WorldWideScience

Sample records for pefp 3mev rfq

  1. The Digital Feedback RF Control System of the RFQ and DTL1 for 100 MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Cho, Yong-Sub; Han, Yeung-Jin; Kang Heung Sik; Kim, Sung-Chul; Kwon, Hyeok-Jung; Park, In-Soo; Tae Kim, Do; Tae Seol, Kyung

    2005-01-01

    The 100 MeV Proton linear accelerator (Linac) for the PEFP (Proton Engineering Frontier Project) will include 1 RFQ and 1 DTL1 at 350 MHz as well as 7 DTL2 cavities at 700 MHz. The low level RF system with the digital feedback RF control provides the field control to accelerate a 20mA proton beam from 50 keV to 20 MeV with a RFQ and a DTL1 at 350M Hz. The FPGA-based digital feedback RF control system has been built and is used to control cavity field amplitude within ± 1% and relative phase within ± 1°. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the digital feedback RF control system will be described with the performance test results.

  2. RFQ preinjectors

    Science.gov (United States)

    Alessi, J. G.

    1989-04-01

    The radio frequency quadrupole (RFQ) accelerator has become the method of choice as a preinjector for many proton and heavy ion linacs injecting into synchrotrons, and can also be used for injection directly into small synchrotrons. In addition to its use in most new preinjector lines being built or proposed, several laboratories have replaced Cockcroft-Wallon accelerators with RFQs. Among the advantages of the RFQ are its simplicity and reliability, compact size, and relatively low cost. The fact that the ion source is located nearly at ground potential is also very advantageous. A survey of operating RFQ preinjectors is given, as well as the status of some RFQ preinjectors which are presently under development.

  3. RFQ preinjectors

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1988-01-01

    The Radio Frequency Quadrupole (RFQ) accelerator has become the method of choice as a preinjector for many proton and heavy ion linacs injecting into synchrotrons, and can be used for injection directly into small synchrotrons. In addition to its use in most new preinjector lines being built or proposed, several laboratories have replaced Cockcroft-Walton accelerators with RFQs. Among the advantages of the RFQ are its simplicity and reliability, compact size, and relatively low cost. The fact that the ion source is located nearly at ground potential is also very advantageous. A survey of operating RFQ preinjectors is given, as well as the status of some RFQ preinjectors which are presently under development. 25 refs

  4. Electrical system design status of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Taek; Mun, Kyeong Jun; Kim, Jun Yeon [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Proton Engineering Frontier Project (PEFP) has been developing a 100 MeV proton linear accelerator. Also, PEFP has been designing the Proton Accelerator Research Center in Gyeongju. In site, we installed GIS (Gas Insulated Switchgear) to receive 154kV electric power and 154kV/3.3kV transformer. For the energy saving scheme, we are now installing solar power system, automatic lighting control system and maximum control power system of PEFP. In this paper, we described electrical power system of PEFP.

  5. Heat Load and Cooling Configurations of the PEFP DTL

    International Nuclear Information System (INIS)

    Kim, Han Sung; Kwon, Hyeok Jung; Cho, Yong Sub

    2012-01-01

    A 100 MeV proton linac is under development for Proton Engineering Frontier Project (PEFP). It consists of a 50 keV injector, 3 MeV RFQ and 100 MeV DTL. The accelerated proton beam can be extracted at 20 MeV and 100 MeV by using bending magnets. Therefore, the DTL for PEFP can be divided into two sections; one for 20 MeV DTL and the other is 100 MeV DTL. The 20 MeV DTL is composed of 4 tanks and driven by a single klystron. Duty factor of the 20 MeV section is 24%. To accelerate the beam from 20 MeV to 100 MeV, we use 7 tanks, which are driven by 7 independent RF sources. Duty factor of the 100 MeV section is reduced to 8%. From the viewpoint of the heat load, there are several differences between the 20 MeV section and 100 MeV section. First, as mentioned before, the duty factors are different. Second, the accelerating gradient is changed from 1.3 MV/m for 20 MeV section to 2.58 MV/m for 100 MeV section. Third, the types of the electroquadrupole magnets inside each drift tube are different. For the 20 MeV section, we used the pool type quadrupole magnets made of enamel wires due to the limited space. The hollow conductor type quadrupole magnets are used for 100 MeV section. The heat generations of each quadrupole magnet are 1.5 kW and 0.4 kW for 20 MeV section and 100 MeV section, respectively. Detailed heat load of DTL and the configuration of cooling loop are presented in this paper

  6. Heat Load and Cooling Configurations of the PEFP DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A 100 MeV proton linac is under development for Proton Engineering Frontier Project (PEFP). It consists of a 50 keV injector, 3 MeV RFQ and 100 MeV DTL. The accelerated proton beam can be extracted at 20 MeV and 100 MeV by using bending magnets. Therefore, the DTL for PEFP can be divided into two sections; one for 20 MeV DTL and the other is 100 MeV DTL. The 20 MeV DTL is composed of 4 tanks and driven by a single klystron. Duty factor of the 20 MeV section is 24%. To accelerate the beam from 20 MeV to 100 MeV, we use 7 tanks, which are driven by 7 independent RF sources. Duty factor of the 100 MeV section is reduced to 8%. From the viewpoint of the heat load, there are several differences between the 20 MeV section and 100 MeV section. First, as mentioned before, the duty factors are different. Second, the accelerating gradient is changed from 1.3 MV/m for 20 MeV section to 2.58 MV/m for 100 MeV section. Third, the types of the electroquadrupole magnets inside each drift tube are different. For the 20 MeV section, we used the pool type quadrupole magnets made of enamel wires due to the limited space. The hollow conductor type quadrupole magnets are used for 100 MeV section. The heat generations of each quadrupole magnet are 1.5 kW and 0.4 kW for 20 MeV section and 100 MeV section, respectively. Detailed heat load of DTL and the configuration of cooling loop are presented in this paper

  7. Monitor and Control for PEFP System using EPICS

    International Nuclear Information System (INIS)

    Choi, Hyun Mi; Hong, I. S.; Song, Y. G.; Cho, Y. S.

    2005-01-01

    The construction of PEFP project whose final objective is to build 100 Mev proton accelerator started in 2002 and expected to finish in 2012. In 2005, we have performed 20mA proton beam of 20Mev. For developing the control systems of the 20Mev accelerator as well as 100 Mev accelerator, we chose EPICS(Experimental Physics and Industrial Control System) as the most suitable tool. We have studied EPICS applications for various situation and as the application we developed vacuum control system using EPICS base3.14.4 as the core software and EPICS extensions (e.g., EDM(Extensible Display Manager), MEDM(Motif Editor and Display Manager) etc.) as the user interface. There are a number of projects using EPICS for a broad spectrum of applications. EPICS began as a collaboration between Argonne National Laboratory and Los Alamos National Laboratory in 1991, building on work that was initially done at the ground test Accelerator. It is now running on accelerators that have as many as 180 distributed front-end controllers and control rooms with 20 consoles and a gateway to make system parameters available to offices, web site, and other remote control stations. It is also used at single controller and one workstation systems. We use the EPICS tool kit as a foundation of the control system. We developed a vacuum monitor, RFQ, DTL Turbo pump control system for use Ethernet Multi Serial Deice Severs on PEFP control system. The control system now shows stable and reliable characteristics enough to meet our control requirement. However, the control system is continuously being upgraded to accommodate additional control requirements such as vacuum device control

  8. Tuner Design for PEFP Superconducting RF Cavities

    International Nuclear Information System (INIS)

    Tang, Yazhe; An, Sun; Zhang, Liping; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity will be used to accelerate a proton beam after 100 MeV at 700 MHz in a linac of the Proton Engineering Frontier Project (PEFP) and its extended project. In order to control the SRF cavity's operating frequency at a low temperature, a new tuner has been developed for the PEFP SRF cavities. Each PEFP superconducting RF cavity has one tuner to match the cavity resonance frequency with the desired accelerator operating frequency; or to detune a cavity frequency a few bandwidths away from a resonance, so that the beam will not excite the fundamental mode, when the cavity is not being used for an acceleration. The PEFP cavity tuning is achieved by varying the total length of the cavity. The length of the cavity is controlled differentially by tuner acting with respect to the cavity body. The PEFP tuner is attached to the helium vessel and drives the cavity Field Probe (FP) side to change the frequency of the cavity

  9. Electrical Ground System Design of PEFP

    International Nuclear Information System (INIS)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon

    2010-01-01

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  10. Electrical Ground System Design of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  11. Software of the System Protection for the PEFP 20MeV Proton Linac

    International Nuclear Information System (INIS)

    Song, Young-Gi; Hong, In-Seok; Cho, Yong-Sub

    2007-01-01

    A 20 MeV proton linear accelerator (linac) has been developed at Proton Engineering Frontier Project (PEFP). A 20 MeV linac consists of 50 keV proton injector, 3 MeV radio frequency quadrupole (RFQ), and 20 MeV drift tube linac (DTL). PEFP control system is developed with several sub-systems (e.g. machine control, diagnostic control, timing control, and interlock systems). These systems have each EPICS based control system which provides a network-based real time distributed control. For stable and harmonic operation, we had developed sequential logic by using state notation language (SNL) and database records with alarm fields for warning signal. The various control system can drop a transmission rate of the control network traffic. We need to manage control signals by a control network gateway and protect values of control servers by security management. In this paper, the stabilization methods of the control signals are described and the results of the stabilized signals are presented

  12. Design and performance test of a thermal tuning system for the PEFP DTL

    International Nuclear Information System (INIS)

    Kim, Kyung Ryul; Park, Jun; Kim, Hyung Gyun; Kim, Hee Seob; Yoon, Chong Chul; Son, Yoon Gyu; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2010-01-01

    The resonance control cooling system (RCCS) is the thermal tuning system for controlling the resonance frequency, 350 MHz, of the drift tube linac (DTL) in the Proton Engineering Frontier Project (PEFP). The PEFP uses 12 separate RCCS water pumping skids to control the resonance of the 20-MeV DTL (DTL21-24), 100-MeV DTL (DTL101-107) and the radio frequency quadrupole (RFQ) accelerating structures. The nominal operating inlet water temperature of the RCCS is 27 .deg. C and should be adjustable depending on the operational RF duty modes (21 to 33 .deg. C) with a stability of less than 0.1 .deg. C. In this work, we completed fabrication of the RCCS22-24 and the RCCS101-103. This paper discusses the fabrication, performance test, and analysis of the RCCS water pumping skids. First, the fabrication of the RCCS for the 20-MeV DTL is discussed. Second, the layout of the water pumping skid, including the selection of piping components, instrumentation and controller hardware and software, is presented. Third, the performance test of the RCCS for the 20-MeV DTL, including the continuous driving test, the function test of each components and temperature control test are achieved. Finally, empirical pressure and flow rate data from the RCCS22 water pumping tests are used to verify the design and numerical modeling of the RCCS101-103.

  13. Cw RFQ development

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1985-01-01

    A review of research and development related to fabricating and operating radio-frequency quadrupole (RFQ) structures at 100% duty cycle [continuous wave (cw)] is presented, with emphasis on work at the Los Alamos National Laboratory, the Chalk River Nuclear Laboratories, and the University of Frankfurt. Activities in other areas that have an impact on operating cw RFQ systems will be highlighted. 27 refs

  14. RFQ1 diagnostic devices

    International Nuclear Information System (INIS)

    Chidley, B.G.; Arbique, G.M.; de Jong, M.S.; McMichael, G.E.; Michel, W.L.; Smith, B.H.

    1991-01-01

    The diagnostic devices in use on RFQ1 will be described. They consist of a double-slit emittance-measuring unit, a 45 degree deflection energy-analysis magnet, parametric current transformers, optical beam sensors, beam-stop current monitors, and an x-ray end-point analyzer. All of these devices are able to operate up to the full output current of RFQ1 (75 mA cw at 0.6 MeV)

  15. RFQ development at Los Alamos

    International Nuclear Information System (INIS)

    Wangler, T.P.; Crandall, K.R.; Stokes, R.H.

    1982-01-01

    The basic principles of the radio-frequency quadrupole (RFQ) linac are reviewed and a summary of past and present Los Alamos work is presented. Some beam-dynamics effects, important for RFQ design, are discussed. A design example is shown for xenon and a brief discussion of low-frequency RFQ structures is given

  16. RFQ development at LBL

    International Nuclear Information System (INIS)

    Abbott, S.; Brodzik, D.; Gough, R.A.; Howard, D.; Lancaster, H.; Mac Gill, R.; Rovanpera, S.; Schneider, H.

    1983-01-01

    The radio frequency quadrupole (RFQ) is a structure which can efficiently focus, bunch and accelerate low velocity ion beams. It has many features which make it particularly attractive for applications in the biomedical and nuclear sciences. There are two projects in progress at LBL where the incorporation of heavy ion RFQ technology offers substantial benefits: in the upgrade of the Bevatron local injector, and in the design of a dedicated heavy ion medical accelerator. In order to meet the requirements of these two important applications, a 200 MHz RFQ structure has been designed for ions with charge to mass ratios as low as 0.14, and a low RF power scale model has been built and tested. Construction of the high power model has begun. The status of this project is reviewed and a summary of technical specifications given

  17. RFQ development at INS

    International Nuclear Information System (INIS)

    Nakanishi, T.; Ueda, N.; Arai, S.

    1984-01-01

    The INS RFQ linac 'LITL' (Lithium Ion Test Linac) with a four vane structure is driven with a single loop coupler, and accelerates ions with q/A >= 1/7 from 5 to 138 keV/u through the vane length of 1.22 m. The acceleration tests show the LITL has acceptances predicted by a computer simulation. Operation of the machine is easy and stable. On the basis of the experience with the successful operation, we are designing and constructing a longer RFQ with cw operation. The 100 MHz RFQ linac of --7 m long accelerates ions with q/A = 1/7 to 800 keV/u. The machine consists of four tanks with vanes of 1.8 m. A computer simulation shows that misalignments within 0.1 mm of the beam axes of the tanks scarecely affect particle motions. (author)

  18. Development of EPICS Input Output Controller and User Interface for the PEFP Low Level RF Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song, Young Gi; Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    The Low-Level RF (LLRF) control system of the Proton Engineering Frontier Project (PEFP) was developed for handling the driving frequency for Quadrupole (RFQ) and the Draft Tube Linac (DTL) cavities in 2006. The RF amplitude and phase of the accelerating field were controlled within 1% and 1 degree by stability requirements, respectively. Operators have been using the LLRF control system under the windows based text console mode as an operator interface. The LLRF control system could not be integrated with Experimental Physics Industrial Control System (EPICS) Input Output Controllers (IOC) for each subsection of PEFP facility. The main objective of this study is to supply operators of the LLRF control system with user friendly and convenient operating environment. The new LLRF control system is composed of a Verse Module Eurocard (VME) baseboard, a PCI Mezzanine Card (PMC), Board Support Package (BSP), EPICS software tool and a Real-Time Operating System (RTOS) VxWorks. A test with a dummy cavity of the new LLRF control system shows that operators can control and monitor operation parameters for a desired feedback action by using EPICS Channel Access (CA).

  19. Development of EPICS Input Output Controller and User Interface for the PEFP Low Level RF Control System

    International Nuclear Information System (INIS)

    Song, Young Gi; Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub

    2010-01-01

    The Low-Level RF (LLRF) control system of the Proton Engineering Frontier Project (PEFP) was developed for handling the driving frequency for Quadrupole (RFQ) and the Draft Tube Linac (DTL) cavities in 2006. The RF amplitude and phase of the accelerating field were controlled within 1% and 1 degree by stability requirements, respectively. Operators have been using the LLRF control system under the windows based text console mode as an operator interface. The LLRF control system could not be integrated with Experimental Physics Industrial Control System (EPICS) Input Output Controllers (IOC) for each subsection of PEFP facility. The main objective of this study is to supply operators of the LLRF control system with user friendly and convenient operating environment. The new LLRF control system is composed of a Verse Module Eurocard (VME) baseboard, a PCI Mezzanine Card (PMC), Board Support Package (BSP), EPICS software tool and a Real-Time Operating System (RTOS) VxWorks. A test with a dummy cavity of the new LLRF control system shows that operators can control and monitor operation parameters for a desired feedback action by using EPICS Channel Access (CA).

  20. RFQ modeling computer program

    International Nuclear Information System (INIS)

    Potter, J.M.

    1985-01-01

    The mathematical background for a multiport-network-solving program is described. A method for accurately numerically modeling an arbitrary, continuous, multiport transmission line is discussed. A modification to the transmission-line equations to accommodate multiple rf drives is presented. An improved model for the radio-frequency quadrupole (RFQ) accelerator that corrects previous errors is given. This model permits treating the RFQ as a true eight-port network for simplicity in interpreting the field distribution and ensures that all modes propagate at the same velocity in the high-frequency limit. The flexibility of the multiport model is illustrated by simple modifications to otherwise two-dimensional systems that permit modeling them as linear chains of multiport networks

  1. Time Stamp Synchronization of PEFP Distributed Control Systems

    International Nuclear Information System (INIS)

    Song, Young Gi; An, Eun Mi; Kwon, Hyeok Jung; Cho, Yong Sub

    2010-01-01

    Proton Engineering Frontier Project (PEFP) proton linac consists of several types of control systems, such as soft Input Output Controllers (IOC) and embedded IOC based on Experimental Physics Industrial Control System (EPICS) for each subsection of PEFP facility. One of the important factors is that IOC's time clock is synchronized. The synchronized time and time stamp can be achieved with Network Time Protocol (NTP) and EPICS time stamp record without timing hardware. The requirement of the time accuracy of IOCs is less than 1 second. The main objective of this study is to configure a master clock and produce Process Variable (PV) time stamps using local CPU time synchronized from the master clock. The distributed control systems are attached on PEFP control network

  2. Current status of construction license of PEFP

    International Nuclear Information System (INIS)

    Kim, J. Y.; Cho, J. S.; Min, Y. S.; Nam, J. M.; Jeon, G. P.; Park, S. S.; Jo, J. H.; Song, I. T.

    2012-01-01

    Since 2010 August, PEFP(Proton Engineering Frontier Project)'s Proton Accelerator Research Center has been under construction so far. Generally, in advance of construction startup, many kinds of licenses should be acquired along with the types of construction works. To acquire a license in time, each item should meet the standard by the related regulation, including not only procedural but also content aspect. In the advent of internet era, electronic government system has been adopted in many governmental functions: So is the national construction license acquisition system. Owing to the system, both approval and documentation functions in licensing are integrated in online computer network which provide us simplification in process and easy accessibility to license data. However, aside from these construction licenses, other types of licenses still remain separately managed: Machinery, electric facilities, and so on. Moreover, all the licenses have the priority order and take legal term in processing. So, to avoid any time delay in license acquisition, we organized license hierarchy and found out the priority among them. Thereafter, according to their legal term in approval and acquisition, whole license acquisition schedule was arranged and we completed all the necessary licenses acquisition in time In this study, we summarize the current status of license acquisition on Proton Accelerator Research Center Construction, and manifest how they have been and will be managed systematically

  3. Current status of construction license of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.; Cho, J. S.; Min, Y. S.; Nam, J. M.; Jeon, G. P.; Park, S. S.; Jo, J. H.; Song, I. T. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Since 2010 August, PEFP(Proton Engineering Frontier Project)'s Proton Accelerator Research Center has been under construction so far. Generally, in advance of construction startup, many kinds of licenses should be acquired along with the types of construction works. To acquire a license in time, each item should meet the standard by the related regulation, including not only procedural but also content aspect. In the advent of internet era, electronic government system has been adopted in many governmental functions: So is the national construction license acquisition system. Owing to the system, both approval and documentation functions in licensing are integrated in online computer network which provide us simplification in process and easy accessibility to license data. However, aside from these construction licenses, other types of licenses still remain separately managed: Machinery, electric facilities, and so on. Moreover, all the licenses have the priority order and take legal term in processing. So, to avoid any time delay in license acquisition, we organized license hierarchy and found out the priority among them. Thereafter, according to their legal term in approval and acquisition, whole license acquisition schedule was arranged and we completed all the necessary licenses acquisition in time In this study, we summarize the current status of license acquisition on Proton Accelerator Research Center Construction, and manifest how they have been and will be managed systematically.

  4. RFQ simulation code

    International Nuclear Information System (INIS)

    Lysenko, W.P.

    1984-04-01

    We have developed the RFQLIB simulation system to provide a means to systematically generate the new versions of radio-frequency quadrupole (RFQ) linac simulation codes that are required by the constantly changing needs of a research environment. This integrated system simplifies keeping track of the various versions of the simulation code and makes it practical to maintain complete and up-to-date documentation. In this scheme, there is a certain standard version of the simulation code that forms a library upon which new versions are built. To generate a new version of the simulation code, the routines to be modified or added are appended to a standard command file, which contains the commands to compile the new routines and link them to the routines in the library. The library itself is rarely changed. Whenever the library is modified, however, this modification is seen by all versions of the simulation code, which actually exist as different versions of the command file. All code is written according to the rules of structured programming. Modularity is enforced by not using COMMON statements, simplifying the relation of the data flow to a hierarchy diagram. Simulation results are similar to those of the PARMTEQ code, as expected, because of the similar physical model. Different capabilities, such as those for generating beams matched in detail to the structure, are available in the new code for help in testing new ideas in designing RFQ linacs

  5. Engineering Design of a Drift Tube for PEFP DTL II

    International Nuclear Information System (INIS)

    Kim, Yong Hwan; Kwon, Heok Jung; Kim, Kui Young; Kim, Han Sung; Seol, Keong Tae; Song, Young Gi; Jang, Ji Ho; Hong, In Seok; Choi, Hyun Mi; Han, Sang Hyo; Cho, Yong Sub

    2005-01-01

    As the second stage of the PEFP(Proton Engineering Frontier Project) whose final goal is to develop 100MeV, 20mA proton accelerator, Engineering design of the DTL(Drift Tube Linac) II is in proceeding. In this paper, the details of design of the DT(Drift Tube) and EQM(Electro-Quadrupole Magnet) will be reported

  6. RFQ'S in research and industry

    International Nuclear Information System (INIS)

    Staples, J.

    1986-06-01

    The Radio Frequency Quadrupole accelerator (RFQ) has now matured to the point where it has found wide application. Many machines are in use as part of a synchrotron injector chain with others in unique and unusual applications. Several new RFQ's are now under construction or operating since the last survey. They are of various configurations, making use of various techniques of fabrication and field stabilization. Duty factors are being pushed up, new beam dynamics design techniques are to be used and emittance blow up mechanisms are better understood. Finally, RFQ's are moving from the laboratory to the commercial marketplace

  7. Introduction to RFQ session

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1984-01-01

    It has been close to 15 years now since our colleagues I.M. Kapchinskii and V.A. Teplyakov in the USSR conceived their spatially uniform-focusing idea in the form of practical circuits for focusing and accelerating low-velocity ion beams using electrostatic fields. Almost seven years ago, J.J. Manca whetted our curiosity at Los Alamos by pointing out from Kapchinskii and Teplyakov's work a structure that could capture nearly 100% of an ion beam injected at a few tens of keV/nucleon and accelerate it with little emittance growth to a few MeV. Now the accelerator community at large has realized that a revolution has taken place, and almost everyone is involved. At the 1981 Linac Conference at Bishop's Lodge in Santa Fe, about 17 papers dealt with aspects of the radio-frequency quadrupole (RFQ) structure, as it has also come to be known. This is a brief review of the technology. 2 references, 9 figures

  8. Baking Arithmetic and Error Analyses for PEFP Fundamental Power Couplers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liping; An, Sun; Tang, Yazhe; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The Proton Engineering Frontier Project (PEFP) is considering developing and using SRF technology to accelerate a proton beam at 700 MHz in its present project and its extended project (PEP). The first section of the PEFP SRF linac (SCL) is composed of low-beta cryomodules. Each cryomodule has three 5-cell cavities and each cavity has one fundamental power coupler (FPC). Before the high power RF processing, each FPC needs to be baked out for 24 hours at 200 degrees Celsius ( .deg. C). The whole control system is described in reference, in this system, the temperature in the baking-box need to be changed according to three straight lines with different slope. This paper described how we can make the temperature of the baking-box changed according to the required values.

  9. Baking Arithmetic and Error Analyses for PEFP Fundamental Power Couplers

    International Nuclear Information System (INIS)

    Zhang, Liping; An, Sun; Tang, Yazhe; Cho, Yong Sub

    2009-01-01

    The Proton Engineering Frontier Project (PEFP) is considering developing and using SRF technology to accelerate a proton beam at 700 MHz in its present project and its extended project (PEP). The first section of the PEFP SRF linac (SCL) is composed of low-beta cryomodules. Each cryomodule has three 5-cell cavities and each cavity has one fundamental power coupler (FPC). Before the high power RF processing, each FPC needs to be baked out for 24 hours at 200 degrees Celsius ( .deg. C). The whole control system is described in reference, in this system, the temperature in the baking-box need to be changed according to three straight lines with different slope. This paper described how we can make the temperature of the baking-box changed according to the required values

  10. SRF LINAC for future extension of the PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  11. SRF LINAC for future extension of the PEFP

    International Nuclear Information System (INIS)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub

    2014-01-01

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  12. Commissioning of the RFQ1 injector

    International Nuclear Information System (INIS)

    Arbique, G.M.; Sheikh, J.Y.; Taylor, T.; Birney, L.F.; Davidson, A.D.; Wills, J.S.C.

    1987-01-01

    The RFQ1 accelerator is being developed at Chalk River to test the limits of the cw RFQ technology. A 50 kV injector has been built and is now being commissioned as the first phase of the program. This paper describes some of the innovative features of the RFQ1 injector and reports on initial operating experience

  13. Architecture and Civil Design Status of the Proton Accelerator Research Center in PEFP

    International Nuclear Information System (INIS)

    Nam, J. M.; Kim, J. Y.; Mun, K. J.; Jeon, G. P.; Cho, J. S.; Lee, S. K.; Min, Y. S.; Joo, H. G.

    2009-01-01

    PEFP (Proton Engineering Frontier Project) is scheduled to administrate the conventional facilities design with Gyeongju and complement its unfit points. When construction work starts according to the construction schedule, a field work office will be installed to supervise the Proton Accelerator Conventional Facilities Construction. In this paper, we describe the geological investigation procedure for the construction of the proton accelerator conventional facilities of PEFP. By the geological investigation, data for the reasonable and economic construction work, such as stratum structure and geotechnical characteristics. In Site Plot Plan for PEFP, we classified center as 2 groups such as main facilities and support facilities. We also designed access road of the Proton Accelerator Research Center of PEFP. In architectural design for PEFP, we described the design procedure of the buildings and landscape architectures of the Proton Accelerator Research Center

  14. RFQ pole-tip construction

    International Nuclear Information System (INIS)

    Crandall, K.R.; Stovall, J.E.

    1981-01-01

    The success of the radio-frequency quadrupole (RFQ) proof-of-principle (POP) tests conducted in 1980 at Los Alamos have essentially guaranteed that the RFQ linac will be used in many accelerator projects soon. Several RFQs are already under construction at Los Alamos, and we expect to be designing and machining the vanes for several RFQs to be built at other installations. The technique for machining the vanes for the POP RFQ was developed by Williams and Potter. While retaining their basic approach, we have modified their technique for generating the data required by the milling machine from the parameters defining the vane shapes. The objective of this exercise has been to develop a generalized fabrication procedure that could be used in commercial machine shops

  15. Rfq With An Increased Energy Gain

    CERN Document Server

    Kapin, Valery

    2004-01-01

    The radio-frequency quadrupole (RFQ) linacs are widely used in the initial part of ion accelerators. For industrial and medical applications, the size of RFQ linac as well as the construction and operation costs are important. Therefore, there is a interest to design a compact RFQ linac. In this paper, RFQ linac is studied with the aim of increasing the energy gain. Parameters of a conventional RFQ linac are usually chosen to ensure beam acceleration and stability, providing the autophasing and strong quadrupole focusing in the longitudinal and transverse directions simultaneously. As results, the accelerating efficiency of RFQ is limited by the transverse defocusing effect, and its value is below of a maximum value, which can be provided by RFQ electrodes. To facilitate these limitations, the well-known idea of alternating phase focusing (APF) is utilized. The APF effects boost transverse focusing, allowing to increase an accelerating efficiency, electrode voltage and decreasing average value of the synchron...

  16. CW RFQ fabrication and engineering

    International Nuclear Information System (INIS)

    Schrage, D.; Young, L.; Roybal, P.

    1998-01-01

    The design and fabrication of a four-vane RFQ to deliver a 100 mA CW proton beam at 6.7 MeV is described. This linac is an Oxygen-Free Electrolytic (OFE) copper structure 8 m in length and was fabricated using hydrogen furnace brazing as the joining technology

  17. New trends in RFQ-development

    International Nuclear Information System (INIS)

    Schempp, A.

    1987-01-01

    New trends in RFQ-development depending on the design goals are presented. Designs for heavy ion RFQs and for highly charged light ions from EBIS source are given. The use of the RFQ to accelerate beams, to accelerate very heavy clusters is shown. The application of the procedure funnel beams with RFQs is outlined. The beam dynamic parameters of the 4-vane RFQ for HERA are given

  18. The circular RFQ storage ring

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1998-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features used in a conventional storage ring and an ion trap, and is basically a linear RFQ bend on itself. In summary the advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  19. The Circular RFQ Storage Ring

    International Nuclear Information System (INIS)

    Ruggiero, A. G.

    1999-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features of conventional storage rings and ion traps, and is basically a linear RFQ bent on itself. The advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  20. A cw 4-rod RFQ linac

    International Nuclear Information System (INIS)

    Fujisawa, Hiroshi

    1994-01-01

    A cw 4-rod RFQ linac system has been designed, constructed, and tested as an accelerator section of a MeV-class ion implanter system. The tank diameter is only 60 cm for 34 MHz operating frequency. An equally spaced arrangement of the RFQ electrode supporting plates is proved to be suitable for a low resonant frequency 4-rod RFQ structure. The RFQ electrode cross section is not circular but rectangular to make the handling and maintenance of the electrodes easier. The machining of the electrode is done three dimensionally. Second order corrections in the analyzing magnet of the LEBT (Low Energy Beam Transport) section assure a better transmission through and the matching to the RFQ. A new approach is introduced to measure the rf characteristics of the 4-rod RFQ. This method requires only a few capacitors and a network analyzer. Both the rf and thermal stability of the 4-rod RFQ are tested up to cw 50 kW. Beam experiments with several ions confirm the acceleration of beams to the goal energy of 83 keV/u. The ion beam intensities obtained at the RFQ output for He + , N 2+ , and C + are 32, 13, and 220 pμA, respectively. The measured beam transmissions of >80% agree with the PARMTEQ calculations. The ion implantation method also gives definitive information on the energies of an RFQ output beam. ((orig.))

  1. 4-rod RFQ linac for ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Hiroshi; Hamamoto, Nariaki; Inouchi, Yutaka [Nisshin Electric Co. Ltd., Kyoto (Japan)

    1997-03-01

    A 34 MHz 4-rod RFQ linac system has been upgraded in both its rf power efficiency and beam intensity. The linac is able to accelerate in cw operation 0.83 mA of a B{sup +} ion beam from 0.03 to 0.91 MeV with transmission of 61 %. The rf power fed to the RFQ is 29 kW. The unloaded Q-value of the RFQ has been improved approximately 61 % to 5400 by copper-plating stainless steel cooling pipes in the RFQ cavity. (author)

  2. Integration of the HVCM PLC into the PEFP Control System

    International Nuclear Information System (INIS)

    Song, Young Gi; Jang, Ji Ho; Kwon, Hyeok Jung; Cho, Yong Sub

    2011-01-01

    The High Voltage Converter Modulators (HVCM) for the 100-MeV accelerator was installed to drive the 20-MeV linac. There are two klystrons in the 20-MeV linac and one modulator was used to drive two klystrons simultaneously. The HVCM for the 20-MeV linac area in Korea Atomic Energy Research Institute (KAERI) is shown in Fig. 1. We were faced with the necessity of integrating Programmable Logic Controllers (PLCs) for the HVCM into the Proton Engineering Frontier Project (PEFP) control system. At the PEFP, Experimental Physics and Industrial Control System (EPICS) has become the most widely used solution for building control systems for 100MeV proton accelerator. The EPICS as a standard development tool is a distributed architecture that provides several solutions such as independent programming tools for operating system, operator interface tools, and archiving tools. Although EPICS is used directly in our control system, HVCMs were delivered with the Allen-Bradley ControlLogix as a PLC. The industrial PLC has been verified for safety systems. We need to connect an interface from our EPICS control system to AB-PLC using Ethernet/IP (ControlNet over Ethernet) protocol over Ethernet. In this paper, we will present the communication protocol and EPICS IOC installation for the EPICS based PLC control system

  3. Radio-frequency quadrupole, RFQ-1

    CERN Document Server

    CERN PhotoLab

    1982-01-01

    In 1983, RFQ-1 replaced the Cockcroft-Walton generator for the acceleration of protons and H- to 520 keV. This picture shows the RFQ in a test tank (not vacuum-fit) for RF tests using the bead-pull method. See also 8202557 and 8202559. For the final version and more details, see 8303019 and 8303511.

  4. Radio-frequency quadrupole, RFQ-1

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    In 1983, RFQ-1 replaced the Cockcroft-Walton generator for the acceleration of protons and H- to 520 keV. This picture shows the RFQ in a test tank (not vacuum-fit) for RF tests using the bead-pull method. See also 8202557 and 8202558. For the final version and more details, see 8303019 and 8303511.

  5. Radio-frequency quadrupole, RFQ-1

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    In 1983, RFQ-1 replaced the Cockcroft-Walton generator for the acceleration of protons and H- to 520 keV. This picture shows the RFQ in a test-tank (not vacuum-fit) for RF tests using the bead-pull method. See also 8202558 and 8202559. For the final version and more details, see 8303019 and 8303511.

  6. Low-charge-state RFQ injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    Preliminary design work was done for a short, normally-conducting RFQ entrance section for a low-charge-state linac. Early results indicate that a low- frequency (12 MHz) RFQ, operated on a high-voltage platform, and injected with a pre-bunched beam, can provide ATLAS quality beams of ions of charge-to-mass ratio less than 1/132.

  7. RFQ scaling-law implications and examples

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1986-01-01

    We demonstrate the utility of the RFQ scaling laws that have been previously derived. These laws are relations between accelerator parameters (electric field, fr frequency, etc.) and beam parameters (current, energy, emittance, etc.) that act as guides for designing radio-frequency quadrupoles (RFQs) by showing the various tradeoffs involved in making RFQ designs. These scaling laws give a unique family of curves, at any given synchronous particle phase, that relates the beam current, emittance, particle mass, and space-charge tune depression with the RFQ frequency and maximum vane-tip electric field when assuming equipartitioning and equal longitudinal and transverse tune depressions. These scaling curves are valid at any point in any given RFQ where there is a bunched and equipartitioned beam. We show several examples for designing RFQs, examine the performance characteristics of an existing device, and study various RFQ performance limitations required by the scaling laws

  8. Design and construction of the TIT RFQ

    International Nuclear Information System (INIS)

    Takeda, Osamu; Tanabe, Yoshio; Satoh, Kiyokazu; Kawatsu, Shosi; Okamura, Masahiro; Oguri, Yoshiyuki; Hattori, Toshiyuki.

    1993-01-01

    At Tokyo Institute of Technology (TIT) a four-vane RFQ is to be applied for inertial confinement fusion research. The RFQ(TIT RFQ) is designed for acceleration of particles with charge to mass ratio (q/A) of 1/16 from 5 keV/amu to 213 keV/amu. The planned maximum injection current is 10 mA for 16 O + and beam transmission is expected to be 60% as a result of a PIC code simulation. Structural and thermal analyses were carried out. (author)

  9. A new RFQ linac fabrication technique

    International Nuclear Information System (INIS)

    Schrage, D.; Roybal, P.; Young, L.; Clark, W.; DePaula, R.; Martinez, F.

    1994-01-01

    The use of hydrogen furnace brazing has been applied as a joining technology to the fabrication of a Radio-Frequency-Quadrupole (RFQ) linac for the Los Alamos Accelerator Performance Demonstration Facility (APDF). The design concept provides a monolithic cavity with no longitudinal rf, vacuum, or mechanical joints. A 530 MHz, 0.46 meter long engineering model RFQ has been fabricated and tested at the Los Alamos National Laboratory as a technical demonstration of this concept. It is planned that two funneled RFQ's for the APDF (7 MeV, 350 MHz, 100 mAmp CW, each eight meters in length) will be manufactured by this method

  10. RFQ device for accelerating particles

    Science.gov (United States)

    Shepard, K.W.; Delayen, J.R.

    1995-06-06

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium. 5 figs.

  11. RFQ device for accelerating particles

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, Kenneth W. (Park Ridge, IL); Delayen, Jean R. (Naperville, IL)

    1995-01-01

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium.

  12. Digital LLRF System for RFQ

    International Nuclear Information System (INIS)

    Agashe, Alok; Motiwala, P.D.; Bharade, S.K.; Mohan, Shyam; Joshi, Gopal; Das, D.

    2015-01-01

    A Low level RF (LLRF) system based on digital techniques has been developed for RFQ of Low Energy High Intensity Proton Accelerator (LEHIPA). The basic LLRF system for RFQ is composed of a Front end analog module housed in a 19 inch bin and a 6U cPCI based Digital board having a high speed and high density FPGA onboard, supporting 32 bit/33MHz PCI ver2.0 protocol and housed in a 19 inch cPCI crate. It also has a cPCI based CPU board with QNX operating system. The cPCI crate is connected to control room via Ethernet. Analog module conditions the input field signals from RF cavity and makes it compatible to digital board. It also amplifies RF Drive signal (Modulator output) from digital board, which goes to high power amplifier. The digital board digitally processes the input RF signals, and generates RF drive signal, which after amplification, used for driving the resonant cavity. The main features of digital board are under-sampling of input RF signals, digital in-phase and quadrature detection, and a proportional- integral (PI) controller algorithm implemented in a FPGA. The LLRF system works in CW as well as in PULSE mode. It also has a DDS implemented in VHDL, used for conditioning and tracking/tuning of the cavity. LLRF system operates under QNX based equipment frontend application and client running from control room. One analog module and one digital board set, supports one resonant cavity. The present paper describes the development of an LLRF system and its results with a test cavity. (author)

  13. RF Power Requirements for PEFP SRF Cavity Test

    International Nuclear Information System (INIS)

    Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub

    2011-01-01

    For the future extension of the PEFP (Proton Engineering Frontier Project) Proton linac, preliminary study on the SRF (superconducting radio-frequency) cavity is going on including a five-cell prototype cavity development to confirm the design and fabrication procedures and to check the RF and mechanical properties of a low-beta elliptical cavity. The main parameters of the cavity are like followings. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m (1.21 Kilp.) - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Stiffening structure: Double ring - Effective length: 0.45 m For the test of the cavity at low temperature of 4.2 K, many subsystems are required such as a cryogenic system, RF system, vacuum system and radiation shielding. RF power required to generate accelerating field inside cavity depends on the RF coupling parameters of the power coupler and quality factor of the SRF cavity and the quality factor itself is affected by several factors such as operating temperature, external magnetic field level and surface condition. Therefore, these factors should be considered to estimate the required RF power for the SRF cavity test

  14. Utilization of the EBIS with RFQ linacs

    International Nuclear Information System (INIS)

    Hamm, R.W.; Wangler, T.P.

    1981-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator structure in which rf electric fields are used to simultaneously focus, bunch, and accelerate an ion beam. Since the RFQ can provide strong focusing and adiabatic bunching at low velocities, it can capture almost all of the ions extracted from an Electron Beam Ion Source (EBIS) at a low voltage and accelerate them to an energy of 1 to 2 MeV/nucleon in a distance of only a few meters. A successful test at the Los Alamos National Laboratory has confirmed the calculated performance of this structure and has stimulated interest in its use with the EBIS for a variety of applications. The general properties of the RFQ are reviewed, and the utilization of the EBIS with this structure is discussed. Several design examples of this combination are also presented

  15. SPIRAL 2 RFQ Prototype First Tests

    CERN Document Server

    Ferdinand, Robin; Congretel, G; Curtoni, Aline; Delferriere, Olivier; Di Giacomo, Marco; France, Alain; Leboeuf, Didier; Thinel, Jean; Toussaint, Jean-Christian

    2005-01-01

    The SPIRAL2 RFQ is designed to accelerate at 88MHz two kinds of charge-over-mass ratio, Q/A, particles. The proposed injector can accelerate a 5 mA deuteron beam (Q/A=1/2) or a 1 mA particles beam with q/A=1/3 up to 0.75 MeV/A. It is a CW machine which has to show stable operation, provide the request availability, have the minimum losses in order to minimize the activation constraints and show the best quality/cost ratio. The prototype of this 4-vane RFQ has been built and tested. It allowed to verify the mechanical assembly concept (RFQ without any brazing step). The full power was easily injected in the cavity, with no concerns for the RF joints. The paper describes the different achievements.

  16. Performance of the new AGS RFQ preinjector

    International Nuclear Information System (INIS)

    Alessi, J.G.; Brennan, J.M.; Brodowski, J.

    1989-01-01

    In the fall of 1988, the 750 keV Cockcroft-Walton (C-W) preinjector for the AGS 200 MeV H/sup /minus// linac was replaced by an RFQ, in what has proved to be a very successful upgrade. The motivations for the upgrade included improved reliability, simpler maintenance, and the added convenience of having the ion source located at nearly ground potential. At the same time, the controls and instrumentation in the preinjector area were modernized. The linac has been operating full time with this RFQ preinjector since January 1, 1989, and the reliability has been excellent. The source, RFQ, and linac operate at a 5 Hz repetition rate, and the beam pulse width is approximately 450 μs. At this time, the H/sup /minus// current at 200 MeV is typically 23-25 mA, the same as previous operation with the C-W, although the capability is there to reach higher currents in the future. The layout of the new preinjector is shown in Figure 1. An important consideration in the layout of this line was the decision to leave the final 2.4 m section before the linac intact, so the optics of a second C-W injector line and polarized H/sup /minus// injection from another RFQ remained the same. The resulting line has a distance of almost 6 m from the RFQ to the linac, and there are three ''rebuncher'' cavities to maintain the bunching of the beam from the RFQ. The following sections will describe some details of the preinjector line, and then discuss the installation and performance

  17. Performance of the new AGS RFQ preinjector

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.G.; Brennan, J.M.; Brodowski, J.; Brown, H.N.; Kponou, A.; LoDestro, V.; Montemurro, P.; Prelec, K.; Witkover, R.; Gough, R.; Staples, J.

    1989-01-01

    In the fall of 1988, the 750 keV Cockcroft-Walton (C-W) preinjector for the AGS 200 MeV H/sup /minus// linac was replaced by an RFQ, in what has proved to be a very successful upgrade. The motivations for the upgrade included improved reliability, simpler maintenance, and the added convenience of having the ion source located at nearly ground potential. At the same time, the controls and instrumentation in the preinjector area were modernized. The linac has been operating full time with this RFQ preinjector since January 1, 1989, and the reliability has been excellent. The source, RFQ, and linac operate at a 5 Hz repetition rate, and the beam pulse width is approximately 450 ..mu..s. At this time, the H/sup /minus// current at 200 MeV is typically 23-25 mA, the same as previous operation with the C-W, although the capability is there to reach higher currents in the future. The layout of the new preinjector is shown in Figure 1. An important consideration in the layout of this line was the decision to leave the final 2.4 m section before the linac intact, so the optics of a second C-W injector line and polarized H/sup /minus// injection from another RFQ remained the same. The resulting line has a distance of almost 6 m from the RFQ to the linac, and there are three ''rebuncher'' cavities to maintain the bunching of the beam from the RFQ. The following sections will describe some details of the preinjector line, and then discuss the installation and performance.

  18. General-purpose RFQ design program

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1984-01-01

    We have written a general-purpose, radio-frequency quadrupole (RFQ) design program that allows maximum flexibility in picking design algorithms. This program optimizes the RFQ on any combination of design parameters while simultaneously satisfying mutually compatible, physically required constraint equations. It can be very useful for deriving various scaling laws for RFQs. This program has a friendly user interface in addition to checking the consistency of the user-defined requirements and is written to minimize the effort needed to incorporate additional constraint equations. We describe the program and present some examples

  19. A CW 4-rod RFQ for deuterons; Ein Hochleistungs-RFQ-Beschleuniger fuer Deuteronen

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P.

    2007-06-15

    A four-rod RFQ accelerator has been built which operates in CW mode with a power consumption of 250 kW. The assembly of a high power RFQ structure requires a precise mechanical alignment and field tuning of the electrode field. The field distribution must be very flat to enable a proper operation with few losses. Adjusting of the field distribution is critical in long structures. (orig.)

  20. Properties of high current RFQ injectors

    International Nuclear Information System (INIS)

    Schempp, A.; Goethe, J.W.

    1996-01-01

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author)

  1. Cw operation of the FMIT RFQ accelerator

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1985-01-01

    Recently, we have achieved reliable cw operation of the Fusion Materials Irradiation Test (FMIT) radio-frequency quadrupole (RFQ) accelerator. In addition to the operational experiences in achieving this status, some of the modifications of the vacuum system, cooling system, and rf structure are discussed. Preliminary beam-characterization results are presented. 10 refs., 8 figs

  2. Cw rf operation of the FMIT RFQ

    International Nuclear Information System (INIS)

    Fazio, M.V.; Brandeberry, F.E.

    1985-01-01

    The 80-MHz RFQ for the Fusion Materials Irradiation Test Facility prototype accelerator has been rf conditioned for cw operation to the design field level of 17.5 MV/m (1.68 x Kilpatrick limit). Experimental results and operating experience will be discussed

  3. Properties of high current RFQ injectors

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, A.; Goethe, J.W. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1996-12-31

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author) 2 refs.

  4. DESIGN AND FABRICATION OF THE BEAM POSITION MONITOR FOR THE PEFP LINAC

    Directory of Open Access Journals (Sweden)

    HYEOK-JUNG KWON

    2013-08-01

    Full Text Available The beam position monitor (BPM is an essential component for the PEFP 100-MeV linac's commissioning. A prototype stripline-type linac BPM was designed for this purpose. The electrode aperture is 20 mm in diameter, and the electrode is 25 mm long, so it can be installed between Drift Tube Linac (DTL101 and DTL102, which is the shortest distance. One end of the electrode is connected to the Sub Miniature Type A (SMA feed through for signal measurement, and the other end is terminated as a short. The signal amplitude of the fundamental component was calculated and compared with that of the second harmonic component. The designed BPM was fabricated and a low-power RF test was conducted. In this paper, the design, fabrication and low power test of the BPM for the PEFP linac are presented.

  5. Reducing longitudinal emittance growth in RFQ accelerators

    International Nuclear Information System (INIS)

    Koscielniak, S.

    1994-08-01

    Bunching and capture of a monochromatic beam into an rf bucket inevitably lead to substantial emittance growth through the mechanisms of filamentation and non-adiabatic variation of parameters. We describe a three step strategy for minimizing this growth, based on a clear understanding of the non-linear beam dynamics, and apply to acceleration of heavy ions with Z/A = 1/60 (and initial kinetic energy 60 keV/u) in a radio frequency quadrupole (RFQ) operating at 25 MHz. We also describe a scheme, to further reduce the emittance, based upon the use of an external RFQ-type prebuncher before the main accelerator. The external unit permits the bunching voltage to be reduced, to inject into a moving bucket, and to reduce the structure length. (author). 7 refs., 6 figs

  6. Commissioning of the Ground Test Accelerator RFQ

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H - injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2βγ Drift Tube Linac (DTL-1) module, the 8.7 MeV 2βγ DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations

  7. Commissioning of the ground test accelerator RFQ

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Garnott, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohsen, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Sandoval, D.P.; Saadatmand, K.; Stevens, R.R.Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on line. The commissioning stages are the 35-keV H - injector, the 2.5-MeV radio-frequency quadrupole (RFQ), the intertank matching section (IMS), the 3.2-MeV first 2-βλ drift tube linac (DTL-1) module, the 8.7-MeV 2-βλDTL (modules 1-5), and the 24-MeV GTA (all 10 DTL modules). Commissioning results from the RFQ beam experiments are presented along with comparisons with simulations. (Author) 8 refs., 9 figs

  8. SSCL RFQ-DTL Matching Section instrumentation

    International Nuclear Information System (INIS)

    Datte, P.; Aielo, R.; Hayworth, M.

