WorldWideScience

Sample records for pediatric dose assessment

  1. Assessment of Regional Pediatric Computed Tomography Dose Indices in Tamil Nadu.

    Science.gov (United States)

    Saravanakumar, A; Vaideki, K; Govindarajan, K N; Jayakumar, S; Devanand, B

    2017-01-01

    The aim of this article is to assess Tamil Nadu pediatric computed tomography (CT) diagnostic reference levels (DRLs) by collecting radiation dose data for the most commonly performed CT examinations. This work was performed for thirty CT scanners installed in various parts of the Tamil Nadu region. The patient cohort was divided into two age groups: <1 year, and 1-5 years. CT dose indices were measured using a 10 cm 3 pencil ion chamber with pediatric head and body polymethyl methacrylate phantoms. Dose data such as volumetric CT dose index (CTDI v ) and dose length product (DLP) on a minimum of twenty average-sized pediatric patients in each category were recorded to calculate a mean site CTDI v and DLP value. The rounded 75 th percentile was used to calculate a pediatric DRL for each hospital, and then region by compiling all results. Data were collected for 3600 pediatric patients. Pediatric CT DRL for two age groups: <1 year (CTDI v and DLP of head [20 mGy, 352 mGy.cm], chest [7 mGy, 120 mGy.cm] and abdomen [12 mGy, 252 mGy.cm]), and 1-5 years (CTDI v and DLP of head [38 mGy, 505 mGy.cm], chest [8 mGy, 132 mGy.cm] and abdomen [14 mGy, 270 mGy.cm]) for select procedures have been calculated. Proposed pediatric DRLs of CTDI v and DLP for head procedure were lower, and for chest and abdomen procedures were higher than European pediatric DRLs for both age groups.

  2. Assessment of regional pediatric computed tomography dose indices in Tamil Nadu

    OpenAIRE

    A Saravanakumar; K Vaideki; K N Govindarajan; S Jayakumar; B Devanand

    2017-01-01

    The aim of this article is to assess Tamil Nadu pediatric computed tomography (CT) diagnostic reference levels (DRLs) by collecting radiation dose data for the most commonly performed CT examinations. This work was performed for thirty CT scanners installed in various parts of the Tamil Nadu region. The patient cohort was divided into two age groups:

  3. Development of low-dose protocols for thin-section CT assessment of cystic fibrosis in pediatric patients.

    LENUS (Irish Health Repository)

    O'Connor, Owen J

    2010-12-01

    To develop low-dose thin-section computed tomographic (CT) protocols for assessment of cystic fibrosis (CF) in pediatric patients and determine the clinical usefulness thereof compared with chest radiography.

  4. Establishment of radiation doses for pediatric X-ray examinations in a large pediatric hospital in Turkey

    International Nuclear Information System (INIS)

    Olgar, T.; Sahmaran, T.

    2017-01-01

    Pediatric patients are more sensitive to ionizing radiation when compared with adults. The aim of this study was to evaluate the radiation doses for some common pediatric x-ray examinations performed with various digital radiography systems. Quality control tests of the digital radiography systems were carried out according to international published protocols before the pediatric dose measurements. Radiation dose measurement was performed by using the x-ray tube outputs and thermoluminescent dosimeter dose measurement methods. In the present study, radiation doses were assessed for 247 chest, 230 pelvis, 194 skull and 73 abdomen x-ray examinations and in total 744 pediatric patients doses were measured. Pediatric patients were classified into four age groups 0-1, 1-5, 5-10 and 10-15 years as given by European Commission guidance. Effective doses were determined for each examination using a PCXMC 2.0 Monte Carlo program. The mean measured entrance skin doses for the age interval 1-5 years and AP projection by using tube output measurement methods were 149 μGy for chest, 304 μGy for pelvis, 387 μGy for skull and 199 μGy for abdomen examinations. The radiation dose results obtained in this study were in the range of the published results in the literature. (authors)

  5. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    International Nuclear Information System (INIS)

    Hui, Peter K.T.; Goo, Hyun Woo; Du, Jing; Ip, Janice J.K.; Kanzaki, Suzu; Kim, Young Jin; Kritsaneepaiboon, Supika; Lilyasari, Oktavia; Siripornpitak, Suvipaporn

    2017-01-01

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  6. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Peter K.T. [Hong Kong Baptist Hospital, Department of Radiology, Hong Kong, SAR (China); Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Du, Jing [Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Beijing (China); Ip, Janice J.K. [Queen Mary Hospital, Department of Radiology, Hong Kong, SAR (China); Kanzaki, Suzu [National Cerebral and Cardiovascular Center, Department of Radiology, Osaka (Japan); Kim, Young Jin [Yonsei University, Shinchon Severance Hospital, Department of Radiology, Seoul (Korea, Republic of); Kritsaneepaiboon, Supika [Songklanagarind Hospital, Prince of Songkla University, Department of Radiology, Hat Yai (Thailand); Lilyasari, Oktavia [University of Indonesia, National Cardiovascular Center Harapan Kita, Department of Cardiology, Jakarta (Indonesia); Siripornpitak, Suvipaporn [Ramathibodi Hospital, Mahidol University, Department of Radiology, Salaya (Thailand)

    2017-07-15

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  7. Assessment of pediatrics radiation dose from routine x-ray ...

    African Journals Online (AJOL)

    Background: Given the fact that children are more sensitive to ionizing radiation than adults,with an increased risk of developing radiation-induced cancer,special care should be taken when they undergo X-ray examinations. The main aim of the current study was to determine Entrance Surface Dose (ESD) to pediatric ...

  8. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    Science.gov (United States)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very

  9. Radiation dose reduction in pediatric CT

    International Nuclear Information System (INIS)

    Robinson, A.E.; Hill, E.P.; Harpen, M.D.

    1986-01-01

    The relationship between image noise and radiation dose was investigated in computed tomography (CT) images of a pediatric abdomen phantom. A protocol which provided a minimum absorbed dose consistent with acceptable image noise criteria was determined for a fourth generation CT scanner. It was found that pediatric abdominal CT scans could maintain diagnostic quality with at least a 50% reduction in dose from the manufacturers' suggested protocol. (orig.)

  10. Peripheral doses from pediatric IMRT

    International Nuclear Information System (INIS)

    Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David

    2006-01-01

    Peripheral dose (PD) data exist for conventional fields (≥10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10 -10 scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged from

  11. Patient-specific dose estimation for pediatric chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Global Applied Science Laboratory, GE Healthcare, Waukesha, Wisconsin 53188 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham North Carolina 27710 (United States)

    2008-12-15

    dose for any other patient in the same size/protocol group who undergoes the chest scan. In summary, this work reported the first assessment of dose variations across pediatric CT patients in the same size/protocol group due to the variability of patient anatomy and body habitus and provided a previously unavailable method for patient-specific organ dose estimation, which will help in assessing patient risk and optimizing dose reduction strategies, including the development of scan protocols.

  12. Update on pediatric resuscitation drugs: high dose, low dose, or no dose at all.

    Science.gov (United States)

    Sorrentino, Annalise

    2005-04-01

    Pediatric resuscitation has been a topic of discussion for years. It is difficult to keep abreast of changing recommendations, especially for busy pediatricians who do not regularly use these skills. This review will focus on the most recent guidelines for resuscitation drugs. Three specific questions will be discussed: standard dose versus high-dose epinephrine, amiodarone use, and the future of vasopressin in pediatric resuscitation. The issue of using high-dose epinephrine for cardiopulmonary resuscitation refractory to standard dose epinephrine has been a topic of debate for many years. Recently, a prospective, double-blinded study was performed to help settle the debate. These results will be reviewed and compared with previous studies. Amiodarone is a medication that was added to the pediatric resuscitation algorithms with the most recent recommendations from the American Heart Association in 2000. Its use and safety will also be discussed. Another topic that is resurfacing in resuscitation is the use of vasopressin. Its mechanism and comparisons to other agents will be highlighted, although its use in the pediatric patient has not been thoroughly studied. Pediatric resuscitation is a constantly evolving subject that is on the mind of anyone taking care of sick children. Clinicians are continually searching for the most effective methods to resuscitate children in terms of short- and long-term outcomes. It is important to be familiar with not only the agents being used but also the optimal way to use them.

  13. Radiation doses in pediatric radiology: influence of regulations and standards

    International Nuclear Information System (INIS)

    Suleiman, O.H.

    2004-01-01

    The benefits of X-ray examinations contribute to the quality of modern medicine; however the risk of using X-rays, a carcinogen, has always been a concern. This concern is heightened for pediatric patients, who have a much greater sensitivity to the carcinogenic effects of radiation than adults. The principle of as low as reasonably achievable, or ALARA, is essential for minimizing the radiation dose patients receive, especially for pediatric patients. In order to keep radiation doses ALARA, one must know the dose patients receive. The determination of radiation dose in a standard way is therefore necessary so that these doses can be compared with practice, and for meaningful comparison against voluntary standards. In extreme situations, where public health needs may require mandatory standards, or regulations, the quantitative measurement and calculation of radiation dose becomes essential. How some radiation dose metrics and standards have evolved, including the value of different metrics such as entrance air kerma, organ dose, and effective dose will be presented. Recent pediatric X-ray studies, whether or not dedicated pediatric equipment is necessary, and recent initiatives by the Food and Drug Administration for pediatric population will be discussed. (orig.)

  14. Key performance indicators for the assessment of pediatric pharmacotherapeutic guidance.

    Science.gov (United States)

    Barrett, Jeffrey S; Patel, Dimple; Jayaraman, Bhuvana; Narayan, Mahesh; Zuppa, Athena

    2008-07-01

    Given the paucity of actual guidance provided for managing pediatric drug therapy, prescribing caregivers must be able to draw on the limited published information in pediatrics and/or guidance provided in adults with some account for expected pediatric response. Guidance for managing drug therapy in children is clearly desirable. Our objectives were to construct key performance indicators (KPIs) for pediatric pharmacotherapy guidance to identify drugs where pharmacotherapy guidance would be most beneficial. A pilot survey to assess variation in caregiver appreciation for pediatric dosing guidance has also been constructed to provide a complementary subjective assessment. Three KPI categories, drug utilization (based on hospital admission and billing data collected from 2001 through 2006), medical need, and guidance outcome value along with a KPI composite score have been proposed. Low scores are favored with respect to prioritization for pharmacotherapy guidance. The pilot survey consisted of 15 questions to assess 1) physician knowledge regarding dosing guidance, 2) attitudes toward dose modification and patient individualization, 3) the accessibility, ease of use and appropriateness of existing data stores, and 4) frequency of dosing modification, consultation of dosing compendiums and estimate of success rate in dosing guidance. Pilot results suggest that dosing guidance is generally viewed as important and that the existing resources are insufficient to guide recommendations for all drugs. While the majority of respondents check more than one resource less than 25% of the time, at least 25% of the respondents check more than one resource 25-50% of the time. The majority viewed the relevance of dosing guidance very important to the management of drug therapy. The questionnaire is being extended to the primary care centers, the Kids First Network and specialty care centers. Results will guide the development of decision support systems (DSS) that provide patient

  15. Management of pediatric radiation dose using Fuji computed radiography

    International Nuclear Information System (INIS)

    MacCutcheon, D.W.

    2004-01-01

    This paper describes the technical details of Fuji Computed Radiography (FCR) and its use as it relates to managing pediatric dose for X-ray examinations. Since its introduction in 1983, Fuji (Fuji Photo Film Co., Ltd.) has developed an extensive set of menu selections with default processing algorithms and corresponding display processing parameters modified for all pediatric exam types. Continued development of imaging plate technology, FCR reader design and image processing have all contributed to improving image quality and creating the opportunity to lower the dose required for pediatric exams. Fuji continues to advance CR and electronic imaging technologies; some of these developments, that may enable lower dose examinations for pediatric imaging in the future, are also described in this paper. (orig.)

  16. Evaluation of radiation dose to pediatric patients during certain special procedures

    International Nuclear Information System (INIS)

    Sulieman, A.; Alzimami, K.; Elhag, B.; Babikir, E.; Alsafi, K.

    2014-01-01

    This study was intended to measure pediatric entrance surface air kerma (ESAK) and effective dose during micturating cystourethrography (MCU), intravenous urography (IVU) and barium studies (barium meal, enema, and swallow) and to propose a local diagnostic reference level (DRL). ESAK was measured for patients using calibrated thermoluminescent dosimeters (TLDs, GR200A). Effective doses (E) were calculated using the National Radiological Protection Board (NRPB) software. A total of 236 special pediatric procedures were investigated. 21.7% of the sample comprised barium procedures, 18.6% were MCU procedures while 59.5% of the sample were IVU procedures. The mean ESAK measurements (mGy) were 2.1±0.8, 3.0±23 and 1.2±0.2 for barium meal, enema and swallow in the same order. The mean patient dose for IVU procedures was 12.4±8.7 mGy per procedure and the mean patient dose per MCU procedure was 5.8±7 mGy. Local DRLs were proposed for all procedures. The patient doses in this study are within the reported values, suggesting that pediatric patients are adequately protected. - Highlights: • Pediatric radiation dose has been evaluated for three of the most common fluoroscopic procedures. • Radiation doses were measured using calibrated TLD GR200A. • Pediatric patients of concern and ESAK doses showed large variations. • The patient doses in this study are within the reported studies suggesting that the pediatric patients are adequately protected

  17. Doses from pediatric CT examinations in Norway: are pediatric scan protocols developed and in daily use?

    International Nuclear Information System (INIS)

    Friberg, Eva G.

    2008-01-01

    Doses to pediatric patients from CT examinations are known to be unnecessarily high if scan protocols developed for adult patients are adopted. This overexposure is most often not recognized by the operating radiographer, due to the digital behavior of the imaging system. Use of optimized size-specific pediatric scan protocols is therefore essential to keep the doses at an appropriate level. The aim of this study was to investigate the doses to pediatric patients from CT examinations and to evaluate the level of optimization of the scan protocols. Patient data, applied scan parameters together with the dose parameters volume computed tomography dose index (CTD vol ) and dose length product (DLP) for examinations of the head, chest and abdomen were collected by means of a questionnaire from five university hospitals. The effective dose was estimated from the total DLP by use of region-specific conversion coefficients (E DLP ). Totally 136, 108 and 82 questionnaires were received for examinations of the head, chest and abdomen, respectively. Large variations in patient doses between the hospitals were observed, addressing the need for optimization of the scan protocols in general. Most of the hospitals applied successive lower mAs with decreasing patient age for all scan areas, while the use of lower tube voltage for small patients and a higher tube voltage for large patients were more rarely. This indicates the presence, to a certain level, of size specific scan protocols at some Norwegian hospitals. Focus on developing size-specific scan protocols for pediatric patients are important to reduce the doses and risks associated with pediatric CT examinations. (author)

  18. Entrance surface dose measurements in pediatric radiological examinations

    International Nuclear Information System (INIS)

    Ribeiro, L.A.; Yoshimura, E.M.

    2008-01-01

    A survey of pediatric radiological examinations was carried out in a reference pediatric hospital of the city of Sao Paulo, in order to investigate the doses to children undergoing conventional X-ray examinations. The results showed that the majority of pediatric patients are below 4 years, and that about 80% of the examinations correspond to chest projections. Doses to typical radiological examinations were measured in vivo with thermoluminescent dosimeters (LiF: Mg, Ti and LiF: Mg, Cu, P) attached to the skin of the children to determine entrance surface dose (ESD). Also homogeneous phantoms were used to obtain ESD to younger children, because the technique uses a so small kVp that the dosimeters would produce an artifact image in the patient radiograph. Four kinds of pediatric examinations were investigated: three conventional examinations (chest, skull and abdomen) and a fluoroscopic procedure (barium swallow). Relevant information about kVp and mAs values used in the examinations was collected, and we discuss how these parameters can affect the ESD. The ESD values measured in this work are compared to reference levels published by the European Commission for pediatric patients. The results obtained (third-quartile of the ESD distribution) for chest AP examinations in three age groups were: 0.056 mGy (2-4 years old); 0.068 mGy (5-9 years old); 0.069 mGy (10-15 years old). All of them are below the European reference level (0.100 mGy). ESD values measured to the older age group in skull and abdomen AP radiographs (mean values 3.44 and 1.20 mGy, respectively) are above the European reference levels (1.5 mGy to skull and 1.0 mGy to abdomen). ESD values measured in the barium swallow examination reached 10 mGy in skin regions corresponding to thyroid and esophagus. It was noticed during this survey that some technicians use, improperly, X-ray fluoroscopy in conventional examinations to help them in positioning the patient. The results presented here are a

  19. Computed radiography dose optimization in pediatric patients

    International Nuclear Information System (INIS)

    Juste, B.; Verdu, G.; Tortosa, R.; Villaescusa, J.I.

    2008-01-01

    Radiation dose reduction in pediatric X-ray imaging is especially important because of children radiation sensitivity. For any radiographic examination performed at a fixed radiographic tube potential, the patient absorbed dose is directly proportional to the value of milliampere-seconds (mAs) selected by the operator. Nevertheless, reducing X-ray exposure has the unavoidable disadvantage of increasing the quantum noise in the resultant image. The objective of this work is to identify the minimum tube current setting required for maintaining accurate examinations, to modify, if required, the daily protocols applied at La Fe de Valencia Universitary Hospital. To accomplish this goal, a noise addition software has been developed in order to study the diagnostic accuracy as a function of reducing dose by artificially increasing the image noise. The noise addition tool has been applied to several thorax images acquired from pediatric unit to simulate new lower dose radiographies and allow medical researchers to study how lower dose affects the patient pneumonia diagnosis. (author)

  20. Management of pediatric radiation dose using GE's Revolution digital radiography systems

    International Nuclear Information System (INIS)

    Jabri, K.N.; Uppaluri, R.; Xue Ping

    2004-01-01

    Digital flat-panel X-ray detectors offer excellent image quality and dose efficiency in addition to clinical productivity, connectivity, and adaptability to advanced clinical applications. GE's Revolution systems provide two modes of exposure control for setting the dose operating point, fixed time and automatic exposure control, the latter of which maintains high image signal-to-noise ratio for the given technique settings. In addition to enhancing detail contrast and compressing the dynamic range, postprocessing automatically determines the best window level and width for display, taking into account the dose at which the image was acquired. Several studies have examined the reduction in patient dose achievable with Revolution systems as compared to competing technologies, and results indicate significant dose savings with equivalent or superior image quality. For pediatric exams, pediatric default techniques provide for a lower patient dose as compared to adult techniques. Therefore, GE's Revolution systems can achieve a high image quality-to-dose ratio for pediatric imaging using the combined advantages of dose-efficient detection, advanced postprocessing, and independently adjustable pediatric techniques. (orig.)

  1. Handbook of selected organ doses for projections common in pediatric radiology

    International Nuclear Information System (INIS)

    Rosenstein, M.; Beck, T.J.; Warner, G.G.

    1979-05-01

    This handbook contains data from which absorbed dose (mrad) to selected organs can be estimated for common projections in pediatric radiology. The organ doses are for three reference patients: a newborn (0 to 6 months), a 1-year old child, and a 5-year old child. One intent of the handbook is to permit the user to evaluate the effect on organ dose to these reference pediatric patients as a function of certain changes in technical parameters used in or among facilities. A second intent is to permit a comparison to be made of organ doses as a function of age. This comparison can be extended to a reference adult by referring to the previous Handbook of Selected Organ Doses fo Projections Common in Diagnostic Radiology, FDA 76-8031. Assignment of organ doses to individual pediatric patients using the Handbook data is not recommended unless the physical characteristics of the patient closely correlate with one of the three reference pediatric patients given in Appendix A

  2. The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography

    International Nuclear Information System (INIS)

    Santos, Joana; Paulo, Graciano; Foley, Shane; Rainford, Louise; McEntee, Mark F.

    2015-01-01

    The volume of CT examinations has increased with resultant increases in collective dose values over the last decade. To analyze the impact of the tube current and voltage modulation for dose values and image quality of pediatric head CT examinations. Head CT examinations were performed on anthropomorphic phantoms and four pediatric age categories before and after the introduction of dedicated pediatric curves for tube voltage and current modulation. Local diagnostic reference levels were calculated. Visual grading characteristic image quality evaluation was performed by four pediatric neuroradiologists and image noise comparisons were performed. Pediatric-specific modulation curves demonstrated a 49% decrease in mean radiation dose for phantom examinations. The local diagnostic reference levels (CTDIvol) for clinical examinations decreased by 52%, 41%, 46% and 40% for newborn, 5-, 10- and 15-year-old patients, respectively. Visual grading characteristic image quality was maintained for the majority of age categorizations (area under the curve = 0.5) and image noise measurements did not change (P = 0.693). Pediatric-specific dose modulation curves resulted in an overall mean dose reduction of 45% with no significant differences in subjective or objective image quality findings. (orig.)

  3. The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joana; Paulo, Graciano [Instituto Politecnico de Coimbra, ESTESC, DMIR, Coimbra (Portugal); Foley, Shane; Rainford, Louise [University College Dublin, School of Medicine and Medical Science, Health Science Centre, Dublin 4 (Ireland); McEntee, Mark F. [The University of Sydney, Faculty of Health Sciences, Cumberland Campus, Sydney (Australia)

    2015-11-15

    The volume of CT examinations has increased with resultant increases in collective dose values over the last decade. To analyze the impact of the tube current and voltage modulation for dose values and image quality of pediatric head CT examinations. Head CT examinations were performed on anthropomorphic phantoms and four pediatric age categories before and after the introduction of dedicated pediatric curves for tube voltage and current modulation. Local diagnostic reference levels were calculated. Visual grading characteristic image quality evaluation was performed by four pediatric neuroradiologists and image noise comparisons were performed. Pediatric-specific modulation curves demonstrated a 49% decrease in mean radiation dose for phantom examinations. The local diagnostic reference levels (CTDIvol) for clinical examinations decreased by 52%, 41%, 46% and 40% for newborn, 5-, 10- and 15-year-old patients, respectively. Visual grading characteristic image quality was maintained for the majority of age categorizations (area under the curve = 0.5) and image noise measurements did not change (P = 0.693). Pediatric-specific dose modulation curves resulted in an overall mean dose reduction of 45% with no significant differences in subjective or objective image quality findings. (orig.)

  4. Evaluation of the Entrance Surface Dose (ESD and Radiation Dose to the Radiosensitive Organs in Pediatric Pelvic Radiography

    Directory of Open Access Journals (Sweden)

    Vahid Karami

    2017-06-01

    Full Text Available Background Patients' dosimetry is crucial in order to enhance radiation protection optimization and to deliver low radiation dose to the patients in a radiological procedure. The aim of this study was to assess the entrance surface dose (ESD and radiation dose to the radiosensitive organs in pediatric pelvic radiography. Materials and Methods The studied population included 98 pediatric patients of both genders referred to anteroposterior (AP projection of pelvic radiography. The radiation dose was directly measured using high radiosensitive cylindrical lithium fluoride thermo-luminescent dosimeters (TLD-GR200. Two TLDs were placed at the center point of the radiation field to measure the ESD of pelvis. Moreover for each patient, 2 TLDs were placed upon each eyelid, 2 TLDs upon each breast, 2 TLDs upon the surface anatomical position of the thyroid gland and finally 2 TLDs at the surface anatomical position of the gonads to measure the received dose. Results The ESD ± standard deviation for AP pelvic radiography was obtained 591.7±76 µGy. Statistically significant difference was obtained between organs located outside and inside of the radiation field with respect to dose received (P

  5. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine.

    Science.gov (United States)

    Grant, Frederick D; Gelfand, Michael J; Drubach, Laura A; Treves, S Ted; Fahey, Frederic H

    2015-04-01

    Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients

  6. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine

    International Nuclear Information System (INIS)

    Grant, Frederick D.; Drubach, Laura A.; Treves, S. Ted; Fahey, Frederic H.; Gelfand, Michael J.

    2015-01-01

    Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients

  7. New technologies to reduce pediatric radiation doses

    International Nuclear Information System (INIS)

    Bernhardt, Philipp; Lendl, Markus; Deinzer, Frank

    2006-01-01

    X-ray dose reduction in pediatrics is particularly important because babies and children are very sensitive to radiation exposure. We present new developments to further decrease pediatric patient dose. With the help of an advanced exposure control, a constant image quality can be maintained for all patient sizes, leading to dose savings for babies and children of up to 30%. Because objects of interest are quite small and the speed of motion is high in pediatric patients, short pulse widths down to 4 ms are important to reduce motion blurring artifacts. Further, a new noise-reduction algorithm is presented that detects and processes signal and noise in different frequency bands, generating smooth images without contrast loss. Finally, we introduce a super-resolution technique: two or more medical images, which are shifted against each other in a subpixel region, are combined to resolve structures smaller than the size of a single pixel. Advanced exposure control, short exposure times, noise reduction and super-resolution provide improved image quality, which can also be invested to save radiation exposure. All in all, the tools presented here offer a large potential to minimize the deterministic and stochastic risks of radiation exposure. (orig.)

  8. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  9. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Bria M.; Brady, Samuel L., E-mail: samuel.brady@stjude.org; Kaufman, Robert A. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States); Mirro, Amy E. [Department of Biomedical Engineering, Washington University, St Louis, Missouri 63130 (United States)

    2014-07-15

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. The CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to

  10. Determination of effective dose in pediatric radiodiagnostic in Medellin-Colombia

    International Nuclear Information System (INIS)

    Garzon, William J.; Aramburo, Javier M.; Jimenez, Angelmiro A.; Ortiz, Anselmo P.

    2013-01-01

    In order to know the effective dose in pediatric X-ray exams of chest, entrance surface dose measurements were performed for ages 1,5 and 10 years in the largest pediatric hospital in the city of Medellin, Colombia. The effective dose was obtained from applying the conversion coefficients to measures of the entrance surface dose (ESD) in 306 radiographic studies in AP and LAT I projections. The results were validated with PCXMC 2.0 computer program and other work reported in the literature. (author)

  11. Development of a method to estimate organ doses for pediatric CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, Antonios E., E-mail: apapadak@pagni.gr; Perisinakis, Kostas; Damilakis, John [Department of Medical Physics, University Hospital of Heraklion, Faculty of Medicine, University of Crete, P.O. Box 1352, Iraklion, Crete 71110 (Greece)

    2016-05-15

    Purpose: To develop a method for estimating doses to primarily exposed organs in pediatric CT by taking into account patient size and automatic tube current modulation (ATCM). Methods: A Monte Carlo CT dosimetry software package, which creates patient-specific voxelized phantoms, accurately simulates CT exposures, and generates dose images depicting the energy imparted on the exposed volume, was used. Routine head, thorax, and abdomen/pelvis CT examinations in 92 pediatric patients, ranging from 1-month to 14-yr-old (49 boys and 43 girls), were simulated on a 64-slice CT scanner. Two sets of simulations were performed in each patient using (i) a fixed tube current (FTC) value over the entire examination length and (ii) the ATCM profile extracted from the DICOM header of the reconstructed images. Normalized to CTDI{sub vol} organ dose was derived for all primary irradiated radiosensitive organs. Normalized dose data were correlated to patient’s water equivalent diameter using log-transformed linear regression analysis. Results: The maximum percent difference in normalized organ dose between FTC and ATCM acquisitions was 10% for eyes in head, 26% for thymus in thorax, and 76% for kidneys in abdomen/pelvis. In most of the organs, the correlation between dose and water equivalent diameter was significantly improved in ATCM compared to FTC acquisitions (P < 0.001). Conclusions: The proposed method employs size specific CTDI{sub vol}-normalized organ dose coefficients for ATCM-activated and FTC acquisitions in pediatric CT. These coefficients are substantially different between ATCM and FTC modes of operation and enable a more accurate assessment of patient-specific organ dose in the clinical setting.

  12. Dose survey of pediatric and adult patients in Sudan

    International Nuclear Information System (INIS)

    Mohamadain, K.E.M.; Azevedo, A.C.P.; And others

    2006-01-01

    A survey of radiation doses to children and adults from diagnostic radiography has been carried out in seven hospitals in Sudan. In four hospitals only pediatric examinations were died. In two hospitals only adult patients were recorded and in one hospital both kinds of patients (pediatric and adults) were evaluated. For pediatric patients only chest x-ray examination was evaluated and children were divided according to age ranges: from (0-1) and 5) years for chest AP only and from (5-10) and (10-15) for chest PA. For adult patients the examinations were chest AP and PA, abdomen AP and skull AP and PA. Entrance Surface Dose SD) and the Effective Dose (E) were calculated using the Dose Cal software. The mean ESD r children, measured in p.Gy, ranged from (45-53) and (53-56) for (0-1) and (1-5) years, respectively and from (55-71) and (68-85) for (5-10) and (10-15) years, respectively. In two of le pediatric hospitals the mean ESD values were greater than the CEC Reference Dose Levels. In El bulk and Si nar hospitals the values ranged from 167-261 and 186-308 μGy for the age ranges (0-1) and (1-5) respectively and 167-194 and 279-312 μGy for the age ranges of (5-10) and (10-15) respectively. For adult patients the ESD and E dose values evaluated in Alfisal hospital presented values comparable with the CEC Reference Dose Level. However for Alshorta hospital the values were higher for the chest AP and PA with results for ESD 0.446 and 0.551 mGy respectively

  13. High-dose infliximab for treatment of pediatric ulcerative colitis: A survey of clinical practice

    Institute of Scientific and Technical Information of China (English)

    Roy Nattiv; Janet M Wojcicki; Elizabeth A Garnett; Neera Gupta; Melvin B Heyman

    2012-01-01

    AIM:TO assess attitudes and trends regarding the use of high-dose infliximab among pediatric gastroenterologists for treatment of pediatric ulcerative colitis (UC).METHODS:A 19-item survey was distributed to subscribers of the pediatric gastroenterology (PEDSGI)listserv.Responses were submitted anonymously and results compiled in a secure website.RESULTS:A total of 113 subscribers (88% based in the United States) responded (101 pediatric gastroenterology attendings and 12 pediatric gastroenterology fellows).There were 46% in academic medical institutions and 39% in hospital-based practices.The majority (91%) were treating >10 patients with UC; 13% were treating >100 patients with UC; 91% had prescribed infliximab (IFX) 5 mg/kg for UC; 72% had prescribed IFX 10 mg/kg for UC.Using a 5-point Likert scale,factors that influenced the decision not to increase IFX dosing in patients with UC included:"improvement on initial dose of IFX" (mean:3.88) and "decision to move to colectomy" (3.69).Lowest mean Likert scores were:"lack of guidelines or literature regarding increased IFX dosing" (1.96) and "insurance authorization or other insurance issues" (2.34)."Insurance authorization or other insurance issues" was identified by 39% as at least somewhat of a factor (Likert score ≥ 3) in their decision not to increase the IFX dose.IFX 10 mg/kg was more commonly used for the treatment of pediatric UC among responders based in the United States (75/100) compared to non-United States responders (6/13,P =0.047).Induction of remission was reported by 78% of all responders and 81% reported maintenance of remission with IFX 10 mg/kg.One responder reported one death with IFX 10 mg/kg.CONCLUSION:IFX 10 mg/kg is more commonly used in the United States to treat pediatric UC.Efficacy and safety data are required to avoid insurance barriers for its use.

  14. TESS-based dose-response using pediatric clonidine exposures.

    Science.gov (United States)

    Benson, Blaine E; Spyker, Daniel A; Troutman, William G; Watson, William A

    2006-06-01

    The toxic and lethal doses of clonidine in children are unclear. This study was designed to determine whether data from the American Association of Poison Control Centers Toxic Exposure Surveillance System (TESS) could be utilized to determine a dose-response relationship for pediatric clonidine exposure. 3,458 single-substance clonidine exposures in children TESS from January 2000 through December 2003 were examined. Dose ingested, age, and medical outcome were available for 1550 cases. Respiratory arrest cases (n = 8) were classified as the most severe of the medical outcome categories (Arrest, Major, Moderate, Mild, and No effect). Exposures reported as a "taste or lick" (n = 51) were included as a dose of 1/10 of the dosage form involved. Dose ranged from 0.4 to 1980 (median 13) microg/kg. Weight was imputed based on a quadratic estimate of weight for age. Dose certainty was coded as exact (26% of cases) or not exact (74%). Medical outcome (response) was examined via logistic regression using SAS JMP (release 5.1). The logistic model describing medical outcome (P TESS data can provide the basis for a statistically sound description of dose-response for pediatric clonidine poisoning exposures.

  15. Effect of staff training on radiation dose in pediatric CT.

    Science.gov (United States)

    Hojreh, Azadeh; Weber, Michael; Homolka, Peter

    2015-08-01

    To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen-pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal-pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen-pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs - available only for CCT and thorax CT - showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    Science.gov (United States)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence

  17. Pediatric radiation dose management in digital radiography

    International Nuclear Information System (INIS)

    Neitzel, U.

    2004-01-01

    Direct digital radiography (DR) systems based on flat-panel detectors offer improved dose management in pediatric radiography. Integration of X-ray generation and detection in one computer-controlled system provides better control and monitoring

  18. Size-appropriate radiation doses in pediatric body CT: a study of regional community adoption in the United States

    International Nuclear Information System (INIS)

    Hopkins, Katharine L.; Vajtai, Petra L.; Pettersson, David R.; Spinning, Kristopher; Beckett, Brooke R.; Koudelka, Caroline W.; Bardo, Dianna M.E.

    2013-01-01

    During the last decade, there has been a movement in the United States toward utilizing size-appropriate radiation doses for pediatric body CT, with smaller doses given to smaller patients. This study assesses community adoption of size-appropriate pediatric CT techniques. Size-specific dose estimates (SSDE) in pediatric body scans are compared between community facilities and a university children's hospital that tailors CT protocols to patient size as advocated by Image Gently. We compared 164 pediatric body scans done at community facilities (group X) with 466 children's hospital scans. Children's hospital scans were divided into two groups: A, 250 performed with established pediatric weight-based protocols and filtered back projection; B, 216 performed with addition of iterative reconstruction technique and a 60% reduction in volume CT dose index (CTDI vol ). SSDE was calculated and differences among groups were compared by regression analysis. Mean SSDE was 1.6 and 3.9 times higher in group X than in groups A and B and 2.5 times higher for group A than group B. A model adjusting for confounders confirmed significant differences between group pairs. Regional community hospitals and imaging centers have not universally adopted child-sized pediatric CT practices. More education and accountability may be necessary to achieve widespread implementation. Since even lower radiation doses are possible with iterative reconstruction technique than with filtered back projection alone, further exploration of the former is encouraged. (orig.)

  19. Size-appropriate radiation doses in pediatric body CT: a study of regional community adoption in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Katharine L.; Vajtai, Petra L. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States); Pettersson, David R.; Spinning, Kristopher; Beckett, Brooke R. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Koudelka, Caroline W. [Oregon Health and Science University, Division of Biostatistics, Department of Public Health and Preventive Medicine, Portland, OR (United States); Bardo, Dianna M.E. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Cardiovascular Medicine, Portland, OR (United States)

    2013-09-15

    During the last decade, there has been a movement in the United States toward utilizing size-appropriate radiation doses for pediatric body CT, with smaller doses given to smaller patients. This study assesses community adoption of size-appropriate pediatric CT techniques. Size-specific dose estimates (SSDE) in pediatric body scans are compared between community facilities and a university children's hospital that tailors CT protocols to patient size as advocated by Image Gently. We compared 164 pediatric body scans done at community facilities (group X) with 466 children's hospital scans. Children's hospital scans were divided into two groups: A, 250 performed with established pediatric weight-based protocols and filtered back projection; B, 216 performed with addition of iterative reconstruction technique and a 60% reduction in volume CT dose index (CTDI{sub vol}). SSDE was calculated and differences among groups were compared by regression analysis. Mean SSDE was 1.6 and 3.9 times higher in group X than in groups A and B and 2.5 times higher for group A than group B. A model adjusting for confounders confirmed significant differences between group pairs. Regional community hospitals and imaging centers have not universally adopted child-sized pediatric CT practices. More education and accountability may be necessary to achieve widespread implementation. Since even lower radiation doses are possible with iterative reconstruction technique than with filtered back projection alone, further exploration of the former is encouraged. (orig.)

  20. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    International Nuclear Information System (INIS)

    Brady, S. L.; Yee, B. S.; Kaufman, R. A.

    2012-01-01

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR™) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR™. Empirically derived dose reduction limits were established for ASiR™ for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%–100% ASiR™ blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR™ implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR™ reconstruction to maintain noise equivalence of the 0% ASiR™ image. Results: The ASiR™ algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR™ reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR™ presented a more smoothed appearance than the pre-ASiR™ 100% FBP image. Finally, relative to non-ASiR™ images with 100% of standard dose across the

  1. Radiation dose associated with CT-guided drain placement for pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G. [University of North Carolina at Chapel Hill, Department of Radiology, UNC Health Care, Chapel Hill, NC (United States); Taylor, J.B. [University of North Carolina at Chapel Hill, Environment, Health and Safety, Chapel Hill, NC (United States)

    2017-05-15

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  2. Radiation dose associated with CT-guided drain placement for pediatric patients

    International Nuclear Information System (INIS)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G.; Taylor, J.B.

    2017-01-01

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  3. Clinical Effectiveness and Dose Titration in Pediatric Practice

    Directory of Open Access Journals (Sweden)

    Yu.V. Marushko

    2016-02-01

    Full Text Available The paper is devoted to the questions of usage of one of the popular antipyretic and anesthetic drug in pediatric practice — ibuprofen. In the article there are generalized literature data and own experience in ibuprofen dose titration in single dose 5 and 10 mg/kg depending on clinical situation.

  4. TESS-based dose-response using pediatric clonidine exposures

    International Nuclear Information System (INIS)

    Benson, Blaine E.; Spyker, Daniel A.; Troutman, William G.; Watson, William A.

    2006-01-01

    Objective: The toxic and lethal doses of clonidine in children are unclear. This study was designed to determine whether data from the American Association of Poison Control Centers Toxic Exposure Surveillance System (TESS) could be utilized to determine a dose-response relationship for pediatric clonidine exposure. Methods: 3458 single-substance clonidine exposures in children <6 years of age reported to TESS from January 2000 through December 2003 were examined. Dose ingested, age, and medical outcome were available for 1550 cases. Respiratory arrest cases (n = 8) were classified as the most severe of the medical outcome categories (Arrest, Major, Moderate, Mild, and No effect). Exposures reported as a 'taste or lick' (n = 51) were included as a dose of 1/10 of the dosage form involved. Dose ranged from 0.4 to 1980 (median 13) μg/kg. Weight was imputed based on a quadratic estimate of weight for age. Dose certainty was coded as exact (26% of cases) or not exact (74%). Medical outcome (response) was examined via logistic regression using SAS JMP (release 5.1). Results: The logistic model describing medical outcome (P < 0.0001) included Log dose/kg (P 0.0000) and Certainty (P = 0.045). Conclusion: TESS data can provide the basis for a statistically sound description of dose-response for pediatric clonidine poisoning exposures

  5. Adapting protocols of CT imaging in a pediatric emergency department. Evaluation of image quality and dose

    International Nuclear Information System (INIS)

    Batista Arce, A.; Gonzalez Lopez, S.; Catalan Acosta, A.; Casares Magaz, O.; Hernandez Armas, O.; Hernandez Armas, J.

    2011-01-01

    The purpose of this study was to assess qualitatively the picture quality in relation to the radiation dose delivered in CT studies of computer tomograph Pediatric Emergency Department of Hospital Universitario de Canarias (HUC) in order to optimize the technical parameters used these radiological examinations so as to obtain optimal image quality at the lowest possible dose.

  6. Comparative study of dose descriptor in pediatric computed tomography exams

    International Nuclear Information System (INIS)

    Finatto, Jerusa Dalbosco; Silva, Ana Maria Marques da; Froner, Ana Paula Pastre; Pimentel, Juliana

    2014-01-01

    This work aims to investigate the dose descriptor, volumetric Computed Tomography Dose Index (CTDI), a pediatric patients sample undergoing to skull CT, comparing the results with the diagnostic reference levels of the literature. Were collected volumetric CTDI values of all skull CT exams performed retrospectively in children of 0-10 years of age in a period of 12 months in a large hospital size. Patients, in a total of 103, were divided into four groups, where the criterion of separation used was age, trying to use the same division used in international references dose descriptors. In all acquisitions we used the pediatric protocol and the Automatic Exposure Control (AEC) available on the equipment. The CDTI values, with and without the use of AEC for pediatric studies, were compared. There was a reduction of approximately 100% in the absorbed dose value due to the use of the AEC. From the data collected and analyzed in this work, it is concluded that the use of dose reduction systems is relevant, such as the Care Dose, to maintain volumetric CTDI values within the reference levels. Also it is important the observation of range of children age to the appropriate choice of parameters used in the test protocol. The values obtained are according to the diagnostic reference levels from the literature

  7. Management of pediatric radiation dose using Philips fluoroscopy systems DoseWise: perfect image, perfect sense

    International Nuclear Information System (INIS)

    Stueve, Dick

    2006-01-01

    Although image quality (IQ) is the ultimate goal for accurate diagnosis and treatment, minimizing radiation dose is equally important. This is especially true when pediatric patients are examined, because their sensitivity to radiation-induced cancer is two to three times greater than that of adults. DoseWise is an ALARA-based philosophy within Philips Medical Systems that is active at every level of product design. It encompasses a set of techniques, programs and practices that ensures optimal IQ while protecting people in the X-ray environments. DoseWise methods include management of the X-ray beam, less radiation-on time and more dose information for the operator. Smart beam management provides automatic customization of the X-ray beam spectrum, shape, and pulse frequency. The Philips-patented grid-controlled fluoroscopy (GCF) provides grid switching of the X-ray beam in the X-ray tube instead of the traditional generator switching method. In the examination of pediatric patients, DoseWise technology has been scientifically documented to reduce radiation dose to <10% of the dose of traditional continuous fluoroscopy systems. The result is improved IQ at a significantly lower effective dose, which contributes to the safety of patients and staff. (orig.)

  8. The dose analysis of 131I treatment in pediatric patients with Graves hyperthyroidism

    International Nuclear Information System (INIS)

    Zheng Yan; Zhao Deshan; Fu Songhai; Feng Fei; Geng Huixia; Sun Qiting; Lu Keyi; Li Baojun; Li Sijin

    2013-01-01

    Objective: To analyze the radioactive 131 I dose of treatment in pediatric patients with Graves hyperthyroidism. Method: Fifty one pediatric patients with hyperthyroidism and 150 adult patients with hyperthyroidism were retrospectively analyzed, who were contraindicated or refractory for medical therapy and treated with 131 I in this study. All pediatric and adult patients treated with 131 I were divided into five groups according to the thyroid weight. Group 1: ≤30 g,Group 2: 31∼50 g, Group 3: 51∼70 g, Group 4: 71 ∼90 g and Group 5: >90 g. The pediatric patients were comparable to the adult patients in data distribution of the thyroid weight. All pediatric patients who were either contraindicated or refractory to antithyroid drugs treatment and adult patients received radioactive 131 I treatment with a dose of (2.41±0.71), (3.27±0.97) MBq/g thyroid tissue respectively. The total administrated doses of 131 I in all pediatric and adult patients were (224.36±130.10) MBq and (354.88 ±308.04) MBq respectively. All the pediatric and adult patients treated with 131 I were followed-up (median 32 months, range 24 to 83 months; median 23 months,range 15 to 62 months, respectively). The treatment results were divided into euthyroid, hyperthyroidism, late-onset hypothyroidism and relapsed. Results: The results by followed-up found that 16 and 65 patients became euthyroid, 22 and 56 patients developed late-onset hypothyroidism, 12 and 25 patients still had hyperthyroidism, 1 and 4 patients relapsed after radioiodine therapy in pediatric group and adult group who were treated with 131 I, respectively. The total efficiency was 98% and 97.3%, respectively. There were no statistical significance of treatment effect between pediatric and adult patients (χ 2 =0.058, P>0.05). Conclusion: When the radioactive 131 I dose was administrated in pediatric patients with hyperthyroidism, who were contraindicated or refractory for medical therapy, it is recommended that the

  9. Personalized Assessment of kV Cone Beam Computed Tomography Doses in Image-guided Radiotherapy of Pediatric Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yibao [Beijing Key Lab of Medical Physics and Engineering, Peking University, Beijing (China); Yan Yulong [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Bao Shanglian [Beijing Key Lab of Medical Physics and Engineering, Peking University, Beijing (China); Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States)

    2012-08-01

    Purpose: To develop a quantitative method for the estimation of kV cone beam computed tomography (kVCBCT) doses in pediatric patients undergoing image-guided radiotherapy. Methods and Materials: Forty-two children were retrospectively analyzed in subgroups of different scanned regions: one group in the head-and-neck and the other group in the pelvis. Critical structures in planning CT images were delineated on an Eclipse treatment planning system before being converted into CT phantoms for Monte Carlo simulations. A benchmarked EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions of kVCBCT scans with full-fan high-quality head or half-fan pelvis protocols predefined by the manufacturer. Based on planning CT images and structures exported in DICOM RT format, occipital-frontal circumferences (OFC) were calculated for head-and-neck patients using DICOMan software. Similarly, hip circumferences (HIP) were acquired for the pelvic group. Correlations between mean organ doses and age, weight, OFC, and HIP values were analyzed with SigmaPlot software suite, where regression performances were analyzed with relative dose differences (RDD) and coefficients of determination (R{sup 2}). Results: kVCBCT-contributed mean doses to all critical structures decreased monotonically with studied parameters, with a steeper decrease in the pelvis than in the head. Empirical functions have been developed for a dose estimation of the major organs at risk in the head and pelvis, respectively. If evaluated with physical parameters other than age, a mean RDD of up to 7.9% was observed for all the structures in our population of 42 patients. Conclusions: kVCBCT doses are highly correlated with patient size. According to this study, weight can be used as a primary index for dose assessment in both head and pelvis scans, while OFC and HIP may serve as secondary indices for dose estimation in corresponding regions. With the proposed empirical functions, it is possible

  10. Dose study in pediatric patients undergoing cardiac procedures in a digital system

    International Nuclear Information System (INIS)

    Ordonez Marquez, J.; Huertas Martinez, C.; Luquero Llopis, N.; Vano Carruana, E.; Corredoira, S.; Huerga Cabrerizo, C.; Plaza Aparicio, R.; Tellez-Cepeda Ruiz, M.

    2011-01-01

    In La Paz Hospital in Madrid has recently installed a biplane x-ray equipment in the Department of Pediatric Cardiology. It is a digital system equipped with two amorphous silicon detectors. There has been a characterization of the equipment prior to commissioning for clinical use. It was later followed up on the dose delivered to pediatric patients undergoing various diagnostic and therapeutic procedures. Yet the absence of reference values for interventional cardiology child dose, the values obtained were used to establish baseline dose by age group that will serve as initial references and allow our radiation dose compared with those of other centers and check that the skin dose are in most cases below the thresholds for deterministic effects.

  11. Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination

    International Nuclear Information System (INIS)

    McKnight, Colin D.; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H.; Parmar, Hemant A.

    2014-01-01

    Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDI vol ) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDI vol value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDI vol for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDI vol in the ASIR group (P 12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the homogeneity of variance in the ASIR group compared to the non-ASIR group. Radiologist assessment of gray-white differentiation, sharpness and overall diagnostic quality in ASIR examinations was not substantially different compared to non-ASIR examinations. The use of ASIR in

  12. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S. L.; Yee, B. S.; Kaufman, R. A. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States)

    2012-09-15

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more

  13. Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States); Chen Zhe; Roberts, Kenneth B.; Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2012-04-01

    Purpose: To investigate doses induced by kilovoltage cone-beam computed tomography (kVCBCT) to pediatric cancer patients undergoing radiotherapy, as well as strategies for dose reduction. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose deposition due to kVCBCT on 4 pediatric cancer patients. Absorbed doses to various organs were analyzed for both half-fan and full-fan modes. Clinical conditions, such as distance from organ at risk (OAR) to CBCT field border, kV peak energy, and testicular shielding, were studied. Results: The mean doses induced by one CBCT scan operated at 125 kV in half-fan mode to testes, liver, kidneys, femoral heads, spinal cord, brain, eyes, lens, and optical nerves were 2.9, 4.7, 7.7, 10.5, 8.8, 7.6, 7.7, 7.8, and 7.2 cGy, respectively. Increasing the distances from OARs to CBCT field border greatly reduced the doses to OARs, ranging from 33% reduction for spinal cord to 2300% reduction for testes. As photon beam energy increased from 60 to 125 kV, the dose increase due to kVCBCT ranged from 170% for lens to 460% for brain and spinal cord. A testicular shielding made of 1-cm cerrobend could reduce CBCT doses down to 31%, 51%, 68%, and 82%, respectively, for 60, 80, 100, and 125 kV when the testes lay within the CBCT field. Conclusions: Generally speaking, kVCBCT deposits much larger doses to critical structures in children than in adults, usually by a factor of 2 to 3. Increasing the distances from OARs to CBCT field border greatly reduces doses to OARs. Depending on OARs, kVCBCT-induced doses increase linearly or exponentially with photon beam energy. Testicular shielding works more efficiently at lower kV energies. On the basis of our study, it is essential to choose an appropriate scanning protocol when kVCBCT is applied to pediatric cancer patients routinely.

  14. Pediatric radiation dose during cardiac catheterization procedures in Sudan

    International Nuclear Information System (INIS)

    Ahmed, Nada A.; Nayel, A. I.

    2017-01-01

    Children are more radio sensitive than adult. This study aims to assess radiation doses and the associated hazards to pediatric during cardiac catheterization procedures. Radiation dose for 112 patients was estimated in the biggest cardiac center in Sudan. The median KAP in Gy cm"2, CK in mGy, number of frames and fluoroscopy time in minutes were (4.6, 29.0, 340.4, 13.5) and (6.0, 35.0, 318, 9.8) for the diagnostic and therapeutic cardiac procedures, respectively. The median (KAP in Gy cm"2, effective dose in mSv) for different age groups in the intervals of less than 1 year, 1-<5 years, 5-<10 years and 10- 15 years old were (2.2, 4.4), (2.5, 5.0), (4.2, 5.1) and (8.5, 4.1) respectively. Including all the procedures using the multiplicative model of ICRP 60, the mean attributable lifetime risk for stochastic effect was 0.08 and 0.05% for girls and boys, respectively. Training is needed to raise staff awareness about radiation protection. (authors)

  15. Survey of pediatric MDCT radiation dose from university hospitals in Thailand. A preliminary for national dose survey

    Energy Technology Data Exchange (ETDEWEB)

    Kritsaneepaiboon, Supika [Dept. of Radiology, Faculty of Medicine, Prince of Songkla Univ., Hat Yai (Thailand)], e-mail: supikak@yahoo.com; Trinavarat, Panruethai [Dept. of Radiology, Faculty of Medicine, Chulalongkorn Univ., Bangkok (Thailand); Visrutaratna, Pannee [Dept. of Radiology, Faculty of Medicine, Chiang Mai Univ., Chiang Mai (Thailand)

    2012-09-15

    Background: Increasing pediatric CT usage worldwide needs the optimization of CT protocol examination. Although there are previous published dose reference level (DRL) values, the local DRLs should be established to guide for clinical practice and monitor the CT radiation. Purpose: To determine the multidetector CT (MDCT) radiation dose in children in three university hospitals in Thailand in four age groups using the CT dose index (CTDI) and dose length product (DLP). Material and Methods: A retrospective review of CT dosimetry in pediatric patients (<15 years of age) who had undergone head, chest, and abdominal MDCT in three major university hospitals in Thailand was performed. Volume CTDI (CTDIvol) and DLP were recorded, categorized into four age groups: <1 year, 1- < 5 years, 5- <10 years, and 10- <15 years in each scanner. Range, mean, and third quartile values were compared with the national reference dose levels for CT in pediatric patients from the UK and Switzerland according to International Commission on Radiological Protection (ICRP) recommendation. Results: Per age group, the third quartile values for brain, chest, and abdominal CTs were, respectively, in terms of CTDIvol: 25, 30, 40, and 45 mGy; 4.5, 5.7, 10, and 15.6 mGy; 8.5, 9, 14, and 17 mGy; and in terms of DLP: 400, 570, 610, and 800 mGy cm; 80, 140, 305, and 470 mGy cm; and 190, 275, 560,765 mGy cm. Conclusion: This preliminary national dose survey for pediatric CT in Thailand found that the majority of CTDIvol and DLP values in brain, chest, and abdominal CTs were still below the diagnostic reference levels (DRLs) from the UK and Switzerland regarding to ICRP recommendation.

