contribute to the achievement of the scientific objectives of the supporting COST Action. The first STSM was carried out by Lara Pajewski, visiting Antonis Giannopoulos at The University of Edinburgh (United Kingdom). The research activities focused on the electromagnetic modelling of Ground Penetrating Radar (GPR) responses to complex targets. A set of test scenarios was defined, to be used by research groups participating to Working Group 3 of COST Action TU1208, to test and compare different electromagnetic forward- and inverse-scattering methods; these scenarios were modelled by using the well-known finite-difference time-domain simulator GprMax. New Matlab procedures for the processing and visualization of GprMax output data were developed. During the second STSM, Iraklis Giannakis visited Lara Pajewski at Roma Tre University (Italy). The study was concerned with the numerical modelling of horn antennas for GPR. An air-coupled horn antenna was implemented in GprMax and tested in a realistically

  18. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  19. Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars

    Science.gov (United States)

    Carter, L.M.; Campbell, B.A.; Watters, T.R.; Phillips, R.J.; Putzig, N.E.; Safaeinili, A.; Plaut, J.J.; Okubo, C.H.; Egan, A.F.; Seu, R.; Biccari, D.; Orosei, R.

    2009-01-01

    The SHARAD (shallow radar) sounding radar on the Mars Reconnaissance Orbiter detects subsurface reflections in the eastern and western parts of the Medusae Fossae Formation (MFF). The radar waves penetrate up to 580 m of the MFF and detect clear subsurface interfaces in two locations: west MFF between 150 and 155?? E and east MFF between 209 and 213?? E. Analysis of SHARAD radargrams suggests that the real part of the permittivity is ???3.0, which falls within the range of permittivity values inferred from MARSIS data for thicker parts of the MFF. The SHARAD data cannot uniquely determine the composition of the MFF material, but the low permittivity implies that the upper few hundred meters of the MFF material has a high porosity. One possibility is that the MFF is comprised of low-density welded or interlocked pyroclastic deposits that are capable of sustaining the steep-sided yardangs and ridges seen in imagery. The SHARAD surface echo power across the MFF is low relative to typical martian plains, and completely disappears in parts of the east MFF that correspond to the radar-dark Stealth region. These areas are extremely rough at centimeter to meter scales, and the lack of echo power is most likely due to a combination of surface roughness and a low near-surface permittivity that reduces the echo strength from any locally flat regions. There is also no radar evidence for internal layering in any of the SHARAD data for the MFF, despite the fact that tens-of-meters scale layering is apparent in infrared and visible wavelength images of nearby areas. These interfaces may not be detected in SHARAD data if their permittivity contrasts are low, or if the layers are discontinuous. The lack of closely spaced internal radar reflectors suggests that the MFF is not an equatorial analog to the current martian polar deposits, which show clear evidence of multiple internal layers in SHARAD data. ?? 2008 Elsevier Inc.

  20. Adapting Ground Penetrating Radar for Non-Destructive In-Situ Root and Tuber Assessment

    Science.gov (United States)

    Teare, B. L.; Hays, D. B.; Delgado, A.; Dobreva, I. D.; Bishop, M. P.; Lacey, R.; Huo, D.; Wang, X.

    2017-12-01

    Ground penetrating radar (GPR) is a rapidly evolving technology extensively used in geoscience, civil science, archeology, and military, and has become a novel application in agricultural systems. One promising application of GPR is for root and tuber detection and measurement. Current commercial GPR systems have been used for detection of large roots, but few studies have attempted to detect agronomic roots, and even fewer have attempted to measure and quantify the total root mass. The ability to monitor and measure root and tuber mass and architecture in an agricultural setting would have far-reaching effects. A few of these include the potential for breeding higher yielding root and tuber crops, rapid bulking roots, discovery of crops with greater carbon sequestration, discovery of plant varieties which have greater ability to stabilize slopes against erosion and slope failure, and drought tolerant varieties. Despite the possible benefits and the current maturity of GPR technology, several challenges remain in the attempt to optimize its use for root and tuber detection. These challenges center on three categories: spatial resolution, data processing, and field-deployable hardware configuration. This study is centered around tuber measurement and its objectives are to i) identify ideal antenna array configurations, frequency, and pulse density; ii) develop novel processing techniques which leverage powerful computer technologies to provide highly accurate measurements of detected features; and iii) develop a cart system which is appropriate for agricultural fields and non-destructive sampling. Already, a 2 GHz multiarray antenna has been identified as an optimal system for tuber detection. Software and processing algorithm development is ongoing, but has already shown improvement over current software offerings. Recent field activity suggest that carts should be width adjustable and sport independent suspension systems to maintain antenna orientation.