    1993-11-01

    A description of the SSCL RFQ-DTL Matching Section instrumentation is presented with emphasis on design issues and early instrumentation commissioning results. The H - beam energy through the RFQ-DTL matching section is 2.5 MeV, the beam current is 27 mA with a pulse width of 35 Its. The typical beam diameter is 3 mm. The instrumentation consists of three beam position monitors (BPM), a wire scanner, beam loss monitors (BLM), a slit and collector emittance measurement unit (EMU), a current toroid, and a Faraday cup. The instruments were designed to accommodate high current densities, have a large dynamic range with moderate bandwidths, and fit congested spaces

  9. Transmission efficiency measurement at the FNAL 4-rod RFQ

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, J. P. [Fermilab; Garcia, F. G. [Fermilab; Ostiguy, J. F. [Fermilab; Saini, A. [Fermilab; Zwaska, R. [Fermilab; Mustapha, B. [Argonne; Ostroumov, P. [Argonne

    2014-12-01

    This paper presents measurements of the beam transmission performed on the 4-rod RFQ currently under operation at Fermilab. The beam current has been measured at the RFQ exit as a function of the magnetic field strength in the two LEBT solenoids. This measurement is compared with scans performed on the FermiGrid with the beam dynamics code TRACK. A particular attention is given to the impact, on the RFQ beam transmission, of the space-charge neutralization in the LEBT.

  10. Radio-frequency quadrupole, RFQ-1

    CERN Multimedia

    Photographic Service

    1983-01-01

    Inner structure of RFQ-1, which replaced in 1983 the Cockcroft-Walton preinjector of Linac 1. It accelerated protons and negative hydrogen ions to 520 keV during the period that Linac 1 was used for LEAR (1981-1996). The precision-machined modulated electrodes ("vanes") are shaped to first bunch the dc-beam from the ion source and then provide simultaneous acceleration and focusing of the beam.

  11. A light ion four rod RFQ injector

    International Nuclear Information System (INIS)

    Schempp, A.; Ferch, M.; Klein, H.

    1987-01-01

    The four-rod RFQ has been developed in Frankfurt as an alternative solution for ion injectors. A 202 MHz resonator has been built with design parameters taken from the HERA injector (18keV-750keV, 20mA H - ). Properties of this structure are described and applications as light ion accelerator for particles from an EBIS ion source are discussed

  12. Civil Engineering Works Status of the Proton Accelerator Research Center in PEFP - Site and Access Road Earthwork

    International Nuclear Information System (INIS)

    Nam, Jung Min; Jeon, G. P.; Min, Y. S.; Park, S. S.; Cho, J. S.; Mun, K. J.; Kim, J. Y.

    2010-01-01

    PEFP(Proton Engineering Frontier Project) was Launched in 2002 as one of the 21st Century Frontier R and D Programs of MOST(Ministry of Science and Technology). Gyeongju city was selected as the project host site in March, 2006, where 'Proton Accelerator Research Center' was going to be constructed. Since 2005, the Architectural and Civil design work has been performing. The Earthwork of the site was started in June, 2009. In this paper, we describe the status of the civil engineering works for the PEFP, focusing on the earthwork of the site and access road

  13. Evaluation of RF properties by orifice design for IFMIF RFQ

    International Nuclear Information System (INIS)

    Maebara, Sunao; Sugimoto, Masayoshi

    2005-03-01

    Orifices for the IFMIF RFQ have been designed and fabricated, and RF properties have been evaluated by a network analyzer. The designed orifices were installed into a vacuum port of the 1.1m-long RFQ mock-up module, and the resonant frequency and the phase difference between cavities were measured for a quadrupole operation mode of TE 210 . It was found that the RF properties are not affected on condition that slit direction with the same direction of current flow at the RFQ wall. Orifice conductance from 0.22 to 0.25 m 3 /sec by nitrogen conversion at room temperature was designed, and an ultimate pressure level of 5x10 -7 [Pa] was evaluated for the 4.1m-long central module for the IFMIF RFQ. It was concluded that the designed orifices are effective for RF properties and vacuum conductance in the IFMIF RFQ. (author)

  14. Comparison of simulation with experiment in an RFQ

    International Nuclear Information System (INIS)

    Boicourt, G.P.; Sander, O.R.; Wangler, T.P.

    1985-01-01

    The accelerator test stand (ATS) RFQ has provided an opportunity to compare the predictions of the RFQ beam-dynamics code PARMTEQ with actual operation of an RFQ. For this comparison, the code was adapted to simulate the measured operation parameters, which are somewhat different from those of the ideal design. A Monte Carlo code was written to provide input to PARMTEQ, based on measured input beam distributions. With these refinements, the code has given results that are in good agreement with measurements and has provided information leading to an explanation of an unexpected set of measurements. This paper describes the method used to generate a pseudo particle beam based on the measured transverse properties of the RFQ input beam and describes some of the comparisons between simulation and experiment. An explanation is provided for the energy-spectrum structure observed in the RFQ output beam during low-voltage operation. 3 refs., 7 figs

  15. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W; Kennedy, W L; Sagalovsky, L [Argonne National Lab., IL (United States)

    1992-11-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed. (Author) fig., 7 refs.

  16. Construction of a superconducting RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Crandall, K.R.

    1993-01-01

    This paper reports the design and construction status of a niobium superconducting RFQ operating at 194 MHz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Design details of a prototype niobium resonator, results of measurements on room temperature models, and construction status are discussed

  17. Design for a superconducting niobium RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed

  18. Design for a superconducting niobium RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed. (Author) fig., 7 refs

  19. Construction of a superconducting RFQ structure

    International Nuclear Information System (INIS)

    Shepard, K.W.; Givens, J.; Potter, J.M.

    1994-01-01

    This paper reports the development status of a niobium superconducting RFQ operating at 194 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The length of the structure is 52 cm, and the vanes are modulated to enable tests with an ion beam. The construction of a prototype niobium resonator is described

  20. Radio-frequency quadrupole, RFQ-1

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Inner structure of RFQ-1, which in 1984 replaced the Cockcroft-Walton preinjector of Linac 1. It accelerated protons and negative hydrogen-ions to 520 keV during the period that Linac 1 was used for LEAR (1981-1996). The precision-machined modulated electrodes ("vanes") are shaped to first bunch the dc-beam from the ion source and then provide simultaneous acceleration and focusing of the beam. See also 8303511. For pictures of pre-installation RF tests, see 8202557, 8202558, 8202559.

  1. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  2. Construction of a superconducting RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L. [Argonne National Lab., IL (United States); Crandall, K.R. [AccSys Technology, Inc., Pleasanton, CA (United States)

    1993-07-01

    This paper reports the design and construction status of a niobium superconducting RFQ operating at 194 MHz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Design details of a prototype niobium resonator, results of measurements on room temperature models, and construction status are discussed.

  3. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-09-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  4. A superconducting RFQ for an ECR injector

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1988-01-01

    The beam dynamics and resonator properties of a superconducting radio-frequency quadrupole (RFQ) for heavy ions are discussed. The motivation is its use as a very low velocity section following an electron cyclotron resonance (ECR) source for injection into a superconducting heavy-ion linac. The constraints on the design and performance of this accelerating structure are presented. Expressions for a limiting stable phase angle and longitudinal and transverse acceptance are derived. A numerical example is given, using the SUNYLAC linac at Sony Stony Brook. Beam-dynamics calculations with PARMTEQ are reported, verifying the theoretical beam-dynamics calculations. (author) 12 refs., 1 tab

  5. Performance Optimization of the Water Cooling System for Resonance Frequency Control of the PEFP DTL

    International Nuclear Information System (INIS)

    Kim, K. Y.; Kim, H. K.; Kim, H. S.; Yoon, J. C.; Sohn, Y. K.; Kweon, S. J.; Park, J.; Kim, K. S.

    2010-03-01

    The objective of in this research project is prototype cooling water skid of separated closed loop in order to supply and withdraw low conductivity deionized water in drift tube of drift tube linac as core components of proton accelerates. This report is dealt with design specification of J-PARC 400 MeV Linac cooling water system, PEFP DTL cooling system, specification of RCCS21-24, RCCS101 with pump, loss coefficient for DTL2 modeling, pressure drop with flow rate of heat exchanger.

  6. Sequence Control System of 1-MW CW Klystron for the PEFP

    CERN Document Server

    Park, Byoung R; Chun Myung Hwan; Han Yeung Jin; Hyo Jeong Maeng; Kim Sung Chul; Yang Jae Seok; Yu In Ha

    2005-01-01

    Sequence control system of 1-MW CW klystron for the PEFP (Proton Engineering Frontier Project) has been developed in order to drive the 1-MW klystron amplifier. The system is able to control several power supplies and many environment conditions. The hardware of sequence control and the interlock system are based on the Allen-Bradley's SLC500 Program Logic Controller (PLC). Also the system can be controlled by a touch screen at local mode or Ethernet network with high level HMI at remote mode.

  7. Test facility of proton beam utilization of the PEFP at the SNU-AMS tandem accelerator

    International Nuclear Information System (INIS)

    Kim, K. R.; Park, B. S.; Lee, H. R.

    2004-01-01

    The PEFP (Proton Engineering Frontier Project) will supply users with a 20-MeV proton beam by the middle of 2007. A survey on users' demand was performed to draw the concept for the 20-MeV user facilities and to investigate users' requirements. In the mean time, a 6-MeV test facility has been developed to give users opportunities to experiment with proton beams. That facility will be attached to the 3-MV tandem accelerator at Seoul National University.

  8. Operation of a 473 MHz four-rod cavity RFQ

    International Nuclear Information System (INIS)

    Kazimi, R.; Huson, F.R.; Mackay, W.W.; Meitzler, C.R.

    1992-01-01

    We have constructed a new type of four-rod Radio Frequency Quadrupole to operate at 473 MHz. Four-rod structures have not previously been built for such a high frequency. The RFQ is designed to accelerate 10 mA of H - ions from 30 keV to 0.5 MeV. The rf measurements and beam test of the RFQ have been performed successfully. Here we present operational results of the RFQ system including measurements of the beam current, the required rf power, energy, energy spread, and emittance. (Author) 8 refs., 6 figs., 2 tabs

  9. Oxygen ion source and RFQ for Linac 1

    CERN Multimedia

    Photographic Service

    1986-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions. In 1984, its Cockcroft-Walton preinjector was replaced by an RFQ. In the foreground at the right is the oxygen ion source. A 90 deg bending magnet selects O6+ ions which are preaccelerated in an RFQ and enter Linac 1, at the far left. In the background is the proton and negative hydrogen ion source, followed by the 520 keV RFQ-1 and a bending magnet towards the entrance of Linac 1.

  10. Preliminary physical design of 7 MeV proton RFQ for the accelerator driven-energy system

    International Nuclear Information System (INIS)

    Luo Zihua

    2000-01-01

    The preliminary physical design of 7 MeV proton RFQ for the ADS (Accelerator Driven-energy System) is briefly described. The design features and the basic parameters and the design version of the RFQ are discussed. The matches between IS and RFQ and between RFQ and CCDTL/DTL are also discussed. The ideas of research for the RFQ are presented

  11. Development of Remote Control and Interlock System for the PEFP Microwave Ion Source

    International Nuclear Information System (INIS)

    Song, Young Gi; Seol, Kyung Tae; Kwon, Hyeok Jung; Jang, Ji Ho; Cho, Yong Sub

    2011-01-01

    The control system for a microwave ion source as an isolated high voltage device is a main part of the PEFP distributed control system. The system is used to control two sets of microwave ion sources, the remote control and the interlock system. A VME system with an embedded Power PC CPU is used as main computer. The VME system is dedicated to control and monitoring of the ion source operation. An isolated control system has been designed and developed for remote control and monitoring of a microwave generator and various power supplies. As the source is placed on high voltage platform, optical fiber isolation has been used between the serial to optical fiber VME I/O board and the control system on the high voltage platform. These are connected through RS232 serial interface. A fast Ethernet is used to communicate between the microwave ion source control system and other control stations in the PEFP control system. EPICS toolkit is adopted to provide network programming and user interface by using EPICS Channel Access (CA)

  12. Feasibility studies of RFQ based 14C accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Guo Zhiyu; Liu Kexin; Yan Xueqing; Xie Yi; Fang Jiaxun; Chen Jiaer

    2007-01-01

    Electrostatic accelerators with terminal voltage less than 1 MeV have been successfully used for 14 C AMS. This contribution shows that a small RFQ accelerator may also be suitable for AMS 14 C measurements. A well-designed RFQ accelerator can realize a low energy spread and high isotopic selection with a length of less than 1 m and reasonable power consumption. Compared with small tandem accelerators, a RFQ does not need isolation gas and can accept much higher beam currents. Its stripper would be at ground potential and there would be no further acceleration after stripping, so the background from charge exchange processes should be lower. The RFQ design and system are described

  13. APT/LEDA RFQ and support frame structural analysis

    International Nuclear Information System (INIS)

    Ellis, S.

    1997-01-01

    This report documents structural analysis of the Accelerator Production of Tritium Low Energy Demonstration Accelerator (APT/LEDA) Radio Frequency Quadrupole (RFQ) accelerator structure and its associated support frame. This work was conducted for the Department of Energy in support of the APT/LEDA. Structural analysis of the RFQ was performed to quantify stress levels and deflections due to both vacuum loading and gravity loading. This analysis also verified the proposed support scheme geometry and quantified interface loads. This analysis also determined the necessary stiffness and strength requirements of the RFQ support frame verifying the conceptual design geometry and allowing specification of individual frame elements. Complete structural analysis of the frame was completed subsequently. This report details structural analysis of the RFQ assembly with regard to gravity and vacuum loads only. Thermally induced stresses from the Radio Frequency (RF) surface resistance heating were not considered

  14. Pulsed beam tests at the SANAEM RFQ beamline

    Science.gov (United States)

    Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.

    2017-07-01

    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.

  15. Operational parameters of a 2.0-MeV RFQ linac

    International Nuclear Information System (INIS)

    Sander, O.R.; Purser, F.O.; Rusthoi, D.P.

    1984-01-01

    After extensive upgrading, our radio-frequency quadrupole (RFQ) linac is again installed on the accelerator test stand (ATS). The measured parameters of the RFQ, such as the output transverse emittance, transmitted beam, average energy, and energy spread is presented

  16. RFQ Cooler and Buncher (and beam line section associated)

    CERN Document Server

    Podadera-Aliseda, I

    2003-01-01

    Developing a new RFQ cooler and buncher for ISOLDE. Such a device combines an energy loss in buffer gas atom-ion collisions with confinement provided by RF-field in transverse plane. Optional confinement in longitudinal direction is provided by static potential dwell. Then, an improvement of the beam line is achieved for all the experiments at ISOLDE. The RFQ operates inside a high voltage cage of 60 kV, and with a system of turbomulecular pumps both to keep the high vacuum before/after the RFQ and to keep a low pressure (around 0,1 mbar) inside the RFQ. The project is to be thought not only as a mechanical design and construction project, unless as a project of research and development, since it is about improving (operationally and technically) the existing RFQ cooler and buncher placed around the world. Due to ion optical reasons whole beam line section has to be redesigned and constructed as a part of this project.

  17. Parametric thermal analysis of 75 MHz heavy ion RFQ

    International Nuclear Information System (INIS)

    Mishra, N.K.; Mehrotra, N.; Verma, V.; Gupta, A.K.; Bhagwat, P.V.

    2015-01-01

    An ECR based Heavy Ion Accelerator comprising of a superconducting Electron Cyclotron Resonance (ECR) Ion Source, normal conducting RFQ (Radio Frequency Quadrupole) and superconducting Niobium resonators is being developed at BARC under XII plan. A state-of-the-art 18 GHz superconducting ECR ion source (PK-ISIS) jointly configured with Pantechnik, France is operational at Van-de-Graaff, BARC. The electromagnetic design of the improved version of 75 MHz heavy ion RFQ has been reported earlier. The previous thermal study of 51 cm RFQ model showed large temperature variation axially along the vane tip. A new coolant flow scheme has been worked out to optimize the axial temperature gradient. In this paper the thermal analysis including parametric study of coolant flow rates and inlet temperature variation will be presented. (author)

  18. Resonant Control for Fermilab's PXIE RFQ

    Energy Technology Data Exchange (ETDEWEB)

    Bowring, Daniel [Fermilab; Biedron, Sandra [Colorado State U., Fort Collins; Chase, Brian [Fermilab; Czajkowski, Jerzy [Fermilab; Edelen, Auralee [Colorado State U., Fort Collins; Edelen, Jonathan [Fermilab; Milton, Stephen [Colorado State U., Fort Collins; Nicklaus, Dennis [Fermilab; Steimel, Jim [Fermilab; Zuchnik, Thomas [Fermilab

    2016-06-01

    The RFQ for Fermilab's PXIE test program is designed to accelerate a < 10 mA H⁻ CW beam to 2.1 MeV. The RFQ has a four-vane design, with four modules brazed together for a total of 4.45 m in length. The RF power required is < 130 kW at 162.5 MHz. A 3 kHz limit on the maximum allowable frequency error is imposed by the RF amplifiers. This frequency constraint must be managed entirely through differential cooling of the RFQ's vanes and outer body and associated material expansion. Simulations indicate that the body and vane coolant temperature should be controlled to within 0.1 degrees C. We present the design of the cooling network and the resonant control algorithm for this structure, as well as results from initial operation.

  19. The RF inlet of the RFQ of IPHI

    International Nuclear Information System (INIS)

    Piquet, O.; Desmons, M.; France, A.

    2005-02-01

    The power supply of the radio frequency quadrupole (RFQ) requires a new type of transition between the WR2300 waveguide and the RFQ cavity. This transition is an impedance transformer with a bottleneck shape that allows the transmission of the power along a 3.7 MHz broad pass-band centered on an operating frequency of 352.2 MHz. This design has allowed us to separate the adjustment of the transition from the setting of the coupling holes in the cavity wall. This whole transition has been tested on the RFQ mockup in order to optimize the diameter of the coupling holes. It appears that an important point for a good coupling is to be sure of good RF contacts between the different components of the transition device. (A.C.)

  20. BEAR RFQ-beam experiment aboard a rocket

    International Nuclear Information System (INIS)

    Schrage, D.; Young, L.; Campbell, B.; Billen, J.H.; Stovall, J.; Martinez, F.; Clark, W.; Bolme, G.; Gibbs, S.; King, D.; O'Shea, P.; Butler, T.; Rathke, J.; Micich, R.; Rose, J.; Richter, R.; Rosato, G.

    1989-01-01

    Los Alamos National Laboratory, Grumman, and GAR Electroformers have completed the design and fabrication of an electroformed RFQ for the BEAR (beam experiments aboard a rocket) project. The design of this 1 m long, lightweight (< 55 kg accelerator incorporates four aluminum vane/cavity quadrants joined by an electroforming process. With the vane and cavity fabricated as a monolithic structure, there are no mechanical rf, vacuum or structural joints. The completed BEAR RFQ has successfully passed flight qualification and beam transport tests in preparation for the flight, which is scheduled for March 1989. (orig.)

  1. Voltage-breakdown testing for an RFQ structure

    International Nuclear Information System (INIS)

    Williams, S.W.; DePaula, R.F.; Keffeler, D.R.; Rodenz, G.R.

    1981-01-01

    Designs for Radio Frequency Quadrupole (RFQ) accelerators of reasonable length require operation with surface fields above the threshold of Kilpatrick's Sparking Criterion. A cavity was designed using SUPERFISH to test the validity of this criterion and to determine operating limits for the Los Alamos Proof-of-Princple (POP) RFQ. The testing was done near 420 MHz, with varying qualities of surface finish on the electrodes. The experimental set-up and procedure are described, as are the data and results. A method of calibrating the test is presented

  2. BEAR RFQ-beam experiment aboard a rocket

    Energy Technology Data Exchange (ETDEWEB)

    Schrage, D.; Young, L.; Campbell, B.; Billen, J.H.; Stovall, J.; Martinez, F.; Clark, W.; Bolme, G.; Gibbs, S.; King, D.; O' Shea, P.; Butler, T. (Los Alamos National Lab., NM (USA)); Rathke, J.; Micich, R.; Rose, J. (Grumman Space Systems, Bethpage, NY (USA)); Richter, R.; Rosato, G. (GAR Electroformers, Danbury, CT (USA))

    1989-04-01

    Los Alamos National Laboratory, Grumman, and GAR Electroformers have completed the design and fabrication of an electroformed RFQ for the BEAR (beam experiments aboard a rocket) project. The design of this 1 m long, lightweight < 55 kg accelerator incorporates four aluminum vane/cavity quadrants joined by an electroforming process. With the vane and cavity fabricated as a monolithic structure, there are no mechanical rf, vacuum or structural joints. The completed BEAR RFQ has successfully passed flight qualification and beam transport tests in preparation for the flight, which is scheduled for March 1989. (orig.).

  3. Study of influence of radial matcher section end shape on RFQ cavity frequency

    International Nuclear Information System (INIS)

    Zhang Zhouli; He Yuan; Zhang Bin; Shi Aimin; Pan Gang; Du Xiaonan; Sun Liepeng; Li Derun

    2014-01-01

    To investigate the feasibility of using a form cutter to machine the Radial Matcher Section (RMS) of the Radio Frequency Quadrupole (RFQ) for the Accelerator Driven System (ADS) project at Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS), the influence of RMS end shape on the RFQ cavity frequency is studied. The results indicate that using a form cutter to machine the RMS of an RFQ will indeed influence the cavity frequency. The RMS end shape will give more influence to a shorter RFQ cavity. For the 4.2 m ADS RFQ, the influence is negligible, which means that a form cutter can be used to machine the RMS. (authors)

  4. Commissioning report on the RFQ of the HITRAP decelerator

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Michael; Herfurth, Frank; Yaramishev, Stepan; Neidherr, Dennis; Vorobyev, Gleb; Kotovskiy, Nikita [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Repnow, Roland [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2012-07-01

    Commissioning of the HITRAP decelerator behind the experimental storage ring (ESR) has been difficult and not fully successful yet. According to simulations the present RFQ design requires beam with an input energy of 530 keV/u. This is above the limit of the IH decelerator which has been designed for 500 keV/u output energy. In order to verify the simulation results the RFQ has been set up together with a test bench behind a pelletron accelerator at the Max Planck Institute for nuclear physics in Heidelberg. This pelletron provides DC beam with A/q<3 in the desired energy range of 450-550 keV/u. This setup allows for a rapid scan through this otherwise difficult to reach parameter space. Additionally it will serve a second time as a commissioning setup for the next RFQ electrode design matched to the IH output energy. In this contribution the simulations and the experimental results of this test are compared as well as a first design study for a new RFQ decelerator structure is presented.

  5. Modification of Modulating Anode Voltage Supply of Klystron for PEFP 20 MeV Linac

    International Nuclear Information System (INIS)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2011-01-01

    The klystron (TH2089F, THALES) for PEFP 20MeV proton linear accelerator has a triode type electron gun and the modulating anode voltage should be supplied. The klystron has gone through some modification in the modulating anode voltage supply circuit. Formerly, the mod-anode voltage was supplied by using the tetrode-controlled voltage divider. This system requires addition power supply for the tetrode and the grid control circuit. Recently we modified the mod-anode supply from the tetrode-controlled voltage divider to a resistive voltage divider. The resistors for the previous voltage divider were installed at a supporter with high voltage bushing structure next to the klystron. In the previous system, the resistors were exposed to the air and their size was very bulky, length of which was about 1m long. To reduce the space occupied by the voltage divider and to improve the electrical insulation performance, the voltage dividing resistors were moved into the oil tank of the klystron. During the operation of the 20 MeV linac, the klystron parameters were measured. In this paper, the modification of the voltage divider and the operational characteristics of the klystron with modified voltage divider circuit are presented

  6. The Brown-Servranckx matching transformer for simultaneous RFQ to DTL H+ and H- matching

    International Nuclear Information System (INIS)

    Wadlinger, E.A.; Garnett, R.W.

    1996-01-01

    The issue involved in the simultaneous matching of H + and H - beams between an RFQ and DTL lies in the fact that both beams experience the same electric-field forces at a given position in the RFQ. Hence, the two beams are focused to the same correlation. However, matching to a DTL requires correlation of the opposite sign. The Brown-Servranckx quarter-wave (λ / 4) matching transformer system, which requires four quadrupoles, provides a method to simultaneously match H + and H - beams between an RFQ and a DTL. The method requires the use of a special RFQ section to obtain the Twiss parameter conditions β x = β y and α x = α y = 0 at the exit of the RFQ. This matching between the RFQ and DTL is described. (author)

  7. The Brown-Servranckx matching transformer for simultaneous RFQ to DTL H+ and H- matching

    International Nuclear Information System (INIS)

    Wadlinger, E.A.; Garnett, R.W.

    1996-01-01

    The issue involved in simultaneous matching of H + and H - beams between an RFQ and DTL lies in the fact that both beams experience the same electric-field forces at a given position in the RFQ. Hence, the two beams are focused to the same correlation. However, matching to a DTL requires correlation of the opposite sign. The Brown-Servranckx quarter-wave (λ/4) matching transformer system, which requires four quadrupoles, provides a method to simultaneously match H + and H - beams between an RFQ and a DTL. The method requires the use of a special RFQ section to obtain the Twiss parameter conditions β x =β y and α x =α y =0 at the exit of the RFQ. This matching between the RFQ and DTL is described

  8. Development of C{sup 6+} laser ion source and RFQ linac for carbon ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sako, T., E-mail: takayuki1.sako@toshiba.co.jp; Yamaguchi, A.; Sato, K. [Toshiba Corporation, Yokohama 235-8522 (Japan); Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T. [Cancer Research Center, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Takeuchi, T. [Accelerator Engineering Corporation, Chiba 263-0043 (Japan)

    2016-02-15

    A prototype C{sup 6+} injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  9. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    Science.gov (United States)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  10. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    Science.gov (United States)

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  11. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-01-01

    A prototype C 6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4

  12. Tuning the LEDA RFQ 6.7 MeV accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Rybarcyk, L.

    1998-01-01

    This paper presents the results of tuning the 8 meter long Radio Frequency Quadrupole (RFQ) built for the Low Energy Demonstration Accelerator (LEDA). This 350-MHz RFQ is split into four 2-meter-long-RFQs. Then they are joined with resonant coupling to form an 8-meter-long RFQ. This improves both the longitudinal stability and the transverse stability of this long RFQ. The frequencies of the modes near the RFQ mode are measured. The authors show the effect on the RF fields of an error in the temperature of each one of the 2-meter-long-RFQs. Slug tuners distributed along the outer walls tune the RFQ. The program RFQTUNE is used to determine the length of the tuners. The tuners are machined to length when the final tuning is complete

  13. Redesign of CERN LINAC3 RFQ for Lead 29+

    CERN Document Server

    Benedetti, Stefano; Lallement, Jean-Baptiste; Lombardi, Alessandra; CERN. Geneva. ATS Department

    2018-01-01

    CERN Linac3 is at the heart of the CERN Heavy Ion Facility, providing 4.2 MeV/u ion beams to the Low Energy Ion Ring (LEIR). It mostly accelerates 208Pb29+, though in recent years runs were performed with 40Ar11+ and 129Xe22+, in view of the raising interest of the physics community towards lighter ions experiments. In the framework of the LHC Injectors Upgrade (LIU) project, measurements and beam dynamics simulations showed that a transmission bottleneck of Linac3 is represented by the RFQ. As this accelerator was originally designed for 208Pb25+, the lower beam rigidity of the heavy ions currently in used – and planned to be used – permits a redesign of the RFQ aimed at increasing its transverse acceptance, and thus the transmitted beam current. The methodology adopted and the results of this study are presented.

  14. Accuracy of the manufacture of electrodes for a 433 MHz RFQ

    International Nuclear Information System (INIS)

    Budtov, A.A.; Gruzdev, V.A.; Petrov, V.I.; Svistunov, Y.A.; Marinin, G.V.

    2006-01-01

    Analysis of the dependence of the accuracy of the interelectrode distance on the accuracy of electrode surface machining for a 433 MHz four-segment radio-frequency quadrupole (RFQ) resonator is reported. The aim of the research was to determine the requirements for measurement methods and machining of the RFQ segments. Analysis of particle capture into acceleration as a function of the electrode modulation amplitude at the RFQ input is discussed

  15. Accuracy of the manufacture of electrodes for a 433 MHz RFQ

    Energy Technology Data Exchange (ETDEWEB)

    Budtov, A.A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), Scientific Production Complex of Linear Accelerators and Cyclotrons (NPK LUTS), 196641 St. Petersburg (Russian Federation); Gruzdev, V.A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), Scientific Production Complex of Linear Accelerators and Cyclotrons (NPK LUTS), 196641 St. Petersburg (Russian Federation); Petrov, V.I. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), Scientific Production Complex of Linear Accelerators and Cyclotrons (NPK LUTS), 196641 St. Petersburg (Russian Federation)]. E-mail: npkluts@niiefa.spb.su; Svistunov, Y.A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), Scientific Production Complex of Linear Accelerators and Cyclotrons (NPK LUTS), 196641 St. Petersburg (Russian Federation); Marinin, G.V. [Russian Technologies Ltd., 195030 St. Peterburg (Russian Federation)

    2006-03-01

    Analysis of the dependence of the accuracy of the interelectrode distance on the accuracy of electrode surface machining for a 433 MHz four-segment radio-frequency quadrupole (RFQ) resonator is reported. The aim of the research was to determine the requirements for measurement methods and machining of the RFQ segments. Analysis of particle capture into acceleration as a function of the electrode modulation amplitude at the RFQ input is discussed.

  16. Dipole stabilizer rods for 400 keV deuteron RFQ

    International Nuclear Information System (INIS)

    Sista, V.L.S. Rao; Srivastava, S.C.L.; Pande, Rajni; Roy, Shweta; Singh, P.

    2009-01-01

    In our 400 keV deuteron RFQ for neutron production, the destructive dipolar modes are very close to the required quadrupolar mode. In order to increase the spacing between the quadrupole and dipole modes the dipolar stabilizer rods (DSR's) are used. The design of the DSR's is done using the computer code CST Microwave studio. The variation of the quadrupole and dipolar mode frequencies with the radius and length of the DSR's are studied. (author)

  17. RF structure design of the China Material Irradiation Facility RFQ

    Science.gov (United States)

    Li, Chenxing; He, Yuan; Xu, Xianbo; Zhang, Zhouli; Wang, Fengfeng; Dou, Weiping; Wang, Zhijun; Wang, Tieshan

    2017-10-01

    The radio frequency structure design of the radio frequency quadrupole (RFQ) for the front end of China Material Irradiation Facility (CMIF), which is an accelerator based neutron irradiation facility for fusion reactor material qualification, has been completed. The RFQ is specified to accelerate 10 mA continuous deuteron beams from the energies of 20 keV/u to 1.5 MeV/u within the vane length of 5250 mm. The working frequency of the RFQ is selected to 162.5 MHz and the inter-vane voltage is set to 65 kV. Four-vane cavity type is selected and the cavity structure is designed drawing on the experience of China Initiative Accelerator Driven System (CIADS) Injector II RFQ. In order to reduce the azimuthal asymmetry of the field caused from errors in fabrication and assembly, a frequency separation between the working mode and its nearest dipole mode is reached to 17.66 MHz by utilizing 20 pairs of π-mode stabilizing loops (PISLs) distributed along the longitudinal direction with equal intervals. For the purpose of tuning, 100 slug tuners were introduced to compensate the errors caused by machining and assembly. In order to obtain a homogeneous electrical field distribution along cavity, vane cutbacks are introduced and output endplate is modified. Multi-physics study of the cavity with radio frequency power and water cooling is performed to obtain the water temperature tuning coefficients. Through comparing to the worldwide CW RFQs, it is indicated that the power density of the designed structure is moderate for operation under continuous wave (CW) mode.

  18. Prototype Digital Beam Position and Phase Monitor for the 100-MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Kim, Sung-Chul; Park, In-Soo; Park, Sung-Ju; Tae Kim, Do

    2005-01-01

    The PEFP (Proton Engineering Frontier Project) at the KAERI (Korea Atomic Energy Research Institute) is building a high-power proton linear accelerator aiming to generate 100-MeV proton beams with 20-mA peak current (pulse width and max. repetition rate of 1 ms and 120 Hz respectively). We are developing a prototype digital BPPM (Beam Position and Phase Monitor) for the PEFP linac utilizing the digital technology with field programmable gate array (FPGA). The RF input signals are down converted to 10 MHz and sampled at 40 MHz with 14-bit ADC to produce I and Q data streams. The system is designed to provide a position and phase resolution of 0.1% and 0.1? RMS respectively. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the prototype digital beam position and phase monitor will be described with the performance test results.

  19. Simulations of injection optics for an RFQ cooler and buncher

    CERN Document Server

    Eronen, Tommi

    2002-01-01

    This report is about injection of ions to a new RFQ (which stands for a Radio Frequency Quadrupole) cooler & trap which will be built at ISOLDE, CERN. This device brings very good advantages to existing beamline - for instance, lower emittance in transversal plane and lower energy spread in longitudinal direction. It will be possible to bunch the beam. Lower emittance means that ions can be focused to smaller spot thus improving precision of measurements. For laser experiments bunched beam is much more useful compared to continuous beam. Bunch can be adjusted such that lasers are synchronized with the ion bunch thus increasing signal-to-background ratio. Using buffer gas cooling is also very cost effective and easy to operate - there is only a few tunable parameters in the RFQ. Buffer gas cooling is effective only if ions are much heavier than the buffer gas. Usually this is the case at ISOLDE. One of the most crucial part in the whole RFQ project is the injection. Because of the presence of buffer gas, R...

  20. Low frequency RFQ linacs for heavy ion fusion

    International Nuclear Information System (INIS)

    Moretti, A.; Watson, J.M.; Martin, R.L.; Lari, R.J.; Stockley, R.L.

    1982-01-01

    Low frequency, radio frequency quadrupole (RFQ) structures are under study at Argonne National Laboratory (ANL) as the low-velocity portion of an rf linac driver for heavy ion inertial confinement fusion. Besides offering a direct comparison with the present ANL front end, it would provide a second low-velocity Xe +1 linac for funneling experiments at 22.9 MeV. Heavy ion RFQ accelerators are characterized by their low rf operating frequency of about 10 MHz. The large size of a manifold-fed four-vane, 10 MHz RFQ resonator structure (about 6 m in diameter) makes it unacceptable for heavy ions; therefore, alternate structures are under study at Argonne. The structures under study are: (1) a Wideroe-type structure with external stub lines, (2) a Wideroe-type structure with the stub lines internal to the structure, (3) a split coaxial line resonator with modulated vanes, and (4) a interdigital line resonator with modulated cylindrical rods. The split coaxial line resonator seems best at this low frequency. It is compact and very efficient. About 15.5 m of linac structure excited with 560 kW of rf power is sufficient to accelerate 30 mA of Xe +1 with 97% transmission efficiency from 250 keV to 3 MeV

  1. Dipole compensation of the 176 MHz MYRRHA RFQ

    Energy Technology Data Exchange (ETDEWEB)

    Kuempel, Klaus; Podlech, Holger; Lenz, Christoph; Petry, Nils [IAP, University of Frankfurt, Frankfurt am Main (Germany); Bechtold, Alexander [NTG Neue Technologien GmbH und Co.KG, Gelnhausen (Germany); Zhang, Chuan [GSI Helmholtzzentrum, Darmstadt (Germany)

    2016-07-01

    The MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) Project is planned as an accelerator driven system (ADS) for the transmutation of long-living radioactive waste. For this project a cw 4-rod-RFQ with 176 MHz and a total length of about 4 m is required. It is supposed to accelerate protons from 30 keV up to 1.5 MeV*. One of the main tasks during the development of the RFQ is the very high reliability of the accelerator to limit the thermal stress inside the reactor. Another challenge was to compensate the dipole component of the MYRRHA-RFQ which is due to the design principle of 4-rod-RFQs. This dipole component is responsible for shifting the ideal beam axis from the geometrical center of the quadrupole downwards. Design studies with CST MICROWAVE STUDIO have shown that the dipole component can be almost completely compensated by widening the stems alternately so that the current paths of the lower electrodes are increased.

  2. Design of 57.5 MHz CW RFQ structure for the Rare Isotope ...

    Indian Academy of Sciences (India)

    The Rare Isotope Accelerator (RIA) facility includes a driver LINAC for production of 400 kW CW heavy-ion beams. The initial acceleration of heavy ions delivered from an ECR ion source can be effectively performed by a 57.5 MHz 4 m long RFQ. The principal specifications of the RFQ are: (1) formation of extremely low ...

  3. Chracterization of the beam from the RFQ of the PIP-II Injector Test

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermilab; Carneiro. J.-P., Carneiro. J.-P. [Fermilab; Hanna, B. [Fermilab; Prost, L. [Fermilab; Saini, A. [Fermilab; Scarpine, V. [Fermilab; Sista, V. L.S. [Bhabha Atomic Res. Ctr.; Steimel, J. [Fermilab

    2017-05-01

    A 2.1 MeV, 10 mA CW RFQ has been installed and commissioned at the Fermilab’s test accelerator known as PIP-II Injector Test. This report describes the measure-ments of the beam properties after acceleration in the RFQ, including the energy and emittance.

  4. Deep drawing experiences of niobium disk for PEFP SRF cavity prototype

    International Nuclear Information System (INIS)

    Kim, Han Sung; An, Sun; Zhang, Liping; Tang, Yazhe; Li, Ying Min; Kwon, Hyeok Jung; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity with a geometrical beta of 0.42 has been designed to accelerate a proton beam after 100 MeV for an extension of Proton Engineering Frontier Project (PEFP). The designed cavity shape is an elliptical and the resonant frequency is 700 MHz. In order to confirm the RF and mechanical properties of the cavity, two prototypes of copper cavities have been fabricated and tested. Based on the experiences gained with the copper prototypes, two niobium prototypes have been designed. One is two-cell cavity and the other is five cell cavity. The two-cell cavity is for finalizing the niobium cavity production procedure and testing the cavity RF properties at a low temperature and moderate power level. The five-cell cavity is for checking the production quality and testing vertical test system in the future. Both of them are under fabrication. Through the fabrication of the niobium prototype, several issues such as deep drawing, electron beam welding and surface treatment will be addressed. The drawing of the PEPF SRF low beta cavity is shown in Fig. 1. Major parameters for the cavity are like following. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 per cavity - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m - Field flatness: 1.56 % - Cell to cell coupling: 1.41 % - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Lorentz force detuning: 0.4 Hz/(MV/m)2 - Stiffening structure: Double ring - Effective length: 0.45 m - External Q of FPC: 8.0E5 ±20 % - HOM load: less than 2 W - HOM Qext requirement: less than 3.0E5 At present, all the niobium disk and plates for cavity and NbTi flanges for beam pipe flange are prepared

  5. Laser spectroscopy of gallium isotopes using the ISCOOL RFQ cooler

    CERN Multimedia

    Blaum, K; Kowalska, M; Ware, T; Procter, T J

    2007-01-01

    We propose to study the radioisotopes of gallium (Z=31) by collinear laser spectroscopy using the ISCOOL RFQ ion cooler. The proposed measurements on $^{62-83}$Ga will span both neutron-deficient and neutron-rich isotopes. Of key interest is the suggested development of a proton-skin in the neutron-deficient isotopes. The isotope shifts measured by laser spectroscopy will be uniquely sensitive to this feature. The measurements will also provide a wealth of new information on the gallium nuclear spins, static moments and nuclear charge radii.

  6. Status Report on the 5 Mev Iphi RFQ

    OpenAIRE

    Ferdinand, R.; Beauvais, P-Y.; Duperrier, R.; France, A.; Gaiffier, J.; Lagniel, J-M.; Painchault, M.; Simoens, F.; CEA-Saclay; DSM-DAPNIA-SEA; Balleyguier, P.; Chatel, CEA-Bruyeres le; DAM

    2000-01-01

    A 5-MeV RFQ designed for a proton current up to 100-mA CW is now under construction as part of the High Intensity Proton Injector project (IPHI). Its computed transmission is greater than 99 %. The main goals of the project are to verify the accuracy of the design codes, to gain the know-how on fabrication, tuning procedures and operations, to measure the output beam characteristics in order to optimise the higher energy part of the linac, and to reach a high availability with minimum beam tr...

  7. RFQ Designs and Beam-Loss Distributions for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Robert A [ORNL

    2007-01-01

    The IFMIF 125 mA cw 40 MeV accelerators will set an intensity record. Minimization of particle loss along the accelerator is a top-level requirement and requires sophisticated design intimately relating the accelerated beam and the accelerator structure. Such design technique, based on the space-charge physics of linear accelerators (linacs), is used in this report in the development of conceptual designs for the Radio-Frequency-Quadrupole (RFQ) section of the IFMIF accelerators. Design comparisons are given for the IFMIF CDR Equipartitioned RFQ, a CDR Alternative RFQ, and new IFMIF Post-CDR Equipartitioned RFQ designs. Design strategies are illustrated for combining several desirable characteristics, prioritized as minimum beam loss at energies above ~ 1 MeV, low rf power, low peak field, short length, high percentage of accelerated particles. The CDR design has ~0.073% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7,is 12.3 m long, and accelerates ~89.6% of the input beam. A new Post-CDR design has ~0.077% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7 and ~8 m length, and accelerates ~97% of the input beam. A complete background for the designs is given, and comparisons are made. Beam-loss distributions are used as input for nuclear physics simulations of radioactivity effects in the IFMIF accelerator hall, to give information for shielding, radiation safety and maintenance design. Beam-loss distributions resulting from a ~1M particle input distribution representative of the IFMIF ECR ion source are presented. The simulations reported were performed with a consistent family of codes. Relevant comparison with other codes has not been possible as their source code is not available. Certain differences have been noted but are not consistent over a broad range of designs and parameter range. The exact transmission found by any of these codes should be treated as indicative, as each has various sensitivities in

  8. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    Science.gov (United States)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  9. The cyclotron laboratory and the RFQ accelerator in Bern

    International Nuclear Information System (INIS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-01-01

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study

  10. Conceptual designs of beam choppers for RFQ linacs

    International Nuclear Information System (INIS)

    Nath, S.; Stevens, S.R. Jr.; Wangler, T.P.

    1995-01-01

    A design study at Los Alamos of a linac/accumulator ring facility for a pulsed neutron spallation source calls for an H - beam with a chopped structure of approximately 200-ns beam-free segments every 600-ns. The required angular impulse can easily be provided with existing pulse power technology and traveling wave structures with a transverse electric field similar to those now available. The deflected beam is then restored by suitable collimation. Chopping is relatively easily done at sufficiently low energies, where the beam is easily deflected, and beam powers are not too large. However, the energy should be high enough so that the space-charge blow-up of the beam can be controlled with adequate focusing. LAMPF presently uses a traveling-wave beam chopper at 750 keV, before injection into the drift tube linac (DTL). In the new linac designs, a radiofrequency quadrupole (RFQ) linac would typically bunch and accelerate the high intensity H - beam from 100 keV to 7 MeV. In this paper, the authors present concepts for beam-chopper systems both before and after the RFQ. The beam-optics designs are presented, together with numerical simulation results

  11. The cyclotron laboratory and the RFQ accelerator in Bern

    Energy Technology Data Exchange (ETDEWEB)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Scampoli, P. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland and Department of Physical Sciences, University Federico II, Via Cintia, I-60126 Napoli (Italy); Bremen, K. von [SWAN Isotopen AG, Inselspital, CH-3010 Bern (Switzerland)

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  12. Design and performance of an RFQ cooler and buncher

    Energy Technology Data Exchange (ETDEWEB)

    Szerypo, J.; Ban, G.; Le Brun, C.; Delahaye, P.; Lienard, E.; Mauger, F.; Naviliat, O.; Tamain, B. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Hennecart, D. [Centre Interdisciplinaire de Recherche Ions Lasers, 14 - Caen (France)

    1999-10-01

    Several new experiments, planned or in preparation at low energy radioactive beam facilities, require the cooling and bunching of radioactive beams. This may be performed with a radiofrequency quadruple (RFQ) cooler and buncher, where the ions are cooled in a buffer gas while being guided by an oscillating RFQ field. This work describes the performance of such a device, which has been designed and studied in order to be extended for the cooling of light ions. The analysis requires extensive computer simulations, which are done with two approaches: the macroscopic and the microscopic. The latter approach is able to account for the RF-heating effect and the calculations were performed by the monte Carlo method. The cooling formalism was extendedto include a charge-exchange effect. The charge-exchange cross sections were calculated theoretically in a quantum-mechanical formalism for different ion-atom combinations. The simulations have shown in particular that for the cooling of {sup 6}He{sup +} ions, {sup 4}He is excluded as buffer gas because of the resonant charge exchange processes which drastically decreases the transmission. On the other hand, the cooling of {sup 6}He{sup +} ions with H{sub 2} as buffer gas appears as a promising solution. The most relevant cooler design parameters are proposed. A project of a complete system, including the deceleration, extraction and transfer sections, is presented. (authors)

  13. Search method optimization technique for thermal design of high power RFQ structure

    International Nuclear Information System (INIS)

    Sharma, N.K.; Joshi, S.C.

    2009-01-01

    RRCAT has taken up the development of 3 MeV RFQ structure for the low energy part of 100 MeV H - ion injector linac. RFQ is a precision machined resonating structure designed for high rf duty factor. RFQ structural stability during high rf power operation is an important design issue. The thermal analysis of RFQ has been performed using ANSYS finite element analysis software and optimization of various parameters is attempted using Search Method optimization technique. It is an effective optimization technique for the systems governed by a large number of independent variables. The method involves examining a number of combinations of values of independent variables and drawing conclusions from the magnitude of the objective function at these combinations. In these methods there is a continuous improvement in the objective function throughout the course of the search and hence these methods are very efficient. The method has been employed in optimization of various parameters (called independent variables) of RFQ like cooling water flow rate, cooling water inlet temperatures, cavity thickness etc. involved in RFQ thermal design. The temperature rise within RFQ structure is the objective function during the thermal design. Using ANSYS Programming Development Language (APDL), various multiple iterative programmes are written and the analysis are performed to minimize the objective function. The dependency of the objective function on various independent variables is established and the optimum values of the parameters are evaluated. The results of the analysis are presented in the paper. (author)

  14. Development of a 325 MHz ladder-RFQ of the 4-rod-type

    Energy Technology Data Exchange (ETDEWEB)

    Schuett, Maximilian; Ratzinger, Ulrich [Institut fuer Angewandte Physik, Goethe-Universitaet, Frankfurt a. M. (Germany); Brodhage, Robert [GSI, Darmstadt (Germany)

    2015-07-01

    For the research program with cooled antiprotons at FAIR a dedicated 70 MeV, 70 mA proton injector is required. In the low energy section, between the Ion Source and the main linac an RFQ will be used. The 325 MHz RFQ will accelerate protons from 95 keV to 3.0 MeV. This particular high frequency for an RFQ creates difficulties, which are challenging in developing this cavity. In order to define a satisfactory geometrical configuration for this resonator, both from the RF and the mechanical point of view, different designs have been examined and compared. Very promising results have been reached with a ladder type RFQ, which has been investigated since 2013. We present recent 3D simulations of the general layout and of a complete cavity demonstrating the power of a ladder type RFQ as well as measurements of a 0.8 m prototype RFQ, which was manufactured in late 2014 and designed for RF power and vacuum tests. We outline a possible RF layout for the RFQ within the new FAIR proton injector and highlight the mechanical advantages.

  15. Linac4 RFQ assembly is carried out before installation in Building 152

    CERN Multimedia

    Anna Pantelia

    2012-01-01

    This series of pictures documents the assembly phase of the Linac4 RFQ (Radio Frequency Quadrupole), performed at the end of July 2012. The Linac4 RFQ is made of 3 modules, 1 meter each, assembled together to accelerate the H- or proton beam from the ion source extraction at 45 kV to the energy of 3 MeV. The RFQ is the first of the Linac4 accelerating structures, which will increase to 160 MeV the beam injection energy into the PS Booster as from the end of LS2.

  16. Results of L3 BGO calorimeter calibration using an RFQ accelerator

    CERN Document Server

    Chaturvedi, U K; Gataullin, M; Gratta, Giorgio; Kirkby, D; Lu, W; Newman, H; Shvorob, A V; Tully, C; Zhu, R

    2000-01-01

    A novel calibration system based on a radiofrequency-quadrupole (RFQ) accelerator has been installed in the L3 experiment. Radiative capture of 1.85 MeV protons from the RFQ accelerator in a lithium target produces a flux of 17.6 MeV photons which are used to calibrate 11000 crystals of the L3 BGO calorimeter. In this paper we present results of the RFQ run taken in November 1997. A calibration precision of 0.6% was reached in the barrel of the L3 BGO calorimeter, and 0.7% in the BGO endcaps. (8 refs).

  17. Comparison of beam simulations with measurements for a 1.25-MeV, CW RFQ

    International Nuclear Information System (INIS)

    Smith, H.V. Jr.; Bolme, G.O.; Sherman, J.D.; Stevens, R.R. Jr.; Young, L.M.; Zaugg, T.J.

    1998-01-01

    The Low-Energy Demonstration Accelerator (LEDA) injector is tested using the Chalk River Injector Test Stand (CRITS) radio-frequency quadrupole (RFQ) as a diagnostic instrument. Fifty-keV, dc proton beams are injected into the 1.25-MeV, CW RFQ and transported to a beamstop. Computer-simulation-code predictions of the expected beam performance are compared with the measured beam currents and beam profiles. Good agreement is obtained between the measurements and the simulations at the 75-mA design RFQ output current

  18. Preliminary Study on 50MHz Heavy Ion RFQ without Pre-Bunchers

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Jang, Ji Ho; Kim, Han Sung; Kwon, Hyeok Jung

    2009-01-01

    We are studying a Radio Frequency Quadrupole (RFQ) as a lower energy part for a 200-MeV/u heavy ion linear accelerator of the International Business and Science Belt Project. The RFQ accelerates the 10- keV/u heavy ion beams from ion source (hydrogen molecules to uranium) and injects the 300-keV/u beam to the superconducting linac. Table I shows the basic parameters for the RFQ accelerator. In this study, we assumed that pre-bunchers to accelerate two charge state is not required

  19. Analytical solution for the electrical properties of a radio-frequency quadrupole (RFQ) with simple vanes

    International Nuclear Information System (INIS)

    Lancaster, H.