  16. Communicating doses of pediatric liquid medicines to parents/caregivers: a comparison of written dosing directions on prescriptions with labels applied by dispensed pharmacy.

    Science.gov (United States)

    Shah, Rita; Blustein, Leona; Kuffner, Ed; Davis, Lisa

    2014-03-01

    To identify and compare volumetric measures used by healthcare providers in communicating dosing instructions for pediatric liquid prescriptions to parents/caregivers. Dosing instructions were retrospectively reviewed for the 10 most frequently prescribed liquid medications dispensed from 4 community pharmacies for patients aged ≤ 12 years during a 3-month period. Volumetric measures on original prescriptions (ie, milliliters, teaspoons) were compared with those utilized by the pharmacist on the pharmacy label dispensed to the parent/caregiver. Of 649 prescriptions and corresponding pharmacy labels evaluated, 68% of prescriptions and 62% of pharmacy labels communicated dosing in milliliters, 24% of prescriptions and 29% of pharmacy labels communicated dosing in teaspoonfuls, 7% of prescriptions and 0% of pharmacy labels communicated dosing in other measures (ie, milligrams, cubic centimeters, "dose"), and 25% of dispensed pharmacy labels did not reflect units as written in the prescription. Volumetric measures utilized by healthcare professionals in dosing instructions for prescription pediatric oral liquid medications are not consistent. Healthcare professionals and parents/caregivers should be educated on safe dosing practices for liquid pediatric medications. Generalizability to the larger pediatric population may vary depending on pharmacy chain, location, and medications evaluated. Copyright © 2014 Mosby, Inc. All rights reserved.

  17. Dose assessment in pediatric computerized tomography

    International Nuclear Information System (INIS)

    Vilarinho, Luisa Maria Auredine Lima

    2004-01-01

    The objective of this work was the evaluation of radiation doses in paediatric computed tomography scans, considering the high doses usually involved and the absence of any previous evaluation in Brazil. Dose values were determined for skull and abdomen examinations, for different age ranges, by using the radiographic techniques routinely used in the clinical centers investigated. Measurements were done using pencil shape ionization chambers inserted in polymethylmethacrylate (PMMA) phantoms. These were compact phantoms of different diameters were specially designed and constructed for this work, which simulate different age ranges. Comparison of results with published values showed that doses were lower than the diagnostic reference levels established to adults exams by the European Commission. Nevertheless, doses in paediatric phantoms were higher than those obtained in adult phantoms. The paediatric dose values obtained in Hospitals A and B were lower than the reference level (DRL) adopted by SHIMPTON for different age ranges. In the range 0 - 0.5 year (neonatal), the values of DLP in Hospital B were 94 por cent superior to the DRL For the 10 years old children the values of CTDI w obtained were inferior in 89 por cent for skull and 83 por cent for abdomen examinations, compared to the values published by SHRIMPTON and WALL. Our measured CTDI w values were inferior to the values presented for SHRIMPTON and HUDA, for all the age ranges and types of examinations. It was observed that the normalized dose descriptors values in children in the neonatal range were always superior to the values of doses for the adult patient. In abdomen examinations, the difference was approximately 90% for the effective dose (E) and of 57%.for CTDI w . (author)

  18. Patient doses from fluoroscopically guided cardiac procedures in pediatrics

    International Nuclear Information System (INIS)

    Martinez, L C; Vano, E; Gutierrez, F; Rodriguez, C; Gilarranz, R; Manzanas, M J

    2007-01-01

    Infants and children are a higher risk population for radiation cancer induction compared to adults. Although some values on pediatric patient doses for cardiac procedures have been reported, data to determine reference levels are scarce, especially when compared to those available for adults in diagnostic and therapeutic procedures. The aim of this study is to make a new contribution to the scarce published data in pediatric cardiac procedures and help in the determination of future dose reference levels. This paper presents a set of patient dose values, in terms of air kerma area product (KAP) and entrance surface air kerma (ESAK), measured in a pediatric cardiac catheterization laboratory equipped with a biplane x-ray system with dynamic flat panel detectors. Cardiologists were properly trained in radiation protection. The study includes 137 patients aged between 10 days and 16 years who underwent diagnostic catheterizations or therapeutic procedures. Demographic data and technical details of the procedures were also gathered. The x-ray system was submitted to a quality control programme, including the calibration of the transmission ionization chamber. The age distribution of the patients was 47 for 2 respectively for the four age bands. These KAP values increase by a factor of 8 when moving through the four age bands. The probability of a fatal cancer per fluoroscopically guided cardiac procedure is about 0.07%. Median values of ESAK for the four age bands were 46, 50, 56 and 163 mGy, which lie far below the threshold for deterministic effects on the skin. These dose values are lower than those published in previous papers

  19. Detection of Airway Anomalies in?Pediatric?Patients with Cardiovascular Anomalies with Low Dose Prospective ECG-Gated Dual-Source CT

    OpenAIRE

    Jiao, Hui; Xu, Zhuodong; Wu, Lebin; Cheng, Zhaoping; Ji, Xiaopeng; Zhong, Hai; Meng, Chen

    2013-01-01

    OBJECTIVES: To assess the feasibility of low-dose prospective ECG-gated dual-source CT (DSCT) in detecting airway anomalies in pediatric patients with cardiovascular anomalies compared with flexible tracheobronchoscopy (FTB). METHODS: 33 pediatrics with respiratory symptoms who had been revealed cardiovascular anomalies by transthoracic echocardiography underwent FTB and contrast material-enhanced prospective ECG-triggering CT were enrolled. The study was approved by our institution review bo...

  20. Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children

    International Nuclear Information System (INIS)

    Yoon, Haesung; Kim, Myung-Joon; Shin, Hyun Joo; Kim, Hyun Gi; Lee, Mi-Jung; Yoon, Choon-Sik; Choi, Jiin

    2015-01-01

    New CT reconstruction techniques may help reduce the burden of ionizing radiation. To quantify radiation dose reduction when performing pediatric chest CT using a low-dose protocol and 50% adaptive statistical iterative reconstruction (ASIR) compared with age/gender-matched chest CT using a conventional dose protocol and reconstructed with filtered back projection (control group) and to determine its effect on image quality in normal weight and overweight children. We retrospectively reviewed 40 pediatric chest CT (M:F = 21:19; range: 0.1-17 years) in both groups. Radiation dose was compared between the two groups using paired Student's t-test. Image quality including noise, sharpness, artifacts and diagnostic acceptability was subjectively assessed by three pediatric radiologists using a four-point scale (superior, average, suboptimal, unacceptable). Eight children in the ASIR group and seven in the control group were overweight. All radiation dose parameters were significantly lower in the ASIR group (P < 0.01) with a greater than 57% dose reduction in overweight children. Image noise was higher in the ASIR group in both normal weight and overweight children. Only one scan in the ASIR group (1/40, 2.5%) was rated as diagnostically suboptimal and there was no unacceptable study. In both normal weight and overweight children, the ASIR technique is associated with a greater than 57% mean dose reduction, without significantly impacting diagnostic image quality in pediatric chest CT examinations. However, CT scans in overweight children may have a greater noise level, even when using the ASIR technique. (orig.)

  1. Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Haesung; Kim, Myung-Joon; Shin, Hyun Joo; Kim, Hyun Gi; Lee, Mi-Jung [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Seoul (Korea, Republic of); Yoon, Choon-Sik [Yonsei University College of Medicine, Department of Radiology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Choi, Jiin [Yonsei University College of Medicine, Biostatistics Collaboration Unit, Seoul (Korea, Republic of)

    2015-03-01

    New CT reconstruction techniques may help reduce the burden of ionizing radiation. To quantify radiation dose reduction when performing pediatric chest CT using a low-dose protocol and 50% adaptive statistical iterative reconstruction (ASIR) compared with age/gender-matched chest CT using a conventional dose protocol and reconstructed with filtered back projection (control group) and to determine its effect on image quality in normal weight and overweight children. We retrospectively reviewed 40 pediatric chest CT (M:F = 21:19; range: 0.1-17 years) in both groups. Radiation dose was compared between the two groups using paired Student's t-test. Image quality including noise, sharpness, artifacts and diagnostic acceptability was subjectively assessed by three pediatric radiologists using a four-point scale (superior, average, suboptimal, unacceptable). Eight children in the ASIR group and seven in the control group were overweight. All radiation dose parameters were significantly lower in the ASIR group (P < 0.01) with a greater than 57% dose reduction in overweight children. Image noise was higher in the ASIR group in both normal weight and overweight children. Only one scan in the ASIR group (1/40, 2.5%) was rated as diagnostically suboptimal and there was no unacceptable study. In both normal weight and overweight children, the ASIR technique is associated with a greater than 57% mean dose reduction, without significantly impacting diagnostic image quality in pediatric chest CT examinations. However, CT scans in overweight children may have a greater noise level, even when using the ASIR technique. (orig.)

  2. Development of a radiopharmaceutical dose calculator for pediatric patients undergoing diagnostic nuclear medicine studies

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Gupta, Priyanka; Kumar, Rakesh

    2013-01-01

    It is important to ensure that as low as reasonably achievable (ALARA) concept during the radiopharmaceutical (RPH) dose administration in pediatric patients. Several methods have been suggested over the years for the calculation of individualized RPH dose, sometimes requiring complex calculations and large variability exists for administered dose in children. The aim of the present study was to develop a software application that can calculate and store RPH dose along with patient record. We reviewed the literature to select the dose formula and used Microsoft Access (a software package) to develop this application. We used the Microsoft Excel to verify the accurate execution of the dose formula. The manual and computer time using this program required for calculating the RPH dose were compared. The developed application calculates RPH dose for pediatric patients based on European Association of Nuclear Medicine dose card, weight based, body surface area based, Clark, Solomon Fried, Young and Webster's formula. It is password protected to prevent the accidental damage and stores the complete record of patients that can be exported to Excel sheet for further analysis. It reduces the burden of calculation and saves considerable time i.e., 2 min computer time as compared with 102 min (manual calculation with the calculator for all seven formulas for 25 patients). The software detailed above appears to be an easy and useful method for calculation of pediatric RPH dose in routine clinical practice. This software application will help in helping the user to routinely applied ALARA principle while pediatric dose administration. (author)

  3. Assessment of radiation dose awareness among pediatricians

    International Nuclear Information System (INIS)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie; Haidar, Salwa; Moineddin, Rahim

    2006-01-01

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  4. Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination.

    Science.gov (United States)

    McKnight, Colin D; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H; Parmar, Hemant A

    2014-08-01

    Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDIvol) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDIvol value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDIvol for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDIvol in the ASIR group (P ASIR group as compared to the 3- to 12-year-old non-ASIR group (21.5 mGy vs. 30.0 mGy; P = 0.004) as well as statistically significant reductions in CTDI for the >12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the homogeneity of variance in the ASIR group compared to the non-ASIR group. Radiologist assessment of

  5. Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Colin D.; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H.; Parmar, Hemant A. [University of Michigan, Department of Radiology, Ann Arbor, MI (United States)

    2014-08-15

    Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDI{sub vol}) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDI{sub vol} value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDI{sub vol} for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDI{sub vol} in the ASIR group (P < 0.01). There were statistically significant reductions in CTDI for the 3- to 12-year-old ASIR group as compared to the 3- to 12-year-old non-ASIR group (21.5 mGy vs. 30.0 mGy; P = 0.004) as well as statistically significant reductions in CTDI for the >12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the

  6. Adaptive statistical iterative reconstruction use for radiation dose reduction in pediatric lower-extremity CT: impact on diagnostic image quality.

    Science.gov (United States)

    Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok

    2018-06-01

    For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p ASIR images (p ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.

  7. Patient doses in CT with special emphasis on pediatric patients in Algeria

    International Nuclear Information System (INIS)

    Khelassi-Toutaoui, Nadia; Merad, Ahmed; Toutaoui, Aek; Bairi, Souad; Tsapaki, Virginia; Mansouri, Boudjema

    2008-01-01

    Full text: Purpose: To estimate the frequency of CT examinations in children 0-15 years of age, to investigate whether exposure factors for children are different than for adults and to evaluate patient dose, as part of an International Atomic Energy Agency (IAEA) project on Radiation Protection of patients and Medical Exposure Control (RAF 9033). Material and Methods: Two CT machines were included in the study. Weighted computed tomography dose index (CTDI w ). Results: Pediatric CT examinations accoutered for 12-20% of the total exams performed in the CT facilities. For head, chest and abdomen examinations, mAs were reduced for pediatric patients, mainly on an arbitrary manner. One of the CT machines allowed change of kV and in that case kV was reduced for pediatric patients. Chest, Chest-High Resolution, Abdomen, Lumbar spine and Pelvis CTDI w and DLP were lower and IAEA guidance levels in almost all types of exams. It was observed, however, that DLP in one hospital was almost double than the other hospital that was mostly attributed to larger extent of scan length. ) for a single slice and dose length product (DLP) for a complete examination were used to evaluate patient dose. Kilovoltage (kV) and mAs were the exposure factors investigated. Conclusion: The study showed that pediatric examinations reach up to 1/5 of the total exams performed. It is encouraging that exposure factors are reduced, but a more standard method of reduction should be applied. Patient doses were lower that IAEA standards. Further optimization could be done by reducing scan length. (author)

  8. SU-E-I-89: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Pediatric Anthropomorphic and ACR Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, U; Erdi, Y; Wang, W [Memorial Sloan Kettering Cancer Center, NY, NY (United States)

    2014-06-01

    Purpose: To assess the impact of General Electrics automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of a pediatric anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, 80 mA, 0.7s rotation time. Image quality was assessed by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: For the baseline protocol, CNR was found to decrease from 0.460 ± 0.182 to 0.420 ± 0.057 when kVa was activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.620 ± 0.040. The liver dose decreased by 30% with kVa activation. Conclusion: Application of kVa reduces the liver dose up to 30%. However, reduction in image quality for abdominal scans occurs when using the automated tube voltage selection feature at the baseline protocol. As demonstrated by the CNR and NPS analysis, the texture and magnitude of the noise in reconstructed images at ASiR 40% was found to be the same as our baseline images. We have demonstrated that 30% dose reduction is possible when using 40% ASiR with kVa in pediatric patients.

  9. SU-E-I-89: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Pediatric Anthropomorphic and ACR Phantoms

    International Nuclear Information System (INIS)

    Mahmood, U; Erdi, Y; Wang, W

    2014-01-01

    Purpose: To assess the impact of General Electrics automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of a pediatric anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, 80 mA, 0.7s rotation time. Image quality was assessed by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: For the baseline protocol, CNR was found to decrease from 0.460 ± 0.182 to 0.420 ± 0.057 when kVa was activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.620 ± 0.040. The liver dose decreased by 30% with kVa activation. Conclusion: Application of kVa reduces the liver dose up to 30%. However, reduction in image quality for abdominal scans occurs when using the automated tube voltage selection feature at the baseline protocol. As demonstrated by the CNR and NPS analysis, the texture and magnitude of the noise in reconstructed images at ASiR 40% was found to be the same as our baseline images. We have demonstrated that 30% dose reduction is possible when using 40% ASiR with kVa in pediatric patients

  10. Evaluation of the impact of organ-specific dose reduction on image quality in pediatric chest computed tomography

    International Nuclear Information System (INIS)

    Boos, Johannes; Kroepil, Patric; Klee, Dirk; Heusch, Philipp; Schimmoeller, Lars; Schaper, Joerg; Antoch, Gerald; Lanzman, Rotem S.

    2014-01-01

    Organ-specific dose reduction significantly reduces the radiation exposure of radiosensitive organs. The purpose of this study was to assess the impact of a novel organ-specific dose reduction algorithm on image quality of pediatric chest CT. We included 28 children (mean age 10.9 ± 4.8 years, range 3-18 years) who had contrast-enhanced chest CT on a 128-row scanner. CT was performed at 100 kV using automated tube current modulation and a novel organ-specific dose-reduction algorithm (XCare trademark; Siemens, Forchheim, Germany). Seven children had a previous chest CT performed on a 64-row scanner at 100 kV without organ-specific dose reduction. Subjective image quality was assessed using a five-point scale (1-not diagnostic; 5-excellent). Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were assessed in the descending aorta. Overall mean subjective image quality was 4.1 ± 0.6. In the subgroup of the seven children examined both with and without organ-specific dose reduction, subjective image quality was comparable (score 4.4 ± 0.5 with organ-specific dose reduction vs. 4.4 ± 0.7 without it; P > 0.05). There was no significant difference in mean signal-to-noise ratio and contrast-to-noise ratio with organ-specific dose reduction (38.3 ± 10.1 and 28.5 ± 8.7, respectively) and without the reduction (35.5 ± 8.5 and 26.5 ± 7.8, respectively) (P > 0.05). Volume computed tomography dose index (CTDI vol ) and size-specific dose estimates did not differ significantly between acquisitions with the organ-specific dose reduction (1.7 ± 0.8 mGy) and without the reduction (1.7 ± 0.8 mGy) (P > 0.05). Organ-specific dose reduction does not have an impact on image quality of pediatric chest CT and can therefore be used in clinical practice to reduce radiation dose of radiosensitive organs such as breast and thyroid gland. (orig.)

  11. Patient doses from fluoroscopically guided cardiac procedures in pediatrics

    Science.gov (United States)

    Martinez, L. C.; Vano, E.; Gutierrez, F.; Rodriguez, C.; Gilarranz, R.; Manzanas, M. J.

    2007-08-01

    Infants and children are a higher risk population for radiation cancer induction compared to adults. Although some values on pediatric patient doses for cardiac procedures have been reported, data to determine reference levels are scarce, especially when compared to those available for adults in diagnostic and therapeutic procedures. The aim of this study is to make a new contribution to the scarce published data in pediatric cardiac procedures and help in the determination of future dose reference levels. This paper presents a set of patient dose values, in terms of air kerma area product (KAP) and entrance surface air kerma (ESAK), measured in a pediatric cardiac catheterization laboratory equipped with a biplane x-ray system with dynamic flat panel detectors. Cardiologists were properly trained in radiation protection. The study includes 137 patients aged between 10 days and 16 years who underwent diagnostic catheterizations or therapeutic procedures. Demographic data and technical details of the procedures were also gathered. The x-ray system was submitted to a quality control programme, including the calibration of the transmission ionization chamber. The age distribution of the patients was 47 for <1 year; 52 for 1-<5 years; 25 for 5-<10 years and 13 for 10-<16 years. Median values of KAP were 1.9, 2.9, 4.5 and 15.4 Gy cm2 respectively for the four age bands. These KAP values increase by a factor of 8 when moving through the four age bands. The probability of a fatal cancer per fluoroscopically guided cardiac procedure is about 0.07%. Median values of ESAK for the four age bands were 46, 50, 56 and 163 mGy, which lie far below the threshold for deterministic effects on the skin. These dose values are lower than those published in previous papers.

  12. Effects of adaptive statistical iterative reconstruction on radiation dose reduction and diagnostic accuracy of pediatric abdominal CT

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sohi; Kim, Myung-Joon; Lee, Mi-Jung [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Seoul (Korea, Republic of); Yoon, Choon-Sik [Yonsei University College of Medicine, Department of Radiology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Kim, Dong Wook; Hong, Jung Hwa [Yonsei University College of Medicine, Biostatistics Collaboration Unit, Seoul (Korea, Republic of)

    2014-12-15

    Since children are more radio-sensitive than adults, there is a need to minimize radiation exposure during CT exams. To evaluate the effects of adaptive statistical iterative reconstruction (ASIR) on radiation dose reduction, image quality and diagnostic accuracy in pediatric abdominal CT. We retrospectively reviewed the abdominal CT examinations of 41 children (24 boys and 17 girls; mean age: 10 years) with a low-dose radiation protocol and reconstructed with ASIR (the ASIR group). We also reviewed routine-dose abdominal CT examinations of 41 age- and sex-matched controls reconstructed with filtered-back projection (control group). Image quality was assessed objectively as noise measured in the liver, spleen and aorta, as well as subjectively by three pediatric radiologists for diagnostic acceptability using a four-point scale. Radiation dose and objective image qualities of each group were compared with the paired t-test. Diagnostic accuracy was evaluated by reviewing follow-up imaging studies and medical records in 2012 and 2013. There was 46.3% dose reduction of size-specific dose estimates in ASIR group (from 13.4 to 7.2 mGy) compared with the control group. Objective noise was higher in the liver, spleen and aorta of the ASIR group (P < 0.001). However, the subjective image quality was average or superior in 84-100% of studies. Only one image was subjectively rated as unacceptable by one reviewer. There was only one case with interpretational error in the control group and none in the ASIR group. Use of the ASIR technique resulted in greater than a 45% reduction in radiation dose without impairing subjective image quality or diagnostic accuracy in pediatric abdominal CT, despite increased objective image noise. (orig.)

  13. Effects of adaptive statistical iterative reconstruction on radiation dose reduction and diagnostic accuracy of pediatric abdominal CT

    International Nuclear Information System (INIS)

    Bae, Sohi; Kim, Myung-Joon; Lee, Mi-Jung; Yoon, Choon-Sik; Kim, Dong Wook; Hong, Jung Hwa

    2014-01-01

    Since children are more radio-sensitive than adults, there is a need to minimize radiation exposure during CT exams. To evaluate the effects of adaptive statistical iterative reconstruction (ASIR) on radiation dose reduction, image quality and diagnostic accuracy in pediatric abdominal CT. We retrospectively reviewed the abdominal CT examinations of 41 children (24 boys and 17 girls; mean age: 10 years) with a low-dose radiation protocol and reconstructed with ASIR (the ASIR group). We also reviewed routine-dose abdominal CT examinations of 41 age- and sex-matched controls reconstructed with filtered-back projection (control group). Image quality was assessed objectively as noise measured in the liver, spleen and aorta, as well as subjectively by three pediatric radiologists for diagnostic acceptability using a four-point scale. Radiation dose and objective image qualities of each group were compared with the paired t-test. Diagnostic accuracy was evaluated by reviewing follow-up imaging studies and medical records in 2012 and 2013. There was 46.3% dose reduction of size-specific dose estimates in ASIR group (from 13.4 to 7.2 mGy) compared with the control group. Objective noise was higher in the liver, spleen and aorta of the ASIR group (P < 0.001). However, the subjective image quality was average or superior in 84-100% of studies. Only one image was subjectively rated as unacceptable by one reviewer. There was only one case with interpretational error in the control group and none in the ASIR group. Use of the ASIR technique resulted in greater than a 45% reduction in radiation dose without impairing subjective image quality or diagnostic accuracy in pediatric abdominal CT, despite increased objective image noise. (orig.)

  14. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    Science.gov (United States)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  15. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    International Nuclear Information System (INIS)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Xu, X George; Long, Daniel J; Bolch, Wesley E; Liu, Bob

    2015-01-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations. (paper)

  16. [Knowledge of nurses about medication doses at pediatric urgency departament].

    Science.gov (United States)

    Guerrero-Márquez, Gloria; Martínez-Serrano, Ana; Míguez-Navarro, Concepción; López-Mirón, Juan Antonio; Espartosa-Larrayad, Marta

    2016-01-01

    Errors in drug administration are the second cause of errors in hospitalized patients. Children are a high risk group. Besides, pressure in care interventions at emergency department leads to increase incidence errors. Determining nurses' knowledge about the most common drug doses at pediatric urgency department. Descriptive transversal study. We collected data from nurses of 14 pediatric emergency departments of Madrid. With an "ad hoc" questionnaire we collected the following data during five days in January of 2014: demographic, knowledge of responsibility in administration and doses of drugs. Global descriptive analysis was made and it was stratified by hospital and work experience. The answer rate was 114 (34.9%). Only 80 (70.8%) of nurses confirm doses before their administration; 20 (18.6%) think that a wrong prescription that they administer is not their responsibility. There is a high knowledge in the group with more than five years of work experience, except for sedative-analgesic drugs (p<0.05). The average score obtained was 3.8 of 10 (1.99). Nurses' knowledge about drug doses is low. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  17. MO-E-17A-04: Size-Specific Dose Estimate (SSDE) Provides a Simple Method to Calculate Organ Dose for Pediatric CT Examinations

    International Nuclear Information System (INIS)

    Moore, B; Brady, S; Kaufman, R; Mirro, A

    2014-01-01

    Purpose: Investigate the correlation of SSDE with organ dose in a pediatric population. Methods: Four anthropomorphic phantoms, representing a range of pediatric body habitus, were scanned with MOSFET dosimeters placed at 23 organ locations to determine absolute organ dosimetry. Phantom organ dosimetry was divided by phantom SSDE to determine correlation between organ dose and SSDE. Correlation factors were then multiplied by patient SSDE to estimate patient organ dose. Patient demographics consisted of 352 chest and 241 abdominopelvic CT examinations, 22 ± 15 kg (range 5−55 kg) mean weight, and 6 ± 5 years (range 4 mon to 23 years) mean age. Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm. 23 organ correlation factors were determined in the chest and abdominopelvic region across nine pediatric weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7−1.4) and abdominopelvic (average 0.9; range 0.7−1.3) was near unity. For organs that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1−0.4) for both the chest and abdominopelvic regions, respectively. Pediatric organ dosimetry was compared to published values and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0). Conclusion: Average correlation of SSDE and organ dosimetry was found to be better than ± 10% for fully covered organs within the scan volume. This study provides a list of organ dose correlation factors for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE

  18. MO-E-17A-04: Size-Specific Dose Estimate (SSDE) Provides a Simple Method to Calculate Organ Dose for Pediatric CT Examinations

    Energy Technology Data Exchange (ETDEWEB)

    Moore, B; Brady, S; Kaufman, R [St Jude Children' s Research Hospital, Memphis, TN (United States); Mirro, A [Washington University, St. Louis, MO (United States)

    2014-06-15

    Purpose: Investigate the correlation of SSDE with organ dose in a pediatric population. Methods: Four anthropomorphic phantoms, representing a range of pediatric body habitus, were scanned with MOSFET dosimeters placed at 23 organ locations to determine absolute organ dosimetry. Phantom organ dosimetry was divided by phantom SSDE to determine correlation between organ dose and SSDE. Correlation factors were then multiplied by patient SSDE to estimate patient organ dose. Patient demographics consisted of 352 chest and 241 abdominopelvic CT examinations, 22 ± 15 kg (range 5−55 kg) mean weight, and 6 ± 5 years (range 4 mon to 23 years) mean age. Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm. 23 organ correlation factors were determined in the chest and abdominopelvic region across nine pediatric weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7−1.4) and abdominopelvic (average 0.9; range 0.7−1.3) was near unity. For organs that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1−0.4) for both the chest and abdominopelvic regions, respectively. Pediatric organ dosimetry was compared to published values and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0). Conclusion: Average correlation of SSDE and organ dosimetry was found to be better than ± 10% for fully covered organs within the scan volume. This study provides a list of organ dose correlation factors for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE.

  19. Formulation design of oral pediatric Acetazolamide suspension: dose uniformity and physico-chemical stability study.

    Science.gov (United States)

    Santoveña, Ana; Suárez-González, Javier; Martín-Rodríguez, Cristina; Fariña, José B

    2017-03-01

    The formulation of an active pharmaceutical ingredient (API) as oral solution or suspension in pediatrics is a habitual practice, due to the non-existence of many commercialized medicines in pediatric doses. It is also the simplest way to prepare and administer them to this vulnerable population. The design of a formulation that assures the dose and the system stability depends on the physico-chemical properties of the API. In this study, we formulate a class IV API, Acetazolamide (AZM) as suspension for oral administration to pediatric population. The suspension must comply attributes of quality, safety and efficacy for this route of administration. We use simple compounding procedures, as well as fewer pure excipients, as recommended for children. Mass and uniformity content assays and physical and chemical stability studies were performed. To quantify the API an UPLC method was used. We verified the physico-chemical stability of the suspensions and that they passed the mass test of the European Pharmacopeia (EP), but not the dose uniformity test. This reveals that AZM must be formulated as liquid forms with a more complex system of excipients (not usually indicated in pediatrics), or otherwise solid forms capable of assuring uniformity of mass and dose for every dosage unit.

  20. ASSESSMENT OF KNOWLEDGE & ATTITUDE OF THE PEDIATRIC RESIDENT ABOUT NEONATAL & PEDIATRIC CARDIOPULMONARY RESUSCITATION

    Directory of Open Access Journals (Sweden)

    M KADIAVAR

    2003-09-01

    Full Text Available Introduction: A high leve of skill & knowledge is required in circumstances of cardiopulmonary resucitation which represents the most urgent clinical situations. The difficulties for pediatric residents who are fronted with the most cases of pediatric & neonatal resucitation are due to different causes of cardiorespiratory arrest in camparison to adults. This study aimed to assess the knowledge & their personal attitude toward the neonatal & pediatric cardiopulmonary resuscitatin. Methods: By cross - sectional multicenter study between the pediatric residents who were studied in the teaching hospitals in Tehran (1378-90. Data were gathered among 140 residents by self-completed questionnaires which were included three parts as. demographic information assessment of their attitude by summation of score via ranking list questions and total score from assessment to their knowledge by different scenarios which were formatted in the multiple choice questions. Results: 35.7% of the residents studied in the first year of residency 35.0% in the second year and the remainder (29/3% in the third year More than 90% of them considered their knowledge about neonatal and pediatric cardiopulmonary resuscitation low & less than average. Net only 80% of the residents self - assessed their actual ability about this issue low but also declaired the insufficient education during the medical training. The total score of knowledge assessment was 14.7 + 1_0.54 from 30 without any significant relations among the residents in different hospitals or various levels of pediatric residency. (P value= 0.1 , 0.7 There was not significant correlation between the total score from their attitude & their knowledge. Conclusion: Pediatric residents as the key personnel in the management of cardiopulmonary resuscitation of the neonates and children should have enough knowledge and skills about this topic. This survey demonstrates a low level of the pediatric & neonatal

  1. SU-G-IeP4-07: Feasibility of Low Dose 18FDG PET in Pediatric Oncology Patients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Binzel, K; Hall, NC; Natwa, M; Knopp, MI; Knopp, MV [The Ohio State University, Columbus, OH (United States)

    2016-06-15

    Purpose: To evaluate and demonstrate the feasibility of low dose FDG PET in pediatric oncology patients using virtual dose reduction as well as true patients PET/CT scans. Methods: Wholebody 18F-FDG PET/CT of 39 clinical pediatric patients (0.16±0.06MBq/kg) were scanned on a Gemini TF 64 system at 75±5 min post FDG injection using 3min/bed. Based on the 180s/bed listmode PET data, subsets of total counts in 120s, 90s, 60s, 30s and 15s per bed position were extracted for PET reconstruction to simulate lower dose PET at 2/3th, 1/2th, 1/3th, 1/6th and 1/12th dose levels. PET/CT scans of Jaszczak PET phantom with 6 hot hollow spheres varying with sizes and contrast ratios were performed (real PET versus simulated PET) to validate the methodology of virtual dose PET simulation. Region of interests (ROIs) were placed on lesions and normal anatomical tissues with quantitative and qualitative assessment performed. Significant lower FDG dose PET/CT of 5 research adolescents were scanned to validate the proposal and low dose PET feasibility. Results: Although all lesions are visible on the 1/12th dose PET, overall PET image quality appears to be influenced in a multi-factorial way. 30%–60% dose reduction from current standard of care FDG PET is recommended to maintain equivalent quality and PET quantification. An optimized BMI-based FDG administration is recommended (from 1.1±0.5 mCi for BMI < 18.5 to 4.8±1.5 mCi for BMI > 30). A linear lowest “Dose-BMI” relationship is given. SUVs from 1/12th to full dose PETs were identified as consistent (R2 = 1.08, 0.99, 1.01, 1.00 and 0.98). No significant variances of count density, SUV and SNR were found across certain dose ranges (p<0.01). Conclusion: Pediatric PET/CT can be performed using current time-of-flight systems at substantially lower PET doses (30–60%) than the standard of care PET/CT without compromising qualitative and quantitative image quality in clinical.

  2. SU-G-IeP4-07: Feasibility of Low Dose 18FDG PET in Pediatric Oncology Patients

    International Nuclear Information System (INIS)

    Zhang, J; Binzel, K; Hall, NC; Natwa, M; Knopp, MI; Knopp, MV

    2016-01-01

    Purpose: To evaluate and demonstrate the feasibility of low dose FDG PET in pediatric oncology patients using virtual dose reduction as well as true patients PET/CT scans. Methods: Wholebody 18F-FDG PET/CT of 39 clinical pediatric patients (0.16±0.06MBq/kg) were scanned on a Gemini TF 64 system at 75±5 min post FDG injection using 3min/bed. Based on the 180s/bed listmode PET data, subsets of total counts in 120s, 90s, 60s, 30s and 15s per bed position were extracted for PET reconstruction to simulate lower dose PET at 2/3th, 1/2th, 1/3th, 1/6th and 1/12th dose levels. PET/CT scans of Jaszczak PET phantom with 6 hot hollow spheres varying with sizes and contrast ratios were performed (real PET versus simulated PET) to validate the methodology of virtual dose PET simulation. Region of interests (ROIs) were placed on lesions and normal anatomical tissues with quantitative and qualitative assessment performed. Significant lower FDG dose PET/CT of 5 research adolescents were scanned to validate the proposal and low dose PET feasibility. Results: Although all lesions are visible on the 1/12th dose PET, overall PET image quality appears to be influenced in a multi-factorial way. 30%–60% dose reduction from current standard of care FDG PET is recommended to maintain equivalent quality and PET quantification. An optimized BMI-based FDG administration is recommended (from 1.1±0.5 mCi for BMI 30). A linear lowest “Dose-BMI” relationship is given. SUVs from 1/12th to full dose PETs were identified as consistent (R2 = 1.08, 0.99, 1.01, 1.00 and 0.98). No significant variances of count density, SUV and SNR were found across certain dose ranges (p<0.01). Conclusion: Pediatric PET/CT can be performed using current time-of-flight systems at substantially lower PET doses (30–60%) than the standard of care PET/CT without compromising qualitative and quantitative image quality in clinical.

  3. Dose reduction due to the use of pulsed miction-cystourethrography in pediatrics

    International Nuclear Information System (INIS)

    Rettinger, Tobias

    2013-01-01

    The miction-cystourethrography (MCU) is the most frequently used radiographic method (30-50%) in pediatrics. The absorbed doses were significantly reduced during the last years aimed to realize the ALARA principle. The scope of the work is to study the possibility of a further dose reduction using pulsed radiation systems based on a computer-aided analysis of the dose-time curve during MCU examination.

  4. Reduced-dose C-arm computed tomography applications at a pediatric institution

    Energy Technology Data Exchange (ETDEWEB)

    Acord, Michael; Shellikeri, Sphoorti; Vatsky, Seth; Srinivasan, Abhay; Krishnamurthy, Ganesh; Keller, Marc S.; Cahill, Anne Marie [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2017-12-15

    Reduced-dose C-arm computed tomography (CT) uses flat-panel detectors to acquire real-time 3-D images in the interventional radiology suite to assist with anatomical localization and procedure planning. To describe dose-reduction techniques for C-arm CT at a pediatric institution and to provide guidance for implementation. We conducted a 5-year retrospective study on procedures using an institution-specific reduced-dose protocol: 5 or 8 s Dyna Rotation, 248/396 projection images/acquisition and 0.1-0.17 μGy/projection dose at the detector with 0.3/0.6/0.9-mm copper (Cu) filtration. We categorized cases by procedure type and average patient age and calculated C-arm CT and total dose area product (DAP). Two hundred twenty-two C-arm CT-guided procedures were performed with a dose-reduction protocol. The most common procedures were temporomandibular and sacroiliac joint injections (48.6%) and sclerotherapy (34.2%). C-arm CT was utilized in cases of difficult percutaneous access in less common applications such as cecostomy and gastrostomy placement, foreign body retrieval and thoracentesis. C-arm CT accounted for between 9.9% and 80.7% of the total procedural DAP. Dose-reducing techniques can preserve image quality for intervention while reducing radiation exposure to the child. This technology has multiple applications within pediatric interventional radiology and can be considered as an adjunctive imaging tool in a variety of procedures, particularly when percutaneous access is challenging despite routine fluoroscopic or ultrasound guidance. (orig.)

  5. Age-specific effective doses for pediatric MSCT examinations at a large children's hospital using DLP conversion coefficients: a simple estimation method

    International Nuclear Information System (INIS)

    Thomas, Karen E.; Wang, Bo

    2008-01-01

    There is a need for an easily accessible method for effective dose estimation in pediatric CT. To estimate effective doses for a variety of pediatric neurological and body CT examinations in five age groups using recently published age- and region-specific dose length product (DLP) to effective dose conversion coefficients. A retrospective review was performed of 1,431 consecutive CT scans over a 12-week period using age- and weight-adjusted CT protocols. Age- and region-specific DLP to effective dose conversion coefficients were applied to console-displayed DLP data. Effective dose estimates for single-phase head CT scans in neonatal, and 1-, 5-, 10- and 15-year-old age groups were 4.2, 3.6, 2.4, 2.0 and 1.4 mSv, respectively. For abdomen/pelvis CT scans the corresponding effective doses were 13.1, 11.1, 8.4, 8.9 and 5.9 mSv. The range of pediatric CT effective doses is wide, from ultralow dose protocols (<1 mSv) to extended-coverage body examinations (10-15 mSv). Age- and region-specific pediatric DLP to effective dose conversion coefficients provide an accessible and user-friendly method for estimating pediatric CT effective doses that is available to radiologists working without medical physics support. (orig.)

  6. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel J.; Bolch, Wesley E.

    2012-01-01

    Purpose: To establish an organ dose database for pediatric and adolescent reference individuals undergoing computed tomography (CT) examinations by using Monte Carlo simulation. The data will permit rapid estimates of organ and effective doses for patients of different age, gender, examination type, and CT scanner model. Methods: The Monte Carlo simulation model of a Siemens Sensation 16 CT scanner previously published was employed as a base CT scanner model. A set of absorbed doses for 33 organs/tissues normalized to the product of 100 mAs and CTDI vol (mGy/100 mAs mGy) was established by coupling the CT scanner model with age-dependent reference pediatric hybrid phantoms. A series of single axial scans from the top of head to the feet of the phantoms was performed at a slice thickness of 10 mm, and at tube potentials of 80, 100, and 120 kVp. Using the established CTDI vol - and 100 mAs-normalized dose matrix, organ doses for different pediatric phantoms undergoing head, chest, abdomen-pelvis, and chest-abdomen-pelvis (CAP) scans with the Siemens Sensation 16 scanner were estimated and analyzed. The results were then compared with the values obtained from three independent published methods: CT-Expo software, organ dose for abdominal CT scan derived empirically from patient abdominal circumference, and effective dose per dose-length product (DLP). Results: Organ and effective doses were calculated and normalized to 100 mAs and CTDI vol for different CT examinations. At the same technical setting, dose to the organs, which were entirely included in the CT beam coverage, were higher by from 40 to 80% for newborn phantoms compared to those of 15-year phantoms. An increase of tube potential from 80 to 120 kVp resulted in 2.5-2.9-fold greater brain dose for head scans. The results from this study were compared with three different published studies and/or techniques. First, organ doses were compared to those given by CT-Expo which revealed dose differences up to

  7. Estimation of eye lens doses received by pediatric interventional cardiologists.

    Science.gov (United States)

    Alejo, L; Koren, C; Ferrer, C; Corredoira, E; Serrada, A

    2015-09-01

    Maximum Hp(0.07) dose to the eye lens received in a year by the pediatric interventional cardiologists has been estimated. Optically stimulated luminescence dosimeters were placed on the eyes of an anthropomorphic phantom, whose position in the room simulates the most common irradiation conditions. Maximum workload was considered with data collected from procedures performed in the Hospital. None of the maximum values obtained exceed the dose limit of 20 mSv recommended by ICRP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Biplane interventional pediatric system with cone-beam CT: dose and image quality characterization for the default protocols.

    Science.gov (United States)

    Corredoira, Eva; Vañó, Eliseo; Alejo, Luis; Ubeda, Carlos; Gutiérrez-Larraya, Federico; Garayoa, Julia

    2016-07-08

    The aim of this study was to assess image quality and radiation dose of a biplane angiographic system with cone-beam CT (CBCT) capability tuned for pediatric cardiac procedures. The results of this study can be used to explore dose reduction techniques. For pulsed fluoroscopy and cine modes, polymethyl methacrylate phantoms of various thicknesses and a Leeds TOR 18-FG test object were employed. Various fields of view (FOV) were selected. For CBCT, the study employed head and body dose phantoms, Catphan 504, and an anthropomorphic cardiology phantom. The study also compared two 3D rotational angiography protocols. The entrance surface air kerma per frame increases by a factor of 3-12 when comparing cine and fluoroscopy frames. The biggest difference in the signal-to- noise ratio between fluoroscopy and cine modes occurs at FOV 32 cm because fluoroscopy is acquired at a 1440 × 1440 pixel matrix size and in unbinned mode, whereas cine is acquired at 720 × 720 pixels and in binned mode. The high-contrast spatial resolution of cine is better than that of fluoroscopy, except for FOV 32 cm, because fluoroscopy mode with 32 cm FOV is unbinned. Acquiring CBCT series with a 16 cm head phantom using the standard dose protocol results in a threefold dose increase compared with the low-dose protocol. Although the amount of noise present in the images acquired with the low-dose protocol is much higher than that obtained with the standard mode, the images present better spatial resolution. A 1 mm diameter rod with 250 Hounsfield units can be distinguished in reconstructed images with an 8 mm slice width. Pediatric-specific protocols provide lower doses while maintaining sufficient image quality. The system offers a novel 3D imaging mode. The acquisition of CBCT images results in increased doses administered to the patients, but also provides further diagnostic information contained in the volumetric images. The assessed CBCT protocols provide images that are noisy, but with

  9. Operational modeling of dose and noise for computed tomography in a pediatric hospital

    International Nuclear Information System (INIS)

    Miller Clemente, Rafael A.; Perez Diaz, Marlen; Mora Reyes, Yudel; Rodriguez Garlobo, Maikel; Castillo Salazar, Rafael

    2008-01-01

    Noise becomes a critical factor in Computed Tomography (CT) because most detailed applications on soft tissue show a low contrast nature. Noise establishes an inferior limit to the contrast detectable by the observer. Various pixel noise models had been devised taking into account operational parameters on Single and Multi Detector Slice CT. The aim of this work was to obtain a predictive operational model for image noise addressed to pediatric protocols, taking into account scanning factors with a Single Slice CT unit dedicated to pediatric applications. A multiple linear regression model is proposed to predict noise in images of uniform phantoms equivalent to head and abdomen. A model for reported volumetric Computed Tomography Dose Index (CTDI VOL ) was obtained too for tradeoffs analysis approaching optimization purposes in pediatric applications. Eight independent variables were considered: phantom diameter, reconstruction mode, tube current, tube kVp, collimation, Field of View (FOV), reconstruction filter, and post processing filter. Results show good agreement with measurements, with adjusted coefficients of multiple determination of 0.936 and 0.744 for noise and CTDI VOL models respectively. Tube current, object diameter, collimation and reconstruction filters were the most influencing variables. The model application contributes to identify each factor's influence enhancing the operational possibilities approaching optimization of noise and dose tradeoffs. Acceptable noise levels and optimization strategies can be devised from models obtained towards lower tube current values combined with greater slice thickness and kVp taking into account the doses to pediatric patients. (author)

  10. Pediatric computed tomography dose of head and chest exams: a bibliography revision

    International Nuclear Information System (INIS)

    Friedrich, Barbara Q.; Capaverde, Alexandre S.; Vanni, Stefania; Mazzola, Carolina F.S.; Silva, Ana M. Marques da

    2015-01-01

    The Computed Tomography (CT) imaging diagnosis it is responsible for over 34% of the radiation dose given to society, only in Brazil there is around 3833 CT equipment. There are two dose index in CT, the CTDI vol and DLP that represents the Computed Tomography dose index and the product of the CTDI vol by the length of irradiation. This paper has as objective describe the values of CTDI vol e DLP for pediatric exams of chest and head. This is an exploratory study of bibliography revision on the PubMed data base using the index terms with the following crossing: Computed Tomography AND Reference Levels AND Dose. The search was limited by published studies on the last 5 years with patients among 0 and 15 years, in English or Portuguese. Besides that, were included references guides suggest by scientific and governmental organizations on the last 5 years. The data analysis was made using the four readings of Gil: exploratory, selective, analytic and interpretative. By the Exploratory Reading were located 23 articles. On the Selective Reading were excluded 4 articles and on the Analytic Reading 9 articles. The Interpretative Reading was made using 7 publications. Regarding the references guides were includes 3 guides. The Portaria MS453/98 was included for being the only national publication. All data were characterized between practical levels and reference levels. The conclusion is that there is no consensus between the reference levels for the selected articles, for pediatric exams. Besides that, the national legislation do not have reference levels for pediatric CT. (author)

  11. Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies

    International Nuclear Information System (INIS)

    Jeon, P-H; Lee, C-L; Kim, D-H; Lee, Y-J; Kim, H-J; Jeon, S-S

    2014-01-01

    Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose

  12. Noise and dose modeling for pediatric CT optimization: preliminary results

    International Nuclear Information System (INIS)

    Miller Clemente, Rafael A.; Perez Diaz, Marlen; Mora Reyes, Yudel; Rodriguez Garlobo, Maikel; Castillo Salazar, Rafael

    2008-01-01

    Full text: A Multiple Linear Regression Model was developed to predict noise and dose in computed tomography pediatric imaging for head and abdominal examinations. Relative values of Noise and Volumetric Computed Tomography Dose Index was used to estimate de model respectively. 54 images of physical phantoms were performed. Independent variables considered included: phantom diameter, tube current and kilovolts, x ray beam collimation, reconstruction diameter and equipment's post processing filters. Predicted values show good agreement with measurements, which were better in noise model (R 2 adjusted =0.953) than the dose model (R 2 adjusted =0.744). Tube current, object diameter, beam collimation and reconstruction filter were identified as the most influencing factors in models. (author)

  13. Hearing Loss After Radiotherapy for Pediatric Brain Tumors: Effect of Cochlear Dose

    International Nuclear Information System (INIS)

    Hua, Chiaho; Bass, Johnnie K.; Khan, Raja; Kun, Larry E.; Merchant, Thomas E.

    2008-01-01

    Purpose: To determine the effect of cochlear dose on sensorineural hearing loss in pediatric patients with brain tumor treated by using conformal radiation therapy (CRT). Patients and Methods: We studied 78 pediatric patients (155 ears) with localized brain tumors treated in 1997-2001 who had not received platinum-based chemotherapy and were followed up for at least 48 months. They were evaluated prospectively by means of serial pure-tone audiograms (250 Hz-8 kHz) and/or auditory brainstem response before and every 6 months after CRT. Results: Hearing loss occurred in 14% (11 of 78) of patients and 11% (17 of 155) of cochleae, with onset most often at 3-5 years after CRT. The incidence of hearing loss was low for a cochlear mean dose of 30 Gy or less and increased at greater than 40-45 Gy. Risk was greater at high frequencies (6-8 kHz). In children who tested abnormal for hearing, average hearing thresholds increased from a less than 25 decibel (dB) hearing level (HL) at baseline to a mean of 46 ± 13 (SD) dB HL for high frequencies, 41 ± 7 dB HL for low frequencies, and 38 ± 6 dB HL for intermediate frequencies. Conclusions: Sensorineural hearing loss is a late effect of CRT. In the absence of other factors, including ototoxic chemotherapy, increase in cochlear dose correlates positively with hearing loss in pediatric patients with brain tumor. To minimize the risk of hearing loss for children treated with radiation therapy, a cumulative cochlear dose less than 35 Gy is recommended for patients planned to receive 54-59.4 Gy in 30-33 treatment fractions

  14. Full dose reduction potential of statistical iterative reconstruction for head CT protocols in a predominantly pediatric population

    Science.gov (United States)

    Mirro, Amy E.; Brady, Samuel L.; Kaufman, Robert. A.

    2016-01-01

    Purpose To implement the maximum level of statistical iterative reconstruction that can be used to establish dose-reduced head CT protocols in a primarily pediatric population. Methods Select head examinations (brain, orbits, sinus, maxilla and temporal bones) were investigated. Dose-reduced head protocols using an adaptive statistical iterative reconstruction (ASiR) were compared for image quality with the original filtered back projection (FBP) reconstructed protocols in phantom using the following metrics: image noise frequency (change in perceived appearance of noise texture), image noise magnitude, contrast-to-noise ratio (CNR), and spatial resolution. Dose reduction estimates were based on computed tomography dose index (CTDIvol) values. Patient CTDIvol and image noise magnitude were assessed in 737 pre and post dose reduced examinations. Results Image noise texture was acceptable up to 60% ASiR for Soft reconstruction kernel (at both 100 and 120 kVp), and up to 40% ASiR for Standard reconstruction kernel. Implementation of 40% and 60% ASiR led to an average reduction in CTDIvol of 43% for brain, 41% for orbits, 30% maxilla, 43% for sinus, and 42% for temporal bone protocols for patients between 1 month and 26 years, while maintaining an average noise magnitude difference of 0.1% (range: −3% to 5%), improving CNR of low contrast soft tissue targets, and improving spatial resolution of high contrast bony anatomy, as compared to FBP. Conclusion The methodology in this study demonstrates a methodology for maximizing patient dose reduction and maintaining image quality using statistical iterative reconstruction for a primarily pediatric population undergoing head CT examination. PMID:27056425

  15. The Simulation-Based Assessment of Pediatric Rapid Response Teams.

    Science.gov (United States)

    Fehr, James J; McBride, Mary E; Boulet, John R; Murray, David J

    2017-09-01

    To create scenarios of simulated decompensating pediatric patients to train pediatric rapid response teams (RRTs) and to determine whether the scenario scores provide a valid assessment of RRT performance with the hypothesis that RRTs led by intensivists-in-training would be better prepared to manage the scenarios than teams led by nurse practitioners. A set of 10 simulated scenarios was designed for the training and assessment of pediatric RRTs. Pediatric RRTs, comprising a pediatric intensive care unit (PICU) registered nurse and respiratory therapist, led by a PICU intensivist-in-training or a pediatric nurse practitioner, managed 7 simulated acutely decompensating patients. Two raters evaluated the scenario performances and psychometric analyses of the scenarios were performed. The teams readily managed scenarios such as supraventricular tachycardia and opioid overdose but had difficulty with more complicated scenarios such as aortic coarctation or head injury. The management of any particular scenario was reasonably predictive of overall team performance. The teams led by the PICU intensivists-in-training outperformed the teams led by the pediatric nurse practitioners. Simulation provides a method for RRTs to develop decision-making skills in managing decompensating pediatric patients. The multiple scenario assessment provided a moderately reliable team score. The greater scores achieved by PICU intensivist-in-training-led teams provides some evidence to support the validity of the assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Estimate of the dose received in crystalline lens by pediatric interventional cardiologists

    International Nuclear Information System (INIS)

    Koren, C.; Alejo, L.; Serrada, A.

    2014-08-01

    The objective of this work is to estimate the maximum dose accumulated during one year in the crystalline lens of the pediatric interventional cardiologists that work in the Hospital Universitario La Paz. Optically Stimulated Luminescence Dosimeters (OSLDs) were used for to carry out this estimation, placed in the eyes of an anthropomorphic mannequin whose position in the room simulates the more habitual conditions of the clinical practice. Previously to the simulation, different tests to validate the used dosimetric system were realized, including those related with the stability, reproducibility and lector linearity, as well as the angular and energy dependence of the OSLDs. During the simulation the mannequin eyes were irradiated and were measured with OSLDs the rate of superficial equivalent dose in crystalline lens for the different qualities of beam habitually used, as much in fluoroscopy as in acquisition. With the obtained data during three years, corresponding to the fluoroscopy times and the acquisitions number of the interventional procedures carried out; as much therapeutic as diagnostic, and rate by measuring of obtained dose, has been considered the superficial equivalent dose and the equivalent dose at 3 mm deep accumulated in the crystalline lens of the pediatric interventional cardiologist with more work load of the Hospital, during the years 2011 and 2012. None of the obtained maximum values exceed the new dose annual limit in crystalline lens of 20 mSv, recommended by ICRP in April of 2011. (author)

  17. Iterative reconstruction technique with reduced volume CT dose index: diagnostic accuracy in pediatric acute appendicitis

    International Nuclear Information System (INIS)

    Didier, Ryne A.; Vajtai, Petra L.; Hopkins, Katharine L.