    1982-01-01

    Although the SUPERFISH program is used for calculating the design parameters of an RFQ structure with complex vanes, an analytical solution for electrical properties of an RFQ with simple vanes provides insight into the parametric behavior of these more complicated resonators. The fields in an inclined plane wave guide with proper boundary conditions match those in one quadrant of an RFQ. The principle of duality is used to exploit the solutions to a radial transmission line in solving the field equations. Calculated are the frequency equation, frequency sensitivity factors, electric field, magnetic field, stored energy (U), power dissipation, and quality factor

  20. On development of RFQ vanes from beam dynamics data

    International Nuclear Information System (INIS)

    Chatterjee, Avik; Padhi, Rakesh; Banerjee, M.K.; Naik, Vaishali; Sanyal, Dirtha; Choudhury, Siddhartha De; Chakrabarti, Alok

    2005-01-01

    Simulation at critical steps of product development greatly helps to detect the design flaws at the earlier stage and gives a digital platform to iterate the design and process at the initial stage. This helps to reduce the risk of failure considerably and gives an alternative to reduce the number of physical prototypes for design validation. Modern concepts of virtual prototyping for predicting functional behaviour of a product and process are gaining momentum globally as it is the fully integrated approach to converge the concepts of functional design, Design for Manufacturing (DFM), Design for Assembly (DFA) and manufacturing process simulation. This concept has been partially implemented in development of RFQ (Radio Frequency Quadruple) vanes and the basic guidelines have been discussed. (author)

  1. Design of the new couplers for C-ADS RFQ

    Science.gov (United States)

    Shi, Ai-Min; Sun, Lie-Peng; Zhang, Zhou-Li; Xu, Xian-Bo; Shi, Long-Bo; Li, Chen-Xing; Wang, Wen-Bin

    2015-04-01

    A new special coupler with a kind of bowl-shaped ceramic window for a proton linear accelerator named the Chinese Accelerator Driven System (C-ADS) at the Institute of Modern Physics (IMP) has been simulated and constructed and a continuous wave (CW) beam commissioning through a four-meter long radio frequency quadruple (RFQ) was completed by the end of July 2014. In the experiments of conditioning and beam, some problems were promoted gradually such as sparking and thermal issues. Finally, two new couplers were passed with almost 110 kW CW power and 120 kW pulsed mode, respectively. The 10 mA intensity beam experiments have now been completed, and the couplers during the operation had no thermal or electro-magnetic problems. The detailed design and results are presented in the paper. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03020500)

  2. Investigation of high duty factor ISR RFQ-1000

    International Nuclear Information System (INIS)

    Lu, Y.R.; Chen, C.E.; Fang, J.X.; Gao, S.L.; Guo, J. F.; Guo, Z.Y.; Li, D.S.; Li, W.G.; Pan, O.J.; Ren, X.T.; Wu, Y.; Yan, X.Q.; Yu, J.X.; Yu, M.L.; Ratzinger, U.; Deitinghoff, H.; Klein, H.; Schempp, A.

    2003-01-01

    Two Integral Split Ring (ISR) RFQs with high duty factor of 16.7% have been designed for the application of heavy ion implantation and built in the past several years at Institute of Heavy Ion Physics (IHIP) in Peking University. Two kinds of PIG ion sources with permanent magnets and LEBT were installed and optimized for the injection into these two RFQs. The positive O + and negative O - ions were extracted and accelerated separately as well as simultaneously. The output macro pulse O - beam current reached 660 μA at a transmission efficiency of more than 82%. The N + beam was also accelerated with similar transmission efficiency, but the output current intensity for positive ions were lower than the negative ions because of the extracted current limitation of ion sources. The improvements, especially for high duty factor and experimental results with the 1 MeV ISR RFQ will be presented in this paper

  3. Investigation of high duty factor ISR RFQ-1000

    Science.gov (United States)

    Lu, Y. R.; Chen, C. E.; Fang, J. X.; Gao, S. L.; Guo, J. F.; Guo, Z. Y.; Li, D. S.; Li, W. G.; Pan, O. J.; Ren, X. T.; Wu, Y.; Yan, X. Q.; Yu, J. X.; Yu, M. L.; Ratzinger, U.; Deitinghoff, H.; Klein, H.; Schempp, A.

    2003-12-01

    Two Integral Split Ring (ISR) RFQs with high duty factor of 16.7% have been designed for the application of heavy ion implantation and built in the past several years at Institute of Heavy Ion Physics (IHIP) in Peking University. Two kinds of PIG ion sources with permanent magnets and LEBT were installed and optimized for the injection into these two RFQs. The positive O+ and negative O- ions were extracted and accelerated separately as well as simultaneously. The output macro pulse O- beam current reached 660 μA at a transmission efficiency of more than 82%. The N+ beam was also accelerated with similar transmission efficiency, but the output current intensity for positive ions were lower than the negative ions because of the extracted current limitation of ion sources. The improvements, especially for high duty factor and experimental results with the 1 MeV ISR RFQ will be presented in this paper.

  4. Development of an RFQ linac for unstable nuclei

    International Nuclear Information System (INIS)

    Arai, S.; Imanishi, A.; Morimoto, T.; Shibuya, S.; Tojyo, E.; Tokuda, N.

    1990-05-01

    A split coaxial RFQ (SCRFQ) is being developed for accelerating unstable nuclei with a charge-to-mass ratio larger than 1/60 from 1 to 170 keV/u in the JHP heavy-ion linac. The SCRFQ is equipped with modulated vanes to generate ideal quadrupole and accelerating fields. The fundamental problems on the SCRFQ have been clarified and solved through studies on a cold model, and the excellent accelerating performance has been confirmed by using a proton accelerating model working at 50 MHz. A 25.5-MHz prototype for the JHP SCRFQ is now under development. The prototype, 2.1 m in length and 0.9 m in diameter, will accelerate ions with a charge-to-mass ratio larger than 1/30 from 1 to 45 keV/u. Low-power tests conducted so far show that the prototype cavity has good rf characteristics. (author)

  5. Investigation of high duty factor ISR RFQ-1000

    CERN Document Server

    Lu, Y R; Fang, J X; Gao, S L; Guo, J F; Guo, Z Y; Li, D S; Li, W G; Pan, O J; Ren, X T; Wu, Y; Yan, X Q; Yu Jin Xiang; Yu, M L; Ratzinger, U; Deitinghoff, H; Klein, H; Schempp, A

    2003-01-01

    Two Integral Split Ring (ISR) RFQs with high duty factor of 16.7% have been designed for the application of heavy ion implantation and built in the past several years at Institute of Heavy Ion Physics (IHIP) in Peking University. Two kinds of PIG ion sources with permanent magnets and LEBT were installed and optimized for the injection into these two RFQs. The positive O**+ and negative O**- ions were extracted and accelerated separately as well as simultaneously. The output macro pulse O**- beam current reached 660muA at a transmission efficiency of more than 82%. The N**+ beam was also accelerated with similar transmission efficiency, but the output current intensity for positive ions were lower than the negative ions because of the extracted current limitation of ion sources. The improvements, especially for high duty factor and experimental results with the 1MeV ISR RFQ will be presented in this paper.

  6. Analysis of a multi-module split coaxial RFQ

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1986-11-01

    A split coaxial RFQ linac with modulated vanes is under development for acceleration of very heavy ions. As a first step, a 1/4 scaled model with flat vanes has been constructed. Easy assembling of vanes and good mechanical stability of the structure have been achieved by employing a multi-module cavity arrangement. In this paper, theoretical treatments for the estimation of rf parameters and the interpretation of resonance characteristics are described in detail and their results are compared with the experimental data. The resonant frequency predicted by using the estimated inductance and the measured capacitance agrees with the experimental value within 2 % accuracy. Dispersion characteristics and longitudinal voltage distribution at each resonance mode are qualitatively well explained by an equivalent circuit analysis. (author)

  7. Beam tests of the 12 MHz RFQ RIB injector for ATLAS

    International Nuclear Information System (INIS)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-01-01

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged 132 Xe and 84 Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations

  8. Operating experience of upgraded radio frequency source at 76 MHz coupled to heavy ion RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shiju, A.; Patel, N.R.; Shrotriya, S.D.; Bhagwat, P.V.

    2015-01-01

    A heavy ion radio frequency quadrupole (RFQ) accelerator has been developed at BARC (BARC). A RF source which was designed and developed at 76 MHz earlier, has been upgraded and coupled to heavy ion RFQ successfully. The DC bias supplies of this source have been replaced with new supplies having high efficiency and well filteration against RF interference (RFI). The driver of main power amplifier has been replaced with indigenously designed and developed unit. The earlier introduced microcontroller based interlock experienced RF noise issues. So, this circuit has been modified with the new circuit. With these modifications, the performance of the RF source was improved. Additionally, a separate low power RF source of around 100 + Watt was designed, developed and integrated with RFQ for its RF conditioning. This paper describes the details of up gradation of technologies implemented and coupling experience of this RF source with heavy ion RFQ. (author)

  9. Design and fabrication of Radio Frequency Quadrupole (RFQ) Accelerator at IUAC, New Delhi

    International Nuclear Information System (INIS)

    Ahuja, R.; Kothari, A.; Safvan, C.P.; Kumar, Sugam; Ram Sankar, P.

    2013-01-01

    As part of the accelerator augmentation program at Inter-University Accelerator Centre (IUAC), a high current injector (HCI) is being developed to inject high currents of highly charged ions into the superconducting LINAC. The ion beams produced by the Electron Cyclotron Resonance (ECR) based PKDELIS ion source will be injected into a Radio Frequency Quadrupole Accelerator (RFQ). The RFQ focuses and accelerates the ion beam. For the development of the RFQ Accelerator, a prototype of nearly half length was successfully built at IUAC to test the RF, thermal and mechanical design. The prototype is designed for 30 kW power at 48.5 MHz. This paper presents the mechanical design, fabrication and assembly of the final 2.5 m long RFQ. (author)

  10. RF Measurements and Tuning of the 750 MHz HF-RFQ

    CERN Document Server

    Koubek, Benjamin; Timmins, Marc; CERN. Geneva. ATS Department

    2017-01-01

    In the frame of the program on medical applications CERN has built a compact 750 MHz RFQ to be used as an injector for a hadron therapy linac. This RFQ was designed to accelerate protons to an energy of 5 {\\lambda} MeV within only 2 m length. It is divided into four segments and equipped with 32 tuners in total. The length of the RFQ corresponds to 5 which is considered to be close to the limit for field adjustment using only piston tuners. Moreover the high frequency, which is about double the frequency of existing RFQs, results in a sensitive structure and requires careful tuning by means of the alignment of the pumping ports and fixed tuners. This report summarises the tuning procedure, RF and bead pull measurements of the RFQ.

  11. Beam tests of the 12 MHz RFQ RIB injector for ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-05-06

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged {sup 132}Xe and {sup 84}Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations.

  12. Operating characteristics of a 2.0-MeV RFQ

    International Nuclear Information System (INIS)

    Purser, F.O.; Wadlinger, E.A.; Sander, O.R.; Potter, J.M.; Crandall, K.R.

    1983-01-01

    A second radio-frequency quadrupole (RFQ) accelerator has been designed, constructed and operated at Los Alamos National Laboratory. The accelerator's design parameters represent a major extension from the original Los Alamos RFQ, with the new accelerator being 2.5 times as long, having three times the output energy, and with 2.5 times the current limit. The new accelerator's operating characteristics were studied for 3 months before disassembly to incorporate design mofidications. Results are discussed

  13. Design study of a 25.5-MHz split coaxial RFQ

    International Nuclear Information System (INIS)

    Arai, Shigeaki; Imanishi, Akira; Morimoto, Teruhisa; Shibuya, Shinji; Tojyo, Eiki; Tokuda, Noboru.

    1989-08-01

    A 25.5-MHz split coaxial RFQ with modulated vanes is now being fabricated. The RFQ, 2.1 m in length and 0.9 m in diameter, will accelerate ions with a charge-to-mass ratio greater than 1/30 from 1 keV/n up to 45.4 keV/n. The design works on beam dynamics and cavity fabrication are reported. (author)

  14. The mechanical design and fabrication of a ridge-loaded waveguide for an RFQ

    International Nuclear Information System (INIS)

    Valdiviez, R.; Roybal, P.; Clark, B.; Martinez, F.; Casillas, D.; Gonzales, G.; Tafoya, J.

    1998-01-01

    A Radio Frequency Quadrupole (RFQ) accelerator with an RF power input of 2 MW and an H + beam output current of 100 mAmps at 6.7 MeV, continuous duty factor utilizes twelve nearly identical ridge-loaded waveguides. The ridge-loaded, vacuum waveguides couple the RF power to the RFQ accelerating cavity. The mechanical design and fabrication of the ridge-loaded waveguides are the topics of this paper

  15. Mechanical Design, Brazing and Assembly Procedures of the LINAC4 RFQ

    CERN Document Server

    Mathot, S; Briswalter, A; Callamand, Th; Carosone, J; Favre, N; Geisser, J M; Lombardi, A; Maire, V; Malabaila, M; Pugnat, D; Richerot, Ph; Riffaut, B; Rossi, C; Timmins, M; Vacca, A; Vandoni, G; Vretenar, M

    2010-01-01

    The Linac4 RFQ will accelerate the H- beam from the ion source to the energy of 3 MeV. The RFQ is composed of three sections of one meter each, assembled by means of ultra high vacuum flanges and adjustable centring rings. The complete 3-m long RFQ will be supported isostatically over 3 points like a simple beam in order to minimise the maximum deflection. The ridge line, used to feed the RF power into the RFQ, will be supported via springs and its position adjusted in such way that no strain is introduced into the RFQ at the moment of its connection. The mechanical design has been done at CERN where the modules are completely manufactured, heat treated and brazed also. In that way, all of the processes are carefully controlled and the influence, notably of the heat treatments, has been understood in a better way. Since 2002 several four vanes RFQ modules have been brazed at CERN for the TRASCO and IPHI projects. A two-step brazing procedure has been tested. This technique is actually used for the assembly of...

  16. Investigation of the radionuclide inventory and the production yields of the target stacks at the PEFP radioisotope production facility

    International Nuclear Information System (INIS)

    Yoon, Sang-Pil; Hong, In-Seok; Cho, Yong-Sub

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) will construct a radioisotope production facility by using the nuclear reaction between the 100-MeV proton beam and the solid target. For investigating the radionuclide inventory and the production yield of the radioisotope production facility, we have optimized the thickness of the prototype target stacks by using a SRIM calculation. The target stacks consist of RbCl encapsulated in inconel alloy, Zn metal, and Ga metal encapsulated in niobium. Typical beam parameters were 300 μA and 95 hours. An inventory of all generated radionuclide activities is mandatory in order to prepare the operation scenario and design the hot cell. The Monte Carlo code MCNPX was used to investigate what radionuclide is generated. The obtained radionuclide inventory indicated that about 100 radionuclides were generated and that the total radioactivity of the irradiated target stacks was 1324.1 Ci at the end of the bombardment. The production yields of Sr-82, Cu-67, and Ge-68 were 3.79 Ci, 2.74 Ci, and 1.23 Ci at the end of the bombardment.

  17. A review of high beam current RFQ accelerators and funnels

    International Nuclear Information System (INIS)

    Schneider, J.D.

    1998-01-01

    The authors review the design features of several high-current (> 20-mA) and high-power (> 1-mA average) proton or H - injectors, RFQs, and funnels. They include a summary of observed performance and will mention a sampling of new designs, including the proposed incorporation of beam choppers. Different programs and organizations have chosen to build the RFQ in diverse configurations. Although the majority of RFQs are either low-current or very low duty-factor, several versions have included high-current and/or high-power designs for either protons or H - ions. The challenges of cooling, handling high space-charge forces, and coupling with injectors and subsequent accelerators are significant. In all instances, beam tests were a valuable learning experience, because not always did these as-built structures perform exactly as predicted by the earlier design codes. They summarize the key operational parameters, indicate what was achieved, and highlight what was learned in these tests. Based on this generally good performance and high promise, even more challenging designs are being considered for new applications that include even higher powers, beam funnels and choppers

  18. RFQ Reaction Cells for AMS: Developments and Applications

    Directory of Open Access Journals (Sweden)

    Kieser William E.

    2013-12-01

    Full Text Available The use of anion-gas interactions in Radiofrequency Quadrupole (RFQ ion guide reaction cells has been shown to be very effective in the elimination of a number of atomic and molecular isobars which have caused difficulties for Accelerator Mass Spectrometry (AMS measurements [1,2]. This presentation begins with a review of the early work leading to the use of ion-gas reactions and continues with a discussion the recent measurements of the efficacy of this technique, some of which involve fluoride molecular anions. However, the transformation of the equipment used for these proof-of-principle measurements into a system suitable for routine analysis has required attention to aspects of the ion beam transport and gas handling subsystems. For example, the cross sections of the ion-gas reactions, involving both the analyte ion as well as the isobar, are critically dependent on the ion energy which has to be reduced from the ion source energy, usually between 20 and 80 keV, to energies typically in the range of several eV, a task complicated by the energy spread and divergence of beams from AMS sputter sources. With simulations using SIMION 8.1 [3] and tests of promising configurations in a laboratory system, principles for the design of the retarder optics have been developed. These are discussed, along with their planned implementation in a next generation analytical system.

  19. A flight-qualified RFQ for the BEAR project

    International Nuclear Information System (INIS)

    Schrage, D.; Young, L.; Campbell, B.; Billen, J.H.; Wangler, T.; Stovall, J.; Martinez, F.; Clark, W.; Gibbs, S.; Bolme, G.; O'Shea, P.; Lynch, M.; Devenport, J.; Rathke, J.; Micich, R.; Rose, J.; Richter, R.; Rosato, G.

    1989-01-01

    A 1-MeV, 30-mA, low-duty factor, 425-MHz RFQ has been designed and constructed for the BEAR (Beam Experiments Aboard a Rocket) Project by Los Alamos National Laboratory, Grumman Space Systems Division, and GAR Electroformers. The design of this 1-m-long, lightweight (<55-kg) accelerator is unique in that it was constructed of four copper-plated aluminum quadrants joined longitudinally by a room-temperature electroforming process to produce a monolithic structure. There are no rf, vacuum, or mechanical joints in the vane/cavity region of the accelerator. As part of the design/fabrication process, spark-test, cold, and engineering model RFQs were constructed and tested. The completed flight unit has successfully passed static structural and thermal tests as well as dynamic structural (shake) tests according to the launch, separation, and flight specifications. In addition, the rf field distributions and beam-transport characteristics have been measured and found to satisfy the design requirements. 12 refs., 2 figs., 3 tabs

  20. Development of 350 MHz/1000 Watt intermediate power amplifier for 400 keV RFQ accelerator

    International Nuclear Information System (INIS)

    Pande, M.M.; Patel, N.R.; Shinde, K.R.; Rao, M.K.V.; Handu, V.K.

    2005-01-01

    Two numbers of high power RF systems, each delivering around 35 to 40 kW of power at 350 MHz are being developed in BARC. These High Power Amplifiers (HPA) cater to the total need of 70 kW of RF power required by the 400 keV (Deuterium) RFQ accelerator. This RFQ will replace the existing 400 keV DC accelerator of 14 MeV Neutron Generator. The RFQ will accelerate a deuterium beam from 50 keV to 400 keV to impinge upon a tritium target inside a sub critical assembly. Each of these 35 / 40 KW HPA requires a drive power of around 1000 / 1500 Watt respectively. Hence a intermediate power amplifier (IPA) bas been designed to deliver the power of 1000 Watt at the rate of 350 MHz. The paper describes the development of this amplifier

  1. REX-ISOLDE RFQ Beam Dynamics Studies using CST EM Studio

    CERN Document Server

    Fraser, M A

    2014-01-01

    The original CNC milling files used to machine the electrodes of the REX-ISOLDE RFQ were acquired in late 2012 and electrostatic simulations were carried out using CST EM Studio in order to attain a 3D field map of the electric fields in the region around the beam axis. The objective was to construct a beam dynamics simulation tool that frees us from the constraints of the PARMTEQM code, which was used to design the RFQ, and that will afford us more flexibility in the studies needed for pre-bunching into the RFQ with an external multi-harmonic buncher. This note details the geometry of the electrodes and their simulation in CST EM Studio, the implementation of particle tracking in the computed field map using TRACK and benchmarking studies with PARMTEQM v3.09.

  2. Assembly and RF Tuning of the Linac4 RFQ at CERN

    CERN Document Server

    Rossi, C; Hansen, J; Lallement, JB; Lombardi, AM; Pugnat, D; Vandoni, G; Timmins, M; Vretenar, M; Mathot, S; Piquet, O; Novo, J; Le Noa, Y; France, A; Desmons, M

    2013-01-01

    The fabrication of Linac4 is progressing at CERN with the goal of making a 160 MeV H- beam available to the LHC injection chain as from 2015. In the Linac4 the first stage of beam acceleration, after its extraction from the ion source, is provided by a Radiofrequency Quadrupole accelerator (RFQ), operating at the RF frequency of 352.2 MHz and which accelerates the ion beam to the energy of 3 MeV. The RFQ, made of three modules, one meter each, is of the four-vane kind, has been designed in the frame of a collaboration between CERN and CEA and has been completely machined and assembled at CERN. The paper describes the assembly of the RFQ structure and reports the results of RF low power measurements, in order to achieve the required accelerating field flatness within 1% of the nominal field profile.

  3. Design of a 1 MeV 3He+ RFQ for the SAIC PET accelerator facility

    International Nuclear Information System (INIS)

    Cornelius, W.D.; Young, P.E.

    1993-01-01

    The novel design of a 1 MeV 3 He + radiofrequency quadrupole (RFQ) accelerator is discussed. This RFQ is the first segment of an accelerator for the production of radioisotopes for positron emission tomography (PET) applications. This RFQ is unusual in that two specific innovations were incorporated into the design. The mechanical design is a hybrid of conventional four-vane and four-rod geometries. This hybridization reduces the physical dimensions of the accelerator without sacrificing too much in rf efficiency and has the added benefit of reducing the sensitivity to mechanical alignment errors. In addition, the beam dynamics of the last few cells was modified to tailor the output beam parameters to improve the beam transport through the next accelerator section. The details of the mechanical structure, the mechanical and electrical alignment experiences, and a comparison of the theoretical and experimental performance of this accelerator are also discussed. (orig.)

  4. Software development for the RF measurement and analysis of RFQ accelerator

    International Nuclear Information System (INIS)

    Fu Shinian

    2002-01-01

    In a high current RFQ accelerator, it is required to tightly control the beam losses and beam emittance growth. For this reason, it is demanded to accurately measure and to correctly analyze field distribution and mode components, and eventually, to tune the RF field to reach its design values. LebView is a widely used software platform for the automatic measurement and data processing. The author will present the code development on this platform for the RFQ measurement and analysis, including some applications of the codes

  5. Software development for the RF measurement and analysis of RFQ accelerator

    CERN Document Server

    Fu Shin Ian

    2002-01-01

    In a high current RFQ accelerator, it is required to tightly control the beam losses and beam emittance growth. For this reason, it is demanded to accurately measure and to correctly analyze field distribution and mode components, and eventually, to tune the RF field to reach its design values. LebView is a widely used software platform for the automatic measurement and data processing. The will present the code development on this platform for the RFQ measurement and analysis, including some applications of the codes

  6. Software development for the RF measurement and analysis of RFQ accelerator

    International Nuclear Information System (INIS)

    Fu Shinian

    2002-01-01

    In a high current RFQ accelerator, it is required to tightly control the beam losses and beam emittance growth. For this reason, it is demanded to accurately measure and to correctly analyze field distribution and mode components, and eventually, to tune the RF field to reach its design values. LebView is a widely used software platform for the automatic measurement and data processing, the authors present authors' code development on this platform for the RFQ measurement and analysis, including some applications of the codes

  7. C-w operation of a 2-MeV RFQ accelerator

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1986-01-01

    We have achieved reliable cw operation of the Fusion Materials Irradiation Test (FMIT) radio-frequency quadrupole (RFQ) accelerator and have accelerated 40 mA of H 2 + beam to an energy of 2 MeV. The technical considerations for future cw accelerator designs, based on our experience in achieving cw operation, will be presented. Also to be discussed are measurements of beam emittance, matching into the RFQ, and beam transmission through the accelerator. These measurements will be compared with results of theoretical simulations of the device. The diagnostics instrumentation developed for characterizing intense cw beams also will be discussed, as well as the performance of those devices

  8. Acceleration tests of the INS 25.5-MHz split coaxial RFQ

    International Nuclear Information System (INIS)

    Arai, S.; Imanishi, A.; Morimoto, T.; Tojyo, E.; Tokuda, N.; Shibuya, S.

    1991-05-01

    The INS 25.5-MHz split coaxial RFQ, a linac that accelerates ions with a charge-to-mass ratio greater than 1/30 from 1 to 45.4 keV/u, is now undergoing acceleration tests with a beam of molecular nitrogen (N 2 + ) ions. Results so far obtained show that the RFQ operates in accordance with the design. Presented are preliminary results on the beam performance: emittances of the in- and output beams, output energy and its spread, and beam transmission. (author)

  9. Expériences sur les RFQ TRASCO et IPHI et développement du RFQ pour le Linac4

    CERN Document Server

    Mathot, S

    2008-01-01

    Depuis 1999, le CERN est impliqué dans le brasage sous vide des RFQ TRASCO et de IPHI depuis 2002. Pour ces deux projets, les tronçons RFQ sont constitués de 4 pôles indépendants usinés dans du cuivre OFE forgé. Ces pôles ont une longueur comprise entre 1000 et 1200 mm et doivent être assemblés avec une précision de l?ordre de 20 microns. La masse totale d?un tronçon est comprise entre 300 et 450 Kg. La procédure de brasage qui a été proposée et utilisée pour 5 tronçons jusqu'à présent consiste en deux étapes distinctes, l?une horizontale et l?autre verticale. Ce papier décrit ces étapes et les solutions utilisées pour l?alignement des pôles avant brasage. Les problèmes rencontrés, notamment en raison de la relaxation de contraintes lors du cycle thermique de brasage sont discutés. Enfin, les choix techniques retenus pour la fabrication des RFQ pour le projet Linac4 sont présentés.

  10. Beam tests of the 12 MHz RFQ RIB injector for ATLAS

    International Nuclear Information System (INIS)

    Kaye, R. A.

    1999-01-01

    In recent tests without beam, the Argonne 12 MHz split-coaxial radio-frequency quadruple (RFQ) achieved a cw intervane voltage of more than 100 kV, the design operating voltage for the device. This voltage is sufficient for the RFQ to function as the first stage of a RIB injector for the Argonne Tandem Linear Accelerator System (ATLAS). Previously reported beam dynamics calculations for the structure predict longitudinal emittance growth of only a few keV·ns for beams of mass 132 and above with transverse emittance of 0.27 π mm·mrad (normalized). Such beam quality is not typical of RFQ devices. The work reported here is preparation for tests with beams of mass up to 132. Beam diagnostic stations are being developed to measure the energy gain and beam quality of heavy ions accelerated by the RFQ using the Dynamitron accelerator facility at the ANL Physics Division as the injector. Beam diagnostic development includes provisions for performing the measurements with both a Si charged-particle detector and an electrostatic energy spectrometer system

  11. Development of a new RFQ beam cooler and buncher for the CANREB project at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Barquest, B.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Bale, J.C.; Dilling, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Gwinner, G. [University of Manitoba, Department of Physics and Astronomy, Allen Building, Winnipeg, MB R3T 2N2 (Canada); Kanungo, R. [Saint Mary’s University, Astronomy and Physics Department, 923 Robie Street, Halifax, NS B3H 3C3 (Canada); Krücken, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada)

    2016-06-01

    A new radiofrequency quadrupole (RFQ) based ion beam cooler and buncher is under development for the CANadian Rare-isotope facility with Electron Beam ion source (CANREB) project at TRIUMF. The CANREB project requires an RFQ buncher that will efficiently accept continuous beams of rare isotopes from either the Advanced Rare IsotopE Laboratory (ARIEL) or Isotope Separator and ACcelerator (ISAC) target by way of a high resolution magnetic spectrometer, with energies up to 60 keV and deliver bunched beams to an electron beam ion source (EBIS) for charge breeding. The energy of the bunched beam delivered to the EBIS will be adjustable to match the requirements of the existing post acceleration infrastructure. The CANREB RFQ incorporates design considerations to facilitate ease of use over a wide range of ion masses, and is intended to accommodate incident beam rates as high as 10{sup 8} pps, delivering beam bunches at 100 Hz. An overview of the CANREB RFQ design concept will be presented, informed by results from both ion optical simulations as well as commissioning efforts with other beam cooler and buncher devices. Simulation results indicate that the design is well suited to deliver high quality bunched beams with high efficiency with as many as 10{sup 6} ions per bunch.

  12. Progress in the fabrication of the RFQ accelerator for the CERN Linac4

    CERN Document Server

    Rossi, C; Lallement, J B; Lombardi, A M; Mathot, S; Pugnat, D; Timmins, M; Vandoni, G; Vretenar, M; Desmons, M; France, A; Le Noa, Y; Novo, G; Piquet, O

    2010-01-01

    The construction of Linac4, the new 160 MeV CERN H- injector, has started with the goal of improving the LHC injection chain from 2015 with a new higher energy linac. The low energy front end of Linac4 is based on a 352 MHz, 3-m long Radiofrequency Quadrupole (RFQ) accelerator [1]. The RFQ accelerates the 70 mA, 45 keV H- beam from the RF source to the energy of 3 MeV. The fabrication of the RFQ has started at CERN in 2009 and is presently in progress, aiming at the completion of the full structure by early 2011. The RFQ consists of three modules, one meter each; the fabrication alternates machining phases and stress relief cycles, for copper stabilization. Two brazing steps are required: one to assemble the four parts composing a module, and a second one to install the stainless steel flanges. In order to monitor that the tight mechanical and alignment budget is not exceeded, metrology measurements at the CERN workshop and RF bead-pull measurements are performed during the fabrication process. In this paper ...

  13. Development of RF non-IQ sampling module for Helium RFQ LLRF system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Seong; Ahn, Tae-Sung; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Song, Young-Gi; Seol, Kyung-Tae; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    KOMAC (Korea Multi-purpose Accelerator Complex) has a plan to develop the helium irradiation system. This system includes the Ion source, LEBT, RFQ, MEBT systems to transport helium particles to the target. Especially, the RFQ (Radio Frequency Quadrupole) system should receive the 200MHz RF within 1% amplitude error stability. For supplying stable 200MHz RF to the RFQ, the low-level radio frequency (LLRF) should be controlled by control system. The helium RFQ LLRF control system adopted non- IQ sampling method to sample the analog input RF. Sampled input data will be calculated to get the I, Q values. These I, Q values will be used to monitor the amplitude and phase of the RF signal. In this paper, non-IQ sampling logic and amplitude and phase calculating logic of the FPGA will be introduced. Using Xilinx ISE design suite which is tool for developing the FPGA logic module, non-IQ sampling module and amplitude and phase computing module developed. In the future, PI gain module and frequency error computing module will be developed.

  14. Simulation of the Direct Digital Synthesis module for Helium RFQ LLRF system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Seong; Ahn, Tae-Sung; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Song, Young-Gi; Seol, Kyung-Tae; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, the DDS module in the FPGA simulated and the analysis result will be introduced. Using Xilinx ISE design suite which is tool for developing the FPGA logic module, DDS module simulated. KOMAC (Korea Multi-purpose Accelerator Complex) has a plan to develop the helium irradiation system. This system includes the Ion source, LEBT, RFQ, MEBT systems to transport helium particles to the target. Especially, the RFQ (Radio Frequency Quadrupole) system should receive the 200 MHz RF within 1% amplitude error stability. For supplying stable 200 MHz RF to the RFQ, the LLRF (low-level radio frequency) should be controlled by control system. This helium RFQ LLRF control system have a concept to track the cavity resonance frequency. For tracking the cavity resonance frequency, the FPGA (Field Programmable Gate Array) in the digital board will tune the frequency of the output sinusoidal signal. In order to implement this frequency tracking concept, the DDS (Direct Digital Synthesis) module should be implemented in the FPGA. In the future, frequency tracking system will be tested using test cavity.

  15. Production quality controls and geometric characterization of the IFMIF-RFQ modules via the usage of a Coordinate Measuring Machine

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Luigi, E-mail: luigi.ferrari@lnl.infn.it [INFN-LNL Laboratori Nazionali di Legnaro, Legnaro (Italy); Palmieri, Antonio [INFN-LNL Laboratori Nazionali di Legnaro, Legnaro (Italy); Pepato, Adriano; Prevedello, Alessandro; Dima, Razvan; Udup, Emil [INFN-Sezione di Padova, Padova (Italy)

    2017-02-15

    Highlights: • The production phases of the IFMIF-RFQ Modules is introduced. • Metrological controls through production are described and some results reported. • Radio-Frequency test is introduced by using geometric considerations. • Results from metrology and RF test are compared. • Acceptance of the modules has been guaranteed from that comparison. - Abstract: The RFQ of the IFMIF/EVEDA project (Pérez et al., 2015) is a 9.8 m long cavity able to accelerate a 125 mA deuteron beam from the input energy of 50 keV/u to the output energy of 2.5 MeV/u. Such RFQ operates at the frequency of 175 MHz and is composed of 18 mechanical modules approximately 0.55 long each (Pepato et al., 2010) . The RFQ realization involves the I.N.F.N. Sections of Padova, Torino and Bologna, as well as the Legnaro National Laboratories (L.N.L.). The metrological measurements via CMM (Coordinate Measuring Machine) provided to be a very effective tool both for quality controls along the RFQ production phases and in the reconstruction of the cavity geometric profile for each RFQ module. The scans in the most sensitive regions with respect to RF frequency, such as modulation, tips, base-vane width and vessel height provided the values of the cavity deviations from nominal geometry to be compared with design physic-driven tolerances and with RF measurements. Moreover, the comparison between mechanical and RF measurements suggests a methodology for the geometric reconstruction of the cavity axis and determines the final machining of the end surfaces of each module in view of the coupling with the adjacent ones. In this paper a detailed description of the metrological procedures and tests and of the RFQ along its production and assembly phases will be given and it will be shown that the adopted procedure allowed the attainment of the tuning range specifications for each RFQ module.

  16. 2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications

    Science.gov (United States)

    Zhu, Xiaowen; Wang, Hu; Lu, Yuanrong; Wang, Zhi; Zhu, Kun; Zou, Yubin; Guo, Zhiyu

    2018-03-01

    Boron Neutron Capture Therapy (BNCT) promises a bright future in cancer therapy for its highly selective destruction of cancer cells, using the 10B +n→7Li +4 He reaction. It offers a more satisfactory therapeutic effect than traditional methods for the treatment of malignant brain tumors, head and neck cancer, melanoma, liver cancer and so on. A CW 4-vane RFQ, operating at 162.5 MHz, provides acceleration of a 20 mA proton beam to 2.5 MeV, bombarding a liquid lithium target for neutron production with a soft neutron energy spectrum. The fast neutron yield is about 1.73×1013 n/s. We preliminarily develop and optimize a beam shaping assembly design for the 7Li(p, n)7Be reaction with a 2.5 MeV proton beam. The epithermal neutron flux simulated at the beam port will reach up to 1 . 575 ×109 n/s/cm2. The beam dynamics design, simulation and benchmark for 2.5 MeV BNCT RFQ have been performed with both ParmteqM (V3.05) and Toutatis, with a transmission efficiency higher than 99.6% at 20 mA. To ease the thermal management in the CW RFQ operation, we adopt a modest inter-vane voltage design (U = 65 kV), though this does increase the accelerator length (reaching 5.2 m). Using the well-developed 3D electromagnetic codes, CST MWS and ANSYS HFSS, we are able to deal with the complexity of the BNCT RFQ, taking the contribution of each component in the RF volume into consideration. This allows us to optimize the longitudinal field distribution in a full-length model. Also, the parametric modeling technique is of great benefit to extensive modifications and simulations. In addition, the resonant frequency tuning of this RFQ is studied, giving the tuning sensitivities of vane channel and wall channel as -16.3 kHz/°C and 12.4 kHz/°C, respectively. Finally, both the multipacting level of this RFQ and multipacting suppressing in the coaxial coupler are investigated.

  17. Design of an upgradeable 45-100 mA RFQ accelerator for FAIR

    Science.gov (United States)

    Zhang, Chuan; Schempp, Alwin

    2009-10-01

    A 325 MHz, 35 mA, 3 MeV Radio-Frequency Quadrupole (RFQ) accelerator will be operated as the first accelerating structure of the proton linac injector for the newly planned international science center Facility for Antiproton and Ion Research (FAIR) at GSI, Germany. In previous design studies, two high beam intensities, 70 and 100 mA, were used. Most recently, the design intensity has been changed to 45 mA, which is closer to the operational value. Taking advantage of the so-called New Four-Section Procedure, a new design, which is upgradable from 45 to 100 mA, has been developed for the FAIR proton RFQ. Besides the upgradability analyses, robustness studies of the new design to spatial displacements of the input beam and field errors are presented as well.

  18. Development of 400- to 450-MHz RFQ resonator-cavity mechanical designs

    International Nuclear Information System (INIS)

    Hansborough, L.D.

    1982-01-01

    In the development of the radio-frequency quadrupole (RFQ) linac, the resonator cavity's mechanical design may be a challenge similar in magnitude to that of the development of the accelerator structure itself. Experience with the all-copper 425-MHz RFQ proof-of-principle linac has demonstrated that the resonator cavity must be structurally stiff and easily tunable. This experience has led to development of copper-plated steel structures having vanes that may be moved within a cylinder for tuning. Design of a flexible vane-to-cylinder radio-frequency (rf) joint, the vane, and the cylinder has many constraints dictated by the small-diameter cavities in the 400-MHz-frequency region. Two types of flexible, mechanical vane-to-cylinder rf joints are being developed at Los Alamos: the C-seal and the rf clamp-joint

  19. The Frankfurt ECRIS-RFQ facility for materials research with highly charged ions

    International Nuclear Information System (INIS)

    Stiebing, K.; Streitz, H.; Schmidt, L.; Schremmer, A.; Bethge, K.; Schmidt-Boecking, H.; Schempp, A.; Bessler, U.; Beller, P.; Madlung, J.

    1996-01-01

    The new accelerator for the production of highly charged heavy ions, presently installed at the Institut fuer Kernphysik consists of a 14 GHz ECR source in combination with an variable-energy RFQ post-accelerator. It is designed to deliver highly charged ions in the energy range between 1 keV/u (the ECRIS beam) and 100-200 keV/u with the (variable-energy radio frequency quadrupole) VE-RFQ. Investigations of transient processes with ns time constants will be possible by a single bunch system. Another attractive feature for materials research is the combination with ion beams from the 7 MV Van de Graaff. The status of the project and first results of beam measurements will be pre sented. (orig.)

  20. A 3He++ RFQ accelerator for the production of PET isotopes

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    1997-05-01

    Project status of the 3He ++ 10.5 MeV RFQ Linear Accelerator for the production of PET isotopes will be presented. The accelerator design was begun in September of 1995 with a goal of completion and delivery of the accelerator to BRF in Shreveport, Louisiana by the summer of 1997. The design effort and construction is concentrated in Lab G on the Fermilab campus. Some of the high lights include a 25 mA peak current 3He' ion source, four RFQ accelerating stages that are powered by surplus Fermilab linac RF stations, a gas jet charge doubler, and a novel 540 degree bending Medium Energy Beam Transport (MEBT). The machine is designed to operate at 360 Hz repetition rate with a 2.5% duty cycle. The average beam current is expected to be 150-300 micro amperes electrical, 75- 150 micro amperes particle current

  1. RF field measurement of a four-vane type RFQ with PISLs

    International Nuclear Information System (INIS)

    Ueno, A.; Yamajaki, Y.

    1992-01-01

    Field instability due to a dipole mode mixing is the most significant disadvantage of an original four-vane type radio-frequency quadrupole (RFQ) linac. In order to avoid any dipole mode mixing, several pairs of vane coupling rings (VCRs) have mainly been used so far. However the VCR has complicated shape and is difficult to fabricate, particularly in the RFQ linac operated with a high-duty factor. Thus, a new field-stabilization concept was proposed and was referred to as a π-mode stabilizing loop (PISL) in a previous paper. The results of rf characteristics measurements on a low-power model cavity with or without PISLs are presented in this paper. The measurements showed that the PISLs were capable of stabilizing the accelerating mode, reducing the ratio of a dipole mode mixing from 7% to less than 1.5% (Author) 4 figs., tab., 10 refs

  2. Design of an upgradeable 45-100 mA RFQ accelerator for FAIR

    International Nuclear Information System (INIS)

    Zhang Chuan; Schempp, Alwin

    2009-01-01

    A 325 MHz, 35 mA, 3 MeV Radio-Frequency Quadrupole (RFQ) accelerator will be operated as the first accelerating structure of the proton linac injector for the newly planned international science center Facility for Antiproton and Ion Research (FAIR) at GSI, Germany. In previous design studies, two high beam intensities, 70 and 100 mA, were used. Most recently, the design intensity has been changed to 45 mA, which is closer to the operational value. Taking advantage of the so-called New Four-Section Procedure, a new design, which is upgradable from 45 to 100 mA, has been developed for the FAIR proton RFQ. Besides the upgradability analyses, robustness studies of the new design to spatial displacements of the input beam and field errors are presented as well.

  3. RF tests on the INS 25.5-MHz split coaxial RFQ

    International Nuclear Information System (INIS)

    Shibuya, S.; Arai, S.; Imanishi, A.; Morimoto, T.; Tojyo, E.; Tokuda, N.

    1990-09-01

    A 25.5-MHz split coaxial RFQ with modulated vanes has been constructed. This RFQ will accelerate heavy ions with a charge-to-mass ratio greater than 1/30. We have finished field measurements and obtained the following results: the field strengths between neighboring vanes are same within ±0.6 % over the vane length; the distribution of the intervane voltage in the axial direction is almost flat. Through high power tests so far conducted, we have attained an intervane voltage of 110 kV under a pulse operation with a peak power of 70 kW and a duty factor of 0.9 %. The cavity is thus almost ready for acceleration tests. (author)

  4. RF and constructional issues in the RFQ for the CERN laser ion source

    International Nuclear Information System (INIS)

    Bourquin, P.; Pirkl, W.; Umstatter, H.-H.

    1996-01-01

    An expandable RFQ has been designed and built. Its length can be modified in steps to match the different phases of the Laser Ion Source (LIS) study. This paper describes the basic design approach, the field simulations using MAFIA, the establishment of a lumped-element equivalent circuit using PSPICE, model measurements, RF cold measurements and the strategy to trim longitudinal field flatness. Results of RF power tests are also given. (author)

  5. A 30 KW RF power amplifier for the RFQ accelerator (Paper No. CP 27)

    International Nuclear Information System (INIS)

    Luktuke, R.D.; Garud, A.N.; Murthy, P.N.K.; Sethi, R.C.

    1990-01-01

    A radio frequency quadrupole (RFQ) accelerator, to accelerate deuterons to an energy of 150 keV with beam current of 20 mA, has been designed and is under construction. This accelerator needs approximately 30 kW of RF power to generate the desired voltage of 55 kV on the electrodes, at a frequency of 45 MHz. The power amplifier is designed with four stages of RF amplification using vacuum tubes. The first two stages are built with the tubes 6146 and BEL 250 CX, to deliver about 100 watts power to the grid circuit of the pre driver. The pre driver (EIMAC 5 CX 1500 A) and the driver (BEL 4000 CX) give an output power of about 5kW, at the grid of the high power amplifier. All the four tubes operate in class A/AB mode. The high power amplifier has been designed and is being built around the BEL power tetrode tube CQK-50-2. The output from the high power amplifier is fed to the RFQ, via a matching network to tranform the plate impedance to 50 ohm loop impedeance at the RFQ. The paper presents the design aspects of the high power amplifier, matching network and the results obtained for the earlier stages. (author). 3 refs., 3 tabs., 2 figs

  6. Commissioning of the Linac4 RFQ at the 3 MeV test stand

    CERN Document Server

    Rossi, C; Bellodi, G; Broere, J; Brunner, O; Lombardi, A M; Balula, J M; Yanez, P M; Noirjean, J; Pasquino, C; Raich, U; Roncarolo, F; Vretenar, M; Desmons, M; France, A; Piquet, O

    2013-01-01

    Linac4, the future 160 MeV Hˉ injector to the CERN Proton Synchrotron Booster, is presently under construction at CERN as a first step of the planned upgrade of the LHC injectors. The low energy section of LINAC4, consisting of an ion source, a 352.2 MHz Radio Frequency Quadrupole (RFQ) and a chopper line is being commissioned in a dedicated test stand before installation in its final position in the tunnel. The RFQ is designed to accelerate a 45 keV, 70 mA, Hˉ beam to 3 MeV, with an efficiency of 95% while preserving the transverse emittance. The RFQ, a four-vane structure 3 m in length, has been designed in collaboration with CEA/IRFU and is has been fabricated at the CERN workshop. The precise fabrication has allowed achieving a field flatness of 1%. The completion of the accelerating structure in September 2012 was followed by a complete series of bead-pull measurements and by high-power conditioning to the nominal power of 0.39 MW corresponding to a voltage of 78 kV across the 3 meters. Measurements wi...

  7. Design and configuration of VME EPICS driver for He RFQ LLRF control system

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae-Sung; Jeong, Hae-Seong; Kim, Seong-Gu; Song, Young-Gi; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    In Helium Radio-Frequency Quadrupole (He RFQ) development, the role of the high-power Radio-Frequency (RF) is very important because it is responsible for stable delivery and efficient acceleration of the beam. Since the amplitude control requirements of LLRF system are ±1 % (amplitude), we need a precise remote control system for this reason. This system is referred to as Low-Level RF (LLRF) control system. This paper describes the basic configuration tasks performed by hardware side and the software side to build the LLRF control system, and describes the future work of the He RFQ LLRF control system based on this paper. LLRF control system development at the He RFQ development stage is important. LLRF control system development requires the exact configuration of hardware and software. For each of the Layer configuration is completed on the software side and hardware modules: vxworks operating system installation, EPICS BASE compilation, module source code compiled, object file loading and execution on vxworks, EPICS IOC operation check, etc.

  8. A compact ESQ system for transport and focusing of H- beam from ion source to RFQ

    International Nuclear Information System (INIS)

    Guharay, S.K.; Allen, C.K.; Reiser, M.; Saadatmand, K.; Chang, C.R.

    1992-01-01

    A compact, 6-lens electrostatic quadrupole (ESQ) LEBT (low energy beam transport) system has been constructed at the University of Maryland to transport a 30 mA, 35 kV H - beam over a distance of about 30 cm. A short einzel lens section is included at the end of the ESQ LEBT to establish a good matching of the beam to the radio frequency quadrupole (RFQ) accelerator, and to meet the emittance requirements of the linac in the Super-conducting Super Collider. Computer code predictions on the beam dynamics through the LEBT with experimentally measured input beam data are discussed. (Author) 5 figs., 6 refs

  9. An RF driven H- source and a low energy beam injection system for RFQ operation

    International Nuclear Information System (INIS)

    Leung, K.N.; Bachman, D.A.; Chan, C.F.; McDonald, D.S.

    1992-01-01

    An RF driven H - source has been developed at LBL for use in the Superconducting Super Collider (SSC). To date, an H - current of ∼40 mA can be obtained from a 5.6-cm-diam aperture with the source operated at a pressure of about 12 m Torr and 50 kW of RF power. In order to match the accelerated H - beam into the SSC RFQ, a low-energy H - injection system has been designed. This injector produces an outgoing H - beam free of electron contamination, with small radius, large convergent angle and small projectional emittance

  10. Acceleration performance of a 50-MHz split coaxial RFQ and the design of a 25.5-MHz prototype

    International Nuclear Information System (INIS)

    Tokuda, N.; Arai, S.; Fukushima, T.; Morimoto, T.; Tojyo, E.

    1989-03-01

    Acceleration tests on a 50-MHz split coaxial RFQ have been conducted at INS. The 2-m long RFQ has accelerated protons from 2 to 60 keV. The experimental results concerning beam emittance and transmission efficiency agree with predictions of a computer simulation. Following this success, we are fabricating a 25.5-MHz prototype of 2-m long. The issues of the study are to establish a structure standing a high-power operation and to accelerate heavy ions with a charge-to-mass ratio larger than 1/30. (author)

  11. The EBIS-RFQ couple: a fully matched heavy ion 3rd pre-injector for Saturne

    International Nuclear Information System (INIS)

    Olivier, M.; Faure, J.; Laclare, J.L.; Lefebvre, J.M.; Leleux, G.; Ropert, A.; Tkatchenko, A.; Tkatchenko, M.

    1983-01-01

    Since 1978, the 3 GeV Synchrotron Saturne is routinely operated with proton, deuteron, helium beams and, since 1981 with polarized protons and deuterons. Heavy ions are expected in the Summer of 1983 by using a new pre-injector presently under construction. As already proposed by R.W.Hamm, the marriage of an EBIS and an RFQ can be looked upon generally as a very good means of production of heavy ion beams at low energy because it combines high charges states, therefore low voltage on the terminal, and low velocity acceleration. After the RFQ, the beam is injected into Saturne through 20 MeV Alvarez linac

  12. Resonant Frequency Control For the PIP-II Injector Test RFQ: Control Framework and Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L. [Colorado State U.; Biedron, S. G.; Milton, S. V.; Bowring, D.; Chase, B. E.; Edelen, J. P.; Nicklaus, D.; Steimel, J.

    2016-12-16

    For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive control (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation.

  13. Configuration and application of He RFQ LLRF control system based on EPICS

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae-Sung; Jeong, Hae-Seong; Kim, Seong-Gu; Song, Young-Gi; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-10-15

    In He RFQ device, the high-power Radio-Frequency (RF) is very important because it is responsible for the stable delivery and efficient acceleration of the beam. Since that, the control system of high-power Radio-Frequency must be developed and this system is called LLRF control system. The LLRF control system required exquisite amplitude value that has ±1 % error range. We need a precise remote control system for this reason. This paper represents the configuration of LLRF control system in terms of software layers based on EPICS. Also, this paper explains the application of LLRF control system to test environment (hardware) and represents test result and suggests future work. The LLRF control system at the He RFQ is very important. The configuration of LLRF control system is completed on the software side and hardware modules: vxworks operating system installation, EPICS BASE compilation, module source code compiled, object file loading and execution on vxworks, EPICS IOC operation check, etc. The application of LLRF control system to module is implemented well: ADC module, DAC module, EPICS IOC test.

  14. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ forthe Accelerator Driven Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells,Russell

    2007-06-20

    A high-yield neutron source to screen sea-land cargocontainers for shielded Special Nuclear Materials (SNM) has been designedat LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses theD(d,n)3He reaction to create a forward directed neutron beam. Keycomponents are a high-current radio-frequency quadrupole (RFQ)accelerator and a high-power target capable of producing a neutron fluxof>107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical designand analysis of the four-module, bolt-together RFQ will be presentedhere. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mAdeuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ moduleswill consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and themodules. RF connections are made with canted coil spring contacts. Aseries of 60 water-cooled pi-mode rods provides quadrupole modestabilization. A set of 80 evenly spaced fixed slug tuners is used forfinal frequency adjustment and local field perturbationcorrection.

  15. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ for the Accelerator Driven Neutron Source

    International Nuclear Information System (INIS)

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells, Russell

    2007-01-01

    A high-yield neutron source to screen sea-land cargo containers for shielded Special Nuclear Materials (SNM) has been designed at LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses the D(d,n)3He reaction to create a forward directed neutron beam. Key components are a high-current radio-frequency quadrupole (RFQ) accelerator and a high-power target capable of producing a neutron flux of >107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical design and analysis of the four-module, bolt-together RFQ will be presented here. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mA deuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ modules will consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and the modules. RF connections are made with canted coil spring contacts. A series of 60 water-cooled pi-mode rods provides quadrupole mode stabilization. A set of 80 evenly spaced fixed slug tuners is used for final frequency adjustment and local field perturbation correction

  16. Development of RFQ particle dynamics simulation tools and validation with beam tests

    Energy Technology Data Exchange (ETDEWEB)

    Maus, Johannes M.

    2010-07-01

    Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the two term simplification was shown as well as the limitation of these approaches. The main work of this thesis was the implementation and analysis of a multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a multigrid Poisson solver are the ability of a Gauss-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauss-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. As a charge density, a homogeneously charged ball and cylinder were used to represent the bunched and unbunched beam and placed inside a quadruple channel. The solver showed a good performance. Next, the performance of the solver to calculate the external potentials (and fields) of RFQs was analyzed. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The MAFF RFQ was designed to accelerate very neutron-rich fission fragments for various experiments. The machine was assembled in Frankfurt and a beam test stand was built. As a part of this thesis the shunt impedance of the structure was

  17. Development of RFQ particle dynamics simulation tools and validation with beam tests

    International Nuclear Information System (INIS)

    Maus, Johannes M.

    2010-01-01

    Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the two term simplification was shown as well as the limitation of these approaches. The main work of this thesis was the implementation and analysis of a multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a multigrid Poisson solver are the ability of a Gauss-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauss-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. As a charge density, a homogeneously charged ball and cylinder were used to represent the bunched and unbunched beam and placed inside a quadruple channel. The solver showed a good performance. Next, the performance of the solver to calculate the external potentials (and fields) of RFQs was analyzed. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The MAFF RFQ was designed to accelerate very neutron-rich fission fragments for various experiments. The machine was assembled in Frankfurt and a beam test stand was built. As a part of this thesis the shunt impedance of the structure was

  18. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes

    Science.gov (United States)

    Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.

    2017-09-01

    A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).

  19. A digital signal processor based rf control system for the TRIUMF ISAC RFQ prototype

    International Nuclear Information System (INIS)

    Fong, K.; Fang, S.; Laverty, M.

    1996-01-01

    A stand alone digital signal processor is used to control the RFQ prototype in the TRIUMF ISAC development program. The advantage of a digital control system over the traditional analogue system is that it offers the higher degree of flexibility necessary for a development system. For this application the system is designed to have the outward appearance of an analogue system, and uses dials, knobs, and switches as the operator interface. The digital signal processor is used as a feedback controller during CW rf operation, with the feedback gain parameters continually adjustable. It is also able to perform the same regulation during pulsed operation, with additional feedforward compensation for initial pulse on duration. Using a low cost analogue-to-digital converter with a sample rate of 100 kHz, a regulation bandwidth of 10 kHz is achieved. (author)

  20. Numerical simulation of simultaneous acceleration of positive and negative ions in an RFQ

    International Nuclear Information System (INIS)

    Oguri, Y.

    1994-01-01

    By means of a numerical method, beam dynamics was analyzed for an RFQ, where mixtures of positive and negative ions were injected into the quadrupole channel. In order to simulate simultaneous bunching of ions with opposite charges, motion of particles injected into the cavity during two RF periods were traced under consideration of 3D Coulomb forces between particles. Effects of neighbor bunches were also taken into account. In the radial matching section of the structure, beam divergence due to space charge force was completely suppressed by the charge neutralization. However, it has been found that the attractive forces between positive and negative ions prevent bunch formation in the bunching section, leading to longitudinal beam loss. Dependence of the beam transmission efficiency on the input beam intensity is reported. These results are compared with those obtained when injecting single ion species

  1. A new matcher type between RFQ and IH-DTL for the GSI high current heavy ion prestripper linac

    International Nuclear Information System (INIS)

    Ratzinger, U.; Tiede, R.

    1996-01-01

    The adaptation of a RFQ beam to the typical requirements at the entrance of a drift tube linac is rather difficult at high intensities and high A/q values. The high focusing power needed for such a matcher can be provided by a conventional array with rather large quadrupoles and rebuncher cavities only. Many problems arising from such a design can be avoided by using an element which is focusing in transverse and longitudinal direction at the same time, that is a short RFQ ('Super Lens') with 10 cells typically and a larger aperture as compared to the main RFQ. A xy-steerer and a short quadrupole doublet with small aperture were added to gain flexibility with regard to beam mismatch and misalignment corrections. This new concept is realised for the GSI 15 mA U 4+ injector, which is under construction. Beam dynamics calculations are presented and compared with results for a conventional solution consisting of a rebuncher and a quadrupole triplet. (author)

  2. Operation of a CW high power RFQ test cavity: The CRNL 'sparkers'

    International Nuclear Information System (INIS)

    Hutcheon, R.M.; Schriber, S.O.; Brown, J.C.; Clements, D.W.; Campbell, H.F.; McMichael, G.E.; De Jong, M.S.

    1984-01-01

    A 270 MHz RFQ structure with 365 mm long unmodulated vanes and a 2.5 mm minimum vane-to-vane gap was used to study cw operation at surface fields in excess of 30 MV/m. The brazed OFHC solid copper structure is flood cooled and couples rf power by a drive 100p at the centre of one quadrant. Surface electric fields equivalent to twice the Kilpatrick limit were obtained at 39 kW power. The structure was rapidly conditioned with alternating periods of pulsed and cw operation to levels above 45 kW. Bremsstrahlung end point energies were used as a measure of peak vane-to-vane voltage. Several interesting observations have been made. Glowing pinpoints of light were seen near the vane tips, some extinguishing with time, others appearing - but their number and intensity increasing with rf power. Microdischarges were seen, consisting of very small localized flashes of light between the vane tips, usually accompanied by a complete collapse and re-establishment of the structure rf field over a 20 μs interval. The frequency of field collapses varied with power but was independent of gas pressure and species up to 4x10 -3 Pa. As structure power was increased above the conditioned level, a rapid succession of microdischarges would occur, increasing the reflected power beyond the fast trip level. (orig.)

  3. Development of a split coaxial RFQ for the JHP heavy ion linac

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1990-05-01

    A split coaxial RFQ (SCRFQ) is being developed as the front-end structure of the heavy-ion linac chain planned in the Japanese Hadron Project (JHP). The features of the INS SCRFQ is that four modulated vanes are installed and that the whole cavity comprises short module cavities. The fundamental problems concerning to the rf and mechanical characteristics were clarified and solved through studies with a cold model. This model was then converted to an accelerating model working at 50 MHz. Acceleration tests using a proton beam showed that the linac had the designed performance. A 25.5-MHz prototype for a JHP machine is now under development. The cavity, 2.1 m in length and 0.9 m in diameter, has been built, and will accelerate ions with a charge-to-mass ratio greater than 1/30 from 1 keV/u to 45 keV/u. From low-power tests so far conducted, we have found that the cavity has good rf characteristics. (author)

  4. Injection study of the Radiance 330 synchrotron with a 1.6 MeV RFQ linac

    Science.gov (United States)

    Wang, F.; Flanz, J.; Hamm, R.

    2012-09-01

    The ProTom Radiance 330 proton radiotherapy system provides the most advanced proton delivery capability to date. It supports true three-dimensional beam scanning with dynamic energy and intensity modulation. Most of the protons extracted from the synchrotron are used to treat the patient, which results in minimal neutron background in the treatment room. The patient dose rate depends upon the number of protons injected and the acceleration cycle time. Therefore, one can boost the dose rate by increasing the beam intensity at injection. Improvements to the existing tandem accelerator injector are already underway. However, an alternative way to attain higher intensity beam is to use an RFQ linac as an injector. To this end, a novel 1.6 MeV RFQ linac has been designed to specifically satisfy the small energy acceptance limits of the synchrotron. Simulations of the beam line optics and injection matching to the synchrotron have been performed using the computer codes PARMILA and TRACE-3D to determine if an additional bunching cavity is needed. Assessments of the space charge limit at the relatively low injection energy of 1.6 MeV and RF capture simulations have also been performed. Results of these studies are presented.

  5. Design, development and operational experience of radio frequency (RF) power systems/technologies for LEHIPA and 400 keV RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shrotriya, Sandip; Patel, Niranjan

    2015-01-01

    The important technology development for ion accelerators of 'accelerator driven sub critical reactor system (ADS) is being done under the program of Department of Atomic Energy (DAE). In BARC (BARC) of DAE, technology development of 400 keV radio frequency quadrupole (RFQ) accelerator is done and a 20 MeV - low energy high intensity proton accelerator (LEHIPA) is under development. A 400 KeV deuteron RFQ accelerator is already developed at BARC and its 60 kW radio frequency (RF) power system required for beam acceleration has been designed, developed and tested both in CW mode and in pulse mode for full power of 60 leW. It has been successfully integrated with RFQ via 6-1/8'', 50 ohm RF transmission line, to accelerate proton beam up to 200 KeV energy and deuteron beam to 400 KeV energy. LEHIPA requires about 3 MW of RF power for its operation. So, three 1 MW, 352 MHz RF systems based on klystron will be developed for RFQ and two DTLs. The klystron based RF system for 3 MeV RFQ is under commissioning. Its various subsystems like energy less and insulated gate bipolar transistor (IGBT) based high voltage and low voltage bias supplies, a critical and fast protection and control system - handling various types of field signals, fast acting hard wired instrumentation circuits for critical signals, 100 kV crowbar with its circuits, pulsing circuits and RF circuits have been successfully designed, developed and integrated with klystron. Latest technology development of solid state RF amplifiers at 325 MHz and 350 MHz for normal and super conducting accelerators has attained a certain power level. This paper will discuss all these high power RF systems in detail. (author)

  6. Construction and building of a compact RFQ spiral structure for the stopping of highly charged heavy ion beams for the HITRAP project of the GSI

    International Nuclear Information System (INIS)

    Hofmann, B.

    2007-01-01

    For experiments of the atomic-physics group of the GSI in Darmstadt an ion stopper is built, which will make low-energetic, extremely highly charged ions available. The plannings for the so-called HITRAP (highly charged ion's trap) began at the beginning of the ninetieth. With this facility highly-charged heavy ions shall be stopped in two stages to very low, thermal velocities, and be available for highly precise mass spectroscopy, measurements of the g factor of the bound electron of hydrogen-like ions, and other atomic-physics experiments. This decelerator facility shall first be built in the reinjection channel behind the ESR with the possibility, to apply all components later in teh extension of the GSI in the framework of the FAIR project in the facility for low-energetic antiprotons and ions to be newly built. the present thesis treats the development and the building of an integrated RFQ debuncher stopping accelerator, which represents a part of the HITRAP stopping structures. By this the ion beam is stopped from the IH stopping accelerator with an energy of 500 keV/u to 5 keV/u. By the integrated spiral buncher the beam can be fitted in energy and energy deviation to the subsequent cooler trap. In this thesis the foundations of the particle dynamics in a RFQ accelerator for the stopping of particle beams were worked out and realized, the particle-dynamics calculations necessary for the lay-out of such a structure performed with RFQSim, suitable RF structures with the simulation program Microwave Studio developed and studied, as well as the thermal load of the structures studied with the finite-element code ALGOR. A further, central topic of this thesis is the building and the tuning of the RFQ structure in order to reach a homogeneous as possible field distribution along the electrodes. Measurements of the fields in the RFQ were performed with a disturbing condenser, at the debuncher with a disturbing body. After successfully performed vacuum tests at the

  7. Analytic study of transverse shunt resistance and even-odd mode coupling of a rod type RFQ

    International Nuclear Information System (INIS)

    Koscielniak, S.

    1994-06-01

    To minimize the ohmic power losses, it is necessary to maximize the transverse shunt resistance, R shunt . The cell of a rod-type RFQ is modelled by a parallel two-rod transmission line supported above a parallel ground conductor by two legs. Due to coupling between neighboring supports, the loading impedance is modified depending on the leg spacing. The shunt resistance is improved by reducing the cell length and increasing the leg spacing, and maximized when the legs are equally spaced. However, this is also the condition for strong excitation of the unwanted 'even-mode' in which a potential difference exists between the ends of the rods mid-plane and the grounding conductor or tank, Once the legs of the support are longitudinally separated, some even-mode excitation of the structure is inevitable because some current must be injected into the ground conductor; the even-mode excitation rises as leg separation increases. Further, when the desired odd-mode voltage is symmetric about the cell centre, the even-mode voltage is anti-symmetric This paper is a very much abridged version of two internal design notes[3], [4]. (author). 4 refs.,1 fig

  8. Construction and building of a compact RFQ spiral structure for the stopping of highly charged heavy ion beams for the HITRAP project of the GSI; Konstruktion und Aufbau einer kompakten RFQ-Spiral-Struktur zum Abbremsen hochgeladener Schwerionenstrahlen fuer das HITRAP-Projekt der GSI

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, B.

    2007-07-01

    For experiments of the atomic-physics group of the GSI in Darmstadt an ion stopper is built, which will make low-energetic, extremely highly charged ions available. The plannings for the so-called HITRAP (highly charged ion's trap) began at the beginning of the ninetieth. With this facility highly-charged heavy ions shall be stopped in two stages to very low, thermal velocities, and be available for highly precise mass spectroscopy, measurements of the g factor of the bound electron of hydrogen-like ions, and other atomic-physics experiments. This decelerator facility shall first be built in the reinjection channel behind the ESR with the possibility, to apply all components later in teh extension of the GSI in the framework of the FAIR project in the facility for low-energetic antiprotons and ions to be newly built. the present thesis treats the development and the building of an integrated RFQ debuncher stopping accelerator, which represents a part of the HITRAP stopping structures. By this the ion beam is stopped from the IH stopping accelerator with an energy of 500 keV/u to 5 keV/u. By the integrated spiral buncher the beam can be fitted in energy and energy deviation to the subsequent cooler trap. In this thesis the foundations of the particle dynamics in a RFQ accelerator for the stopping of particle beams were worked out and realized, the particle-dynamics calculations necessary for the lay-out of such a structure performed with RFQSim, suitable RF structures with the simulation program Microwave Studio developed and studied, as well as the thermal load of the structures studied with the finite-element code ALGOR. A further, central topic of this thesis is the building and the tuning of the RFQ structure in order to reach a homogeneous as possible field distribution along the electrodes. Measurements of the fields in the RFQ were performed with a disturbing condenser, at the debuncher with a disturbing body. After successfully performed vacuum tests at

  9. Development and optimization of a four-rod RFQ accelerator for light ions - construction and testing of a H--injector for HERA

    International Nuclear Information System (INIS)

    Ferch, M.

    1987-01-01

    In the framework of the present thesis the RF properties of a new RFQ accelerator structure were studied and optimized. After a short section about the foundations of the acceleration with RFQ resonators and the description of the most important general structure properties the operation of the λ/2 resonator in the construction developed here is described. For the quantitative description of the RF properties a theoretical model was developed which describes the RF-structure parameters with sufficient accuracy and is furthermore useful in the planning of further RF projects. For the detailed study of the oscillation shape and the field distributions resulting from this especially in the region of the quadrupolarly arranged beam guiding elements special measuring methods were improved respectively newly developed. With the knowledge resulting from this the efficiency as well as the stability of the acceleration and focusing fields could be optimized. The high-power resonator constructed in the framework of this thesis operates at a resonance frequency of 202.56 MHz and is layed out for pulsed operation. Corresponding to this only into the ground rail a cooling loop was integrated. The electrodes are rod-shaped performed. The in the ideal case sinus-shaped modulation profile of the quadrupole electrodes was approximated by a trapezoidal approximation. (orig./HSI) [de

  10. Transmission line matching simulation for 350 MHz RF driver for 400 KeV (deuterium) RFQ based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Sharma, Sonal; Pande, Manjiri; Handu, V.K.

    2009-01-01

    A 60 KW, 350 MHz tetrode based high power RF system is being developed for 400 KeV RFQ based 14 MeV neutron generator in Bhabha Atomic Research Centre to study physics of coupled neutron sources and subcritical assembly. This RF system requires a 2.5 kW RF driver which is being designed by using tetrode TH-393. At such high frequency i.e. 350 MHz, lumped components are not practically useful due to radiation losses. Therefore, techniques such as coaxial line with stub tuning are preferred, which minimizes these losses. Simulation of two such stub tuning based matched coaxial lines at the input and output of the tube has been done by using CST studio. CST STUDIO is a special tool for the 3D EM simulation of high frequency components

  11. Toward the popular therapeutic equipment for cancers by heavy particle beam (2). Development of a compact highly efficient injector. 1. Success of its beam test set in front of the RFQ linear accelerator

    International Nuclear Information System (INIS)

    Iwata, Yoshiyuki

    2005-01-01

    For popularization of heavy particle beams for cancer treatment, efforts have been done to reduce the size of injector, and the recently developed one is far more compact in size and more electricity-saving than the current Heavy Ion Medical Accelerator in Chiba (HIMAC) injector. This paper describes its outline. The injector has made it possible to decrease the manufacturing cost of the injector itself, the size of therapeutic equipment, and costs of facility construction and operation. Its beam has been tested and found to be satisfactory in the RFQ (radio frequency quadrupole) linac. The IH-DTL (interdigital H-mode drift tube linac) to be set backward is now under manufacturing and is to be completed within this year. Thus total beam test in combination of the RFQ linac and IH-DTL can be examined to design a more popular equipment for cancer therapy. The accelerator developed hereby is conceivably useful not only in the medical field but also for application as a physical and industrial heavy ion injector. (S.I.)

  12. CW operation of the FMIT RFQ accelerator

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1984-01-01

    Experiences in attaining cw operation of the radio-frequency quadrupole for the Fusion Materials Irradiation Test facility are presented. Modifications of the vacuum system, changes in the rf structure, and operational experiences are discussed, as well as preliminary results of initial beam-characterization measurements. 4 references, 2 figures

  13. Fabrication and test of a superconducting RFQ

    International Nuclear Information System (INIS)

    Jain, A.; Wang, H.; Ben-Zvi, I.; Paul, P.; Noe, J.W.; Lombardi, A.

    1992-01-01

    The fabrication and first performance tests of a prototype superconducting radio-frequency quadrupole resonator (SRFQ) are described. The SRFQ operates at 57 MHz and is optimized for a particle velocity of β = 0.033. It is constructed of copper electroplated with a lead-tin alloy. An accelerating field gradient of 1.25 MV/m was achieved with about 7 watts of helium dissipation. This corresponds to an energy gain of 700 keV per unit charge over the 56 cm overall diameter of the resonator

  14. Split coaxial RFQ structure with modulated vanes

    International Nuclear Information System (INIS)

    Arai, S.

    1983-10-01

    A new split coaxial RFO structure with modulated vanes is proposed. The structure is designed to accelerate 238 U 4+ from 1.68 keV/u to 45.1 keV/u at frequency of 12.5 MHz. The cavity is 1.6 m in diameter and 8 m in length. The cavity consists of four cavity modules divided by three stems which support horizontal and vertical vanes periodically and alternatively. At the same time, problems on the beam dynamics and design procedures are described and discussed. (orig.)

  15. Effluent Monitoring System Design for the Proton Accelerator Research Center of PEFP

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Mun, Kyeong Jun; Cho, Jang Hyung; Jo, Jeong Hee

    2010-01-01

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. Also the IAC recommended maximization of space utilization and construction cost saving. After GA(General Arrangement) is made a decision, it is necessary to evaluate the radiation analysis of every controlled area in the proton accelerator research center such as accelerator tunnel, Klystron gallery, beam experimental hall, target rooms and ion beam application building to keep dose rate below the ALARA(As Low As Reasonably achievable) objective. Our staff has reviewed and made a shielding design of them. In this paper, According to accelerator operation mode and access conditions based on radiation analysis and shielding design, we made the exhaust system configuration of controlled area in the proton accelerator research center. Also, we installed radiation monitor and set its alarm value for each radiation area

  16. Beam cooling using a gas-filled RFQ ion guide

    CERN Document Server

    Henry, S; De Saint-Simon, M; Jacotin, M; Képinski, J F; Lunney, M D

    1999-01-01

    A radiofrequency quadrupole mass filter is being developed for use as a high-transmission beam cooler by operating it in buffer gas at high pressure. Such a device will increase the sensitivity of on-line experiments that make use of weakly produced radioactive ion beams. We present simulations and some preliminary measurements for a device designed to cool the beam for the MISTRAL RF mass spectrometer on- line at ISOLDE. The work is carried out partly within the frame of the European Community research network: EXOTRAPS. (9 refs).

  17. Numerical simulation of a short RFQ resonator using the MAFIA codes

    International Nuclear Information System (INIS)

    Wang, H.; Ben-Zvi, I.; Jain, A.; Paul, P.; Lombardi, A.

    1991-01-01

    The electrical characteristics of a short (2βλ=0.4 m) resonator with large modulation (m=4) have been studied using the three dimensional codes, MAFIA. The complete resonator, including the modulated electrodes and a complex support structure, has been simulated using ∼ 350,000 mesh points. Important characteristics studied include the resonant frequency, electric and magnetic fields distributions, quality factor and stored energy. The results of the numerical simulations are compared with the measurements of an actual resonator and analytical approximations. 7 refs., 3 figs., 1 tab

  18. 76 FR 52678 - Request for Qualification (RFQ) for the Fellowship Placement Pilot Program

    Science.gov (United States)

    2011-08-23

    .... Background In 2010, senior leadership from the White House, HUD, and other federal agencies have assessed... mentoring opportunities fellows may require as they progress through the program; and Tracking and.... HUD recognizes that mentoring fellows will be critical to the success of [[Page 52684

  19. A direct plasma injection system into an RFQ for clean and safe ion implantation

    International Nuclear Information System (INIS)

    Takeuchi, T.; Katayama, T.; Okamura, M.; Yano, K.; Sakumi, A.; Hattori, T.; Hayashizaki, N.; Jameson, R.A.

    2002-01-01

    A new injection system, direct plasma injection system, was tested and its principle was proved successfully. We found that one of advantages of this injection system was efficient consumption of source materials. Large portions of induced ions can be injected into a first stage accelerator. This feature is quite useful for ion implantation applications, because toxic exhaust gas can be eliminated. In order to utilize this system for industrial application, the feasibility of a boron injection scheme using a Nd:YAG laser system was investigated

  20. High resolution laser spectroscopy of radioactive isotopes using a RFQ cooler-buncher at CERN-ISOLDE

    CERN Document Server

    Mané, E

    2009-01-01

    At CERN, the European Organization for Nuclear Research, radioactive nuclear beams are produced at the On-Line Isotope Mass Separator facility, ISOLDE. This facility provides a variety of exotic nuclear species for multidisciplinary experiments including nuclear physics. A gas-filled linear Paul trap was commissioned off-line and on-line and now is fully integrated at the focal plane of the high resolution separator magnets of ISOLDE. Ion beams with reduced transverse emitance and energy spread are now available for all experiments located downstream the separator beam line. This device is also able to accumulate the ion beam and release the collected sample in short bunches. Typical accumulation times are 100 ms and the released bunch width is 5-20 $\\mu{s}$. Such bunching capabilities has substantially increased the sensitivity of collinear laser spectroscopy with fluorescence detection by reducing the background from laser scatter by up to four orders of magnitude. The spectroscopic quadrupole moments of $^...

  1. LINAC4 - Views of the 3 MeV Front-end (H- Source, LEBT, RFQ, MEBT) with Test Bench.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    The Linac4 is the new linear accelerator that will replace Linac2 as proton low energy injector in the LHC accelerator chain. On 14 November, members of the Linac4 collaboration and the CERN Operation Group were brought together for their first “real day” in the Linac4 Control Room. Together, they successfully accelerated their first hydrogen ion beam to 3 MeV. It was an exciting moment for everyone involved marked the start of one of the most critical commissioning phases for the new accelerator.

  2. Application of activation technique for mass and nuclear charge distributions studies of 3 Mev and 14 Mev neutrons induced 238-U(n,f) and 232-Th(n,f)

    International Nuclear Information System (INIS)

    Embarch, K.

    1988-01-01

    Fission product cumulative and independent yields were determined for 238-U(n,f) and 232-Th(n,f) reactions with essentially monoenergetic neutrons of 3 and 14 Mev. Fission product activities were measured by Ge(Li)γ-ray spectrometry of irradiated 238-U and 232-Th foils. These experiments allowed us to measure a great number of cumulative yields and to obtain the fission product mass distributions corresponding to the studied reactions mentioned above. The mass distributions were completely interpreted by nucleon shell effects and proton even-odd effects. The independent yield measurements are sometimes not possible using the activation technique because of the fission fragment decay data. The values which can not be measured were determined using the measured mass yields and a prediction systematic of fractional independent yield. The results allowed us to obtain the nuclear charge distributions and to estimate proton even-odd effect corresponding values. This effect decreases when the excitation energy of the fissioning nucleus increases, this shows the importance of this parameter in the viscosity study of the nuclear matter. In conclusion, the shell effects observed in the mass distributions show that the static aspect of the fission mechanism plays a great role during the fission process, and observed proton even-odd effects act for a weak nuclear viscosity. 54 refs., 27 figs., 25 tabs

  3. Stabilized operation of the Spallation Neutron Source radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    Sang-ho Kim

    2010-07-01

    Full Text Available The Spallation Neutron Source (SNS radio-frequency quadrupole (RFQ had resonance control instabilities at duty factors higher than approximately 4%. Systematic investigations have been carried out to understand the cause of the instability and to ensure the operational stability of the RFQ. The most critical source of the instability is revealed to be an interaction between hydrogen released by beam bombardments and the RFQ rf field resulting in a discharge, which consumes additional rf power and could cause the RFQ to operate in an unstable region. This paper reports improvement of the SNS RFQ operational stability based on the findings during the SNS operation.

  4. Use of phase information with a stepper motor to control frequency for tuning system of the Front End Test Stand Radio Frequency Quadrupole at Rutherford Appleton Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Alsari, S., E-mail: s.alsari@imperial.ac.uk; Aslaninejad, M.; Pozimski, J.

    2015-03-01

    For the Front End Test Stand (FETS) linear accelerator project at the Rutherford Appleton Laboratory in the UK, a 4 m, 4 vanes Radio Frequency Quadrupole (RFQ) with a resonant frequency of 324 MHz has been designed. The RF power feeding the RFQ gives rise to the temperature increase in the RFQ, which in turn, results in shifting the resonant frequency of the RFQ. The frequency shift and the stability in the RFQ frequency can be maintained based on the reflected power or signal phase information. We have, however, investigated restoration of the RFQ nominal frequency based on the RF signal phases driving a stepper motor. The concept and the system set-up and electronics are described in detail. Results of the measurements indicating the full restoration of the RFQ nominal frequency based on the RF signal phases and stepper motor are presented. Moreover, measured sensitivity of tuner with respect to its position is given.

  5. Use of phase information with a stepper motor to control frequency for tuning system of the Front End Test Stand Radio Frequency Quadrupole at Rutherford Appleton Laboratory

    International Nuclear Information System (INIS)

    Alsari, S.; Aslaninejad, M.; Pozimski, J.

    2015-01-01

    For the Front End Test Stand (FETS) linear accelerator project at the Rutherford Appleton Laboratory in the UK, a 4 m, 4 vanes Radio Frequency Quadrupole (RFQ) with a resonant frequency of 324 MHz has been designed. The RF power feeding the RFQ gives rise to the temperature increase in the RFQ, which in turn, results in shifting the resonant frequency of the RFQ. The frequency shift and the stability in the RFQ frequency can be maintained based on the reflected power or signal phase information. We have, however, investigated restoration of the RFQ nominal frequency based on the RF signal phases driving a stepper motor. The concept and the system set-up and electronics are described in detail. Results of the measurements indicating the full restoration of the RFQ nominal frequency based on the RF signal phases and stepper motor are presented. Moreover, measured sensitivity of tuner with respect to its position is given

  6. Establishment and Operation of User Facilities

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Kye Ryung

    2008-05-01

    PEFP(Proton Engineering Frontier Project) has launched on a new enterprise to develop the technologies for the future relating to the proton beam and spin-off technologies in 2002. PEFP planned to supply 20MeV and 100MeV proton beam by the development of the 100MeV, 20mA linear accelerator during ten years from 2002 to 2012. The final goal of this project is establishment of 20MeV and 100MeV user facilities. To do this, we must develop the key technologies for establishing user facilities. Before the main facilities are normally operated, we have established the test user facilities to support various kinds of users' basic experiments and pilot studies. The necessity of this research are as follows; - Domestic achievement of key technologies for the development and design of the user facilities for the several tens to hundreds MeV class high current proton beam - Beam application researches can be revitalized and improved the efficiency by the establishment and operation of user facilities and test facilities. - Ion implantation facilities have contributed to increase Industrial applications - It is more effective in saving money that users use the PEFP's user facility than other country's user facilities. - It is possible to contribute to the local society and commercialize the beam application technologies by the establishment of PEFP's research branch in Kyungju

  7. Development of the High Energy Linac Systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Han Sung; Chung, Byung Chul; Jang, Ji Ho; Gao, Changgi; Li, Yingmin; Sun, An; Tang, Yazhe; Zhang, Lipoing; Hwang, Yong Seok

    2008-05-01

    The main purpose of this project is studying the extension plan of the proton engineering frontier project (PEFP) 100-MeV Linac. It includes three categories. One is studying operation plan of the PEFP linac and its extended accelerators, and developing a distribution system of 100-MeV proton beams with a laser striping. Other is designing superconducting RF (SRF) modules and fabricating and testing a copper cavity model. The other is designing a rapid cycling synchrotron (RCS). The operation scheme of the PEFP linac is related to the optimization in the operation of the 100-MeV linac, 200-MeV SRF, and RCS. We studied several operational method to increase the validity of the accelerators. The beam distribution system has two roles. One is supplying proton beams of 100 MeV to the user group. The laser stripping of the negative hydrogen atoms is used in this case. The other beams are directed to the next high energy accelerators. This study contributes to increase the availability of the proton beams. The SRF is one of candidates to extend the PEFP linac system. Since the accelerating gradient of the SRF is much higher than the normal conducting accelerator, a lot of institutes over the world are developing the SRF structure. Main purposes are designing an SRF module, fabricating and testing an copper model which has similar material properties as Nb of the usual SRF cavity material. The RCS is a synchrotron whose injector is the PEFP 100-MeV linac. Main purposes are determining the lattice structure, studying the fast and slow extraction system, simulating beam behavior in the designed synchrotron. The RCS will be used as the spallation neutron source and tools in the basic and applied science including medical application

  8. Operational characteristics of a 100-mA, 2-MeV radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Johnson, K.F.; Cottingame, W.B.; Bolme, G.O.; Fortgang, C.M.; Ingalls, W.B.; Marquardt, J.; Rusthoi, D.P.; Sander, O.R.; Smith, M.; Worth, G.T.

    1993-01-01

    A 100-mA, 2.07-MeV Radio-Frequency Quadrupole (RFQ III) has been commissioned and operated routinely on the Accelerator Test Stand (ATS) [1] at Los Alamos National Laboratory. To characterize the RFQ output beam dynamics, measurements were made of the beam transmission and of the transverse and longitudinal phase-space distributions. Data were taken for different RFQ III operating conditions and compared to simulations

  9. Design study on an intense heavy-ion linac system

    International Nuclear Information System (INIS)

    Okamura, M.; Oguri, Y.; Takahashi, Y.; Hattori, T.; Takeda, O.; Satoh, K.; Tanabe, Y.

    1992-01-01

    A four-vane RFQ cavity is designed for an intense heavy-ion linac system. RFQ-vanes with small tip curvatures are applied in order to improve the RF power efficiency. Beam optical and RF parameters are investigated by beams of numerical methods. Using a scale model, the cavity structure is experimentally optimized. (Author) 7 refs., 4 figs

  10. Scheme to funnel ion beams with a radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Stokes, R.H.; Minerbo, G.N.

    1985-01-01

    We describe a proposed method to funnel ion beams using a new form of the radio-frequency quadrupole (RFQ) structure. This RFQ accepts two bunched ion beams and combines them into a single final beam with interlaced microstructure pulses. It also provides uninterrupted periodic transverse focusing to facilitate the funneling of beams with high current and low emittance

  11. Integrated Project Control and Technical Support

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Yeon; Joo, Po Kook; Kim, Gye Ryung (and others)

    2003-06-15

    First, Since PEFP puts it's aim on technology innovation through collaboration and technological fusion among the subprojects from the various fields, It has been tried to make the subprojects consist with the goal of the whole project through building and running the integrated project control system. Also, adopting CPM(Critical Process Management), intensive process management framework has been founded. Secondly, for the every procedure, including purchase, building, installation and a trial running, license, quality control, etc., could be efficiently executed, every related task has been carried out. And, the tasks involved in international cooperative relationship and host site selection are carried out as well, so that PEFP could be firmly supported. Finally, TRM(Technology Road Map) is made up not only for the purpose of managing efficiency and effectiveness on the investment, but also for the purpose of life cycle management from developing stage to commercializing stage.

  12. Integrated Project Control and Technical Support

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Kim, Jun Yeon; Joo, Po Kook and others

    2005-08-01

    First, Since PEFP puts it's aim on technology innovation through collaboration and technological fusion among the sub-projects from the various fields. It has been tried to make the sub-projects consist with the goal of the whole project through building and running the integrated project control system. Also, adopting CPM(Critical Process Management), intensive process management framework has been founded. Secondly, for the every procedure, including purchase, building, installation and a trial running, license, quality control, etc., could be efficiently executed, every related task has been carried out. And, the tasks involved in international cooperative relationship and host site selection are carried out as well, so that PEFP could be firmly supported. Finally, Strategic management procedures including TRM(Technology Road Map), economic evaluation on PEFP, preliminary evaluation on company-involved R and D and TRESIS(Technology, Resources, Economic Evaluation System) are made up not only for the purpose of managing efficiency and effectiveness on the investment, but also for the purpose of life cycle management from developing stage to commercializing stage

  13. Shielding design for the target room of the proton accelerator research center

    International Nuclear Information System (INIS)

    Min, Y. S.; Lee, C. W.; Mun, K. J.; Nam, J.; Kim, J. Y.

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) has been developing a 100-MeV proton linear accelerator. Also, PEFP has been designing the Proton Accelerator Research Center (PARC). In the Accelerator Tunnel and Beam Experiment Hall in PARC, 10 target rooms for the 20- and 100-MeV beamline facilities exist in the Beam Experiment Hall. For the 100-MeV target rooms during 100-MeV proton beam extraction, a number of high energy neutrons, ranging up to 100-MeV, are produced. Because of the high beam current and space limitations of each target room, the shielding design of each target room should be considered seriously. For the shielding design of the 100-MeV target rooms of the PEFP, a permanent and removable local shield structure was adopted. To optimize shielding performance, we evaluated four different shield materials (concrete, HDPE, lead, iron). From the shielding calculation results, we confirmed that the proposed shielding design made it possible to keep the dose rate below the 'as low as reasonably achievable (ALARA)' objective.

  14. Integrated Project Control and Technical Support

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Yeon; Kim, Jun Yeon; Joo, Po Kook and others

    2005-08-15

    First, Since PEFP puts it's aim on technology innovation through collaboration and technological fusion among the sub-projects from the various fields. It has been tried to make the sub-projects consist with the goal of the whole project through building and running the integrated project control system. Also, adopting CPM(Critical Process Management), intensive process management framework has been founded. Secondly, for the every procedure, including purchase, building, installation and a trial running, license, quality control, etc., could be efficiently executed, every related task has been carried out. And, the tasks involved in international cooperative relationship and host site selection are carried out as well, so that PEFP could be firmly supported. Finally, Strategic management procedures including TRM(Technology Road Map), economic evaluation on PEFP, preliminary evaluation on company-involved R and D and TRESIS(Technology, Resources, Economic Evaluation System) are made up not only for the purpose of managing efficiency and effectiveness on the investment, but also for the purpose of life cycle management from developing stage to commercializing stage.

  15. Sawtooth-wave prebuncher with dual-gaps in Linac injector for HIRFL-SSC

    Science.gov (United States)

    Zhang, Xiaohu; Yuan, Youjin; Xia, Jiawen; Yin, Xuejun; Jin, Peng; Xu, Zhe; Du, Heng; Li, Zhongshan; Qiao, Jian; Wang, Kedong

    2018-01-01

    An RFQ structure is normally composed of radial matcher, shaper, gentle buncher and accelerator section with changing cell geometry. Bunching is started in the shaper, and adiabatic bunching is done in gentle buncher section. The beam preforms from DC beam to bunch beam through the RFQ and the longitudinal emittance for the ions linacs is defined initially in the RFQ, in which the beam bunch has been shaped. In the present SSC-Linac injector, an RFQ has been designed to accelerate the continuous beam from 3.728 keV/u to 143 keV/u. The heavy ions beam is injected into the SSC (Separated Sector Cyclotron) with the kinetic energy of 1.025 MeV/u after four IH DTLs. The rf frequency of the SSC is 13.417 MHz, and the frequency of the heavy ions RFQ is set to four times of the rf frequency of the SSC. In order to increase the longitudinal capture efficiency of the SSC and suppress the longitudinal emittance at the exit of RFQ, an external MHB (Multi-Harmonics Buncher) is proposed in front of the RFQ. The fundamental frequency of the MHB is the same as the rf frequency of the cyclotron. The scheme of dual-gaps prebuncher with the sawtooth waveform is firstly carried out through multi-harmonics synthetic technology. The multi-particle beam dynamic simulations of the MHB have been done by the BEAMPATH code.

  16. Beam characterization of a new continuous wave radio frequency quadrupole accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Perry, A., E-mail: aperry4@hawk.iit.edu [Argonne National Laboratory, Argonne, IL 60439 (United States); Illinois Institute of Technology, Chicago, IL 60616 (United States); Dickerson, C.; Ostroumov, P.N.; Zinkann, G. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2014-01-21

    A new Continuous Wave (CW) Radio Frequency Quadrupole (RFQ) for the ATLAS (Argonne Tandem Linac Accelerator System) Intensity Upgrade was developed, built and tested at Argonne National Laboratory. We present here a characterization of the RFQ output beam in the longitudinal phase space, as well as a measurement of the transverse beam halo. Measurement results are compared to simulations performed using the beam dynamics code TRACK. -- Highlights: • Beam commissioning of a new CW RFQ has been performed at Argonne National Laboratory. • Energy spread and bunch shape measurements were conducted. • The formation of a beam halo in the transverse phase space was studied.

  17. Simulations of the LEDA LEBT H+ beam

    International Nuclear Information System (INIS)

    Smith, H.V. Jr.; Sherman, J.D.; Stevens, R.R. Jr.; Young, L.M.

    1997-01-01

    The computer codes TRACE and SCHAR model the Low-Energy Demonstration Accelerator (LEDA) Low-Energy Beam Transport (LEBT) for 75-keV, 110-mA, dc H + beams. Solenoid-lens location studies verify that the proposed LEBT design gives a near-optimum match to the LEDA RFQ. The desired RFQ transmission (≥ 90%) and output emittance (≤ 0.22 π mm mrad, transverse) are obtained when PARMTEQM transports the file for the SCHAR-generated optimum beam through the RFQ

  18. Test of a compact 750 keV H- preinjector

    International Nuclear Information System (INIS)

    Meitzler, C.R.; Datte, P.; Huson, F.R.; Kazimi, R.; Kronke, C.; Machida, S.; MacKay, W.; Ohnuma, S.; Raparia, D.; Sun, D.; Tompkins, P.; Ziegler, J.

    1989-01-01

    A 750 keV RFQ based accelerator is being developed at the Texas Accelerator Center. A modified magnetron ion source will produce 10--100 mA of 30 keV H - beam. A 35 keV transport line that transports the beam from the ion source to the entrance of the RFQ without becoming neutralized has been designed and is under construction. The RFQ is a 86 cm long, four rod structure that operates at 470 MHz. Results of tests on the cold model are reported. 5 refs

  19. Radio frequency quadrupole linac for the superconducting super collider

    International Nuclear Information System (INIS)

    Schrage, D.L.; Young, L.M.; Clark, W.L.; Billen, J.H.; DePaula, R.F.; Naranjo, A.C.; Neuschaefer, G.H.; Roybal, P.L.; Stovall, J.E.; Ray, K.; Richter, R.

    1993-01-01

    A 2.5 MeV, 428 MHz radio frequency quadrupole (RFQ) linac has been designed and fabricated by the Los Alamos National Laboratory and GAR Electroforming for the Superconducting Super Collider Laboratory. This device is a two segment accelerator fabricated from tellurium-copper (CDA14500) vane/cavity quadrants which are joined by electroforming. The structure incorporates an integral vacuum jacket and has no longitudinal rf or mechanical joints. The SSC RFQ linac is an extension of the design of the 1.0 MeV RFQ which was successfully flown on the BEAR Project. (orig.)

  20. Studies on HF quadrupole accelerator structures

    International Nuclear Information System (INIS)

    Mueller, J.

    1983-01-01

    The present thesis had the aim to elaborate advantages and disadvantages of existing high frequency resonators in the MHz range regarding their use as RFQ power supply structures and to limit their application ranges. After a short survey over potential and field distributions in the RFQ suitable criteria for the valuation of RFQ resonators are indicated. For the experimentally studied resonators equivalent circuits are presented, in some cases these are theoretically analyzed. Finally the construction of the GSI/Frankfurt proton model as well experiments with the accelerated proton beams are described. (orig.) [de

  1. rf measurements and tuning of the 750 MHz radio frequency quadrupole

    Science.gov (United States)

    Koubek, Benjamin; Grudiev, Alexej; Timmins, Marc

    2017-08-01

    In the framework of the program on medical applications a compact 750 MHz RFQ has been designed and built to be used as an injector for a hadron therapy linac. This RFQ was designed to accelerate protons to an energy of 5 MeV within only 2 m length. It is divided into four segments and equipped with 32 tuners in total. The length of the RFQ corresponds to 5 λ which is considered to be close to the limit for field adjustment using only piston tuners. Moreover the high frequency, which is about double the frequency of existing RFQs, results in a sensitive structure and requires careful tuning. In this paper we present the tuning algorithm, the tuning procedure and rf measurements of the RFQ.

  2. rf measurements and tuning of the 750 MHz radio frequency quadrupole

    Directory of Open Access Journals (Sweden)

    Benjamin Koubek

    2017-08-01

    Full Text Available In the framework of the program on medical applications a compact 750 MHz RFQ has been designed and built to be used as an injector for a hadron therapy linac. This RFQ was designed to accelerate protons to an energy of 5 MeV within only 2 m length. It is divided into four segments and equipped with 32 tuners in total. The length of the RFQ corresponds to 5λ which is considered to be close to the limit for field adjustment using only piston tuners. Moreover the high frequency, which is about double the frequency of existing RFQs, results in a sensitive structure and requires careful tuning. In this paper we present the tuning algorithm, the tuning procedure and rf measurements of the RFQ.

  3. Integrated design of the SSC linac injector

    International Nuclear Information System (INIS)

    Evans, D.; Valiecnti, R.; Wood, F.

    1992-01-01

    The Ion Source, Low Energy Beam Transport (LEBT), and Radio Frequency Quadrupole (RFQ) of the Superconducting Super Collider (SSC) Linac act as a unit (referred to as the Linac Injector), the Ion Source and LEBT being cantilevered off of the RFQ. Immediately adjacent to both ends of the RFQ cavity proper are endwall chambers containing beam instrumentation and independently-operated vacuum isolation valves. The Linac Injector delivers 30 mA of H - beam at 2.5 MeV. This paper describes the design constraints imposed on the endwalls, aspects of the integration of the Ion Source and LEBT including attachment to the RFQ, maintainability and interchangeability of LEBTs, vacuum systems for each component, and the design of necessary support structure. (Author) 2 tab

  4. 75 FR 40775 - Application(s) for Duty-Free Entry of Scientific Instruments

    Science.gov (United States)

    2010-07-14

    ... operation at low and high power. No degradation of the beam quality due to thermal stress can be tolerated. No shortfall of the experimental program due to multi- factoring of the RFQ can be accepted...

  5. Post-accelerator LINAC design for the VECC RIB project

    Indian Academy of Sciences (India)

    acclerator type of RIB facility. The scheme utilises the existing = 130 room temperature variable energy cyclotron machine as the primary accelerator for the production of RIBs and radio frequency quadrupole (RFQ) and LINAC modules for ...

  6. Practical design approach for trapezoidal modulation of a radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    A. S. Plastun

    2018-03-01

    Full Text Available Trapezoidal modulation of quadrupole electrodes offers additional benefits to the concept of a radio-frequency quadrupole (RFQ. Because of the significant increase of the effective shunt impedance, RFQs with trapezoidal modulation have a reduced interelectrode voltage or resonator length as compared to conventional RFQs with sinusoidal modulation. This feature is especially valuable for RFQs operating in cw mode, since it reduces the required rf power. We develop a detailed procedure for the design of RFQ electrodes with trapezoidal modulation. With our design procedure and by properly choosing the trapezoidal cell parameters, we can easily control the peak surface fields in the RFQ to the same level as for sinusoidal cell modulation. The procedure is applied to the design of the electrodes for the ReA3 RFQ at Michigan State University.

  7. Linac4 Low Energy Beam Measurements with Negative Hydrogen

    CERN Document Server

    Scrivens, R; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J B; Lettry, J; Lombardi, A; Midttun, O; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-01-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  8. Kosovo - Labor Force & Time Use Survey

    Data.gov (United States)

    Millennium Challenge Corporation — The MCC Kosovo LFTUS is designed to answer nine research questions. The first five were identified in the RFQ, whereas the remaining four were added after MCC held...

  9. Linac4 low energy beam measurements with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  10. RF quadrupole beam dynamics design studies

    International Nuclear Information System (INIS)

    Crandall, K.R.; Stokes, R.H.; Wangler, T.P.