    2015-01-01

    Iterative reconstruction technique has been proposed as a means of reducing patient radiation dose in pediatric CT. Yet, the effect of such reductions on diagnostic accuracy has not been thoroughly evaluated. This study compares accuracy of diagnosing pediatric acute appendicitis using contrast-enhanced abdominopelvic CT scans performed with traditional pediatric weight-based protocols and filtered back projection reconstruction vs. a filtered back projection/iterative reconstruction technique blend with reduced volume CT dose index (CTDI vol ). Results of pediatric contrast-enhanced abdominopelvic CT scans done for pain and/or suspected appendicitis were reviewed in two groups: A, 192 scans performed with the hospital's established weight-based CT protocols and filtered back projection reconstruction; B, 194 scans performed with iterative reconstruction technique and reduced CTDI vol . Reduced CTDI vol was achieved primarily by reductions in effective tube current-time product (mAs eff ) and tube peak kilovoltage (kVp). CT interpretation was correlated with clinical follow-up and/or surgical pathology. CTDI vol , size-specific dose estimates (SSDE) and performance characteristics of the two CT techniques were then compared. Between groups A and B, mean CTDI vol was reduced by 45%, and mean SSDE was reduced by 46%. Sensitivity, specificity and diagnostic accuracy were 96%, 97% and 96% in group A vs. 100%, 99% and 99% in group B. Accuracy in diagnosing pediatric acute appendicitis was maintained in contrast-enhanced abdominopelvic CT scans that incorporated iterative reconstruction technique, despite reductions in mean CTDI vol and SSDE by nearly half as compared to the hospital's traditional weight-based protocols. (orig.)

  18. Pediatric CT: implementation of ASIR for substantial radiation dose reduction while maintaining pre-ASIR image noise.

    Science.gov (United States)

    Brady, Samuel L; Moore, Bria M; Yee, Brian S; Kaufman, Robert A

    2014-01-01

    To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current-modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude

  19. Cumulative effective dose and cancer risk for pediatric population in repetitive full spine follow-up imaging: How micro dose is the EOS microdose protocol?

    Science.gov (United States)

    Law, Martin; Ma, Wang-Kei; Lau, Damian; Cheung, Kenneth; Ip, Janice; Yip, Lawrance; Lam, Wendy

    2018-04-01

    To evaluate and to obtain analytic formulation for the calculation of the effective dose and associated cancer risk using the EOS microdose protocol for scoliotic pediatric patients undergoing full spine imaging at different age of exposure; to demonstrate the microdose protocol capable of delivering lesser radiation dose and hence of further reducing cancer risk induction when compared with the EOS low dose protocol; to obtain cumulative effective dose and cancer risk for both genders scoliotic pediatrics of US and Hong Kong population using the microdose protocol. Organ absorbed doses of full spine exposed scoliotic pediatric patients have been simulated with the use of EOS microdose protocol imaging parameters input to the Monte Carlo software PCXMC. Gender and age specific effective dose has been calculated with the simulated organ absorbed dose using the ICRP-103 approach. The associated radiation induced cancer risk, expressed as lifetime attributable risk (LAR), has been estimated according to the method introduced in the Biological Effects of Ionizing Radiation VII report. Values of LAR have been estimated for scoliotic patients exposed repetitively during their follow up period at different age for US and Hong Kong population. The effective doses of full spine imaging with simultaneous posteroanterior and lateral projection for patients exposed at the age between 5 and 18 years using the EOS microdose protocol have been calculated within the range of 2.54-14.75 μSv. The corresponding LAR for US and Hong Kong population was ranged between 0.04 × 10 -6 and 0.84 × 10 -6 . Cumulative effective dose and cancer risk during follow-up period can be estimated using the results and are of information to patients and their parents. With the use of computer simulation and analytic formulation, we obtained the cumulative effective dose and cancer risk at any age of exposure for pediatric patients of US and Hong Kong population undergoing repetitive

  20. The ALARA (as low as reasonably achievable) concept in pediatric interventional and fluoroscopic imaging: striving to keep radiation doses as low as possible during fluoroscopy of pediatric patients - a white paper executive summary

    International Nuclear Information System (INIS)

    Strauss, Keith J.; Kaste, Sue C.

    2006-01-01

    ALARA represents a practice mandate adhering to the principle of keeping radiation doses to patients and personnel As Low As Reasonably Achievable. This concept is strongly endorsed by the Society for Pediatric Radiology, particularly in the use of procedures and modalities involving higher radiation doses such as CT and fluoroscopic examinations of pediatric patients. There is no doubt that medical imaging, which has undergone tremendous technological advances in recent decades, is integral to patient care. However, these technological advances generally precede the knowledge of end-users concerning the optimal use and correct operation of the resulting imaging equipment, and such knowledge is essential to minimizing potential risks to the patients. Current imaging methods must be optimized for radiation dose reduction in pediatric patients who might be as much as ten times more radiosensitive than adults. Unlike straightforward radiographic examinations, radiation dose to the patient during fluoroscopy is dependent on the operator's training, experience with the fluoroscope, and efficiency in completing a diagnostic study. The range of pediatric radiation doses from fluoroscopy is wide because this examination is performed not only by pediatric radiologists but also by general radiologists who occasionally care for children, interventional cardiologists, gastroenterologists, urologists and others. Thus, a venue where multidisciplinary interaction by this variety of operators can occur serves to improve pediatric patient care

  1. Medical and occupational dose reduction in pediatric barium meal procedures

    Science.gov (United States)

    Filipov, D.; Schelin, H. R.; Denyak, V.; Paschuk, S. A.; Ledesma, J. A.; Legnani, A.; Bunick, A. P.; Sauzen, J.; Yagui, A.; Vosiak, P.

    2017-11-01

    Doses received in pediatric Barium Meal procedure can be rather high. It is possible to reduce dose values following the recommendations of the European Communities (EC) and the International Commission on Radiological Protection (ICRP). In the present work, the modifications of radiographic techniques made in a Brazilian hospital according to the EC and the ICRP recommendations and their influence on medical and occupational exposure are reported. The procedures of 49 patients before and 44 after the optimization were studied and air kerma-area product (PK,A) values and the effective doses were evaluated. The occupational equivalent doses were measured next to the eyes, under the thyroid shield and on each hand of both professionals who remained inside the examination room. The implemented modifications reduced by 70% and 60% the PK,A and the patient effective dose, respectively. The obtained dose values are lower than approximately 75% of the results from similar studies. The occupational annual equivalent doses for all studied organs became lower than the limits set by the ICRP. The equivalent doses in one examination were on average below than 75% of similar studies.

  2. Pediatric radiation dose and risk from bone density measurements using a GE Lunar Prodigy scanner.

    Science.gov (United States)

    Damilakis, J; Solomou, G; Manios, G E; Karantanas, A

    2013-07-01

    Effective radiation doses associated with bone mineral density examinations performed on children using a GE Lunar Prodigy fan-beam dual-energy X-ray absorptiometry (DXA) scanner were found to be comparable to doses from pencil-beam DXA devices, i.e., lower than 1 μSv. Cancer risks associated with acquisitions obtained in this study are negligible. No data were found in the literature on radiation doses and potential risks following pediatric DXA performed on GE Lunar DXA scanners. This study aimed to estimate effective doses and associated cancer risks involved in pediatric examinations performed on a GE Lunar Prodigy scanner. Four physical anthropomorphic phantoms representing newborn, 1-, 5-, and 10-year-old patients were employed to simulate DXA exposures. All acquisitions were carried out using the Prodigy scanner. Dose measurements were performed for spine and dual femur using the phantoms simulating the 5- and 10-year-old child. Moreover, doses associated with whole-body examinations were measured for the four phantoms used in the current study. The gender-average effective dose for spine and hip examinations were 0.65 and 0.36 μSv, respectively, for the phantom representing the 5-year-old child and 0.93 and 0.205 μSv, respectively, for the phantom representing the 10-year-old child. Effective doses for whole-body examinations were 0.25, 0.22, 0.19, and 0.15 μSv for the neonate, 1-, 5-, and 10-year old child, respectively. The estimated lifetime cancer risks were negligible, i.e., 0.02-0.25 per million, depending on the sex, age, and type of DXA examination. A formula is presented for the estimation of effective dose from examinations performed on GE Lunar Prodigy scanners installed in other institutions. The effective doses and potential cancer risks associated with pediatric DXA examinations performed on a GE Lunar Prodigy fan-beam scanner were found to be comparable to doses and risks reported from pencil-beam DXA devices.

  3. Iterative reconstruction technique with reduced volume CT dose index: diagnostic accuracy in pediatric acute appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Didier, Ryne A. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Vajtai, Petra L. [Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States); Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Hopkins, Katharine L. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States)

    2014-07-05

    Iterative reconstruction technique has been proposed as a means of reducing patient radiation dose in pediatric CT. Yet, the effect of such reductions on diagnostic accuracy has not been thoroughly evaluated. This study compares accuracy of diagnosing pediatric acute appendicitis using contrast-enhanced abdominopelvic CT scans performed with traditional pediatric weight-based protocols and filtered back projection reconstruction vs. a filtered back projection/iterative reconstruction technique blend with reduced volume CT dose index (CTDI{sub vol}). Results of pediatric contrast-enhanced abdominopelvic CT scans done for pain and/or suspected appendicitis were reviewed in two groups: A, 192 scans performed with the hospital's established weight-based CT protocols and filtered back projection reconstruction; B, 194 scans performed with iterative reconstruction technique and reduced CTDI{sub vol}. Reduced CTDI{sub vol} was achieved primarily by reductions in effective tube current-time product (mAs{sub eff}) and tube peak kilovoltage (kVp). CT interpretation was correlated with clinical follow-up and/or surgical pathology. CTDI{sub vol}, size-specific dose estimates (SSDE) and performance characteristics of the two CT techniques were then compared. Between groups A and B, mean CTDI{sub vol} was reduced by 45%, and mean SSDE was reduced by 46%. Sensitivity, specificity and diagnostic accuracy were 96%, 97% and 96% in group A vs. 100%, 99% and 99% in group B. Accuracy in diagnosing pediatric acute appendicitis was maintained in contrast-enhanced abdominopelvic CT scans that incorporated iterative reconstruction technique, despite reductions in mean CTDI{sub vol} and SSDE by nearly half as compared to the hospital's traditional weight-based protocols. (orig.)

  4. Obesity and Pediatric Drug Development.

    Science.gov (United States)

    Vaughns, Janelle D; Conklin, Laurie S; Long, Ying; Zheng, Panli; Faruque, Fahim; Green, Dionna J; van den Anker, John N; Burckart, Gilbert J

    2018-05-01

    There is a lack of dosing guidelines for use in obese children. Moreover, the impact of obesity on drug safety and clinical outcomes is poorly defined. The paucity of information needed for the safe and effective use of drugs in obese patients remains a problem, even after drug approval. To assess the current incorporation of obesity as a covariate in pediatric drug development, the pediatric medical and clinical pharmacology reviews under the Food and Drug Administration (FDA) Amendments Act of 2007 and the FDA Safety and Innovation Act (FDASIA) of 2012 were reviewed for obesity studies. FDA labels were also reviewed for statements addressing obesity in pediatric patients. Forty-five drugs studied in pediatric patients under the FDA Amendments Act were found to have statements and key words in the medical and clinical pharmacology reviews and labels related to obesity. Forty-four products were identified similarly with pediatric studies under FDASIA. Of the 89 product labels identified, none provided dosing information related to obesity. The effect of body mass index on drug pharmacokinetics was mentioned in only 4 labels. We conclude that there is little information presently available to provide guidance related to dosing in obese pediatric patients. Moving forward, regulators, clinicians, and the pharmaceutical industry should consider situations in drug development in which the inclusion of obese patients in pediatric trials is necessary to facilitate the safe and effective use of new drug products in the obese pediatric population. © 2018, The American College of Clinical Pharmacology.

  5. Evaluation of skin entrance radiation dose in pediatric patients undergoing chest X-rays exams

    International Nuclear Information System (INIS)

    Gabardo, Farly Piantini

    2016-01-01

    The aim of this work was to estimate the incident air kerma of lateral (LAT) and anterior-posterior (AP) together with posterior-anterior (PA) projection chest X-ray exams in one of the largest pediatric hospitals in Brazil. Dosimetric results are accompanied with the detailed analysis of patient characteristics and radiographer strategy. The exams of 225 (119 male and 106 female) patients were studied and 389 X-ray exams (200 AP/PA projections and 189 LAT projections) of pediatric patients were acquired. Patient thickness can be restored from age, height or weight with the uncertainty of ∼20-30%. Very slight correlation between the patient dose and thickness was observed with the difference in dose for patients of the same thickness reaching 4 times. By standardization of radiological protocols, it should be possible to keep dose within the intervals 50-100 μGy for LAT projection and 40-80 μGy for AP/PA projection. The dose values are lower than those recommended by major European guidelines to good practice. (author)

  6. Update on radiation safety and dose reduction in pediatric neuroradiology

    International Nuclear Information System (INIS)

    Mahesh, Mahadevappa

    2015-01-01

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  7. Update on radiation safety and dose reduction in pediatric neuroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, Mahadevappa [Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2015-09-15

    The number of medical X-ray imaging procedures is growing exponentially across the globe. Even though the overall benefit from medical X-ray imaging procedures far outweighs any associated risks, it is crucial to take all necessary steps to minimize radiation risks to children without jeopardizing image quality. Among the X-ray imaging studies, except for interventional fluoroscopy procedures, CT studies constitute higher dose and therefore draw considerable scrutiny. A number of technological advances have provided ways for better and safer CT imaging. This article provides an update on the radiation safety of patients and staff and discusses dose optimization in medical X-ray imaging within pediatric neuroradiology. (orig.)

  8. Evaluation of skin entrance dose imparted on pediatric patients by thorax exams

    International Nuclear Information System (INIS)

    Oliveira, Mercia L.; Khoury, Helen; Drexler, Guenter; GSF-National Research Center for Environment and Health, Neuherberg; Barros, Edison

    2001-01-01

    In this work the results of a survey of skin entrance dose imparted on pediatric patients are present. Positioning the thermo luminescence dosimeters in contact with the patient's skin, in the center of the incident X-ray beam, collected the skin entrance dose data. The patients were grouped in five age groups: infants, 1,1 to 4 years, 4,1 to 6 years, 6,1 to 10 years and older than 10 years. The results show that the average of skin entrance doses is very higher as compared to the European Community Commission reference levels and to other values found in literature. (author)

  9. Radiation dose and cancer risk among pediatric patients undergoing interventional neuroradiology procedures

    International Nuclear Information System (INIS)

    Thierry-Chef, Isabelle; Simon, Steven L.; Miller, Donald L.

    2006-01-01

    During interventional neuroradiology procedures, patients can be exposed to moderate to high levels of radiation. Special considerations are required to protect children, who are generally more sensitive to the short- and long-term detrimental effects of radiation exposure. Estimates of dose to the skin of children from certain interventional procedures have been published elsewhere, but we are not aware of data on dose to the brain or on the long-term risk of cancer from brain radiation. Our goals were to estimate radiation doses to the brain in 50 pediatric patients who had undergone cerebral embolization and to assess their lifetime risks of developing radiation-related brain cancer. Entrance-peak skin dose and various assumptions on conditions of exposure were used as input for dosimetric calculations to estimate the spatial pattern of dose within the brain and the average dose to the whole brain for each child. The average dose and the age of the child at time of exposure were used to estimate the lifetime risk of developing radiation-related brain cancer. Among the 50 patients, average radiation doses to the brain were estimated to vary from 100 mGy to 1,300 mGy if exposed to non-collimated fields and from 20 mGy to 160 mGy for collimated, moving fields. The lifetime risk of developing brain cancer was estimated to be increased by 2% to 80% as a result of the exposure. Given the very small lifetime background risk of brain tumor, the excess number of cases will be small even though the relative increase might be as high as 80%. ALARA principles of collimation and dose optimization are the most effective means to minimize the risk of future radiation-related cancer. (orig.)

  10. Risk assessment of radio-chemotherapy in pediatric soft tissue sarcomas

    Directory of Open Access Journals (Sweden)

    A. Abaza

    2015-01-01

    Finally, the current study concluded that STS multidisciplinary management may cause early and late toxicity. Future approaches including radiation dose and volume reduction or application of new radiation technologies are needed. New strategies with reduction or elimination of chemotherapy (CTH dose are also recommended for dealing with pediatric STS patients.

  11. Radiation dose evaluation in pediatric urethrocystography professionals, patients and companions of patients; Avaliação da dose em profissionais, pacientes e acompanhantes de pacientes em exames de uretrocistografia pediátrica

    Energy Technology Data Exchange (ETDEWEB)

    Just, W.; Lykawka, R.; Anés, M.; Cunha, R.; Goulart, J.M.; Bacelar, A., E-mail: rlykawka@hcpa.edu.br [Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS (Brazil). Laboratório de Imagens Médicas e Radioproteção

    2017-07-01

    Urinary urethrocystography is suggested as the second stage in the diagnosis of urinary tract infection, according to the ACR Adequacy Criteria. When performed in pediatric patients, it may be necessary to contain the patient, increasing the risk of exposure of the professionals involved. To assess the exposure levels of those involved in this test, we estimated the radiation doses in patients, companions and professionals. A total of 56 pediatric urethrocystography examinations were performed on the SHIMADZU Sonialvision fluoroscopy equipment. We measured the DAP with the VacuDAP Duo equipment. The effective dose of radiologist and companion were estimated using RaySafe i2 dosimeters; the equivalent dose received on the radiologist's pulse was estimated with optically stimulated dosimeters. The results of the collected data are expressed by median [first quartile - third quartile]. The exposure time was 5.38 [3.00 - 9.64] s; or DAP 119.58 [76.62 - 350.88] μGym²; the dose for the radiologist physician in the thorax 0.01 [0.00 - 0.02] mSv and in the pulse 0.05 [0.03 - 0.14] mSv; the companion dose 0.00 [0.00 - 0.01] mSv. Despite the radiologist's proximity to the primary X-ray beam, his dose to the wrist and chest does not reach the limit of annual doses established in Brazilian legislation. The dose of the companion is less than the effective dose condition established in national legislation.

  12. Radiation dose to the pediatric population of Slovak Republic from diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Ftacnikova, S.; Fueriova, A.

    1996-01-01

    The increased number of in vitro diagnostic nuclear medicine examinations has created the need for more precise determination of radiation dose to the population, specially to the children. A questionnaire survey has been performed on all nuclear medicine facilities in Slovak Republic through 1982 to 1994 with a special attention to pediatric patients in 1994. The information obtained was about the age distribution, number of different types of examinations, radiopharmaceuticals used and the value of mean administered radioactivity per exam. These data were used to evaluate the mean effective dose per exam and per capita, the collective effective dose for special type of examinations, for different radiopharmaceuticals and for radionuclides used in diagnostic procedures. In calculations we used the best available biokinetic models of the distribution of radiopharmaceuticals in organs as a function of age. The results show that the Slovak Republic appeared favorable in comparison to other countries in the judicious use of diagnostic nuclear medicine procedures performed on pediatric population. (author)

  13. Evidence-Based Design of Fixed-Dose Combinations: Principles and Application to Pediatric Anti-Tuberculosis Therapy.

    Science.gov (United States)

    Svensson, Elin M; Yngman, Gunnar; Denti, Paolo; McIlleron, Helen; Kjellsson, Maria C; Karlsson, Mats O

    2018-05-01

    Fixed-dose combination formulations where several drugs are included in one tablet are important for the implementation of many long-term multidrug therapies. The selection of optimal dose ratios and tablet content of a fixed-dose combination and the design of individualized dosing regimens is a complex task, requiring multiple simultaneous considerations. In this work, a methodology for the rational design of a fixed-dose combination was developed and applied to the case of a three-drug pediatric anti-tuberculosis formulation individualized on body weight. The optimization methodology synthesizes information about the intended use population, the pharmacokinetic properties of the drugs, therapeutic targets, and practical constraints. A utility function is included to penalize deviations from the targets; a sequential estimation procedure was developed for stable estimation of break-points for individualized dosing. The suggested optimized pediatric anti-tuberculosis fixed-dose combination was compared with the recently launched World Health Organization-endorsed formulation. The optimized fixed-dose combination included 15, 36, and 16% higher amounts of rifampicin, isoniazid, and pyrazinamide, respectively. The optimized fixed-dose combination is expected to result in overall less deviation from the therapeutic targets based on adult exposure and substantially fewer children with underexposure (below half the target). The development of this design tool can aid the implementation of evidence-based formulations, integrating available knowledge and practical considerations, to optimize drug exposures and thereby treatment outcomes.

  14. Management of pediatric radiation dose using Canon digital radiography

    International Nuclear Information System (INIS)

    Arreola, M.; Rill, L.

    2004-01-01

    A Canon CXDI-11 digital radiography (DR) system has been in use at Shands Hospital at the University of Florida for the past 2 1/2 years. A first clinical implementation phase was utilized to develop imaging protocols for adult patients, with a second phase incorporating pediatric chest and abdominal studies a few months later. This paper describes some of the steps taken during the modality implementation stages, as well as the methodologies and procedures utilized to monitor compliance by the technologists. The Canon DR system provides the technologist with an indication of the radiation exposure received by the detector (and thus of the patient dose) by means of an indirect exposure level number called the reached exposure (REX) value. The REX value is calculated by the system based on the default grayscale curve preselected for a given anatomical view and used by the system to optimize the appearance of the image. The brightness and contrast of the image can be modified by the user at the QC/control screen for the purpose of improving the appearance of the image. Such changes modify the actual grayscale curve (position and slope, respectively) and thus the calculated REX value. Thus, undisciplined use of the brightness and contrast functions by the technologist can render the REX value meaningless as an exposure indicator. The paper also shows how it is possible to calibrate AEC (phototimer) systems for use with the Canon DR system, and utilize the REX value as a valuable dose indicator through proper training of technologists and strict, disciplined QC of studies. A team consisting of the site's medical physicist, radiologists, and technologists, as well as Canon engineers, can work together in properly calibrating and setting up the system for the purposes of monitoring patient doses (especially pediatric) in DR studies performed in a Canon DR system. (orig.)

  15. Pediatric Obesity: Pharmacokinetic Alterations and Effects on Antimicrobial Dosing.

    Science.gov (United States)

    Natale, Stephanie; Bradley, John; Nguyen, William Huy; Tran, Tri; Ny, Pamela; La, Kirsten; Vivian, Eva; Le, Jennifer

    2017-03-01

    Limited data exist for appropriate drug dosing in obese children. This comprehensive review summarizes pharmacokinetic (PK) alterations that occur with age and obesity, and these effects on antimicrobial dosing. A thorough comparison of different measures of body weight and specific antimicrobial agents including cefazolin, cefepime, ceftazidime, daptomycin, doripenem, gentamicin, linezolid, meropenem, piperacillin-tazobactam, tobramycin, vancomycin, and voriconazole is presented. PubMed (1966-July 2015) and Cochrane Library searches were performed using these key terms: children, pharmacokinetic, obesity, overweight, body mass index, ideal body weight, lean body weight, body composition, and specific antimicrobial drugs. PK studies in obese children and, if necessary, data from adult studies were summarized. Knowledge of PK alterations stemming from physiologic changes that occur with age from the neonate to adolescent, as well as those that result from increased body fat, become an essential first step toward optimizing drug dosing in obese children. Excessive amounts of adipose tissue contribute significantly to body size, total body water content, and organ size and function that may modify drug distribution and clearance. PK studies that evaluated antimicrobial dosing primarily used total (or actual) body weight (TBW) for loading doses and TBW or adjusted body weight for maintenance doses, depending on the drugs' properties and dosing units. PK studies in obese children are imperative to elucidate drug distribution, clearance, and, consequently, the dose required for effective therapy in these children. Future studies should evaluate the effects of both age and obesity on drug dosing because the incidence of obesity is increasing in pediatric patients. © 2017 Pharmacotherapy Publications, Inc.

  16. Effective dose estimation for pediatric upper gastrointestinal examinations using an anthropomorphic phantom set and metal oxide semiconductor field-effect transistor (MOSFET) technology

    International Nuclear Information System (INIS)

    Emigh, Brent; Gordon, Christopher L.; Falkiner, Michelle; Thomas, Karen E.; Connolly, Bairbre L.

    2013-01-01

    There is a need for updated radiation dose estimates in pediatric fluoroscopy given the routine use of new dose-saving technologies and increased radiation safety awareness in pediatric imaging. To estimate effective doses for standardized pediatric upper gastrointestinal (UGI) examinations at our institute using direct dose measurement, as well as provide dose-area product (DAP) to effective dose conversion factors to be used for the estimation of UGI effective doses for boys and girls up to 10 years of age at other centers. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were placed within four anthropomorphic phantoms representing children ≤10 years of age and exposed to mock UGI examinations using exposures much greater than used clinically to minimize measurement error. Measured effective dose was calculated using ICRP 103 weights and scaled to our institution's standardized clinical UGI (3.6-min fluoroscopy, four spot exposures and four examination beam projections) as determined from patient logs. Results were compared to Monte Carlo simulations and related to fluoroscope-displayed DAP. Measured effective doses for standardized pediatric UGI examinations in our institute ranged from 0.35 to 0.79 mSv in girls and were 3-8% lower for boys. Simulation-derived and measured effective doses were in agreement (percentage differences 0.18). DAP-to-effective dose conversion factors ranged from 6.5 x 10 -4 mSv per Gy-cm 2 to 4.3 x 10 -3 mSv per Gy-cm 2 for girls and were similarly lower for boys. Using modern fluoroscopy equipment, the effective dose associated with the UGI examination in children ≤10 years at our institute is < 1 mSv. Estimations of effective dose associated with pediatric UGI examinations can be made for children up to the age of 10 using the DAP-normalized conversion factors provided in this study. These estimates can be further refined to reflect individual hospital examination protocols through the use of direct organ

  17. Dose to the liver and spleen in pediatric patients undergoing technetium-99m sulfur colloid scans

    International Nuclear Information System (INIS)

    Thomas, S.R.; Purdom, R.C.; Kereiakes, J.G.; Gelfand, M.J.; Maxon, H.R.

    1979-01-01

    Quantitative conjugate view external counting techniques were applied to determine radiation dose to the liver and spleen in pediatric patients undergoing /sup 99m/Tc-sulfur colloid (Tc-SC) liver scans. The effective half-life of /sup99m/Tc-SC was 5.8 +- 0.23 hours and 5.2 +- 0.68 hours in the liver and spleen, respectively. Dose per administered activity ranged from 0.34 to 0.63 rad/mCi (92 to 170 μGy/MBq) for the liver and 0.35 to 1.96 rad/mCi (95.0 to 530.0 μGy/MBq) for the spleen. The spleen to liver dose ratio ranged from 1.0 to 4.9. These values are compared with results extrapolated from published adult data to the pediatric population

  18. Determination of effective dose in pediatric radiodiagnostic in Medellin-Colombia; Determinacion de la dosis efectiva en radiodiagnostico pediatrico en Medellin-Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, William J., E-mail: wjaramig@gmail.com [Instituto Tecnologico Metropolitano (ITM), Medellin (Colombia); Aramburo, Javier M.; Jimenez, Angelmiro A.; Ortiz, Anselmo P., E-mail: jmorales@unal.edu.co, E-mail: aarrieta@unal.edu.co, E-mail: japuerta@unal.edu.co [Universidad Nacional de Colombia (UNAL), Medellin (Colombia)

    2013-10-01

    In order to know the effective dose in pediatric X-ray exams of chest, entrance surface dose measurements were performed for ages 1,5 and 10 years in the largest pediatric hospital in the city of Medellin, Colombia. The effective dose was obtained from applying the conversion coefficients to measures of the entrance surface dose (ESD) in 306 radiographic studies in AP and LAT I projections. The results were validated with PCXMC 2.0 computer program and other work reported in the literature. (author)

  19. Doses in pediatric patients undergoing chest and abdomen CT examinations. Preliminary results

    International Nuclear Information System (INIS)

    Jornada, Tiago S.; Silva, Teogenes A. da

    2011-01-01

    Computed tomography (CT) is a non-invasive method of image production that imparts significant doses to a patient, it is expected that pediatric CT examinations will increase the risk of induced cancer in children. In this study the effective doses in a five year-old child submitted to chest or abdomen CT scans were assessed for comparison purposes. The CTEXPO computed program was used with data from routine protocols of a 0 to 13 year-old children in two public hospitals in Belo Horizonte. Hospital A used a Siemens Dual-Slice unit with 80 kV, 41 mA and pitch 2 for chest or abdomen; hospital B used a Multislice GE unit with 120 kV, 45 mA and pitch 1 for chest and 120 kV, 55 mA. and pitch 1 for abdomen. Results of effective doses in a five year-old child were 1.7 and 1.0 mSv in hospital A and 9.1 and 7.2 mSv in hospital B, for chest and abdomen, respectively. Results were compared to the reference effective doses of 7.2 and 5.0 mSv for chest and abdomen respectively that were derived from the air kerma length product values given in ICRP publication 87. Results of hospital A showed that low dose exposures also can be achieved in CT scans of children. Results showed that even a hospital with a modern facility (hospital B) can provided doses higher than reference values if protocols are not adjusted for children. Preliminary results suggested that there is a room for optimizing children exposure submitted to CT scans. (author)

  20. Practical measurement of radiation dose in pediatric radiology: use of the dose-area product on digital fluoroscopy and neonatal chest radiographs

    International Nuclear Information System (INIS)

    Chateil, J.F.; Rouby, C.; Brun, M.; Labessan, C.; Diard, F.

    2004-01-01

    Purpose. Control of radiation dose in pediatric radiology requires knowledge of the reference levels for all examinations. These data are useful for daily quality assessment, but are not perfectly known for some radiographic examinations. The purpose of our study was to evaluate the dose related to voiding cysto-urethrograms (VCUG), upper GI (UGI) and intravenous urography (IVU). Neonatal chest radiographs in the intensive care unit were also evaluated. Material and methods. For examinations with contrast material (478VCUG, 220UGI, 80IVU), the children were divided in groups based on their weight, from 5 to 30 Kg. Measurements were performed using an ionization chamber and expressed with the-dose-area product (DAP). For chest radiographs, a direct measurement of the entrance-skin dose was performed, with secondary calculation of the DAP. Results. For-VCUGs, the DAP ranged between 42.89 cGy.cm 2 and 125.41 cGy.cm 2 . The range was between 76.43, and 150.62 cGy.cm 2 for UGIs and between 49.06 and 83.33 cGy.cm 2 for IVUs. For neonate chest radiographs, DAP calculations were between 0.29 and 0.99 cGy.cm 2 . Conclusion. These values represent our reference doses. They allow continuous monitoring of our radiographic technical parameters and radiographic equipment and help to correct and improve them if necessary. (author)

  1. The Pediatrics Milestones Assessment Pilot: Development of Workplace-Based Assessment Content, Instruments, and Processes.

    Science.gov (United States)

    Hicks, Patricia J; Margolis, Melissa; Poynter, Sue E; Chaffinch, Christa; Tenney-Soeiro, Rebecca; Turner, Teri L; Waggoner-Fountain, Linda; Lockridge, Robin; Clyman, Stephen G; Schwartz, Alan

    2016-05-01

    To report on the development of content and user feedback regarding the assessment process and utility of the workplace-based assessment instruments of the Pediatrics Milestones Assessment Pilot (PMAP). One multisource feedback instrument and two structured clinical observation instruments were developed and refined by experts in pediatrics and assessment to provide evidence for nine competencies based on the Pediatrics Milestones (PMs) and chosen to inform residency program faculty decisions about learners' readiness to serve as pediatric interns in the inpatient setting. During the 2012-2013 PMAP study, 18 U.S. pediatric residency programs enrolled interns and subinterns. Faculty, residents, nurses, and other observers used the instruments to assess learner performance through direct observation during a one-month rotation. At the end of the rotation, data were aggregated for each learner, milestone levels were assigned using a milestone classification form, and feedback was provided to learners. Learners and site leads were surveyed and/or interviewed about their experience as participants. Across the sites, 2,338 instruments assessing 239 learners were completed by 630 unique observers. Regarding end-of-rotation feedback, 93% of learners (128/137) agreed the assessments and feedback "helped me understand how those with whom I work perceive my performance," and 85% (117/137) agreed they were "useful for constructing future goals or identifying a developmental path." Site leads identified several benefits and challenges to the assessment process. PM-based instruments used in workplace-based assessment provide a meaningful and acceptable approach to collecting evidence of learner competency development. Learners valued feedback provided by PM-based assessment.

  2. Dose assessment in pediatric computerized tomography; Avaliacao de doses em tomografia computadorizada pediatrica

    Energy Technology Data Exchange (ETDEWEB)

    Vilarinho, Luisa Maria Auredine Lima

    2004-07-01

    The objective of this work was the evaluation of radiation doses in paediatric computed tomography scans, considering the high doses usually involved and the absence of any previous evaluation in Brazil. Dose values were determined for skull and abdomen examinations, for different age ranges, by using the radiographic techniques routinely used in the clinical centers investigated. Measurements were done using pencil shape ionization chambers inserted in polymethylmethacrylate (PMMA) phantoms. These were compact phantoms of different diameters were specially designed and constructed for this work, which simulate different age ranges. Comparison of results with published values showed that doses were lower than the diagnostic reference levels established to adults exams by the European Commission. Nevertheless, doses in paediatric phantoms were higher than those obtained in adult phantoms. The paediatric dose values obtained in Hospitals A and B were lower than the reference level (DRL) adopted by SHIMPTON for different age ranges. In the range 0 - 0.5 year (neonatal), the values of DLP in Hospital B were 94 por cent superior to the DRL For the 10 years old children the values of CTDI{sub w} obtained were inferior in 89 por cent for skull and 83 por cent for abdomen examinations, compared to the values published by SHRIMPTON and WALL. Our measured CTDI{sub w} values were inferior to the values presented for SHRIMPTON and HUDA, for all the age ranges and types of examinations. It was observed that the normalized dose descriptors values in children in the neonatal range were always superior to the values of doses for the adult patient. In abdomen examinations, the difference was approximately 90% for the effective dose (E) and of 57%.for CTDI{sub w} . (author)

  3. Pediatric cT: Implementation of ASIR for Substantial Radiation Dose Reduction While Maintaining Pre-ASIR Image Noise1

    Science.gov (United States)

    Brady, Samuel L.; Moore, Bria M.; Yee, Brian S.; Kaufman, Robert A.

    2015-01-01

    Purpose To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. Materials and Methods The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current–modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. Results With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Conclusion Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose

  4. Evaluation of doses received by pediatric and adult patients undergoing to CT exams

    International Nuclear Information System (INIS)

    Lavie, Maria F. Jimenez; Tejeda, Adalberto Machado; Otano, Anisia; Zuniga, Dora Maya; Perdomo, Jorge Hing; Rodriguez, Gustavo Guadarrama

    2013-01-01

    This paper aims to evaluated the dose to adult and pediatric patients due to the execution of tests CT scan of head, chest and abdomen, as well as establish a comparative analysis between these results and protocols involving employees to begin a process optimization in the practice

  5. Pediatric Patients Demonstrate Progressive T1-Weighted Hyperintensity in the Dentate Nucleus following Multiple Doses of Gadolinium-Based Contrast Agent.

    Science.gov (United States)

    Roberts, D R; Chatterjee, A R; Yazdani, M; Marebwa, B; Brown, T; Collins, H; Bolles, G; Jenrette, J M; Nietert, P J; Zhu, X

    2016-12-01

    While there have been recent reports of brain retention of gadolinium following gadolinium-based contrast agent administration in adults, a retrospective series of pediatric patients has not previously been reported, to our knowledge. We investigated the relationship between the number of prior gadolinium-based contrast agent doses and increasing T1 signal in the dentate nucleus on unenhanced T1-weighted MR imaging. We hypothesized that despite differences in pediatric physiology and the smaller gadolinium-based contrast agent doses that pediatric patients are typically administered based on weighted-adjusted dosing, the pediatric brain would also demonstrate dose-dependent increasing T1 signal in the dentate nucleus. We included children with multiple gadolinium-based contrast agent administrations at our institution. A blinded reader placed ROIs within the dentate nucleus and adjacent cerebellar white matter. To eliminate reader bias, we also performed automated ROI delineation of the dentate nucleus, cerebellar white matter, and pons. Dentate-to-cerebellar white matter and dentate-to pons ratios were compared with the number of gadolinium-based contrast agent administrations. During 20 years at our institution, 280 patients received at least 5 gadolinium-based contrast agent doses, with 1 patient receiving 38 doses. Sixteen patients met the inclusion/exclusion criteria for ROI analysis. Blinded reader dentate-to-cerebellar white matter ratios were significantly associated with gadolinium-based contrast agent doses (r s = 0.77, P = .001). The dentate-to-pons ratio and dentate-to-cerebellar white matter ratios based on automated ROI placement were also significantly correlated with gadolinium-based contrast agent doses (t = 4.98, P contrast agent doses is significantly correlated with progressive T1-weighted dentate hyperintensity. Definitive confirmation of gadolinium deposition requires tissue analysis. Any potential clinical sequelae of gadolinium retention in

  6. Pediatric patient and staff dose measurements in barium meal fluoroscopic procedures

    Science.gov (United States)

    Filipov, D.; Schelin, H. R.; Denyak, V.; Paschuk, S. A.; Porto, L. E.; Ledesma, J. A.; Nascimento, E. X.; Legnani, A.; Andrade, M. E. A.; Khoury, H. J.

    2015-11-01

    This study investigates patient and staff dose measurements in pediatric barium meal series fluoroscopic procedures. It aims to analyze radiographic techniques, measure the air kerma-area product (PKA), and estimate the staff's eye lens, thyroid and hands equivalent doses. The procedures of 41 patients were studied, and PKA values were calculated using LiF:Mg,Ti thermoluminescent dosimeters (TLDs) positioned at the center of the patient's upper chest. Furthermore, LiF:Mg,Cu,P TLDs were used to estimate the equivalent doses. The results showed a discrepancy in the radiographic techniques when compared to the European Commission recommendations. Half of the results of the analyzed literature presented lower PKA and dose reference level values than the present study. The staff's equivalent doses strongly depends on the distance from the beam. A 55-cm distance can be considered satisfactory. However, a distance decrease of ~20% leads to, at least, two times higher equivalent doses. For eye lenses this dose is significantly greater than the annual limit set by the International Commission on Radiological Protection. In addition, the occupational doses were found to be much higher than in the literature. Changing the used radiographic techniques to the ones recommended by the European Communities, it is expected to achieve lower PKA values ​​and occupational doses.

  7. Pediatric patient doses in interventional cardiology procedures

    International Nuclear Information System (INIS)

    Medeiros, R.B.; Murata, C.H.; Moreira, A.C.

    2014-01-01

    The radiation doses from interventional procedures is relevant when treating children because of their greater radiosensitivity compared with adults. The purposes of this paper were to estimate the dose received by 18 pediatric patients who underwent cardiac interventional procedures and to correlate the maximum entrance surface air kerma (Ke,max), estimated with radiochromic films, with the cumulative air kerma values displayed at the end of procedures. This study was performed in children up to 6 years. The study was performed in two hospitals, one located in Recife and the other one in São Paulo. The x-ray imaging systems used were Phillips Allura 12 model with image intensifier system and a Phillips Allura FD10 flat panel system. To estimate the Ke,max on the patient’s skin radiochromic films(Gafchromic XR-RV2) were used. These values were estimated from the maximum optical density measured on film using a calibration curve. The results showed cumulative air kerma values ranging from 78.3- 500.0mGy, with a mean value of 242,3 mGy. The resulting Ke,max values ranged from 20.0-461.8 mGy, with a mean value of 208,8 mGy. The Ke,max values were correlated with the displayed cumulative air kerma values. The correlation factor R² was 0.78, meaning that the value displayed in the equipment’s console can be useful for monitoring the skin absorbed dose throughout the procedure. The routine fluoroscopy time records is not able by itself alert the physician about the risk of dose exceeding the threshold of adverse reactions, which can vary from an early erythema to serious harmful skin damage. (author)

  8. Is this child sick? Usefulness of the Pediatric Assessment Triangle in emergency settings

    Directory of Open Access Journals (Sweden)

    Ana Fernandez

    Full Text Available Abstract Objective: The Pediatric Assessment Triangle is a rapid assessment tool that uses only visual and auditory clues, requires no equipment, and takes 30-60 s to perform. It's being used internationally in different emergency settings, but few studies have assessed its performance. The aim of this narrative biomedical review is to summarize the literature available regarding the usefulness of the Pediatric Assessment Triangle in clinical practice. Sources: The authors carried out a non-systematic review in the PubMed®, MEDLINE®, and EMBASE® databases, searching for articles published between 1999-2016 using the keywords “pediatric assessment triangle,” “pediatric triage,” “pediatric assessment tools,” and “pediatric emergency department.” Summary of the findings: The Pediatric Assessment Triangle has demonstrated itself to be useful to assess sick children in the prehospital setting and make transport decisions. It has been incorporated, as an essential instrument for assessing sick children, into different life support courses, although little has been written about the effectiveness of teaching it. Little has been published about the performance of this tool in the initial evaluation in the emergency department. In the emergency department, the Pediatric Assessment Triangle is useful to identify the children at triage who require more urgent care. Recent studies have assessed and proved its efficacy to also identify those patients having more serious health conditions who are eventually admitted to the hospital. Conclusions: The Pediatric Assessment Triangle is quickly spreading internationally and its clinical applicability is very promising. Nevertheless, it is imperative to promote research for clinical validation, especially for clinical use by emergency pediatricians and physicians.

  9. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    Science.gov (United States)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  10. Parental language and dosing errors after discharge from the pediatric emergency department.

    Science.gov (United States)

    Samuels-Kalow, Margaret E; Stack, Anne M; Porter, Stephen C

    2013-09-01

    Safe and effective care after discharge requires parental education in the pediatric emergency department (ED). Parent-provider communication may be more difficult with parents who have limited health literacy or English-language fluency. This study examined the relationship between language and discharge comprehension regarding medication dosing. We completed a prospective observational study of the ED discharge process using a convenience sample of English- and Spanish-speaking parents of children 2 to 24 months presenting to a single tertiary care pediatric ED with fever and/or respiratory illness. A bilingual research assistant interviewed parents to ascertain their primary language and health literacy and observed the discharge process. The primary outcome was parental demonstration of an incorrect dose of acetaminophen for the weight of his or her child. A total of 259 parent-child dyads were screened. There were 210 potential discharges, and 145 (69%) of 210 completed the postdischarge interview. Forty-six parents (32%) had an acetaminophen dosing error. Spanish-speaking parents were significantly more likely to have a dosing error (odds ratio, 3.7; 95% confidence interval, 1.6-8.1), even after adjustment for language of discharge, income, and parental health literacy (adjusted odds ratio, 6.7; 95% confidence interval, 1.4-31.7). Current ED discharge communication results in a significant disparity between English- and Spanish-speaking parents' comprehension of a crucial aspect of medication safety. These differences were not explained purely by interpretation, suggesting that interventions to improve comprehension must address factors beyond language alone.

  11. Effective dose estimation for pediatric upper gastrointestinal examinations using an anthropomorphic phantom set and metal oxide semiconductor field-effect transistor (MOSFET) technology.

    Science.gov (United States)

    Emigh, Brent; Gordon, Christopher L; Connolly, Bairbre L; Falkiner, Michelle; Thomas, Karen E

    2013-09-01

    There is a need for updated radiation dose estimates in pediatric fluoroscopy given the routine use of new dose-saving technologies and increased radiation safety awareness in pediatric imaging. To estimate effective doses for standardized pediatric upper gastrointestinal (UGI) examinations at our institute using direct dose measurement, as well as provide dose-area product (DAP) to effective dose conversion factors to be used for the estimation of UGI effective doses for boys and girls up to 10 years of age at other centers. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were placed within four anthropomorphic phantoms representing children ≤10 years of age and exposed to mock UGI examinations using exposures much greater than used clinically to minimize measurement error. Measured effective dose was calculated using ICRP 103 weights and scaled to our institution's standardized clinical UGI (3.6-min fluoroscopy, four spot exposures and four examination beam projections) as determined from patient logs. Results were compared to Monte Carlo simulations and related to fluoroscope-displayed DAP. Measured effective doses for standardized pediatric UGI examinations in our institute ranged from 0.35 to 0.79 mSv in girls and were 3-8% lower for boys. Simulation-derived and measured effective doses were in agreement (percentage differences  0.18). DAP-to-effective dose conversion factors ranged from 6.5 ×10(-4) mSv per Gy-cm(2) to 4.3 × 10(-3) mSv per Gy-cm(2) for girls and were similarly lower for boys. Using modern fluoroscopy equipment, the effective dose associated with the UGI examination in children ≤10 years at our institute is MOSFETs, which were shown to agree with Monte Carlo simulated doses.

  12. Comparing Effective Doses During Image-Guided Core Needle Biopsies with Computed Tomography Versus C-Arm Cone Beam CT Using Adult and Pediatric Phantoms.

    Science.gov (United States)

    Ben-Shlomo, A; Cohen, D; Bruckheimer, E; Bachar, G N; Konstantinovsky, R; Birk, E; Atar, E

    2016-05-01

    To compare the effective doses of needle biopsies based on dose measurements and simulations using adult and pediatric phantoms, between cone beam c-arm CT (CBCT) and CT. Effective doses were calculated and compared based on measurements and Monte Carlo simulations of CT- and CBCT-guided biopsy procedures of the lungs, liver, and kidney using pediatric and adult phantoms. The effective doses for pediatric and adult phantoms, using our standard protocols for upper, middle and lower lungs, liver, and kidney biopsies, were significantly lower under CBCT guidance than CT. The average effective dose for a 5-year old for these five biopsies was 0.36 ± 0.05 mSv with the standard CBCT exposure protocols and 2.13 ± 0.26 mSv with CT. The adult average effective dose for the five biopsies was 1.63 ± 0.22 mSv with the standard CBCT protocols and 8.22 ± 1.02 mSv using CT. The CT effective dose was higher than CBCT protocols for child and adult phantoms by 803 and 590% for upper lung, 639 and 525% for mid-lung, and 461 and 251% for lower lung, respectively. Similarly, the effective dose was higher by 691 and 762% for liver and 513 and 608% for kidney biopsies. Based on measurements and simulations with pediatric and adult phantoms, radiation effective doses during image-guided needle biopsies of the lung, liver, and kidney are significantly lower with CBCT than with CT.

  13. Model-based Iterative Reconstruction: Effect on Patient Radiation Dose and Image Quality in Pediatric Body CT

    Science.gov (United States)

    Dillman, Jonathan R.; Goodsitt, Mitchell M.; Christodoulou, Emmanuel G.; Keshavarzi, Nahid; Strouse, Peter J.

    2014-01-01

    Purpose To retrospectively compare image quality and radiation dose between a reduced-dose computed tomographic (CT) protocol that uses model-based iterative reconstruction (MBIR) and a standard-dose CT protocol that uses 30% adaptive statistical iterative reconstruction (ASIR) with filtered back projection. Materials and Methods Institutional review board approval was obtained. Clinical CT images of the chest, abdomen, and pelvis obtained with a reduced-dose protocol were identified. Images were reconstructed with two algorithms: MBIR and 100% ASIR. All subjects had undergone standard-dose CT within the prior year, and the images were reconstructed with 30% ASIR. Reduced- and standard-dose images were evaluated objectively and subjectively. Reduced-dose images were evaluated for lesion detectability. Spatial resolution was assessed in a phantom. Radiation dose was estimated by using volumetric CT dose index (CTDIvol) and calculated size-specific dose estimates (SSDE). A combination of descriptive statistics, analysis of variance, and t tests was used for statistical analysis. Results In the 25 patients who underwent the reduced-dose protocol, mean decrease in CTDIvol was 46% (range, 19%–65%) and mean decrease in SSDE was 44% (range, 19%–64%). Reduced-dose MBIR images had less noise (P > .004). Spatial resolution was superior for reduced-dose MBIR images. Reduced-dose MBIR images were equivalent to standard-dose images for lungs and soft tissues (P > .05) but were inferior for bones (P = .004). Reduced-dose 100% ASIR images were inferior for soft tissues (P ASIR. Conclusion CT performed with a reduced-dose protocol and MBIR is feasible in the pediatric population, and it maintains diagnostic quality. © RSNA, 2013 Online supplemental material is available for this article. PMID:24091359

  14. Assessment and management of pain in pediatric otolaryngology.

    Science.gov (United States)

    Rodríguez, Maria Claudia; Villamor, Perla; Castillo, Tatiana

    2016-11-01

    Pain is a disease by itself and it's a public health concern of major implication in children, not just because of the emotional component of the child and his family, but also due to the potential morbidity and mortality involving it. A proper assessment of pain it's a challenge in the pediatric population, due to their lack of understanding and verbalization of hurt. Additionally, a satisfactory treatment of pediatric pain can be arduous due to a lack of clinical knowledge, insufficient pediatric research, and the fear to opioid side effects and addiction. The aim of this review is to address the current definitions of pain, its physiological mechanisms and the consequences of its inadequate management, as well as, to guide the clinicians in the assessment and management of pain in the pediatric population at otolaryngology services. Narrative review by selective MeSH search terms: Children, Pediatrics, Otolaryngology, Pain measurement, Pain Management, Analgesics and Analgesia, from databases: MEDLINE/PubMed, Cochrane, ISI, Current Contents, Scielo and LILACS, between January 2000 and May 2016. 129 articles were reviewed according to the requirements of the objectives. Pain measurement is a challenge in children as there are no physical signs that constitute an absolute or specific indicator of pain, and its diagnosis must rely on physiological, behavioral and self-report methods. Regarding treatment, a suitable alternative are the non-pharmacological cognitive/behavioral therapies helped by pharmacological therapies tailored to the severity of pain and the child's age. We provide evidence-based recommendations on pain treatment, including non-opioid analgesics, opioid analgesics and adjuvant medicines to improve the management of pain in children in otolaryngology services. We present a global review about assessment and management of pain in pediatric otolaryngology, which leads to future specific reviews on each topic. Research gaps on pain assessment and

  15. Occupational doses in pediatric barium meal procedures

    International Nuclear Information System (INIS)

    Filipov, D.; Schelin, H.R.; Denyak, V.; Legnani, A.; Ledesma, J.A.; Paschuk, S.A.; Sauzen, J.; Yagui, A.; Hoff, G.; Khoury, H.J.

    2015-01-01

    Ionizing radiation has become an indispensable tool when it comes to diagnosis and therapy. However, its use should happen in a rational manner, taking into account the risks to which the staff is being exposed. Barium meal (BM), or upper gastrointestinal (GI) studies, using fluoroscopy, are widely used for gastroesophageal reflux disease diagnostic in children and professionals are required to stay inside the examination room to position and immobilize pediatric patients during the procedure. Therefore, it is very important that proffessionals strictly follow the technical standards of radiation protection. According to the ICRP and the NCRP recommendations, the annual limit equivalent doses for eyes, thyroid and hands are, espectively, 20 mSv, 150 mSv and 500 mSv. Based on those data, the aim of the current study is to estimate the annual equivalent dose for eyes, thyroid and hands of professionals who perform BM procedures in children. This was done using properly package LiF:Mg,Cu,P thermoluminescent dosimeters in 37 procedures; 2 pairs were positioned near each staff´s eye, 2 pairs on each professional´s neck (on and under the lead protector) and 2 pairs on both staff´s hands. The range of the estimative annual equivalent doses, for eyes, thyroid and hands, are, respectively: 14 – 36 mSv, 7 – 22 mSv and 14 – 58 mSv. Only the closest staff to the patient exceeded the annual equivalent doses in the eyes (around 80% higher than the limit set by ICRP). However, the results from this study, for hands and thyroid, compared to similar studies, show higher values. Therefore, the optimization implementation is necessary, so that the radiation levels can be reduced. (authors)

  16. Experimental study of abdominal CT scanning exposal doses adjusted on the basis of pediatric abdominal perimeter

    International Nuclear Information System (INIS)

    Wei Wenzhou; Zhu Gongsheng; Zeng Lingyan; Yin Xianglin; Yang Fuwen; Liu Changsheng

    2006-01-01

    Objective: To optimize the abdominal helical CT scanning parameters in pediatric patients and to reduce its radiation hazards. Methods: 60 canines were evenly grouped into 4 groups on the basis of pediatric abdominal perimeter, scanned with 110,150,190 and 240 mAs, and their qualities of canine CT images were analyzed. 120 pediafric patients with clinic suspected abdominal diseases were divided into 4 groups on the basis of abdominal perimeter, scanned by optimal parameters and their image qualities were analyzed. Results: After CT exposure were reduced, the percentages of total A and B were 90.9 % and 92.0 % in experimental canines and in pediatric patients, respectively. Compared with conventional CT scanning, the exposure and single slice CT dose index weighted (CTDIw) were reduced to 45.8%-79.17%. Conclusion: By adjusted the pediatric helical CT parameters basedon the of pediatric abdominal perimeter, exposure of patient to the hazards of radiation is reduced. (authors)

  17. Automatic exposure control in pediatric and adult multidetector CT examinations: A phantom study on dose reduction and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, Antonios E.; Perisinakis, Kostas; Damilakis, John [Department of Medical Physics, Faculty of Medicine, University of Crete, P.O. Box 1352, Iraklion 71110, Crete (Greece)

    2008-10-15

    The aim of this study was to assess the potential of a modern x,y,z modulation-based automatic exposure control system (AEC) for dose reduction in pediatric and adult multidetector CT (MDCT) imaging and evaluate the quality of the images obtained. Five physical anthropomorphic phantoms that simulate the average individual as neonate, 1-, 5-, 10-year old child, and adult were scanned with a MDCT scanner, equipped with a modern AEC system. Dose reduction (%DR) was calculated as the percentage difference of the mean modulated and the preset tube current-time product that is prescribed for standard head and body scan protocols. The effect of the tube potential and the orientation of the topogram acquisition on dose reduction were assessed. Image quality was evaluated on the basis of image noise and signal to noise ratio (SNR). The dose reduction values achieved in pediatric phantoms were remarkably lower than those achieved for the adult. The efficiency of the AEC is decreased at 80 kVp compared to higher tube potentials and for helical scans following an anterior posterior (AP-AEC) compared to a lateral (LAT-AEC) topogram acquisition. In AP-AEC scans, the dose reduction ranged between 4.7 and 34.7% for neonate, 15.4 and 30.9% for 1 year old, 3.1 and 26.7% for 5 years old, 1.2 and 58.7% for 10 years old, and 15.5 and 57.4% for adult. In LAT-AEC scans, the corresponding dose reduction ranged between 11.0 and 36.5%, 27.2 and 35.7%, 11.3 and 35.6%, 0.3 and 67.0%, and 15.0 and 61.7%, respectively. AP-AEC scans resulted in a 17.1% and 19.7% dose increase in the thorax of neonate and the pelvis of the 10-year old phantom, respectively. The variation in the measured noise among images obtained along the scanning z axis was lower in AEC activated compared to fixed milliamperes scans. However, image noise was significantly increased (P<.001) and SNR significantly decreased (P<.001) in most AEC activated compared to fixed milliamperes scans. In conclusion, AEC resulted in a (i

  18. Management of pediatric radiation dose using GE fluoroscopic equipment

    International Nuclear Information System (INIS)

    Belanger, Barry; Boudry, John

    2006-01-01

    In this article, we present GE Healthcare's design philosophy and implementation of X-ray imaging systems with dose management for pediatric patients, as embodied in its current radiography and fluoroscopy and interventional cardiovascular X-ray product offerings. First, we present a basic framework of image quality and dose in the context of a cost-benefit trade-off, with the development of the concept of imaging dose efficiency. A set of key metrics of image quality and dose efficiency is presented, including X-ray source efficiency, detector quantum efficiency (DQE), detector dynamic range, and temporal response, with an explanation of the clinical relevance of each. Second, we present design methods for automatically selecting optimal X-ray technique parameters (kVp, mA, pulse width, and spectral filtration) in real time for various clinical applications. These methods are based on an optimization scheme where patient skin dose is minimized for a target desired image contrast-to-noise ratio. Operator display of skin dose and Dose-Area Product (DAP) is covered, as well. Third, system controls and predefined protocols available to the operator are explained in the context of dose management and the need to meet varying clinical procedure imaging demands. For example, fluoroscopic dose rate is adjustable over a range of 20:1 to adapt to different procedure requirements. Fourth, we discuss the impact of image processing techniques upon dose minimization. In particular, two such techniques, dynamic range compression through adaptive multiband spectral filtering and fluoroscopic noise reduction, are explored in some detail. Fifth, we review a list of system dose-reduction features, including automatic spectral filtration, virtual collimation, variable-rate pulsed fluoroscopic, grid and no-grid techniques, and fluoroscopic loop replay with store. In addition, we describe a new feature that automatically minimizes the patient-to-detector distance, along with an

  19. Accuracy and Radiation Dose Reduction of Limited-Range CT in the Evaluation of Acute Appendicitis in Pediatric Patients.

    Science.gov (United States)

    Jin, Michael; Sanchez, Thomas R; Lamba, Ramit; Fananapazir, Ghaneh; Corwin, Michael T

    2017-09-01

    The purpose of this article is to determine the accuracy and radiation dose reduction of limited-range CT prescribed from the top of L2 to the top of the pubic symphysis in children with suspected acute appendicitis. We performed a retrospective study of 210 consecutive pediatric patients from December 11, 2012, through December 11, 2014, who underwent abdominopelvic CT for suspected acute appendicitis. Two radiologists independently reviewed the theoretic limited scans from the superior L2 vertebral body to the top of the pubic symphysis, to assess for visualization of the appendix, acute appendicitis, alternative diagnoses, and incidental findings. Separately, the same parameters were assessed on the full scan by the same two reviewers. Whole-body effective doses were determined for the full- and limited-range scans and were compared using the paired t test. The appendix or entire cecum was visualized on the limited scan in all cases, and no cases of acute appendicitis were missed on the simulated limited scan compared with the full scan. Two alternative diagnoses were missed with the limited scan: one case of hydronephrosis and one of acute acalculous cholecystitis. The mean effective dose for the original scan was 5.6 mSv and that for the simulated limited scan was 3.0 mSv, resulting in a dose reduction of 46.4% (p appendicitis and reduces the dose by approximately 46%.

  20. Image gently, step lightly: increasing radiation dose awareness in pediatric interventions through an international social marketing campaign.

    Science.gov (United States)

    Sidhu, Manrita K; Goske, Marilyn J; Coley, Brian J; Connolly, Bairbre; Racadio, John; Yoshizumi, Terry T; Utley, Tara; Strauss, Keith J

    2009-09-01

    In the past several decades, advances in imaging and interventional techniques have been accompanied by an increase in medical radiation dose to the public. Radiation exposure is even more important in children, who are more sensitive to radiation and have a longer lifespan during which effects may manifest. To address radiation safety in pediatric computed tomography, in 2008 the Alliance for Radiation Safety in Pediatric Imaging launched an international social marketing campaign entitled Image Gently. This article describes the next phase of the Image Gently campaign, entitled Step Lightly, which focuses on radiation safety in pediatric interventional radiology.

  1. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality

    International Nuclear Information System (INIS)

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-01-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols. (orig.)

  2. Pediatric Pharmacokinetic Data: Implications for Environmental Risk Assessment for Children

    Science.gov (United States)

    Pharmacology and toxicology share a common interest in pharmacokinetic data, especially as it is available in pediatric populations. These data have been critical to the clinical pharmacologist for many years in designing age-specific dosing regimens. Now they are being used incr...

  3. Patient-specific radiation dose and cancer risk for pediatric chest CT.

    Science.gov (United States)

    Li, Xiang; Samei, Ehsan; Segars, W Paul; Sturgeon, Gregory M; Colsher, James G; Frush, Donald P

    2011-06-01

    To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters. The institutional review board approved this study and waived informed consent. This study was HIPAA compliant. The study included 30 patients (0-16 years old), for whom full-body computer models were recently created from clinical CT data. A validated Monte Carlo program was used to estimate organ dose from eight chest protocols, representing clinically relevant combinations of bow tie filter, collimation, pitch, and tube potential. Organ dose was used to calculate effective dose and risk index (an index of total cancer incidence risk). The dose and risk estimates before and after normalization by volume-weighted CT dose index (CTDI(vol)) or dose-length product (DLP) were correlated with patient size and age. The effect of each scanning parameter was studied. Organ dose normalized by tube current-time product or CTDI(vol) decreased exponentially with increasing average chest diameter. Effective dose normalized by tube current-time product or DLP decreased exponentially with increasing chest diameter. Chest diameter was a stronger predictor of dose than weight and total scan length. Risk index normalized by tube current-time product or DLP decreased exponentially with both chest diameter and age. When normalized by DLP, effective dose and risk index were independent of collimation, pitch, and tube potential (chest CT protocols. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101900/-/DC1. RSNA, 2011

  4. Evaluation of radiation dose in pediatric head CT examination: a phantom study

    Science.gov (United States)

    Norhasrina Nik Din, Nik; Zainon, Rafidah; Rahman, Ahmad Taufek Abdul

    2018-01-01

    The aim of this study was to evaluate the radiation dose in pediatric head Computed Tomography examination. It was reported that decreasing tube voltage in CT examination can reduce the dose to patients significantly. A head phantom was scanned with dual-energy CT at 80 kV and 120 kV. The tube current was set using automatic exposure control mode and manual setting. The pitch was adjusted to 1.4, 1.45 and 1.5 while the slice thickness was set at 5 mm. The dose was measured based on CT Dose Index (CTDI). Results from this study have shown that the image noise increases substantially with low tube voltage. The average dose was 2.60 mGy at CT imaging parameters of 80 kV and 10 - 30 mAs. The dose increases up to 17.19 mGy when the CT tube voltage increases to 120 kV. With the reduction of tube voltage from 120 kV to 80 kV, the radiation dose can be reduced by 12.1% to 15.1% without degradation of contrast-to-noise ratio.

  5. Assessment of Double Outlet Right Ventricle Associated with Multiple Malformations in Pediatric Patients Using Retrospective ECG-Gated Dual-Source Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Ke Shi

    Full Text Available To evaluate the feasibility and diagnostic accuracy of retrospective electrocardiographically (ECG-gated dual-source computed tomography (DSCT for the assessment of double outlet right ventricle (DORV and associated multiple malformations in pediatric patients.Forty-seven patients <10 years of age with DORV underwent retrospective ECG-gated DSCT. The location of the ventricular septal defect (VSD, alignment of the two great arteries, and associated malformations were assessed. The feasibility of retrospective ECG-gated DSCT in pediatric patients was assessed, the image quality of DSCT and the agreement of the diagnosis of associated malformations between DSCT and transthoracic echocardiography (TTE were evaluated, the diagnostic accuracies of DSCT and TTE were referred to surgical results, and the effective doses were calculated.Apart from DORV, 109 associated malformations were confirmed postoperatively. There was excellent agreement (κ = 0.90 for the diagnosis of associated malformations between DSCT and TTE. However, DSCT was superior to TTE in demonstrating paracardiac anomalies (sensitivity, coronary artery anomalies: 100% vs. 80.00%, anomalies of great vessels: 100% vs. 88.57%, separate thoracic and abdominal anomalies: 100% vs. 76.92%, respectively. Combined with TTE, DSCT can achieve excellent diagnostic performance in intracardiac anomalies (sensitivity, 91.30% vs. 100%. The mean image quality score was 3.70 ± 0.46 (κ = 0.76. The estimated mean effective dose was < 1 mSv (0.88 ± 0.34 mSv.Retrospective ECG-gated DSCT is a better diagnostic tool than TTE for pediatric patients with complex congenital heart disease such as DORV. Combined with TTE, it may reduce or even obviate the use of invasive cardiac catheterization, and thus expose the patients to a much lower radiation dose.

  6. Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models

    Science.gov (United States)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Paulson, Erik K.; Samei, Ehsan

    2013-12-01

    Recent studies have shown the feasibility of estimating patient dose from a CT exam using CTDIvol-normalized-organ dose (denoted as h), DLP-normalized-effective dose (denoted as k), and DLP-normalized-risk index (denoted as q). However, previous studies were limited to a small number of phantom models. The purpose of this work was to provide dose coefficients (h, k, and q) across a large number of computational models covering a broad range of patient anatomy, age, size percentile, and gender. The study consisted of 100 patient computer models (age range, 0 to 78 y.o.; weight range, 2-180 kg) including 42 pediatric models (age range, 0 to 16 y.o.; weight range, 2-80 kg) and 58 adult models (age range, 18 to 78 y.o.; weight range, 57-180 kg). Multi-detector array CT scanners from two commercial manufacturers (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare) were included. A previously-validated Monte Carlo program was used to simulate organ dose for each patient model and each scanner, from which h, k, and q were derived. The relationships between h, k, and q and patient characteristics (size, age, and gender) were ascertained. The differences in conversion coefficients across the scanners were further characterized. CTDIvol-normalized-organ dose (h) showed an exponential decrease with increasing patient size. For organs within the image coverage, the average differences of h across scanners were less than 15%. That value increased to 29% for organs on the periphery or outside the image coverage, and to 8% for distributed organs, respectively. The DLP-normalized-effective dose (k) decreased exponentially with increasing patient size. For a given gender, the DLP-normalized-risk index (q) showed an exponential decrease with both increasing patient size and patient age. The average differences in k and q across scanners were 8% and 10%, respectively. This study demonstrated that the knowledge of patient information and CTDIvol/DLP values may

  7. Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models

    International Nuclear Information System (INIS)

    Tian, Xiaoyu; Samei, Ehsan; Li, Xiang; Segars, W Paul; Frush, Donald P; Paulson, Erik K

    2013-01-01

    Recent studies have shown the feasibility of estimating patient dose from a CT exam using CTDI vol -normalized-organ dose (denoted as h), DLP-normalized-effective dose (denoted as k), and DLP-normalized-risk index (denoted as q). However, previous studies were limited to a small number of phantom models. The purpose of this work was to provide dose coefficients (h, k, and q) across a large number of computational models covering a broad range of patient anatomy, age, size percentile, and gender. The study consisted of 100 patient computer models (age range, 0 to 78 y.o.; weight range, 2–180 kg) including 42 pediatric models (age range, 0 to 16 y.o.; weight range, 2–80 kg) and 58 adult models (age range, 18 to 78 y.o.; weight range, 57–180 kg). Multi-detector array CT scanners from two commercial manufacturers (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare) were included. A previously-validated Monte Carlo program was used to simulate organ dose for each patient model and each scanner, from which h, k, and q were derived. The relationships between h, k, and q and patient characteristics (size, age, and gender) were ascertained. The differences in conversion coefficients across the scanners were further characterized. CTDI vol -normalized-organ dose (h) showed an exponential decrease with increasing patient size. For organs within the image coverage, the average differences of h across scanners were less than 15%. That value increased to 29% for organs on the periphery or outside the image coverage, and to 8% for distributed organs, respectively. The DLP-normalized-effective dose (k) decreased exponentially with increasing patient size. For a given gender, the DLP-normalized-risk index (q) showed an exponential decrease with both increasing patient size and patient age. The average differences in k and q across scanners were 8% and 10%, respectively. This study demonstrated that the knowledge of patient information and CTDI vol

  8. Considerations for a Pediatric Biopharmaceutics Classification System (BCS): application to five drugs.

    Science.gov (United States)

    Gandhi, Shivani V; Rodriguez, William; Khan, Mansoor; Polli, James E

    2014-06-01

    It has been advocated that biopharmaceutic risk assessment should be conducted early in pediatric product development and synchronized with the adult product development program. However, we are unaware of efforts to classify drugs into a Biopharmaceutics Classification System (BCS) framework for pediatric patients. The objective was to classify five drugs into a potential BCS. These five drugs were selected since both oral and intravenous pharmacokinetic data were available for each drug, and covered the four BCS classes in adults. Literature searches for each drug were conducted using Medline and applied to classify drugs with respect to solubility and permeability in pediatric subpopulations. Four pediatric subpopulations were considered: neonates, infants, children, and adolescents. Regarding solubility, dose numbers were calculated using a volume for each subpopulation based on body surface area (BSA) relative to 250 ml for a 1.73 m(2) adult. Dose numbers spanned a range of values, depending upon the pediatric dose formula and subpopulation. Regarding permeability, pharmacokinetic literature data required assumptions and decisions about data collection. Using a devised pediatric BCS framework, there was agreement in adult and pediatric BCS class for two drugs, azithromycin (class 3) and ciprofloxacin (class 4). There was discordance for the three drugs that have high adult permeability since all pediatric permeabilities were low: dolasetron (class 3 in pediatric), ketoprofen (class 4 in pediatric), and voriconazole (class 4 in pediatric). A main contribution of this work is the identification of critical factors required for a pediatric BCS.

  9. Optimizing the balance between radiation dose and image quality in pediatric head CT: findings before and after intensive radiologic staff training.

    Science.gov (United States)

    Paolicchi, Fabio; Faggioni, Lorenzo; Bastiani, Luca; Molinaro, Sabrina; Puglioli, Michele; Caramella, Davide; Bartolozzi, Carlo

    2014-06-01

    The purpose of this study was to assess the radiation dose and image quality of pediatric head CT examinations before and after radiologic staff training. Outpatients 1 month to 14 years old underwent 215 unenhanced head CT examinations before and after intensive training of staff radiologists and technologists in optimization of CT technique. Patients were divided into three age groups (0-4, 5-9, and 10-14 years), and CT dose index, dose-length product, tube voltage, and tube current-rotation time product values before and after training were retrieved from the hospital PACS. Gray matter conspicuity and contrast-to-noise ratio before and after training were calculated, and subjective image quality in terms of artifacts, gray-white matter differentiation, noise, visualization of posterior fossa structures, and need for repeat CT examination was visually evaluated by three neuroradiologists. The median CT dose index and dose-length product values were significantly lower after than before training in all age groups (27 mGy and 338 mGy ∙ cm vs 107 mGy and 1444 mGy ∙ cm in the 0- to 4-year-old group, 41 mGy and 483 mGy ∙ cm vs 68 mGy and 976 mGy ∙ cm in the 5- to 9-year-old group, and 51 mGy and 679 mGy ∙ cm vs 107 mGy and 1480 mGy ∙ cm in the 10- to 14-year-old group; p training were significantly lower than the levels before training (p staff training can be effective in reducing radiation dose while preserving diagnostic image quality in pediatric head CT examinations.

  10. Comparing Effective Doses During Image-Guided Core Needle Biopsies with Computed Tomography Versus C-Arm Cone Beam CT Using Adult and Pediatric Phantoms

    International Nuclear Information System (INIS)

    Ben-Shlomo, A.; Cohen, D.; Bruckheimer, E.; Bachar, G. N.; Konstantinovsky, R.; Birk, E.; Atar, E.

    2016-01-01

    PurposeTo compare the effective doses of needle biopsies based on dose measurements and simulations using adult and pediatric phantoms, between cone beam c-arm CT (CBCT) and CT.MethodEffective doses were calculated and compared based on measurements and Monte Carlo simulations of CT- and CBCT-guided biopsy procedures of the lungs, liver, and kidney using pediatric and adult phantoms.ResultsThe effective doses for pediatric and adult phantoms, using our standard protocols for upper, middle and lower lungs, liver, and kidney biopsies, were significantly lower under CBCT guidance than CT. The average effective dose for a 5-year old for these five biopsies was 0.36 ± 0.05 mSv with the standard CBCT exposure protocols and 2.13 ± 0.26 mSv with CT. The adult average effective dose for the five biopsies was 1.63 ± 0.22 mSv with the standard CBCT protocols and 8.22 ± 1.02 mSv using CT. The CT effective dose was higher than CBCT protocols for child and adult phantoms by 803 and 590 % for upper lung, 639 and 525 % for mid-lung, and 461 and 251 % for lower lung, respectively. Similarly, the effective dose was higher by 691 and 762 % for liver and 513 and 608 % for kidney biopsies.ConclusionsBased on measurements and simulations with pediatric and adult phantoms, radiation effective doses during image-guided needle biopsies of the lung, liver, and kidney are significantly lower with CBCT than with CT.

  11. Comparing Effective Doses During Image-Guided Core Needle Biopsies with Computed Tomography Versus C-Arm Cone Beam CT Using Adult and Pediatric Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Shlomo, A. [Soreq NRC, Radiation Protection Domain (Israel); Cohen, D.; Bruckheimer, E. [Schneider Children’s Medical Center, Section of Pediatric Cardiology (Israel); Bachar, G. N.; Konstantinovsky, R. [Rabin Medical Center, Department of Diagnostic Radiology (Israel); Birk, E. [Schneider Children’s Medical Center, Section of Pediatric Cardiology (Israel); Atar, E., E-mail: elia@clalit.org.il [Rabin Medical Center, Department of Diagnostic Radiology (Israel)

    2016-05-15

    PurposeTo compare the effective doses of needle biopsies based on dose measurements and simulations using adult and pediatric phantoms, between cone beam c-arm CT (CBCT) and CT.MethodEffective doses were calculated and compared based on measurements and Monte Carlo simulations of CT- and CBCT-guided biopsy procedures of the lungs, liver, and kidney using pediatric and adult phantoms.ResultsThe effective doses for pediatric and adult phantoms, using our standard protocols for upper, middle and lower lungs, liver, and kidney biopsies, were significantly lower under CBCT guidance than CT. The average effective dose for a 5-year old for these five biopsies was 0.36 ± 0.05 mSv with the standard CBCT exposure protocols and 2.13 ± 0.26 mSv with CT. The adult average effective dose for the five biopsies was 1.63 ± 0.22 mSv with the standard CBCT protocols and 8.22 ± 1.02 mSv using CT. The CT effective dose was higher than CBCT protocols for child and adult phantoms by 803 and 590 % for upper lung, 639 and 525 % for mid-lung, and 461 and 251 % for lower lung, respectively. Similarly, the effective dose was higher by 691 and 762 % for liver and 513 and 608 % for kidney biopsies.ConclusionsBased on measurements and simulations with pediatric and adult phantoms, radiation effective doses during image-guided needle biopsies of the lung, liver, and kidney are significantly lower with CBCT than with CT.

  12. Radiation in pediatric health care: current situation and challenges in the Philippines

    International Nuclear Information System (INIS)

    Cabrera, Maria Gladys R.

    2009-01-01

    Radiation exposure to human health has been the topic of much research to date, focusing particularly on children as they are especially vulnerable and have longer life span to develop log term health effects. Taking into account the higher vulnerability of children, prevention of unnecessary radiation exposure is critical in pediatric patients. Issues such as pediatric patient receive a higher dose than necessary has been identified because adult computed tomography (CT) settings are used for children. Assessment of population exposures resulting from medical use of radiation is mainly available in industrialized countries, while in developing countries such as the Philippines, data are scarce. This information is very much scarce in the field of pediatric medical exposures and appropriate national surveys including frequency of pediatric procedures and children doses are still lacking. A broader and more effective participation of the regulatory authorities in such surveys could contribute to children risk assessment. The presentation explains the current situation, approach and challenges in the Philippines in dealing with radiation in pediatric health care. (author)

  13. Errors detected in pediatric oral liquid medication doses prepared in an automated workflow management system.

    Science.gov (United States)

    Bledsoe, Sarah; Van Buskirk, Alex; Falconer, R James; Hollon, Andrew; Hoebing, Wendy; Jokic, Sladan

    2018-02-01

    The effectiveness of barcode-assisted medication preparation (BCMP) technology on detecting oral liquid dose preparation errors. From June 1, 2013, through May 31, 2014, a total of 178,344 oral doses were processed at Children's Mercy, a 301-bed pediatric hospital, through an automated workflow management system. Doses containing errors detected by the system's barcode scanning system or classified as rejected by the pharmacist were further reviewed. Errors intercepted by the barcode-scanning system were classified as (1) expired product, (2) incorrect drug, (3) incorrect concentration, and (4) technological error. Pharmacist-rejected doses were categorized into 6 categories based on the root cause of the preparation error: (1) expired product, (2) incorrect concentration, (3) incorrect drug, (4) incorrect volume, (5) preparation error, and (6) other. Of the 178,344 doses examined, 3,812 (2.1%) errors were detected by either the barcode-assisted scanning system (1.8%, n = 3,291) or a pharmacist (0.3%, n = 521). The 3,291 errors prevented by the barcode-assisted system were classified most commonly as technological error and incorrect drug, followed by incorrect concentration and expired product. Errors detected by pharmacists were also analyzed. These 521 errors were most often classified as incorrect volume, preparation error, expired product, other, incorrect drug, and incorrect concentration. BCMP technology detected errors in 1.8% of pediatric oral liquid medication doses prepared in an automated workflow management system, with errors being most commonly attributed to technological problems or incorrect drugs. Pharmacists rejected an additional 0.3% of studied doses. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  14. Relative dose efficiencies of antiscatter grids and air gaps in pediatric radiography

    International Nuclear Information System (INIS)

    McDaniel, D.L.; Cohen, G.; Wagner, L.K.; Robinson, L.H.

    1984-01-01

    The relative dose efficiencies (RDE) of various antiscatter grids and air gaps were determined for conditions simulating those found in pediatric radiography, using phantoms representing a newborn child, a 5-yr-old and a 10-yr-old child. Our data indicate than an air gap is best for the newborn, due to the low levels of scatter. The 8:1 fiber grid or 15.2-cm air gap without a grid can improve dose efficiency (DE) for the 5-yr-old child by 20%--25% relative to the 3.3-cm air gap and no-grid technique, while for the 10-yr-old child, DE can be improved by 40% with an 8:1 fiber grid

  15. Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms

    International Nuclear Information System (INIS)

    Khawaja, Ranish Deedar Ali; Singh, Sarabjeet; Otrakji, Alexi; Padole, Atul; Lim, Ruth; Nimkin, Katherine; Westra, Sjirk; Kalra, Mannudeep K.; Gee, Michael S.

    2015-01-01

    Dose reduction in children undergoing CT scanning is an important priority for the radiology community and public at large. Drawbacks of radiation reduction are increased image noise and artifacts, which can affect image interpretation. Iterative reconstruction techniques have been developed to reduce noise and artifacts from reduced-dose CT examinations, although reconstruction algorithm, magnitude of dose reduction and effects on image quality vary. We review the reconstruction principles, radiation dose potential and effects on image quality of several iterative reconstruction techniques commonly used in clinical settings, including 3-D adaptive iterative dose reduction (AIDR-3D), adaptive statistical iterative reconstruction (ASIR), iDose, sinogram-affirmed iterative reconstruction (SAFIRE) and model-based iterative reconstruction (MBIR). We also discuss clinical applications of iterative reconstruction techniques in pediatric abdominal CT. (orig.)

  16. Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms

    Energy Technology Data Exchange (ETDEWEB)

    Khawaja, Ranish Deedar Ali; Singh, Sarabjeet; Otrakji, Alexi; Padole, Atul; Lim, Ruth; Nimkin, Katherine; Westra, Sjirk; Kalra, Mannudeep K.; Gee, Michael S. [MGH Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2015-07-15

    Dose reduction in children undergoing CT scanning is an important priority for the radiology community and public at large. Drawbacks of radiation reduction are increased image noise and artifacts, which can affect image interpretation. Iterative reconstruction techniques have been developed to reduce noise and artifacts from reduced-dose CT examinations, although reconstruction algorithm, magnitude of dose reduction and effects on image quality vary. We review the reconstruction principles, radiation dose potential and effects on image quality of several iterative reconstruction techniques commonly used in clinical settings, including 3-D adaptive iterative dose reduction (AIDR-3D), adaptive statistical iterative reconstruction (ASIR), iDose, sinogram-affirmed iterative reconstruction (SAFIRE) and model-based iterative reconstruction (MBIR). We also discuss clinical applications of iterative reconstruction techniques in pediatric abdominal CT. (orig.)

  17. Local patient dose diagnostic reference levels in pediatric interventional cardiology in Chile using age bands and patient weight values.

    Science.gov (United States)

    Ubeda, Carlos; Miranda, Patricia; Vano, Eliseo

    2015-02-01

    To present the results of a patient dose evaluation program in pediatric cardiology and propose local diagnostic reference levels (DRLs) for different types of procedure and age range, in addition to suggesting approaches to correlate patient dose values with patient weight. This study was the first conducted in Latin America for pediatric interventional cardiology under the auspices of the International Atomic Energy Agency. Over three years, the following data regarding demographic and patient dose values were collected: age, gender, weight, height, number of cine series, total number of cine frames, fluoroscopy time (FT), and two dosimetric quantities, dose-area product (DAP) and cumulative dose (CD), at the patient entrance reference point. The third quartile values for FT, DAP, CD, number of cine series, and the DAP/body weight ratio were proposed as the set of quantities to use as local DRLs. Five hundred and seventeen patients were divided into four age groups. Sample sizes by age group were 120 for bands used in Europe, complemented with the values of the ratio between DAP and patient weight. This permits a rough estimate of DRLs for different patient weights and the refining of these values for the age bands when there may be large differences in child size. These DRLs were obtained at the largest pediatric hospital in Chile, with an active optimization program, and could be used by other hospitals in the Latin America region to compare their current patient dose values and determine whether corrective action is appropriate. © 2015 American Association of Physicists in Medicine.

  18. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality.

    Science.gov (United States)

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-03-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.

  19. Estimating Effective Dose of Radiation From Pediatric Cardiac CT Angiography Using a 64-MDCT Scanner: New Conversion Factors Relating Dose-Length Product to Effective Dose.

    Science.gov (United States)

    Trattner, Sigal; Chelliah, Anjali; Prinsen, Peter; Ruzal-Shapiro, Carrie B; Xu, Yanping; Jambawalikar, Sachin; Amurao, Maxwell; Einstein, Andrew J

    2017-03-01

    The purpose of this study is to determine the conversion factors that enable accurate estimation of the effective dose (ED) used for cardiac 64-MDCT angiography performed for children. Anthropomorphic phantoms representative of 1- and 10-year-old children, with 50 metal oxide semiconductor field-effect transistor dosimeters placed in organs, underwent scanning performed using a 64-MDCT scanner with different routine clinical cardiac scan modes and x-ray tube potentials. Organ doses were used to calculate the ED on the basis of weighting factors published in 1991 in International Commission on Radiological Protection (ICRP) publication 60 and in 2007 in ICRP publication 103. The EDs and the scanner-reported dose-length products were used to determine conversion factors for each scan mode. The effect of infant heart rate on the ED and the conversion factors was also assessed. The mean conversion factors calculated using the current definition of ED that appeared in ICRP publication 103 were as follows: 0.099 mSv · mGy -1 · cm -1 , for the 1-year-old phantom, and 0.049 mSv · mGy -1 · cm -1 , for the 10-year-old phantom. These conversion factors were a mean of 37% higher than the corresponding conversion factors calculated using the older definition of ED that appeared in ICRP publication 60. Varying the heart rate did not influence the ED or the conversion factors. Conversion factors determined using the definition of ED in ICRP publication 103 and cardiac, rather than chest, scan coverage suggest that the radiation doses that children receive from cardiac CT performed using a contemporary 64-MDCT scanner are higher than the radiation doses previously reported when older chest conversion factors were used. Additional up-to-date pediatric cardiac CT conversion factors are required for use with other contemporary CT scanners and patients of different age ranges.

  20. Evaluation of permanent alopecia in pediatric medulloblastoma patients treated with proton radiation

    International Nuclear Information System (INIS)

    Min, Chul Hee; Paganetti, Harald; Winey, Brian A; Adams, Judith; MacDonald, Shannon M; Tarbell, Nancy J; Yock, Torunn I

    2014-01-01

    To precisely calculate skin dose and thus to evaluate the relationship between the skin dose and permanent alopecia for pediatric medulloblastoma patients treated with proton beams. The dosimetry and alopecia outcomes of 12 children with medulloblastoma (ages 4-15 years) comprise the study cohort. Permanent alopecia was assessed and graded after completion of the entire therapy. Skin threshold doses of permanent alopecia were calculated based on the skin dose from the craniospinal irradiation (CSI) plan using the concept of generalized equivalent uniform dose (gEUD) and accounting for chemotherapy intensity. Monte Carlo simulations were employed to accurately assess uncertainties due to beam range prediction and secondary particles. Increasing the dose of the CSI field or the dose given by the boost field to the posterior fossa increased total skin dose delivered in that region. It was found that permanent alopecia could be correlated with CSI dose with a threshold of about 21 Gy (relative biological effectiveness, RBE) with high dose chemotherapy and 30 Gy (RBE) with conventional chemotherapy. Our results based on 12 patients provide a relationship between the skin dose and permanent alopecia for pediatric medulloblastoma patients treated with protons. The alopecia risk as assessed with gEUD could be predicted based on the treatment plan information

  1. Evaluation of X ray radiation doses in pediatric examinations of cranial computerized tomography based on optimization studies

    International Nuclear Information System (INIS)

    Daros, Kellen Adriana Curci

    2005-01-01

    This paper identifies the technical conditions for CT examination which offers lowest absorbed dose and to attend the manufacturer recommendations as far the spatial resolution is concerned. The paper evaluates the absorbed dose during cranial CT in up to 6 years children satisfying the technical condition recommended by the manufacturer and routine clinical conditions. The paper also established a quantitative relationship among the absorbed dose and its distribution in the cranial regions of pediatric patients up to 6 years old in a way to estimate the doses subject to optimized conditions

  2. The optimal parameter for radiation dose in pediatric low dose abdominal CT: cross-sectional dimensions versus body weight

    International Nuclear Information System (INIS)

    Jung, Yoon Young; Goo, Hyun Woo

    2008-01-01

    To investigate the best parameter between cross-sectional dimensions and body weight in pediatric low dose abdominal CT. One hundred and thirty six children consecutively underwent weight-based abdominal CT. The subjects consisted of group 1 (79 children, weight range 10.0-19.9 kg) and group 2 (57 children, weight range 20.0-39.9 kg). Abdominal cross-sectional dimensions including circumference, area, anteroposterior diameters and transverse diameters were calculated. Image noise (standard deviation of CT density) was measured by placing a region of interest in the posterior segment of the right hepatic lobe on a CT image at the celiac axis. The measured image noise was correlated with the cross-sectional abdominal dimensions and body weight for subjects in each group. In group 1 subjects,area, circumference, transverse diameter, anteroposterior diameter, and body weight showed a significant positive correlation with image noise in descending order(γ = 0.63, 0.62, 0.61, 0.51, and 0.49; ρ < 0.0001). In group 2 subjects, transverse diameter, circumference, area, anteroposterior diameter, and body weight showed a significant positive correlation with image noise in descending order (γ = 0.83, 0.82, 0.78, 0.71, and 0.71; ρ < 0.0001). Cross-sectional dimensions such as area, circumference, and transverse diameter showed a higher positive correlation with image noise than body weight for pediatric low dose abdominal CT

  3. Optimizing image quality and dose for digital radiography of distal pediatric extremities using the contrast-to-noise ratio

    International Nuclear Information System (INIS)

    Hess, R.; Neitzel, U.

    2012-01-01

    Purpose: To investigate the influence of X-ray tube voltage and filtration on image quality in terms of contrast-to-noise ratio (CNR) and dose for digital radiography of distal pediatric extremities and to determine conditions that give the best balance of CNR and patient dose. Materials and Methods: In a phantom study simulating the absorption properties of distal extremities, the CNR and the related patient dose were determined as a function of tube voltage in the range 40 - 66 kV, both with and without additional filtration of 0.1 mm Cu/1 mm Al. The measured CNR was used as an indicator of image quality, while the mean absorbed dose (MAD) - determined by a combination of measurement and simulation - was used as an indicator of the patient dose. Results: The most favorable relation of CNR and dose was found for the lowest tube voltage investigated (40 kV) without additional filtration. Compared to a situation with 50 kV or 60 kV, the mean absorbed dose could be lowered by 24 % and 50 %, respectively, while keeping the image quality (CNR) at the same level. Conclusion: For digital radiography of distal pediatric extremities, further CNR and dose optimization appears to be possible using lower tube voltages. Further clinical investigation of the suggested parameters is necessary. (orig.)

  4. Pediatric computed tomography dose of head and chest exams: a bibliography revision; Dose em exames de cranio e torax de tomografia computadorizada pediatrica: uma revisao bibliografica

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Barbara Q.; Capaverde, Alexandre S.; Vanni, Stefania; Mazzola, Carolina F.S.; Silva, Ana M. Marques da, E-mail: barbara.friedrich@acad.pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil)

    2015-08-15

    The Computed Tomography (CT) imaging diagnosis it is responsible for over 34% of the radiation dose given to society, only in Brazil there is around 3833 CT equipment. There are two dose index in CT, the CTDI{sub vol} and DLP that represents the Computed Tomography dose index and the product of the CTDI{sub vol} by the length of irradiation. This paper has as objective describe the values of CTDI{sub vol} e DLP for pediatric exams of chest and head. This is an exploratory study of bibliography revision on the PubMed data base using the index terms with the following crossing: Computed Tomography AND Reference Levels AND Dose. The search was limited by published studies on the last 5 years with patients among 0 and 15 years, in English or Portuguese. Besides that, were included references guides suggest by scientific and governmental organizations on the last 5 years. The data analysis was made using the four readings of Gil: exploratory, selective, analytic and interpretative. By the Exploratory Reading were located 23 articles. On the Selective Reading were excluded 4 articles and on the Analytic Reading 9 articles. The Interpretative Reading was made using 7 publications. Regarding the references guides were includes 3 guides. The Portaria MS453/98 was included for being the only national publication. All data were characterized between practical levels and reference levels. The conclusion is that there is no consensus between the reference levels for the selected articles, for pediatric exams. Besides that, the national legislation do not have reference levels for pediatric CT. (author)

  5. Assessing pediatrics residents' mathematical skills for prescribing medication: a need for improved training.

    Science.gov (United States)

    Glover, Mark L; Sussmane, Jeffrey B

    2002-10-01

    To evaluate residents' skills in performing basic mathematical calculations used for prescribing medications to pediatric patients. In 2001, a test of ten questions on basic calculations was given to first-, second-, and third-year residents at Miami Children's Hospital in Florida. Four additional questions were included to obtain the residents' levels of training, specific pediatrics intensive care unit (PICU) experience, and whether or not they routinely double-checked doses and adjusted them for each patient's weight. The test was anonymous and calculators were permitted. The overall score and the score for each resident class were calculated. Twenty-one residents participated. The overall average test score and the mean test score of each resident class was less than 70%. Second-year residents had the highest mean test scores, although there was no significant difference between the classes of residents (p =.745) or relationship between the residents' PICU experiences and their exam scores (p =.766). There was no significant difference between residents' levels of training and whether they double-checked their calculations (p =.633) or considered each patient's weight relative to the dose prescribed (p =.869). Seven residents committed tenfold dosing errors, and one resident committed a 1,000-fold dosing error. Pediatrics residents need to receive additional education in performing the calculations needed to prescribe medications. In addition, residents should be required to demonstrate these necessary mathematical skills before they are allowed to prescribe medications.

  6. Scatter and transmission doses from several pediatric X-ray examinations in a nursery

    International Nuclear Information System (INIS)

    Burrage, John W.; Rampant, Peter L.; Beeson, Brendan P.

    2003-01-01

    While several studies have investigated the dose from scattered radiation from X-ray procedures in a pediatric nursery, they examined scatter from chest procedures only, or the types of examination were not specified. The aim of this study was to collect scatter and transmission data from several types of X-ray examinations. Using a ''newborn'' anthropomorphic phantom and an ion chamber, a series of scatter and transmission dose measurements were performed using typical exposure factors for chest, chest and abdomen, skull, skeletal long bone and spine procedures. The phantom was inside a crib for all exposures. The maximum scatter dose measured at 1 m from the field center was about 0.05 μGy per exposure for lateral skulls. Transmission doses for lateral exams were around 0.1 μGy per exposure at 1 m from the isocenter. The study demonstrated that scatter dose to other patients in a neonatal unit is not significant, assuming the distance between adjacent cribs is in the order of 1 m. Transmission doses are also low provided the beam is fully intercepted by the cassette. For an average workload the dose received by imaging technologists would be small. (orig.)

  7. REVIEW ARTICLE – Intravenous paracetamol in pediatrics: A global perspective

    Directory of Open Access Journals (Sweden)

    Muzammil Irshad, MBBS

    2012-12-01

    Full Text Available Intravenous (IV Paracetamol is an excellent post operative analgesic and antipyretic in children. Efficacy and tolerability of IV Propacetamol have been established in pediatric practice. It is believed that paracetamol works by inhibiting cyclooxygenase-2 (COX-2 enzymes. Studies bring to light that therapeutic doses of IV acetaminophen are effective and tolerable in children with least chances of hepatotoxicity. However, overdose toxicity has been reported in children and drug induced hypotension in febrile critically ill patients. Therapeutic doses according to body weight of neonates and children can be administered in hospital settings. Special education of health care staff regarding precise dose and solution is necessary to assess the role of IV paracetamol preparation in pediatric practice.

  8. An Integrative Review of Pediatric Fall Risk Assessment Tools.

    Science.gov (United States)

    DiGerolamo, Kimberly; Davis, Katherine Finn

    Patient fall prevention begins with accurate risk assessment. However, sustained improvements in prevention and quality of care include use of validated fall risk assessment tools (FRATs). The goal of FRATs is to identify patients at highest risk. Adult FRATs are often borrowed from to create tools for pediatric patients. Though factors associated with pediatric falls in the hospital setting are similar to those in adults, such as mobility, medication use, and cognitive impairment, adult FRATs and the factors associated with them do not adequately assess risk in children. Articles were limited to English language, ages 0-21years, and publish date 2006-2015. The search yielded 22 articles. Ten were excluded as the population was primarily adult or lacked discussion of a FRAT. Critical appraisal and findings were synthesized using the Johns Hopkins Nursing evidence appraisal system. Twelve articles relevant to fall prevention in the pediatric hospital setting that discussed fall risk assessment and use of a FRAT were reviewed. Comparison between and accuracy of FRATs is challenged when different classifications, definitions, risk stratification, and inclusion criteria are used. Though there are several pediatric FRATs published in the literature, none have been found to be reliable and valid across institutions and diverse populations. This integrative review highlights the importance of choosing a FRAT based on an institution's identified risk factors and validating the tool for one's own patient population as well as using the tool in conjunction with nursing clinical judgment to guide interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Development and implementation of an anthropomorphic pediatric spine phantom for the assessment of craniospinal irradiation procedures in proton therapy

    Directory of Open Access Journals (Sweden)

    Dana J Lewis

    2014-03-01

    Full Text Available Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC Houston QA Center (formerly RPC.Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS, and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP and Hounsfield unit (HU values. Each material was CT scanned at 120 kVp, and the RSP was obtained from depth ionization scans using the Zebra multi-layer ion chamber (MLIC at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU.Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc., solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%.Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma

  10. Bridging Adult Experience to Pediatrics in Oncology Drug Development.

    Science.gov (United States)

    Leong, Ruby; Zhao, Hong; Reaman, Gregory; Liu, Qi; Wang, Yaning; Stewart, Clinton F; Burckart, Gilbert

    2017-10-01

    Pediatric drug development in the United States has grown under the current regulations made permanent by the Food and Drug Administration Safety and Innovation Act of 2012. Over 1200 pediatric studies have now been submitted to the US FDA, but there is still a high rate of failure to obtain pediatric labeling for the indication pursued. Pediatric oncology represents special problems in that the disease is most often dissimilar to any cancer found in the adult population. Therefore, the development of drug dosing in pediatric oncology patients represents a special challenge. Potential approaches to pediatric dosing in oncology patients include extrapolation of efficacy from adult studies in those few cases where the disease is similar, inclusion of adolescent patients in adult trials when possible, and bridging the adult dose to the pediatric dose. An analysis of the recommended phase 2 dose for 40 molecularly targeted agents in pediatric patients provides some insight into current practices. Increased knowledge of tumor biology and efforts to identify and validate molecular targets and genetic abnormalities that drive childhood cancers can lead to increased opportunities for precision medicine in the treatment of pediatric cancers. © 2017, The American College of Clinical Pharmacology.

  11. Survey of doses and frequency of X-ray examinations on children at the intensive care unit of a large reference pediatric hospital

    International Nuclear Information System (INIS)

    Pedrosa de Azevedo, Ana Cecilia; Osibote, Adelaja Otolorin; Bastos Boechat, Marcia Cristina

    2006-01-01

    Objective: This work aims to evaluate the entrance surface dose (ESD), the body organ dose (BOD) and the effective dose (E) resulting from pediatric radiological procedures with the use of portable X-ray equipments. Materials and methods: The software DoseCal was used to evaluate the doses imparted to patients. The children were classified according to their weight and age groups, and the study included three sectors of the intensive care unit of a large reference pediatric hospital in Rio de Janeiro. Results: A total of 518 radiographs have been performed (424 for chest and 94 for abdomen). The statistical data were compared with previously published results. The BOD is presented for the most exposed organs. Conclusion: The mean value of ESD and E varied widely among neonates. The highest number of radiographs per infant peaked 33 for chest examination in the age group 0-1 year

  12. Parent assessment of medical student skills in ambulatory pediatrics

    OpenAIRE

    Erika Persson; Christina Haines; Mia Lang

    2013-01-01

    Background: Partnership with parents is a vital part of pediatric medical education, yet few studies have examined parent attitudes towards learners in pediatric settings. Methods: Questionnaires were used to determine parent and student assessment of professional and clinical skills (primary outcome) and parent attitudes towards 3rd year medical students (secondary outcome) at the University of Alberta. Chi Square, Kendall’s Tau and Kappa coefficients were calculated to compare parent an...

  13. TH-E-209-02: Dose Monitoring and Protocol Optimization: The Pediatric Perspective

    International Nuclear Information System (INIS)

    MacDougall, R.

    2016-01-01

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilities over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.

  14. TH-E-209-02: Dose Monitoring and Protocol Optimization: The Pediatric Perspective

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, R. [Boston Children’s Hospital (United States)

    2016-06-15

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilities over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.

  15. Lessons learned from administration of high-dose methylprednisolone sodium succinate for acute pediatric spinal cord injuries.

    Science.gov (United States)

    Caruso, Michelle C; Daugherty, Margot C; Moody, Suzanne M; Falcone, Richard A; Bierbrauer, Karin S; Geis, Gary L

    2017-12-01

    OBJECTIVE Methylprednisolone sodium succinate (MPSS) has been studied as a pharmacological adjunct that may be given to patients with acute spinal cord injury (ASCI) to improve neurological recovery. MPSS treatment became the standard of care in adults despite a lack of evidence supporting clinical benefit. More recently, new guidelines from neurological surgeon groups recommended no longer using MPSS for ASCI, due to questionable clinical benefit and known complications. However, little information exists in the pediatric population regarding MPSS use in the setting of ASCI. The aim of this paper was to describe steroid use and side effects in patients with ASCI at the authors' Level 1 pediatric trauma center in order to inform other hospitals that may still use this therapy. METHODS A retrospective chart review was conducted to determine adherence in ordering and delivery according to the guideline of the authors' institution and to determine types and frequency of complications. Inclusion criteria included age < 17 years, blunt trauma, physician concern for ASCI, and admission for ≥ 24 hours or treatment with high-dose intravenous MPSS. Exclusion criteria included penetrating trauma, no documentation of ASCI, and incomplete medical records. Charts were reviewed for a predetermined list of complications. RESULTS A total of 602 patient charts were reviewed; 354 patients were included in the study. MPSS was administered in 59 cases. In 34 (57.5%) the order was placed correctly. In 13 (38.2%) of these 34 cases, MPSS was administered according to the recommended timeline protocol. Overall, only 13 (22%) of 59 patients received the therapy according to protocol with regard to accurate ordering and administration. Among the patients with ASCI, 20 (55.6%) of the 36 who received steroids had complications, which was a significantly higher rate than in those who did not receive steroids (8 [24.2%] of 33, p = 0.008). Among the patients without ASCI, 10 (43.5%) of the 23

  16. Enjebi Island dose assessment

    International Nuclear Information System (INIS)

    Robison, W.L.; Conrado, C.L.; Phillips, W.A.

    1987-07-01

    We have updeated the radiological dose assessment for Enjebi Island at Enewetak Atoll using data derived from analysis of food crops grown on Enjebi. This is a much more precise assessment of potential doses to people resettling Enjebi Island than the 1980 assessment in which there were no data available from food crops on Enjebi. Details of the methods and data used to evaluate each exposure pathway are presented. The terrestrial food chain is the most significant potential exposure pathway and 137 Cs is the radionuclide responsible for most of the estimated dose over the next 50 y. The doses are calculated assuming a resettlement date of 1990. The average wholebody maximum annual estimated dose equivalent derived using our diet model is 166 mremy;the effective dose equivalent is 169 mremy. The estimated 30-, 50-, and 70-y integral whole-body dose equivalents are 3.5 rem, 5.1 rem, and 6.2 rem, respectively. Bone-marrow dose equivalents are only slightly higher than the whole-body estimates in each case. The bone-surface cells (endosteal cells) receive the highest dose, but they are a less sensitive cell population and are less sensitive to fatal cancer induction than whole body and bone marrow. The effective dose equivalents for 30, 50, and 70 y are 3.6 rem, 5.3 rem, and 6.6 rem, respectively. 79 refs., 17 figs., 24 tabs

  17. SU-F-I-32: Organ Doses from Pediatric Head CT Scan

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H; Liu, Q; Qiu, J; Zhuo, W [Institute of Radiation Medicine Fudan University, Shanghai (China); Majer, M; Knezevic, Z; Miljanic, S [Radiation Chemistry and Dosimetry Laboratory, Ruder Boskovic Institute, Zagreb (Croatia); Hrsak, H [Clinical Hospital Centre Zagreb, Zagreb (Croatia)

    2016-06-15

    Purpose: To evaluate the organ doses of pediatric patients who undergoing head CT scan using Monte Carlo (MC) simulation and compare it with measurements in anthropomorphic child phantom.. Methods: A ten years old children voxel phantom was developed from CT images, the voxel size of the phantom was 2mm*2mm*2mm. Organ doses from head CT scan were simulated using MCNPX software, 180 detectors were placed in the voxel phantom to tally the doses of the represented tissues or organs. When performing the simulation, 120 kVp and 88 mA were selected as the scan parameters. The scan range covered from the top of the head to the end of the chain, this protocol was used at CT simulator for radiotherapy. To validate the simulated results, organ doses were measured with radiophotoluminescence (RPL) detectors, placed in the 28 organs of the 10 years old CIRS ATOM phantom. Results: The organ doses results matched well between MC simulation and phantom measurements. The eyes dose was showed to be as expected the highest organ dose: 28.11 mGy by simulation and 27.34 mGy by measurement respectively. Doses for organs not included in the scan volume were much lower than those included in the scan volume, thymus doses were observed more than 10 mGy due the CT protocol for radiotherapy covered more body part than routine head CT scan. Conclusion: As the eyes are superficial organs, they may receive the highest radiation dose during the CT scan. Considering the relatively high radio sensitivity, using shielding material or organ based tube current modulation technique should be encouraged to reduce the eye radiation risks. Scan range was one of the most important factors that affects the organ doses during the CT scan. Use as short as reasonably possible scan range should be helpful to reduce the patient radiation dose. This work was supported by the National Natural Science Foundation of China(11475047)

  18. CLINICAL AND PHARMACOLOGICAL APPROACHES TO OPTIMIZE THE DOSING REGIMEN OF ANTIBACTERIAL DRUGS IN PEDIATRICS

    Directory of Open Access Journals (Sweden)

    Natal’ya B. Lazareva

    2018-01-01

    Full Text Available The rational use of antibacterial drugs in children implies an adequate choice of the necessary medication, its dosing regimen, and the duration of treatment in order to achieve maximum efficacy and minimize toxic effects. The knowledge of pharmacokinetic and pharmacodynamic profiles of the antibacterial drug plays a crucial role for optimizing the dosing regimen. The strategy of individual choice of the dosing regimen, taking into account the principles of pharmacokinetics and pharmacodynamics, can be especially effective in patients with the expectedly changed parameters of pharmacokinetics and in infections caused by bacteria strains with low sensitivity to antibiotics. The review presents a contemporary view of pharmacokinetic and pharmacodynamic profiles of antibacterial drugs most commonly used in pediatrics and their relationship to the clinical efficacy of the administered therapy.