    1979-01-01

    The radio-frequency quadrupole (RFQ) linear accelerator structure is expected to permit considerable flexibility in achieving linac design objectives at low velocities. Calculational studies show that the RFQ can accept a high-current, low-velocity, dc beam, bunch it with high efficiency, and accelerate it to a velocity suitable for injection into a drift-tube linac. Although it is relatively easy to generate a satisfactory design for an RFQ linac for low beam currents, the space-charge effects produced by high currents dominate the design criteria. Methods have been developed to generate solutions that make suitable compromises between the effects of emittance growth, transmission efficiency, and overall structure length. Results are given for a test RFQ linac operating at 425 MHz

  11. Modernization of the pre-treatment plants in Almaraz and Trillo Nuclear Power Plants; Actualizacion de las plantas de pretratamiento en las centrales nucleares de Almaraz y Trillo

    Energy Technology Data Exchange (ETDEWEB)

    Pascual Carballo, N.

    2010-07-01

    Description of the modernization project carried out in Almaraz and Trillo Nuclear Power Plants where EEAA. participates supporting and monitoring the RFQ, the design and the supplies as well as the documentary update and the design of new plants interconnection.

  12. Status of radio frequency quadrupole accelerator at IUAC, New Delhi

    International Nuclear Information System (INIS)

    Ahuja, Rajeev; Kothari, Ashok; Kumar, Sugam; Safvan, C.P.; Shankar, Ram

    2015-01-01

    As part of the accelerator augmentation program at IUAC, a High Current Injector (HCI) is being developed to inject highly charged ions into the superconducting LINAC. The HCI consists of a superconducting (High TC) ECR source, producing the high currents of highly charged ions. The ion beams produced will be injected into a Radio Frequency Quadrupole Accelerator (RFQ) and be accelerated to 180 keV/u. RF power of about 100 kW at 48.5 MHz will be fed to the RFQ during its actual working. The ions will be further accelerated by a Drift Tube Linac (DTL), before being further velocity matched with a low beta cavity into the superconducting LINAC. RFQ at IUAC is a four rod cavity structure having individual demountable copper vanes held on vane posts with a total vane length of 2.536 m and a minimum aperture of 12mm. The vane posts hold twenty nos. of vanes. Water will flow into vanes through the vane posts. The copper plated stainless steel vacuum housing has been divided into two chambers for the ease of fabrication and copper plating. The RFQ stand has provision for alignment in all the three axes. After successfully validating all the electrical and mechanical design parameters on a prototype RFQ, the fabrication of final RFQ has been completed. Initial assembly to check the mechanical accuracies was carried out. Low power RF tests were conducted to validate the design parameters. The resonance frequency of the RFQ was measured as 44.12 MHz and Q value was measured ∼ 5500. The final assembly is in progress. This paper details the present status and future plan of RFQ. (author)

  13. Longitudinal capture in the radio-frequency-quadrupole structure

    International Nuclear Information System (INIS)

    Inagaki, S.

    1980-03-01

    The radio-frequency-quadrupole (RFQ) linac structure not only can attain easily transverse focusing in the low-beta region, but also can obtain very high capture efficiency because of its low beta-lambda and low-particle rigidity. An optimization study of the zero space-charge longitudinal capture in an RFQ linac that yields configurations with large capture efficiency is described

  14. Survey of radio-frequency quadrupole accelerators

    International Nuclear Information System (INIS)

    Billen, J.H.

    1984-01-01

    Over the last several years the RFQ has proved to be a very flexible low-energy accelerator for bunching and accelerating both low- and high-current beams. It uses low-voltage dc injectors, has excellent bunching properties and high transmission efficiency. Applications include injectors for higher energy machines, such as drift-tube linacs, cyclotrons, or synchrotrons. The RFQ can also be used alone for applications that require a fixed-energy beam. 41 references, 4 figures, 2 tables

  15. Direct-current proton-beam measurements at Los Alamos

    International Nuclear Information System (INIS)

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-01-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H 2 gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given

  16. Refined beam measurements on the SNS H- injector

    Science.gov (United States)

    Han, B. X.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stinson, C. M.; Stockli, M. P.

    2017-08-01

    The H- injector for the SNS RFQ accelerator consists of an RF-driven, Cs-enhanced H- ion source and a compact, two-lens electrostatic LEBT. The LEBT output and the RFQ input beam current are measured by deflecting the beam on to an annular plate at the RFQ entrance. Our method and procedure have recently been refined to improve the measurement reliability and accuracy. The new measurements suggest that earlier measurements tended to underestimate the currents by 0-2 mA, but essentially confirm H- beam currents of 50-60 mA being injected into the RFQ. Emittance measurements conducted on a test stand featuring essentially the same H- injector setup show that the normalized rms emittance with 0.5% threshold (99% inclusion of the total beam) is in a range of 0.25-0.4 mm.mrad for a 50-60 mA beam. The RFQ output current is monitored with a BCM toroid. Measurements as well as simulations with the PARMTEQ code indicate an underperforming transmission of the RFQ since around 2012.

  17. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    Science.gov (United States)

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  18. A versatile triple radiofrequency quadrupole system for cooling, mass separation and bunching of exotic nuclei

    Science.gov (United States)

    Haettner, Emma; Plaß, Wolfgang R.; Czok, Ulrich; Dickel, Timo; Geissel, Hans; Kinsel, Wadim; Petrick, Martin; Schäfer, Thorsten; Scheidenberger, Christoph

    2018-02-01

    The combination of in-flight separation with a gas-filled stopping cell has opened a new field for experiments with exotic nuclei. For instance, at the SHIP/SHIPTRAP facility at GSI in Darmstadt high-precision mass measurements of rare nuclei have been successfully performed. In order to extend the reach of SHIPTRAP to exotic nuclei that are produced together with high rates of unwanted reaction products, a novel compact radio frequency quadrupole (RFQ) system has been developed. It implements ion cooling, identification and separation according to mass numbers and bunching capabilities. The system has a total length of one meter only and consists of an RFQ cooler, an RFQ mass filter and an RFQ buncher. A mass resolving power (FWHM) of 240 at a transmission efficiency of 90% has been achieved. The suppression of contaminants from neighboring masses by more than four orders of magnitude has been demonstrated at rates exceeding 106 ions/s. A longitudinal emittance of 0.45 eV μs has been achieved with the RFQ buncher, which will enable improved time-of-flight mass spectrometry downstream of the device. With this triple RFQ system the measurement of e.g. N= Z nuclides in the region up to tin will become possible at SHIPTRAP. The technology is also well suited for other rare-isotope facilities with experimental setups behind a stopping cell, such as the fragment separator FRS with the FRS Ion Catcher at GSI.

  19. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G., E-mail: gerosro@gmail.com; Kanjilal, D.; Roy, A. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi (India); Becker, R. [Institut fur Angewandte Physik der Universitaet, D-60054 Frankfurt/M (Germany); Hamm, R. W. [R and M Technical Enterprises, Inc., 4725 Arlene Place, Pleasanton, California 94566 (United States); Baskaran, R. [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  20. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Science.gov (United States)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  1. Prototype development of radio frequency cavity and quadrupole for ADSS - initial efforts by mechanical design and prototype development section

    International Nuclear Information System (INIS)

    Kumar, Manish; Kamble, Sunil; Choughule, L.S.; Kumar, Sunil; Patankar, S.R.; Phalke, V.M.; Dharmik, D.A.; Singh, Tejinder; Ram, Y.; Chaudhari, A.T.; Pathak, Kavindra; Prasad, N.K.; Marathe, V.V.; Matkar, A.W.

    2007-01-01

    Mechanical Design and Prototype Development Section has participated in the efforts for development of RF cavity and Quadrupole for ADSS. Recently prototype Super conducting RF cavity, Radio Frequency Quadrupole (RFQ), Radio Frequency Quadrupole (RFQ) Simulation Chamber and related experimental setups were developed, fabricated and delivered for the characterisation of various relevant parameters. Under the program for development of Super conducting RF Cavity for high-energy section of LINAC of ADS first prototype RF Cavity of ETP copper was developed by machining and brazing process. The prototype cavity having elliptical and circular profile is the heart of this setup. The cavity is made up of two symmetrical cups joined together by welding or brazing. Various methods are being tried out by MD and PDS for the fabrication of cups and joining them together. Manufacturing of cup by machining and joining them by conventional brazing technique to make the cavity was the first step in this direction. Another method of manufacturing and joining viz forming of cup by deep drawing and joining them by EB welding is in progress. RFQ is a versatile and efficient system for accelerating ion beams especially at low energy. It works in quadrupole mode, which is at 350M Hz. RFQ Focuses, Bunches and Accelerates the beam simultaneously. The bunching is done in this RFQ, which results in more than 95% transmission where as in the normal buncher the transmission is less than 40%. The actual RFQ, which is designed for the PURNIMA facility, will be fabricated from OFHC copper that will accelerate a deuteron (D+) ion beam from 50keV to 400keV over its 1.37meter length. For the validation of manufacturing process and characterisation of various parameters at low frequency a 500mm long prototype RFQ in Aluminium with an accuracy of ± 25microns and surface finish of 1.6 micron has been fabricated by MD and PDS. A simplified simulation chamber to facilitate the development of RFQ for

  2. Development of the Medium Energy Linac Systems

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Park, Bum Sik; Seol, Kyung Tae; Song, Young Gi; Yun, Sang Pil; Cho, Yong Sub; Hong, In Seok

    2008-05-01

    The main purpose of this project is developing 100-MeV proton linear accelerator (linac) for proton engineering frontier project (PEFP). In the first phase of the PEFP, the development of the 20-MeV linac has successfully finished. Hence the work scope of this project is designing the linac to accelerate proton beams from 20-MeV up to 100-MeV, fabricating the linac up to 45 MeV, fabricating one set of the medium energy beam transport (MEBT) tank, and developing the low level radio frequency (LLRF) system and the control system. The basic role of the new proton accelerator is accelerating 20-mA proton beams from 20 MeV up to 100 MeV. The first step of the design procedure is optimizing and determining the accelerator parameters. The beam loss is also main concern in the design stage. The drift tube (DT) and the quadrupole magnets are designed to be optimized to the new linac design. The other purpose is confirming the new design by fabricating and tuning the drift tube linac (DTL). The 20MeV proton beam divided into two directions. One is supplying the beams to user group by turning on the 45-degree bending magnet. The other is guided into the 100-MeV DTL by tuning off the dipole magnet. That is why the PEFP MEBT located after 20-MeV DTL. The MEBT is realized as two small DTL tanks with three cells and a 45-degree bending magnet. The fabrication of one MEBT tank is another purpose of this project. The other purposes of this project is developing the LLRF system to control the RF signal and control system to monitor and control the vacuum system, magnet power supply, etc

  3. Drift tube with an electro-quadrupole magnet made with a conventional enamel wire for the proton engineering frontier project drift tube linac

    Science.gov (United States)

    Kim, Y. H.; Kwon, H. J.; Cho, Y. S.

    2006-12-01

    The proton engineering frontier project (PEFP) drift tube linac (DTL) chose the new type of electro-quadrupole magnet (EQM) using an enameled wire for a drift tube. By using this kind of EQM, we could simplify the drift tube structure. We verified the structural stability and thermal stability of this drift tube structure through a computational analysis and a simple experiment. We also verified the stability of the enameled wire regarding corrosion through a long period test of about 1 year. It was concluded that the design and fabrication of the drift tube and the EQM were successful.

  4. Drift tube with an electro-quadrupole magnet made with a conventional enamel wire for the proton engineering frontier project drift tube linac

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.H. [PEFP, KAERI, DaeJeon (Korea, Republic of)]. E-mail: yhkim72@kaeri.re.kr; Kwon, H.J. [PEFP, KAERI, DaeJeon (Korea, Republic of); Cho, Y.S. [PEFP, KAERI, DaeJeon (Korea, Republic of)

    2006-12-21

    The proton engineering frontier project (PEFP) drift tube linac (DTL) chose the new type of electro-quadrupole magnet (EQM) using an enameled wire for a drift tube. By using this kind of EQM, we could simplify the drift tube structure. We verified the structural stability and thermal stability of this drift tube structure through a computational analysis and a simple experiment. We also verified the stability of the enameled wire regarding corrosion through a long period test of about 1 year. It was concluded that the design and fabrication of the drift tube and the EQM were successful.

  5. Drift tube with an electro-quadrupole magnet made with a conventional enamel wire for the proton engineering frontier project drift tube linac

    International Nuclear Information System (INIS)

    Kim, Y.H.; Kwon, H.J.; Cho, Y.S.

    2006-01-01

    The proton engineering frontier project (PEFP) drift tube linac (DTL) chose the new type of electro-quadrupole magnet (EQM) using an enameled wire for a drift tube. By using this kind of EQM, we could simplify the drift tube structure. We verified the structural stability and thermal stability of this drift tube structure through a computational analysis and a simple experiment. We also verified the stability of the enameled wire regarding corrosion through a long period test of about 1 year. It was concluded that the design and fabrication of the drift tube and the EQM were successful

  6. Programmable Power Supply for AC Switching Magnet of Proton Accelerator

    CERN Document Server

    Jeong, Seong-Hun; Kang Heung Sik; Lee, Chi-Hwan; Lee, Hong-Gi; Park, Ki-Hyeon; Ryu, Chun-Kil; Sik Han, Hong; Suck Suh, Hyung

    2005-01-01

    The 100-MeV PEFP proton linac has two proton beam extraction lines for user' experiment. Each extraction line has 5 beamlines and has 5 Hz operating frequency. An AC switching magnet is used to distribute the proton beam to the 5 beamlines, An AC switching magnet is powered by PWM-controlled bipolar switching-mode converters. This converter is designed to operate at ±350A, 5 Hz programmable step output. The power supply is employed IGBT module and has controlled by a DSP (Digital Signal Process). This paper describes the design and test results of the power supply.

  7. Initial Beam Test of the Prototype Strip Line BPM

    International Nuclear Information System (INIS)

    Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Ryu, Jin Yeong; Jang, Ji Ho; Cho, Yong Sub

    2011-01-01

    A beam position monitor (BPM) was developed which would be used for the Proton Engineering Frontier Project (PEFP) beam line. It is a strip line BPM which is commonly used one for the proton beam. The BPM cross section was designed with the SUPERFISH code and the matching section to the feed through was designed by the MWS code. The design parameters of the BPM are shown in Table 1. The designed BPM was fabricated to verify the manufacturing process and check its electrical performance. After the low power test at the test stand, the BPM was installed at the 20-MeV proton accelerator beam line as shown in Fig. 1

  8. Smooth transverse and longitudinal focusing in high-intensity ion linacs

    International Nuclear Information System (INIS)

    Billen, J.H.; Takeda, Harunori; Young, L.M.

    1996-01-01

    We examine ion linac designs that start with a high energy radio- frequency quadrupole (RFQ) followed by either a drift-tube linac (DTL) or a coupled-cavity drift-tube linac (CCDTL). For high energies a conventional CCL follows the CCDTL. High RFQ output energy allows tailoring the transverse and longitudinal focusing strengths to match into the following structure. When the RFQ beam enters a higher frequency structure, the DTL or CCDTL starts with a low accelerating gradient and large negative synchronous phase. The gradient and phase both ramp up gradually to higher values. Other changes later in the machine are also gradual. Beam dynamics simulations show that these linacs require no separate matching sections. Applications include a cw 100 mA H + beam from a 350-MHz, 6.7 MeV RFQ injecting a 700 MHz CCDTL and CCL; a 7% duty 28 mA H - beam from a 402.5 MHz RFQ and DTL injecting 805 MHz structures; a cw 135 mA D + beam produced by a 175 MHz, 8 MeV RFQ and DTL; and a 2.4% duty, 80 mA H + beam using a 433 MHz 10 MeV RFQ and a 1300 MHz CCDTL. The machines take advantage of the considerable flexibility of the CCDTL. Designs can use a variety of different transverse focusing lattices. Use of two coupling cavity orientations permits a constant period even when the number of drift tubes per cavity changes along the linac

  9. Development and Validation of a Self-Report Measure of Mentalizing: The Reflective Functioning Questionnaire.

    Directory of Open Access Journals (Sweden)

    Peter Fonagy

    Full Text Available Reflective functioning or mentalizing is the capacity to interpret both the self and others in terms of internal mental states such as feelings, wishes, goals, desires, and attitudes. This paper is part of a series of papers outlining the development and psychometric features of a new self-report measure, the Reflective Functioning Questionnaire (RFQ, designed to provide an easy to administer self-report measure of mentalizing. We describe the development and initial validation of the RFQ in three studies. Study 1 focuses on the development of the RFQ, its factor structure and construct validity in a sample of patients with Borderline Personality Disorder (BPD and Eating Disorder (ED (n = 108 and normal controls (n = 295. Study 2 aims to replicate these findings in a fresh sample of 129 patients with personality disorder and 281 normal controls. Study 3 addresses the relationship between the RFQ, parental reflective functioning and infant attachment status as assessed with the Strange Situation Procedure (SSP in a sample of 136 community mothers and their infants. In both Study 1 and 2, confirmatory factor analyses yielded two factors assessing Certainty (RFQ_C and Uncertainty (RFQ_U about the mental states of self and others. These two factors were relatively distinct, invariant across clinical and non-clinical samples, had satisfactory internal consistency and test-retest stability, and were largely unrelated to demographic features. The scales discriminated between patients and controls, and were significantly and in theoretically predicted ways correlated with measures of empathy, mindfulness and perspective-taking, and with both self-reported and clinician-reported measures of borderline personality features and other indices of maladaptive personality functioning. Furthermore, the RFQ scales were associated with levels of parental reflective functioning, which in turn predicted infant attachment status in the SSP. Overall, this study lends

  10. Performance report on the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.

    1994-01-01

    The Ground Test Accelerator (GTA) uses a radio-frequency quadrupole (RFQ) to bunch and accelerate a 35 keV input beam to a final energy of 2.5 MeV. Most measured parameters of the GTA RFQ agreed with simulated predictions. The relative shape of the transmission versus the vane-voltage relationship and the Courant-Snyder (CS) parameters of the output beam's transverse and longitudinal phase spaces agreed well with predictions. However, the transmission of the RFQ was significantly lower than expected. Improved simulation studies included image charges and multipole effects in the RFQ. Most of the predicted properties of the RFQ, such as input matched-beam conditions and output-beam shapes were unaffected by these additional effects. However, the comparison of measured with predicted absolute values of transmitted beam was much improved by the inclusion of these effects in the simulations. The comparison implied a value for the input emittance that is consistent with measurements

  11. Radio-frequency-quadrupole linac in a heavy ion fusion driver system

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Stokes, R.; Swenson, D.A.; Wangler, T.P.

    1980-01-01

    A new type of linear accelerator, the radio-frequency quadrupole (RFQ) linac, is being developed for the acceleration of low-velocity ions. The RFQ accelerator can be adapted to any high-current applications. A recent experimental test carried out at the Los Alamos Scienific Laboratory (LASL) has demonstrated the outstandig properties of RFQ systems. The test linac accepts a 30-mA proton beam of 100-keV energy and focuses, bunches, and accelerates the beam to an energy to 640 keV. This ia done in a length of 1.1 m, with a transmission efficiency of 87% and with a radial emittance growth of less than 60%. The proven capability of the RFQ linac, when extended to heavy ion acceleration, should provide an ideal technique for use in the low-velocity portion of a heavy-ion linac for inertial-confinement fusion. A specific concept for such an RFQ-based system is described

  12. Error studies for SNS Linac. Part 1: Transverse errors

    International Nuclear Information System (INIS)

    Crandall, K.R.

    1998-01-01

    The SNS linac consist of a radio-frequency quadrupole (RFQ), a drift-tube linac (DTL), a coupled-cavity drift-tube linac (CCDTL) and a coupled-cavity linac (CCL). The RFQ and DTL are operated at 402.5 MHz; the CCDTL and CCL are operated at 805 MHz. Between the RFQ and DTL is a medium-energy beam-transport system (MEBT). This error study is concerned with the DTL, CCDTL and CCL, and each will be analyzed separately. In fact, the CCL is divided into two sections, and each of these will be analyzed separately. The types of errors considered here are those that affect the transverse characteristics of the beam. The errors that cause the beam center to be displaced from the linac axis are quad displacements and quad tilts. The errors that cause mismatches are quad gradient errors and quad rotations (roll)

  13. Characterizing millisecond intermediates in hemoproteins using rapid-freeze-quench resonance Raman spectroscopy.

    Science.gov (United States)

    Matsumura, Hirotoshi; Moënne-Loccoz, Pierre

    2014-01-01

    The combination of rapid freeze quenching (RFQ) with resonance Raman (RR) spectroscopy represents a unique tool with which to investigate the nature of short-lived intermediates formed during the enzymatic reactions of metalloproteins. Commercially available equipment allows trapping of intermediates within a millisecond to second time scale for low-temperature RR analysis resulting in the direct detection of metal-ligand vibrations and porphyrin skeletal vibrations in hemoproteins. This chapter briefly discusses RFQ-RR studies carried out previously in our laboratory and presents, as a practical example, protocols for the preparation of RFQ samples of the reaction of metmyoglobin with nitric oxide (NO) under anaerobic conditions. Also described are important controls and practical procedures for the analysis of these samples by low-temperature RR spectroscopy.

  14. Upgrading the Lyon cluster ion accelerator by a radiofrequency quadrupole

    International Nuclear Information System (INIS)

    Moser, H.O.; Schempp, A.

    1987-02-01

    The design is presented of an RFQ with variable final energy suitable to post-accelerate cluster ions from the Lyon electrostatic cluster-ion accelerator in the mass ranges from 1 to 25 μ and 1 to 50 μ to kinetic energies of 1.32-2.5 MeV and 2.64-5.0 MeV for cw and pulsed operation, respectively. Furthermore, a beam line is described which matches the electrostatically preaccelerated beam to the RFQ by use of electrostatic quadrupole triplets. When used without RFQ this beam line serves to improve beam parameters on the target, such as the particle flux density or beam divergence. The estimated costs of this project are about DM 345 000.- or FF 1 200 000.- without VAT. (orig.) [de

  15. Proposed use of the radio-frequency quadrupole structure to funnel high-current ion beams

    International Nuclear Information System (INIS)

    Stokes, R.H.; Minerbo, G.N.

    1985-01-01

    In this paper, we describe a new approach to funneling beams that are initially accelerated in two radio-frequency quadrupole (RFQ) accelerators. Instead of discrete optical elements, we propose to funnel within an RFQ structure, so that during the funneling process the beam is always confined by periodic transverse focusing. Beams with high space charge experience irreversible emittance growth when they emerge from a periodic focusing system. To alleviate this problem, in the proposed funneling system it should be possible to maintain the same focusing periodicity as that of the accelerators preceding the funnel. Also, instead of conventional deflection systems, we propose to use the properties of a modified RFQ structure to deflect two parallel beams toward each other and to merge them into a single final beam. 1 ref., 3 figs

  16. Fast betatron tune controller for circulating beam in a synchrotron

    International Nuclear Information System (INIS)

    Endo, Takuyuki; Hatanaka, Kichiji; Sato, Kenji

    1997-01-01

    When rf quadrupole (RFQ) electric field is applied to the circulating beam in a synchrotron, an equation of motion is reduced to Mathieu's Equation. A new analytical method to obtain an approximate solution has been developed, while a numerical computation was usually applied. Translating the behavior of approximate solution into terms of an RFQ electric field and betatron oscillation, a fast tune control can be achieved by rapid tuning of both amplitude and frequency of rf voltage. This process could be applied to suppress a tune shift caused by a space charge effect and to control a slow beam extraction with a low ripple. We have started another analytical computation using Hamiltonian with perturbation of RFQ and the results of this computation also suggest that it is applicable to slow beam extraction. The fast tune controller has been constructed and the beam test will be performed at HIMAC synchrotron in cooperation of RCNP and NIRS. (author)

  17. PIC Simulations in Low Energy Part of PIP-II Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, Gennady

    2014-07-01

    The front end of PIP-II linac is composed of a 30 keV ion source, low energy beam transport line (LEBT), 2.1 MeV radio frequency quadrupole (RFQ), and medium energy beam transport line (MEBT). This configuration is currently being assembled at Fermilab to support a complete systems test. The front end represents the primary technical risk with PIP-II, and so this step will validate the concept and demonstrate that the hardware can meet the specified requirements. SC accelerating cavities right after MEBT require high quality and well defined beam after RFQ to avoid excessive particle losses. In this paper we will present recent progress of beam dynamic study, using CST PIC simulation code, to investigate partial neutralization effect in LEBT, halo and tail formation in RFQ, total emittance growth and beam losses along low energy part of the linac.

  18. Radio-frequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  19. Topical problems of accelerator and applied heavy ion physics

    International Nuclear Information System (INIS)

    Becker, R.; Deitinghoff, H.; Junior, P.H.; Schempp, A.

    1990-12-01

    These proceedings contain the articles presented at the named seminar. They deal with high-intensity linacs for heavy ions, the free-electron laser, applications of heavy-ion beams, MEQALAC, the ESR Schottky-diagnosis system, the analysis of GaAs by ion-beam methods, a light-ion synchrotron for cancer therapy, a device for the measurement of the momentum spread of ion beams, the European Hadron facility, the breakdown fields at electrons in high vacuum, a computer program for the calculation of electric quadrupoles, a focusing electrostatic mirror, storage and cooling of Ar beams, the visualization of heavy ion tracks in photographic films, the motion of ions in magnetic fields, the CERN heavy ion program, linear colliders, the beam injection from a linac into a storage ring, negative-ion sources, wake field acceleration, RFQ's, a dense electron target, the matching of a DC beam into the RFQ, electron emission and breakdown in vacuum, and 1-1.5 GeV 300 mA linear accelerator, the production of high-current positive-ion beams, high-current beam experiments at GSI, improvement of the Frankfurt EBIS, the physics of the violin, double layers, beam formation with coupled RFQ's, atomic nitrogen beam for material modification, compact superconducting synchrotron-radiation sources, industrial property rights, a RF ion source for thin film processes, beam-cavity interactions in the RFQ linac, atomic physics with crossed uranium beams, proton linacs, the interdigital H-type structure, injection of H - beams into a RFQ accelerator, the production of MOS devices by ion implantation, the application of RFQ's, the Frankfurt highly-charged ion facility, RF acceleration techniques for beam current drive in tokamaks, space-charge neutralized transport, and storage rings for synchrotron radiation and free electron lasers. (HSI)

  20. RF cavity evaluation with the code SUPERFISH

    International Nuclear Information System (INIS)

    Hori, T.; Nakanishi, T.; Ueda, N.

    1982-01-01

    The computer code SUPERFISH calculates axisymmetric rf fields and is most applicable to re-entrant cavities of an Alvarez linac. Some sample results are shown for the first Alvarez's in NUMATRON project. On the other hand the code can also be effectivily applied to TE modes excited in an RFQ linac when the cavity is approximately considered as positioning at an infinite distance from the symmetry axis. The evaluation was made for several RFQ cavities, models I, II and a test linac named LITL, and useful results for the resonator design were obtained. (author)

  1. Linac4: the final assembly stage is under way

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152 last August. After an assembly phase and tests that concluded last March with the acceleration of a hydrogen beam to 3 MeV, the module has just been permanently installed in the new Linac4 tunnel (Building 400). The installation of the MEBT (Medium Energy Beam Transport) will begin shortly, followed by the start of the first Linac4 commissioning phase.     To find out more about the Linac4 RFQ module, read the previous Bulletin articles published in Nos. 21-22/2010 and 35-36/2012.

  2. The radiofrequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Puglisi, M.

    1986-01-01

    This seminar is aimed to give a comprehensive picture of an RFQ. After a short description of the accelerating structure the T-K expansion is treated and the fundamental formula for the potential is derived. The vane tips shaping, completed to first order is followed by the physics of the machine where the most important parameters are listed and illustrated. Since the RFQ is essentially a cavity resonator this topic has been given particular attention. Design and other technical considerations complete the picture, while in the last paragraph the new ideas are briefly outlined. (Auth.)

  3. Full three-dimensional approach to the design and simulation of a radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    B. Mustapha

    2013-12-01

    Full Text Available We have developed a new full 3D approach for the electromagnetic and beam dynamics design and simulation of a radio-frequency quadrupole (RFQ. A detailed full 3D model including vane modulation was simulated, which was made possible by the ever advancing computing capabilities. The electromagnetic (EM design approach was first validated using experimental measurements on an existing prototype RFQ and more recently on the actual full size RFQ. Two design options have been studied, the original with standard sinusoidal modulation over the full length of the RFQ; in the second design, a trapezoidal modulation was used in the accelerating section of the RFQ to achieve a higher energy gain for the same power and length. A detailed comparison of both options is presented supporting our decision to select the trapezoidal design. The trapezoidal modulation increased the shunt impedance of the RFQ by 34%, the output energy by 15% with a similar increase in the peak surface electric field, but practically no change in the dynamics of the accelerated beam. The beam dynamics simulations were performed using three different field methods. The first uses the standard eight-term potential to derive the fields, the second uses 3D fields from individual cell-by-cell models, and the third uses the 3D fields for the whole RFQ as a single cavity. A detailed comparison of the results from TRACK shows a very good agreement, validating the 3D fields approach used for the beam dynamics studies. The EM simulations were mainly performed using the CST Microwave-Studio with the final results verified using other software. Detailed segment-by-segment and full RFQ frequency calculations were performed and compared to the measured data. The maximum frequency deviation is about 100 kHz. The frequencies of higher-order modes have also been calculated and finally the modulation and tuners effects on both the frequency and field flatness have been studied. We believe that with

  4. Radio-frequency quadrupole: general properties and specific applications

    International Nuclear Information System (INIS)

    Stokes, R.H.; Crandall, K.R.; Hamm, R.W.

    1980-01-01

    The radio-frequency quadrupole (RFQ) linac structure is being developed for the acceleration of low-velocity ions. Recent experimental tests have confirmed its expected performance and have led to an increased interest in a wide range of possible applications. The general properties of RFQ accelerators are reviewed and beam dynamics simulation results are presented for their use in a variety of accelerating systems. These include the low-beta sections of the Fusion Materials Irradiation Test Accelerator, a 200-MHz proton linear accelerator, and a xenon accelerator for heavy ion fusion

  5. The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen

    International Nuclear Information System (INIS)

    Graybill, R.; Morgado, R.E.; Cappiello, C.C.

    1994-05-01

    The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported

  6. The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Graybill, R. [ed.; Morgado, R.E.; Cappiello, C.C. [and others

    1994-05-01

    The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported.

  7. MAXILAC as a high current UNILAC injector

    International Nuclear Information System (INIS)

    Ungrin, J.; Klabunde, J.

    1984-08-01

    MAXILAC, an RFQ of split coaxial resonator design, will deliver heavy ion currents in the 20-30 mA range with energies in the 100-150 keV/u range. One proposed method of coupling this RFQ to UNILAC is to divide the first tank of the Wideroee section into two segments and to inject the MAXILAC beam for acceleration starting with the second segment. This injection scheme has been investigated in detail with the beam dynamics codes MIKRO, PARMT and PARMI. Other injection schemes are also considered. (orig.)

  8. Vane fabrication for the proof-of-principle radio-frequency quadrupole accelerator

    International Nuclear Information System (INIS)

    Williams, S.W.; Potter, J.M.

    1981-01-01

    The electrodes for the Proof-of-Principle (POP) Radio-Frequency Quadrupole (RFQ) accelerator were machined on a numerically controlled, three-axis, vertical mill. These pole tips, or vanes, were prepared for, and used, in the successful demonstration of RFQ practicality at Los Alamos National Laboratory in February 1980. The data set that described the vanes contained about 10 million bits of tool position data. The vanes were cut from OFHC copper blanks. The tolerances achieved were approximately +- 0.005 cm. The design and manufacturing procedures are described

  9. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    Science.gov (United States)

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  10. Novel integrated design framework for radio frequency quadrupoles

    International Nuclear Information System (INIS)

    Jolly, Simon; Easton, Matthew; Lawrie, Scott; Letchford, Alan; Pozimski, Jürgen; Savage, Peter

    2014-01-01

    A novel design framework for Radio Frequency Quadrupoles (RFQs), developed as part of the design of the FETS RFQ, is presented. This framework integrates several previously disparate steps in the design of RFQs, including the beam dynamics design, mechanical design, electromagnetic, thermal and mechanical modelling and beam dynamics simulations. Each stage of the design process is described in detail, including the various software options and reasons for the final software suite selected. Results are given for each of these steps, describing how each stage affects the overall design process, with an emphasis on the resulting design choices for the FETS RFQ

  11. Hyperion II: a heavy ion pre-injector for Saturne

    International Nuclear Information System (INIS)

    Olivier, M.; Auclair, J.P.; Courtois, A.

    1983-01-01

    Since 1978, the 3GeV synchrotron Saturne is routinely operated with proton, deuteron, helium beams and, since 1981 with polarized protons and deuterons. Heavy ions are expected in 1983 by using a new pre-injector presently under construction. The marriage of an EBIS and an RFQ can be looked upon generally as a very good means of production of heavy ion beams at low energy. In the first paragraph, the cryogenic version of EBIS, called CRYEBIS, is described, while the RFQ design is studied in detail in paragraph two. The construction status is given in a third paragraph

  12. Linac design for intense hadron beams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuan

    2009-12-14

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-{beta} region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the {phi}{sub s}=0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs

  13. Linac design for intense hadron beams

    International Nuclear Information System (INIS)

    Zhang, Chuan

    2009-01-01

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-β region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the φ s =0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs, no beam

  14. Accelerator driven neutron sources in Korea. Current and future

    International Nuclear Information System (INIS)

    Lee, Young-Ouk; Oh, Byung-Hoon; Hong, Bong-Geun; Chang, Jonghwa; Chang, Moon-Hee; Kim, Guinyun; Kim, Gi-Donng; Choi, Byung-Ho

    2008-01-01

    The Pohang Neutron Facility, based on a 65 MeV electron linear accelerator, has a neutron-gamma separation circuit, water-moderated tantalum target and 12 m TOF. It produces pulsed photonuclear neutrons with ≅2 μs width, 50 mA peak current and 15 Hz repetition, mainly for the neutron nuclear data production in up to keV energies. The Tandem Van de Graff at Korea Institute of Geoscience and Mineral Resources (KIGAM) is dedicated to measure MeV energy neutron capture and total cross section using TOF and prompt gamma ray detection system. The facility pulsed ≅10 8 mono-energetic neutrons/sec from 3 H(p,n) reaction with 1-2 ns width and 125 ns period. Korea Institute of Radiological and Medical Sciences (KIRAMS) has the MC50 medical cyclotron which accelerates protons up to an energy of 45 MeV and has several beam ports for proton or neutron irradiations. Beam current can be controlled from a few nano amperes to 50 uA. Korea Atomic Energy Research Institute (KAERI) has a plan to develop a neutron source by using 20 MeV electron accelerator. This photo-neutron source will be mainly used for nuclear data measurements based on time-of-flight experiments. A high intensity fast neutron source is also proposed to respond growing demands of fast neutrons, especially for the fusion material test. Throughput will be as high as several 10 13 neutrons/sec from D-T reaction powered by a high current (200 mA) ion source, a drive-in target and cooling systems, and closed circuit tritium ventilation/recovery systems. The Proton Engineering Frontier Project (PEFP) is developing a 100 MeV, 20 mA pulsed proton linear accelerator equipped with 5 target rooms, one of which is dedicated to produce neutrons using tungsten target. PEFP also proposes the 1-2 GeV rapid cycling synchrotron accelerator as an extension of the PEFP linac, which can be used for nuclear and high energy physics experiment, spallation neutron source, radioisotope, medical research, etc. (author)

  15. Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): a double-blind randomised placebo-controlled phase 3 trial.

    Science.gov (United States)

    Buyse, Gunnar M; Voit, Thomas; Schara, Ulrike; Straathof, Chiara S M; D'Angelo, M Grazia; Bernert, Günther; Cuisset, Jean-Marie; Finkel, Richard S; Goemans, Nathalie; McDonald, Craig M; Rummey, Christian; Meier, Thomas

    2015-05-02

    Cardiorespiratory failure is the leading cause of death in Duchenne muscular dystrophy. Based on preclinical and phase 2 evidence, we assessed the efficacy and safety of idebenone in young patients with Duchenne muscular dystrophy who were not taking concomitant glucocorticoids. In a multicentre phase 3 trial in Belgium, Germany, the Netherlands, Switzerland, France, Sweden, Austria, Italy, Spain, and the USA, patients (age 10-18 years old) with Duchenne muscular dystrophy were randomly assigned in a one-to-one ratio with a central interactive web response system with a permuted block design with four patients per block to receive idebenone (300 mg three times a day) or matching placebo orally for 52 weeks. Study personnel and patients were masked to treatment assignment. The primary endpoint was change in peak expiratory flow (PEF) as percentage predicted (PEF%p) from baseline to week 52, measured with spirometry. Analysis was by intention to treat (ITT) and a modified ITT (mITT), which was prospectively defined to exclude patients with at least 20% difference in the yearly change in PEF%p, measured with hospital-based and weekly home-based spirometry. This study is registered with ClinicalTrials.gov, number NCT01027884. 31 patients in the idebenone group and 33 in the placebo group comprised the ITT population, and 30 and 27 comprised the mITT population. Idebenone significantly attenuated the fall in PEF%p from baseline to week 52 in the mITT (-3·05%p [95% CI -7·08 to 0·97], p=0·134, vs placebo -9·01%p [-13·18 to -4·84], p=0·0001; difference 5·96%p [0·16 to 11·76], p=0·044) and ITT populations (-2·57%p [-6·68 to 1·54], p=0·215, vs -8·84%p [-12·73 to -4·95], pmuscular dystrophy. Santhera Pharmaceuticals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 3-D electromagnetic and thermo-mechanical simulation of a RF cavity

    CERN Document Server

    Launay, F

    2003-01-01

    A 3-D thermo-mechanical study of the edge of entrance blade of IPHI's RFQ was conducted by means of I-DEAS code. The aim is to compare the temperatures reached, the constraints, and the deformations calculated on the basis of RF power density stored on the blade obtained by means of two different electromagnetic computational codes, SOPRANO and MAFIA.

  17. Preliminary design of high-power wave-guide/transmission system ...

    Indian Academy of Sciences (India)

    . This LINAC will be needing CW rf power in the frequency ranges of 350 MHz and 700 MHz for its RFQ and. DTL/CCDTL/SFDTL structures respectively. The power to the accelerating structures will be pro- duced by either 1 MW CW or 250 kW ...

  18. Simulation of 6 1/8 inch rigid coaxial RF transmission line

    International Nuclear Information System (INIS)

    Soni, Atul; Pande, M.M.; Rao, M.K.V.; Handu, V.K.

    2006-01-01

    A radio frequency (RF) transmission line has been designed based upon rigid coaxial 6 1/8 , 50-ohm line for coupling the RF power from its source to 400 KeV radio frequency quadrupole (RFQ) accelerator. Simulation and analysis have been carried out to evaluate various RF parameters of the line. (author)

  19. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A 3 MeV, 30 mA radiofrequency quadrupole (RFQ) accelerator has been designed for the low-energy high-intensity proton accelerator (LEHIPA) project at BARC, India. The beam and cavity dynamics studies were performed using the computer codes LIDOS, TOUTATIS, SUPERFISH and CST microwave studio. We have ...

  20. rf quadrupole linac: a new low-energy accelerator

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Fuller, C.W.

    1980-01-01

    A new concept in low-energy particle accelerators, the radio-frequency quadrupole (RFQ) linac, is currently being developed at the Los Alamos National Scientific Laboratory. In this new linear accelerating structure both the focusing and accelerating forces are produced by the rf fields. It can accept a high-current, low-velocity dc ion beam and bunch it with a high capture efficiency. The performance of this structure as a low-energy linear accelerator has been verified with the successful construction of a proton RFQ linac. This test structure has accelerated 38 mA of protons from 100 keV to 640 keV in 1.1 meters with a capture efficiency greater than 80%. In this paper a general description of the RFQ linac and an outline of the basic RFQ linac design procedure are presented in addition to the experimental results from the test accelerator. Finally, several applications of this new accelerator are discussed

  1. Just a few metres… but the stakes are high

    CERN Multimedia

    Caroline Duc

    2013-01-01

    A beam of negative hydrogen ions has been injected into the first accelerator module of Linac4, the linear accelerator which will replace Linac2.   The Linac4 team celebrate the acceleration of the first beam by the RFQ module. Wednesday, 13 March was a big day for the Linac4 teams. At its temporary location in an old PS hall, the first element in the Linac4 accelerator chain, the Radio Frequency Quadrupole (RFQ) module, accelerated its first beam produced by the new source built for Linac4. This crucial step was a complete success! “Only three metres in length, the RFQ is at the start of the beam's path, immediately after the ion source and the low-energy transport line,” explains Maurizio Vretenar, the Linac4 project leader. “Its job is to increase the beam’s energy from 45 keV to 3 MeV. The section commissioned on Wednesday, which includes the source, the low-energy transport line and the RFQ, is only five metres long but still manages to po...

  2. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    LEHIPA), as front-end injector of the 1 GeV accelerator for the ADS programme, has been initiated. The major components of LEHIPA (20 MeV, 30 mA) are a 50 keV ECR ion source, a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV drift ...

  3. Heavy-ion LINAC development for the US RIA project

    Indian Academy of Sciences (India)

    obtain 403 MeV/u the driver LINAC has to have two strippers. Three different sections ... The RFQ and multi-harmonic buncher are specially designed in order to provide very low ..... The colors represent three different types of cavities. Table 6.

  4. A better beam for ISOLDE

    CERN Multimedia

    2007-01-01

    ISCOOL, the RFQ Cooler and Buncher, recently installed at ISOLDE, heralds a new generation of beam quality. Jérôme Sarret working on the alignment of ISCOOL, ISOLDE’s new RFQ Cooler and Buncher.As any good chef knows, the secret to a good dish lies in the quality of its ingredients. And at ISOLDE, unlocking the juiciest secrets of the nucleus needs a high-quality beam. One recently installed device, the RFQ Cooler and Buncher (RFQCB), will enhance the emittance and bunching properties of the ion beam, giving ISOLDE’s experiments a better shot at teasing out the properties of exotic nuclei. The device, originally conceived in a PhD thesis by Ivan Podadera, was installed and commissioned over the past few weeks by the AB-ATB-IF, AB-OP and PH-IS groups. At ISOLDE, radioactive nuclides are produced in thick high-temperature targets and the RFQ cooler will use a buffer gas, segmented cylinder and RF quadrupole to slow the ions, del...

  5. Design studies of a high-current radiofrequency quadrupole for ...

    Indian Academy of Sciences (India)

    signed for the low-energy high-intensity proton accelerator (LEHIPA) project at BARC,. India. The beam ... In this generalized method, the focussing factor (B) and vane voltage ..... r0 and also power dissipation vary along the length of the RFQ.

  6. Cryogenic, superconducting and rf results of the SRFQ2 of PIAVE

    Indian Academy of Sciences (India)

    mance, i.e., 280 kV inter-electrode voltage (equivalent to 25 MV/m peak surface electrical field) at 7 ... At present the installation of PIAVE cryogenic plants and relative distribution lines are ..... straight up to 250 kV, but with a puzzling positive drop, as can be seen in figure 6. ... The cryogenic system feeding the RFQ cryostat.

  7. Construction of the LITL cavity structure

    International Nuclear Information System (INIS)

    Itoh, S.; Masuda, S.; Ukai, Y.; Hirao, Y.

    1984-01-01

    This report presents briefly the mechanical consideration for the 100 MHz four-vane RFQ (radio frequency quadrupole accelerator) structure construction. At first, the theoretical vane shape required to obtain the RFQ electric field distribution was determined. A numerically controlled milling machine was employed for the precise machining of the complicated shape. The data sets for NC machining and for checking the size of three-dimensional coordinates were made up. A small vane model was machined by way of trial experiment to check the data to verify the circular interpolation programmed NC machining method, and to investigate cutter interference. The errors in the measurement in machining were less than +- 30 micrometer. The resonator tank is 56 cm in inner diameter and 138 cm in length, and is made of mild steel of 35 mm thickness. The inside wall was plated with copper thickly. Various conditions for the copper plating were investigated. Four vanes were assembled within the cavity of the RFQ. The vanes were built in the cavity tank with high dimensional accuracy. It was a matter of primary concern to design acceptable mechanical rf joints and select suitable rf contact elements for a high Q value of the RFQ resonator cavity. Finally, the Q value was measured, and was 10,600. The cavity was able to be evacuated to 10 -7 Torr. (Kato, T.)

  8. The design of a radio frequency quadrupole LINAC for the RIB ...

    Indian Academy of Sciences (India)

    α-particle beams from the variable energy cyclotron at VECC will be .... The calculated power loss density distribution in the RFQ post – the highest power ... rf-Structure measurements have been done using a Network Analyser (model 8753E).

  9. Hybrid recoil mass analyzer at IUAC – First results using gas-filled ...

    Indian Academy of Sciences (India)

    kinematics (to access heavy nuclei around 200 amu mass and beyond) and both ... totype each of RFQ and DTL are undergoing detailed tests for field ... magnet MD1 in gas-filled mode and is especially attractive in reactions induced by ... calculated using GIOS [11] ion-optical program to get the maximum count rate on.

  10. Connecting American Manufacturers (CAM)

    Science.gov (United States)

    2013-09-01

    thread were reported. 15. SUBJECT TERMS supply chain; e-sourcing; online portal; RFQ; online marketplace 16. SECURITY CLASSIFICATION OF: 17...upon their existing online industrial networking platform, VizSpace, by establishing the America’s VOICe marketplace, which small and medium U.S... marketing , training, communications, and relationships of six economic development organizations located around the country. To fulfill the

  11. 48 CFR 873.109 - General requirements for acquisition of health-care resources.

    Science.gov (United States)

    2010-10-01

    ..., of the basis for the contract award decision. (38 U.S.C. 8153) (d) Time for receipt of quotations or... quotations or proposals in requests for quotations (RFQs) and solicitations. (2) Without regard to FAR 15.208 or 52.212-1(f), quotations or proposals received after the time set forth in an RFQ or request for...

  12. High performance proton accelerators

    International Nuclear Information System (INIS)

    Favale, A.J.

    1989-01-01

    In concert with this theme this paper briefly outlines how Grumman, over the past 4 years, has evolved from a company that designed and fabricated a Radio Frequency Quadrupole (RFQ) accelerator from the Los Alamos National Laboratory (LANL) physics and specifications to a company who, as prime contractor, is designing, fabricating, assembling and commissioning the US Army Strategic Defense Commands (USA SDC) Continuous Wave Deuterium Demonstrator (CWDD) accelerator as a turn-key operation. In the case of the RFQ, LANL scientists performed the physics analysis, established the specifications supported Grumman on the mechanical design, conducted the RFQ tuning and tested the RFQ at their laboratory. For the CWDD Program Grumman has the responsibility for the physics and engineering designs, assembly, testing and commissioning albeit with the support of consultants from LANL, Lawrence Berkeley Laboratory (LBL) and Brookhaven National laboratory. In addition, Culham Laboratory and LANL are team members on CWDD. LANL scientists have reviewed the physics design as well as a USA SDC review board. 9 figs

  13. Design study of a radio-frequency quadrupole for high-intensity beams

    Science.gov (United States)

    Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk

    2017-07-01

    The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant

  14. A novel microfluidic rapid freeze-quench device for trapping reactions intermediates for high field EPR analysis.

    Science.gov (United States)

    Kaufmann, Royi; Yadid, Itamar; Goldfarb, Daniella

    2013-05-01

    Rapid freeze quench electron paramagnetic resonance (RFQ)-EPR is a method for trapping short lived intermediates in chemical reactions and subjecting them to EPR spectroscopy investigation for their characterization. Two (or more) reacting components are mixed at room temperature and after some delay the mixture is sprayed into a cold trap and transferred into the EPR tube. A major caveat in using commercial RFQ-EPR for high field EPR applications is the relatively large amount of sample needed for each time point, a major part of which is wasted as the dead volume of the instrument. The small sample volume (∼2μl) needed for high field EPR spectrometers, such as W-band (∼3.5T, 95GHz), that use cavities calls for the development of a microfluidic based RFQ-EPR apparatus. This is particularly important for biological applications because of the difficulties often encountered in producing large amounts of intrinsically paramagnetic proteins and spin labeled nucleic acid and proteins. Here we describe a dedicated microfluidic based RFQ-EPR apparatus suitable for small volume samples in the range of a few μl. The device is based on a previously published microfluidic mixer and features a new ejection mechanism and a novel cold trap that allows collection of a series of different time points in one continuous experiment. The reduction of a nitroxide radical with dithionite, employing the signal of Mn(2+) as an internal standard was used to demonstrate the performance of the microfluidic RFQ apparatus. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Radio-frequency quadrupole: a new linear accelerator

    International Nuclear Information System (INIS)

    Stokes, R.H.; Wangler, T.P.; Crandall, K.R.