  19. Assessment of simvastatin niosomes for pediatric transdermal drug delivery.

    Science.gov (United States)

    Zidan, Ahmed S; Hosny, Khaled M; Ahmed, Osama A A; Fahmy, Usama A

    2016-06-01

    The prevalence of childhood dyslipidemia increases and is considered as an important risk factor for the incidence of cardiovascular disease in the adulthood. To improve dosing accuracy and facilitate the determination of dosing regimens in function of the body weight, the proposed study aims at preparing transdermal niosomal gels of simvastatin as possible transdermal drug delivery system for pediatric applications. Twelve formulations were prepared to screen the influence of formulation and processing variables on critical niosomal characteristics. Nano-sized niosomes with 0.31 μm number-weighted size displayed highest simvastatin release rate with 8.5% entrapment capacity. The niosomal surface coverage by negative charges was calculated according to Langmuir isotherm with n = 0.42 to suggest that the surface association was site-independent, probably producing surface rearrangements. Hypolipidemic activities after transdermal administration of niosomal gels to rats showed significant reduction in cholesterol and triglyceride levels while increasing plasma high-density lipoproteins concentration. Bioavailability estimation in rats revealed an augmentation in simvastatin bioavailability by 3.35 and 2.9 folds from formulation F3 and F10, respectively, compared with oral drug suspension. Hence, this transdermal simvastatin niosomes not only exhibited remarkable potential to enhance its bioavailability and hypolipidemic activity but also considered a promising pediatric antihyperlipidemic formulation.

  20. Medical students¿ assessment of pediatric patients - teaching and evaluation using video cases

    DEFF Research Database (Denmark)

    Malon, Michelle; Cortes, Dina; Greisen, Gorm

    2014-01-01

    and examination for pediatric medicine.MethodsMedical students on a pediatric clerkship at the University of Copenhagen assessed eight short pediatric video cases during autumn 2011 and spring 2012. Two independent observers evaluated a subset of records in a pilot study. A blind evaluation was made...

  1. Estimation of effective doses in pediatric X-ray computed tomography examination.

    Science.gov (United States)

    Obara, Hideki; Takahashi, Midori; Kudou, Kazuya; Mariya, Yasushi; Takai, Yoshihiro; Kashiwakura, Ikuo

    2017-11-01

    X-ray computed tomography (CT) images are used for diagnostic and therapeutic purposes in various medical disciplines. In Japan, the number of facilities that own diagnostic CT equipment, the number of CT examinations and the number of CT scanners increased by ~1.4-fold between 2005 and 2011. CT operators (medical radiological technologists, medical physicists and physicians) must understand the effective doses for examinations at their own institutions and carefully approach each examination. In addition, the patients undergoing the examination (as well as his/her family) must understand the effective dose of each examination in the context of the cumulative dose. In the present study, the numbers of pediatric patients (aged 0-5 years) and total patients who underwent CT at Hirosaki University Hospital (Hirosaki, Japan) between January 2011 and December 2013 were surveyed, and effective doses administered to children aged 0, 1 and 5 years were evaluated. Age- and region-specific conversion factors and dose-length products obtained from the CT scanner were used to estimate the effective doses. The numbers of CT examinations performed in 2011, 2012 and 2013 were 16,662, 17,491 and 17,649, respectively, of which 613 (1.2%) of the overall total involved children aged 0-5 years. The estimated effective doses per examination to children aged 0, 1 and 5 years were 6.3±4.8, 4.9±3.8 and 2.7±3.0 mSv, respectively. This large variation was attributed to several factors associated with scan methods and ranges in actual setting. In conclusion, the requirement for individual patient prospective exposure management systems and estimations of low-dose radiation exposure should be considered in light of the harmful effects of exposure.

  2. Pediatric chest HRCT using the iDose4 Hybrid Iterative Reconstruction Algorithm: Which iDose level to choose?

    International Nuclear Information System (INIS)

    Smarda, M; Alexopoulou, E; Mazioti, A; Kordolaimi, S; Ploussi, A; Efstathopoulos, E; Priftis, K

    2015-01-01

    Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions. (paper)

  3. MO-E-18A-01: Imaging: Best Practices In Pediatric Imaging

    International Nuclear Information System (INIS)

    Willis, C; Strauss, K; MacDougall, R; Sammet, C

    2014-01-01

    This imaging educational program will focus on solutions to common pediatric imaging challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children's hospitals. Areas of focus will include general radiography, the use of manual and automatic dose management in computed tomography, and enterprise-wide radiation dose management in the pediatric practice. The educational program will begin with a discussion of the complexities of exposure factor control in pediatric projection radiography. Following this introduction will be two lectures addressing the challenges of computed tomography (CT) protocol optimization in the pediatric population. The first will address manual CT protocol design in order to establish a managed radiation dose for any pediatric exam on any CT scanner. The second CT lecture will focus on the intricacies of automatic dose modulation in pediatric imaging with an emphasis on getting reliable results in algorithmbased technique selection. The fourth and final lecture will address the key elements needed to developing a comprehensive radiation dose management program for the pediatric environment with particular attention paid to new regulations and obligations of practicing medical physicists. Learning Objectives: To understand how general radiographic techniques can be optimized using exposure indices in order to improve pediatric radiography. To learn how to establish diagnostic dose reference levels for pediatric patients as a function of the type of examination, patient size, and individual design characteristics of the CT scanner. To learn how to predict the patient's radiation dose prior to the exam and manually adjust technique factors if necessary to match the patient's dose to the department's established dose reference levels. To learn how to utilize manufacturer-provided automatic dose modulation technology to consistently achieve patient

  4. MO-E-18A-01: Imaging: Best Practices In Pediatric Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Willis, C; Strauss, K; MacDougall, R; Sammet, C [MD Anderson Cancer Center, Bellaire, TX (United States)

    2014-06-15

    This imaging educational program will focus on solutions to common pediatric imaging challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children's hospitals. Areas of focus will include general radiography, the use of manual and automatic dose management in computed tomography, and enterprise-wide radiation dose management in the pediatric practice. The educational program will begin with a discussion of the complexities of exposure factor control in pediatric projection radiography. Following this introduction will be two lectures addressing the challenges of computed tomography (CT) protocol optimization in the pediatric population. The first will address manual CT protocol design in order to establish a managed radiation dose for any pediatric exam on any CT scanner. The second CT lecture will focus on the intricacies of automatic dose modulation in pediatric imaging with an emphasis on getting reliable results in algorithmbased technique selection. The fourth and final lecture will address the key elements needed to developing a comprehensive radiation dose management program for the pediatric environment with particular attention paid to new regulations and obligations of practicing medical physicists. Learning Objectives: To understand how general radiographic techniques can be optimized using exposure indices in order to improve pediatric radiography. To learn how to establish diagnostic dose reference levels for pediatric patients as a function of the type of examination, patient size, and individual design characteristics of the CT scanner. To learn how to predict the patient's radiation dose prior to the exam and manually adjust technique factors if necessary to match the patient's dose to the department's established dose reference levels. To learn how to utilize manufacturer-provided automatic dose modulation technology to consistently achieve patient

  5. Dexmedetomidine in the pediatric population

    DEFF Research Database (Denmark)

    Plambech, Morten; Afshari, A

    2015-01-01

    Dexmedetomidine, an alpha-2 agonist approved only for sedation in adult intensive care patients, is increasingly used off-label in- and outside Europe in the pediatric setting for various indications such as to prevent agitation, as premedication in the form of intranasal, buccal and oral solution...... of sedation of children. In this paper, we assess 51 minor trials in the form of 44 randomized controlled trials and 7 prospective observational studies in an attempt to update the available evidence on dexmedetomidine use in pediatrics. Furthermore, we discuss its potential indications, benefits and adverse....... Based on the best current evidence dexmedetomidine is found suitable and safe for various indications. However, in order to discover its full potential, indications, dosing and safety profile for various ages and procedures, it should urgently be examined by conducting good quality pediatric trials...

  6. High-Dose Methylprednisolone for Veno-Occlusive Disease of the Liver in Pediatric Hematopoietic Stem Cell Transplantation Recipients

    Science.gov (United States)

    Myers, Kasiani C.; Lawrence, Julia; Marsh, Rebecca A.; Davies, Stella M.; Jodele, Sonata

    2017-01-01

    Veno-occlusive disease (VOD) of the liver is a well-recognized serious complication of hematopoietic stem cell transplantation (HSCT), with few successful treatment modalities available for severe disease. Some reports have demonstrated success in adults with the use of high-dose steroid therapy, but experience in the pediatric population is lacking. We retrospectively reviewed HSCT patients treated at our institution since 2003 and identified 15 (2.4%) who developed VOD. Of these, nine (60%) were treated with intravenous high-dose methylprednisolone (500 mg/m2 per dose every 12 hours for six doses). Steroid therapy was initiated at or before first ultrasound evidence of reversal of portal venous flow and before meeting criteria for initiation of defibrotide therapy. Four patients were also treated with defibrotide starting 2 to 5 days after initiation of steroids. Eight of nine patients (88%) with VOD were diagnosed with multiorgan failure. Response to high-dose steroid therapy as defined by decrease in bilirubin by 50% in 10 days from therapy initiation was noted in six of nine patients (67%), occurring within 3 to 6 days of steroid therapy. Two patients died from multiorgan failure due to VOD. Seven survivors of VOD recovered at the median 6 days (range, 5 to 38) from VOD diagnosis. Overall, VOD survival as a group was 78%; however, survival among responders was 100%. No serious toxicities related to high-dose steroid therapy were observed. We conclude that high-dose steroid therapy if initiated early may reverse VOD of the liver in pediatric HSCT patients, abrogating the need for defibrotide therapy with its associated toxicities and regulatory difficulties. PMID:23211838

  7. Assessment of obese children and adolescents: a survey of pediatric obesity-management programs.

    Science.gov (United States)

    Eisenmann, Joey C

    2011-09-01

    This article provides descriptive information on the assessments conducted in stage 3 or 4 pediatric obesity-management programs associated with National Association of Children's Hospital and Related Institutions hospitals enrolled in FOCUS on a Fitter Future. Eighteen institutions completed a survey that considered the following assessments: patient/family medical history; physical examination; blood pressure; body size and composition; blood chemistry; aerobic fitness; resting metabolic rate; muscle strength and flexibility; gross motor function; spirometry; sedentary behavior and physical activity; dietary behavior and nutrition; and psychological assessments. Frequency distributions were determined for each question. Overall, the results indicate that most programs that participated in this survey were following 2007 Expert Committee assessment recommendations; however, a variety of measurement tools were used. The variation in assessment tools, protocols, etc is partially caused by the program diversity dictated by personnel, both in terms of number and duties. It also shows the challenges in standardizing methodologies across clinics if we hope to establish a national registry for pediatric obesity clinics. In addition to providing a better understanding of the current assessment practices in pediatric obesity-management programs, the results provided herein should assist other clinics/hospitals that are developing pediatric obesity programs.

  8. Dosing of Appropriate Antibiotics and Time to Administration of First Doses in the Pediatric Emergency Department.

    Science.gov (United States)

    Bailey, Abby M; Stephan, Maria; Weant, Kyle A; Justice, Stephanie Baker

    2015-01-01

    Emergency department (ED) providers are faced with the challenge of diagnosing and treating patients in a timely fashion given many obstacles including limited patient information, complex disease states, and high patient turnover. Time delays in administration or selection of appropriate drug therapies have been associated with negative outcomes in severe infections. This study was conducted to assess the impact of an emergency medicine pharmacist (EPh) on the selection of appropriate antibiotics and the timeliness of administration in pediatric patients in the ED. Patients younger than 18 years were evaluated who were admitted through the ED and received 1 dose of intravenous antibiotic for the following conditions: community-acquired pneumonia, complicated skin and soft tissue infection (SSTI), meningitis, and sepsis. To evaluate the impact of the presence of an EPh, patients with orders placed during the EPh's hours of 1 pm and 11 pm were compared to those with an order placed between 11 pm and 1 pm. A total of 142 patients were included in the study. Patients seen during EPh hours received an appropriate first antibiotic 93.4% of the time (p = 0.157) and second antibiotic 96.8% of the time (p = 0.023). Time from order to verification was significantly shorter for the first 2 antimicrobials in the EPh group (10.5 minutes [p = 0.003] and 11.4 minutes [p = 0.047], respectively). The days from discharge to return to readmission to the ED were also significantly different (17.5 days vs. 62.4 days, p = 0.008). The available data suggest that patients are more likely to receive appropriate doses of antimicrobials, and in a more timely fashion, whenever the EPh is present. Areas for future investigation include whether the presence of EPhs at the bedside has the potential to impact areas of patient care, including readmission rates, drug costs, and medication errors.

  9. Local patient dose diagnostic reference levels in pediatric interventional cardiology in Chile using age bands and patient weight values

    Energy Technology Data Exchange (ETDEWEB)

    Ubeda, Carlos, E-mail: cubeda@uta.cl [Medical Technology Department, Radiological Sciences Center, Health Sciences Faculty, Tarapaca University, Arica 1000000 (Chile); Miranda, Patricia [Hemodynamic Department, Cardiovascular Service, Luis Calvo Mackenna Hospital, Santiago 7500539 (Chile); Vano, Eliseo [Radiology Department, Faculty of Medicine, Complutense University and IdIS, San Carlos Hospital, Madrid 28040 (Spain)

    2015-02-15

    Purpose: To present the results of a patient dose evaluation program in pediatric cardiology and propose local diagnostic reference levels (DRLs) for different types of procedure and age range, in addition to suggesting approaches to correlate patient dose values with patient weight. This study was the first conducted in Latin America for pediatric interventional cardiology under the auspices of the International Atomic Energy Agency. Methods: Over three years, the following data regarding demographic and patient dose values were collected: age, gender, weight, height, number of cine series, total number of cine frames, fluoroscopy time (FT), and two dosimetric quantities, dose-area product (DAP) and cumulative dose (CD), at the patient entrance reference point. The third quartile values for FT, DAP, CD, number of cine series, and the DAP/body weight ratio were proposed as the set of quantities to use as local DRLs. Results: Five hundred and seventeen patients were divided into four age groups. Sample sizes by age group were 120 for <1 yr; 213 for 1 to <5 yr; 82 for 5 to <10 yr; and 102 for 10 to <16 yr. The third quartile values obtained for DAP by diagnostic and therapeutic procedures and age range were 1.17 and 1.11 Gy cm{sup 2} for <1 yr; 1.74 and 1.90 Gy cm{sup 2} for 1 to <5 yr; 2.83 and 3.22 Gy cm{sup 2} for 5 to <10 yr; and 7.34 and 8.68 Gy cm{sup 2} for 10 to <16 yr, respectively. The third quartile value obtained for the DAP/body weight ratio for the full sample of procedures was 0.17 (Gy cm{sup 2}/kg) for diagnostic and therapeutic procedures. Conclusions: The data presented in this paper are an initial attempt at establishing local DRLs in pediatric interventional cardiology, from a large sample of procedures for the standard age bands used in Europe, complemented with the values of the ratio between DAP and patient weight. This permits a rough estimate of DRLs for different patient weights and the refining of these values for the age bands when there

  10. Local patient dose diagnostic reference levels in pediatric interventional cardiology in Chile using age bands and patient weight values

    International Nuclear Information System (INIS)

    Ubeda, Carlos; Miranda, Patricia; Vano, Eliseo

    2015-01-01

    Purpose: To present the results of a patient dose evaluation program in pediatric cardiology and propose local diagnostic reference levels (DRLs) for different types of procedure and age range, in addition to suggesting approaches to correlate patient dose values with patient weight. This study was the first conducted in Latin America for pediatric interventional cardiology under the auspices of the International Atomic Energy Agency. Methods: Over three years, the following data regarding demographic and patient dose values were collected: age, gender, weight, height, number of cine series, total number of cine frames, fluoroscopy time (FT), and two dosimetric quantities, dose-area product (DAP) and cumulative dose (CD), at the patient entrance reference point. The third quartile values for FT, DAP, CD, number of cine series, and the DAP/body weight ratio were proposed as the set of quantities to use as local DRLs. Results: Five hundred and seventeen patients were divided into four age groups. Sample sizes by age group were 120 for <1 yr; 213 for 1 to <5 yr; 82 for 5 to <10 yr; and 102 for 10 to <16 yr. The third quartile values obtained for DAP by diagnostic and therapeutic procedures and age range were 1.17 and 1.11 Gy cm 2 for <1 yr; 1.74 and 1.90 Gy cm 2 for 1 to <5 yr; 2.83 and 3.22 Gy cm 2 for 5 to <10 yr; and 7.34 and 8.68 Gy cm 2 for 10 to <16 yr, respectively. The third quartile value obtained for the DAP/body weight ratio for the full sample of procedures was 0.17 (Gy cm 2 /kg) for diagnostic and therapeutic procedures. Conclusions: The data presented in this paper are an initial attempt at establishing local DRLs in pediatric interventional cardiology, from a large sample of procedures for the standard age bands used in Europe, complemented with the values of the ratio between DAP and patient weight. This permits a rough estimate of DRLs for different patient weights and the refining of these values for the age bands when there may be large differences

  11. Biplane interventional pediatric system with cone‐beam CT: dose and image quality characterization for the default protocols

    Science.gov (United States)

    Vañó, Eliseo; Alejo, Luis; Ubeda, Carlos; Gutiérrez‐Larraya, Federico; Garayoa, Julia

    2016-01-01

    The aim of this study was to assess image quality and radiation dose of a biplane angiographic system with cone‐beam CT (CBCT) capability tuned for pediatric cardiac procedures. The results of this study can be used to explore dose reduction techniques. For pulsed fluoroscopy and cine modes, polymethyl methacrylate phantoms of various thicknesses and a Leeds TOR 18‐FG test object were employed. Various fields of view (FOV) were selected. For CBCT, the study employed head and body dose phantoms, Catphan 504, and an anthropomorphic cardiology phantom. The study also compared two 3D rotational angiography protocols. The entrance surface air kerma per frame increases by a factor of 3–12 when comparing cine and fluoroscopy frames. The biggest difference in the signal‐to‐noise ratio between fluoroscopy and cine modes occurs at FOV 32 cm because fluoroscopy is acquired at a 1440×1440 pixel matrix size and in unbinned mode, whereas cine is acquired at 720×720 pixels and in binned mode. The high‐contrast spatial resolution of cine is better than that of fluoroscopy, except for FOV 32 cm, because fluoroscopy mode with 32 cm FOV is unbinned. Acquiring CBCT series with a 16 cm head phantom using the standard dose protocol results in a threefold dose increase compared with the low‐dose protocol. Although the amount of noise present in the images acquired with the low‐dose protocol is much higher than that obtained with the standard mode, the images present better spatial resolution. A 1 mm diameter rod with 250 Hounsfield units can be distinguished in reconstructed images with an 8 mm slice width. Pediatric‐specific protocols provide lower doses while maintaining sufficient image quality. The system offers a novel 3D imaging mode. The acquisition of CBCT images results in increased doses administered to the patients, but also provides further diagnostic information contained in the volumetric images. The assessed CBCT protocols provide images that are noisy

  12. Evaluation of skin entrance radiation dose in pediatric patients undergoing chest X-rays exams; Avaliacao da dose de entrada na pele em pacientes pediatricos submetidos a exames radiograficos do torax

    Energy Technology Data Exchange (ETDEWEB)

    Gabardo, Farly Piantini

    2016-07-01

    The aim of this work was to estimate the incident air kerma of lateral (LAT) and anterior-posterior (AP) together with posterior-anterior (PA) projection chest X-ray exams in one of the largest pediatric hospitals in Brazil. Dosimetric results are accompanied with the detailed analysis of patient characteristics and radiographer strategy. The exams of 225 (119 male and 106 female) patients were studied and 389 X-ray exams (200 AP/PA projections and 189 LAT projections) of pediatric patients were acquired. Patient thickness can be restored from age, height or weight with the uncertainty of ∼20-30%. Very slight correlation between the patient dose and thickness was observed with the difference in dose for patients of the same thickness reaching 4 times. By standardization of radiological protocols, it should be possible to keep dose within the intervals 50-100 μGy for LAT projection and 40-80 μGy for AP/PA projection. The dose values are lower than those recommended by major European guidelines to good practice. (author)

  13. COMPARISON OF THE PERIPHERAL DOSES FROM DIFFERENT IMRT TECHNIQUES FOR PEDIATRIC HEAD AND NECK RADIATION THERAPY.

    Science.gov (United States)

    Toyota, Masahiko; Saigo, Yasumasa; Higuchi, Kenta; Fujimura, Takuya; Koriyama, Chihaya; Yoshiura, Takashi; Akiba, Suminori

    2017-11-01

    Intensity-modulated radiation therapy (IMRT) can deliver high and homogeneous doses to the target area while limiting doses to organs at risk. We used a pediatric phantom to simulate the treatment of a head and neck tumor in a child. The peripheral doses were examined for three different IMRT techniques [dynamic multileaf collimator (DMLC), segmental multileaf collimator (SMLC) and volumetric modulated arc therapy (VMAT)]. Peripheral doses were evaluated taking thyroid, breast, ovary and testis as the points of interest. Doses were determined using a radio-photoluminescence glass dosemeter, and the COMPASS system was used for three-dimensional dose evaluation. VMAT achieved the lowest peripheral doses because it had the highest monitor unit efficiency. However, doses in the vicinity of the irradiated field, i.e. the thyroid, could be relatively high, depending on the VMAT collimator angle. DMLC and SMLC had a large area of relatively high peripheral doses in the breast region. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Parent assessment of medical student skills in ambulatory pediatrics

    Directory of Open Access Journals (Sweden)

    Erika Persson

    2013-09-01

    Full Text Available Background: Partnership with parents is a vital part of pediatric medical education, yet few studies have examined parent attitudes towards learners in pediatric settings. Methods: Questionnaires were used to determine parent and student assessment of professional and clinical skills (primary outcome and parent attitudes towards 3rd year medical students (secondary outcome at the University of Alberta. Chi Square, Kendall’s Tau and Kappa coefficients were calculated to compare parent and student responses in 8 areas: communication, respect, knowledge, listening, history taking, physical examination, supervision, and overall satisfaction. Results: Overall satisfaction with medical student involvement by parents was high: 56.7% of all parents ranked the encounter as ‘excellent’. Areas of lesser satisfaction included physician supervision of students. Compared to the parent assessment, students tended to underrate many of their skills, including communication, history taking and physical exam. There was no relationship between parent demographics and their attitude to rating any of the students’ skills. Conclusions: Parents were satisfied with medical student involvement in the care of their children. Areas identified for improvement included increased supervision of students in both history taking and physical examination. This is one of the largest studies examining parent attitudes towards pediatric students. The results may enhance undergraduate curriculum development and teaching in pediatric ambulatory clinics and strengthen the ongoing partnership between the community and teaching clinics.

  15. Occupational dose assessment and national dose registry system in Iran

    International Nuclear Information System (INIS)

    Jafari-Zadeh, M.; Nazeri, F.; Hosseini-Pooya, S. M.; Taheri, M.; Gheshlaghi, F.; Kardan, M. R.; Babakhani, A.; Rastkhah, N.; Yousefi-Nejad, F.; Darabi, M.; Oruji, T.; Gholamali-Zadeh, Z.; Karimi-Diba, J.; Kazemi-Movahed, A. A.; Dashti-Pour, M. R.; Enferadi, A.; Jahanbakhshian, M. H.; Sadegh-Khani, M. R.

    2011-01-01

    This report presents status of external and internal dose assessment of workers and introducing the structure of National Dose Registry System of Iran (NDRSI). As well as types of individual dosemeters in use, techniques for internal dose assessment are presented. Results obtained from the International Atomic Energy Agency intercomparison programme on measurement of personal dose equivalent H p (10) and consistency of the measured doses with the delivered doses are shown. Also, implementation of dosimetry standards, establishment of quality management system, authorisation and approval procedure of dosimetry service providers are discussed. (authors)

  16. Assessment Tools for Peripheral Neuropathy in Pediatric Oncology: A Systematic Review From the Children's Oncology Group.

    Science.gov (United States)

    Smolik, Suzanne; Arland, Lesley; Hensley, Mary Ann; Schissel, Debra; Shepperd, Barbara; Thomas, Kristin; Rodgers, Cheryl

    Peripheral neuropathy is a known side effect of several chemotherapy agents, including vinca alkaloids and platinum-based chemotherapy. Early recognition and monitoring of this side effect is an important role of the pediatric oncology nurse. There are a variety of peripheral neuropathy assessment tools currently in use, but the usefulness of these tools in identifying and grading neuropathy in children varies, and there is currently no standardized tool in place to evaluate peripheral neuropathy in pediatric oncology. A systematic review was performed to identify the peripheral neuropathy assessment tools that best evaluate the early onset and progression of peripheral neuropathy in pediatric patients receiving vincristine. Because of the limited information available in pediatric oncology, this review was extended to any pediatric patient with neuropathy. A total of 8 studies were included in the evidence synthesis. Based on available evidence, the pediatric-modified Total Neuropathy Scale (ped-m TNS) and the Total Neuropathy Score-pediatric version (TNS-PV) are recommended for the assessment of vincristine-induced peripheral neuropathy in children 6 years of age and older. In addition, several studies demonstrated that subjective symptoms alone are not adequate to assess for vincristine-induced peripheral neuropathy. Nursing assessment of peripheral neuropathy should be an integral and regular part of patient care throughout the course of chemotherapy treatment.

  17. Low-tube-voltage selection for non-contrast-enhanced CT: Comparison of the radiation dose in pediatric and adult phantoms.

    Science.gov (United States)

    Shimonobo, Toshiaki; Funama, Yoshinori; Utsunomiya, Daisuke; Nakaura, Takeshi; Oda, Seitaro; Kiguchi, Masao; Masuda, Takanori; Sakabe, Daisuke; Yamashita, Yasuyuki; Awai, Kazuo

    2016-01-01

    We used pediatric and adult anthropomorphic phantoms to compare the radiation dose of low- and standard tube voltage chest and abdominal non-contrast-enhanced computed tomography (CT) scans. We also discuss the optimal low tube voltage for non-contrast-enhanced CT. Using a female adult- and three differently-sized pediatric anthropomorphic phantoms we acquired chest and abdominal non-contrast-enhanced scans on a 320-multidetector CT volume scanner. The tube voltage was set at 80-, 100-, and 120 kVp. The tube current was automatically assigned on the CT scanner in response to the set image noise level. On each phantom and at each tube voltage we measured the surface and center dose using high-sensitivity metal-oxide-semiconductor field-effect transistor detectors. The mean surface dose of chest and abdominal CT scans in 5-year olds was 4.4 and 5.3 mGy at 80 kVp, 4.5 and 5.4 mGy at 100 kV, and 4.0 and 5.0 mGy at 120 kVp, respectively. These values were similar in our 3-pediatric phantoms (p > 0.05). The mean surface dose in the adult phantom increased from 14.7 to 19.4 mGy for chest- and from 18.7 to 24.8 mGy for abdominal CT as the tube voltage decreased from 120 to 80 kVp (p voltage and the low tube voltage technique can be used for non-contrast-enhanced chest- and abdominal scanning. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. [Out-of-hospital pediatric emergencies. Perception and assessment by emergency physicians].

    Science.gov (United States)

    Eich, C; Roessler, M; Timmermann, A; Heuer, J F; Gentkow, U; Albrecht, B; Russo, S G

    2009-09-01

    Out-of-hospital (OOH) pediatric emergencies have a relatively low prevalence. In Germany the vast majority of cases are attended by non-specialized emergency physicians (EPs) for whom these are not routine procedures. This may lead to insecurity and fear. However, it is unknown how EPs perceive and assess pediatric emergencies and how they could be better prepared for them. All active EPs (n=50) of the Department of Anaesthesiology, Emergency and Intensive Care Medicine at the University Medical Centre of Göttingen were presented with a structured questionnaire in order to evaluate their perception and assessment of OOH pediatric emergencies. The 43 participating EPs made highly detailed statements on the expected characteristics of OOH pediatric emergencies. Their confidence level grew with the children's age (pemergencies. They felt the greatest deficits were in the care of infrequent but life-threatening emergencies. Three educational groups can be differentiated: knowledge and skills to be gained with children in hospital, clinical experience from adult care also applicable in children and rare diagnoses and interventions to be trained with manikins or simulators.

  19. Optimization on the dose versus noise in the image on protocols for computed tomography of pediatric head

    International Nuclear Information System (INIS)

    Saint'Yves, Thalis L.A.; Travassos, Paulo Cesar B.; Goncalves, Elicardo A.S.; Mecca A, Fernando; Silveira, Thiago B.

    2010-01-01

    This article aims to establish protocols optimized for computed tomography of pediatric skull, to the Picker Q2000 tomography of the Instituto Nacional de Cancer, through the analysis of dose x noise on the image with the variation of values of mAs and kVp. We used a water phantom to measure the noise, a pencil type ionization chamber to measure the dose in the air and the Alderson Randon phantom for check the quality of the image. We found values of mAs and kVp that reduce the skin dose of the original protocol used in 35.9%, maintaining the same image quality at a safe diagnosis. (author)

  20. Validity of Level of Supervision Scales for Assessing Pediatric Fellows on the Common Pediatric Subspecialty Entrustable Professional Activities.

    Science.gov (United States)

    Mink, Richard B; Schwartz, Alan; Herman, Bruce E; Turner, David A; Curran, Megan L; Myers, Angela; Hsu, Deborah C; Kesselheim, Jennifer C; Carraccio, Carol L

    2018-02-01

    Entrustable professional activities (EPAs) represent the routine and essential activities that physicians perform in practice. Although some level of supervision scales have been proposed, they have not been validated. In this study, the investigators created level of supervision scales for EPAs common to the pediatric subspecialties and then examined their validity in a study conducted by the Subspecialty Pediatrics Investigator Network (SPIN). SPIN Steering Committee members used a modified Delphi process to develop unique scales for six of the seven common EPAs. The investigators sought validity evidence in a multisubspecialty study in which pediatric fellowship program directors and Clinical Competency Committees used the scales to evaluate fellows in fall 2014 and spring 2015. Separate scales for the six EPAs, each with five levels of progressive entrustment, were created. In both fall and spring, more than 300 fellows in each year of training from over 200 programs were assessed. In both periods and for each EPA, there was a progressive increase in entrustment levels, with second-year fellows rated higher than first-year fellows (P < .001) and third-year fellows rated higher than second-year fellows (P < .001). For each EPA, spring ratings were higher (P < .001) than those in the fall. Interrater reliability was high (Janson and Olsson's iota = 0.73). The supervision scales developed for these six common pediatric subspecialty EPAs demonstrated strong validity evidence for use in EPA-based assessment of pediatric fellows. They may also inform the development of scales in other specialties.

  1. Adapting protocols of CT imaging in a pediatric emergency department. Evaluation of image quality and dose; Adaptacion de los protocolos de adquisicion de imagenes de TC pediatricos en un servicio de urgencia. Valoracion de la calidad de imagen y dosis

    Energy Technology Data Exchange (ETDEWEB)

    Batista Arce, A.; Gonzalez Lopez, S.; Catalan Acosta, A.; Casares Magaz, O.; Hernandez Armas, O.; Hernandez Armas, J.

    2011-07-01

    The purpose of this study was to assess qualitatively the picture quality in relation to the radiation dose delivered in CT studies of computer tomograph Pediatric Emergency Department of Hospital Universitario de Canarias (HUC) in order to optimize the technical parameters used these radiological examinations so as to obtain optimal image quality at the lowest possible dose.

  2. Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms

    International Nuclear Information System (INIS)

    Papadimitroulas, P; Kagadis, G C; Ploussi, A; Kordolaimi, S; Papamichail, D; Karavasilis, E; Syrgiamiotis, V; Loudos, G

    2015-01-01

    The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ∼10 10 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition. (paper)

  3. Parent assessment of medical student’s skills in ambulatory pediatrics

    OpenAIRE

    Persson, Erika; Haines, Christina; Lang, Mia

    2013-01-01

    Background Partnership with parents is a vital part of pediatric medical education, yet few studies have examined parent attitudes towards learners in pediatric settings. Methods Questionnaires were used to determine parent and student assessment of professional and clinical skills (primary outcome) and parent attitudes towards 3rd year medical students (secondary outcome) at the University of Alberta. Chi Square, Kendall’s Tau and Kappa coefficients were calculated to compare parent and stud...

  4. Nuclear imaging in pediatrics

    International Nuclear Information System (INIS)

    Siddiqui, A.R.

    1985-01-01

    The author's intent is to familiarize practicing radiologists with the technical aspects and interpretation of nuclear medicine procedures in children and to illustrate the indications for nuclear medicine procedures in pediatric problems. Pediatric doses, dosimetry, sedation, and injection techniques, organ systems, oncology and infection, testicular scanning and nuclear crystography, pediatric endocrine and skeletal systems, ventilation and perfusion imaging of both congenital and acquired pediatric disorders, cardiovascular problems, gastrointestinal, hepatobiliary, reticuloendothelial studies, and central nervous system are all topics which are included and discussed

  5. Pediatric patient doses in interventional cardiology procedures; Doses em paciente pediatrico em procedimentos de cardiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, R.B.; Murata, C.H.; Moreira, A.C., E-mail: rbitelli2012@gmail.com, E-mail: camila.murata@gmail.com, E-mail: antonio.xray@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil). Escola Pulista de Medicina; Khoury, H.J.; Borras, C., E-mail: hjkhoury@gmail.com, E-mail: cariborras@starpower.net [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Engenharia Nuclear; Silva, M.S.R da, E-mail: msrochas2003@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil)

    2014-07-01

    The radiation doses from interventional procedures is relevant when treating children because of their greater radiosensitivity compared with adults. The purposes of this paper were to estimate the dose received by 18 pediatric patients who underwent cardiac interventional procedures and to correlate the maximum entrance surface air kerma (Ke,max), estimated with radiochromic films, with the cumulative air kerma values displayed at the end of procedures. This study was performed in children up to 6 years. The study was performed in two hospitals, one located in Recife and the other one in São Paulo. The x-ray imaging systems used were Phillips Allura 12 model with image intensifier system and a Phillips Allura FD10 flat panel system. To estimate the Ke,max on the patient’s skin radiochromic films(Gafchromic XR-RV2) were used. These values were estimated from the maximum optical density measured on film using a calibration curve. The results showed cumulative air kerma values ranging from 78.3- 500.0mGy, with a mean value of 242,3 mGy. The resulting Ke,max values ranged from 20.0-461.8 mGy, with a mean value of 208,8 mGy. The Ke,max values were correlated with the displayed cumulative air kerma values. The correlation factor R² was 0.78, meaning that the value displayed in the equipment’s console can be useful for monitoring the skin absorbed dose throughout the procedure. The routine fluoroscopy time records is not able by itself alert the physician about the risk of dose exceeding the threshold of adverse reactions, which can vary from an early erythema to serious harmful skin damage. (author)

  6. Estimation of radiation dose for adult and pediatric patients during X-ray examinations in Khartoum State

    International Nuclear Information System (INIS)

    Altahir, Ataalmanan Yosif Ataalmanan

    2018-01-01

    The aim of this study to evaluate the patient doses in X-ray examinations for skull and in three main hospitals in Khartoum State. The examination parameters took from 125 radiographs for both male and female were the females was 58 and the male 67 patients undergoing skull (AP), were the age of pediatric patients 1-18 years and adults 19-79 years. The result shows that the calculation of ESAK for according to gender for male skull 0.206 mGy, and ESAK according to gender for male skull 0.0719 mGy, for female skull 0.0942 mGy, for male chest 0.082 mGy and female for female chest 0.098 mGy. The calculation of ESAK according to patients age, adults and pediatric, the ESAK estimation for adults 0.122 mGy for skull, 0.1306 mGy for chest, and for pediatric 0.0432 mGy for skull, 0.055 mGy for chest. This data will be useful for the formulation of national reference levels as recommended by the International Atomic Energy Agency (IAEA). (Author)

  7. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, The Perelman School of Medicine, Philadelphia, PA (United States); McCullough, William P. [University of Virginia Health System, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Mecca, Patricia [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2016-11-15

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash {sup registered} CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI{sub vol}) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality by

  8. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q [Institute of Radiation Medicine Fudan University, Shanghai (China); Shanghai General Hospital, Shanghai, Shanghai (China); Zhuo, W; Liu, H [Institute of Radiation Medicine Fudan University, Shanghai (China); Liu, Y; Chen, T [Shanghai General Hospital, Shanghai, Shanghai (China)

    2016-06-15

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominal antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)

  9. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    International Nuclear Information System (INIS)

    Liu, Q; Zhuo, W; Liu, H; Liu, Y; Chen, T

    2016-01-01

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominal antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)

  10. Pediatric and staff dose evaluation in fluoroscopy upper gastrointestinal series

    Energy Technology Data Exchange (ETDEWEB)

    Filipov, Danielle; Nascimento, Eduarda X. do; Lacerda, Camila M., E-mail: diilipov@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UFTPR), Curitiba, PR (Brazil); Schelin, Hugo R.; Ledesma, Jorge A.; Denyak, Valeriy; Legnani, Adriano, E-mail: ledesmajorgealberto@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)

    2014-07-01

    Fluoroscopy upper GI series are widely used for the diagnosis of gastroesophageal reflux disease in children. Pediatric radiological procedures bring concern due to the high life expectancy and radiosensitivity on children, as well as the risks to the exposed staff Important studies present the mean KAP values on patients and the European Commission (EC) recommends specific techniques for these procedures. For the occupational expositions, staffs doses must be within the annual limit, according to the CNEN 3.01. Based on those data, the aims of the current study are: analyzing the upper GI procedure; determining the KAP on the patient and estimating the annual equivalent dose on the staff's crystalline. LiF :Mg,Ti TLDs were positioned on the patient upper chest center, so that the entrance surface air kerma could be determined. The field size on the patient s surface and the kerma were multiplied so that the KAP was obtained. LiF:Mg,Cu,P dosimeters were used to estimate the equivalent dose on the staff s crystalline. The results showed discrepancy in the kVp range and in the exposure time when compared to the EC data. The mean KAP values for the 0-1,1-3 and 3-10 years old patients were, respectively: 102 ± 19 cGy.cm2, 142 ± 25 cGy.cm2 and 323 ± 39 cGy.cm2; which are higher than the KAPs presented in the studies used for comparison. The estimated annual equivalent dose in the staff s crystalline would be approximately 85% higher than the limit set by the CNEN. Analyzing the data, it becomes clear that an optimization implementation is necessary in order to reduce the radiation levels. (author)

  11. Pediatric and staff dose evaluation in fluoroscopy upper gastrointestinal series

    International Nuclear Information System (INIS)

    Filipov, Danielle; Nascimento, Eduarda X. do; Lacerda, Camila M.; Schelin, Hugo R.; Ledesma, Jorge A.; Denyak, Valeriy; Legnani, Adriano

    2014-01-01

    Fluoroscopy upper GI series are widely used for the diagnosis of gastroesophageal reflux disease in children. Pediatric radiological procedures bring concern due to the high life expectancy and radiosensitivity on children, as well as the risks to the exposed staff Important studies present the mean KAP values on patients and the European Commission (EC) recommends specific techniques for these procedures. For the occupational expositions, staffs doses must be within the annual limit, according to the CNEN 3.01. Based on those data, the aims of the current study are: analyzing the upper GI procedure; determining the KAP on the patient and estimating the annual equivalent dose on the staff's crystalline. LiF :Mg,Ti TLDs were positioned on the patient upper chest center, so that the entrance surface air kerma could be determined. The field size on the patient s surface and the kerma were multiplied so that the KAP was obtained. LiF:Mg,Cu,P dosimeters were used to estimate the equivalent dose on the staff s crystalline. The results showed discrepancy in the kVp range and in the exposure time when compared to the EC data. The mean KAP values for the 0-1,1-3 and 3-10 years old patients were, respectively: 102 ± 19 cGy.cm2, 142 ± 25 cGy.cm2 and 323 ± 39 cGy.cm2; which are higher than the KAPs presented in the studies used for comparison. The estimated annual equivalent dose in the staff s crystalline would be approximately 85% higher than the limit set by the CNEN. Analyzing the data, it becomes clear that an optimization implementation is necessary in order to reduce the radiation levels. (author)

  12. The Little Schmidy Pediatric Hospital Fall Risk Assessment Index: A diagnostic accuracy study.

    Science.gov (United States)

    Franck, Linda S; Gay, Caryl L; Cooper, Bruce; Ezrre, Suzanne; Murphy, Barbette; Chan, June Shu-Ling; Buick, Maureen; Meer, Carrie R

    2017-03-01

    Falls are among the most common potentially preventable adverse events. Current pediatric falls risk assessment methods have poor precision and accuracy. To evaluate an inpatient pediatric fall risk assessment index, known as the Little Schmidy, and describe characteristics of pediatric falls. Retrospective case control and descriptive study. The dataset included 114 reported falls and 151,678 Little Schmidy scores documented in medical records during the 5-year study period (2007-2011). Pediatric medical and surgical inpatient units of an academic medical center in the western United States. Pediatric hospital inpatients fall risk each day and night shift throughout the patient's hospitalization. Conditional fixed-effects logistic regressions were used to examine predictive relationships between Little Schmidy scores (at admission, highest prior to fall, and just prior to fall) and the patient's fall status (fell or not). The sensitivity and specificity of different cut-off scores were explored. Associations between Little Schmidy scores and patient and hospitalization factors were examined using multilevel mixed-effects logistic regression and multilevel mixed-effects ordinal logistic regression. Little Schmidy scores were significantly associated with pediatric falls (pfall risk with sensitivity of 79% and specificity of 49%. Patients with an LS4 score ≥1 were 4 times more likely to fall before the next assessment than patients with a score of 0. LS4 scores indicative of fall risk were associated with age ≥5 years, neurological diagnosis, multiple hospitalizations, and night shift, but not with sex, length of hospital stay, or hospital unit. Of the 114 reported falls, 64% involved a male patient, nearly one third (32%) involved adolescents (13-17 years), most resulted in no (59%) or mild (36%) injury, and most (54%) were related to diagnosis or clinical characteristics. For 60% of the falls, fall precautions had been implemented prior to the fall. The

  13. Decreasing the effective radiation dose in pediatric craniofacial CT by changing head position

    International Nuclear Information System (INIS)

    Didier, Ryne A.; Kuang, Anna A.; Schwartz, Daniel L.; Selden, Nathan R.; Stevens, Donna M.; Bardo, Dianna M.E.

    2010-01-01

    Children are exposed to ionizing radiation during pre- and post-operative evaluation for craniofacial surgery. The primary purpose of the study was to decrease effective radiation dose while preserving the diagnostic quality of the study. In this prospective study 49 children were positioned during craniofacial CT (CFCT) imaging with their neck fully extended into an exaggerated sniff position, parallel to the CT gantry, to eliminate the majority of the cervical spine and the thyroid gland from radiation exposure. Image-quality and effective radiation dose comparisons were made retrospectively in age-matched controls (n = 49). When compared to CT scans reviewed retrospectively, the prospective examinations showed a statistically significant decrease in z-axis length by 16% (P < 0.0001) and delivered a reduced effective radiation dose by 18% (P < 0.0001). The subjective diagnostic quality of the exams performed in the prospective arm was maintained despite a slight decrease in the quality of the brain windows. There was statistically significant improvement in the quality of the bone windows and three-dimensional reconstructed images. Altering the position of the head by extending the neck during pediatric craniofacial CT imaging statistically reduces the effective radiation dose while maintaining the diagnostic quality of the images. (orig.)

  14. Critical assessment of pediatric neurosurgery patient/parent educational information obtained via the Internet.

    Science.gov (United States)

    Garcia, Michael; Daugherty, Christopher; Ben Khallouq, Bertha; Maugans, Todd

    2018-05-01

    OBJECTIVE The Internet is used frequently by patients and family members to acquire information about pediatric neurosurgical conditions. The sources, nature, accuracy, and usefulness of this information have not been examined recently. The authors analyzed the results from searches of 10 common pediatric neurosurgical terms using a novel scoring test to assess the value of the educational information obtained. METHODS Google and Bing searches were performed for 10 common pediatric neurosurgical topics (concussion, craniosynostosis, hydrocephalus, pediatric brain tumor, pediatric Chiari malformation, pediatric epilepsy surgery, pediatric neurosurgery, plagiocephaly, spina bifida, and tethered spinal cord). The first 10 "hits" obtained with each search engine were analyzed using the Currency, Relevance, Authority, Accuracy, and Purpose (CRAAP) test, which assigns a numerical score in each of 5 domains. Agreement between results was assessed for 1) concurrent searches with Google and Bing; 2) Google searches over time (6 months apart); 3) Google searches using mobile and PC platforms concurrently; and 4) searches using privacy settings. Readability was assessed with an online analytical tool. RESULTS Google and Bing searches yielded information with similar CRAAP scores (mean 72% and 75%, respectively), but with frequently differing results (58% concordance/matching results). There was a high level of agreement (72% concordance) over time for Google searches and also between searches using general and privacy settings (92% concordance). Government sources scored the best in both CRAAP score and readability. Hospitals and universities were the most prevalent sources, but these sources had the lowest CRAAP scores, due in part to an abundance of self-marketing. The CRAAP scores for mobile and desktop platforms did not differ significantly (p = 0.49). CONCLUSIONS Google and Bing searches yielded useful educational information, using either mobile or PC platforms. Most

  15. Pediatric CT dose reduction for suspected appendicitis: a practice quality improvement project using artificial Gaussian noise--part 1, computer simulations.

    Science.gov (United States)

    Callahan, Michael J; Kleinman, Patricia L; Strauss, Keith J; Bandos, Andriy; Taylor, George A; Tsai, Andy; Kleinman, Paul K

    2015-01-01

    The purpose of this study was to develop a departmental practice quality improvement project to systematically reduce CT doses for the evaluation of suspected pediatric appendicitis by introducing computer-generated gaussian noise. Two hundred MDCT abdominopelvic examinations of patients younger than 20 years performed with girth-based scanning parameters for suspected appendicitis were reviewed. Two judges selected 45 examinations in which the diagnosis of appendicitis was excluded (14, appendix not visualized; 31, normal appendix visualized). Gaussian noise was introduced into axial image series, creating five additional series acquired at 25-76% of the original dose. Two readers reviewed 270 image series for appendix visualization (4-point Likert scale and arrow localization). Volume CT dose index (CTDIvol) and size-specific dose estimate (SSDE) were calculated by use of patient girth. Confidence ratings and localization accuracy were analyzed with mixed models and nonparametric bootstrap analysis at a 0.05 significance level. The mean baseline SSDE for the 45 patients was 16 mGy (95% CI, 12-20 mGy), and the corresponding CTDIvol was 10 mGy (95% CI, 4-16 mGy). Changes in correct appendix localization frequencies were minor. There was no substantial trend with decreasing simulated dose level (p = 0.46). Confidence ratings decreased with increasing dose reduction (p = 0.007). The average decreases were -0.27 for the 25% simulated dose (p = 0.01), -0.17 for 33% (p = 0.03), and -0.03 for 43% (p = 0.65). Pediatric abdominal MDCT can be performed with 43% of the original dose (SSDE, 7 mGy; CTDIvol, 4.3 mGy) without substantially affecting visualization of a normal appendix.

  16. Creating an interactive environment for pediatric assessment.

    Science.gov (United States)

    de Armas Weber, D; Easley-Rosenberg, A

    2001-01-01

    An interactive assessment room (IAR) was conceived to explore the effect of a dynamic environment on the pediatric assessment process and subsequent individualized goal development. Selection of a central theme, creation of a multipurpose space, provision of multisensory experiences, maximization of environmental affordances, provision of effective motivators and opportunities for goal attainment, and facilitation of a transdisciplinary assessment were identified as integral to designing the IAR. A central farm theme was selected to create five task-oriented activity stations. The IAR offered a creative assessment environment for transdisciplinary, practice-based application of current motor development and behavioral models. In addition, the IAR facilitated exploratory play essential to promoting the client's optimal performance to arrive at the development of appropriate treatment goals.

  17. Correlation of Acute and Late Brainstem Toxicities With Dose-Volume Data for Pediatric Patients With Posterior Fossa Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Ronica H., E-mail: rhazari@emory.edu [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States); Ganju, Rohit G.; Schreibmann, Edward [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States); Chen, Zhengjia; Zhang, Chao [Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University Rollins School of Public Health, Atlanta, Georgia (United States); Jegadeesh, Naresh; Cassidy, Richard; Deng, Claudia; Eaton, Bree R.; Esiashvili, Natia [Department of Radiation Oncology, Winship Cancer Institute, Emory University College of Medicine, Atlanta, Georgia (United States)

    2017-06-01

    Purpose: Radiation-induced brainstem toxicity after treatment of pediatric posterior fossa malignancies is incompletely understood, especially in the era of intensity modulated radiation therapy (IMRT). The rates of, and predictive factors for, brainstem toxicity after photon RT for posterior fossa tumors were examined. Methods and Materials: After institutional review board approval, 60 pediatric patients treated at our institution for nonmetastatic infratentorial ependymoma and medulloblastoma with IMRT were included in the present analysis. Dosimetric variables, including the mean and maximum dose to the brainstem, the dose to 10% to 90% of the brainstem (in 10% increments), and the volume of the brainstem receiving 40, 45, 50, and 55 Gy were recorded for each patient. Acute (onset within 3 months) and late (>3 months of RT completion) RT-induced brainstem toxicities with clinical and radiographic correlates were scored using Common Terminology Criteria for Adverse Events, version 4.0. Results: Patients aged 1.4 to 21.8 years underwent IMRT or volumetric arc therapy postoperatively to the posterior fossa or tumor bed. At a median clinical follow-up period of 2.8 years, 14 patients had developed symptomatic brainstem toxicity (crude incidence 23.3%). No correlation was found between the dosimetric variables examined and brainstem toxicity. Vascular injury or ischemia showed a strong trend toward predicting brainstem toxicity (P=.054). Patients with grade 3 to 5 brainstem toxicity had undergone treatment to significant volumes of the posterior fossa. Conclusion: The results of the present series demonstrate a low, but not negligible, risk of brainstem radiation necrosis for pediatric patients with posterior fossa malignancies treated with IMRT. No specific dose-volume correlations were identified; however, modern treatment volumes might help limit the incidence of severe toxicity. Additional work investigating inherent biologic sensitivity might also provide

  18. Dose levels from thoracic and pelvic examinations in two pediatric radiological departments in Norway - a comparison study of dose-area product and radiographic technique

    International Nuclear Information System (INIS)

    Kjernlie Saether, Hilde; Traegde Martinsen, Anne Catrine; Lagesen, Bente; Platou Holsen, Eva; Oevreboe, Kirsti Marie

    2010-01-01

    Background: Pediatric doses expressed in dose-area product (DAP) can be retrieved from only a few publications; most of which correlate DAP to patient size or large age spans. In clinical practice age is often the only available parameter describing the patient, and thus, evaluation of dose levels in pediatric radiology on the basis of DAP related to age alone would be useful in optimization work. Purpose: To provide comparable data on age-related DAP from thoracic and pelvic radiological examinations of children, and evaluate the usefulness of comparing age-related DAP and radiographic technique between systems to identify areas with potential for optimization. Material and Methods: DAP, age, and radiographic technique were registered for 575 thoracic examinations and 371 pelvic examinations of children from newborn up to 14 years of age in groups with an age span of 1 year, performed with two digital flat-panel systems and one computed radiography system. Results: DAP varies from 2.2 to 54.0 mGycm2 for thoracic examinations, and from 4.6 to 532.5 mGycm2 for pelvic examinations. There are significant differences in DAP between systems and departments due to differences in technique, equipment, and staff. Conclusion: This study provides comparable data on age-related DAP from thoracic and pelvic radiological examinations of children, which could be used as an input to estimate diagnostic reference levels. The comparison between systems of DAP and radiographic technique has proven useful in identifying areas where there may be a potential for optimization.

  19. Is It Better to Enter a Volume CT Dose Index Value before or after Scan Range Adjustment for Radiation Dose Optimization of Pediatric Cardiothoracic CT with Tube Current Modulation?

    Science.gov (United States)

    2018-01-01

    Objective To determine whether the body size-adapted volume computed tomography (CT) dose index (CTDvol) in pediatric cardiothoracic CT with tube current modulation is better to be entered before or after scan range adjustment for radiation dose optimization. Materials and Methods In 83 patients, cardiothoracic CT with tube current modulation was performed with the body size-adapted CTDIvol entered after (group 1, n = 42) or before (group 2, n = 41) scan range adjustment. Patient-related, radiation dose, and image quality parameters were compared and correlated between the two groups. Results The CTDIvol after the CT scan in group 1 was significantly higher than that in group 2 (1.7 ± 0.1 mGy vs. 1.4 ± 0.3 mGy; p Hounsfield units [HU] vs. 4.5 ± 0.7 HU) and image quality (1.5 ± 0.6 vs. 1.5 ± 0.6) showed no significant differences between the two (p > 0.05). In both groups, all patient-related parameters, except body density, showed positive correlations (r = 0.49–0.94; p 0.05) in group 2. Conclusion In pediatric cardiothoracic CT with tube current modulation, the CTDIvol entered before scan range adjustment provides a significant dose reduction (18%) with comparable image quality compared with that entered after scan range adjustment.