    1981-01-01

    In many Laboratories, great emphasis now is placed on the development of linear accelerators with very large ion currents. To achieve this goal, a primary concern must be the low-velocity part of the accelerator, where the current limit is determined and where most of the emittance growth occurs. The use of magnetic focusing, the conflicting requirements in the choice of linac frequency, and the limitations of high-voltage dc injectors, have tended to produce low-velocity designs that limit overall performance. The radio-frequency quadrupole (RFQ) linear accelerator, invented in the Soviet Union and developed at Los Alamos, offers an attractive solution to many of these low-velocity problems. In the RFQ, the use of RF electric fields for radial focusing, combined with special programming of the bunching, allows high-current dc beams to be captured and accelerated with only small beam loss and low radial emittance growth. Advantages of the RFQ linac include a low injection energy (20 to 50 keV for protons) and a final energy high enough so the beam can be further accelerated with high efficiency in a Wideroee or Alvarez linac. These properties have been confirmed at Los Alamos in a highly successful experimental test performed during the past year. The success of this test and the advances in RFQ design procedures have led to the adoption of this linac for a wide range of applications. The beam-dynamics parameters of three RFQ systems are described. These are the final design for the protytype test of the Fusion Materials Irradiation Test (FMIT) accelerator, the final design for the prototype test of the Pion Generator for Medical Irradiations (PIGMI), and an improved low-velocity linac for heavy ion fusion

  16. Economic Evaluation Methodology Review on KAERI's Recent Projects

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin Sam; Kim, Jee Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In technology utilization, economics evaluation is helpful to R and D program managers by giving them economic information needed to improve the usefulness of their projects. Moreover it can help them to communicate to others participants keeping all of them value-oriented minded through the whole development process. In this context, KAERI(Korea Atomic Energy Research Institute) has been performed economic evaluation on recent some projects. So, in this study, it has been made brief reviews on KAERI's economic evaluation methodology to its recent some projects of which evaluation we engage in, especially PEFP(Proton Engineering frontier Project) and SMART(Small Medium advanced ReacTor): Methodology comparison and their pros and cons

  17. Radiation shielding technology development for proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ouk; Lee, Y. O.; Cho, Y. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, M. H.; Sin, M. W.; Park, B. I. [Kyunghee Univ., Seoul (Korea, Republic of)] [and others

    2005-09-01

    This report was presented as an output of 2-year project of the first phase Proton Engineering Frontier Project(PEFP) on 'Radiation Shielding Technology Development for Proton Linear Accelerator' for 20/100 MeV accelerator beam line and facility. It describes a general design concept, provision and update of basic design data, and establishment of computer code system. It also includes results of conceptual and preliminary designs of beam line, beam dump and beam facilities as well as an analysis of air-activation inside the accelerator equipment. This report will guides the detailed shielding design and production of radiation safety analysis report scheduled in the second phase project.

  18. Performance Test of the Microwave Ion Source with the Multi-layer DC Break

    International Nuclear Information System (INIS)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Cho, Yong Sub

    2012-01-01

    A microwave proton source has been developed as a proton injector for the 100-MeV proton linac of the PEFP (Proton Engineering Frontier Project). On microwave ion source, the high voltage for the beam extraction is applied to the plasma chamber, also to the microwave components such as a 2.45GHz magnetron, a 3-stub tuner, waveguides. If microwave components can be installed on ground side, the microwave ion source can be operated and maintained easily. For the purpose, the multi-layer DC break has been developed. A multi-layer insulation has the arrangement of conductors and insulators as shown in the Fig. 1. For the purpose of stable operation as the multi-layer DC break, we checked the radiation of the insulator depending on materials and high voltage test of a fabricated multi-layer insulation. In this report, the details of performance test of the multi-layer DC break will be presented

  19. Thermal simulation for 35 kW powered prototype radio frequency quadrapole

    International Nuclear Information System (INIS)

    Kothari, Ashok; Ahuja, Rajeev; Safvan, C.P.; Kumar, Sugam

    2011-01-01

    As part of the accelerator augmentation program at IUAC, a high current injector (HCI) is being developed to inject highly charged ions into the superconducting LINAC. The HCI consists of a superconducting (High T c ) ECR source operated on a high voltage deck, producing the high currents of highly charged ions. The ion beams produced by the ECR (PKDELIS) source will be injected into a Radio Frequency Quadrupole accelerator (RFQ) and be accelerated to 180 keV/u. RF power of about 100 kW at 48.5 MHz will be fed to the RFQ during it's actual working. Most of the power fed is dissipated in the system as heat. So a continuous removal of this heat is necessary to maintain tuning parameters and normal running of the RFQ. The IUAC RFQ is a four rod cavity structure consisting of individual, demountable vanes on vane posts. All the components are made of copper except the high vacuum chamber. High vacuum chamber is made of stainless steel and electroplated with 100 microns copper on the inner surface. To take out the heat from the system cooling holes for water circulation are provided in the design of the vanes and vane posts, which together form cooling circuits. There are fourteen vanes in three different lengths and these are mounted on five vane posts. Water enters and exits from the vane posts base. From each post it enters into two or three circuits in parallel and exits into the next vane post and the flow combines again. In effect five cooling circuits are further divided into fourteen circuits. Thermal design of the system is analyzed and optimized using a computational fluid dynamics (CFD) software. The CFD software simultaneously solves the equations of mass, momentum and energy with the given structure, material, fluid and applied boundary conditions. An actual 3-dimensional model of the assembly was made using Solidworks modelling software. To save on simulation time, small holes and minor components were suppressed during analysis. The software used for

  20. Development of the low energy linac systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, H. J.; Kim, Y. H.

    2005-08-01

    The project 'Development of the Low Energy Linac System' is aiming to develop the 20 MeV proton linac system. This consists of a 50 keV proton injector, a 3 MeV RFQ, and a 20 MeV DTL. We obtained the first beam signal after the 20 MeV linac. The high power switch installed in the ion source supplies the pulsed beam into the following LEBT. The pulse operation was successfully tested. The main role of the LEBT is to match the beam into the 3 MeV RFQ. The total length of the four-vane type RFQ is about 3.26m. For the field stabilization, we used the resonant coupling scheme and dipole stabilizer rods. An 1 MW klystron supplies the RF power into the RFQ. After tuning, the field deviation of the quadrupole mode is less than 2% of the design value and the dipole fraction is less than 5% of the operating mode. The following accelerating structure is DTL which accelerate 20 mA proton beams up to 20 MeV. It consists of 4 tanks and the length of each tank is less than 5 m. The lattice is FFDD type and the integrated fields of the quadrupole magnets are 1.75 T. The inner walls of the tanks are copper-plated by PR plating method. The thickness is 100m with the roughness of 0.3m. Each drift tube consists of 6 parts and assembled by e-beam welding. The tanks and drift tubes are aligned under the installation limit of 50m by using the laser-tracker. The tuning by the slug tuners and post couplers results in the field uniformity of 2% and field sensitivity of 100%/MHz. In order to detect the beam signal, we installed the Faraday cup after the RFQ or the DTL. For the RFQ, we observed the beam of 12 A under the forward RF power of 450 kW. The beam current after DTL is about 0.5 A when RF power of 150 kW was fed into each tank

  1. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac.

    Science.gov (United States)

    Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  2. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  3. Cea-DSM-DAPNIA-SACM contribution to IFMIF KEP phase June 2000 to December 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    The international fusion materials irradiation facility (IFMIF) requires the generation by a linear accelerator (LINAC) of 250 mA continuous current of deuterons at a nominal energy of 40 MeV. The basic approach is to provide 2 linac modules, each delivering 125 mA to a common target. The accelerators begin with a deuteron ion source and a low-energy beam transport to a radio-frequency quadrupole (RFQ), a buncher and a pre-accelerator up to 5 MeV. The key element technology phase (KEP) was initiated in 2000 with the objective of reducing some key technology risk factors. The IFMIF KEP is carried out at the Cea and it focuses on 5 issues: the ECR source, the 4-vanes RFQ design, the radio-frequency system, the DTL (drift tube linac) design, and high power diagnostics. The present report reviews progress made in the 5 issues quoted above. (A.C.)

  4. RF System description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system, and RF Reference generation subsystem, and a tetrode as a high-power amplifier (HPA) that can deliver up to 300 kW of peak power to the RFQ cavity at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I and Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities

  5. Rf system description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field used for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system that uses a tetrode as a high-power amplifier (HPA) as part of its plant to deliver up to 300 kW of peak power to the RFQ at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I ampersand Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities. This paper describes the identified components and presents measured performance data. The user interface with the systems is described, and cavity field measurements are included

  6. PIGMI program at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Stovall, J.E.

    1980-09-01

    The PIGMI Program has completed 3-1/2 yr of a project to develop the technology for the optimal pion generator for medical irradiations (PIGMI). The major accomplishments under the program include completion of the injector beam measurements; completion of the 440-MHz radio-frequency (rf) power source; assembly and test of the alternating phase focusing accelerator section; development of the rf-quadrupole (RFQ) beam-dynamics program, PARMTEQ; design, fabrication, assembly, and test of the RFQ accelerator; final decision on low-energy configuration for PIGMI; assembly of the drift-tube linac section of the PIGMI Prototype; completion of sample set of permanent magnet quadrupoles; optimization of the disk-and-washer (DAW) cavity geometry; fabrication of model cavities of the DAW; final decision on DAW support geometry; acquisition of additional laboratory space for the DAW power test; partial assembly of the 1320-MHz rf power source for the DAW test; and pion channel design studies

  7. The LPCTrap facility: A novel transparent Paul trap for high-precision experiments

    International Nuclear Information System (INIS)

    Rodriguez, D.; Mery, A.; Ban, G.; Bregeault, J.; Darius, G.; Durand, D.; Flechard, X.; Herbane, M.; Labalme, M.; Lienard, E.; Mauger, F.; Merrer, Y.; Naviliat-Cuncic, O.; Thomas, J.C.; Vandamme, C.

    2006-01-01

    A trap system has been built to perform high-precision β-decay experiments. The system is coupled to the low-energy beam line of the SPIRAL source at GANIL. The continuous ion beam from SPIRAL with energies between 10 and 20keV is slowed down by means of a buffer-gas-filled RFQ trap and ejected thereafter as short ion bunches into a novel transparent Paul trap. Two pulsed cavities located downstream from the RFQ reduce the energy of the ion bunch down to about a hundred eV for an efficient capture in the Paul trap. We describe here the complete system along with the first results obtained with stable He+4, Cl+35 and Ar+36,40 ions from the SPIRAL ECR source. An overall efficiency of 8.7(8)x10 -4 is achieved for 4 He + ions under specific conditions

  8. Tools for the design of high-current linacs

    International Nuclear Information System (INIS)

    Lagniel, J.M.

    1994-01-01

    With the programs usually employed to design linear accelerators, beam dynamics parameters are calculated from data describing the accelerator structure. The desired phase advances (with and without space charge) in the transverse and longitudinal planes are reached after several iterations on the structure parameters. Codes which use the opposite procedure have been written. The phase advances are first chosen thanks to a diagram which gives the tune depressions versus the phase advances without space charge. The structure parameters are then calculated. As shown, it can be applied to radiofrequency quadrupoles (RFQ), DTL and high-energy structures. Up to now, this method has been mainly used to design RFQ linear accelerators. 3 figs., 10 refs

  9. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  10. Vane coupling rings: a simple technique for stabilizing a four-vane radiofrequency quadrupole structure

    International Nuclear Information System (INIS)

    Howard, D.; Lancaster, H.

    1983-01-01

    The benefits of stabilized accelerating structures, with regard to the manufacture and operation, have been well documented. The four-vane radiofrequency quadrupoles (RFQ) presently being designed and constructed in many laboratories are not stabilized because of the weak electromagnetic coupling between the quadrant resonators. This paper presents a simple technique developed at the Lawrence Berkeley Laboratory using vane coupling rings (VCR's) which azimuthally stabilize the RFQ structure and greatly enhance its use as a practical accelerator. In particular, the VCR's: Completely eliminate the dipole modes in the frequency range of interest; Provide adequate quadrant balance with an initial precision mechanical alignment of the vanes; Enhance axial balance and simplify end tuners. Experimental verification tests on a scale model will be discussed

  11. Vane coupling rings: a simple technique for stabilizing a four-vane radiofrequency quadrupole structure

    International Nuclear Information System (INIS)

    Howard, D.; Lancaster, H.

    1982-11-01

    The benefits of stabilized accelerating structures, with regard to the manufacture and operation, have been well documented. The four-vane radiofrequency quadrupoles (RFQ) presently being designed and constructed in many laboratories are not stabilized because of the weak electromagnetic coupling between the quadrant resonators. This paper presents a simple technique developed at the Lawrence Berkeley Laboratory using vane coupling rings (VCR's) which azimuthally stabilize the RFQ structure and greatly enhance its use as a practical accelerator. In particular, the VCR's: completely eliminate the dipole modes in the frequency range of interest; provide adequate quadrant balance with an initial precision mechanical alignment of the vanes; and enhance axial balance and simplify end tuners. Experimental verification tests on a scale model are discussed

  12. A compact rf driven H- ion source for linac injection

    International Nuclear Information System (INIS)

    Rymer, J.P.; Engeman, G.A.; Hamm, R.W.; Potter, J.M.

    1991-01-01

    A compact rf driven H - ion source has been developed for use as an injector for the AccSys radio frequency quadrupole (RFQ) linacs. A multicusp magnetic bucket geometry developed at Lawrence Berkeley Laboratory confines the plasma created by an antenna driven by 35 kW (peak) of pulsed rf power at 1.8 MHz. A three electrode system is used to extract and accelerate the H - beam, which is then focused into the RFQ by an einzel lens. Permanent magnets in the extraction region sweep electrons onto the second electrode at energies up to half of the full acceleration voltage. A fast pulsed valve allows the hydrogen gas supply to be pulsed, thus minimizing the average gas flow rate into the system. The design features and performance data from the prototype are discussed

  13. Overview and status of RF systems for the SSC Linac

    International Nuclear Information System (INIS)

    Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

    1993-05-01

    The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-μs, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented

  14. Progress with the 2Q-LEBT Facility for the RIA Project

    CERN Document Server

    Vinogradov, Nikolai; Kern, Michael R L; Ostroumov, Peter; Pardo, Richard C; Scott, Robert

    2005-01-01

    The Rare Isotope Accelerator (RIA) facility utilizes the concept of simultaneous acceleration of two charge states from the ion source. We are building a prototype two charge-state (2Q) injector of the RIA Driver Linac, which includes an ECR ion source originally built by Berkeley Ion Equipment Corporation, a LEBT and one-segment of the prototype RFQ. The reassembly and commissioning of the ECR source has been completed. During the commissioning process we modified and replaced several major components of the BIE-100 to increase the source performance. A new diagnostic station has been designed and built for accurate measurements of the output beam emittance. The paper will discuss detailed beam dynamics studies together with extensive emittance measurements of various ion beams. The status of the design and fabrication of 100 kV high voltage platform, achromatic bending system, multi-harmonic buncher, and a full power 57.5 MHz RFQ segment will be presented.

  15. Studies of Lear antiproton deceleration: radiofrequency quadripole or synchrotron

    International Nuclear Information System (INIS)

    Iazzourene, F.

    1987-06-01

    The aim of this work is to study a radiofrequency quadrupole (RFQ) and a synchrotron as decelerating systems for antiprotons extracted from the Low Energy Antiproton Ring (LEAR) at CERN. Antiprotons at energies lower than those available from LEAR are need by some experiments, eg. the measurement of the mass difference between protons and antiprotons with 10 -9 accuracy, using a Smith and Princeton spectrometer, and the measurement of gravitation on the antiprotons, using a trap. Depending on the LEAR performances, one can conclude that the RFQ is suitable for the experiment on the gravitation, and the synchrotron, owing to its electron cooling system, is a better solution for the experiment on the mass difference measurement, because of the very small acceptance of the spectrometer [fr

  16. Theoretical and experimental investigation of the electromagnetic adjustment of a quadrupolar radio-frequency cavity accelerating an intense ion beam

    International Nuclear Information System (INIS)

    Simoens, Francois

    2002-01-01

    The first part of this research thesis describes radio-frequency quadrupolar (RFQ) cavities in terms of electrostatic and electro-dynamic properties. It describes the construction of a RFQ four-wire model which leads to a differential equation describing the cavity electromagnetic behaviour. The operator spectral theory allows the eigenvalue problem to be solved. An experimental methodology applied to this cavity is presented, and experimental studies are reported with a good correlation between the model resonance modes and measurements performed on the mock-up. The second part reports the development of a mathematical formulation based on the perturbation of line parameters of the previously developed model. This allows the assessment of mechanical defects and of tuning piston control

  17. Popular heavy particle beam cancer therapeutic system (3). Development of high efficiency compact incident system-2. Great success of beam test of new APF-IH type DTL

    International Nuclear Information System (INIS)

    Yamamoto, Kazuo; Iwata, Yoshiyuki

    2006-01-01

    High efficiency compact incident system consists of an electron cyclotron resonance (ECR) ion source, a radio frequency quadrupole (RFQ) linear accelerator and an interdigital H-mode (IH) drift tube linear accelerator (DTL). IH type DTL and alternating phase focusing (APF) method is explained. Its special features, production, and beam test are reported. The electric field generation method, outline of the APF method, drift tube, IH type DTL, distribution of electric field and voltage, set up of beam test, ECR ion source and incident line, the inside structure of the RFQ type linear accelerator and the APF-IH type DTL, matching Q lens section, beam, emittance, measurement results of momentum dispersion are illustrated. (S.Y.)

  18. Design and results of the radio frequency quadrupole RF system at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Grippe, J.; Marsden, E.; Marrufo, O.; Regan, A.; Rees, D.; Ziomek, C.

    1993-05-01

    The Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) entered into a joint venture to design and develop a 600 kW amplifier and its low-level controls for use in the Radio-Frequency Quadrupole (RFQ) accelerating cavity of the SSC. The design and development work has been completed. After being tested separately, the high power amplifier and low level RF control system were integrated and tested on a test cavity. Results of that tests are given. Tests were then carried out on the actual RFQ with and without the presence of the accelerated beam. Results of these tests are also given, along with the phase and amplitude information

  19. Commissioning of the TRIUMF ISAC RF system

    International Nuclear Information System (INIS)

    Fong, K.; Fang, S.; Laverty, M.; Lu, J.; Poirier, R.L.

    2001-09-01

    The ISAC RF system at present consists of a Radio Frequency Quadrupole accelerator, five Drift Tube Linear Accelerators, six bunchers, two choppers and a bunch rotator. The RFQ operates at the fundamental frequency of 35.36 MHz, while the DTLs operate at the third harmonic frequency of 106.08 MHz. The operating power ranges from 45 W to 120 W for the choppers, 1 kW to 20 kW for the DTLs and bunchers, and 80 kW for the RFQ. These cavities have been commissioned to operate synchronously with both closed-loop amplitude and phase regulation, as well as automatic tuning of the cavities. This paper gives a brief summary of the commissioning experience. (author)

  20. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    Science.gov (United States)

    Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  1. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q., E-mail: wuq@impcas.ac.cn; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-02-15

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  2. Design Study for 10MHz Beam Frequency of Post-Accelerated RIBs at HIE-ISOLDE

    CERN Document Server

    Fraser, M A; Magdau, I B

    2013-01-01

    An increased bunch spacing of approximately 100 ns is requested by several research groups targeting experimental physics at HIE-ISOLDE. A design study testing the feasibility of retrofitting the existing 101.28MHz REX (Radioactive ion beam EXperiment) RFQ [1] with a subharmonic external pre-buncher at the ISOLDE radioactive nuclear beam facility has been carried out as a means of decreasing the beam frequency by a factor of 10. The proposed scheme for the 10MHz bunch repetition frequency is presented and its performance assessed with beam dynamics simulations. The opportunity to reduce the longitudinal emittance formed in the RFQ is discussed along with the options for chopping the satellite bunches populated in the bunching process.

  3. Intrinsic and extrinsic motivation for smoking cessation.

    Science.gov (United States)

    Curry, S; Wagner, E H; Grothaus, L C

    1990-06-01

    An intrinsic-extrinsic model of motivation for smoking cessation was evaluated with 2 samples (ns = 1.217 and 151) of smokers who requested self-help materials for smoking cessation. Exploratory and confirmatory principal components analysis on a 36-item Reasons for Quitting (RFQ) scale supported the intrinsic-extrinsic motivation distinction. A 4-factor model, with 2 intrinsic dimensions (concerns about health and desire for self-control) and 2 extrinsic dimensions (immediate reinforcement and social influence), was defined by 20 of the 36 RFQ items. The 20-item measure demonstrated moderate to high levels of internal consistency and convergent and discriminant validity. Logistic regression analyses indicated that smokers with higher levels of intrinsic relative to extrinsic motivation were more likely to achieve abstinence from smoking.

  4. Design studies for a high-resolution, transportable neutron radiography/radioscopy system

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Micklich, B.J.; McMichael, G.E.

    1996-01-01

    A preliminary design has been developed for a high-resolution, transportable neutron radiology system (TNRS) concept. The primary system requirement is taken to be a thermal neutron flux of 10[sup 6] n/(cm[sup 2]-sec) with a L/D ratio of 100. The approach is to use an accelerator-driven neutron source, with a radiofrequency quadrupole (RFQ) as the primary accelerator component. Initial concepts for all of the major components of the system have been developed,and selected key parts have been examined further. An overview of the system design is presented, together with brief summaries of the concepts for the ion source, low energy beam transport (LEBT), RFQ, high energy beam transport (HEBT), target, moderator, collimator, image collection, power, cooling, vacuum, structure, robotics, control system, data analysis, transport vehicle, and site support. The use of trade studies for optimizing the TNRS concept are also described

  5. First muon acceleration using a radio-frequency accelerator

    Directory of Open Access Journals (Sweden)

    S. Bae

    2018-05-01

    Full Text Available Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu^{-}, which are bound states of positive muons (μ^{+} and two electrons, are generated from μ^{+}’s through the electron capture process in an aluminum degrader. The generated Mu^{-}’s are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ. In the RFQ, the Mu^{-}’s are accelerated to 89 keV. The accelerated Mu^{-}’s are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  6. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  7. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    International Nuclear Information System (INIS)

    Tsai, C.C.; Stirling, W.L.; Akerman, M.A.; Becraft, W.R.; Dagenhart, W.K.; Haselton, H.H.; Ryan, P.M.; Schechter, D.E.; Whealton, J.H.

    1988-03-01

    A dc negative hydrogen and/or deuterium ion source is needed to prouce high-power, high-energy neutral beams for alpha diagnostics and current drive applicatiosn in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radio-frequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions effeciently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summariezed. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs

  8. A development and integration analysis of commercial and in-house control subsystems

    International Nuclear Information System (INIS)

    Moore, D.M.; Dalesio, L.R.

    1998-01-01

    The acquisition and integration of commercial automation and control subsystems in physics research is becoming more common. It is presumed these systems present lower risk and less cost. This paper studies four subsystems used in the Accelerator Production of Tritium (APT) Low Energy Demonstration Accelerator (LEDA) at the Los Alamos National Laboratory (LANL). The radio frequency quadrupole (RFQ) resonance-control cooling subsystem (RCCS), the high-power RF subsystem and the RFQ vacuum subsystem were outsourced; the low-level RF (LLRF) subsystem was developed in-house. Based on the authors experience a careful evaluation of the costs and risks in acquisition, implementation, integration, and maintenance associated with these approaches is given

  9. Beam Instrumentation of the PXIE LEBT Beamline

    Energy Technology Data Exchange (ETDEWEB)

    D' Arcy, R. [Fermilab; Hanna, B. [Fermilab; Prost, L. [Fermilab; Scarpine, v. [Fermilab; Shemyakin, A. [Fermilab

    2015-06-01

    The PXIE accelerator [1] is the front-end test stand of the proposed Proton Improvement Plan (PIP-II) [2] initiative: a CW-compatible pulsed H- superconducting RF linac upgrade to Fermilab’s injection system. The PXIE Ion Source and Low-Energy Beam Transport (LEBT) section are designed to create and transfer a 1-10 mA $H^{-}$ beam, in either pulsed (0.001–16 ms) or DC mode, from the ion source through to the injection point of the RFQ. This paper discusses the range of diagnostic tools – Allison-type Emittance Scanner, Faraday Cup, Toroid, DCCT, electrically isolated diaphragms – involved in the commissioning of the beam line and preparation of the beam for injection into the RFQ.

  10. Mechanical considerations in cw linacs

    International Nuclear Information System (INIS)

    King, J.D.

    1985-01-01

    An 80-MHz radio-frequency quadrupole (RFQ) linac has been designed, fabricated and operated at 100% duty factor (cw) for the Fusion Materials Irradiation Test (FMIT) project at Los Alamos. This paper describes the design features, fabrication techniques, and operational problems of the device. The RFQ is an assembly of heavy steel, copper-plated weldments. It measures about 15 ft (4.5 m) long by 5 ft (1.5 m) in diameter and weighs over 12 t. Major components are two pair of diametrically orthogonal vanes mounted in a core cylinder. The core is assembled into a manifold cylinder that couples rf power into the vane quadrants. The design features discussed include assembly of hollow wall, flood-cooled components; high-conductivity rf seals; removable and adjustable vanes; and tuning devices. Fabrication challenges such as close-tolerance weldments, vane-tip-contour machining and large-component plating requirements are covered

  11. Installation Progress at the PIP-II Injector Test at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C. [Fermilab; Alvarez, M. [Fermilab; Andrews, R. [Fermilab; Chen, A. [Fermilab; Czajkowski, J. [Fermilab; Derwent, P. [Fermilab; Edelen, J. [Fermilab; Hanna, B. [Fermilab; Hartsell, B. [Fermilab; Kendziora, K. [Fermilab; Mitchell, D. [Fermilab; Prost, L. [Fermilab; Scarpine, V. [Fermilab; Shemyakin, A. [Fermilab; Steimel, J. [Fermilab; Zuchnik, T. [Fermilab; Edelen, A. [Colorado State U.

    2016-10-04

    A CW-compatible, pulsed H- superconducting linac “PIP-II” is being planned to upgrade Fermilab's injection complex. To validate the front-end concept, a test acceler-ator (The PIP-II Injector Test, formerly known as "PXIE") is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV Radio Frequency Quadrupole (RFQ) capable of operation in Con-tinuous Wave (CW) mode, and a 10 m-long Medium En-ergy Beam Transport (MEBT). The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.

  12. Recent Performance of and Plasma Outage Studies with the SNS H- Source

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, Martin P [ORNL; Han, Baoxi [ORNL; Murray Jr, S N [ORNL; Pennisi, Terry R [ORNL; Piller, Chip [ORNL; Santana, Manuel [ORNL; Welton, Robert F [ORNL

    2016-01-01

    SNS ramps to higher power levels that can be sustained with high availability. The goal is 1.4 MW despite a compromised RFQ, which requires higher RF power than design levels to approach the nominal beam transmission. Unfortunately at higher power the RFQ often loses its thermal stability, a problem apparently enhanced by beam losses and high influxes of hydrogen. Delivering as much H- beam as possible with the least amount of hydrogen led to plasma outages. The root cause is the dense 1-ms long ~55-kW 2-MHz plasma pulses reflecting ~90% of the continuous ~300W, 13-MHz power, which was mitigated with a 4-ms filter for the reflected power signal and an outage resistant, slightly-detuned 13-MHz match. Lowering the H2 also increased the H- beam current to ~55 mA, and increased the transmission by ~7%.

  13. Status of the Warm Front End of PIP-II Injector Test

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, Alexander [Fermilab; Alvarez, Matthew [Fermilab; Andrews, Richard [Fermilab; Baffes, Curtis [Fermilab; Carneiro, Jean-Paul [Fermilab; Chen, Alex [Fermilab; Derwent, Paul [Fermilab; Edelen, Jonathan [Fermilab; Frolov, Daniil [Fermilab; Hanna, Bruce [Fermilab; Prost, Lionel [Fermilab; Saewert, Gregory [Fermilab; Saini, Arun [Fermilab; Scarpine, Victor [Fermilab; Sista, V. Lalitha [Fermilab; Steimel, Jim [Fermilab; Sun, Ding [Fermilab; Warner, Arden [Fermilab

    2017-05-01

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H⁻ SRF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10 mA DC, 30 keV H⁻ ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the warm front end.

  14. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    International Nuclear Information System (INIS)

    Tsai, C.C.; Stirling, W.L.; Akerman, M.A.; Becraft, W.R.; Dagenhart, W.K.; Haselton, H.H.; Ryan, P.M.; Schechter, D.E.; Whealton, J.H.

    1987-01-01

    A dc negative hydrogen and/or deuterium ion source is needed to produce high-power, high-energy neutral beams for alpha diagnostics and current drive applications in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radiofrequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions efficiently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summarized. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs

  15. Simulation 3D electromagnetique et thermomecanique d'une cavite RF

    CERN Document Server

    Launay, F

    2003-01-01

    Une etude thermomecanique 3D de l'extremite de lame a l'entree du RFQ d'IPHI a ete menee avec le code I-DEAS. Le but est de comparer les temperatures atteintes, les contraintes et les deformations calculees a partir des densites de puissance RF deposee sur la lame obtenues a partir de deux codes de calcul electromagnetique differents: SOPRANO et MAFIA

  16. Three-dimensional space charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1981-01-01

    A method is presented for calculating space-charge forces suitable for use in a particle tracing code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface by using a weighted residual method. Using a discrete particle distribution as our source input, examples are shown of off-axis, bunched beams of noncircular crosssection in radio-frequency quadrupole (RFQ) and drift-tube linac geometries

  17. Linac 1 in the process of being pulled back

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1985-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions and, from 1981 to 1996, of protons and negative hydrogen ions for LEAR. In 1984, its Cockcroft-Walton preinjector was replaced by a much smaller RFQ, which allowed it to be moved to a more convenient location.

  18. Progress with the SNS front-end systems

    International Nuclear Information System (INIS)

    Keller, R.; Abraham, W.; Ayers, J.J.; Cheng, D.W.; Cull, P.; DiGennaro, R.; Doolittle, L.; Gough, R.A.; Greer, J.B.; Hoff, M.D.; Leung, K.N.; Lewis, S.; Lionberger, C.; MacGill, R.; Minamihara, Y.; Monroy, M.; Oshatz, D.; Pruyn, J.; Ratti, A.; Reijonen, J.; Schenkel, T.; Staples, J.W.; Syversrud, D.; Thomae, R.; Virostek, S.; Yourd, R.

    2001-01-01

    The Front-End Systems (FES) of the Spallation Neutron Source (SNS) project have been described in detail elsewhere [1]. They comprise an rf-driven H - ion source, electrostatic LEBT, four-vane RFQ, and an elaborate MEBT. These systems are planned to be delivered to the SNS facility in Oak Ridge in June 2002. This paper discusses the latest design features, the status of development work, component fabrication and procurements, and experimental results with the first commissioned beamline elements

  19. Proceedings of the CAP meetings, November 1990--February 1991

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    This report contains viewgraph material on the following topics: on beam emittance -- application to ATF; a review of Brookhaven Accelerator Test Facility (AFT); on development of a superconducting RFQ at Stony Brook University; development of new methods for charged particle acceleration at Yerevan Physics Institute; theory of high gain free electron laser; on ultra violet free electron laser at BNL; high luminosity at SSC; and nonlinear dynamics studies of accelerators

  20. Performance optimization of a cusp-field ion source and high-perveance extractor

    International Nuclear Information System (INIS)

    Meyer, E.A.; Amstrong, D.D.; Schneider, D.

    1981-01-01

    The injector for the Fusion Materials Irradiation Test (FMIT) Facility must deliver a 110-mA dc beam of deuterons or H 2 + ions to the radio-frequency quadrupole (RFQ) accelerator at 75-keV energy. Operational parameters of a hydrogen-fed cusp-field ion source and a high-perveance extractor have been evaluated on a test stand and on the recently completed first stage of the prototype injector

  1. Improvement of frequency variability of the folded-coaxial radio-frequency quadrupole linac by installing a detachable stem in its resonator

    International Nuclear Information System (INIS)

    Kamigaito, Osamu; Goto, Akira; Miyazawa, Yoshitoshi; Chiba, Toshiya; Hemmi, Masatake; Kase, Masayuki; Kohara, Shigeo; Yano, Yasushige

    1995-01-01

    The beneficial effect of adding a detachable stem to the folded-coaxial resonator of the frequency-variable radio-frequency quadrupole (RFQ) linac previously reported was examined experimentally using a half-scale model as well as by numerical analyses. As a result, this simple modification was found to extend variable frequencies to a high region without increase of rf power consumption. (author)

  2. Development of 2.45GHz compact ECR ion sources with permanent magnets

    International Nuclear Information System (INIS)

    Tojyo, E.; Ohshiro, Y.; Oyaizu, M.; Shirakabe, Y.

    1993-05-01

    Two kinds of new compact ECR ion sources have been developed by use of permanent magnets only, for the purpose of acceleration tests of the 25.5MHz INS split coaxial RFQ linac and the 50MHz one. Confined magnetic fields of sources are constructed by permanent magnets only. In this paper design parameters, structures, magnetic field distributions and extracted beam properties of these sources are described briefly. (author)

  3. Report of the design study on the proton linac of the Japanese Hadron Project, 2

    International Nuclear Information System (INIS)

    1990-06-01

    The design study on the proton linac of the Japanese Hadron Project began in May 1987, in the collaboration of Institute for Nuclear Study, University of Tokyo and National Laboratory for High Energy Physics. This is the second report of the design study on the 1-GeV proton linac, which includes the developments of the ion source, RFQ, DTL, CCL and RF sources. (author)

  4. Feasibility study concerning a possible layout for a lead-ion injector for the CERN accelerator complex

    International Nuclear Information System (INIS)

    Haseroth, H.; Lombardi, A.; Weiss, M.

    1987-01-01

    A possible machine layout for acceleration of lead ions is presented, based on the experience gained with the successful - but painful - acceleration of oxygen ions in the CERN Linac. The scenario consists of an ECR source, a RFQ and an Alvarez Linac. One has tried to optimize the parameters within the restrictions of the space available, keeping in mind the requirements and desiderata of the subsequent machines

  5. Proceedings of the CAP meetings, November 1990--February 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. (ed.)

    1991-01-01

    This report contains viewgraph material on the following topics: on beam emittance -- application to ATF; a review of Brookhaven Accelerator Test Facility (AFT); on development of a superconducting RFQ at Stony Brook University; development of new methods for charged particle acceleration at Yerevan Physics Institute; theory of high gain free electron laser; on ultra violet free electron laser at BNL; high luminosity at SSC; and nonlinear dynamics studies of accelerators.

  6. Construction of the BNL EBIS preinjector

    Energy Technology Data Exchange (ETDEWEB)

    Alessi,J.; Barton, D.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lessard, E.; Lockey, R.; LoDestro, V.; Mapes, M.; McCafferty, D.; McNerney, A.; Okamura, M.; Pendzick, A.; Phillips, D.; Pikin, A. I.; Raparia, D.; Ritter, J.; Scaduto, J.; Snydstrup, L.; Wilinski, M.; Zaltsman, A. et al.

    2009-05-04

    A new heavy ion preinjector, consisting of an Electron Beam Ion Source (EBIS), an RFQ, and IH linac, is under construction at Brookhaven National Laboratory. This preinjector win provide ions of any species at an energy of 2 MeV/u, resulting in increased capabilities for the Relativistic Heavy Ion Collider, and the NASA Space Radiation Laboratory programs. The RF'Q has been commissioned with beam, and most of the remaining elements are either installed or being assembled.

  7. The R/D of high power proton accelerator technology in China

    Science.gov (United States)

    Xialing, Guan

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  8. Commissioning of the ECR ion source of the high intensity proton injector of the Facility for Antiproton and Ion Research (FAIR)

    Science.gov (United States)

    Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.

    2018-05-01

    The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.

  9. Basic configuration of the mean energy line (LME) V2.0; Configuration de base de la ligne moyenne energie (LME) V2.0

    Energy Technology Data Exchange (ETDEWEB)

    Uriot, D. [CEA Saclay, 91 - Gif sur Yvette (France); Bertrand, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Biarrotte, J.L. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    2007-06-15

    The main purpose of the mean energy line (LME) is to receive the beam accelerated by the RFQ (deuterons, ions with q/A = 1/3, protons) and dispatch it to the linac in optimized conditions. LME is about 8 m long and the vacuum required is 10{sup -6} Pa and is composed of 10 identical quadrupoles. This document describes the state of the design of the LME for the injection system of the linac within the SPIRAL-2 project.

  10. Radio-frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  11. Radio frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  12. Physics design of APT linac with normal conducting rf cavities

    International Nuclear Information System (INIS)

    Nath, S.; Billen, J.H.; Stovall, J.E.; Takeda, Harunori; Young, L.M.

    1996-01-01

    The accelerator based production of tritium calls for a high-power, cw proton linac. Previous designs for such a linac use a radiofrequency quadrupole (RFQ), followed by a drift-tube linac (DTL) to an intermediate energy and a coupled-cavity linc (CCL) to the final energy. The Los Alamos design uses a high-energy (6.7 MeV) RFQ followed by the newly developed coupled-cavity drift-tube linac (CCDTL) and a CCL. This design accommodates external electromagnetic quadrupole lenses which provide a strong uniform focusing lattice from the end of the RFQ to the end of the CCL. The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells symmetric in both the CCDTL and CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. At higher energies, there are some advantages of using superconducting rf cavities. Currently, such schemes are under vigorous study. This paper describes the linac design based on normal conducting cavities and presents simulation results

  13. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    International Nuclear Information System (INIS)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-01-01

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac

  14. Status report on FMIT

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1984-04-01

    The Fusion Materials Irradiation Test (FMIT) Facility will use a 35-MeV deuteron beam and molten lithium target to generate 14-MeV neutrons for materials damage studies. Operation of the 2-MeV accelerator began in May 1983 and lasted until November. RFQ operation using pulsed rf power demonstrated the basic integrity of the design by producing a 2-MeV beam with acceptable transmission efficiency. In the evolution towards cw operation, a few areas with inadequate thermal characteristics were identified. During the 3-month period following November, the RFQ was disassembled to replace an overheated O-ring that had led to a loss of vacuum integrity in November and to make minor improvements that will enhance the thermal stability of the RFQ. Improved methods for tuning both the manifold and core tanks were developed. Resumption of testing began in March 1984. The design of the components required to extend the accelertor to 5-MeV is complete. The design of the linac tanks for the 35-MeV accelerator is complete. Procurement of these tanks and the design and procurement of the remaining 35-MeV components will be initiated as soon as funding becomes available

  15. RF source for proton linear accelerator in Kyoto University

    International Nuclear Information System (INIS)

    Iwashita, Yoshihisa

    1987-01-01

    Construction of a 433 MHz, 7 MeV proton linear accelerator is currently underway in Kyoto University under a three-year plan starting in 1986. The ion source, power source for it, RFQ main unit, WR2100 waveguide and a set of klystrons for RFQ were installed last year, or the first year of the plan, and the power source for the klystrons for RFQ, a set of klystrons for STL, DTL main unit, etc., are planned to be installed this year. Operation has not started yet because of the absence of the power source for the klystrons. Thus this report is focused on the considerations made in selecting the acceleration frequency of 433 MHz, specifications of the klystrons and the structure of the power sources for them. Based on considerations of the efficiency and cost of the accelerating tubes and RF sources to be used, the acceleration frequencies of 433.33 MHz and 1,300 MHz were adopted. The klystron selected is Litton L5773, which has a peak power output of 1.25 Mw, average power output of 75 kW, maximum pulse width of 2,000 μS and duty of 6 percent, and it consists of four cavities. The structure and characteristics of a klystron are also described. (Nogami, K.)

  16. Results of the SNS front end commissioning at Berkeley Lab

    International Nuclear Information System (INIS)

    Ratti, A.; Ayers, J.J.; Doolittle, L.; Greer, J.B.; Keller, R.; Lewis, S.; Lionberger, C.; Monroy, M.; Pruyn, J.; Staples, J.W.; Syversrude, D.; Thomae, R.; Virostek, S.; Aleksandrov, A.; Shea, T.; SNS Accelerator Physics Group; SNS Beam Diagnostics Collaboration

    2002-01-01

    The Front-End Systems (FES) for the Spallation Neutron Source (SNS) project comprise an rf-driven H - ion source, an electrostatic 2-lens LEBT, a 2.5 MeV RFQ, followed by a 14-quadrupole, 4-rebuncher MEBT including traveling-wave fast choppers. The nominal 2.5 MeV H - beam has a current of 38 mA at a repetition rate of 60 Hz and 1 ms pulse length, for a macro duty-factor of 6%, and is chopped at a rate of approximately 1 MHz with a mini duty-factor of 68%. The normalized rms beam emittance at the MEBT exit, matching the first tank of a 402.5 MHz Alvarez linac, is measured to be approximately 0.3 π mm mrad. Diagnostic elements include wire scanners, BPMs, fast current monitors, a slit-harp emittance device and RFQ field monitoring probes. The results of the beam commissioning and the operation of the RFQ and diagnostic instrumentation are reported. The entire FES was shut down at LBNL at the end of May 2002 and will be recommissioned at ORNL prior to installation of the drift-tube linac

  17. First H- beam accelerated at Linac4: 3MeV done, 157 MeV to go!

    CERN Multimedia

    Linac4 Project Team

    2013-01-01

    On 14 November, the first H- (one proton surrounded by two electrons) beam was accelerated to the energy of 3 MeV in the Linac4 - the new linear accelerator that will replace Linac2 as low-energy injector in the LHC accelerator chain.      A view of the Linac4 taken during the recent tests (top image) and the current measured by the instruments at the end of the acceleration line on 14 November (bottom image). Images: Linac4 collaboration. Using the recently installed Radio Frequency Quadrupole (RFQ) accelerator, 13 mA of current were accelerated to the energy of 3 MeV. After the successful commissioning of the Linac4 RFQ at the 3 MeV test stand completed during the first months of 2013, the whole equipment (composed of the RFQ itself, the following Medium Energy Beam Transport line and its diagnostic line) were moved to the Linac4 tunnel during summer and installed in their final position. In the meantime, a new ion source was assembled, installed and successfu...

  18. The ISAC RIB Facility and physics programme at TRIUMF

    International Nuclear Information System (INIS)

    Schmor, P.W.

    2008-01-01

    ISAC (Isotope Separator and Accelerator) at TRIUMF uses the ISOL (On Line Isotope Separator) technique with up to 100 μA of 500 MeV protons from the TRIUMF cyclotron driver to produce exotic isotopes in a thick target. The exotic nuclei are ionized, formed into beams, mass separated and transported at energies up to 60 keY to various experimental stations. Singly charged isotopes with nuclear masses below 31 can be further accelerated in ISAC I up to 1.8 MeV/u for Nuclear Astrophysics studies by a series of linear accelerators consisting of a RFQ (Radio Frequency Quadrupole) and DTL (Drift Tube Linace). Super conducting RF cavities are presently being added to the Iinac chain to permit a further increase in the maximum energy of the exotic beams to 6.5 MeV/u and an ECR-based charge state booster is being added in front of the RFQ to increase the available mass range of the accelerated isotopes from 30 to about added in front of the RFQ to increase the available mass range of the accelerated isotopes from 30 to about 150. This talk will describe the status of the facility and its experimental programme. (author)

  19. Progress update on the development of the 3He linac for PET isotope production

    International Nuclear Information System (INIS)

    Young, P.; Sun, D.; Larson, D.; Pasquinelli, R.; Anderson, K.; Bieniosek, F.; Schmidt, C.W.; Popovic, M.; McCrory, E.; Webber, R.; Link, J.; Krohn, K.; Bida, J.

    1996-01-01

    In 1995, Fermilab and SAIC formed a collaboration with partners from the University of Washington (UW) and the Biomedical Research Foundation of Northwest Louisiana (BRF) to explore an innovative approach to the production of radioisotopes. The accelerator system that is being developed accelerates 3 He to 10.5 MeV and then delivers this beam to the target to produce the short lived radioisotopes of interest to the PET community ( 18 F, 15 0, 13 N, 11 C). Research is being conducted to investigate the contribution that this promising approach can make to clinical and research PET. The accelerator system has several very interesting aspects. These innovations include multiple RFQ accelerators configured in series, a gas stripper jet to doubly charge the low energy (1 MeV) 3 He beam, and an isochronous matching section to manipulate the transverse and maintain the longitudinal profile of the beam (without the use of an RF buncher) in the charge doubler transition section between RFQ's. This paper updates the progress of the PET 3 He RFQ accelerator, the current status of the design, and some of the interesting ongoing research. (author)

  20. Progress update on the development of the 3He linac for PET isotope production

    International Nuclear Information System (INIS)

    1996-09-01

    In 1995, Fermilab and SAIC formed a collaboration with partners from the University of Washington (UW) and the Biomedical Research Foundation of Northwest Louisiana (BRF) to explore an innovative approach to the production radioisotopes. The accelerator system that is being developed accelerates 3 He to 10.5 MeV and then delivers this beam to the target to produce the short lived radioisotopes of interest to the PET community ( 18 F, 15 0, 13 N, 11 C). Research is being conducted to investigate the contribution that this promising approach can make to clinical and research PET. The accelerator system has several very interesting aspects. These innovations include multiple RFQ accelerators configured in series, a gas stripper jet to doubly charge the low energy (I MeV) 3 He beam, and an isochronous matching section to manipulate the transverse and maintain the longitudinal profile of the beam (without the use of an RF buncher) in the charge doubler transition section between RFQ'S. This paper updates the progress of the PET 3 He RFQ accelerator, the current status of the design, and some of the interesting ongoing research

  1. Low-energy beam transport using space-charge lenses

    International Nuclear Information System (INIS)

    Meusel, O.; Bechtold, A.; Pozimski, J.; Ratzinger, U.; Schempp, A.; Klein, H.

    2005-01-01

    Space-charge lenses (SCL) of the Gabor type provide strong cylinder symmetric focusing for low-energy ion beams using a confined nonneutral plasma. They need modest magnetic and electrostatic field strength and provide a short installation length when compared to conventional LEBT-lenses like quadrupoles and magnetic solenoids. The density distribution of the enclosed space charge within the Gabor lens is given by the confinement in transverse and longitudinal directions. In the case of a positive ion beam, the space charge of the confined electron cloud may cause an overcompensation of the ion beam space-charge force and consequently focuses the beam. To investigate the capabilities of an SCL double-lens system for ion beam into an RFQ, a test injector was installed at IAP and put into operation successfully. Furthermore, to study the focusing capabilities of this lens at beam energies up to 500 keV, a high-field Gabor lens was built and installed downstream of the RFQ. Experimental results of the beam injection into the RFQ are presented as well as those of these first bunched beam-focusing tests with the 110 A keV He + beam

  2. Measurements of transient electromagnetic propagation through concrete and sand

    Energy Technology Data Exchange (ETDEWEB)

    Aurand, J.F.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). If a beam-chopping system could be developed for the Los Alamos Meson Physics Facility low-energy beam line, there would be potential to operate the Los Alamos Neutron Scattering Center (LANSCE) at much higher power and duty factor and enable such operation with a radio-frequency quadrapole (RFQ) injector. This would greatly extend the capability of the facility. To accommodate LANSCE operation in the new configuration, a chopped beam must be created in the low-energy transport line before the RFQ. Chopping in this region has never been demonstrated and constitutes the major uncertainty of the proposal and determines the critical path for project completion. This study produces a better understanding of the physics involved in chopping an H-beam in a dilute plasma background, and in transporting a chopped H-beam through a neutralized or partially neutralized plasma channel, as well as an estimate for the optimum neutralization strategy for the beam chopping and transport between the ion source and the RFQ.

  3. Lattice design of medium energy beam transport line for n spallation neutron source

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2015-01-01

    A 1 GeV H - injector linac is being designed at RRCAT for the proposed Indian Spallation Neutron Source (ISNS). The front-end of the injector linac will consist of Radiofrequency Quadrupole (RFQ) linac, which will accelerate the H - beam from 50 keV to 3 MeV. The beam will be further accelerated in superconducting Single Spoke Resonators (SSRs). A Medium Energy Beam Transport (MEBT) line will be used to transport the beam from the exit of RFQ to the input of SSR. The main purpose of MEBT is to carry out beam matching from RFQ to SSR, and beam chopping. In this paper, we describe the optimization criteria for the lattice design of MEBT. The optimized lattice element parameters are presented for zero and full (15 mA) current case. Beam dynamics studies have been carried out using an envelope tracing code Trace-3D. Required beam deflection angle due to the chopper housed inside the MEBT for beam chopping has also been estimated. (author)

  4. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  5. Design study of low-energy beam transport for multi-charge beams at RAON

    Energy Technology Data Exchange (ETDEWEB)

    Bahng, Jungbae [Department of Physics, Kyungpook National University, Daegu 41566 (Korea, Republic of); Qiang, Ji [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kim, Eun-San, E-mail: eskim1@korea.ac.kr [Department of Accelerator Science, Graduate School, Korea University Sejong Campus, Sejong 30019 (Korea, Republic of)

    2015-12-21

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  6. Development of a radio-frequency quadrupole cooler for high beam currents

    Science.gov (United States)

    Boussaid, Ramzi; Ban, G.; Quéméner, G.; Merrer, Y.; Lorry, J.