  20. Consultative exercise on dose assessments.

    Science.gov (United States)

    Bridges, B A; Parker, T; Simmonds, J R; Sumner, D

    2001-06-01

    A summary is given of a meeting held at Sussex University, UK, in October 2000, which allowed the exchange of ideas on methods of assessment of dose to the public arising from potential authorised radioactive discharges from nuclear sites in the UK. Representatives of groups with an interest in dose assessments were invited, and hence the meeting was called the Consultative Exercise on Dose Assessments (CEDA). Although initiated and funded by the Food Standards Agency, its organisation, and the writing of the report, were overseen by an independent Chairman and Steering Group. The report contains recommendations for improvement in co-ordination between different agencies involved in assessments, on method development and on the presentation of data on assessments. These have been prepared by the Steering Group, and will be taken forward by the Food Standards Agency and other agencies in the UK. The recommendations are included in this memorandum.

  1. Estimating effective dose to pediatric patients undergoing interventional radiology procedures using anthropomorphic phantoms and MOSFET dosimeters.

    Science.gov (United States)

    Miksys, Nelson; Gordon, Christopher L; Thomas, Karen; Connolly, Bairbre L

    2010-05-01

    The purpose of this study was to estimate the effective doses received by pediatric patients during interventional radiology procedures and to present those doses in "look-up tables" standardized according to minute of fluoroscopy and frame of digital subtraction angiography (DSA). Organ doses were measured with metal oxide semiconductor field effect transistor (MOSFET) dosimeters inserted within three anthropomorphic phantoms, representing children at ages 1, 5, and 10 years, at locations corresponding to radiosensitive organs. The phantoms were exposed to mock interventional radiology procedures of the head, chest, and abdomen using posteroanterior and lateral geometries, varying magnification, and fluoroscopy or DSA exposures. Effective doses were calculated from organ doses recorded by the MOSFET dosimeters and are presented in look-up tables according to the different age groups. The largest effective dose burden for fluoroscopy was recorded for posteroanterior and lateral abdominal procedures (0.2-1.1 mSv/min of fluoroscopy), whereas procedures of the head resulted in the lowest effective doses (0.02-0.08 mSv/min of fluoroscopy). DSA exposures of the abdomen imparted higher doses (0.02-0.07 mSv/DSA frame) than did those involving the head and chest. Patient doses during interventional procedures vary significantly depending on the type of procedure. User-friendly look-up tables may provide a helpful tool for health care providers in estimating effective doses for an individual procedure.

  2. Malnutrition in Hospitalized Pediatric Patients: Assessment, Prevalence, and Association to Adverse Outcomes.

    Science.gov (United States)

    Daskalou, Efstratia; Galli-Tsinopoulou, Assimina; Karagiozoglou-Lampoudi, Thomais; Augoustides-Savvopoulou, Persefone

    2016-01-01

    Malnutrition is a frequent finding in pediatric health care settings in the form of undernutrition or excess body weight. Its increasing prevalence and impact on overall health status, which is reflected in the adverse outcomes, renders imperative the application of commonly accepted and evidence-based practices and tools by health care providers. Nutrition risk screening on admission and nutrition status evaluation are key points during clinical management of hospitalized pediatric patients, in order to prevent health deterioration that can lead to serious complications and growth consequences. In addition, anthropometric data based on commonly accepted universal growth standards can give accurate results for nutrition status. Both nutrition risk screening and nutrition status assessment are techniques that should be routinely implemented, based on commonly accepted growth standards and methodology, and linked to clinical outcomes. The aim of the present review was to address the issue of hospital malnutrition in pediatric settings in terms of prevalence, outline nutrition status evaluation and nutrition screening process using different criteria and available tools, and present its relationship with outcome measures. Key teaching points • Malnutrition-underweight or excess body weight-is a frequent imbalance in pediatric settings that affects physical growth and results in undesirable clinical outcomes. • Anthropometry interpretation through growth charts and nutrition screening are cornerstones for the assessment of malnutrition.To date no commonly accepted anthropometric criteria or nutrition screening tools are used in hospitalized pediatric patients. • Commonly accepted nutrition status and screening processes based on the World Health Organization's growth standards can contribute to the overall hospital nutrition care of pediatric patients.

  3. Development of mathematical pediatric phantoms for internal dose calculations: designs, limitations, and prospects

    International Nuclear Information System (INIS)

    Cristy, M.

    1980-01-01

    Mathematical phantoms of the human body at various ages are employed with Monte Carlo radiation transport codes for calculation of photon specific absorbed fractions. The author has developed a pediatric phantom series based on the design of the adult phantom, but with explicit equations for each organ so that organ sizes and marrow distributions could be assigned properly. Since the phantoms comprise simple geometric shapes, predictive dose capability is limited when geometry is critical to the calculation. Hence, there is a demand for better phantom design in situations where geometry is critical, such as for external irradiation or for internal emitters with low energy photons. Recent advances in computerized axial tomography (CAT) present the potential for derivation of anatomical information, which is so critical to development of phantoms, and ongoing developmental work on compuer architecture to handle large arrays for Monte Carlo calculations should make complex-geometry dose calculations economically feasible within this decade

  4. In pediatric leukemia, dose evaluation according to the type of compensators in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dongnam Inst. of Radiological and Medical science, Busan (Korea, Republic of); Kim, Chang Soo; Kim, Jung Hoon [Dept. of Radiological Science, College of Health Science, Catholic University of Busan, Busan (Korea, Republic of)

    2015-04-15

    Total body irradiation (TBI) and chemotherapy are the pre-treatment method of a stem cell transplantations of the childhood leukemia. in this study, we evaluate the Quantitative human body dose prior to the treatment. The MCNPX simulation program evaluated by changing the material of the tissue compensators with imitation material of pediatric exposure in a virtual space. As a result, first, the average skin dose with the material of the tissue compensators of Plexiglass tissue compensators is 74.60 mGy/min, Al is 73.96 mGy/min, Cu is 72.26 mGy/min and Pb 67.90 mGy/min respectively. Second, regardless of the tissue compensators material that organ dose were thyroid, gentile, digestive system, brain, lungs, kidneys higher in order. Finally, the ideal distance between body compensator and the patient were 50 cm aparting each other. In conclusion, tissue compensators Al, Cu, Pb are able to replace of the currently used in Plexiglass materials.

  5. Results of a Conservative Dose Plan Linear Accelerator-Based Stereotactic Radiosurgery for Pediatric Intracranial Arteriovenous Malformations.

    Science.gov (United States)

    Rajshekhar, Vedantam; Moorthy, Ranjith K; Jeyaseelan, Visalakshi; John, Subhashini; Rangad, Faith; Viswanathan, P N; Ravindran, Paul; Singh, Rabiraja

    2016-11-01

    To evaluate the obliteration rate and clinical outcome following linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) for intracranial arteriovenous malformation (AVM) in pediatric patients (age ≤18 years). Factors associated with the obliteration rate and neurologic complications were studied retrospectively in pediatric patients who underwent LINAC-based SRS for AVM between June 1995 and May 2014. The study cohort comprised 36 males and 33 females, with a median age at the time of SRS of 14 years (range, 7-18 years). The mean AVM volume was 8.5 ± 8.7 cc (range, 0.6-41.8 cc). The median marginal dose of radiation delivered was 15 Gy (range, 9-20 Gy). Magnetic resonance imaging (MRI) demonstrated complete obliteration of the AVM in 44 of the 69 patients (63.8%), at a mean follow up of 27.5 months (range, 12-90 months). On subgroup analysis, 41 of the 53 AVMs of ≤14 cc in volume (77.3%) were obliterated. AVMs with a modified AVM radiosurgery score <1 had significantly shorter obliteration times from the time of SRS (P = .006). On multivariate analysis, the mean marginal dose of radiation delivered to the AVM was the sole significant predictor of obliteration (odds ratio, 1.6; 95% confidence interval, 1 to 2.4). A modest median marginal dose of 15 Gy (16 Gy in the obliterated AVM group vs. 12 Gy in the nonobliterated group) resulted in an obliteration rate of 66.7% after LINAC-based SRS for intracranial AVM, with low rate. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    International Nuclear Information System (INIS)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa; McCullough, William P.; Mecca, Patricia

    2016-01-01

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash "r"e"g"i"s"t"e"r"e"d CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI_v_o_l) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality

  7. Model Informed Pediatric Development Applied to Bilastine: Ontogenic PK Model Development, Dose Selection for First Time in Children and PK Study Design.

    Science.gov (United States)

    Vozmediano, Valvanera; Sologuren, Ander; Lukas, John C; Leal, Nerea; Rodriguez, Mónica

    2017-12-01

    Bilastine is an H 1 antagonist whose pharmacokinetics (PK) and pharmacodynamics (PD) have been resolved in adults with a therapeutic oral dose of 20 mg/day. Bilastine has favorable characteristics for use in pediatrics but the PK/PD and the optimal dose in children had yet to be clinically explored. The purpose is to: (1) Develop an ontogenic predictive model of bilastine PK linked to the PD in adults by integrating current knowledge; (2) Use the model to design a PK study in children; (3) Confirm the selected dose and the study design through the evaluation of model predictability in the first recruited children; (4) Consider for inclusion the group of younger children (design an adaptive PK trial in children that was then confirmed using data from the first recruits by comparing observations with model predictions. PK/PD simulations supported the selection of 10 mg/day in 2 to design hence trial continuation. The model successfully predicted bilastine PK in pediatrics and optimally assisted the selection of the dose and sampling scheme for the trial in children. The selected dose was considered suitable for younger children and the forthcoming safety study in children aged 2 to <12 years.

  8. Adrenaline overdose in pediatric anaphylaxis: a case report.

    Science.gov (United States)

    Liew, Pui Yi Lily; Craven, John Andrew

    2017-05-08

    Adrenaline is the standard treatment for anaphylaxis but appropriate administration remains challenging, and iatrogenic overdose is easily overlooked. Despite the established importance of pediatric blood pressure measurement, its use remains inconsistent in clinical practice. We report a case of adrenaline overdose in a 9-year-old white boy with anaphylaxis, where signs of adrenaline overdose were indistinguishable from progressive shock until blood pressure measurement was taken. The consequences of under-dosing adrenaline in anaphylaxis are well-recognized, but the converse is less so. Blood pressure measurement should be a routine part of pediatric assessment as it is key to differentiating adrenaline overdose from anaphylactic shock.

  9. Feasibility of using the computed tomography dose indices to estimate radiation dose to partially and fully irradiated brains in pediatric neuroradiology examinations

    International Nuclear Information System (INIS)

    Januzis, Natalie; Nguyen, Giao; Yoshizumi, Terry T; Frush, Donald P; Hoang, Jenny K; Lowry, Carolyn

    2015-01-01

    The purpose of this study was two-fold: (a) to measure the dose to the brain using clinical protocols at our institution, and (b) to develop a scanner-independent dosimetry method to estimate brain dose. Radiation dose was measured with a pediatric anthropomorphic phantom and MOSFET detectors. Six current neuroradiology protocols were used: brain, sinuses, facial bones, orbits, temporal bones, and craniofacial areas. Two different CT vendor scanners (scanner A and B) were used. Partial volume correction factors (PVCFs) were determined for the brain to account for differences between point doses measured by the MOSFETs and average organ dose. The CTDI vol and DLP for each protocol were recorded. The dose to the brain (mGy) for scanners A and B was 10.7 and 10.0 for the brain protocol, 7.8 and 3.2 for the sinus, 10.2 and 8.6 for the facial bones, 7.4 and 4.7 for the orbits and 1.6 and 1.9 for the temporal bones, respectively. On scanner A, the craniofacial protocol included a standard and high dose option; the dose measured for these exams was 3.9 and 16.9 mGy, respectively. There was only one craniofacial protocol on scanner B; the brain dose measured on this exam was 4.8 mGy. A linear correlation was found between DLP and brain dose with the conversion factors: 0.049 (R 2 = 0.87), 0.046 (R 2 = 0.89) for scanner A and B, and 0.048 (R 2 = 0.89) for both scanners. The range of dose observed was between 1.8 and 16.9 mGy per scan. This suggests that brain dose estimates may be made from DLP. (paper)

  10. Effect of inhaled corticosteroid use on weight (BMI) in pediatric patients with moderate-severe asthma.

    Science.gov (United States)

    Han, Jennifer; Nguyen, John; Kim, Yuna; Geng, Bob; Romanowski, Gale; Alejandro, Lawrence; Proudfoot, James; Xu, Ronghui; Leibel, Sydney

    2018-04-19

    Assess the relationship between inhaled corticosteroid use (ICS) and weight (BMI) in pediatric patients with moderate-severe asthma. Assess if the number of emergency department (ED) visits correlates with overall BMI trajectory. Assess the trend of prescribing biologic therapy in pediatric patients with moderate-severe asthma and determine its relationship with weight (BMI). A retrospective chart review was performed on 93 pediatric patients with moderate-severe asthma to determine the relationship between ICS use and weight (BMI), biologic therapy and BMI, and number of ED visits and BMI trajectory. A mixed effects model was employed with the correlation between repeated measures accounted for through the random effects. There is a statistically significant increase of 0.369 kg/m 2 in BMI trajectory per year in subjects on high-dose steroids compared to an increase of 0.195 kg/m 2 in the low dose group (p BMI of subjects initiated on biologic therapy (omalizumab or mepolizumab) had a statistically significant decrease in BMI trajectory of 0.818 kg/m 2 per year (p BMI trajectory (p BMI trajectory; the higher the dose, the greater the projected BMI increase per year. Initiation of biologic therapy decreased BMI trajectory over time. Lastly, those with frequent ED visits had a higher BMI trend. Future prospective studies are warranted that further evaluate the potential metabolic impacts of ICS and assess the effects of biologic therapy on BMI.

  11. Direct measurement of a patient's entrance skin dose during pediatric cardiac catheterization

    International Nuclear Information System (INIS)

    Sun, Lue; Mizuno, Yusuke; Goto, Takahisa; Iwamoto, Mari; Koguchi, Yasuhiro; Miyamoto, Yuka; Tsuboi, Koji; Chida, Koichi; Moritake, Takashi

    2014-01-01

    Children with complex congenital heart diseases often require repeated cardiac catheterization; however, children are more radiosensitive than adults. Therefore, radiation-induced carcinogenesis is an important consideration for children who undergo those procedures. We measured entrance skin doses (ESDs) using radio-photoluminescence dosimeter (RPLD) chips during cardiac catheterization for 15 pediatric patients (median age, 1.92 years; males, n = 9; females, n = 6) with cardiac diseases. Four RPLD chips were placed on the patient's posterior and right side of the chest. Correlations between maximum ESD and dose-area products (DAP), total number of frames, total fluoroscopic time, number of cine runs, cumulative dose at the interventional reference point (IRP), body weight, chest thickness, and height were analyzed. The maximum ESD was 80 ± 59 (mean ± standard deviation) mGy. Maximum ESD closely correlated with both DAP (r = 0.78) and cumulative dose at the IRP (r = 0.82). Maximum ESD for coiling and ballooning tended to be higher than that for ablation, balloon atrial septostomy, and diagnostic procedures. In conclusion, we directly measured ESD using RPLD chips and found that maximum ESD could be estimated in real-time using angiographic parameters, such as DAP and cumulative dose at the IRP. Children requiring repeated catheterizations would be exposed to high radiation levels throughout their lives, although treatment influences radiation dose. Therefore, the radiation dose associated with individual cardiac catheterizations should be analyzed, and the effects of radiation throughout the lives of such patients should be followed. (author)

  12. Total body irradiation (TBI) in pediatric patients. A single-center experience after 30 years of low-dose rate irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Linsenmeier, Claudia; Thoennessen, Daniel; Negretti, Laura; Streller, Tino; Luetolf, Urs Martin [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Bourquin, Jean-Pierre [University Children' s Hospital Zurich (Switzerland). Dept. of Hemato-Oncology; Oertel, Susanne [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Heidelberg Univ. (Germany). Dept. of Radiation Oncology

    2010-11-15

    To retrospectively analyze patient characteristics, treatment, and treatment outcome of pediatric patients with hematologic diseases treated with total body irradiation (TBI) between 1978 and 2006. 32 pediatric patients were referred to the Department of Radiation-Oncology at the University of Zurich for TBI. Records of regular follow-up of 28 patients were available for review. Patient characteristics as well as treatment outcome regarding local control and overall survival were assessed. A total of 18 patients suffered from acute lymphoblastic leukemia (ALL), 5 from acute and 2 from chronic myelogenous leukemia, 1 from non-Hodgkin lymphoma, and 2 from anaplastic anemia. The cohort consisted of 15 patients referred after first remission and 13 patients with relapsed leukemia. Mean follow-up was 34 months (2-196 months) with 15 patients alive at the time of last follow-up. Eight patients died of recurrent disease, 1 of graft vs. host reaction, 2 of sepsis, and 2 patients died of a secondary malignancy. The 5-year overall survival rate (OS) was 60%. Overall survival was significantly inferior in patients treated after relapse compared to those treated for newly diagnosed leukemia (24% versus 74%; p=0.004). At the time of last follow-up, 11 patients survived for more than 36 months following TBI. Late effects (RTOG {>=}3) were pneumonitis in 1 patient, chronic bronchitis in 1 patient, cardiomyopathy in 2 patients, severe cataractogenesis in 1 patient (48 months after TBI with 10 Gy in a single dose) and secondary malignancies in 2 patients (36 and 190 months after TBI). Growth disturbances were observed in all patients treated prepubertally. In 2 patients with identical twins treated at ages 2 and 7, a loss of 8% in final height of the treated twin was observed. As severe late sequelae after TBI, we observed 2 secondary malignancies in 11 patients who survived in excess of 36 months. However, long-term morbidity is moderate following treatment with the fractionated

  13. Occupational dose assessment in interventional cardiology in Serbia

    International Nuclear Information System (INIS)

    Kaljevic, J.; Ciraj-Bjelac, O.; Stankovic, J.; Arandjic, D.; Bozovic, P.; Antic, V.

    2016-01-01

    The objective of this work is to assess the occupational dose in interventional cardiology in a large hospital in Belgrade, Serbia. A double-dosimetry method was applied for the estimation of whole-body dose, using thermoluminescent dosemeters, calibrated in terms of the personal dose equivalent H p (10). Besides the double-dosimetry method, eye dose was also estimated by means of measuring ambient dose equivalent, H*(10), and doses per procedure were reported. Doses were assessed for 13 physicians, 6 nurses and 10 radiographers, for 2 consequent years. The maximum annual effective dose assessed was 4.3, 2.1 and 1.3 mSv for physicians, nurses and radiographers, respectively. The maximum doses recorded by the dosemeter worn at the collar level (over the apron) were 16.8, 11.9 and 4.5 mSv, respectively. This value was used for the eye lens dose assessment. Estimated doses are in accordance with or higher than annual dose limits for the occupational exposure. (authors)

  14. Pediatric post-marketing safety systems in North America: assessment of the current status.

    Science.gov (United States)

    McMahon, Ann W; Wharton, Gerold T; Bonnel, Renan; DeCelle, Mary; Swank, Kimberley; Testoni, Daniela; Cope, Judith U; Smith, Phillip Brian; Wu, Eileen; Murphy, Mary Dianne

    2015-08-01

    It is critical to have pediatric post-marketing safety systems that contain enough clinical and epidemiological detail to draw regulatory, public health, and clinical conclusions. The pediatric safety surveillance workshop (PSSW), coordinated by the Food and Drug Administration (FDA), identified these pediatric systems as of 2010. This manuscript aims to update the information from the PSSW and look critically at the systems currently in use. We reviewed North American pediatric post-marketing safety systems such as databases, networks, and research consortiums found in peer-reviewed journals and other online sources. We detail clinical examples from three systems that FDA used to assess pediatric medical product safety. Of the 59 systems reviewed for pediatric content, only nine were pediatric-focused and met the inclusion criteria. Brief descriptions are provided for these nine. The strengths and weaknesses of three systems (two of the nine pediatric-focused and one including both children and adults) are illustrated with clinical examples. Systems reviewed in this manuscript have strengths such as clinical detail, a large enough sample size to capture rare adverse events, and/or a patient denominator internal to the database. Few systems include all of these attributes. Pediatric drug safety would be better informed by utilizing multiple systems to take advantage of their individual characteristics. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... information about radiation dose. There always is a risk of complications from general anesthesia or sedation. Every measure will be taken to ... in X-Ray and CT Exams Contrast Materials Anesthesia Safety Children and Radiation Safety ... (Pediatric) CT (Computed Tomography) Videos related to Children's (Pediatric) ...

  16. Epidemiological methods for assessing dose-response and dose-effect relationships

    DEFF Research Database (Denmark)

    Kjellström, Tord; Grandjean, Philippe

    2007-01-01

    Selected Molecular Mechanisms of Metal Toxicity and Carcinogenicity General Considerations of Dose-Effect and Dose-Response Relationships Interactions in Metal Toxicology Epidemiological Methods for Assessing Dose-Response and Dose-Effect Relationships Essential Metals: Assessing Risks from Deficiency......Description Handbook of the Toxicology of Metals is the standard reference work for physicians, toxicologists and engineers in the field of environmental and occupational health. This new edition is a comprehensive review of the effects on biological systems from metallic elements...... access to a broad range of basic toxicological data and also gives a general introduction to the toxicology of metallic compounds. Audience Toxicologists, physicians, and engineers in the fields of environmental and occupational health as well as libraries in these disciplines. Will also be a useful...

  17. Pediatric interventional radiography equipment: safety considerations

    International Nuclear Information System (INIS)

    Strauss, Keith J.

    2006-01-01

    This paper discusses pediatric image quality and radiation dose considerations in state-of-the-art fluoroscopic imaging equipment. Although most fluoroscopes are capable of automatically providing good image quality on infants, toddlers, and small children, excessive radiation dose levels can result from design deficiencies of the imaging device or inappropriate configuration of the equipment's capabilities when imaging small body parts. Important design features and setup choices at installation and during the clinical use of the imaging device can improve image quality and reduce radiation exposure levels in pediatric patients. Pediatric radiologists and cardiologists, with the help of medical physicists, need to understand the issues involved in creating good image quality at reasonable pediatric patient doses. The control of radiographic technique factors by the generator of the imaging device must provide a large dynamic range of mAs values per exposure pulse during both fluoroscopy and image recording as a function of patient girth, which is the thickness of the patient in the posterior-anterior projection at the umbilicus (less than 10 cm to greater than 30 cm). The range of pulse widths must be limited to less than 10 ms in children to properly freeze patient motion. Variable rate pulsed fluoroscopy can be leveraged to reduce radiation dose to the patient and improve image quality. Three focal spots with nominal sizes of 0.3 mm to 1 mm are necessary on the pediatric unit. A second, lateral imaging plane might be necessary because of the child's limited tolerance of contrast medium. Spectral and spatial beam shaping can improve image quality while reducing the radiation dose. Finally, the level of entrance exposure to the image receptor of the fluoroscope as a function of operator choices, of added filter thickness, of selected pulse rate, of the selected field-of-view and of the patient girth all must be addressed at installation. (orig.)

  18. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    International Nuclear Information System (INIS)

    Brady, Samuel L.; Shulkin, Barry L.

    2015-01-01

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV bw ) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV bw , background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake

  19. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Samuel L., E-mail: samuel.brady@stjude.org [Division of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 (United States); Shulkin, Barry L. [Nuclear Medicine and Department of Radiological Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 (United States)

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  20. Comparative study on skin dose measurement using MOSFET and TLD for pediatric patients with acute lymphatic leukemia.

    Science.gov (United States)

    Al-Mohammed, Huda I; Mahyoub, Fareed H; Moftah, Belal A

    2010-07-01

    The object of this study was to compare the difference of skin dose measured in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using metal oxide semiconductor field-effect transistors (mobile MOSFET dose verification system (TN-RD-70-W) and thermoluminescent dosimeters (TLD-100 chips, Harshaw/ Bicron, OH, USA). Because TLD has been the most-commonly used technique in the skin dose measurement of TBI, the aim of the present study is to prove the benefit of using the mobile MOSFET (metal oxide semiconductor field effect transistor) dosimeter, for entrance dose measurements during the total body irradiation (TBI) over thermoluminescent dosimeters (TLD). The measurements involved 10 pediatric patients ages between 3 and 14 years. Thermoluminescent dosimeters and MOSFET dosimetry were performed at 9 different anatomic sites on each patient. The present results show there is a variation between skin dose measured with MOSFET and TLD in all patients, and for every anatomic site selected, there is no significant difference in the dose delivered using MOSFET as compared to the prescribed dose. However, there is a significant difference for every anatomic site using TLD compared with either the prescribed dose or MOSFET. The results indicate that the dosimeter measurements using the MOSFET gave precise measurements of prescribed dose. However, TLD measurement showed significant increased skin dose of cGy as compared to either prescribed dose or MOSFET group. MOSFET dosimeters provide superior dose accuracy for skin dose measurement in TBI as compared with TLD.

  1. Randomized comparative study of intravenous infusion of three different fixed doses of milrinone in pediatric patients with pulmonary hypertension undergoing open heart surgery.

    Science.gov (United States)

    Barnwal, Neeraj Kumar; Umbarkar, Sanjeeta Rajendra; Sarkar, Manjula Sudeep; Dias, Raylene J

    2017-01-01

    Pulmonary hypertension secondary to congenital heart disease is a common problem in pediatric patients presenting for open heart surgery. Milrinone has been shown to reduce pulmonary vascular resistance and pulmonary artery pressure in pediatric patients and neonates postcardiac surgery. We aimed to evaluate the postoperative outcome in such patients with three different fixed maintenance doses of milrinone. Patients were randomized into three groups. All patients received fixed bolus dose of milrinone 50 μg/kg on pump during rewarming. Following this, patients in low-dose group received infusion of milrinone at the rate of 0.375 μg/kg/min, medium-dose group received 0.5 μg/kg/min, and high-dose group received 0.75 μg/kg/min over 24 h. Heart rate, mean arterial pressure (MAP), mean airway pressure (MaP), oxygenation index (OI), and central venous pressure (CVP) were compared at baseline and 24 h postoperatively. Dose of inotropic requirement, duration of ventilatory support and Intensive Care Unit (ICU) stay were noted. MAP, MaP, OI, and CVP were comparable in all three groups postoperatively. All patients in the low-dose group required low inotropic support while 70% of patients in the high-dose group needed high inotropic support to manage episodes of hypotension (P = 0.000). Duration of ventilatory support and ICU stay in all three groups was comparable (P = 0.412, P = 0.165). Low-dose infusions while having a clinical impact were more beneficial in avoiding adverse events and decreasing inotropic requirement without affecting duration of ventilatory support and duration of ICU stay.

  2. Study report by the Committee of Actual Surbey for Radiation Doses in Digital Imaging

    International Nuclear Information System (INIS)

    Katakura, Toshihiko; Yasuhiko, Shigeru; Abe, Yoshihiro

    1995-01-01

    The aim of this questionnaire survey was to assess the reasonable radiation doses in computed radiography (CR). Questionnaires were sent to 430 facilities having CR apparatus, and 221 of these (51.3%) answered them. The conventional screen/film analog (S/F) imaging serves as control. Radiation doses of CR were smaller than or equal to those of S/F imaging. Estimated radiation doses were obtained from the skull, thoracic vertebrae, lumbar vertebrae, hip joint, leg joint, chest, abdomen, pediatric chest, pediatric hip joint, pediatric abdomen, salivary gland, renal pelvis, uterus, ovaries, and mammary glands. Exposure doses to the chest, which requires resolution, were increased. Reliability of S value was examined. S value varied greatly among CR systems. It was, however, considered to become an indicator for radiation doses in individual systems. Furthermore, image quality of CR imaging was compared with basic characteristics of S/F imaging (such as MTF, Wiener spectral value, and photographic density). MTF in CR was extremely low, as compared with HR-4/HR-S with moderate sensitivity. Wiener spectral value in CR was almost equal to that in S/F imaging at the same doses. (N.K.)

  3. Toxicity assessment of molecularly targeted drugs incorporated into multiagent chemotherapy regimens for pediatric acute lymphocytic leukemia (ALL): review from an international consensus conference.

    Science.gov (United States)

    Horton, Terzah M; Sposto, Richard; Brown, Patrick; Reynolds, C Patrick; Hunger, Stephen P; Winick, Naomi J; Raetz, Elizabeth A; Carroll, William L; Arceci, Robert J; Borowitz, Michael J; Gaynon, Paul S; Gore, Lia; Jeha, Sima; Maurer, Barry J; Siegel, Stuart E; Biondi, Andrea; Kearns, Pamela R; Narendran, Aru; Silverman, Lewis B; Smith, Malcolm A; Zwaan, C Michel; Whitlock, James A

    2010-07-01

    One of the challenges of incorporating molecularly targeted drugs into multi-agent chemotherapy (backbone) regimens is defining dose-limiting toxicities (DLTs) of the targeted agent against the background of toxicities of the backbone regimen. An international panel of 22 pediatric acute lymphocytic leukemia (ALL) experts addressed this issue (www.ALLNA.org). Two major questions surrounding DLT assessment were explored: (1) how toxicities can be best defined, assessed, and attributed; and (2) how effective dosing of new agents incorporated into multi-agent ALL clinical trials can be safely established in the face of disease- and therapy-related systemic toxicities. The consensus DLT definition incorporates tolerance of resolving Grade 3 and some resolving Grade 4 toxicities with stringent safety monitoring. This functional DLT definition is being tested in two Children's Oncology Group (COG) ALL clinical trials. Copyright 2010 Wiley-Liss, Inc.

  4. Psychosocial Assessment as a Standard of Care in Pediatric Cancer

    NARCIS (Netherlands)

    Kazak, Anne E.; Abrams, Annah N.; Banks, Jaime; Christofferson, Jennifer; DiDonato, Stephen; Grootenhuis, Martha A.; Kabour, Marianne; Madan-Swain, Avi; Patel, Sunita K.; Zadeh, Sima; Kupst, Mary Jo

    2015-01-01

    This paper presents the evidence for a standard of care for psychosocial assessment in pediatric cancer. An interdisciplinary group of investigators utilized EBSCO, PubMed, PsycINFO, Ovid, and Google Scholar search databases, focusing on five areas: youth/family psychosocial adjustment, family

  5. Assessment of internal doses

    CERN Document Server

    Rahola, T; Falk, R; Isaksson, M; Skuterud, L

    2002-01-01

    There is a definite need for training in dose calculation. Our first course was successful and was followed by a second, both courses were fully booked. An example of new tools for software products for bioassay analysis and internal dose assessment is the Integrated Modules for Bioassay Analysis (IMBA) were demonstrated at the second course. This suite of quality assured code modules have been adopted in the UK as the standard for regulatory assessment purposes. The intercomparison measurements are an important part of the Quality Assurance work. In what is known as the sup O utside workers ' directive it is stated that the internal dose measurements shall be included in the European Unions supervision system for radiation protection. The emergency preparedness regarding internal contamination was much improved by the training with and calibration of handheld instruments from participants' laboratories. More improvement will be gained with the handbook giving practical instructions on what to do in case of e...

  6. An updated dose assessment for Rongelap Island

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  7. Validity Evidence for a Serious Game to Assess Performance on Critical Pediatric Emergency Medicine Scenarios.

    Science.gov (United States)

    Gerard, James M; Scalzo, Anthony J; Borgman, Matthew A; Watson, Christopher M; Byrnes, Chelsie E; Chang, Todd P; Auerbach, Marc; Kessler, David O; Feldman, Brian L; Payne, Brian S; Nibras, Sohail; Chokshi, Riti K; Lopreiato, Joseph O

    2018-01-26

    We developed a first-person serious game, PediatricSim, to teach and assess performances on seven critical pediatric scenarios (anaphylaxis, bronchiolitis, diabetic ketoacidosis, respiratory failure, seizure, septic shock, and supraventricular tachycardia). In the game, players are placed in the role of a code leader and direct patient management by selecting from various assessment and treatment options. The objective of this study was to obtain supportive validity evidence for the PediatricSim game scores. Game content was developed by 11 subject matter experts and followed the American Heart Association's 2011 Pediatric Advanced Life Support Provider Manual and other authoritative references. Sixty subjects with three different levels of experience were enrolled to play the game. Before game play, subjects completed a 40-item written pretest of knowledge. Game scores were compared between subject groups using scoring rubrics developed for the scenarios. Validity evidence was established and interpreted according to Messick's framework. Content validity was supported by a game development process that involved expert experience, focused literature review, and pilot testing. Subjects rated the game favorably for engagement, realism, and educational value. Interrater agreement on game scoring was excellent (intraclass correlation coefficient = 0.91, 95% confidence interval = 0.89-0.9). Game scores were higher for attendings followed by residents then medical students (Pc game and written test scores (r = 0.84, P game scores to assess knowledge of pediatric emergency medicine resuscitation.

  8. A real-time internal dose assessment exercise

    International Nuclear Information System (INIS)

    Bingham, D.; Bull, R. K.

    2013-01-01

    A real-time internal dose assessment exercise has been conducted in which participants were required to make decisions about sampling requirements, seek relevant information about the 'incident' and make various interim dose assessments. At the end of the exercise, each participant was requested to make a formal assessment, providing statements of the methods, models and assumptions used in that assessment. In this paper we describe how the hypothetical assessment case was set up and the exercise was conducted, the responses of the participants and the assessments of dose that they made. Finally we discuss the lessons learnt from the exercise and suggest how the exercise may be adapted to a wider range of participants. (authors)

  9. Randomized comparative study of intravenous infusion of three different fixed doses of milrinone in pediatric patients with pulmonary hypertension undergoing open heart surgery

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar Barnwal

    2017-01-01

    Full Text Available Background: Pulmonary hypertension secondary to congenital heart disease is a common problem in pediatric patients presenting for open heart surgery. Milrinone has been shown to reduce pulmonary vascular resistance and pulmonary artery pressure in pediatric patients and neonates postcardiac surgery. We aimed to evaluate the postoperative outcome in such patients with three different fixed maintenance doses of milrinone. Methodology: Patients were randomized into three groups. All patients received fixed bolus dose of milrinone 50 μg/kg on pump during rewarming. Following this, patients in low-dose group received infusion of milrinone at the rate of 0.375 μg/kg/min, medium-dose group received 0.5 μg/kg/min, and high-dose group received 0.75 μg/kg/min over 24 h. Heart rate, mean arterial pressure (MAP, mean airway pressure (MaP, oxygenation index (OI, and central venous pressure (CVP were compared at baseline and 24 h postoperatively. Dose of inotropic requirement, duration of ventilatory support and Intensive Care Unit (ICU stay were noted. Results: MAP, MaP, OI, and CVP were comparable in all three groups postoperatively. All patients in the low-dose group required low inotropic support while 70% of patients in the high-dose group needed high inotropic support to manage episodes of hypotension (P = 0.000. Duration of ventilatory support and ICU stay in all three groups was comparable (P = 0.412, P = 0.165. Conclusion: Low-dose infusions while having a clinical impact were more beneficial in avoiding adverse events and decreasing inotropic requirement without affecting duration of ventilatory support and duration of ICU stay.

  10. Radiation risk index for pediatric CT. A patient-derived metric

    International Nuclear Information System (INIS)

    Samei, Ehsan; Tian, Xiaoyu; Paul Segars, W.; Frush, Donald P.

    2017-01-01

    There is a benefit in characterizing radiation-induced cancer risk in pediatric chest and abdominopelvic CT: a singular metric that represents the whole-body radiation burden while also accounting for age, gender and organ sensitivity. To compute an index of radiation risk for pediatric chest and abdominopelvic CT. Using a protocol approved by our institutional review board, 42 pediatric patients (age: 0-16 years, weight: 2-80 kg) were modeled into virtual whole-body anatomical models. Organ doses were estimated for clinical chest and abdominopelvic CT examinations of the patients using validated Monte Carlo simulations of two major scanner models. Using age-, size- and gender-specific organ risk coefficients, the values were converted to normalized effective dose (by dose length product) (denoted as the k factor) and a normalized risk index (denoted as the q factor). An analysis was performed to determine how these factors are correlated with patient age and size for both males and females to provide a strategy to better characterize individualized risk. The k factor was found to be exponentially correlated with the average patient diameter. For both genders, the q factor also exhibited an exponential relationship with both the average patient diameter and with patient age. For both factors, the differences between the scanner models were less than 8%. The study defines a whole-body radiation risk index for chest and abdominopelvic CT imaging, that incorporates individual estimated organ dose values, organ radiation sensitivity, patient size, exposure age and patient gender. This indexing metrology enables the assessment and potential improvement of chest and abdominopelvic CT performance through surveillance of practice dose profiles across patients and may afford improved informed communication. (orig.)

  11. Radiation risk index for pediatric CT. A patient-derived metric

    Energy Technology Data Exchange (ETDEWEB)

    Samei, Ehsan [Duke University Medical Center, Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Durham, NC (United States); Duke University Medical Center, Department of Biomedical Engineering, Electrical and Computer Engineering, Durham, NC (United States); Duke University Medical Center, Medical Physics Graduate Program, Durham, NC (United States); Tian, Xiaoyu [Duke University Medical Center, Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Durham, NC (United States); Paul Segars, W. [Duke University Medical Center, Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Durham, NC (United States); Duke University Medical Center, Medical Physics Graduate Program, Durham, NC (United States); Frush, Donald P. [Duke University Medical Center, Medical Physics Graduate Program, Durham, NC (United States); Duke University Medical Center, Division of Pediatric Radiology, Department of Radiology, Durham, NC (United States)

    2017-12-15

    There is a benefit in characterizing radiation-induced cancer risk in pediatric chest and abdominopelvic CT: a singular metric that represents the whole-body radiation burden while also accounting for age, gender and organ sensitivity. To compute an index of radiation risk for pediatric chest and abdominopelvic CT. Using a protocol approved by our institutional review board, 42 pediatric patients (age: 0-16 years, weight: 2-80 kg) were modeled into virtual whole-body anatomical models. Organ doses were estimated for clinical chest and abdominopelvic CT examinations of the patients using validated Monte Carlo simulations of two major scanner models. Using age-, size- and gender-specific organ risk coefficients, the values were converted to normalized effective dose (by dose length product) (denoted as the k factor) and a normalized risk index (denoted as the q factor). An analysis was performed to determine how these factors are correlated with patient age and size for both males and females to provide a strategy to better characterize individualized risk. The k factor was found to be exponentially correlated with the average patient diameter. For both genders, the q factor also exhibited an exponential relationship with both the average patient diameter and with patient age. For both factors, the differences between the scanner models were less than 8%. The study defines a whole-body radiation risk index for chest and abdominopelvic CT imaging, that incorporates individual estimated organ dose values, organ radiation sensitivity, patient size, exposure age and patient gender. This indexing metrology enables the assessment and potential improvement of chest and abdominopelvic CT performance through surveillance of practice dose profiles across patients and may afford improved informed communication. (orig.)

  12. High dose phenobarbitone coma in pediatric refractory status epilepticus; a retrospective case record analysis, a proposed protocol and review of literature.

    Science.gov (United States)

    Gulati, Sheffali; Sondhi, Vishal; Chakrabarty, Biswaroop; Jauhari, Prashant; Lodha, Rakesh; Sankar, Jhuma

    2018-04-01

    Ongoing refractory status epilepticus is associated with significant morbidity and mortality. Therapeutic coma induction with midazolam, thiopentone, phenobarbitone or propofol is indicated when conventional antiepileptics fail to abort seizure. Of these, the most extensively studied is midazolam. Amongst the remaining three, phenobarbitone has the most favourable pharmacological profile, but has not been studied adequately, more so in the pediatric age group. The current retrospective case records analysis is an attempt to describe use of phenobarbitone coma in pediatric refractory status epilepticus. Case records of patients, admitted with status epilepticus to the pediatric inpatient services of a tertiary care teaching hospital of North India between January 2014 and December 2016 were reviewed. Those with refractory status epilepticus who failed to respond to midaolam infusion and phenobarbitone coma was used were included for analysis. Overall, 108 children presented in status, of which 34 developed refractory status epilepticus. Of these 34, 21 responded to midazolam infusion and in 13 high dose phenobarbitone coma following a standardised protocol was used. Amongst these 13 (8 males and 5 females, median age 6 years, IQR: 2.5-9.5), 12 responded and 1 succumbed. The median time to clinical seizure resolution and desired electroencephalographic changes post phenobarbitone initiation were 16 (IQR: 12-25) and 72 h (IQR: 48-120) respectively. High dose phenobarbitone appears to be an effective therapeutic modality in pediatric refractory status epilepticus. The current study provides a protocol for its use which can be validated in future studies with larger sample size. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  13. Thyroid equivalent dose in staffs that use neck lead protector in pediatric barium meal; Dose equivalente na tireoide dos profissionais que utilizam o protetor plumbifero nos exames de seed pediatrico

    Energy Technology Data Exchange (ETDEWEB)

    Filipov, Danielle; Sauzen, Jessica; Paschuk, Sergei A., E-mail: dfilipov@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Schelin, Hugo R.; Denyak, Valeriy [Instituto de Pesquisa Pele Pequeno Principe (IPPP), Curitiba, PR (Brazil); Legnani, Adriano [Hospital Pequeno Principe, Curitiba, PR (Brazil)

    2015-08-15

    The aim of this study is to estimate the thyroid equivalent dose in staffs that perform pediatric barium meal procedures and use neck lead protector. Thermoluminescent Dosimeters (TLDs) were positioned on the lead protectors, used by two professionals. After that, a solid state detector was exposed (with and without the protector above it). Therefore, it was possible to obtain both lead protectors attenuation factors. At the end, average and annual doses received by the TLDs and the thyroid (applying the attenuation factor over the dosimeters doses) were obtained. It was found that the average and annual equivalent doses in the thyroid gland are, respectively, higher than in comparative studies and within the established limits. With these data, it is concluded that the application of radiation protection optimization techniques is required. (author)

  14. Estimate of the dose received in crystalline lens by pediatric interventional cardiologists; Estimacion de la dosis recibida en cristalino por cardiologos intervencionistas pediatricos

    Energy Technology Data Exchange (ETDEWEB)

    Koren, C.; Alejo, L.; Serrada, A., E-mail: cristina.koren@salud.madrid.org [Hospital Universitario La Paz, Servicio de Radiofisica y Radioproteccion, Paseo de la Castellana 261, 28046 Madrid (Spain)

    2014-08-15

    The objective of this work is to estimate the maximum dose accumulated during one year in the crystalline lens of the pediatric interventional cardiologists that work in the Hospital Universitario La Paz. Optically Stimulated Luminescence Dosimeters (OSLDs) were used for to carry out this estimation, placed in the eyes of an anthropomorphic mannequin whose position in the room simulates the more habitual conditions of the clinical practice. Previously to the simulation, different tests to validate the used dosimetric system were realized, including those related with the stability, reproducibility and lector linearity, as well as the angular and energy dependence of the OSLDs. During the simulation the mannequin eyes were irradiated and were measured with OSLDs the rate of superficial equivalent dose in crystalline lens for the different qualities of beam habitually used, as much in fluoroscopy as in acquisition. With the obtained data during three years, corresponding to the fluoroscopy times and the acquisitions number of the interventional procedures carried out; as much therapeutic as diagnostic, and rate by measuring of obtained dose, has been considered the superficial equivalent dose and the equivalent dose at 3 mm deep accumulated in the crystalline lens of the pediatric interventional cardiologist with more work load of the Hospital, during the years 2011 and 2012. None of the obtained maximum values exceed the new dose annual limit in crystalline lens of 20 mSv, recommended by ICRP in April of 2011. (author)

  15. Characteristics of environmental gamma-rays and dose assessment

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Moriuchi, Shigeru

    1986-01-01

    Environmental radioactivity has attracted much attention in terms of exposure to the population, although its exposure doses are minimal. This paper presents problems encountered in the assessment of exposure doses using model and monitoring systems, focusing on the characteristics, such as energy distribution, direction distribution, and site, of environmental gamma-rays. The assessment of outdoor and indoor exposure doses of natural gamma-rays is discussed in relation to the shielding effect of the human body. In the assessment of artificial gamma-rays, calculation of exposure doses using build-up factor, the shielding effect of the human body, and energy dependency of the measuring instrument are covered. A continuing elucidation about uncertainties in dose assessment is emphasized. (Namekawa, K.)

  16. Quality Improvement Initiative on Pain Knowledge, Assessment, and Documentation Skills of Pediatric Nurses.

    Science.gov (United States)

    Margonary, Heather; Hannan, Margaret S; Schlenk, Elizabeth A

    2017-01-01

    Pain treatment begins with a nurse’s assessment, which relies on effective assessment skills. Hospital settings have implemented pain assessment education, but there is limited evidence in pediatric transitional care settings. The purpose of this quality improvement (QI) initiative was to develop, implement, and evaluate an evidence-based pain education session with 20 nurses in a pediatric specialty hospital that provides transitional care. Specific aims were to assess nurses’ knowledge and attitudes of pain, and evaluate assessment skills based on nurses’ documentation. A prospective pre-post design with three assessments (baseline, post-intervention, and one-month follow-up) was used. The Shriner’s Pediatric Nurses’ Knowledge and Attitudes Regarding Pain questionnaire and an electronic health record review were completed at each assessment. There was significant improvement in nurses’ knowledge and attitudes of pain after the education session (F[2,6] = 50.281, p nurses significantly increased from 43.1% at baseline to 64.8% at post-intervention, and 67.7% at follow-up (χ²[2] = 20.55, p Nursing interventions for pain increased significantly, from 33.3% at baseline to 84.0% at post-intervention, and stabilized at 80.0% at follow-up (χ²[2] = 8.91, p = 0.012). Frequency of pain reassessments did not show a statistically significant change, decreasing from 77.8% at baseline to 44.0% at post-intervention and 40.0% at follow-up (χ²[2]= 3.538, p = 0.171). Nurses’ pain knowledge and documentation of assessment skills were improved in this QI initiative.

  17. Creating a pediatric digital library for pediatric health care providers and families: using literature and data to define common pediatric problems.

    Science.gov (United States)

    D'Alessandro, Donna; Kingsley, Peggy

    2002-01-01

    The goal of this study was to complete a literature-based needs assessment with regard to common pediatric problems encountered by pediatric health care providers (PHCPs) and families, and to develop a problem-based pediatric digital library to meet those needs. The needs assessment yielded 65 information sources. Common problems were identified and categorized, and the Internet was manually searched for authoritative Web sites. The created pediatric digital library (www.generalpediatrics.com) used a problem-based interface and was deployed in November 1999. From November 1999 to November 2000, the number of hyperlinks and authoritative Web sites increased 51.1 and 32.2 percent, respectively. Over the same time, visitors increased by 57.3 percent and overall usage increased by 255 percent. A pediatric digital library has been created that begins to bring order to general pediatric resources on the Internet. This pediatric digital library provides current, authoritative, easily accessed pediatric information whenever and wherever the PHCPs and families want assistance.

  18. Gastroesophageal scintiscanning in a pediatric population: dosimetry

    International Nuclear Information System (INIS)

    Castronovo, F.P. Jr.

    1986-01-01

    The dosimetry associated with orally administered [/sup 99m/Tc]sulfur colloid for the diagnosis of gastroesophageal reflux has not been adequately described for the pediatric populations. Standard MIRD methodology was performed for the following: newborn, 1, 5, 10, and 15 yr old, and adult standard man. The critical organ for all pediatric groups was the lower large intestine with absorbed dose of 0.927, 0.380, 0.194, 0.120 and 0.0721 rad/100 microCi, respectively. For the adult the critical organ was the upper large intestine with an absorbed dose of 0.0518 rad/100 microCi. These data should be considered when administering [99mTc]sulfur colloid orally in a pediatric population

  19. A review of occupational dose assessment uncertainties and approaches

    International Nuclear Information System (INIS)

    Anderson, R. W.

    2004-01-01

    The Radiological Protection Practitioner (RPP) will spend a considerable proportion of his time predicting or assessing retrospective radiation exposures to occupational personnel for different purposes. The assessments can be for a variety of purposes, such as to predict doses for occupational dose control, or project design purposes or to make retrospective estimates for the dose record, or account for dosemeters which have been lost or damaged. There are other less frequent occasions when dose assessment will be required such as to support legal cases and compensation claims and to provide the detailed dose information for epidemiological studies. It is important that the level of detail, justification and supporting evidence in the dose assessment is suitable for the requirements. So for instance, day to day operational dose assessments often rely mainly on the knowledge of the RPP in discussion with operators whilst at the other end of the spectrum a historical dose assessment for a legal case will require substantial research and supporting evidence for the estimate to withstand forensic challenge. The robustness of the assessment will depend on many factors including a knowledge of the work activities, the radiation dose uptake and field characteristics; all of which are affected by factors such as the time elapsed, the memory of operators and the dosemeters employed. This paper reviews the various options and uncertainties in dose assessments ranging from use of personal dosimetry results to the development of upper bound assessments. The level of assessment, the extent of research and the evidence adduced should then be appropriate to the end use of the estimate. (Author)

  20. Evaluation of X ray radiation doses in pediatric examinations of cranial computerized tomography based on optimization studies; Avaliacao das doses de radiacao X em exames pediatricos de tomografia computadorizada de cranio com base em estudos de otimizacao

    Energy Technology Data Exchange (ETDEWEB)

    Daros, Kellen Adriana Curci

    2005-07-01

    This paper identifies the technical conditions for CT examination which offers lowest absorbed dose and to attend the manufacturer recommendations as far the spatial resolution is concerned. The paper evaluates the absorbed dose during cranial CT in up to 6 years children satisfying the technical condition recommended by the manufacturer and routine clinical conditions. The paper also established a quantitative relationship among the absorbed dose and its distribution in the cranial regions of pediatric patients up to 6 years old in a way to estimate the doses subject to optimized conditions

  1. Radiation Measurement And Risk Estimation For Pediatric Patients During Routine Diagnostic Examination

    International Nuclear Information System (INIS)

    Bushra, E.; Sulieman, A.; Osman, H.

    2011-01-01

    The aim of the present work was to evaluate Entrance Surface Dose (ESD) to the patient using Thermo luminescence dosimeters (TLD) during some common routine pediatrics X-ray examinations in main pediatrics hospitals in Sudan. ESD and Effective Dose (E) for pediatrics have been carried out for 250 patients undergoing five different examinations. The mean ESD ranged for neonates ranged between 0.17 mGy-0.30 mGy per radiograph with scattered thyroid dose 0.01 to 0.19 mGy. The risk of radiation induced cancer of was 0.13 x 10-6.

  2. Pediatric phantoms for use in dosimetric calculations

    International Nuclear Information System (INIS)

    Shoup, R.L.; Hwang, J.L.; Poston, J.W.; Warner, G.G.

    1976-01-01

    Estimating absorbed doses to children from external and internal radiation sources has become important to the nuclear industry and pediatric nuclear medicine. The Medical Physics and Internal Dosimetry Section at ORNL has recently completed the design of mathematical representations of children of ages newborn, 1 year, and 5 years old. These mathematical representations will be referred to as pediatric phantoms. Using these phantoms, relevant energy deposition data have been developed which establish a meaningful model for use in estimating radiation dose to children

  3. Pediatric digital chest imaging.

    Science.gov (United States)

    Tarver, R D; Cohen, M; Broderick, N J; Conces, D J

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology.

  4. Pediatric digital chest imaging

    International Nuclear Information System (INIS)

    Tarver, R.D.; Cohen, M.; Broderick, N.J.; Conces, D.J. Jr.

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology

  5. Translational Pharmacokinetic‐Pharmacodynamic Modeling and Simulation: Optimizing 5‐Fluorouracil Dosing in Children With Pediatric Ependymoma

    Science.gov (United States)

    Daryani, VM; Patel, YT; Tagen, M; Turner, DC; Carcaboso, AM; Atkinson, JM; Gajjar, A; Gilbertson, RJ; Wright, KD

    2016-01-01

    We previously investigated novel therapies for pediatric ependymoma and found 5‐fluorouracil (5‐FU) i.v. bolus increased survival in a representative mouse model. However, without a quantitative framework to derive clinical dosing recommendations, we devised a translational pharmacokinetic‐pharmacodynamic (PK‐PD) modeling and simulation approach. Results from our preclinical PK‐PD model suggested tumor concentrations exceeded the 1‐hour target exposure (in vitro IC90), leading to tumor growth delay and increased survival. Using an adult population PK model, we scaled our preclinical PK‐PD model to children. To select a 5‐FU dosage for our clinical trial in children with ependymoma, we simulated various 5‐FU dosages for tumor exposures and tumor growth inhibition, as well as considering tolerability to bolus 5‐FU administration. We developed a pediatric population PK model of bolus 5‐FU and simulated tumor exposures for our patients. Simulations for tumor concentrations indicated that all patients would be above the 1‐hour target exposure for antitumor effect. PMID:27104090

  6. In situ pediatric trauma simulation: assessing the impact and feasibility of an interdisciplinary pediatric in situ trauma care quality improvement simulation program.

    Science.gov (United States)

    Auerbach, Marc; Roney, Linda; Aysseh, April; Gawel, Marcie; Koziel, Jeannette; Barre, Kimberly; Caty, Michael G; Santucci, Karen

    2014-12-01

    This study aimed to evaluate the feasibility and measure the impact of an in situ interdisciplinary pediatric trauma quality improvement simulation program. Twenty-two monthly simulations were conducted in a tertiary care pediatric emergency department with the aim of improving the quality of pediatric trauma (February 2010 to November 2012). Each session included 20 minutes of simulated patient care, followed by 30 minutes of debriefing that focused on teamwork, communication, and the identification of gaps in care. A single rater scored the performance of the team in real time using a validated assessment instrument for 6 subcomponents of care (teamwork, airway, intubation, breathing, circulation, and disability). Participants completed a survey and written feedback forms. A trend analysis of the 22 simulations found statistically significant positive trends for overall performance, teamwork, and intubation subcomponents; the strength of the upward trend was the strongest for the teamwork (τ = 0.512), followed by overall performance (τ = 0.488) and intubation (τ = 0.433). Two hundred fifty-one of 398 participants completed the participant feedback form (response rate, 63%), reporting that debriefing was the most valuable aspect of the simulation. An in situ interdisciplinary pediatric trauma simulation quality improvement program resulted in improved validated trauma simulation assessment scores for overall performance, teamwork, and intubation. Participants reported high levels of satisfaction with the program, and debriefing was reported as the most valuable component of the program.

  7. Optimization of pediatric examinations in a multislice helical CT

    International Nuclear Information System (INIS)

    Ombada, T. H. A.

    2010-12-01

    Radiological protection of pediatric patients undergoing medical imaging procedures involving ionizing radiation has always received special attention. This is due to the fact that children have higher radiation sensitivity and increased likelihood for radiation-induced cancer manifesting in many more years of their life than adults. In computed tomography (CT), such attention is more important because of the potential of relatively higher radiation doses during these procedures. Such high doses are possible with technological developments where volume scanning using faster multi-slice CT systems is now preferred to conventional CT equipment. The task of this study is to assess the optimization of paediatric doses in multi-slice CT examinations. It was carried out in Alrebat University Hospital for 31 pediatric patients, 43 examinations (27 head examination and 16 body (chest, abdomen and pelvis) examinations). Data were collected for scan parameters (kV, m As, pitch, scan length, number of slices and slice thickness) and doses displayed in monitor (CTDI v ol and DLP) for head examinations and body (chest, abdomen and pelvis) examinations. For head CT, displayed CTDI v ol ranged from 1.56 to 69.12 mGy, calculated value from 2.10 to 70.93 mGy. Displayed DLP ranged from 53 to 1817 mGy.cm, calculated from 95.30 to 1532.16 mGy. cm. For body examination, the range of displayed CTDI from 1.63 to 3.92 mGy, calculated value from 2.22 to 5.34 mGy. Displayed DLP ranged from 34 to 194 mGy.cm, for calculated from 45.89 to 161.98 mGy. cm. The calculated values are in agreement with reference study dose values although there are some high values in this study for some examinations, this variation or difference may attribute to variation in pediatric ages (9 days- 15 years), scan length and m As values. There is variation between calculated and displayed values. more optimization for CT doses is needed. (Author)

  8. Optimization of pediatric examinations in a multislice helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Ombada, T H. A. [Atomic Energy Council, Sudan Academy of Sciences (SAS), Khartoum (Sudan)

    2010-12-15

    Radiological protection of pediatric patients undergoing medical imaging procedures involving ionizing radiation has always received special attention. This is due to the fact that children have higher radiation sensitivity and increased likelihood for radiation-induced cancer manifesting in many more years of their life than adults. In computed tomography (CT), such attention is more important because of the potential of relatively higher radiation doses during these procedures. Such high doses are possible with technological developments where volume scanning using faster multi-slice CT systems is now preferred to conventional CT equipment. The task of this study is to assess the optimization of paediatric doses in multi-slice CT examinations. It was carried out in Alrebat University Hospital for 31 pediatric patients, 43 examinations (27 head examination and 16 body (chest, abdomen and pelvis) examinations). Data were collected for scan parameters (kV, m As, pitch, scan length, number of slices and slice thickness) and doses displayed in monitor (CTDI{sub v}ol and DLP) for head examinations and body (chest, abdomen and pelvis) examinations. For head CT, displayed CTDI{sub v}ol ranged from 1.56 to 69.12 mGy, calculated value from 2.10 to 70.93 mGy. Displayed DLP ranged from 53 to 1817 mGy.cm, calculated from 95.30 to 1532.16 mGy. cm. For body examination, the range of displayed CTDI from 1.63 to 3.92 mGy, calculated value from 2.22 to 5.34 mGy. Displayed DLP ranged from 34 to 194 mGy.cm, for calculated from 45.89 to 161.98 mGy. cm. The calculated values are in agreement with reference study dose values although there are some high values in this study for some examinations, this variation or difference may attribute to variation in pediatric ages (9 days- 15 years), scan length and m As values. There is variation between calculated and displayed values. more optimization for CT doses is needed. (Author)

  9. Latanoprost systemic exposure in pediatric and adult patients with glaucoma

    DEFF Research Database (Denmark)

    Raber, Susan; Courtney, Rachel; Maeda-Chubachi, Tomoko

    2011-01-01

    To evaluate short-term safety and steady-state systemic pharmacokinetics (PK) of latanoprost acid in pediatric subjects with glaucoma or ocular hypertension who received the adult latanoprost dose.......To evaluate short-term safety and steady-state systemic pharmacokinetics (PK) of latanoprost acid in pediatric subjects with glaucoma or ocular hypertension who received the adult latanoprost dose....

  10. Assessing worldwide research activity on probiotics in pediatrics using Scopus database: 1994-2014.

    Science.gov (United States)

    Sweileh, Waleed M; Shraim, Naser Y; Al-Jabi, Samah W; Sawalha, Ansam F; Rahhal, Belal; Khayyat, Rasha A; Zyoud, Sa'ed H

    2016-01-01

    A wide variety of probiotic products has been introduced into the market in the past decade. Research trends and activity on probiotics help understand how these products were evolved and their potential future role in medicine. The objective of this study was to assess the research activity on probiotics in pediatrics using bibliometric indicators and network visualization. Original and review articles on probiotics in pediatrics published worldwide were retrieved from SciVerse, Scopus (1994-2014) and analyzed. VOSviewer was used for network visualization. The total number of documents published on probiotics in pediatrics was 2817. Research activity on probiotics in pediatrics showed approximately 90- fold increase during the study period. Approximately 22 % of published articles originated from USA and has the greatest share, however, Finland ranked first when data were stratified by population or income. The most productive institution in this field was Turku University in Finland with 82 (2.91 %) articles. Half of the prolific authors were also from Finland. Most of the published research activity appeared in Journal of Pediatric Gastroenterology and Nutrition. Most frequently encountered title terms include nutrition, infant formula, necrotizing enetrocolitis, allergy, and diarrhea. The total number of citations for the retreived documents documents was 70991, and the average citation per article was 25.20. Interest in probiotic research and its potential benefits in pediatric ailments is relatively recent but significantly increasing. Bibliometric analysis can be used as an indicator of the importance and growth of probiotic use in pediatrics.

  11. Assessment of the Correlation between Appointment Scheduling and Patient Satisfaction in a Pediatric Dental Setup

    Directory of Open Access Journals (Sweden)

    Amar N. Katre

    2014-01-01

    Full Text Available Introduction. The practice of modern pediatric dentistry requires delivery of quality care in combination with adherence to excellent business as well as time management principles. A definite appointment schedule should be presented to the parents on the first or second appointment. More importantly, the prescribed schedule should be followed to the best of the professional abilities of the pediatric dentist. Aims. The aim of the study was to assess the co-relation between appointment scheduling and patient satisfaction in a pediatric dental setup with the objective of understanding the parameters related to appointment scheduling to increase patient satisfaction. Method. A total of 40 patients, who visited the Department of Pediatric and Preventive Dentistry, YMT Dental College & Hospital, for dental treatment were selected on a random basis. A questionnaire with a set of 6 questions with a rating scale of 1–5 to assess the patient satisfaction related to appointment scheduling was prepared. Results. A significant number of the patients were happy with the existing appointment scheduling system barring a few exceptions.

  12. An Internal Dose Assessment Associated with Personal Food Intake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joeun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of); Hwang, Wontae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    ICRP (International Commission on Radiological Protection), Therefore, had recommended the concept of 'Critical Group'. Recently the ICRP has recommended the use of 'Representative Person' on the new basic recommendation 103. On the other hand the U.S. NRC (Nuclear Regulatory Commission) has adopted more conservative concept, 'Maximum Exposed Individuals (MEI)' of critical Group. The dose assessment in Korea is based on MEI. Although dose assessment based on MEI is easy to receive the permission of the regulatory authority, it is not efficient. Meanwhile, the internal dose by food consumption takes an important part. Therefore, in this study, the internal dose assessment was performed in accordance with ICRP's new recommendations. The internal dose assessment was performed in accordance with ICRP's new recommendations. It showed 13.2% decreased of the annual internal dose due to gaseous effluents by replacing MEI to the concept of representative person. Also, this calculation based on new ICRP's recommendation has to be extended to all areas of individual dose assessment. Then, more accurate and efficient values might be obtained for dose assessment.

  13. Dose indices: everybody wants a number

    International Nuclear Information System (INIS)

    Strauss, Keith J.

    2014-01-01

    This paper discusses the merits and weaknesses of the standard terms that have been developed to quantify CT dose: CT dose indices (CTDI), dose length product (DLP) and effective dose. The difference between the measured CTDI vol and the CTDI vol displayed on the CT scanner illustrates a clinical dilemma. Displayed CTDI vol represents the radiation dose delivered to a plastic phantom, which is significantly different from the dose delivered to the patient, depending on the size of the patient. Although effective dose is simple to calculate for an individual patient, it was never intended for this purpose. The need for a simple, appropriate method to estimate pediatric patient doses led to the development of the size-specific dose estimate (SSDE), the newest CT dose index. Here I compare SSDE and its merits to the use of effective dose to estimate patient dose. The discussion concludes with a few sample calculations and basic clinical applications of SSDE to better quantify pediatric patient dose from CT scans. (orig.)

  14. Optimization of the dose versus noise in the image on protocols for computed tomography of pediatric head;Otimizacao da relacao dose versus ruido na imagem em protocolos de tomografia computadorizada de cranio pediatrico

    Energy Technology Data Exchange (ETDEWEB)

    Saint' Yves, T.L.A.; Travassos, P.C.; Goncalves, E.A.S.; Mecca, F.A.; Silveira, T.B. [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This article aims to establish protocols optimized for computed tomography of pediatric skull, to the Picker Q 2000 tomography of the Instituto Nacional de Cancer, through the analysis of dose x noise on the image with the variation of values of m As and k Vp. We used a water phantom to measure the noise, a pencil type ionization chamber to measure the dose in the air and the Alderson Randon phantom for check the quality of the image. We found values of m As and k Vp that reduce the skin dose of the original protocol used in 35.9%, maintaining the same image quality at a safe diagnosis. (author)

  15. Optimization on the dose versus noise in the image on protocols for computed tomography of pediatric head; Otimizacao da relacao dose versus ruido na imagem em protocolos de tomografia computadorizada de cranio pediatrico

    Energy Technology Data Exchange (ETDEWEB)

    Saint' Yves, Thalis L.A.; Travassos, Paulo Cesar B.; Goncalves, Elicardo A.S.; Mecca A, Fernando; Silveira, Thiago B. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)], e-mail: fmecca@inca.gov.br, e-mail: thalis09@yahoo.com.br

    2010-03-15

    This article aims to establish protocols optimized for computed tomography of pediatric skull, to the Picker Q2000 tomography of the Instituto Nacional de Cancer, through the analysis of dose x noise on the image with the variation of values of mAs and kVp. We used a water phantom to measure the noise, a pencil type ionization chamber to measure the dose in the air and the Alderson Randon phantom for check the quality of the image. We found values of mAs and kVp that reduce the skin dose of the original protocol used in 35.9%, maintaining the same image quality at a safe diagnosis. (author)

  16. A Narrative Review: Actigraphy as an Objective Assessment of Perioperative Sleep and Activity in Pediatric Patients

    Directory of Open Access Journals (Sweden)

    Nicole Conrad

    2017-04-01

    Full Text Available Sleep is an important component of pediatric health and is crucial for cognitive development. Actigraphy is a validated, objective tool to capture sleep and movement data that is increasingly being used in the perioperative context. The aim of this review is to present recent pediatric studies that utilized actigraphy in the perioperative period, highlight gaps in the literature, and provide recommendations for future research. A literature search was completed using OVID and PubMed databases and articles were selected for inclusion based on relevance to the topic. The literature search resulted in 13 papers that utilized actigraphic measures. Results of the review demonstrated that actigraphy has been used to identify predictors and risk factors for poor postoperative sleep, examine associations among perioperative pain and sleep patterns, and assess activity and energy expenditure in both inpatient and outpatient settings. We propose expansion of actigraphy research to include assessment of sleep via actigraphy to: predict functional recovery in pediatric populations, to study postoperative sleep in high-risk pediatric patients, to test the efficacy of perioperative interventions, and to assess outcomes in special populations for which self-report data on sleep and activity is difficult to obtain.

  17. Cost-effective pediatric head and body phantoms for computed tomography dosimetry and its evaluation using pencil ion chamber and CT dose profiler

    Directory of Open Access Journals (Sweden)

    A Saravanakumar

    2015-01-01

    Full Text Available In the present work, a pediatric head and body phantom was fabricated using polymethyl methacrylate (PMMA at a low cost when compared to commercially available phantoms for the purpose of computed tomography (CT dosimetry. The dimensions of head and body phantoms were 10 cm diameter, 15 cm length and 16 cm diameter, 15 cm length, respectively. The dose from a 128-slice CT machine received by the head and body phantom at the center and periphery were measured using a 100 mm pencil ion chamber and 150 mm CT dose profiler (CTDP. Using these values, the weighted computed tomography dose index (CTDIw and in turn the volumetric CTDI (CTDIv were calculated for various combinations of tube voltage and current-time product. A similar study was carried out using standard calibrated phantom and the results have been compared with the fabricated ones to ascertain that the performance of the latter is equivalent to that of the former. Finally, CTDIv measured using fabricated and standard phantoms were compared with respective values displayed on the console. The difference between the values was well within the limits specified by Atomic Energy Regulatory Board (AERB, India. These results indicate that the cost-effective pediatric phantom can be employed for CT dosimetry.

  18. IAEA/IDEAS intercomparison exercise on internal dose assessment

    International Nuclear Information System (INIS)

    Doerfel, H.; Andrasi, A.; Cruz-Suarez, R.; Castellani, C. M.; Hurtgen, C.; Marsh, J.; Zeger, J.

    2007-01-01

    An Internet based intercomparison exercise on assessment of occupational exposure due to intakes of radionuclides has been performed to check the applicability of the 'General Guidelines for the Assessment of Internal Dose from Monitoring Data' developed by the IDEAS group. There were six intake cases presented on the Internet and 81 participants worldwide reported solutions to these cases. Results of the exercise indicate that the guidelines have a positive influence on the methodologies applied for dose assessments and, if correctly applied, improve the harmonisation of assessed doses. (authors)

  19. Patient doses in chest CT examinations: Comparison of various CT scanners

    Directory of Open Access Journals (Sweden)

    Božović Predrag

    2013-01-01

    Full Text Available This paper presents results from study on patient exposure level in chest CT examinations. CT scanners used in this study were various Siemens and General Electric (GE models. Data on patient doses were collected for adult and pediatric patients. Doses measured for adult patients were lower then those determined as Diagnostic Reference Levels (DRL for Europe, while doses for pediatric patients were similar to those found in published data. As for the manufactures, slightly higher doses were measured on GE devices, both for adult and pediatric patients.

  20. Program for rapid dose assessment in criticality accident, RADAPAS

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki

    2006-09-01

    In a criticality accident, a person near fissile material can receive extremely high dose which can cause acute health effect. For such a case, medical treatment should be carried out for the exposed person, according to severity of the exposure. Then, radiation dose should be rapidly assessed soon after an outbreak of an accident. Dose assessment based upon the quantity of induced 24 Na in human body through neutron exposure is expected as one of useful dosimetry techniques in a criticality accident. A dose assessment program, called RADAPAS (RApid Dose Assessment Program from Activated Sodium in Criticality Accidents), was therefore developed to assess rapidly radiation dose to exposed persons from activity of induced 24 Na. RADAPAS consists of two parts; one is a database part and the other is a part for execution of dose calculation. The database contains data compendiums of energy spectra and dose conversion coefficients from specific activity of 24 Na induced in human body, which had been derived in a previous analysis using Monte Carlo calculation code. Information for criticality configuration or characteristics of radiation in the accident field is to be interactively given with interface displays in the dose calculation. RADAPAS can rapidly derive radiation dose to the exposed person from the given information and measured 24 Na specific activity by using the conversion coefficient in database. This report describes data for dose conversions and dose calculation in RADAPAS and explains how to use the program. (author)

  1. Comparative study of rules employed for calculation of pediatric drug dosage Estudo comparativo de fórmulas empregadas no cálculo de doses medicamentosas infantis

    Directory of Open Access Journals (Sweden)

    Gracieli Prado Elias

    2005-06-01

    Full Text Available The present study was conducted to evaluate the utilization of Clark's, Salisbury and Penna's rules and the Body Surface Area (BSA formula for calculation of pediatric drug dosage, as well as their reliability and viability in the clinical use. These rules are frequently cited in the literature, but much controversy still exists with regards to their use. The pediatric drug dosage was calculated by utilization of the aforementioned rules and using the drugs Paracetamol, Dipyrone, Diclofenac Potassium, Nimesulide, Amoxicillin and Erythromycin, widely employed in Pediatric Dentistry. Weight and body surface areas were considered of children with ages between 1 and 12 years old as well as the dosage for the adult. The pediatric dosages achieved were compared to the predetermined dosages in mg kg-1 herein-named standard dosages. The results were submitted to the parametric test ANOVA and to the Tukey test (pO presente estudo foi realizado com a finalidade de avaliar as fórmulas de Clark, Salisbury, Área da Superfície Corpórea (ASC e Penna, quanto a sua confiabilidade e viabilidade de uso clínico para o cálculo de doses medicamentosas infantis, uma vez que tais fórmulas são freqüentemente citadas na literatura, mas muita controvérsia ainda existe com relação ao seu uso. As doses infantis foram calculadas utilizando as fórmulas descritas e os medicamentos Paracetamol, Dipirona, Diclofenaco de Potássio, Nimesulida, Amoxicilina e Eritromicina, largamente usados na clínica odontopediátrica. Foram considerados parâmetros como o peso e área da superfície corpórea de crianças com idades entre 1 e 12 anos e a dose para o adulto. As doses obtidas foram comparadas às doses em mg/kg consideradas como padrão de referência para os medicamentos. Os resultados foram submetidos ao teste paramétrico ANOVA e de Tukey (P<0,05. Os antibióticos e o Diclofenaco propiciam utilização aceitável das fórmulas na Odontopediatria, porém para a

  2. Adherence to AHA Guidelines When Adapted for Augmented Reality Glasses for Assisted Pediatric Cardiopulmonary Resuscitation: A Randomized Controlled Trial.

    Science.gov (United States)

    Siebert, Johan N; Ehrler, Frederic; Gervaix, Alain; Haddad, Kevin; Lacroix, Laurence; Schrurs, Philippe; Sahin, Ayhan; Lovis, Christian; Manzano, Sergio

    2017-05-29

    The American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) are nowadays recognized as the world's most authoritative resuscitation guidelines. Adherence to these guidelines optimizes the management of critically ill patients and increases their chances of survival after cardiac arrest. Despite their availability, suboptimal quality of CPR is still common. Currently, the median hospital survival rate after pediatric in-hospital cardiac arrest is 36%, whereas it falls below 10% for out-of-hospital cardiac arrest. Among emerging information technologies and devices able to support caregivers during resuscitation and increase adherence to AHA guidelines, augmented reality (AR) glasses have not yet been assessed. In order to assess their potential, we adapted AHA Pediatric Advanced Life Support (PALS) guidelines for AR glasses. The study aimed to determine whether adapting AHA guidelines for AR glasses increased adherence by reducing deviation and time to initiation of critical life-saving maneuvers during pediatric CPR when compared with the use of PALS pocket reference cards. We conducted a randomized controlled trial with two parallel groups of voluntary pediatric residents, comparing AR glasses to PALS pocket reference cards during a simulation-based pediatric cardiac arrest scenario-pulseless ventricular tachycardia (pVT). The primary outcome was the elapsed time in seconds in each allocation group, from onset of pVT to the first defibrillation attempt. Secondary outcomes were time elapsed to (1) initiation of chest compression, (2) subsequent defibrillation attempts, and (3) administration of drugs, as well as the time intervals between defibrillation attempts and drug doses, shock doses, and number of shocks. All these outcomes were assessed for deviation from AHA guidelines. Twenty residents were randomized into 2 groups. Time to first defibrillation attempt (mean: 146 s) and adherence to AHA guidelines in terms of time to other

  3. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ching-Ching, E-mail: cyang@tccn.edu.tw [Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Liu, Shu-Hsin [Department of Nuclear Medicine, Buddhist Tzu-Chi General Hospital, 970, Hualien, Taiwan and Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Mok, Greta S. P. [Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Wu, Tung-Hsin [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 112, Taipei, Taiwan (China)

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  4. E-learning teaches attendings "how to" objectively assess pediatric urology trainees' surgery skills for orchiopexy.

    Science.gov (United States)

    Fernandez, Nicolas; Maizels, Max; Farhat, Walid; Smith, Edwin; Liu, Dennis; Chua, Michael; Bhanji, Yasin

    2018-04-01

    Established methods to train pediatric urology surgery by residency training programs require updating in response to administrative changes such as new, reduced trainee duty hours. Therefore, new objective methods must be developed to teach trainees. We approached this need by creating e-learning to teach attendings objective assessment of trainee skills using the Zwisch scale, an established assessment tool. The aim of this study was to identify whether or not e-learning is an appropriate platform for effective teaching of this assessment tool, by assessing inter-rater correlation of assessments made by the attendings after participation in the e-learning. Pediatric orchiopexy was used as the index case. An e-learning tool was created to teach attending surgeons objective assessment of trainees' surgical skills. First, e-learning content was created which showed the assessment method videotape of resident surgery done in the operating room. Next, attendings were enrolled to e-learn this method. Finally, the ability of enrollees to assess resident surgery skill performance was tested. Namely, test video was made showing a trainee performing inguinal orchiopexy. All enrollees viewed the same online videos. Assessments of surgical skills (Zwisch scale) were entered into an online survey. Data were analyzed by intercorrelation coefficient kappa analysis (strong correlation was ICC ≥ 0.7). A total of 11 attendings were enrolled. All accessed the online learning and then made assessments of surgical skills trainees showed on videotapes. The e-learning comprised three modules: 1. "Core concepts," in which users learned the assessment tool methods; 2. "Learn to assess," in which users learned how to assess by watching video clips, explaining the assessment method; and 3. "Test," in which users tested their skill at making assessments by watching video clips and then actively inputting their ratings of surgical and global skills as viewed in the video clips (Figure

  5. Assessing Selenium, Manganese, and Iodine Status in Pediatric Patients Receiving Parenteral Nutrition.

    Science.gov (United States)

    Johnsen, Jacob Clarke; Reese, Susan Anne; Mackay, Mark; Anderson, Collin R; Jackson, Daniel; Paul, Irasema Libertad

    2017-08-01

    Pediatric patients who are receiving parenteral nutrition (PN) unsupplemented with trace minerals can become deficient. Due to shortages in trace mineral products and the 2004 American Society for Parenteral and Enteral Nutrition report stating that individualized trace element supplementation may be warranted, a review was conducted concerning the trace minerals selenium (Se), manganese (Mn), and iodine (I). A retrospective review of pediatric patients receiving PN that contained Se and Mn was conducted to determine if a difference existed between them and patients receiving PN without Se and Mn. Statistical analysis was done to assess a difference between trace mineral levels and the time to deficiency between supplemented and unsupplemented patients. Unsupplemented I patients had urine I levels assessed to determine deficiencies in patients receiving PN. Plasma Se levels were measured at a mean of 20 days for supplemented patients (n = 131) and 19 days for nonsupplemented patients (n = 57) with no difference between groups ( P = .2973). Plasma Mn levels were measured at a mean of 28 days, showing no statistical difference ( P = .721). Of the 177 nonsupplemented I patients, 74% demonstrated I deficiencies without supplementation. Time to the development of a Se, Mn, or I deficiency is important to guide supplementation of exclusive PN in children when trace mineral products are short in supply. Our retrospective experience supports assessment of the trace minerals Se at 21 days and Mn at 30 days. It also suggests that some pediatric patients receiving PN are deficient in I.

  6. A radiological dose assessment for the Port Hope conversion facility

    International Nuclear Information System (INIS)

    Garisto, N.C.; Cooper, F.; Janes, A.; Stager, R.; Peters, R.

    2011-01-01

    The Port Hope Conversion Facility (PHCF) receives uranium trioxide for conversion to uranium hexafluoride (UF 6 ) or uranium dioxide (UO 2 ). The PHCF Site has a long history of industrial use. A Radiological Dose Assessment was undertaken as part of a Site Wide Risk Assessment. This assessment took into account all possible human receptors, both workers and members of the public. This paper focuses on a radiological assessment of dose to members of the public. The doses to members of the public from terrestrial pathways were added to the doses from aquatic pathways to obtain overall dose to receptors. The benchmark used in the assessment is 1 mSv/y. The estimated doses related to PHCF operations are much lower than the dose limit. (author)

  7. The use of adaptive statistical iterative reconstruction in pediatric head CT: a feasibility study.

    Science.gov (United States)

    Vorona, G A; Zuccoli, G; Sutcavage, T; Clayton, B L; Ceschin, R C; Panigrahy, A

    2013-01-01

    Iterative reconstruction techniques facilitate CT dose reduction; though to our knowledge, no group has explored using iterative reconstruction with pediatric head CT. Our purpose was to perform a feasibility study to assess the use of ASIR in a small group of pediatric patients undergoing head CT. An Alderson-Rando head phantom was scanned at decreasing 10% mA intervals relative to our standard protocol, and each study was then reconstructed at 10% ASIR intervals. An intracranial region of interest was consistently placed to estimate noise. Our ventriculoperitoneal shunt CT protocol was subsequently modified, and patients were scanned at 20% ASIR with approximately 20% mA reductions. ASIR studies were anonymously compared with older non-ASIR studies from the same patients by 2 attending pediatric neuroradiologists for diagnostic utility, sharpness, noise, and artifacts. The phantom study demonstrated similar noise at 100% mA/0% ASIR (3.9) and 80% mA/20% ASIR (3.7). Twelve pediatric patients were scanned at reduced dose at 20% ASIR. The average CTDI(vol) and DLP values of the 20% ASIR studies were 22.4 mGy and 338.4 mGy-cm, and for the non-ASIR studies, they were 28.8 mGy and 444.5 mGy-cm, representing statistically significant decreases in the CTDI(vol) (22.1%, P = .00007) and DLP (23.9%, P = .0005) values. There were no significant differences between the ASIR studies and non-ASIR studies with respect to diagnostic acceptability, sharpness, noise, or artifacts. Our findings suggest that 20% ASIR can provide approximately 22% dose reduction in pediatric head CT without affecting image quality.

  8. Dose assessment for Greifswald and Cadarache

    International Nuclear Information System (INIS)

    Raskob, W.

    1996-07-01

    Probabilistic dose assessments for accidental atmospheric releases of tritium and activation products as well as releases under normal operation conditions were performed for the sites of Greifswald, Germany, and Cadarache, France. Additionally, aquatic releases were considered for both sites. No country specific rules were applied and the input parameters were adapted as far as possible to those used within former ITER studies to have a better comparison to site independent dose assessments performed in the frame of ITER. The main goal was to complete the generic data base with site specific values. The agreement between the results from the ITER study on atmospheric releases and the two sites are rather good for tritium, whereas the ITER reference dose values for the activation product releases are often lower, than the maximum doses for Greifswald and Cadarache. However, the percentile values fit better to the deterministic approach of ITER. Within all scenarios, the consequences of aquatic releases are in nearly all cases smaller than those from comparable releases to the atmosphere (HTO and steel). This rule is only broken once in case of accidental releases of activated steel from Cadarache. However, the uncertainties associated with the aquatic assessments are rather high and a better data base is needed to obtain more realistic and thus more reliable dose values. (orig.) [de

  9. Cultural adaptation of a pediatric functional assessment for rehabilitation outcomes research.

    Science.gov (United States)

    Arestad, Kristen E; MacPhee, David; Lim, Chun Y; Khetani, Mary A

    2017-09-15

    Significant racial and ethnic health care disparities experienced by Hispanic children with special health care needs (CSHCN) create barriers to enacting culturally competent rehabilitation services. One way to minimize the impact of disparities in rehabilitation is to equip practitioners with culturally relevant functional assessments to accurately determine service needs. Current approaches to culturally adapting assessments have three major limitations: use of inconsistent translation processes; current processes assess for some, but not all, elements of cultural equivalence; and limited evidence to guide decision making about whether to undertake cultural adaptation with and without language translation. The aims of this observational study are (a) to examine similarities and differences of culturally adapting a pediatric functional assessment with and without language translation, and (b) to examine the feasibility of cultural adaptation processes. The Young Children's Participation and Environment Measure (YC-PEM), a pediatric functional assessment, underwent cultural adaptation (i.e., language translation and cognitive testing) to establish Spanish and English pilot versions for use by caregivers of young CSHCN of Mexican descent. Following language translation to develop a Spanish YC-PEM pilot version, 7 caregivers (4 Spanish-speaking; 3 English-speaking) completed cognitive testing to inform decisions regarding content revisions to English and Spanish YC-PEM versions. Participant responses were content coded to established cultural equivalencies. Coded data were summed to draw comparisons on the number of revisions needed to achieve cultural equivalence between the two versions. Feasibility was assessed according to process data and data quality. Results suggest more revisions are required to achieve cultural equivalence for the translated (Spanish) version of the YC-PEM. However, issues around how the participation outcome is conceptualized were

  10. Potential benefit of the CT adaptive statistical iterative reconstruction method for pediatric cardiac diagnosis

    Science.gov (United States)

    Miéville, Frédéric A.; Ayestaran, Paul; Argaud, Christophe; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Gudinchet, François; Bochud, François; Verdun, Francis R.

    2010-04-01

    Adaptive Statistical Iterative Reconstruction (ASIR) is a new imaging reconstruction technique recently introduced by General Electric (GE). This technique, when combined with a conventional filtered back-projection (FBP) approach, is able to improve the image noise reduction. To quantify the benefits provided on the image quality and the dose reduction by the ASIR method with respect to the pure FBP one, the standard deviation (SD), the modulation transfer function (MTF), the noise power spectrum (NPS), the image uniformity and the noise homogeneity were examined. Measurements were performed on a control quality phantom when varying the CT dose index (CTDIvol) and the reconstruction kernels. A 64-MDCT was employed and raw data were reconstructed with different percentages of ASIR on a CT console dedicated for ASIR reconstruction. Three radiologists also assessed a cardiac pediatric exam reconstructed with different ASIR percentages using the visual grading analysis (VGA) method. For the standard, soft and bone reconstruction kernels, the SD is reduced when the ASIR percentage increases up to 100% with a higher benefit for low CTDIvol. MTF medium frequencies were slightly enhanced and modifications of the NPS shape curve were observed. However for the pediatric cardiac CT exam, VGA scores indicate an upper limit of the ASIR benefit. 40% of ASIR was observed as the best trade-off between noise reduction and clinical realism of organ images. Using phantom results, 40% of ASIR corresponded to an estimated dose reduction of 30% under pediatric cardiac protocol conditions. In spite of this discrepancy between phantom and clinical results, the ASIR method is as an important option when considering the reduction of radiation dose, especially for pediatric patients.

  11. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Young, E-mail: eyhan@uams.edu [Department of Radiation Oncology, University of Arkansas Medical Sciences, Little Rock, AR (United States); Kim, Dong-Wook [Department of Radiation Oncology, Kyung Hee University Hospital, Seoul (Korea, Republic of); Zhang, Xin; Penagaricano, Jose; Liang, Xiaoying; Hardee, Matthew; Morrill, Steve; Ratanatharathorn, Vaneerat [Department of Radiation Oncology, University of Arkansas Medical Sciences, Little Rock, AR (United States)

    2015-10-01

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently, the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy.

  12. Routine oblique radiography of the pediatric lumbar spine: is it necessary. [Oblique radiography entails more than double the gonadal radiation dose of frontal-lateral projections

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, F.F.; Kishore, P.R.S.; Cunningham, M.E.

    1978-08-01

    A series of 86 pediatric lumbar spine abnormalities was evaluated to determine the diagnostic benefit of radiography in oblique projection as compared to frontal-lateral projections alone. In only four patients was an abnormality apparent on the oblique view which had not already been demonstrated by the frontal-lateral series; each of these represented an isolated spondylolysis. Because the diagnostic yield was low at a patient cost of more than double the gonadal radiation dose, it is recommended that oblique views be eliminated in the routine radiography of the pediatric lumbar spine.

  13. Children's safety initiative: a national assessment of pediatric educational needs among emergency medical services providers.

    Science.gov (United States)

    Hansen, Matthew; Meckler, Garth; Dickinson, Caitlyn; Dickenson, Kathryn; Jui, Jonathan; Lambert, William; Guise, Jeanne-Marie

    2015-01-01

    Emergency medical services (EMS) providers may have critical knowledge gaps in pediatric care due to lack of exposure and training. There is currently little evidence to guide educators to the knowledge gaps that most need to be addressed to improve patient safety. The objective of this study was to identify educational needs of EMS providers related to pediatric care in various domains in order to inform development of curricula. The Children's Safety Initiative-EMS performed a three-phase Delphi survey on patient safety in pediatric emergencies among providers and content experts in pediatric emergency care, including physicians, nurses, and prehospital providers of all levels. Each round included questions related to educational needs of providers or the effect of training on patient safety events. We identified knowledge gaps in the following domains: case exposure, competency and knowledge, assessment and decision making, and critical thinking and proficiency. Individual knowledge gaps were ranked by portion of respondents who ranked them "highly likely" (Likert-type score 7-10 out of 10) to contribute to safety events. There were 737 respondents who were included in analysis of the first phase of the survey. Paramedics were 50.8% of respondents, EMT-basics/first responders were 22%, and physicians 11.4%. The top educational priorities identified in the final round of the survey include pediatric airway management, responder anxiety when working with children, and general pediatric skills among providers. The top three needs in decision-making include knowing when to alter plans mid-course, knowing when to perform an advanced airway, and assessing pain in children. The top 3 technical or procedural skills needs were pediatric advanced airway, neonatal resuscitation, and intravenous/intraosseous access. For neonates, specific educational needs identified included knowing appropriate vital signs and preventing hypothermia. This is the first large-scale Delphi

  14. Pediatric thoracic CT angiography at 70 kV: a phantom study to investigate the effects on image quality and radiation dose

    International Nuclear Information System (INIS)

    MacDougall, Robert D.; Kleinman, Patricia L.; Lee, Edward Y.; Yu, Lifeng

    2016-01-01

    Studies have demonstrated that 70-kilovolt (kV) imaging enhances the contrast of iodine, potentially affording a reduction in radiation dose while maintaining the contrast-to-noise ratio (CNR). There is a maximum amount of image noise beyond which increased contrast does not improve structure visualization. Thus, noise should be constrained during protocol optimization. This phantom study investigated the effect of 70-kV imaging for pediatric thoracic CT angiography on image quality and radiation dose in a pediatric population when a noise constraint was considered. We measured contrast and noise using anthropomorphic thoracic phantoms ranging in size from newborn age equivalent to 10-year-old age equivalent. We inserted contrast rods into the phantoms to simulate injected contrast material used in a CT angiography study. The image-quality metric ''iodine CNR with a noise constraint'' was used to determine the relative dose factor for each phantom size, kV setting (70-140 kV) and noise constraint (1.00-1.20). A noise constraint of 1.20 indicates that noise should not increase by more than 20% of the noise level in images performed at the reference kV, selected to be 80 kV in this study. The relative dose factor can be applied to the original dose obtained at 80 kV in order to maintain iodine CNR with the noise constraint. A relative dose factor <1.0 indicates potential for dose reduction while a relative dose factor >1.0 indicates a dose penalty. Iodine contrast was highest for 70 kV and decreased with higher kV settings for all phantom sizes. The relative dose factor at 70 kV was <1.0 for all noise constraint >1.0, indicating potential for dose reduction, for the newborn, 1-year-old and 5-year-old age-equivalent phantom sizes. For the 10-year-old age-equivalent phantom, relative dose factor at 70 kV=1.22, 1.11, 1.01, 0.92 and 0.83 for noise constraint=1.00, 1.05, 1.10, 1.15, 1.20, respectively, indicating a dose penalty for noise constraint

  15. Dose assessment in radiological accidents

    International Nuclear Information System (INIS)

    Donkor, S.

    2013-04-01

    The applications of ionizing radiation bring many benefits to humankind, ranging from power generation to uses in medicine, industry and agriculture. Facilities that use radiation source require special care in the design and operation of equipment to prevent radiation injury to workers or to the public. Despite considerable development of radiation safety, radiation accidents do happen. The purpose of this study is therefore to discuss how to assess doses to people who will be exposed to a range of internal and external radiation sources in the event of radiological accidents. This will go a long way to complement their medical assessment thereby helping to plan their treatment. Three radiological accidents were reviewed to learn about the causes of those accidents and the recommendations that were put in place to prevent recurrence of such accidents. Various types of dose assessment methods were discussed.(au)

  16. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom

    International Nuclear Information System (INIS)

    Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Ha, Seongmin

    2016-01-01

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose 4 , levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose 4 levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose 4 level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose 4 obtained at 1.81 mSv. (orig.)

  17. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom.

    Science.gov (United States)

    Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Ha, Seongmin; Kim, Woo Sun; Kim, In-One

    2016-03-01

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose(4), levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose(4) levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose(4) level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose(4) obtained at 1.81 mSv.

  18. Protocol for adaptation of internal dosimetry techniques for planning of individualized doses of 131I in pediatric patients

    International Nuclear Information System (INIS)

    Biancardi, Rodrigo

    2011-01-01

    The optimization of radiation doses is emphasized in diseases with good prognosis, as differentiated thyroid carcinomas, especially in pediatric patients, since the radiation risk is conversely proportional to age. Aiming to establish individual treatment planning, it has been studied four dosimetry methodologies (external dose monitoring, image quantification, urine and blood bioassay) for four 13.3 ± 1.5-year-old female patients, who received 107 ± 15 MBq (2,9 ± 0,4 mCi) for tracer dose and 5.5 ± 0.3 GBq (149 ± 8 mCi) for thyroid ablation. Effective half-lives, residence times and cumulated activities were estimated in organs and tissues with iodine uptake, through planar images quantification by conjugate-view and attenuation correction, in order to compare biokinetic behavior in tracer dose and ablative dose phases. For external monitoring, two patients had similar whole-body effective half-lives in both phases. For this methodology, despite the uncertainties associated to measurements, equipment used and procedures performed were adequate. For urine bioassay, there were not similarities among the patients whole-body effective half-lives. Through blood bioassay, it was observed that 0.2 % of the administered activity for ablative dose remained in the blood until 76 hours after administration. The external monitoring allowed estimating effective doses in patients mothers by conversion of the environmental equivalent dose. In the ablative dose phase, the effective doses resulted in 1.3 ± 0.3 mSv in the hospital and 0.3 ± 0.1 mSv in patients houses. (author)

  19. Diagnostic radiation exposure in pediatric trauma patients.

    Science.gov (United States)

    Brunetti, Marissa A; Mahesh, Mahadevappa; Nabaweesi, Rosemary; Locke, Paul; Ziegfeld, Susan; Brown, Robert

    2011-02-01

    The amount of imaging studies performed for disease diagnosis has been rapidly increasing. We examined the amount of radiation exposure that pediatric trauma patients receive because they are an at-risk population. Our hypothesis was that pediatric trauma patients are exposed to high levels of radiation during a single hospital visit. Retrospective review of children who presented to Johns Hopkins Pediatric Trauma Center from July 1, 2004, to June 30, 2005. Radiographic studies were recorded for each patient and doses were calculated to give a total effective dose of radiation. All radiographic studies that each child received during evaluation, including any associated hospital admission, were included. A total of 945 children were evaluated during the study year. A total of 719 children were included in the analysis. Mean age was 7.8 (±4.6) years. Four thousand six hundred three radiographic studies were performed; 1,457 were computed tomography (CT) studies (31.7%). Average radiation dose was 12.8 (±12) mSv. We found that while CT accounted for only 31.7% of the radiologic studies performed, it accounted for 91% of the total radiation dose. Mean dose for admitted children was 17.9 (±13.8) mSv. Mean dose for discharged children was 8.4 (±7.8) mSv (pcumulative radiation exposure can be high. In young children with relatively long life spans, the benefit of each imaging study and the cumulative radiation dose should be weighed against the long-term risks of increased exposure.

  20. Non-human biota dose assessment. Sensitivity analysis and knowledge quality assessment

    International Nuclear Information System (INIS)

    Smith, K.; Robinson, C.; Jackson, D.; La Cruz, I. de; Zinger, I.; Avila, R.

    2010-10-01

    This report provides a summary of a programme of work, commissioned within the BIOPROTA collaborative forum, to assess the quantitative and qualitative elements of uncertainty associated with biota dose assessment of potential impacts of long-term releases from geological disposal facilities (GDF). Quantitative and qualitative aspects of uncertainty were determined through sensitivity and knowledge quality assessments, respectively. Both assessments focused on default assessment parameters within the ERICA assessment approach. The sensitivity analysis was conducted within the EIKOS sensitivity analysis software tool and was run in both generic and test case modes. The knowledge quality assessment involved development of a questionnaire around the ERICA assessment approach, which was distributed to a range of experts in the fields of non-human biota dose assessment and radioactive waste disposal assessments. Combined, these assessments enabled critical model features and parameters that are both sensitive (i.e. have a large influence on model output) and of low knowledge quality to be identified for each of the three test cases. The output of this project is intended to provide information on those parameters that may need to be considered in more detail for prospective site-specific biota dose assessments for GDFs. Such information should help users to enhance the quality of their assessments and build greater confidence in the results. (orig.)

  1. Pediatric radiology for medical-technical radiology assistants/radiologists

    International Nuclear Information System (INIS)

    Oppelt, Birgit

    2010-01-01

    The book on pediatric radiology includes the following chapter: differences between adults and children; psycho-social aspects concerning the patient child in radiology; relevant radiation doses in radiology; help for self-help: simple phantoms for image quality estimation in pediatric radiology; general information; immobilization of the patient; pediatric features for radiological settings; traumatology; contrast agents; biomedical radiography; computerized tomography; NMR imaging; diagnostic ultrasonography; handling of stress practical recommendations; medical displays.

  2. Pediatric fractures – an educational needs assessment of Canadian pediatric emergency medicine residents

    Directory of Open Access Journals (Sweden)

    Dixon AC

    2015-06-01

    Full Text Available Andrew C Dixon Department of Pediatrics, University of Alberta, Edmonton, AB, Canada Objectives: To determine the gaps in knowledge of Canadian pediatric emergency medicine residents with regards to acute fracture identification and management. Due to their predominantly medical prior training, fractures may be an area of weakness requiring a specific curriculum to meet their needs. Methods: A questionnaire was developed examining comfort level and performance on knowledge based questions of trainees in the following areas: interpreting musculoskeletal X-rays; independently managing pediatric fractures, physical examination techniques, applied knowledge of fracture management, and normal development of the bony anatomy. Using modified Dillman technique the instrument was distributed to pediatric emergency medicine residents at seven Canadian sites. Results: Out of 43 potential respondents, 22 (51% responded. Of respondents, mean comfort with X-ray interpretation was 69 (62–76 95% confidence interval [CI] while mean comfort with fracture management was only 53 (45–63 95% CI; mean comfort with physical exam of shoulder 60 (53–68 95% CI and knee 69 (62–76 95% CI was low. Less than half of respondents (47%; 95% CI 26%–69% could accurately identify normal wrist development, correctly manage a supracondylar fracture (39%; 95% CI 20%–61%, or identify a medial epicondyle fracture (44%; 95% CI 24%–66%. Comfort with neurovascular status of the upper (mean 82; 95% CI 75–89 and lower limb (mean 81; 95% CI 74–87 was high. Interpretation: There are significant gaps in knowledge of physical exam techniques, fracture identification and management among pediatric emergency medicine trainees. A change in our current teaching methods is required to meet this need. Keywords: pediatric, fractures, education, radiologic interpretation

  3. Optimization of exposure parameters for pediatric chest x-ray imaging

    Science.gov (United States)

    Park, Hye-Suk; Kim, Ye-Seul; Kim, Hee-Joung

    2012-03-01

    The pediatric patients are more susceptible to the effects of ionizing radiation than adults. Pediatric patients are smaller, more radiosensitive than adult patients and many cannot stand unassisted. Their characteristics affect the method of imaging projection and how dose is optimized. The purpose of this study was to investigate the effect of various technical parameters for the dose optimization in pediatric chest radiological examinations by evaluating effective dose and effective detective quantum efficiency (eDQE) including the scatter radiation from the object, the blur caused by the focal spot, geometric magnification and detector characteristics. For the tube voltages ranging from 40 to 90 kV in 10 kV increments at the focus-to-detector distance of 100, 110, 120, 150, 180 cm, the eDQE was evaluated at same effective dose. The results showed that the eDQE was largest at 60 kVp without and with an anti-scatter grid. Especially, the eDQE was considerably higher without the use of an anti-scatter grid on equivalent effective dose. This indicates that the reducing the scatter radiation did not compensate for the loss of absorbed effective photons in the grid. When the grid is not used the eDQE increased with increasing focus-to-detector distance because of the greater effective modulation transfer function (eMTF) with the lower focal spot blurring. In conclusion, for pediatric patients, the amount of scattered radiation is less, and the amount of grid attenuation increased unnecessary radiation dose.

  4. Assessment of Liver Stiffness in Pediatric Fontan Patients Using Transient Elastography

    Directory of Open Access Journals (Sweden)

    Becky Chen

    2016-01-01

    Full Text Available Background. Hepatic fibrosis is a potential complication following Fontan surgery and heralds long-term risk for cirrhosis. Transient elastography (TE is a rapid, noninvasive method to assess liver fibrosis by measuring liver stiffness. Objectives. To compare liver stiffness and liver biochemistries in pediatric Fontan patients with age- and sex-matched controls and to determine patients’ acceptance of TE. Methods. Patients were recruited from British Columbia Children’s Hospital. Twenty-two Fontan patients (15 males were identified. Demographic information and cardiac data were collected. TE was measured using size-appropriate probes. Results. The median age of the Fontan cohort was 13.7 (5.9–16.8 years. Time from Fontan surgery to TE was 9.6 (1.0–12.9 years. The median Fontan circuit pressure was 13 (11–14 mmHg. TE values were higher in Fontan patients versus controls (18.6 versus 4.7 kPa, p<0.001. There was no association between TE values and patient age (r=0.41, p=0.058, time since Fontan surgery (r=0.40, p=0.062, or median Fontan circuit pressure (CVP (r=0.35, p=0.111. Patients found TE to be nonpainful, convenient, and safe. Conclusions. TE is feasible to assess liver stiffness in children following Fontan surgery. Pediatric Fontan patients have markedly elevated liver stiffness values. TE may have important utility in liver care follow-up of pediatric Fontan patients.

  5. Howard Hughes Medical Institute dose assessment survey

    International Nuclear Information System (INIS)

    O'Brien, S.L.; McDougall, M.M.; Barkley, W.E.

    1996-01-01

    Biomedical science researchers often express frustration that health physics practices vary widely between individual institutions. A survey examining both internal and external dose assessment practices was devised and mailed to fifty institutions supporting biomedical science research. The results indicate that health physics dose assessment practices and policies are highly variable. Factors which may contribute to the degree of variation are discussed. 2 tabs

  6. Radiologic protection in pediatric radiology: ICRP recommendations

    International Nuclear Information System (INIS)

    Sanchez, Ramon; Khong, Pek-Lan; Ringertz, Hans

    2013-01-01

    ICRP has provided an updated overview of radiation protection principles in pediatric radiology. The authors recommend that staff, radiologists, medical physicists and vendors involved in pediatric radiology read this document. For conventional radiography, the report gives advice on patient positioning, immobilization, shielding and appropriate exposure conditions. It describes extensively the use of pulsed fluoroscopy, the importance of limiting fluoroscopy time, and how shielding and geometry must be used to avoid unnecessary radiation to the patient and operator. Furthermore, the use of fluoroscopy in interventional procedures with emphasis on dose reduction to patients and staff is discussed in light of the increasing frequency, complexity and length ofthe procedures. CT is the main reason that medical imaging in several developed countries is the highest annual per capita effective radiation dose from man-made sources. The ICRP report gives extensive descriptions of how CT protocols can be optimized to minimize radiation exposure in pediatric patients. The importance of balancing image quality with acceptable noise in pediatric imaging and the controversies regarding the use of protective shielding in CT are also discussed.

  7. Examination of the Safety of Pediatric Vaccine Schedules in a Non-Human Primate Model: Assessments of Neurodevelopment, Learning, and Social Behavior

    Science.gov (United States)

    Curtis, Britni; Liberato, Noelle; Rulien, Megan; Morrisroe, Kelly; Kenney, Caroline; Yutuc, Vernon; Ferrier, Clayton; Marti, C. Nathan; Mandell, Dorothy; Burbacher, Thomas M.; Sackett, Gene P.

    2015-01-01

    Background In the 1990s, the mercury-based preservative thimerosal was used in most pediatric vaccines. Although there are currently only two thimerosal-containing vaccines (TCVs) recommended for pediatric use, parental perceptions that vaccines pose safety concerns are affecting vaccination rates, particularly in light of the much expanded and more complex schedule in place today. Objectives The objective of this study was to examine the safety of pediatric vaccine schedules in a non-human primate model. Methods We administered vaccines to six groups of infant male rhesus macaques (n = 12–16/group) using a standardized thimerosal dose where appropriate. Study groups included the recommended 1990s Pediatric vaccine schedule, an accelerated 1990s Primate schedule with or without the measles–mumps–rubella (MMR) vaccine, the MMR vaccine only, and the expanded 2008 schedule. We administered saline injections to age-matched control animals (n = 16). Infant development was assessed from birth to 12 months of age by examining the acquisition of neonatal reflexes, the development of object concept permanence (OCP), computerized tests of discrimination learning, and infant social behavior. Data were analyzed using analysis of variance, multilevel modeling, and survival analyses, where appropriate. Results We observed no group differences in the acquisition of OCP. During discrimination learning, animals receiving TCVs had improved performance on reversal testing, although some of these same animals showed poorer performance in subsequent learning-set testing. Analysis of social and nonsocial behaviors identified few instances of negative behaviors across the entire infancy period. Although some group differences in specific behaviors were reported at 2 months of age, by 12 months all infants, irrespective of vaccination status, had developed the typical repertoire of macaque behaviors. Conclusions This comprehensive 5-year case–control study, which closely examined

  8. Pediatric radiation exposure from diagnostic nuclear medicine examinations in Tehran

    International Nuclear Information System (INIS)

    Neshandar Asli, I.; Tabeie, F.