    2017-12-01

    The SHIRaC prototype is a recently developed radio-frequency quadrupole (RFQ) beam cooler with an improved optics design to deliver the required beam quality to a high resolution separator (HRS). For an isobaric separation of isotopes, the HRS demands beams with emittance not exceeding 3 π mm mrad and longitudinal energy spread ˜1 eV . Simulation studies showed a significant contribution of the buffer gas diffusion, space charge effect and mainly the rf fringe field to degrade the achieved beam quality at the RFQ exit. A miniature rf quadrupole (μ RFQ ) has been implemented at that exit to remove the degrading effects and provide beams with 1 eV of energy spread and around 1.75 π mm mrad of emittance for 4 Pa gas pressure. This solution enables also to transmit more than 60% of the incoming ions for currents up to 1 μ A . Detailed studies of this development are presented and discussed in this paper. Transport of beams from SHIRaC towards the HRS has been done with an electrostatic quadrupole triplet. Simulations and first experimental tests showed that more than 95% of ions can reach the HRS. Because SPIRAL-2 beams are of high current and very radioactive, the buffer gas will be highly contaminated. Safe maintenance of the SHIRaC beam line needs exceptional treatment of radioactive contaminants. For that, special vinyl sleep should be mounted on elements to be maintained. A detailed maintenance process will be presented.

  7. Sixteen silver wires to assemble 350 kg of copper

    CERN Multimedia

    Alizée Dauvergne

    2010-01-01

    Assembly of the first radiofrequency quadrupole (RFQ) module for the future LINAC4 linear accelerator has just been completed by CERN's Assembly and Forming section (EN) using a technique called vacuum brazing which involves furnace-baking at 800°C and micron precision, leaving absolutely nothing to chance. Serge Mathot (EN/MME) and his team used the vacuum brazing technique to assemble the first RFQ module for the future LINAC4. The future LINAC4 will use four types of accelerating structures, each playing a different role in increasing the energy of the beam. The first of these are the radiofrequency quadrupole modules (RFQ, see box) which accelerate and focus the beam from the start. "The modules are complex items. Each had to be produced in 4 parts, corresponding to the 4 electrodes," explains physicist Serge Mathot, a vacuum brazing specialist in the Engineering (EN) Department. "To work properly, these modules must be aligned to a precision of a few microns. It...

  8. Accelerator technology program. Progress report, January-June 1981

    International Nuclear Information System (INIS)

    Knapp, E.A.; Jameson, R.A.

    1982-05-01

    This report covers the activities of Los Alamos National Laboratory's Accelerator Technology Division during the first 6 months of calendar 1981. We discuss the Division's major projects, which reflect a variety of applications and sponsors. The varied technologies concerned with the Proton Storage ring are concerned with the Proton Storage Ring are continuing and are discussed in detail. For the racetrack microtron (RTM) project, the major effort has been the design and construction of the demonstration RTM. Our development of the radio-frequency quadrupole (RFQ) linear accelerator continues to stimulate interest for many possible applications. Frequent contacts from other laboratories have revealed a wide acceptance of the RFQ principle in solving low-velocity acceleration problems. In recent work on heavy ion fusion we have developed ideas for funneling beams from RFQ linacs; the funneling process is explained. To test as many aspects as possible of a fully integrated low-energy portion of a Pion generator for Medical Irradiation (PIGMI) Accelerator, a prototype accelerator was designed to take advantage of several pieces of existing accelerator hardware. The important principles to be tested in this prototype accelerator are detailed. Our prototype gyrocon has been extensively tested and modified; we discuss results from our investigations. Our work with the Fusion Materials Irradiation Test Facility is reviewed in this report

  9. Testing begins on Linac4

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    On 3 August 2012, the Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152. The site will be the module’s home for almost a year, as the linear accelerator enters the assembly and testing stage.   Final module assembly is carried out before installation in Building 152.  Over the next Long Shutdown (LS2), Linac4 will replace the current Linac2 linear accelerator as the first link in CERN’s accelerator chain. It will deliver particles at 160 MeV to the PS Booster, more than triple the energy currently delivered by Linac2. But before the accelerator team can pop the champagne, the various elements of Linac4 will be tested and re-tested in facilities across CERN. “The first Linac4 tests are currently underway, starting with the CERN-built RFQ,” says Carlo Rossi, a physicist in the RF Group of the Beams (BE) Department and the RFQ project coordinator. “It’s an extremely impre...

  10. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jang Hyung; Cho, Sung Won

    2013-01-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works such as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, supervision and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization, Gyeongju city, for adjusting technically interrelated work during construction. In this research, We completed the basic, detail, and field changed design of conventional facilities. Acquisition of necessary construction and atomic license, radiation safety analysis, site improvement, access road construction were successfully done as well. Also, we participated in the project host related work as follows: Project host organization and site selection, construction technical work for project host organization and procedure management, etc. Consequently, we so fulfilled all of the own goals which were set up in the beginning of this construction project that we could made contribution for installing and running PEFP's developed 100MeV 20mA linear accelerator

  11. Evaluation of the Induced Activity in Air by the External Proton Beam in the Target Room of the Proton Accelerator Facility of Proton Engineering Frontier Project

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young Ouk; Cho, Young Sik; Ahn, So Hyun

    2007-01-01

    One of the radiological concerns is the worker's exposure level and the concentration of the radionuclides in the air after shutdown, for the safety analysis on the proton accelerator facility. Although, the primary radiation source is the protons accelerated up to design value, all of the radio-nuclide is produced from the secondary neutron and photon induced reaction in air. Because, the protons don't penetrate the acceleration equipment like the DTL tank wall or BTL wall, secondary neutrons or photons are only in the air in the accelerator tunnel building because of the short range of the proton in the materials. But, for the case of the target rooms, external proton beams are occasionally used in the various experiments. When these external proton beams travel through air from the end of the beam transport line to the target, they interact directly with air and produce activation products from the proton induced reaction. The external proton beam will be used in the target rooms in the accelerator facility of the Proton Accelerator Frontier Project (PEFP). In this study, interaction characteristics of the external proton beam with air and induced activity in air from the direct interaction of the proton beam were evaluated

  12. Design and Implementation of a Web-based Monitoring System by using EPICS Channel Access Protocol

    International Nuclear Information System (INIS)

    An, Eun Mi; Song, Yong Gi

    2009-01-01

    Proton Engineering Frontier Project (PEFP) has developed a 20MeV proton accelerator, and established a distributed control system based on EPICS for sub-system components such as vacuum unit, beam diagnostics, and power supply system. The control system includes a real-time monitoring and alarm functions. From the aspect of a efficient maintenance of a control system and a additional extension of subsystems, EPICS software framework was adopted. In addition, a control system should be capable of providing an easy access for users and a real-time monitoring on a user screen. Therefore, we have implemented a new web-based monitoring server with several libraries. By adding DB module, the new IOC web monitoring system makes it possible to monitor the system through the web. By integrating EPICS Channel Access (CA) and Database libraries into a Database module, the web-based monitoring system makes it possible to monitor the sub-system status through user's internet browser. In this study, we developed a web based monitoring system by using EPICS IOC (Input Output Controller) with IBM server

  13. High field conditioning of cryogenic RF cavities

    International Nuclear Information System (INIS)

    Cole, M.; Debiak, T.; Lom, C.; Shephard, W.; Sredniawski, J.

    1993-01-01

    Space-based and other related accelerators have conditioning and operation requirements that are not found in most machines. The use of cryogenic copper, relatively poor vacuum, and limited power storage and operating time put unusual demands on the high-field conditioning process and present some concerns. Two CW cryogenic engineering model open-quotes sparkerclose quotes cavities have been fabricated and tested to fairly high field levels. Tests included initial and repeated conditioning as well as sustained RF operations. The two cavities were an engineering model TDL and an engineering model RFQ. Both cavities operated at 425 MHz. The DTL was conditioned to 46 MV/m at 100% duty factor (CW) at cryogenic temperature. This corresponds to a gap voltage of 433 kV and a real estate accelerating gradient (energy gain/total cavity length) of 6.97 MV/m. The authors believe this to be record performance for cryo CW operation. During cryo pulsed operation, the same cavity reached 48 MV/m with 200 μsec pulses at 0.5% DF. The RFQ was conditioned to 30 MV/m CW at cryo, 85 kV gap voltage. During a brief period of cryo pulsed operation, the RFQ operated at 46 MV/m, or 125 kV gap voltage. Reconditioning experiments were performed on both cavities and no problems were encountered. It should be noted that the vacuum levels were not very stringent during these tests and no special cleanliness or handling procedures were followed. The results of these tests indicate that cavities can run CW without difficulty at cryogenic temperatures at normal conservative field levels. Higher field operation may well be possible, and if better vacuums are used and more attention is paid to cleanliness, much higher fields may be attainable

  14. Axial ion-electron emission microscopy of IC radiation hardness

    Science.gov (United States)

    Doyle, B. L.; Vizkelethy, G.; Walsh, D. S.; Swenson, D.

    2002-05-01

    A new system for performing radiation effects microscopy (REM) has been developed at Sandia National Laboratory in Albuquerque. This system combines two entirely new concepts in accelerator physics and nuclear microscopy. A radio frequency quadrupole (RFQ) linac is used to boost the energy of ions accelerated by a conventional Tandem Van de Graaff-Pelletron to velocities of 1.9 MeV/amu. The electronic stopping power for heavy ions is near a maximum at this velocity, and their range is ˜20 μm in Si. These ions therefore represent the most ionizing form of radiation in nature, and are nearly ideal for performing single event effects testing of integrated circuits. Unfortunately, the energy definition of the RFQ-boosted ions is rather poor (˜ a few %), which makes problematic the focussing of such ions to the submicron spots required for REM. To circumvent this problem, we have invented ion electron emission microscopy (IEEM). One can perform REM with the IEEM system without focussing or scanning the ion beam. This is because the position on the sample where each ion strikes is determined by projecting ion-induced secondary electrons at high magnification onto a single electron position sensitive detector. This position signal is then correlated with each REM event. The IEEM system is now mounted along the beam line in an axial geometry so that the ions pass right through the electron detector (which is annular), and all of the electrostatic lenses used for projection. The beam then strikes the sample at normal incidence which results in maximum ion penetration and removes a parallax problem experienced in an earlier system. Details of both the RFQ-booster and the new axial IEEM system are given together with some of the initial results of performing REM on Sandia-manufactured radiation hardened integrated circuits.

  15. Technical assessment of the Loma Linda University proton therapy accelerator

    International Nuclear Information System (INIS)

    1989-10-01

    In April 1986, officials of Loma Linda University requested that Fermilab design and construct a 250 MeV proton synchrotron for radiotherapy, to be located at the Loma Linda University Medical Center. In June 1986 the project, having received all necessary approvals, commenced. In order to meet a desirable schedule providing for operation in early 1990, it was decided to erect such parts of the accelerator as were complete at Fermilab and conduct a precommissioning activity prior to the completion of the building at Loma Linda which will house the final radiotherapy facility. It was hoped that approximately one year would be saved by the precommissioning, and that important information would be obtained about the system so that improvements could be made during installation at Loma Linda. This report contains an analysis by Fermilab staff members of the information gained in the precommissioning activity and makes recommendations about steps to be taken to enhance the performance of the proton synchrotron at Loma Linda. In the design of the accelerator, effort was made to employ commercially available components, or to industrialize the products developed so that later versions of the accelerator could be produced industrially. The magnets could only be fabricated at Fermilab if the schedule was to be met, but efforts were made to transfer that technology to industry. Originally, it was planned to use a 1.7 MeV RFQ fabricated at the Lawrence Berkeley Laboratory as injector, but LBL would have found it difficult to meet the project schedule. After consideration of other options, for example a 3.4 MeV tandem accelerator, a supplier (AccSys Inc.) qualified itself to provide a 2 MeV RFQ on a schedule well matched to the project schedule. This choice was made, but a separate supplier was selected to develop and provide the 425 MHz power amplifier for the RFQ

  16. An advanced ISOL facility based on ATLAS

    International Nuclear Information System (INIS)

    Nolen, J. A.

    1999-01-01

    The Argonne concept for an accelerator complex for efficiently producing high-quality radioactive beams from ion source energy up to 6-15 MeV/u is described. The Isotope-Separator-On-Line (ISOL) method is used. A high-power driver accelerator produces radionuclides in a target that is closely coupled to an ion source and mass separator. By using a driver accelerator which can deliver a variety of beams and energies the radionuclide production mechanisms can be chosen to optimize yields for the species of interest. To effectively utilize the high beam power of the driver two-step target/ion source geometries are proposed (1) Neutron production with intermediate energy deuterons on a primary target to produce neutron-rich fission products in a secondary 238 U target, and (2) Fragmentation of neutron-rich heavy ion rich fission products in a secondary beams such as 18 O in a target/catcher geometry. Heavy ion beams with total energies in the 1-10 GcV range are also available for radionuclide production via high-energy spallation reactions. At the present time R and D is in progress to develop superconducting resonator structures for a driver linac to cover the energy range up to 100 MeV per nucleon for heavy ions and 200 MeV for protons. The post accelerator scheme is based on using existing ISOL-type 1+ ion source technology followed by CW Radio Frequency Quadruple (RFQ) accelerators and superconducting linacs including the present ATLAS accelerator. A full-scale prototype of the first-stage RFQ has been successfully tested with RF at full design voltage and tests with ion beams are in progress. A benchmark beam, 132 Sn at 7 MeV/u, requires two stripping stages, one a gas stripper at very low velocity after the first RFQ section, and one a foil stripper at higher velocity after a superconducting-linac injector

  17. Progress on MEVVA source VARIS at GSI

    Science.gov (United States)

    Adonin, A.; Hollinger, R.

    2018-05-01

    For the last few years, the development of the VARIS (vacuum arc ion source) was concentrated on several aspects. One of them was the production of high current ion beams of heavy metals such as Au, Pb, and Bi. The requested ion charge state for these ion species is 4+. This is quite challenging to produce in vacuum arc driven sources for reasonable beam pulse length (>120 µs) due to the physical properties of these elements. However, the situation can be dramatically improved by using the composite materials or alloys with enhanced physical properties of the cathodes. Another aspect is an increase of the beam brilliance for intense U4+ beams by the optimization of the geometry of the extraction system. A new 7-hole triode extraction system allows an increase of the extraction voltage from 30 kV to 40 kV and also reduces the outer aperture of the extracted ion beam. Thus, a record beam brilliance for the U4+ beam in front of the RFQ (Radio-Frequency Quadrupole) has been achieved, exceeding the RFQ space charge limit for an ion current of 15 mA. Several new projectiles in the middle-heavy region have been successfully developed from VARIS to fulfill the requirements of the future FAIR (Facility for Antiproton and Ion Research) programs. An influence of an auxiliary gas on the production performance of certain ion charge states as well as on operation stability has been investigated. The optimization of the ion source parameters for a maximum production efficiency and highest particle current in front of the RFQ has been performed. The next important aspect of the development will be the increase of the operation repetition rate of VARIS for all elements especially for uranium to 2.7 Hz in order to provide the maximum availability of high current ion beams for future FAIR experiments.

  18. Tuning and optimization of the field distribution for 4-rod Radio Frequency Quadrupole linacs

    International Nuclear Information System (INIS)

    Schmidt, Janet Susan

    2014-01-01

    In this thesis, the tuning process of the 4-rod Radio Frequency Quadrupole has been analyzed and a theory for the prediction of the tuning plate's influence on the longitudinal voltage distribution was developed together with RF design options for the optimization of the fringe fields. The basic principles of the RFQ's particle dynamics and resonant behavior are introduced in the theory part of this thesis. All studies that are presented are based on the work on four RFQs of recent linac projects. These RFQs are described in one chapter. Here, the projects are introduced together with details about the RFQ parameters and performance. In the meantime two of these RFQs are in full operation at NSCL at MSU and FNAL. One is operating in the test phase of the MedAustron Cancer Therapy Center and the fourth one for LANL is about to be built. The longitudinal voltage distribution has been studied in detail with a focus on the influence of the RF design with tuning elements and parameters like the electrodes overlap or the distance between stems. The theory for simulation methods for the field flatness that were developed as part of this thesis, as well as its simulation with CST MWS have been analyzed and compared to measurements. The lumped circuit model has proven to predict results with an accuracy that can be used in the tuning process of 4-rod RFQs. Together with results from the tuning studies, the studies on the fringe fields of the 4-rod structure lead to a proposal for a 4-rod RFQ model with an improved field distribution in the transverse and longitudinal electric field.

  19. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    Science.gov (United States)

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  20. The application of RFQs

    International Nuclear Information System (INIS)

    Schempp, A.

    1992-01-01

    The Radio Frequency Quadrupole Accelerator (RFQ) has found wide application, not only as the preinjector linac for new high energy light ion accelerators but also in a variety of other projects. Progress in development has made ion linacs practical for medical and industrial applications including radiation therapy, isotope and neutron production, material modification and ion beam diagnostic. The paper discusses various projects together with applications in science where RFQs serve as stand-alone tools, for example for the calibration of detectors, as decelerators or as small compact beam sources for atomic physics and materials research. (Author) 7 figs., 40 refs

  1. Dynamics and acceleration in linear structures

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-06-01

    Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ

  2. Transport properties of a discrete helical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Meitzler, C.R.; Antes, K.; Datte, P.; Huson, F.R.; Xiu, L.

    1991-01-01

    The helical electrostatic quadrupole (HESQ) lens has been proposed as a low energy beam transport system which permits intense H - beams to be focused into an RFQ without seriously increasing the beam's emittance. A stepwise continuous HESQ lens has been constructed, and preliminary tests have shown that the structure does provide focusing. In order to understand the transport properties of this device, further detailed studies have been performed. Emittances were measured 3.5 cm from the end of the HESQ at two different voltages on the HESQ electrodes. A comparison of these experimental results with a linear model of the HESQ beam transport is made. 4 refs., 5 figs

  3. MEBT design for C-ADS

    International Nuclear Information System (INIS)

    Geng Huiping; Tang Jingyu; Li Zhihui; Yan Fang; Ouyang Huafu

    2012-01-01

    In proton accelerators, the Medium Energy Beam Transport (MEBT) line is an essential part for transporting and matching the beam from the RFQ to the next type of accelerating structure. The MEBT is also very important in machine commissioning and tuning. The design of the China Accelerator Driven System is making great progress. The C-ADS project is composed of two independent injectors; therefore, two MEBT lines will be designed independently. In this paper, we will give a detailed description of the MEBT design (including parameter selection and beam dynamics calculation) for the injector I of the C-ADS project. (authors)

  4. Application of precision mechanical engineering techniques to the design of a moderate energy beam transport for the FAA explosive detection system

    International Nuclear Information System (INIS)

    Lujan, R.; Christensen, K.

    1993-01-01

    This paper discusses the application of precision mounting and alignment techniques to a moderate energy beam transport system (MEBT) used on the exit of a 1.75 MeV RFQ. While frequently found in optical systems, techniques-such-as kinematic mounting, and degree-of-freedom decoupling, are not as widely used for accelerator components. The MEBT consist of one permanent magnet quadrupole, four electro magnet quadrupole, and one debuncher cavity. Included in the paper are discussions of design and fabrication considerations as well as, installation, alignment and operations experience during the successful implementation on a working accelerator

  5. The LPCTrap facility for in-trap decay experiments

    International Nuclear Information System (INIS)

    Rodriguez, D.; Ban, G.; Durand, D.; Duval, F.; Flechard, X.; Herbane, M.; Lienard, E.; Mauger, F.; Mery, A.; Naviliat-Cuncic, O.; Thomas, J.-C.

    2007-01-01

    The LPCTrap facility is coupled to the low-energy beam line LIRAT of the SPIRAL source at GANIL (France). The facility comprises an RFQ trap for beam preparation and a transparent Paul trap for in-trap decay studies. The system has been tested for several ion species. The Paul trap has been fully characterized for 6 Li + and 23 Na + ions. This characterization together with GEANT4 simulations of the in-trap decay setup (Paul trap and detection system) has permitted to predict the effect of the size of the ion cloud on the decay study of 6 He + .

  6. Compact LINAC for deuterons

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; O'Hara, J.F.; Rybarcyk, L.J.

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  7. The activities of HPPA technology related to ADS in China

    CERN Document Server

    Guan Xia Ling; Ding Da Zhao; Fang Jia Xun; Fang Shou Xian; Fu Shin Ian; Guo, Z Y; Jiang Wei; Li Jie Quan; Luo Zi Hua; Ouyang Hua Fu; Peng Chao Hua; Xu Tao Guang; Xu Wen Wu; Yu Qi; Zhang Zong Hua; Zhao Sheng Chu

    2001-01-01

    High Power Proton Accelerator (HPPA) is being studied all over world for numerous applications, which includes the waste transmutation, spallation neutron source and material irradiation facilities. In China, a multi-purpose verification system as a first phase of Chinese ADS program consists of a low energy accelerator (150 MeV/3 mA proton linac) and a swimming pool light water sub-critical reactor. The activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described

  8. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1986-05-01

    In this report the activities of the GSI Darmstadt (FRG) during 1985 concerning inertial confinement fusion by heavy ion beams. Short communications and abstracts are presented concerning a Z-pinch experiment, heavy ion pumped lasers and X-ray spectroscopy, the study of ion-ion collisions, a RFQ development and beam transport studies, accelerator theory, targets for SIS/ESR experiments, the rayleigh-Taylor instability, studies on the equation of state for matter under high pressure, as well as the development of computer codes. (HSI)

  9. PIGMI linear-accelerator technology

    International Nuclear Information System (INIS)

    Boyd, T.J.; Crandall, K.R.; Hamm, R.W.

    1981-01-01

    A new linear-accelerator technology has been developed that makes pi-meson (pion) generation possible for cancer therapy in the setting of a major hospital center. This technology uses several new major inventions in particle accelerator science-such as a new accelerator system called the radio-frequency quadrupole (RFQ), and permanent-magnet drift-tube focusing-to substantially reduce the size, cost, and complexity of a meson factory for this use. This paper describes this technology, discusses other possible uses for these new developments, and finally discusses possible costs for such installations

  10. Evaluation of RF seals for resonant cavity applications

    International Nuclear Information System (INIS)

    Rusnak, B.; Spalek, G.; Bolme, G.O.; Bultman, N.; Klapetkzy, A.; Kemp, E.L.; Stovall, J.E.; Rose, J.

    1991-01-01

    In radio-frequency quadrupoles (RFQ) and drift-tube linacs (DTL), electrical seals are required at mechanical interfaces to preserve the cavity quality factor (Q). Studies determined the response of copper-plated C-seals to continuous wave (cw), highfield operating conditions. In addition, low-power evaluations of machined-surface, knife-edge, indium wire, C-type, and multilam seals were done at room temperature and cryogenic (25 K) temperatures. For the high-field tests, the Q as well as seal temperature, was measured with power. For the low power test, the Q was measured as a function of temperature

  11. Design of RF structures for a superconducting proton linac

    International Nuclear Information System (INIS)

    Pande, Rajni; Roy, Shweta; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    One of the main components of the Accelerator Driven System (ADS) programme in India is a 1 GeV, high intensity CW proton accelerator that will be superconducting after the radio-frequency quadrupole (RFQ), i.e. after 3 MeV. The superconducting linac will consist of various superconducting structures like Half Wave Resonators, Spoke Resonators and elliptical cavities, operating at RF frequencies of 162.5 MHz, 325 MHz and 650 MHz. The paper will discuss the optimization of the electromagnetic design of the various superconducting structures. (author)

  12. The activities of HPPA technology related to ADS in China

    International Nuclear Information System (INIS)

    Guan Xialing; Jiang Weisheng; Cui Baoqun; Peng Chaohua; Ding Dazhao; Fu Shinian; Yu Qingchang; Luo Zihua; Xu Wenwu; Ouyang Huafu; Xu Taoguang; Zhao Shengchu; Zhang Zonghua; Li Jian; Fang Shouxian

    2002-01-01

    High Power Proton Accelerator (HPPA) is being studied all over world for numerous applications, which includes the waste transmutation, spallation neutron source and material irradiation facilities. In China, a multi-purpose verification system as a first phase of Chinese ADS program consists of a low energy accelerator (150 MeV/3 mA proton linac) and a swimming pool light water sub-critical reactor. The activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described

  13. Measurements on a Gabor lens for neutralizing and focusing a 30 keV proton beam

    International Nuclear Information System (INIS)

    Palkovic, J.A.; Hren, R.; Lee, G.; Mills, F.E.; Schmidt, C.W.; Wendt, J.; Young, D.E.

    1989-01-01

    The authors have reported previously on the use of a Gabor lens (also referred to as a plasma or space charge lens) to focus and neutralize a low energy proton beam. A different lens geometry and a higher anode voltage have been adopted to overcome a lack of stability present in the previous design. They report on studies in progress to measure the focusing properties of the Gabor lens and determine whether it can be used to match a 30 keV proton beam into radio frequency quadrupole (RFQ) Accelerator. 10 refs., 4 figs

  14. Phase synchronization of multiple klystrons in RF system

    International Nuclear Information System (INIS)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1998-01-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of the Acceleration Production of Tritium (APT) accelerator. The first LEDA RF system includes three, 1.2 MW, 350 MHz, continuous wave, klystrons driving a radio frequency quadrupole (RFQ). A phase control loop is necessary for each individual klystron in order to guarantee the phase matching of these klystrons. To meet this objective, they propose adaptive PI controllers which are based on simple adaptive control. These controllers guarantee not only phase matching but also amplitude matching

  15. BEAMPATH: a program library for beam dynamics simulation in linear accelerators

    International Nuclear Information System (INIS)

    Batygin, Y.K.

    1992-01-01

    A structured programming technique was used to develop software for space charge dominated beams investigation in linear accelerators. The method includes hierarchical program design using program independent modules and a flexible combination of modules to provide a most effective version of structure for every specific case of simulation. A modular program BEAMPATH was developed for 2D and 3D particle-in-cell simulation of beam dynamics in a structure containing RF gaps, radio-frequency quadrupoles (RFQ), multipole lenses, waveguides, bending magnets and solenoids. (author) 5 refs.; 2 figs

  16. A two-dimensional hydrodynamic code for the interaction of intense heavy ion beams with matter based on the code CONCHAS SPRAY

    International Nuclear Information System (INIS)

    Schneider, V.; Rentzsch, T.; Maruhn, J.

    1988-04-01

    In this report we describe a two-dimensional hydrodynamic code applicable to the problems stated. In section II we describe the algorithm solving the hydrodynamic equations. In section III we present test calculations involving the propagation of shocks and contact discontinuities as well as the growth of a Rayleigh-Taylor Instability (RTI). Section IV includes all the modifications and supplements required to use the code to investigate the interaction of intense HI beams with matter. Numcerical simulations of experiments using the RFQ facility and the planned SIS-ESR at GSI are finally discussed in section V. (orig./HSI)

  17. Nuclear Physics Institute of Lyon: The 1988 to 1989 progress report

    International Nuclear Information System (INIS)

    1990-01-01

    The 1988 to 1989 progress report of the Nuclear Physics Institute of Lyon is presented. Among the most important events, the operation of LEP, the acquisition and analysis of the first data which allowed to limitate at 3 the number of neutrino species, may be mentioned. The investigations relating to superdeformed nuclei and the assembly of the RFQ post-accelerator at the hydrogen aggregate accelerator are summarized. The most relevant results obtained in the fields of High Energy, Nuclear and multi-disciplinary Physics are reviewed. The developments concerning instrumentation, international cooperation and teaching are included. The published papers and the thesis presented are listed [fr

  18. Acceleration characteristics of the injector Linacs for the Hyogo Hadrontherapy Center

    International Nuclear Information System (INIS)

    Inoue, J.; Sawada, K.; Sakata, T.

    2000-01-01

    Hyogo Hadrontherapy center in Harima Science Garden City is a cancer therapy facility with proton, helium and carbon beams. The beams are supplied by a synchrotron, which has manufactured by Mitsubishi Electric Corporation, with RF 1inacs as an injector, which has manufactured by Sumitomo Heavy Industries Ltd.(SHI). The injector consists of the identical ECR ion sources, a RFQ linac, and an Alvarez linac, which are connected by beam transport systems including vacuum systems, and some kinds of beam monitoring equipments. The results accomplished for the beam conditioning are described in this paper. (author)

  19. PROPOSAL FOR AN EBIS BASED RHIC PREINJECTOR.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI,J.G.; BEEBE,E.; KPONOU,A.; PIKIN,A.; PRELEC,K.; RAPARIA,D.; RITTER,J.; ZHANG,S.Y.

    2000-11-06

    A proposed new heavy ion preinjector for RHIC is described. The progress made at BNL on the development of an Electron Beam Ion Source (EBIS) has increased our confidence that one can build a preinjector meeting RHIC requirements using an EBIS producing intermediate charge state heavy ions. A new RFQ and Linac will be required to accelerate beams from this source to an energy sufficient for injection into the AGS Booster. These are both straightforward devices, very similar to ones already in operation at other laboratories. Injection into the Booster will occur at the same location as the existing heavy ion injection from the Tandem Van de Graaff.

  20. PROPOSAL FOR AN EBIS-BASED RHIC PREINJECTOR

    International Nuclear Information System (INIS)

    ALESSI, J.G.; BEEBE, E.; KPONOU, A.; PIKIN, A.; PRELEC, K.; RAPARIA, D.; RITTER, J.; ZHANG, S.Y.

    2000-01-01

    A proposed new heavy ion preinjector for RHIC is described. The progress made at BNL on the development of an Electron Beam Ion Source (EBIS) has increased our confidence that one can build a preinjector meeting RHIC requirements using an EBIS producing intermediate charge state heavy ions. A new RFQ and Linac will be required to accelerate beams from this source to an energy sufficient for injection into the AGS Booster. These are both straightforward devices, very similar to ones already in operation at other laboratories. Injection into the Booster will occur at the same location as the existing heavy ion injection from the Tandem Van de Graaff

  1. Application of a transverse phase-space measurement technique for high-brightness, H- beams to the GTA H- beam

    International Nuclear Information System (INIS)

    Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.; Sander, O.R.; Sandoval, D.P.; Shinas, M.A.; Smith, M.; Yuan, V.W.; Connolly, R.C.

    1995-01-01

    The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations

  2. AGS polarized H- source

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.G.; Sluyters, T.

    1985-01-01

    The AGS polarized H - source is now operational. During a month-long experimental physics run in July 1984, pulses equivalent to 15 μA x 300 μs (approx. 3 x 10 10 protons) were injected into the RFQ preaccelerator. Beam polarization, measured at 200 MeV, was approx. 75%. After the run, a program to increase the H - yield of the source was begun and significant progress has been made. The H - current is now frequently 20 to 30 μA. A description of the source and some details of our operating experience are given. We also briefly describe the improvement program

  3. Pulsed radiofrequency microwave fields around a quadrupole particle accelerator: measurement and safety evaluation

    International Nuclear Information System (INIS)

    Sachdev, R.N.; Swarup, G.; Rajan, K.K.; Joseph, L.

    1996-01-01

    Pulsed radiofrequency microwave radiation (RFMR) fields occur during the use of high power microwaves in plasma heating in fusion research, plasma and solid state diagnostics, particle accelerators and colliders, pump sources in lasers, material processing as well as in high power radars. This paper describes the experimental work done at Trombay for measurement of pulsed RFMR fields in the working area of a radiofrequency quadrupole (RFQ) accelerator with the use of a meter calibrated in continuous field and interprets the observed fields in the light of existing protection criteria for pulsed RFMR fields. (author)

  4. Background-free beta-decay half-life measurements by in-trap decay and high-resolution MR-ToF mass analysis

    Science.gov (United States)

    Wolf, R. N.; Atanasov, D.; Blaum, K.; Kreim, S.; Lunney, D.; Manea, V.; Rosenbusch, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.; Zuber, K.

    2016-06-01

    In-trap decay in ISOLTRAP's radiofrequency quadrupole (RFQ) ion beam cooler and buncher was used to determine the lifetime of short-lived nuclides. After various storage times, the remaining mother nuclides were mass separated from accompanying isobaric contaminations by the multi-reflection time-of-flight mass separator (MR-ToF MS), allowing for a background-free ion counting. A feasibility study with several online measurements shows that the applications of the ISOLTRAP setup can be further extended by exploiting the high resolving power of the MR-ToF MS in combination with in-trap decay and single-ion counting.

  5. IFMIF accelerators design

    International Nuclear Information System (INIS)

    Mosnier, A.; Ratzinger, U.

    2008-01-01

    The IFMIF requirement for 250 mA current of deuteron beams at a nominal energy of 40 MeV is met by means of two identical continuous wave (CW) 175 MHz linear accelerators running in parallel, each delivering a 125 mA, 40 MeV deuteron beam to the common target. This approach allows to stay within the current capability of present RF linac technology while providing operational redundancy in case of failure of one of the linacs. Each linac comprises a sequence of acceleration and beam transport/matching stages. The ion source generates a 140 mA deuteron beam at 100 keV. A low energy beam transport (LEBT) transfers the deuteron beam from the source to a radio frequency quadrupole (RFQ) cavity. The RFQ bunches and accelerates the 125 mA beam to 5 MeV. The RFQ output beam is injected through a matching section into a drift-tube-linac (DTL) where it is accelerated to the final energy of 40 MeV. In the reference design, the final acceleration stage is a conventional Alvarez-type DTL with post-couplers operating at room temperature. Operation of both the RFQ and the DTL at the same relatively low frequency is essential for accelerating the high current deuteron beam with low beam loss. The primary concern of the IFMIF linacs is the minimization of beam losses, which could limit their availability and maintainability due to excessive activation of the linac and irradiation of the environment. A careful beam dynamics design is therefore needed from the source to the target to avoid the formation of particle halo that could finally be lost in the linac or transfer lines. A superconducting solution for the high energy portion of the linac using, for example, CH-structure or coaxial-type resonators, could offer some advantages, in particular the reduction of operational costs. Careful beam dynamics simulations and comparison tests with beam during the EVEDA phase are however necessary in order to fully assess the technical feasibility of such alternative solutions

  6. HISTRAP [Heavy Ion Storage Ring for Atomic Physics] prototype hardware studies

    International Nuclear Information System (INIS)

    Olsen, D.K.; Atkins, W.H.; Dowling, D.T.; Johnson, J.W.; Lord, R.S.; McConnell, J.W.; Milner, W.T.; Mosko, S.W.; Tatum, B.A.

    1989-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 2.67-Tm synchrotron/cooler/storage ring optimized for advanced atomic physics research which will be injected with ions from either the HHIRF 25-MV tandem accelerator or a dedicated ECR source and RFQ linac. Over the last two years, hardware prototypes have been developed for difficult and long lead-time components. A vacuum test stand, the rf cavity, and a prototype dipole magnet have been designed, constructed, and tested. 7 refs., 8 figs., 2 tabs

  7. Technology of RF superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams

  8. A second-generation ion beam buncher and cooler

    International Nuclear Information System (INIS)

    Schwarz, S.; Bollen, G.; Lawton, D.; Neudert, A.; Ringle, R.; Schury, P.; Sun, T.

    2003-01-01

    A radiofrequency quadrupole (RFQ) ion accumulator and buncher has been designed for the low-energy beam and ion-trap (LEBIT) facility which is being set up at the NSCL/MSU. The LEBIT buncher will be a cryogenic system. Compared to room-temperature systems an improved beam quality and overall efficiency are expected. It will feature a novel electrode structure with a drastically reduced number of electrodes for simplified operation. Its design is presented and Monte-Carlo type ion-trajectory calculations are discussed which predict excellent beam quality and high performance

  9. A second-generation ion beam buncher and cooler

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S. E-mail: schwarz@nscl.msu.edu; Bollen, G.; Lawton, D.; Neudert, A.; Ringle, R.; Schury, P.; Sun, T

    2003-05-01

    A radiofrequency quadrupole (RFQ) ion accumulator and buncher has been designed for the low-energy beam and ion-trap (LEBIT) facility which is being set up at the NSCL/MSU. The LEBIT buncher will be a cryogenic system. Compared to room-temperature systems an improved beam quality and overall efficiency are expected. It will feature a novel electrode structure with a drastically reduced number of electrodes for simplified operation. Its design is presented and Monte-Carlo type ion-trajectory calculations are discussed which predict excellent beam quality and high performance.

  10. A second-generation ion beam buncher and cooler

    CERN Document Server

    Schwarz, S; Lawton, D; Neudert, A; Ringle, R; Schury, P; Sun, T

    2003-01-01

    A radiofrequency quadrupole (RFQ) ion accumulator and buncher has been designed for the low-energy beam and ion-trap (LEBIT) facility which is being set up at the NSCL/MSU. The LEBIT buncher will be a cryogenic system. Compared to room-temperature systems an improved beam quality and overall efficiency are expected. It will feature a novel electrode structure with a drastically reduced number of electrodes for simplified operation. Its design is presented and Monte-Carlo type ion-trajectory calculations are discussed which predict excellent beam quality and high performance.

  11. TAMU-TRAP facility - program for the study of fundamental weak interaction

    International Nuclear Information System (INIS)

    Shidling, P.D.; Mehlman, M.; Melconian, Dan; Fenker, Ben; Behling, R.S.

    2012-01-01

    Primary goal of the TAMU-TRAP facility is to test the Standard Model (SM) for a possible admixture of a scalar (S) or tensor (T) type of interaction in T = 2 superallowed β-delayed proton emitters. This information will be inferred from the shape of the proton energy spectrum. The main component of the facility are an RFQ cooler/buncher for cooling and bunching the ions, a Penning trap system with two cylindrical Penning traps. Additional goals for this system are mass measurements, lifetime measurements, and ft-values. A brief overview of the TAMU-TRAP set-up and T-REX upgrade facility will be presented. (author)

  12. Heavy ion medical accelerator in chiba

    International Nuclear Information System (INIS)

    Hirao, Y.; Ogawa, H.; Yamada, S.

    1992-12-01

    The HIMAC (Heavy Ion Medical Accelerator in Chiba) construction project has been promoted by NIRS (National Institute of Radiological Sciences) as one of the projects of 'Comprehensive 10 year Strategy for Cancer Control' HIMAC is the first heavy-ion accelerator dedicated to medicine in the world, and its design parameters are based on the radiological requirements. It consists of two types of ion sources, an RFQ and an Alvarez linacs, dual synchrotron rings, high energy beam transport lines, and irradiation facilities for treatment and experiments. This report mainly describes the outline of the structure and performance of each HIMAC subsystem. (J.P.N.)

  13. Proceeding of the 1999 Particle Accelerator Conference. Volume 2

    Science.gov (United States)

    1999-04-02

    modified to operate at 50 keV, was mated to the RFQ and VDI ) VD2 . was operated to support the high current (up to 100 mA), V, proton beam advance...Lehrach, Andreas 1701, 2292 Liu, Jinhong 2048 Lambiase, Robert F. 3734 Lei, Ge 747 Liu, Kuo-Bin 3776 Lamm, Michael J. 3191, 3194, 3197 Leissner, Boris...2000,2003 Lekston, J.M. 3387 Liu, Yuan 1878, 1881 Lange, M. 2424 Len L. K 70 Liu, Zuping 2048 , 2406 Lange, R. 197 Leng, Yongbin 1315, 2125 Lo, C.C. 1471

  14. Linac 1, inner structure

    CERN Multimedia

    1968-01-01

    This photo shows the inner structure of Linac 1. As injector to the PS, and later to the Booster, Linac 1 accelerated protons to 50 MeV, but it has also accelerated heavier ions. Fitted with a 520 keV RFQ pre-injector (instead of the original Cockcroft-Walton generator), it delivered protons and heavy ions to LEAR, from 1982 to 1992. After 33 years of faithful service, Linac 1 was dismantled in 1992 to make room for Linac 3 (Pb ions).

  15. Low-charge-state linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    A design is being developed for a low-charge-state linac suitable for injecting ATLAS with a low-charge-state, radioactive beam. Initial work indicates that the existing ATLAS interdigital superconducting accelerating structures, together with the superconducting quadrupole transverse focussing element discussed above, provides a basis for a high-performance low-charge-state linac. The initial 2 or 3 MV of such a linac could be based on a normally-conducting, low-frequency RFQ, possibly combined with 24-MHz superconducting interdigital structures. Beam dynamics studies of the whole low-charge-state post-accelerator section were carried out in early FY 1995.

  16. An approach to fundamental study of beam loss minimization

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1999-01-01

    The accelerator design rules involving rms matching, developed at CERN in the 1970's, are discussed. An additional rule, for equipartitioning the beam energy among its degrees of freedom, may be added to insure an rms equilibrium conditions. If the strong stochasticity threshold is avoided, as it is in realistic accelerator designs, the dynamics is characterized by extremely long transient settling times, making the role of equipartitioning hard to explain. An approach to systematic study using the RFQ accelerator as a simulation testbed is discussed. New methods are available from recent advances in research on complexity, nonlinear dynamics, and chaos

  17. Development of beam utilization/application technology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B H; Kim, Y K; Song, T Y [and others

    1999-05-01

    High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized forindustries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs.

  18. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  19. Combination of Complement-Dependent Cytotoxicity and Relative Fluorescent Quantification of HLA Length Polymorphisms Facilitates the Detection of a Loss of Heterozygosity

    Directory of Open Access Journals (Sweden)

    Klaus Witter

    2014-01-01

    Full Text Available Loss of heterozygosity (LOH is a common event in malignant cells. In this work we introduce a new approach to identify patients with loss of heterozygosity in the HLA region either at first diagnosis or after HLA mismatched allogeneic HSCT. Diagnosis of LOH requires a high purity of recipient target cells. FACS is time consuming and also frequently prevented by rather nonspecific or unknown immune phenotype. The approach for recipient cell enrichment is based on HLA targeted complement-dependent cytotoxicity (CDC. Relative fluorescent quantification (RFQ analysis of HLA intron length polymorphisms then allows analysis of HLA heterozygosity. The approach is exemplified in recent clinical cases illustrating the detection of an acquired allele loss. As illustrated in one case with DPB1, distinct HLA loci in donor and patient were sufficient for both proof of donor cell removal and evaluation of allele loss in the patient's leukemic cells. Results were confirmed using HLA-B RFQ analysis and leukemia-associated aberrant immunophenotype (LAIP based cell sort. Both results confirmed suspected loss of HLA heterozygosity. Our approach complements or substitutes for FACS-based cell enrichment; hence it may be further developed as novel routine diagnostic tool. This allows rapid recipient cell purification and testing for loss of HLA heterozygosity before and after allogeneic HSCT in easily accessible peripheral blood samples.

  20. Performance of Ferrite Vector Modulators in the LLRF System of the Fermilab HINS 6-Cavity Test

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Philip [Fermilab; Barnes, Barry [Fermilab; Chase, Brian [Fermilab; Cullerton, Ed [Fermilab; Tan, Cong [Fermilab

    2013-04-01

    The High Intensity Neutrino Source (HINS) 6-cavity test is a part of the Fermilab HINS Linac R&D program for a low energy, high intensity proton Hsup>- linear accelerator. One of the objectives of the 6-cavity test is to demonstrate the use of high power RF Ferrite Vector Modulators(FVM) for independent control of multiple cavities driven by a single klystron. The beamline includes an RFQ and six cavities. The LLRF system provides a primary feedback loop around the RFQ and the distribution of the regulated klystron output is controlled by secondary learning feed-forward loops on the FVMs for each of the six cavities. The feed-forward loops provide pulse to pulse correction to the current waveform profiles of the FVM power supplies to compensate for beam-loading and other disturbances. The learning feed-forward loops are shown to successfully control the amplitude and phase settings for the cavities well within the 1 % and 1 degree requirements specified for the system.

  1. Initial operation of the new bevatron local injector

    International Nuclear Information System (INIS)

    Staples, J.; Dwinell, R.; Gough, R.

    1985-01-01

    Initial operational characteristics of a new Bevatron injector system are described. It is capable of providing an independent source of ions to the Bevatron through mass 40. The new injector consists of a sputter ion PIG source, operating on a 60 kV DC platform, an RFQ linac, and two Alvarez linacs, all operating at 199 MHz. Beams with q/A greater than or equal to 0.14 are accelerated to 200 keV/n in the RFQ and to 800 keV/n in the first Alvarez tank. Each Alvarez operates in the 2βlambda mode, and each is followed by a foil stripper. Beams with a q/A greater than or equal to 0.32 are accelerated through the second Alvarez to 5 MeV/n, fully stripped, and injected into the Bevatron. Because the Bevatron can be efficiently switched between this injector and the Super HILAC injector, a more efficient operations schedule is made possible to meet the increasingly diverse needs of the Biomedical and Nuclear Science research programs

  2. Progress report - physical sciences - physics division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the Physics Division. Of special note within the period covered by this report was the successful acceleration of over 75 mA of protons to 600 keV in RFQ1 making it the highest current RFQ in the world. Our electron accelerator expertise has been recognized by the award of one of the R and D 100 awards for the IMPELA (10 MeV 50 kW) machine. Considerable activity was associated with bringing the new dual beam neutron spectrometer DUALSPEC to completion. This instrument has been jointly funded by AECL and NSERC through McMaster University and will be a central component of the national neutron scattering facility at NRU in the 1990's. A major effort was made with the writing of a Project Definition Document for installation of a cold neutron source at the most opportune time

  3. The RF system for the Accelerator Production of Tritium (APT) Low Energy Demonstration Accelerator (LEDA) at Los Alamos

    International Nuclear Information System (INIS)

    Lynch, M.T.; Rees, D.; Tallerico, P.; Regan, A.

    1996-01-01

    To develop and demonstrate the crucial front end of the APT accelerator and some of the critical components for APT, Los Alamos is building a CW proton accelerator (LEDA) to provide 100 mA at up to 40 MeV. LEDA will be installed where the SDI-sponsored Ground Test Accelerator was located. The first accelerating structure for LEDA is a 7-MeV RFQ operating at 350 MHz, followed by several stages of a coupled-cavity Drift Tube Linac (CCDTL) operating at 700 MHz. The first stage of LEDA will go to 12 MeV. Higher energies, up to 40 MeV, come later in the program. Three 1.2-MW CW RF systems will be used to power the RFQ. This paper describes the RF systems being assembled for LEDA, including the 350 and 700-MHz klystrons, the High Voltage Power Supplies, transmitters, RF transport, window/coupler assemblies, and controls. Some of the limitations imposed by the schedule and the building itself are addressed

  4. A conceptual design of the DTL-SDTL for the JAERI high intensity proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Hiroshi; Kabeya, Zenzaburo [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Chishiro, Etsuji; Ouchi, Nobuo; Hasegawa, Kazuo; Mizumoto, Motoharu

    1998-08-01

    A high intensity proton linear accelerator with an energy of 1.5 GeV and an average beam power of 8 MW has been proposed for the Neutron Science Project (NSP) at JAERI. This linac starts with radio-frequency quadrupole (RFQ) linac, which is followed by a drift-tube linac (DTL), separated-type DTL (SDTL), and a superconducting structure. In this report, we focus on the DTL and SDTL part of the accelerator. The DTL accelerates the beam from 2 to 51 MeV, and SDTL accelerates the beam from 51 to 10 MeV. Since the main features of the requirement for the DTL-SDTL are high peak current ({approx}30 mA) and a high-duty factor ({approx}CW), the conceptual design should be determined not only based on the result of a beam-dynamics calculation, but by careful study of the cooling problems. The design processes of the DTL-SDTL and the matching sections (RFQ to DTL, CW-Pulse merge section, and SDTL to SCC) and the result of a heat transfer analysis of DTL are described. (author)

  5. Mechanical design and fabrication of a 425-MHz H- buncher

    International Nuclear Information System (INIS)

    Wilson, N.G.; Precechtel, D.

    1987-01-01

    A beam buncher has been designed, fabricated, and installed on the accelerator test stand (ATS) to match the 2-MeV output beam of a 425-MHz H - radio-frequency quadrupole (RFQ) into a 425-MHz drift-tube linac (DTL). The buncher configuration provides integral-matching permanent-magnet quadrupoles (PMQ) at the exit of the RFQ and one βλ across the buncher accelerating gap; a third PMQ is the first DTL half-cell magnet. Located between the second and third PMQs is a 50-Ω, capacitively coupled, beam-sensing pickup loop. Cooling channels are provided in each of the brazed OFHC copper wall sections. Vacuum pumping of the buncher is provided by a cryogenic refrigerator vacuum pump through an array of small-diameter holes in the buncher cavity wall. Mechanical features of the buncher, the brazing and electron-beam welding of the solid-copper buncher structure, and the beam pickup loop are described in this paper. The buncher has been tuned, installed, and operated at full power on the ATS

  6. Initial operation of the new Bevatron local injector

    International Nuclear Information System (INIS)

    Staples, J.; Dwinell, R.; Gough, R.

    1985-05-01

    Initial operational characteristics of a new Bevatron injector system are described. It is capable of providing an independent source of ions to the Bevatron through mass 40. The new injector consists of a sputter ion PIG source, operating on a 60 kV dc platform, an RFQ linac, and two Alvarez linacs, all operating at 199 MHz. Beams with q/A greater than or equal to 0.14 are accelerated to 200 keV/n in the RFQ and to 800 keV/n in the first Alvarez tank. Each Alvarez operates in the 2βlambda mode, and each is followed by a foil stripper. Beams with a q/A greater than or equal to 0.32 are accelerated through the second Alvarez to 5 MeV/n, fully stripped, and injected into the Bevatron. Because the Bevatron can be efficiently switched between this injector and the SuperHILAC injector, a more efficient operations schedule is made possible to meet the increasingly diverse needs of the Biomedical and Nuclear Science research programs. 5 refs

  7. Commissioning and Operation of the FNAL Front end Injection Line and Ion Sources.

    Energy Technology Data Exchange (ETDEWEB)

    Karns, Patrick R. [Indiana Univ., Bloomington, IN (United States)

    2015-09-01

    This thesis documents the efforts made in commissioning and operating the RFQ Injection Line (RIL) as a replacement for the Cockcroft Walton front end. The Low Energy Beam Transport (LEBT) was assembled and tested with multiwire position and emittance monitor measurements. The Radio Frequency Quadrupole (RFQ) commissioning was completed with the same measurements as well as output beam energy measurements that showed it initially accelerated beam only to 700 keV, which was 50 keV lower than the design energy. Working with the manufacturer solutions were found and instituted to continue testing. The Medium Energy Beam Transport (MEBT) was then connected as the RIL was installed as the new front end of Linac. Testing gave way to operation when the new front end was used as the source of all High Energy Physics (HEP) beam for Fermi National Accelerator Laboratory (FNAL). The magnetron ion source that provides the H- beam for the front end required several changes and eventual upgrades to operate well; such as new source operating points for vacuum pressure and cesium admixture, and new materials for critical source components. Further research was conducted on the cathode geometry and nitrogen doping of the hydrogen gas as well as using solid state switches for the extractor system high voltage.

  8. Development of beam utilization/application technology

    International Nuclear Information System (INIS)

    Choi, B. H.; Kim, Y.K.; Song, T.Y.

    1999-05-01

    High power proton accelerator is considered as one of national fundamental research facilities and a key to advanced nuclear technology development, having been widely used in an un detachable relationship with nuclear research in advanced countries. The high power proton accelerator will be installed in several phases as an up front facility of the nuclear waste transmutation system. It is expected that a common understanding and a general agreement over proper utilization of the accelerator should be deduced and that a user program for beam utilization and application should be firmly established in time for the completion of each phase of the accelerator. This high power proton accelerator will consist of several component accelerators and, from up front, accelerators such as injector, RFQ, CCDTL, etc. will be installed in sequence and deliver respectively at each stage beams of 3MeV, 20MeV, 100Mev, etc. to be variously utilized for industries, defence industry, medical treatment, environmental protection and basic science research. In order for the accelerator to be fully utilized as a national fundamental research facility beyond nuclear field, it is necessary to formulate a proceeding plan of the user program for the accelerator and to cultivate industrial utilization/application studies of proton beams accelerated by injector or RFQ of the accelerator. (author). 38 refs., 84 tabs., 39 figs

  9. Progress update on the low-energy demonstration accelerator (LEDA)

    International Nuclear Information System (INIS)

    Schneider, J.D.; Chan, K.C.D.

    1997-01-01

    As part of the linac design for the accelerator production of tritium (APT) project, the authors are assembling the first approximately 20 MeV portion of this cw proton accelerator. Primary objective of this low-energy demonstration accelerator (LEDA) is to verify the design codes, gain fabrication knowledge, understand LEDA's beam operation, and be able to better predict costs and operational availability for the full 1,700 MeV APT accelerator. This paper provides an updated report on this past year's progress that includes beam tests of the 75 keV injector, fabrication of the 6.7 MeV radio-frequency quadrupole (RFQ), preparation of the facility, procurement and assembly of the rf system, and detailed design and documentation of many pieces of support equipment. First tests with the 6.7 MeV, 100 mA, cw beam from the RFQ are scheduled for late 1998. References are given to many detailed papers on LEDA at this conference

  10. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    Energy Technology Data Exchange (ETDEWEB)

    Perry, A., E-mail: aperry4@hawk.iit.edu [Argonne National Laboratory, Argonne, IL 60439, USA and Illinois Institute of Technology, Chicago, IL 60616 (United States); Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-01-09

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 3×10{sup 5} as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  11. Novel design concepts for generating intense accelerator based beams of mono-energetic fast neutrons

    International Nuclear Information System (INIS)

    Franklyn, C.B.; Govender, K.; Guzek, J.; Beer, A. de; Tapper, U.A.S.

    2001-01-01

    Full text: Successful application of neutron techniques in research, medicine and industry depends on the availability of suitable neutron sources. This is particularly important for techniques that require mono-energetic fast neutrons with well defined energy spread. There are a limited number of nuclear reactions available for neutron production and often the reaction yield is low, particularly for thin targets required for the production of mono-energetic neutron beams. Moreover, desired target materials are often in a gaseous form, such as the reactions D(d,n) 3 He and T(d,n) 3 He, requiring innovative design of targets, with sufficient target pressure and particle beam handling capability. Additional requirements, particularly important in industrial applications, and for research institutions with limited funds, are the cost effectiveness as well as small size, coupled with reliable and continuous operation of the system. Neutron sources based on high-power, compact radio-frequency quadrupole (RFQ) linacs can satisfy these criteria, if used with a suitable target system. This paper discusses the characteristics of a deuteron RFQ linear accelerator system coupled to a high pressure differentially pumped deuterium target. Such a source, provides in excess of 10 10 mono- energetic neutrons per second with minimal slow neutron and gamma-ray contamination, and is utilised for a variety of applications in the field of mineral identification and materials diagnostics. There is also the possibility of utilising a proposed enhanced system for isotope production. The RFQ linear accelerator consists of: 1) Deuterium 25 keV ion source injector; 2) Two close-coupled RFQ resonators, each powered by an rf amplifier supplying up to 300 kW of peak power at 425 MHz; 3) High energy beam transport system consisting of a beam line, a toroid for beam current monitoring, two steering magnets and a quadrupole triplet for beam focusing. Basic technical specifications of the RFQ linac

  12. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  13. 1974 view into the cage of the 520 keV electrostatic preaccelerator of Linac 1

    CERN Multimedia

    1974-01-01

    The condenser of the high voltage circuit (column in the foreground) is being serviced by Jean Luc Vallet. Standing on the electronics platform (the big, open metallic structure on insulating pillars, for details see 7403120) is Bob Nettelton. The column at the right edge of the photo is part of the bouncer (see also 7403066X) which compensated the voltage drop during acceleration of a proton pulse. In the background is the source (open pill box structure) attached to the accelerating column, barely visible) behind. The "old" 50 MeV Linac 1, the original PS injector built in the 1950s, was (since 1976) replaced by a new 50 MeV linac (Linac 2) with a 750 keV "Cockcroft-Walton" pre-injector(see 7602012X), later replaced by a 750 keV Radio Frequency Quadrupole (RFQ) preaccelerator. Linac 1 co-existed until mid 1992 (from 1982 onwards it was mainly used to inject "test-particles" into the Low Energy Antiproton ring LEAR). In 1984 the electrostatic preaccelerator of linac 1 was replaced by a 520 keV RFQ ( 8303511X...

  14. DC proton beam measurements in a single-solenoid low-energy beam transport system

    International Nuclear Information System (INIS)

    Stevens, R.R. Jr.; Schafstall, P.; Schneider, J.D.; Sherman, J.; Zaugg, T.; Taylor, T.

    1994-01-01

    High current, CW proton accelerators are being considered for a number of applications including disposition of nuclear wastes, reduction of fissionable nuclear material inventories, safe production of critical nuclear materials, and energy production. All these applications require the development of high current, reliable, hydrogen ion injectors. In 1986, a program using CW RFQ technology was undertaken at CRL in collaboration with LANL and was continued there until 1993. During this time, an accelerator was built which produced 600 keV, 75 mA and 1,250 keV, 55 mA CW proton beams. The present program at Los Alamos using this accelerator is aimed at continuing the CRL work to demonstrate long-term reliability. In the present work, the authors are seeking to determine the optimal match to and the current limit of the 1,250-keV RFQ. This paper discusses the characterization of the 50 keV beams at the exit of the single-solenoid LEBT and presents both the experimental measurements and the beam simulations done to model this system

  15. Design studies of an electrostatic quadrupole channel for transport of a high-brightness H- beam and comparison with gas focusing

    International Nuclear Information System (INIS)

    Chang, C.R.; Horowitz, E.; Reiser, M.

    1989-01-01

    Transport of low-energy, high-brightness H - beams from the ion source to the radio-frequency quadrupole (RFQ) accelerator requires the solution of several physics and engineering problems to avoid particle losses and emittance growth. The authors developed a conceptual design of an electrostatic quadrupole channel for transport of a 120 keV, 120 mA, H - beam into a 425 MHz RFQ with low emittance growth and high transmission efficiency. This design satisfies several constraints imposed by voltage breakdown and beam optics considerations. The system will consist entirely of electrostatic lenses which prevent plasma build-up and eliminate possible emittance growth from plasma fluctuations. Pertinent design features a worst case non-linear analysis for the electrostatic quadrupole channel, and first results of a particle simulation code used to study beam loss and emittance growth are reported. As an alternative to the electrostatic quadrupole concept, gas focusing is being investigated for transporting low-energy H - beams. Recent results from the numerical simulations of such a gas focussing channel are presented

  16. Microwave Ion Source and Beam Injection for an Accelerator-driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomic fraction >90 percent was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D+ beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. We observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  17. Microwave Ion Source and Beam Injection for an Accelerator-Driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm 2 and with atomic fraction > 90% was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D + beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. They observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  18. Mentalization in adults with attention deficit hyperactivity disorder: Comparison with controls and patients with borderline personality disorder.

    Science.gov (United States)

    Perroud, Nader; Badoud, Deborah; Weibel, Sébastien; Nicastro, Rosetta; Hasler, Roland; Küng, Anne-Lise; Luyten, Patrick; Fonagy, Peter; Dayer, Alexandre; Aubry, Jean-Michel; Prada, Paco; Debbané, Martin

    2017-10-01

    Emotion dysregulation and interpersonal hardships constitute core features of borderline personality disorder (BPD). Research has established the link between these core dysregulations and fluctuations in the capacity to appreciate the mental states that underlie behavior (mentalizing, operationalized as reflective functioning (RF)). As emotion dysregulation and interpersonal hardships also characterize adults with attention deficit hyperactivity disorder (ADHD), this study sought to examine the potential RF impairments affecting this population. 101 adults with ADHD, 108 with BPD and 236 controls were assessed using the RF questionnaire (RFQ), evaluating how individuals employ information about mental states to better understand their own and others' behaviors. The RFQ comprises two dimensions, certainty (RF_c) and uncertainty (RF_u) about mental states. RF scores helped distinguish ADHD from controls, but also from BPD (F = 48.1 (2/441) ; p attentional and hyperactive/impulsive symptoms) was correlated with RF impairments. In conclusion, RF may constitute an important process underlying attentional, hyperactive/impulsive as well as emotional symptoms in ADHD; it should therefore be considered in the assessment of these patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Improvements to the internal and external antenna H(-) ion sources at the Spallation Neutron Source.

    Science.gov (United States)

    Welton, R F; Dudnikov, V G; Han, B X; Murray, S N; Pennisi, T R; Pillar, C; Santana, M; Stockli, M P; Turvey, M W

    2014-02-01

    The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H(-) beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H(-) yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.

  20. Reasons for quitting: intrinsic and extrinsic motivation for smoking cessation in a population-based sample of smokers.

    Science.gov (United States)

    Curry, S J; Grothaus, L; McBride, C

    1997-01-01

    An intrinsic-extrinsic model of motivation for smoking cessation is extended to a population-based sample of smokers (N = 1,137), using a previously validated Reasons for Quitting (RFQ) scale. Psychometric evaluation of the RFQ replicated the model that includes health concerns and self-control as intrinsic motivation dimensions and immediate reinforcement and social influence as extrinsic motivation dimensions. Compared to volunteers, the population-based sample of smokers reported equivalent health concerns, lower self-control, and higher social influence motivation for cessation. Within the population-based sample, women compared to men were less motivated to quit by health concerns and more motivated by immediate reinforcement; smokers above age 55 expressed lower health concerns and higher self-control motivation than smokers below age 55. Higher baseline levels of intrinsic relative to extrinsic motivation were associated with more advanced stages of readiness to quit smoking and successful smoking cessation at a 12-month follow-up. Among continuing smokers, improvement in stage of readiness to quit over time was associated with significant increases in health concerns and self-control motivation.

  1. Sources of motivation for abstinence: a replication analysis of the reasons for quitting questionnaire.

    Science.gov (United States)

    Downey, L; Rosengren, D B; Donovan, D M

    2001-01-01

    The Reasons for Quitting Questionnaire (RFQ) as modified by McBride and colleagues (C. M. McBride et al., 1994) for use with substance users other than tobacco smokers, was administered to individuals approved for public-sector addiction treatment. Four motivation dimensions, similar to those found by McBride et al., were identified: self-concept issues, health concerns, legal issues, and social influence. A forced two-component solution yielded dimensions interpretable as intrinsic and extrinsic motivation. Self-concept issues provided the highest levels of motivation for abstinence in this sample, with moderate levels provided by health concerns, and the lowest levels provided by legal and social influence components. Intrinsic motivation was higher than extrinsic motivation. Logistic regression models, with adjustment for total motivation, tested the association of successful abstinence during a follow-up period with baseline extrinsic and intrinsic motivation, and with the difference between intrinsic and extrinsic levels. All three associations were significant: intrinsic motivation (positive association), extrinsic motivation (negative association), and the difference score (positive association). The results suggest the usefulness of the 20-item modified RFQ in evaluating motivation for abstinence among treatment seekers exhibiting severe negative consequences of addiction. Testing with samples varying in severity of addiction consequences is recommended.

  2. LINAC5 - A Quasi-Alvarez Linac for BioLEIR

    International Nuclear Information System (INIS)

    Garland, J M; Lallement, J-B; Lombardi, A

    2017-01-01

    LINAC5 is a new linac proposed for the acceleration of light ions with Q/A = 1/3 to 1/4 for medical applications within the BioLEIR (Low Energy Ion Ring) design study at CERN. We propose a novel quasi-Alvarez drift-tube linac (DTL) accelerating structure design for LINAC5, which can reduce the length of a more conventional DTL structure, yet allows better beam focussing control and flexibility than the inter-digital H (IH) structures typically used for modern ion acceleration. We present the main sections of the linac with total length ∼12 m, including a 202 MHz radio frequency quadrupole (RFQ) a matching medium energy beam transport (MEBT) and a 405 MHz quasi-Alvarez accelerating section with an output energy of 4.2 MeV/u. Permanent magnet quadrupoles are proposed for use in the quasi-Alvarez structure to improve the compactness of the design and increase the efficiency. Lattice design considerations, multi-particle beam dynamics simulations and RFQ and radio frequency (RF) cavity designs are presented. (paper)

  3. Vacuum simulation and characterization for the Linac4 H- source

    Science.gov (United States)

    Pasquino, C.; Chiggiato, P.; Michet, A.; Hansen, J.; Lettry, J.

    2013-02-01

    At CERN, the 160 MeV H- Linac4 will soon replace the 50 MeV proton Linac2. In the H- source two major sources of gas are identified. The first is the pulsed injection at about 0.1 mbar in the plasma chamber. The second is the constant H2 injection up to 10-5 mbar in the LEBT for beam space charge compensation. In addition, the outgassing of materials exposed to vacuum can play an important role in contamination control and global gas balance. To evaluate the time dependent partial pressure profiles in the H- ion source and the RFQ, electrical network - vacuum analogy and test particle Monte Carlo simulation have been used. The simulation outcome indicates that the pressure requirements are in the reach of the proposed vacuum pumping system. Preliminary results show good agreement between the experimental and the simulated pressure profiles; a calibration campaign is in progress to fully benchmark the implemented calculations. Systematic outgassing rate measurements are on-going for critical components in the ion source and RFQ. Amongst them those for the Cu-coated SmCo magnet located in the vacuum system of the biased electron dump electrode, show results lower to stainless steel at room temperature.

  4. CERN Linac4 - The Space Charge Challenge Design and Commission

    CERN Document Server

    Hein, Lutz Matthias; Holzer, Bernhard

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting $H^-$ ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the low energy beam transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to re-construct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam...

  5. Improved Bevatron local injector ion source performance

    International Nuclear Information System (INIS)

    Stover, G.; Zajec, E.

    1985-05-01

    Performance tests of the improved Bevatron Local Injector PIG Ion Source using particles of Si 4 + , Ne 3 + , and He 2 + are described. Initial measurements of the 8.4 keV/nucleon Si 4 + beam show an intensity of 100 particle microamperes with a normalized emittance of .06 π cm-mrad. A low energy beam transport line provides mass analysis, diagnostics, and matching into a 200 MHz RFQ linac. The RFQ accelerates the beam from 8.4 to 200 keV/nucleon. The injector is unusual in the sense that all ion source power supplies, the ac distribution network, vacuum control equipment, and computer control system are contained in a four bay rack mounted on insulators which is located on a floor immediately above the ion source. The rack, transmission line, and the ion source housing are raised by a dc power supply to 80 kilovolts above earth ground. All power supplies, which are referenced to rack ground, are modular in construction and easily removable for maintenance. AC power is delivered to the rack via a 21 kVA, 3-phase transformer. 2 refs., 5 figs., 1 tab

  6. Bringing up beams

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, commissioning began on CERN’s newest linear accelerator: Linac4. As the replacement machine for Linac2, Linac4 will take a negative hydrogen ion beam to a staggering 160 MeV. We check in to see how the Linac4 team is preparing its machine for its new role as the first link in the accelerator chain.   The Linac4 3 MeV beam line, with the ion source in the back, the RFQ in the middle and the chopping line in the front. On 14 November, members of the Linac4 collaboration and the CERN Operations Group were brought together for their first “real day” in the Linac4 Control Room. Together, they successfully accelerated their first hydrogen ion beam to 3 MeV. It was an exciting moment for everyone involved and marked the start of one of the most critical commissioning phases for the new accelerator. At the start of the Linac4 beam line sits the CERN-made Radio Frequency Quadrupole (RFQ). This vital piece of machinery takes the beam from 45 keV to 3 MeV in ju...

  7. Design, operational experiences and beam results obtained with the SNS H- ion source and LEBT at Berkeley Lab

    International Nuclear Information System (INIS)

    Keller, R.; Thomae, R.; Stockli, M.; Welton, R.

    2002-01-01

    The ion source and Low-Energy Transport (LEBT) system that will provide H - ion beams to the Spallation Neutron Source (SNS)** Front End and the accelerator chain have been developed into a mature unit that fully satisfies the operational requirements through the commissioning and early operating phases of SNS. Compared to the early R and D version, many features of the ion source have been improved, and reliable operation at 6% duty factor has been achieved producing beam currents in the 35-mA range and above. LEBT operation proved that the purely electrostatic focusing principle is well suited to inject the ion beam into the RFQ accelerator, including the steering and pre-chopping functions. This paper will discuss the latest design features of the ion source and LEBT, give performance data for the integrated system, and report on commissioning results obtained with the SNS RFQ and Medium-Energy Beam Transport (MEBT) system. Prospects for further improvements will be outlined in concluding remarks

  8. ASACUSA facility

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Photo 1-6 : view of the RFQ - RFQ of the ASACUSA experiment. It allows to slow down antiprotons coming from the AD from 5 MeV to 100 KeV with high efficiency. -------------- Photo 7 - 16 : view of the TRAP - The ASACUSA Cusp trap. Thanks to its special magnetic field configuration, it enables the extraction of an anti-hydrogen beam, thus allowing a high precision microwave spectroscopy outside the magnetic field of the trap. This new method opens a new path to make a stringent test of CPT symmetry between matter and antimatter. #mypanoviewer { height:480px; width: 800px; margin:auto} var viewer=new PTGuiViewer(); viewer.setSwfUrl("/record/1331558/files/PTGuiViewer.swf"); viewer.preferFlashViewer(); viewer.setVars({ pano: "/record/1331558/files/panoA_", format: "14faces", pan: 0, minpan: -180, maxpan: 180, tilt:0, mintilt: -75.60468140442133, maxtilt: 75.60468140442133, fov: 90, minfov: 10, maxfov: 120, autorotatespeed: 5, autorotatedelay: 1...

  9. PIP-II Injector Test: Challenges and Status

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, P. F. [Fermilab; Carneiro, J. P. [Fermilab; Edelen, J. [Fermilab; Lebedev, V. [Fermilab; Prost, L. [Fermilab; Saini, A. [Fermilab; Shemyakin, A. [Fermilab; Steimel, J. [Fermilab

    2016-10-04

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H- superconducting RF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the Injector Test warm front end, including results of the beam commissioning through the installed components, and progress with SRF cryomodules and other systems.

  10. The LINAC4 Project at CERN

    CERN Document Server

    Arnaudon, L; Bertone, C; Body, Y; Broere, J; Brunner, O; Buzio, M; Carli, C; Caspers, F; Corso, JP; Coupard, J; Dallocchio, A; Dos Santos, N; Garoby, R; Gerigk, F; Hammouti, L; Hanke, K; Jones, M; Kozsar, I; Lettry, J; Lallement, JB; Lombardi, A; Lopez-Hernandez, LA; Maglioni, C; Mathot, S; Maury, S; Mikulec, B; Nisbet, D; Noels, C; Paoluzzi, M; Puccio, B; Raich, U; Ramberger, S; Rossi, C; Schwerg, N; Scrivens, R; Vandoni, G; Weisz, S; Vollaire, J; Vretenar, M; Zickler, T

    2011-01-01

    As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H¯ linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the PS Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H¯ source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the L...

  11. Design and commissioning of a 16.1 MHz multiharmonic buncher for the reaccelerator at NSCL

    Science.gov (United States)

    Alt, Daniel Maloney

    The ReAccelerator (ReA) linear accelerator facility at the National Superconducting Cyclotron Laboratory is a unique resource for the nuclear physics community. The particle fragmentation beam production technique, combined with the ability to stop and then reaccelerate the beam to energies of astrophysical interest, give experimenters an unprecedented range of rare isotopes at energies of nuclear and astrophysical interest. The ReAccelerator also functions as a testbed for technology to be incorporated in the upcoming Facility for Rare Isotope Beams linear accelerator, which will eventually in turn become the beam source for ReA. This prototype nature of the ReAccelerator, however, dictated some design choices which have resulted in a final beam with a time structure that is less than ideal for certain classes of experiments. The cavities and RFQ used in ReA have an operating frequency of 80.5 MHz, which corresponds to a separation between particle bunches at the detectors of 12.4 ns. While this separation is acceptable for many experiments, sensitive time of flight measurements require a greater separation between pulses. As nuclear physics experiments rely on statistics, a solution to increasing bunch separation without simply discarding a large fraction of the beam particles was desired. This document describes the design and construction of such a device, a 16.1 MHz multiharmonic buncher. The first chapter provides backgound information on the NSCL and ReA, and some basic concepts in accelerator physics to lay the groundwork for the project.Next, more specifics are provided on the time structure of accelerated beams, and the experimental motivation for greater separation. The third chapter outlines the basic principles of multiharmonic bunching. In order to evaluate the feasibility of any buncher design, the exact acceptance of the Radiofrequency Quadrupole (RFQ) of the ReAccelerator needed to be empirically measured. Chapter 4 describes the results of that

  12. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design

    International Nuclear Information System (INIS)

    Lee, Pei-Yi; Jiang, Shiang-Huei; Liu, Yuan-Hao

    2014-01-01

    The 7 Li(p,xn) 7 Be nuclear reaction, based on the low-energy protons, could produce soft neutrons for accelerator-based boron neutron capture therapy (AB-BNCT). Based on the fact that the induced neutron field is relatively divergent, the relationship between the incident angle of proton beam and the neutron beam quality was evaluated in this study. To provide an intense epithermal neutron beam, a beam-shaping assembly (BSA) was designed. And a modified Snyder head phantom was used in the calculations for evaluating the dosimetric performance. From the calculated results, the intensity of epithermal neutrons increased with the increase in proton incident angle. Hence, either the irradiation time or the required proton current can be reduced. When the incident angle of 2.5-MeV proton beam is 120 deg., the required proton current is ∼13.3 mA for an irradiation time of half an hour. The results of this study show that the BSA designs can generate neutron beams with good intensity and penetrability. Using a 20-mA, 2.5-MeV proton beam as the source, the required irradiation time, to induce 60 RBE-Gy of maximum tumour dose, is less than half an hour in any proton beam alignments. On the premise that the dosimetric performances are similar, the intensity of epithermal neutrons can be increased by using non-collinear (e.g. 90 deg., 120 deg.) incident protons. Thus, either the irradiation time or the required proton current can be reduced. The use of 120 deg. BSA model shows the possibility to reduce the required proton current to ∼13.3 mA when the goal of irradiation time is 30 min. The decrease of required proton beam current certainly will make the use of lithium target much easier. In June 2013, a 5-MeV, 30-mA radio frequency quadruple (RFQ) accelerator for BNCT was built at INFN-LNL (Legnaro National Laboratories, Italy), which shows a possibility to build a suitable RFQ accelerator for the authors' design. In addition, a 2.5-MeV, 30-mA Tandem accelerator was

  13. First trial of the muon acceleration for J-PARC muon g-2/EDM experiment

    Science.gov (United States)

    Kitamura, R.; Otani, M.; Fukao, Y.; Kawamura, N.; Mibe, T.; Miyake, Y.; Shimomura, K.; Kondo, Y.; Hasegawa, K.; Bae, S.; Kim, B.; Razuvaev, G.; Iinuma, H.; Ishida, K.; Saito, N.

    2017-07-01

    Muon acceleration is an important technique in exploring the new frontier of physics. A new measurement of the muon dipole moments is planned in J-PARC using the muon linear accelerator. The low-energy (LE) muon source using the thin metal foil target and beam diagnostic system were developed for the world’s first muon acceleration. Negative muonium ions from the thin metal foil target as the LE muon source was successfully observed. Also the beam profile of the LE positive muon was measured by the LE-dedicated beam profile monitor. The muon acceleration test using a Radio-Frequency Quadrupole linac (RFQ) is being prepared as the first step of the muon accelerator development. In this paper, the latest status of the first muon acceleration test is described.

  14. A heavy ion linac complex for RI beams

    International Nuclear Information System (INIS)

    Arai, Shigeaki

    1995-01-01

    A heavy ion linac complex for RI-beams has been under construction since fiscal year 1992 at INS. The linac complex comprises following accelerating structures: a 25.5-MHz split coaxial RFQ (SCRFQ), a 51-MHz interdigital-H (IH) linac, and a 25.5-MHz rebuncher cavity. The SCRFQ with modulated vanes accelerates ions with a charge-to-mass ratio (q/A) greater than 1/30 from 2 to 170 keV/u. The IH linac comprises four cavities and three magnetic quadrupole triplets placed between cavities, accelerates ions with q/A≥1/10, and varies the output energy continuously in the range 0.17 ∼1.05 MeV/u. The rebuncher cavity with six accelerating gaps is a double coaxial λ/4 resonator, and the total accelerating voltage is 200 kV. (author)

  15. An outline of the proton accelerator for the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu; Kusano, Joichi; Hasegawa, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-11-01

    A research project has been proposed in JAERI aiming at exploring new basic researches and nuclear energy engineering based on a high intensity proton linac with a 1.5 GeV and 8 MW beam. The research complex will be composed of facilities such as the Neutron Scattering Facility for condensed matter physics and the Nuclear Energy Related Facility for engineering test of nuclear waste transmutation. The R and D has been carried out for the components of the low energy part of the accelerator; ion source, RFQ, DTL and RF source. For the high energy portion above 100 MeV, the development on a superconducting accelerating cavity as a major option has been performed. The paper will present the summary on a development plan to build the accelerator and the results of conceptual design study and the R and D work. (author)

  16. Commissioning the GTA accelerator

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-01-01

    The Ground Test Accelerator (GTA) is being used to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H - beam and then neutralizing it. The goal is to produce a 24 MeV, 50 mA device with a 2% duty factor. Specific features of the GTA -- injector, beam optics, rf linac structures, diagnostics, control and rf power systems are described. The first four steps in commissioning have been completed. The RFQ predicted and measured performances are in good agreement; however, the transmission is lower than specifications. Input emittance is larger than design specifications and increases the effects of image charge and multipoles. Displacement of steering magnets in either the horizontal or vertical plane caused beam displacements in both planes. It is suspected that quadrupole rotation is the cause of the coupled motion. 9 figs., 5 tabs., 11 refs

  17. Effect Of The LEBT Solenoid Magnetic Field On The Beam Generation For Particle Tracking

    CERN Document Server

    Yarmohammadi Satri, M; CERN. Geneva. ATS Department

    2013-01-01

    Linac4 is a 160 MeV H- linear accelerator which will replace the 50 MeV proton Linac2 for upgrade of the LHC injectors with higher intensity and eventually an increase of the LHC luminosity. Linac4 structure is a source, a 45 keV low energy beam transport line (LEBT) with two solenoids, a 3 MeV Radiofrequency Quadrupole (RFQ), a Medium Energy Beam Transport line (MEBT), a 50 Mev DTL, a 100 Mev CCDTL and PIMS up to 160 Mev. We use Travel v4.07 and PathManager code for simulation. Firstly, we need to a file as a source and defining the beginning point (last point in tracking back) of simulation. We recognise the starting point base on the solenoid magnetic property of LEBT.

  18. Design and fabrication of the BNL radio frequency quadrupole

    International Nuclear Information System (INIS)

    McKenzie-Wilson, R.B.

    1983-01-01

    The Brookhaven National Laboratory polarized H - injection program for the AGS will utilize a Radio Frequency Quadrupole for acceleration between the polarized source and the Alvarez Linac. Although operation will commence with a few μ amperes of H - current, it is anticipated that future polarized H - sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, and removal of heat from the vanes. The cavity design philosophy will be discussed together with the thermodynamics of heat removal from the vane. Details of the fabrication will be presented with a status report

  19. The LPCTrap for the measurement of the β- ν correlation in 6He

    International Nuclear Information System (INIS)

    Rodriguez, D.; Mery, A.; Darius, G.; Herbane, M.; Ban, G.; Delahaye, P.; Durand, D.; Flechard, X.; Labalme, M.; Lienard, E.; Mauger, F.; Naviliat-Cuncic, O.

    2005-01-01

    The application of traps to precision measurements of the β-ν angular correlation coefficient a in nuclear β-decay is pursued by several laboratories world wide. Various nuclear transitions are addressed and different trap devices are used. At GANIL, a novel transparent Paul trap (LPCTrap) has been built downstream from the SPIRAL source to determine a in the pure Gamow-Teller decay of 6 He. This transition is driven by the axial-vector interaction. The forbidden tensor interaction may be observed through a precise measurement of a. The LPCTrap consists of an RFQ-Buncher, a transparent Paul trap, and the detection system. It is currently the only facility that uses a Paul trap with a novel geometry to perform high-precision nuclear physics experiments. All the elements have been tested and meet the requirements. In this contribution we give a short status report of the project underlining the highlights achieved so far. (orig.)

  20. Status of the LPCTrap facility at GANIL

    International Nuclear Information System (INIS)

    Duval, F.; Mery, A.; Ban, G.; Durand, D.; Flechard, X.; Labalme, M.; Lienard, E.; Mauger, F.; Naviliat-Cuncic, O.; Rodriguez-Rubiales, D.; Thomas, J.C.

    2008-01-01

    The LPCTrap is a device whose central element is a transparent Paul trap for the efficient trapping of low energy radioactive ions produced by the SPIRAL facility at GANIL. The installation comprises a linear RFQ cooler and buncher for the beam preparation, and a decay chamber where the Paul trap is located. The system has been tested with ions having mass-to-charge ratios ranging from 4 to 40. The first run with radioactive 6 He + ions has demonstrated the overall performance of the system. In this contribution we describe the current status of the device, we present in particular the results of a numerical study carried out to determine the properties of the ion cloud inside the trap and provide updated values for the overall efficiency of the system.

  1. First high energy hydrogen cluster beams

    International Nuclear Information System (INIS)

    Gaillard, M.J.; Genre, R.; Hadinger, G.; Martin, J.

    1993-03-01

    The hydrogen cluster accelerator of the Institut de Physique Nucleaire de Lyon (IPN Lyon) has been upgraded by adding a Variable Energy Post-accelerator of RFQ type (VERFQ). This operation has been performed in the frame of a collaboration between KfK Karlsruhe, IAP Frankfurt and IPN Lyon. The facility has been designed to deliver beams of mass selected Hn + clusters, n chosen between 3 and 49, in the energy range 65-100 keV/u. For the first time, hydrogen clusters have been accelerated at energies as high as 2 MeV. This facility opens new fields for experiments which will greatly benefit from a velocity range never available until now for such exotic projectiles. (author) 13 refs.; 1 fig

  2. Status of the REX-ISOLDE project

    CERN Document Server

    Von Hahn, R; Podlech, H; Repnow, R; Schwalm, D; Bongers, H; Habs, D; Kester, O; Sieber, T; Rudolph, K; Thirolf, P G; Schempp, A; Smes, F; Bollen, G; Deloose, I; Ratzinger, U; Liljeby, L; Rensfelt, K G; Wenander, F; Van Duppen, P; Walter, G; Richter, A; Ostrowski, A N; Schotter, A; MacKay, W W

    1999-01-01

    The radioactive beam experiment REX-ISOLDE, a pilot experiment testing a new concept of post acceleration of radioactive ions at ISOLDE/CERN is in progress. Singly charged radioactive ions delivered by the online mass separator ISOLDE are accumulated in a Penning trap (REX trap), charge bred in an electron beam ion source (EBIS), separated from the residual gas in a mass separator and then accelerated in a linac with output energies between 0.8 and 2.2 MeV /u. The REX trap is in operation, a first test beam was already injected. The design phase of the EBIS is finished and the construction has been started. The superconducting magnet is delivered. The linac consists of a radiofrequency quadrupole (RFQ) accelerator, an interdigital IH-structure and 3 seven gap resonators to vary the final energy. (12 refs).

  3. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John [CPAC, Livermore, CA (United States); Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hamm, Robert W. [R and M Technical Enterprises, Pleasanton, CA (United States); Becker, Reinard [Scientific Software Service, Gelnhausen (Germany)

    2011-12-13

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  4. Superconducting ECR ion source system

    International Nuclear Information System (INIS)

    Sharma, S.C.; Gore, J.A.; Gupta, A.K.; Saxena, A.

    2017-01-01

    In order to cover the entire mass range of the elements across the periodic table, an ECR based heavy ion accelerator programme, consisting of a superconducting ECR (Electron Cyclotron Resonance) source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting resonator cavities has been proposed. The 18 GHz superconducting ECR ion source system has already been commissioned and being operated periodically at FOTIA beam hall. This source is capable of delivering ion beams right from proton to uranium with high currents and high charge states over a wide mass range (1/7 ≤ q/m ≤ 1/2) across the periodic table, including U"3"4"+ (q/m∼1/7) with 100 pna yield. The normalized transverse beam emittance from ECR source is expected to be <1.0 pi mm mrad. ECR ion sources are quite robust, making them suitable for operating for weeks continuously without any interruption

  5. CWDD accelerator at Argonne: Status and future opportunities

    International Nuclear Information System (INIS)

    McMichael, G.; Carwardine, J.; Den Hartog, P.; Sagalovsky, L.; Yule, T.; Clarkson, I.; Papsco, R.; Pile, G.

    1994-01-01

    The Continuous Wave Deuterium Demonstrator (CWDD) accelerator, a cryogenically-cooled (26K) linac, was designed to accelerate 80 mA cw of D to 7.5 MeV. CWDD was being built to demonstrate the launching of a beam with characteristics suitable for a space-based neutral particle beam (NPB). A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding ended in October 1993. Existing assets have been turned over to Argonne for continuation under other sponsors. These include a fully functional 200 kV cw D injector and high power (1 MW) cw rf amplifier, a cw RFQ that has been tuned, leak checked and aligned, and a partially completed ramped-gradient DTL. Project status and achievements are reviewed and proposals for future use of the equipment are discussed

  6. Proposal for a verification facility of ADS in China

    International Nuclear Information System (INIS)

    Guan Xialing; Luo Zhanglin

    1999-01-01

    The concept, general layout and some specifications of a proposed verification facility of the accelerator driven radioactive clean nuclear power system (AD-RCNPS) in China are described. It is composed of a 150 MeV/3 mA low energy accelerator, a swimming pool reactor and some basic research facilities. The 150 MeV accelerator consists of an ECR proton source, LEBT, RFQ, CCDTL and SCC. As the sub-critical reactor, the swimming pool reactor is an existing research reactor at the China Institute of Atomic Energy, whose maximum output power is 3.5 MW. The effect of the instability of proton beam and possibility of simulation tests on the verification facility have been analysed. (author)

  7. Essay of accelerator R and D in a small laboratory of a university. Prototype of IHQ linac 1985-1989

    International Nuclear Information System (INIS)

    Hattori, Toshiyuki

    2004-01-01

    This is a series of stories on developing particle accelerators employing new acceleration principles at a university laboratory. In this paper the design, the cold-model test, the fabrication and the acceleration test of a linear accelerator (linac) of 'IHQ' type are described. The word IHQ is coined by combining 'Inter-digital H' and 'Radio-Frequency Quadrupole', which are the words for types of linacs. The linac of IHQ type can accelerate particles with rather low injection energy and can perform a high acceleration efficiency. In the acceleration test, the proton beam from an RFQ linac with an energy of 0.8MeV was injected to the IHQ linac and accelerated up to 2 MeV as designed. The effective shunt impedance of the accelerator structure was measured to be as high as 132MΩ/m as expected. (K.Y.)

  8. Mechanical design of the SNS MEBT

    International Nuclear Information System (INIS)

    Oshatz, D.; DeMello, A.; Doolittle, L.; Luft, P.; Staples, J.; Zachoszcz, A.

    2001-01-01

    The Lawrence Berkeley National Laboratory (LBNL) is presently designing and building the 2.5 MeV front end for the Spallation Neutron Source (SNS). The front end includes a medium-energy beam transport (MEBT) that carries the 2.5 MeV, 38 mA peak current, H - beam from the radio frequency quadrupole (RFQ) to the drift tube linac (DTL) through a series of 14 electromagnetic quadrupoles, four rebuncher cavities, and a fast traveling wave chopping system. The beamline contains numerous diagnostic devices, including stripline beam position and phase monitors (BPM), toroid beam current monitors (BCM), and beam profile monitors. Components are mounted on three rafts that are separately supported and aligned. The large number of beam transport and diagnostic components in the 3.6 meter-long beamline necessitates an unusually compact mechanical design

  9. Progress report

    International Nuclear Information System (INIS)

    1992-11-01

    Despite an austerity program sound research continues to be done. Notable is a successful demonstration of direct injection from the ECR ion source into the RFQ accelerator with an accelerated current of 55 mA. The electron beam for the Laser Plasma Beatwave Accelerator has now been successfully transported through the interaction chamber with synchronization of the electron and laser pulses. The challenge for this research is the development of practical accelerators with high accelerating gradients. The neutron scattering program has returned to full normal operation following the restart of NRU. Commissioning of DUALSPEC has reached the stage where the C2 and C5 spectrometers can now be used for experiments. Improvements taking DUALSPEC beyond design specifications are continuing to be made. Work in the area of theoretical physics is reviewed

  10. Pulsed-neutron production at the Brookhaven 200-MeV linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Montemurro, P.; Snead, C.L. Jr.; Tsoupas, N.

    1988-01-01

    The new 750-kV RFQ preinjector and double chopper system capable of selecting single nanosecond micropulses with repetition rates of 0.1--20 MHz has been installed at the Brookhaven 200-MeV proton linac. The micropulse intensity is approximately 1 x 10 9 p/μpulse. Neutron time-of-flight path lengths of 30--100 meter at 0/degree/, 12/degree/, 30/degree/, 45/degree/, 90/degree/ and 135/degree/ are available, as well as a zero degree swinger capable of an angular range of 0--25/degree/. Pulsed neutron beams of monoenergetic (p 7 Li → n 7 Be) and spallation (p 238 U → nx) sources will be discussed in the present paper, as well as detailing the chopped-beam capabilities. 11 refs., 5 figs., 1 tab

  11. New newtron time-of-flight (NTOF) facilities at the Brookhaven 200-MeV Linac

    International Nuclear Information System (INIS)

    Ward, T.E.; Alessi, J.; Brennan, J.; Grand, P.; Lankshear, R.; Snead, C.L.; Tsoupas, N.; Zucker, M.

    1988-01-01

    The installation of a new beam chopper and radio-frequency quadrupole (RFQ) preinjector (750 keV) at the Brookhaven National Laboratory (BNL) 200-MeV Linac will enable single micropulse selection (pulse width 9 pμ pulse with dc-average beam currents of 50 nA-1 μA routinely available. The NTOF facilities consists of 30-100 meter flight paths at angles of 0, 12, 30, 45, 90, and 135/degree/. Lower energies of 93, 117, 139, 161, and 181 MeV are also available as well as polarized beams at much reduced intensities. The present paper describes the new facilities, and the capabilities of future improvements and upgrades, for use in the BNL intermediate energy (p,n) experimental program. 7 refs., 2 figs., 1 tab

  12. H- beam neutralization measurements in a solenoidal beam transport system

    International Nuclear Information System (INIS)

    Sherman, J.; Pitcher, E.; Stevens, R.; Allison, P.

    1992-01-01

    H minus beam space-charge neutralization is measured for 65-mA, 35-keV beams extracted from a circular-aperture Penning surface-plasma source, the small-angle source. The H minus beam is transported to a RFQ matchpoint by a two-solenoid magnet system. Beam noise is typically ±4%. A four-grid analyzer is located in a magnetic-field-free region between the two solenoid magnets. H minus potentials are deduced from kinetic energy measurements of particles (electrons and positive ions) ejected radially from the beam channel by using a griddled energy analyzer. Background neutral gas density is increased by the introduction of additional Xe and Ar gases, enabling the H minus beam to become overneutralized

  13. Fine focusing of intense heavy ions for the production of hot dense matter

    International Nuclear Information System (INIS)

    Heimrich, B.

    1989-02-01

    In order to perform the first experimental studies on the interaction of intense ion beams with matter an electrostatic quadrupole doublet was developed which focuses the space-charge carrying ion beam of the RFQ accelerator at the GSI Darmstadt on an area of 1 mm 2 . By an especially manufactured target holder this intense ion beam was stopped in tungsten targets and the first plasma induced by heavy ions was produced. Electrons and ions which are emitted from the plasmas have been spectroscoped by an especially for this fabricated spectrometer in their energy and time distribution in the eV region by which first comparisons between theory and praxis on the heating of dense matter by intense ion beams could be made. (orig./HSI) [de

  14. Progress in design of the SNS linac

    International Nuclear Information System (INIS)

    Hardekopf, R.

    2001-01-01

    The Spallation Neutron Source (SNS) is a six-laboratory collaboration to build an intense pulsed neutron facility at Oak Ridge, TN. The linac design has evolved from the conceptual design presented in 1997 in order to achieve higher initial performance and to incorporate desirable upgrade features. The linac is now designed to produce 2-MW beam power using a combination of radio-frequency quadrupole (RFQ) linac, drift-tube linac (DTL), coupled-cavity linac (CCL), and superconducting-RF (SRF) linac. Designs of each of these elements support he high peak intensity and high quality beam required for injection into the SNS accumulator ring. This paper will trace the evolution of the linac design and the progress made in the R and D program. (author)

  15. Design and Beam Dynamics Studies of a Multi-Ion Linac Injector for the JLEIC Ion Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P. N.; Plastun, A. S.; Mustapha, B.; Conway, Z. A.

    2016-01-01

    The electron-ion collider (JLEIC) being proposed at JLab requires a new ion accelerator complex which includes a linac capable of delivering any ion beam from hydrogen to lead to the booster. We are currently developing a linac which consists of several ion sources, a normal conducting (NC) front end, up to 5 MeV/u, and a SC section for energies > 5 MeV/u. This design work is focused on the beam dynamics and electrodynamics studies performed to design efficient and cost-effective accelerating structures for both the NC and SC sections of the linac. Currently, we are considering two separate RFQs for the heavy-ion and light-ion beams including polarized beams, and different types of NC accelerating structures downstream of the RFQ. Quarter-wave and half-wave resonators can be effectively used in the SC section.

  16. Preparations for an optical access to the lowest nuclear excitation in {sup 229}Th

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars v.d.; Seiferle, Benedict; Thirolf, Peter [Ludwig-Maximilians-Universitaet Muenchen (Germany); Laatiaoui, Mustapha [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2014-07-01

    The isomeric lowest excited nuclear level of {sup 229}Th has been indirectly measured to be 7.6±0.5 eV (163±11 nm). In order to improve the accuracy as prerequisite of an all-optical control, {sup 229m}Th is populated via a 2% decay branch in the α decay of {sup 233}U. The Thorium ions are extracted and cooled with the help of a buffer gas stopping cell and an RFQ-cooler. In order to suppress accompanying α decay chain products other than {sup 229}Th, a quadrupole mass spectrometer (QMS) is used, performance and extraction efficiency measurements were performed. Following the QMS, the Thorium isomers will be collected on a 50 μm micro electrode. The decay of these isomers can then be detected using deep UV optics, presently in the phase of preparation and adjustment. Newest results are presented.

  17. Highly charged ions at rest: The HITRAP project at GSI

    International Nuclear Information System (INIS)

    Herfurth, F.; Beier, T.; Dahl, L.; Eliseev, S.; Heinz, S.; Kester, O.; Kluge, H.-J.; Kozhuharov, C.; Maero, G.; Quint, W.

    2005-01-01

    A decelerator will be installed at GSI in order to provide and study bare heavy nuclei or heavy nuclei with only few electrons at very low energies or even at rest. Highly-charged ions will be produced by stripping at relativistic energies. After electron cooling and deceleration in the Experimental Storage Ring the ions are ejected out of the storage ring at 4 MeV/u and further decelerated in a combination of an IH and RFQ structure. Finally, they are injected into a Penning trap where the ions are cooled to 4 K. From here, the ions can be transferred in a quasi dc or in a pulsed mode to different experimental setups. This article describes the technical concepts of this project as well as planned key experiments

  18. SPES-BNCT Project Beam Shaping Assembly. State of the Art

    International Nuclear Information System (INIS)

    Ceballos Sanchez, Cesar

    2007-01-01

    The SPES-BNCT project will exploit the intense proton beam provided by the RFQ (30mA, 5MeV), currently under construction at LNL, to yield a neutron source using the 9 Be(p,xn) nuclear reaction. The goal is to setup an accelerator-driven, thermal neutron beam facility, aimed at the Boron Neutron Capture experimental treatment of extended shallow skin melanoma. The neutron energy spectrum is shifted with a beam shaping assembly (BSA) surrounding the target. This device is fully designed with the Monte Carlo simulation code MCNPX, with the purpose of maximizing the thermal neutron component of the beam and focusing it on the irradiation area. (Author)

  19. Focussing magnets for proton Linac of ADS

    International Nuclear Information System (INIS)

    Malhotra, Sanjay; Mahapatra, U.; Singh, Pitamber; Choudhury, R.K.; Goel, Priyanshu; Verma, Vishnu; Bhattacharya, S.; Srivastava, G.P.; Kailas, S.; Sahni, V.C.

    2009-01-01

    A linear accelerator comprising of Radio frequency quadruple (RFQ) and drift tube linac (DTL) is being developed by BARC. The Alvarez type post-coupled cw DTL accelerates protons from an energy of 3 MeV to 20 MeV. The drift tube linac is excited in TM010 mode, wherein the particles are accelerated by longitudinal electric fields at the gap crossings between drift tubes. The particles are subjected to transverse RF defocusing forces at the gap crossings due to the increasing electric fields in the gap. The transverse defocusing is corrected by housing magnetic quadrupole focussing lenses inside the drift tubes. The permanent magnet quadrupoles (PMQs) are placed inside the hermetically sealed drift tubes and provide a constant magnetic field gradient in the beam aperture. This paper discusses various aspects of magnetic design, selection of magnetic materials and the engineering development involved in the prototype development of these drift tubes for proton Linac. (author)

  20. Vacuum system design considerations of the Los Alamos Accelerator Test Stand (ATS)

    International Nuclear Information System (INIS)

    Wilson, N.G.

    1986-01-01

    The accelerator test stand (ATS), in operation at the Los Alamos National Laboratory, includes a hydrogen ion source, low- and high-energy beam-transport sections, and a 425-MHz radio-frequency quadrupole (RFQ) linear accelerator. A 425-MHz drift-tube linac (DTL) and a powered ''buncher'' matching section have been constructed and will be installed on the ATS. The vacuum systems required for the various sections of the ATS are designed to provide: (1) high gas-load capability, as required in the ion source, and (2) high-vacuum capability in the high-power, radio-frequency accelerator sections (where fast vacuum-system response time is of importance) through the use of distributed, differential pumping as a principal vacuum-system feature. This paper describes properties of accelerator materials, vacuum-systems engineering and analysis, vacuum equipment used, and ATS vacuum-system performance