    2005-01-01

    As a part of a nationwide survey to estimate population exposure to radiation from diagnostic nuclear medicine in Iran, this paper presents the pediatric population radiation exposure due to nuclear medicine examinations in Tehran. Patients and methods: the effective dose equivalent, H E , was used to calculate the collective effective dose in pediatric patients undergoing nuclear medicine procedures, and the corresponding data were obtained from thirty out of thirty seven active nuclear medicine departments in Tehran. Results: annually about 5.26% of nuclear medicine examinations were performed on patients under 15 years of age in Tehran. The most frequent was renal examinations (38.2%), followed y thyroid (27.4%) and bone (26.7%). The annual collective H E for patients under 15 was 19.03 human-Sv, which contributed 3.96% to the collective H E for all patients. The contribution of renal, bone and thyroid examinations to the pediatric collective H E were 24.6% 48.8% and 13.5% respectively. The mean effective dose equivalent per pediatric patient was 3.75 mSv.Conclusion: Among the three most frequent examinations, the bone with a relative frequency of 27.4% constituted 48.8% of the collective H E , which was the highest absorbed dose per examination. The mean effective dose per examination for patients younger than 15 years was 67.9% of the adults

  9. Enhancing pediatric safety: assessing and improving resident competency in life-threatening events with a computer-based interactive resuscitation tool

    International Nuclear Information System (INIS)

    Lerner, Catherine; Gaca, Ana M.; Frush, Donald P.; Ancarana, Anjanette; Hohenhaus, Sue; Seelinger, Terry A.; Frush, Karen

    2009-01-01

    Though rare, allergic reactions occur as a result of administration of low osmolality nonionic iodinated contrast material to pediatric patients. Currently available resuscitation aids are inadequate in guiding radiologists' initial management of such reactions. To compare radiology resident competency with and without a computer-based interactive resuscitation tool in the management of life-threatening events in pediatric patients. The study was approved by the IRB. Radiology residents (n=19; 14 male, 5 female; 19 certified in basic life support/advanced cardiac life support; 1 certified in pediatric advanced life support) were videotaped during two simulated 5-min anaphylaxis scenarios involving 18-month-old and 8-year-old mannequins (order randomized). No advance warning was given. In half of the scenarios, a computer-based interactive resuscitation tool with a response-driven decision tree was available to residents (order randomized). Competency measures included: calling a code, administering oxygen and epinephrine, and correctly dosing epinephrine. Residents performed significantly more essential interventions with the computer-based resuscitation tool than without (72/76 vs. 49/76, P<0.001). Significantly more residents appropriately dosed epinephrine with the tool than without (17/19 vs. 1/19; P<0.001). More residents called a code with the tool than without (17/19 vs. 14/19; P = 0.08). A learning effect was present: average times to call a code, request oxygen, and administer epinephrine were shorter in the second scenario (129 vs. 93 s, P=0.24; 52 vs. 30 s, P<0.001; 152 vs. 82 s, P=0.025, respectively). All the trainees found the resuscitation tool helpful and potentially useful in a true pediatric emergency. A computer-based interactive resuscitation tool significantly improved resident performance in managing pediatric emergencies in the radiology department. (orig.)

  10. Dose assessment in the Marshall Islands

    International Nuclear Information System (INIS)

    Robison, William L.

    1978-01-01

    Bikini Atoll and Enewetak Atoll in the Marshall Islands were the sites of major U.S. weapons testing from 1948 through 1958. Both the Bikini and Knewetak people have expressed a desire to return to their native Atolls. In 1968 clean-up and resettlement of Bikini was begun. In 1972-73 the initial survey of Enewetak Atoll was conducted and clean-up began in 1977. Surveys have been conducted at both Atolls to establish the concentrations of radionuclides in the biota and to determine the external exposure rates. Subsequent to the surveys dose assessments have been made to determine the potential dose to returning (100) populations at both Atolls. This talk will include discussions of the relative importance of the critical exposure pathways (i.e., external exposure, inhalation, marine, terrestrial and drinking water), the predominant radionuclides contributing to the predicted doses for each pathway, the doses predicted for alternate living patterns, comparison to Federal Guidelines, the comparison between Atolls, some of the social problems created by adherence to Federal Guidelines and the follow-up research identified and initiated to help refine the dose assessments and better predict the long term use of the Atolls (86). (author)

  11. Inhalation dose assessment for Maralinga and Emu

    International Nuclear Information System (INIS)

    Johnston, P.N.; Lokan, K.H.; Williams, G.A.

    1990-01-01

    Dose assessments for the inhalation of artificial radionuclides are presented for all types of contaminated areas at Maralinga and Emu. These enable Committed Effective Dose Equivalent (CEDE), to be estimated by scaling at any area of interest where activity concentrations are known. In the case of Aborigines, these dose are estimated assuming respirable dust loadings of 1 mg/m 3 for adults and 1.5 mg/m 3 for children and infants. Details of the calculations are presented in the appendix. The model of the respiratory system used in this assessment is that described in Interantional Commission on Radiological Protection (ICRP) Publication 30 (ICRP, 1979a). With the exception of Kuli, which is contaminated with uranium, at all other sites it is only the inhalation of plutonium and americium that contributes significantly to the dose, and of these 239 Pu is the largest contributor. Therefore, considering the long half lives of the radionuclides concerned, it appears that the inhalation problems highlighted by this dose assessment will not diminish significantly within any reasonable period of time and hence management strategies must be developed to deal with such problems. 32 refs., 5 tabs., 1 fig

  12. Hearing Status in Pediatric Renal Transplant Recipients.

    Science.gov (United States)

    Gulleroglu, Kaan; Baskin, Esra; Aydin, Erdinc; Ozluoglu, Levent; Moray, Gokhan; Haberal, Mehmet

    2015-08-01

    Renal transplant provides a long-term survival. Hearing impairment is a major factor in subjective health status. Status of hearing and the cause of hearing impairment in the pediatric renal transplant group have not been evaluated. Here, we studied to evaluate hearing status in pediatric renal transplant patients and to determine the factors that cause hearing impairment. Twenty-seven pediatric renal transplant recipients were investigated. All patients underwent audiologic assessment by means of pure-tone audiometry. The factors on hearing impairment were performed. Sensorineural hearing impairment was found in 17 patients. There was marked hearing impairment for the higher frequencies between 4000 and 8000 Hz. Sudden hearing loss developed in 2 patients, 1 of them had tinnitus. Decrease of speech understanding was found in 8 patients. The cyclosporine level was significantly high in patients with hearing impairment compared with group without hearing impairment. Cyclosporine levels also were found to be statistically significantly high when compared with the group with decrease of speech understanding and the group without decrease of speech understanding. Similar relations cannot be found between tacrolimus levels and hearing impairment and speech understanding. Sensorineural hearing impairment prevalence was high in pediatric renal transplant recipients when compared with the general population of children. Cyclosporine may be responsible for causing hearing impairment after renal transplant. We suggest that this effect is a dose-dependent toxicity.

  13. Optimization of hybrid iterative reconstruction level and evaluation of image quality and radiation dose for pediatric cardiac computed tomography angiography

    International Nuclear Information System (INIS)

    Yang, Lin; Liang, Changhong; Zhuang, Jian; Huang, Meiping; Liu, Hui

    2017-01-01

    Hybrid iterative reconstruction can reduce image noise and produce better image quality compared with filtered back-projection (FBP), but few reports describe optimization of the iteration level. We optimized the iteration level of iDose"4 and evaluated image quality for pediatric cardiac CT angiography. Children (n = 160) with congenital heart disease were enrolled and divided into full-dose (n = 84) and half-dose (n = 76) groups. Four series were reconstructed using FBP, and iDose"4 levels 2, 4 and 6; we evaluated subjective quality of the series using a 5-grade scale and compared the series using a Kruskal-Wallis H test. For FBP and iDose"4-optimal images, we compared contrast-to-noise ratios (CNR) and size-specific dose estimates (SSDE) using a Student's t-test. We also compared diagnostic-accuracy of each group using a Kruskal-Wallis H test. Mean scores for iDose"4 level 4 were the best in both dose groups (all P < 0.05). CNR was improved in both groups with iDose"4 level 4 as compared with FBP. Mean decrease in SSDE was 53% in the half-dose group. Diagnostic accuracy for the four datasets were in the range 92.6-96.2% (no statistical difference). iDose"4 level 4 was optimal for both the full- and half-dose groups. Protocols with iDose"4 level 4 allowed 53% reduction in SSDE without significantly affecting image quality and diagnostic accuracy. (orig.)

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info About Us News Physician ... such low-dose exposure. For more information about safety in pediatric radiology procedures, visit the Image Gently ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... such low-dose exposure. For more information about safety in pediatric radiology procedures, visit the Image Gently ...

  16. A new assessment model and tool for pediatric nurse practitioners.

    Science.gov (United States)

    Burns, C

    1992-01-01

    This article presents a comprehensive assessment model for pediatric nurse practitioner (PNP) practice that integrates familiar elements of the classical medical history, Gordon's Functional Health Patterns, and developmental fields into one system. This model drives the diagnostic reasoning process toward consideration of a broad range of disease, daily living (nursing diagnosis), and developmental diagnoses, which represents PNP practice better than the medical model does.

  17. Pediatric Melanoma and Drug Development

    Directory of Open Access Journals (Sweden)

    Klaus Rose

    2018-03-01

    Full Text Available Importance—Pediatric melanoma occurs, albeit rarely. Should patients be treated by today’s medical standards, or be subjected to medically unnecessary clinical studies? Observations—We identified international, industry-sponsored pediatric melanoma studies triggered by regulatory demands in www.clinicaltrials.gov and further pediatric melanoma studies demanded by European Union pediatric investigation plans. We retrieved related regulatory documents from the internet. We analyzed these studies for rationale and medical beneficence on the basis of physiology, pediatric clinical pharmacology and rationale. Regulatory authorities define children by chronological age, not physiologically. Newborns’ organs are immature but they develop and mature rapidly. Separate proof of efficacy in underage patients is justified formally/regulatorily but lacks medical sense. Children—especially post-puberty—and adults vis-a-vis medications are physiologically very similar. Two adolescent melanoma studies were terminated in 2016 because of waning recruitment, while five studies in pediatric melanoma and other solid tumors, triggered by European Union pediatric investigation plans, continue recruiting worldwide. Conclusions and Relevance—Regulatory-demanded pediatric melanoma studies are medically superfluous. Melanoma patients of all ages should be treated with effective combination treatment. Babies need special attention. Children need dose-finding and pharmacokinetic studies but adolescents metabolize and respond to drugs similarly to adults. Institutional Review Boards/ethics committees should suspend ongoing questionable pediatric melanoma studies and reject newly submitted questionable studies.

  18. Is this child sick? Usefulness of the Pediatric Assessment Triangle in emergency settings

    Directory of Open Access Journals (Sweden)

    Ana Fernandez

    2017-11-01

    Conclusions: The Pediatric Assessment Triangle is quickly spreading internationally and its clinical applicability is very promising. Nevertheless, it is imperative to promote research for clinical validation, especially for clinical use by emergency pediatricians and physicians.

  19. Free-breathing high-pitch 80kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose.

    Science.gov (United States)

    Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Beeres, Martin; Vogl, Thomas J; Scholtz, Jan-Erik

    2017-04-01

    To investigate image quality, presence of motion artifacts and effects on radiation dose of 80kVp high-pitch dual-source CT (DSCT) in combination with an advanced modeled iterative reconstruction algorithm (ADMIRE) of the pediatric chest compared to single-source CT (SSCT). The study was approved by the institutional review board. Eighty-seven consecutive pediatric patients (mean age 9.1±4.9years) received either free-breathing high-pitch (pitch 3.2) chest 192-slice DSCT (group 1, n=31) or standard-pitch (pitch 1.2) 128-slice SSCT (group 2, n=56) with breathing-instructions by random assignment. Tube settings were similar in both groups with 80 kVp and 74 ref. mAs. Images were reconstructed using FBP for both groups. Additionally, ADMIRE was used in group 1. Effective thorax diameter, image noise, and signal-to-noise ratio (SNR) of the pectoralis major muscle and the thoracic aorta were calculated. Motion artifacts were measured as doubling boarders of the diaphragm and the heart. Images were rated by two blinded readers for overall image quality and presence of motion artifacts on 5-point-scales. Size specific dose estimates (SSDE, mGy) and effective dose (ED, mSv) were calculated. Age and effective thorax diameter showed no statistically significant differences in both groups. Image noise and SNR were comparable (p>0.64) for SSCT and DSCT with ADMIRE, while DSCT with FBP showed inferior results (pchest DSCT in combination with ADMIRE reduces motion artifacts and increases image quality while lowering radiation exposure in free-breathing pediatric patients without sedation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA.

    Science.gov (United States)

    Han, Eun Young; Kim, Dong-Wook; Zhang, Xin; Penagaricano, Jose; Liang, Xiaoying; Hardee, Matthew; Morrill, Steve; Ratanatharathorn, Vaneerat

    2015-01-01

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently, the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  1. Laparoscopic skills assessment: an additional modality for pediatric surgery fellowship selection.

    Science.gov (United States)

    Hazboun, Rajaie; Rodriguez, Samuel; Thirumoorthi, Arul; Baerg, Joanne; Moores, Donald; Tagge, Edward P

    2017-12-01

    The Pediatric Surgery fellow selection is a multi-layered process which has not included assessment of surgical dexterity. Data was collected prospectively as part of the 2016 Pediatric Surgery Match interview process. Applicants completed a questionnaire to document laparoscopic experience and fine motor skills activities. Actual laparoscopic skills were assessed using a simulator. Time to complete an intracorporeal knot was tabulated. An initial rank list was formulated based only on the ERAS application and interview scores. The rank list was re-formulated following the laparoscopic assessment. Un-paired T-test and regression were utilized to analyze the data. Forty applicants were interviewed with 18 matched (45%). The mean knot tying time was 201.31s for matched and 202.35s for unmatched applicants. Playing a musical instrument correlated with faster knot tying (p=0.03). No correlation was identified between knot tying time and either video game experience (p=0.4) or passing the FLS exam (p=0.78). Laparoscopic skills assessment lead to significant reordering of rank list (p=0.01). Laparoscopic skills performance significantly impacted ranking. Playing a musical instrument correlated with faster knot tying. No correlation was identified between laparoscopic performance and passing the FLS exam or other activities traditionally believed to improve technical ability. Prospective study. Level II. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Radioprotection to the Gonads in Pediatric Pelvic Radiography: Effectiveness of Developed Bismuth Shield

    Directory of Open Access Journals (Sweden)

    Vahid Karami

    2017-06-01

    Full Text Available Background: The use and effectiveness of traditional lead gonad shields in pediatric pelvic radiography has been challenged by several literatures over the past two decades. The aim of this study was to develop a new radioprotective gonad shields to be use in pediatric pelvic radiography. Materials and Methods: The commercially available 0.06 mm lead equivalent bismuth garment has cropped squarely and used as ovarian shield to cover the entire region of pelvis. In order to prevent deterioration of image quality due to beam hardening artifacts, a 1-cm foam as spacer was located between the shield and patients pelvis. Moreover, we added a lead piece at the cranial position of the bismuth garment to absorb the scatter radiations to the radiosensitive organs. In girls, 49 radiographs with shield and 46 radiographs without shield was taken. The radiation dose was measured using thermoluminescent dosimeters (TLDs. Image quality assessments were performed using the European guidelines. For boys, the lead testicular shields was developed using 2 cm bismuth garment, added to the sides. The prevalence and efficacy of testicular shields was assessed in clinical practice fromFebruary 2016 to June 2016. Results: Without increasing the dose to the breast, thyroid and the lens of the eyes, the use of bismuth shield has reduced the entrance skin dose(ESD of the pelvis and radiation dose to the ovaries by 62.2% and 61.7%, respectively (P

  3. Radiation dose and cancer risk from pediatric CT examinations on 64-slice CT: A phantom study

    International Nuclear Information System (INIS)

    Feng Shiting; Law, Martin Wai-Ming; Huang Bingsheng; Ng, Sherry; Li Ziping; Meng Quanfei; Khong, Pek-Lan

    2010-01-01

    Objective: To measure the radiation dose from CT scans in an anthropomorphic phantom using a 64-slice MDCT, and to estimate the associated cancer risk. Materials and methods: Organ doses were measured with a 5-year-old phantom and thermoluminescent dosimeters. Four protocols; head CT, thorax CT, abdomen CT and pelvis CT were studied. Cancer risks, in the form of lifetime attributable risk (LAR) of cancer incidence, were estimated by linear extrapolation using the organ radiation doses and the LAR data. Results: The effective doses for head, thorax, abdomen and pelvis CT, were 0.7 mSv, 3.5 mSv, 3.0 mSv, 1.3 mSv respectively. The organs with the highest dose were; for head CT, salivary gland (22.33 mGy); for thorax CT, breast (7.89 mGy); for abdomen CT, colon (6.62 mGy); for pelvis CT, bladder (4.28 mGy). The corresponding LARs for boys and girls were 0.015-0.053% and 0.034-0.155% respectively. The organs with highest LARs were; for head CT, thyroid gland (0.003% for boys, 0.015% for girls); for thorax CT, lung for boys (0.014%) and breast for girls (0.069%); for abdomen CT, colon for boys (0.017%) and lung for girls (0.016%); for pelvis CT, bladder for both boys and girls (0.008%). Conclusion: The effective doses from these common pediatric CT examinations ranged from 0.7 mSv to 3.5 mSv and the associated lifetime cancer risks were found to be up to 0.16%, with some organs of higher radiosensitivity including breast, thyroid gland, colon and lungs.

  4. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    Trivedi, A.

    1990-12-01

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  5. MO-G-17A-04: Internal Dosimetric Calculations for Pediatric Nuclear Imaging Applications, Using Monte Carlo Simulations and High-Resolution Pediatric Computational Models

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitroulas, P; Kagadis, GC [University of Patras, Rion, Ahaia (Greece); Loudos, G [Technical Educational Institute of Athens, Aigaleo, Attiki (Greece)

    2014-06-15

    Purpose: Our purpose is to evaluate the administered absorbed dose in pediatric, nuclear imaging studies. Monte Carlo simulations with the incorporation of pediatric computational models can serve as reference for the accurate determination of absorbed dose. The procedure of the calculated dosimetric factors is described, while a dataset of reference doses is created. Methods: Realistic simulations were executed using the GATE toolkit and a series of pediatric computational models, developed by the “IT'IS Foundation”. The series of the phantoms used in our work includes 6 models in the range of 5–14 years old (3 boys and 3 girls). Pre-processing techniques were applied to the images, to incorporate the phantoms in GATE simulations. The resolution of the phantoms was set to 2 mm3. The most important organ densities were simulated according to the GATE “Materials Database”. Several used radiopharmaceuticals in SPECT and PET applications are being tested, following the EANM pediatric dosage protocol. The biodistributions of the several isotopes used as activity maps in the simulations, were derived by the literature. Results: Initial results of absorbed dose per organ (mGy) are presented in a 5 years old girl from the whole body exposure to 99mTc - SestaMIBI, 30 minutes after administration. Heart, kidney, liver, ovary, pancreas and brain are the most critical organs, in which the S-factors are calculated. The statistical uncertainty in the simulation procedure was kept lower than 5%. The Sfactors for each target organ are calculated in Gy/(MBq*sec) with highest dose being absorbed in kidneys and pancreas (9.29*10{sup 10} and 0.15*10{sup 10} respectively). Conclusion: An approach for the accurate dosimetry on pediatric models is presented, creating a reference dosage dataset for several radionuclides in children computational models with the advantages of MC techniques. Our study is ongoing, extending our investigation to other reference models and

  6. MO-G-17A-04: Internal Dosimetric Calculations for Pediatric Nuclear Imaging Applications, Using Monte Carlo Simulations and High-Resolution Pediatric Computational Models

    International Nuclear Information System (INIS)

    Papadimitroulas, P; Kagadis, GC; Loudos, G

    2014-01-01

    Purpose: Our purpose is to evaluate the administered absorbed dose in pediatric, nuclear imaging studies. Monte Carlo simulations with the incorporation of pediatric computational models can serve as reference for the accurate determination of absorbed dose. The procedure of the calculated dosimetric factors is described, while a dataset of reference doses is created. Methods: Realistic simulations were executed using the GATE toolkit and a series of pediatric computational models, developed by the “IT'IS Foundation”. The series of the phantoms used in our work includes 6 models in the range of 5–14 years old (3 boys and 3 girls). Pre-processing techniques were applied to the images, to incorporate the phantoms in GATE simulations. The resolution of the phantoms was set to 2 mm3. The most important organ densities were simulated according to the GATE “Materials Database”. Several used radiopharmaceuticals in SPECT and PET applications are being tested, following the EANM pediatric dosage protocol. The biodistributions of the several isotopes used as activity maps in the simulations, were derived by the literature. Results: Initial results of absorbed dose per organ (mGy) are presented in a 5 years old girl from the whole body exposure to 99mTc - SestaMIBI, 30 minutes after administration. Heart, kidney, liver, ovary, pancreas and brain are the most critical organs, in which the S-factors are calculated. The statistical uncertainty in the simulation procedure was kept lower than 5%. The Sfactors for each target organ are calculated in Gy/(MBq*sec) with highest dose being absorbed in kidneys and pancreas (9.29*10 10 and 0.15*10 10 respectively). Conclusion: An approach for the accurate dosimetry on pediatric models is presented, creating a reference dosage dataset for several radionuclides in children computational models with the advantages of MC techniques. Our study is ongoing, extending our investigation to other reference models and evaluating the

  7. Energy imparted-based estimates of the effect of z overscanning on adult and pediatric patient effective doses from multi-slice computed tomography

    International Nuclear Information System (INIS)

    Theocharopoulos, Nicholas; Damilakis, John; Perisinakis, Kostas; Gourtsoyiannis, Nicholas

    2007-01-01

    In the present study effective dose values normalized to computed tomography dose index measured free in air were calculated for adult, newborn, 1, 5, 10 and 15 year old patients regarding scans of the head, chest, abdomen, pelvis, abdomen and pelvis, and trunk, using the energy imparted method. The effect of z overscanning on patient doses was accounted for, and normalized doses are provided for varying beam collimation, pitch and reconstruction slice width values. The contribution of overscanning depends on patient age, anatomic region imaged, acquisition and reconstruction settings. For a head scan it constitutes 15% of the adult effective dose and 24% of the effective dose to a newborn but for an abdomen scan it may be as high as 58% for a newborn and 31% for an adult. The ratios of normalized pediatric doses relative to that for adults for helical scans depend not only on age but also on acquisition and reconstruction parameters, because of variations in the relative distance between the primary beam and the radiosensitive tissues/organs of the body. Regarding scans of the trunk, pediatric doses are up to a factor of 2.5 times higher compared to adult doses (abdominal scans), whereas for scans of the head up to a factor of 1.5. Increasing the pitch value of helical scans while maintaining the same effective mAs setting, and hence noise levels, leads to an increase in patient doses which depends on age, body region, scan and reconstruction parameters. The % difference between doses at pitch 1.5 and pitch 1 is more pronounced in the abdominal region (14% increase for adults) and in young patients (31% in a newborn and 18% in a 10 year old patient) and it is minimal in head scans (4% increase in newborns and 1% in adults). If multiple body regions are to be imaged, doses to adults can be reduced by up to 15% and 36% to children by performing single long-range scans. Scanning adult patients at 100 kVp instead of 120 kVp, results in a 32% reduction in effective

  8. MRI tracheomalacia (TM) assessment in pediatric patients

    DEFF Research Database (Denmark)

    Ciet, P.; Wielopolski, P.; Lever, S.

    Purpose: TM is an excessive narrowing of the intrathoracic part of the trachea. TM is a common congenital pediatric anomaly, but it’s often not recognized due to its unspecific clinical presentation. The aims of our study are: 1) to develop cine-MRI sequences to visualize central airways in static...... in pediatric population and allows avoiding radiation exposure and bronchoscopy for the evaluation of central airway dimensions....

  9. Pharmacologic treatment of acute pediatric methamphetamine toxicity.

    Science.gov (United States)

    Ruha, Anne-Michelle; Yarema, Mark C

    2006-12-01

    To report our experience with the use of benzodiazepines and haloperidol for sedation of pediatric patients with acute methamphetamine poisoning. We performed a retrospective chart review of 18 pediatric patients who were admitted to an intensive care unit for methamphetamine toxicity from January 1997 to October 2004 and treated with benzodiazepines or haloperidol. Clinical features, dose of drug received, and laboratory test results were noted. Adverse effects from the use of haloperidol such as prolonged QTc, dystonic reactions, and torsades de pointes were recorded. Eighteen patients received a benzodiazepine, the dose of which varied depending on the agent used. Twelve patients also received parenteral haloperidol. No complications developed from the use of either haloperidol or benzodiazepines. In this case series of pediatric patients poisoned with methamphetamine, parenteral benzodiazepines and haloperidol were used to control agitation. No serious adverse effects were observed from the use of these agents.

  10. Assessment of the Correlation between Appointment Scheduling and Patient Satisfaction in a Pediatric Dental Setup

    OpenAIRE

    Katre, Amar N.

    2014-01-01

    Introduction. The practice of modern pediatric dentistry requires delivery of quality care in combination with adherence to excellent business as well as time management principles. A definite appointment schedule should be presented to the parents on the first or second appointment. More importantly, the prescribed schedule should be followed to the best of the professional abilities of the pediatric dentist. Aims. The aim of the study was to assess the co-relation between appointment schedu...

  11. Phenobarbital in intensive care unit pediatric population: predictive performances of population pharmacokinetic model.

    Science.gov (United States)

    Marsot, Amélie; Michel, Fabrice; Chasseloup, Estelle; Paut, Olivier; Guilhaumou, Romain; Blin, Olivier

    2017-10-01

    An external evaluation of phenobarbital population pharmacokinetic model described by Marsot et al. was performed in pediatric intensive care unit. Model evaluation is an important issue for dose adjustment. This external evaluation should allow confirming the proposed dosage adaptation and extending these recommendations to the entire intensive care pediatric population. External evaluation of phenobarbital published population pharmacokinetic model of Marsot et al. was realized in a new retrospective dataset of 35 patients hospitalized in a pediatric intensive care unit. The published population pharmacokinetic model was implemented in nonmem 7.3. Predictive performance was assessed by quantifying bias and inaccuracy of model prediction. Normalized prediction distribution errors (NPDE) and visual predictive check (VPC) were also evaluated. A total of 35 infants were studied with a mean age of 33.5 weeks (range: 12 days-16 years) and a mean weight of 12.6 kg (range: 2.7-70.0 kg). The model predicted the observed phenobarbital concentrations with a reasonable bias and inaccuracy. The median prediction error was 3.03% (95% CI: -8.52 to 58.12%), and the median absolute prediction error was 26.20% (95% CI: 13.07-75.59%). No trends in NPDE and VPC were observed. The model previously proposed by Marsot et al. in neonates hospitalized in intensive care unit was externally validated for IV infusion administration. The model-based dosing regimen was extended in all pediatric intensive care unit to optimize treatment. Due to inter- and intravariability in pharmacokinetic model, this dosing regimen should be combined with therapeutic drug monitoring. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  12. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors

    OpenAIRE

    Tong Yu; Jun Gao; Zhi-Min Liu; Qi-Feng Zhang; Yong Liu; Ling Jiang; Yun Peng

    2017-01-01

    Background: Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors...

  13. Free-breathing high-pitch 80 kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Bodelle, Boris, E-mail: bbodelle@googlemail.com; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Beeres, Martin; Vogl, Thomas J.; Scholtz, Jan-Erik

    2017-04-15

    Objectives: To investigate image quality, presence of motion artifacts and effects on radiation dose of 80 kVp high-pitch dual-source CT (DSCT) in combination with an advanced modeled iterative reconstruction algorithm (ADMIRE) of the pediatric chest compared to single-source CT (SSCT). Materials and methods: The study was approved by the institutional review board. Eighty-seven consecutive pediatric patients (mean age 9.1 ± 4.9 years) received either free-breathing high-pitch (pitch 3.2) chest 192-slice DSCT (group 1, n = 31) or standard-pitch (pitch 1.2) 128-slice SSCT (group 2, n = 56) with breathing-instructions by random assignment. Tube settings were similar in both groups with 80 kVp and 74 ref. mAs. Images were reconstructed using FBP for both groups. Additionally, ADMIRE was used in group 1. Effective thorax diameter, image noise, and signal-to-noise ratio (SNR) of the pectoralis major muscle and the thoracic aorta were calculated. Motion artifacts were measured as doubling boarders of the diaphragm and the heart. Images were rated by two blinded readers for overall image quality and presence of motion artifacts on 5-point-scales. Size specific dose estimates (SSDE, mGy) and effective dose (ED, mSv) were calculated. Results: Age and effective thorax diameter showed no statistically significant differences in both groups. Image noise and SNR were comparable (p > 0.64) for SSCT and DSCT with ADMIRE, while DSCT with FBP showed inferior results (p < 0.01). Motion artifacts were reduced significantly (p = 0.001) with DSCT. DSCT with ADMIRE showed the highest overall IQ (p < 0.0001). Radiation dose was lower for DSCT compared to SSCT (median SSDE: 0.82 mGy vs. 0.92 mGy, p < 0.02; median ED: 0.4 mSv vs. 0.48 mSv, p = 0.02). Conclusions: High-pitch 80 kVp chest DSCT in combination with ADMIRE reduces motion artifacts and increases image quality while lowering radiation exposure in free-breathing pediatric patients without sedation.

  14. Free-breathing high-pitch 80 kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose

    International Nuclear Information System (INIS)

    Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Beeres, Martin; Vogl, Thomas J.; Scholtz, Jan-Erik

    2017-01-01

    Objectives: To investigate image quality, presence of motion artifacts and effects on radiation dose of 80 kVp high-pitch dual-source CT (DSCT) in combination with an advanced modeled iterative reconstruction algorithm (ADMIRE) of the pediatric chest compared to single-source CT (SSCT). Materials and methods: The study was approved by the institutional review board. Eighty-seven consecutive pediatric patients (mean age 9.1 ± 4.9 years) received either free-breathing high-pitch (pitch 3.2) chest 192-slice DSCT (group 1, n = 31) or standard-pitch (pitch 1.2) 128-slice SSCT (group 2, n = 56) with breathing-instructions by random assignment. Tube settings were similar in both groups with 80 kVp and 74 ref. mAs. Images were reconstructed using FBP for both groups. Additionally, ADMIRE was used in group 1. Effective thorax diameter, image noise, and signal-to-noise ratio (SNR) of the pectoralis major muscle and the thoracic aorta were calculated. Motion artifacts were measured as doubling boarders of the diaphragm and the heart. Images were rated by two blinded readers for overall image quality and presence of motion artifacts on 5-point-scales. Size specific dose estimates (SSDE, mGy) and effective dose (ED, mSv) were calculated. Results: Age and effective thorax diameter showed no statistically significant differences in both groups. Image noise and SNR were comparable (p > 0.64) for SSCT and DSCT with ADMIRE, while DSCT with FBP showed inferior results (p < 0.01). Motion artifacts were reduced significantly (p = 0.001) with DSCT. DSCT with ADMIRE showed the highest overall IQ (p < 0.0001). Radiation dose was lower for DSCT compared to SSCT (median SSDE: 0.82 mGy vs. 0.92 mGy, p < 0.02; median ED: 0.4 mSv vs. 0.48 mSv, p = 0.02). Conclusions: High-pitch 80 kVp chest DSCT in combination with ADMIRE reduces motion artifacts and increases image quality while lowering radiation exposure in free-breathing pediatric patients without sedation.

  15. Bone age assessment practices in infants and older children among Society for Pediatric Radiology members

    International Nuclear Information System (INIS)

    Breen, Micheal A.; Tsai, Andy; Stamm, Aymeric; Kleinman, Paul K.

    2016-01-01

    Numerous bone age estimation techniques exist, but little is known about what methods radiologists use in clinical practice. To determine which methods pediatric radiologists use to assess bone age in children, and their confidence in these methods. Society for Pediatric Radiology (SPR) members were invited to complete an online survey regarding bone age assessment. Respondents were asked to identify the methods used and their confidence with their technique for the following groups: Infants (<1 year old), 1- to 3-year-olds and 3- to 18-year-olds. Of the 937 SPR members invited, 441 responded (47%). For infants, 70% of respondents use the hand/wrist method of Greulich and Pyle, 27% use a hemiskeleton method (e.g., Sontag or Elgenmark), and 14.4% use the knee method of Pyle and Hoerr. Of these respondents, 34% were not confident with their technique. For 1- to 3-year-olds, 86% used Greulich and Pyle, and 19% used a hemiskeleton method; 21% were not confident with their technique in this age group. For 3- to 18-year-olds, 97% used Greulich and Pyle, and only 6% of respondents were not confident with their technique in this category. A logistic regression analysis demonstrated that the chronological age of the patient had the greatest impact on reader confidence, with the odds ratios for confidence being 4 times greater in the 3- to 18-year-olds category compared to the younger groups. For children older than 3 years, the majority of pediatric radiologists are very confident in their use of Greulich and Pyle for bone age assessment. However a variety of methodologies are used when assessing bone age in infants and younger children, and pediatric radiologists are less confident assessing bone age in these children. This survey highlights the need for a consensus protocol on bone age assessment of younger children and infants that provides readers with a higher degree of confidence. (orig.)

  16. Prehospital Care for the Adult and Pediatric Seizure Patient: Current Evidence Based Recommendations

    Directory of Open Access Journals (Sweden)

    Eric C. Silverman

    2017-04-01

    Full Text Available Introduction: We sought to develop evidence-based recommendations for the prehospital evaluation and treatment of adult and pediatric patients with a seizure and to compare these recommendations against the current protocol used by the 33 emergency medical services (EMS agencies in California. Methods: We performed a review of the evidence in the prehospital treatment of patients with a seizure, and then compared the seizure protocols of each of the 33 EMS agencies for consistency with these recommendations. We analyzed the type and route of medication administered, number of additional rescue doses permitted, and requirements for glucose testing prior to medication. The treatment for eclampsia and seizures in pediatric patients were analyzed separately. Results: Protocols across EMS Agencies in California varied widely. We identified multiple drugs, dosages, routes of administration, re-dosing instructions, and requirement for blood glucose testing prior to medication delivery. Blood glucose testing prior to benzodiazepine administration is required by 61% (20/33 of agencies for adult patients and 76% (25/33 for pediatric patients. All agencies have protocols for giving intramuscular benzodiazepines and 76% (25/33 have protocols for intranasal benzodiazepines. Intramuscular midazolam dosages ranged from 2 to 10 mg per single adult dose, 2 to 8 mg per single pediatric dose, and 0.1 to 0.2 mg/kg as a weight-based dose. Intranasal midazolam dosages ranged from 2 to 10 mg per single adult or pediatric dose, and 0.1 to 0.2 mg/kg as a weight-based dose. Intravenous/intrasosseous midazolam dosages ranged from 1 to 6 mg per single adult dose, 1 to 5 mg per single pediatric dose, and 0.05 to 0.1 mg/kg as a weight-based dose. Eclampsia is specifically addressed by 85% (28/33 of agencies. Forty-two percent (14/33 have a protocol for administering magnesium sulfate, with intravenous dosages ranging from 2 to 6 mg, and 58% (19/33 allow benzodiazepines to be

  17. Optimization of hybrid iterative reconstruction level and evaluation of image quality and radiation dose for pediatric cardiac computed tomography angiography

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Liang, Changhong [Southern Medical University, Guangzhou (China); Guangdong Academy of Medical Sciences, Dept. of Radiology, Guangdong General Hospital, Guangzhou (China); Zhuang, Jian [Guangdong Academy of Medical Sciences, Dept. of Cardiac Surgery, Guangdong Cardiovascular Inst., Guangdong Provincial Key Lab. of South China Structural Heart Disease, Guangdong General Hospital, Guangzhou (China); Huang, Meiping [Guangdong Academy of Medical Sciences, Dept. of Radiology, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Dept. of Catheterization Lab, Guangdong Cardiovascular Inst., Guangdong Provincial Key Lab. of South China Structural Heart Disease, Guangdong General Hospital, Guangzhou (China); Liu, Hui [Guangdong Academy of Medical Sciences, Dept. of Radiology, Guangdong General Hospital, Guangzhou (China)

    2017-01-15

    Hybrid iterative reconstruction can reduce image noise and produce better image quality compared with filtered back-projection (FBP), but few reports describe optimization of the iteration level. We optimized the iteration level of iDose{sup 4} and evaluated image quality for pediatric cardiac CT angiography. Children (n = 160) with congenital heart disease were enrolled and divided into full-dose (n = 84) and half-dose (n = 76) groups. Four series were reconstructed using FBP, and iDose{sup 4} levels 2, 4 and 6; we evaluated subjective quality of the series using a 5-grade scale and compared the series using a Kruskal-Wallis H test. For FBP and iDose{sup 4}-optimal images, we compared contrast-to-noise ratios (CNR) and size-specific dose estimates (SSDE) using a Student's t-test. We also compared diagnostic-accuracy of each group using a Kruskal-Wallis H test. Mean scores for iDose{sup 4} level 4 were the best in both dose groups (all P < 0.05). CNR was improved in both groups with iDose{sup 4} level 4 as compared with FBP. Mean decrease in SSDE was 53% in the half-dose group. Diagnostic accuracy for the four datasets were in the range 92.6-96.2% (no statistical difference). iDose{sup 4} level 4 was optimal for both the full- and half-dose groups. Protocols with iDose{sup 4} level 4 allowed 53% reduction in SSDE without significantly affecting image quality and diagnostic accuracy. (orig.)

  18. Dose assessment for brachytherapy with Henschke applicator

    International Nuclear Information System (INIS)

    Yu, Pei-Chieh; Chao, Tsi-Chian; Tung, Chuan-Jong; Wu, Ching-Jung; Lee, Chung-Chi

    2011-01-01

    Dose perturbation caused by the Henschke applicator is a major concern for the brachytherapy planning system (BPS) in recent years. To investigate dose impact owing to neglect of the metal shielding effect, Monte Carlo (MC) simulation, BPS calculation, and film measurement have been performed for dose assessment in a water phantom. Additionally, a cylindrical air cavity representing the rectum was added into the MC simulation to study its effect on dose distribution. Monte Carlo N-Particle Transport Code (MCNP) was used in this study to simulate the dose distribution using a mesh tally. This Monte Carlo simulation has been validated using the TG-43 data in a previous report. For the measurement, the Henschke applicator was placed in a specially-designed phantom, and Gafchromic films were inserted in the center plane for 2D dose assessment. Isodose distributions with and without the Henschke applicator by the MC simulation show significant deviation from those by the BPS. For MC simulation, the isodose curves shrank more significantly when the metal applicator was applied. For the impact of the added air cavity, the results indicate that it is hard to distinguish between with and without the cavity. Thus, the rectum cavity has little impact on the dose distribution around the Henschke applicator.

  19. Preliminary Validation of a Parent-Child Relational Framework for Teaching Developmental Assessment to Pediatric Residents.

    Science.gov (United States)

    Regalado, Michael; Schneiderman, Janet U; Duan, Lei; Ragusa, Gisele

    A parent-child relational framework was used as a method to train pediatric residents in basic knowledge and observation skills for the assessment of child development. Components of the training framework and its preliminary validation as an alternative to milestone-based approaches are described. Pediatric residents were trained during a 4-week clinical rotation to use a semistructured interview and observe parent-child behavior during health visits using clinical criteria for historical information and observed behavior that reflect developmental change in the parent-child relationship. Clinical impressions of concern versus no concern for developmental delay were derived from parent-child relational criteria and the physical examination. A chart review yielded 330 preterm infants evaluated using this methodology at 4 and 15 months corrected age who also had standardized developmental testing at 6 and 18 months corrected age. Sensitivities and specificities were computed to examine the validity of the clinical assessment compared with standardized testing. A subset of residents who completed 50 or more assessments during the rotation was timed at the end of 4 weeks. Parent-child behavioral markers elicited from the history and/or observed during the health visit correlated highly with standardized developmental assessment. Sensitivities and specificities were 0.72/0.98 and 0.87/0.96 at 4 to 6 and 15 to 18 months, respectively. Residents completed their assessments parent-child relational framework is a potentially efficient and effective approach to training residents in the clinical knowledge and skills of child development assessment. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  20. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk [Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

  1. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    International Nuclear Information System (INIS)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment

  2. Improved spatial resolution and lower-dose pediatric CT imaging: a feasibility study to evaluate narrowing the X-ray photon energy spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Mark G. [Safer Pediatric Imaging and Engineering Horizons International, Lincoln, VT (United States); Benz, Matthew W. [Southboro Medical Group, Southboro, MA (United States); Birnbaum, Steven B. [Dartmouth Hitchcock Clinic Manchester, Department of Radiology, Manchester, NH (United States); Chason, Eric; Sheldon, Brian W. [Brown University, Division of Engineering, Materials Science and Engineering Program, Providence, RI (United States); McGuire, Dale [R and D Manager, C and G Technologies Inc., Jeffersonville, IN (United States)

    2014-08-15

    This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique. (orig.)

  3. Determination of environmental radioactivity for dose assessment

    International Nuclear Information System (INIS)

    Nakoaka, A.; Fukushima, M.; Takagi, S.

    1980-01-01

    A method was devised to determine detection limits for radioactivity in environmental samples. The method is based on the 5 mrem/yr whole-body dose objective established by the Japan Atomic Enerty Commission and is valid for assessing the internal dose from radionuclides in the environment around a nuclear facility. Eleven samples and 15 radionuclides were considered. Internal dose was assumed to be one-half of the total dose (5 mrem/yr) and was assessed using the critical pathway method. Needed detection limits (NDLs) were established to confirm the dose of 5 mrem/yr when there was more than one radionuclide per sample. The NDLs for γ-emitters were 10 -5 pCi/l. for air; 10 -3 pCi/l. for seawater; 10 -1 pCi/l. for drinking water; 10 0 pCi/kg for vegetables and fish; 10 0 pCi/l. for milk; and 10 1 pCi/kg for molluscs, crustaceans, seaweeds, soil and submarine sediments. The NDLs for β-emitters were 1-1/100 of those for γ-emitters. (author)

  4. Pediatric cardiac catheterization procedure with dexmedetomidine sedation: Radiographic airway patency assessment

    Directory of Open Access Journals (Sweden)

    Ashwini Thimmarayappa

    2015-01-01

    Full Text Available Aims: The aim of the study was to measure airway patency objectively during dexmedetomidine sedation under radiographic guidance in spontaneously breathing pediatric patients scheduled for cardiac catheterization procedures. Subjects and Methods: Thirty-five patients in the age group 5-10 years scheduled for cardiac catheterization procedures were enrolled. All study patients were given loading dose of dexmedetomidine at 1 mg/kg/min for 10 min and then maintenance dose of 1.5 mg/kg/h. Radiographic airway patency was assessed at the start of infusion (0 min and after 30 min. Antero-posterior (AP diameters were measured manually at the nasopharyngeal and retroglossal levels. Dynamic change in airway between inspiration and expiration was considered a measure of airway collapsibility. Patients were monitored for hemodynamics, recovery time and complications. Statistical Analysis: Student paired t-test was used for data analysis. P < 0.05 was considered significant. Results: Minimum and maximum AP diameters were compared at 0 and 30 min. Nasopharyngeal level showed significant reduction in the minimum (6.27 ± 1.09 vs. 4.26 ± 1.03, P < 0.0001 and maximum (6.51 ± 1.14 vs. 5.99 ± 1.03, P < 0.0001 diameters. Similarly retroglossal level showed significant reduction in the minimum (6.98 ± 1.09 vs. 5.27 ± 1.15, P < 0.0001 and maximum (7.49 ± 1.22 vs. 6.92 ± 1.12, P < 0.0003 diameters. The degree of collapsibility was greater at 30 min than baseline ( P < 0.0001. There was a significant decrease in heart rate ( P < 0.0001, and the average recovery time was 39.86 ± 12.22 min. Conclusion: Even though airway patency was maintained in all children sedated with dexmedetomidine, there were significant reductions in the upper airway dimensions measured, so all precautions to manage the airway failure should be taken.

  5. Pediatric digital radiography education for radiologic technologists: current state

    International Nuclear Information System (INIS)

    Morrison, Gregory; Culbertson, John; Carbonneau, Kira; John, Susan D.; Goske, Marilyn J.; Smith, Susan N.; Charkot, Ellen; Herrmann, Tracy

    2011-01-01

    Digital radiography (DR) is one of several new products that have changed our work processes from hard copy to digital formats. The transition from analog screen-film radiography to DR requires thorough user education because of differences in image production, processing, storage and evaluation between the forms of radiography. Without adequate education, radiologic technologists could unknowingly expose children to higher radiation doses than necessary for adequate radiograph quality. To evaluate knowledge about image quality and dose management in pediatric DR among radiologic technologists in the U.S. This communication describes a survey of 493 radiologic technologists who are members of the American Society of Radiologic Technologists (ASRT) and who evaluated the current state of radiological technologist education in image quality and dose management in pediatric DR. The survey included 23 survey questions regarding image acquisition issues, quality assurance, radiation exposure and education in DR of infants and children. Radiologic technologists express many needs in areas of training and education in pediatric DR. Suggested improvements include better tools for immediate feedback about image quality and exposure, more information about appropriate technique settings for pediatric patients, more user-friendly vendor manuals and educational materials, more reliable measures of radiation exposure to patients, and more regular and frequent follow-up by equipment vendors. There is a clear and widespread need for comprehensive and practical education in digital image technology for radiologic technologists, especially those engaged in pediatric radiography. The creation of better educational materials and training programs, and the continuation of educational opportunities will require a broad commitment from equipment manufacturers and vendors, educational institutions, pediatric radiology specialty organizations, and individual imaging specialists. (orig.)

  6. Assessment of Pain Management in Pediatric Emergency Department in Mashhad -Iran

    Directory of Open Access Journals (Sweden)

    Ahmadshah Farhat

    2013-12-01

    Full Text Available Introduction: Pain may be described as a sensation of hurt or strong discomfort and is the body's way of sending message to the brain that an injury has occurred. Pain medicines block these messages or reduce their effect on the brain. Accurate administration of analgesia have a long –lasting effect on children whole experience of medical care and affects parents' and children's future reaction to pediatrics emergency departments. The purpose of this study was to evaluate pain management on children in our emergency department. Materials and Methods: In this study we evaluated the relief of pain and anxiety on 100 children who referred to our pediatric Emergency Department (ED in Imam Reza Hospital- Mashhad .The patients were assessed based on the American Academy of Pediatrics (AAP recommendations about pain.  Results: Patients were gone under IV Line 97%, Intubation 5% and Lumbar Puncture 28%. Training had been provided to 70% participants in the Emergency Department. Nonpharmacologic stress reduction was used in 35% of cases. Family presence was allowed only in 5%. Prehospital pain controlling was began on 20% of patients and continued in ED on 40%. At the time of discharge 40% prescribed analgesics. Sedation and pain prophylaxis was provided for 10% of patients undergoing painful procedures in ED.  Conclusion: According to results, pain management in our Pediatric Emergency Department was inadequate. Physicians and prehospital EMS providers should be justified about the importance of pain relieving and trained how to use all available analgesic and sedative options.

  7. Methodology Used to Assess Acceptability of Oral Pediatric Medicines: A Systematic Literature Search and Narrative Review.

    Science.gov (United States)

    Mistry, Punam; Batchelor, Hannah

    2017-06-01

    Regulatory guidelines require that any new medicine designed for a pediatric population must be demonstrated as being acceptable to that population. There is currently no guidance on how to conduct or report on acceptability testing. Our objective was to undertake a review of the methods used to assess the acceptability of medicines within a pediatric population and use this review to propose the most appropriate methodology. We used a defined search strategy to identify literature reports of acceptability assessments of medicines conducted within pediatric populations and extracted information about the tools used in these studies for comparison across studies. In total, 61 articles were included in the analysis. Palatability was the most common (54/61) attribute measured when evaluating acceptability. Simple scale methods were most commonly used, with visual analog scales (VAS) and hedonic scales used both separately and in combination in 34 of the 61 studies. Hedonic scales alone were used in 14 studies and VAS alone in just five studies. Other tools included Likert scales; forced choice or preference; surveys or questionnaires; observations of facial expressions during administration, ease of swallowing, or ability to swallow the dosage; prevalence of complaints or refusal to take the medicine; and time taken for a nurse to administer the medicine. The best scale in terms of validity, reliability, feasibility, and preference to use when assessing acceptability remains unclear. Further work is required to select the most appropriate method to justify whether a medicine is acceptable to a pediatric population.

  8. Interactive Rapid Dose Assessment Model (IRDAM): reactor-accident assessment methods. Vol.2

    International Nuclear Information System (INIS)

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness, the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This document describes the technical bases for IRDAM including methods, models and assumptions used in calculations. IRDAM calculates whole body (5-cm depth) and infant thyroid doses at six fixed downwind distances between 500 and 20,000 meters. Radionuclides considered primarily consist of noble gases and radioiodines. In order to provide a rapid assessment capability consistent with the capacity of the Osborne-1 computer, certain simplifying approximations and assumptions are made. These are described, along with default values (assumptions used in the absence of specific input) in the text of this document. Two companion volumes to this one provide additional information on IRDAM. The user's Guide (NUREG/CR-3012, Volume 1) describes the setup and operation of equipment necessary to run IRDAM. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios

  9. Interactive Rapid Dose Assessment Model (IRDAM): user's guide

    International Nuclear Information System (INIS)

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This User's Guide provides instruction in the setup and operation of the equipment necessary to run IRDAM. Instructions are also given on how to load the magnetic disks and access the interactive part of the program. Two other companion volumes to this one provide additional information on IRDAM. Reactor Accident Assessment Methods (NUREG/CR-3012, Volume 2) describes the technical bases for IRDAM including methods, models and assumptions used in calculations. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios

  10. Uncertainty on faecal analysis on dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Juliao, Ligia M.Q.C.; Melo, Dunstana R.; Sousa, Wanderson de O.; Santos, Maristela S.; Fernandes, Paulo Cesar P. [Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear, Av. Salvador Allende s/n. Via 9, Recreio, CEP 22780-160, Rio de Janeiro, RJ (Brazil)

    2007-07-01

    Monitoring programmes for internal dose assessment may need to have a combination of bioassay techniques, e.g. urine and faecal analysis, especially in workplaces where compounds of different solubilities are handled and also in cases of accidental intakes. Faecal analysis may be an important data for assessment of committed effective dose due to exposure to insoluble compounds, since the activity excreted by urine may not be detectable, unless a very sensitive measurement system is available. This paper discusses the variability of the daily faecal excretion based on data from just one daily collection; collection during three consecutive days: samples analysed individually and samples analysed as a pool. The results suggest that just 1 d collection is not appropriate for dose assessment, since the 24 h uranium excretion may vary by a factor of 40. On the basis of this analysis, the recommendation should be faecal collection during three consecutive days, and samples analysed as a pool, it is more economic and faster. (authors)

  11. Assessment of low absorbed dose with a MOSFET detector

    International Nuclear Information System (INIS)

    Butson, M.J.; Cancer Services, Wollongong, NSW; Cheung, T.; Yu, P.K.N.

    2004-01-01

    Full text: The ability of a MOSFET dosimetry system to measure low therapeutic doses has been evaluated for accuracy for high energy x-ray radiotherapy applications. The MOSFET system in high sensitivity mode produces a dose measurement reproducibility of within 10%, 4% and 2.5% for 2 cGy, 5 cGy and 10cGy dose assessment respectively. This is compared to 7%, 4% and 2% for an Attix parallel plate ionisation chamber and 20%, 7% and 3.5% for a Wellhofer IC4 small volume ionisation chamber. Results for our dose standard thimble ionisation chamber and low noise farmer dosemeter were 2%, 0.5% and 0.25% respectively for these measurements. The quoted accuracy of the MOSFET dosimetry system is partially due to the slight non linear dose response (reduced response) with age of the detector but mainly due to the intrinsic variations in measured voltage differential per applied dose. Results have shown that the MOSFET dosimetry system provides an adequate measure of dose at low dose levels and is comparable in accuracy to the Attix parallel plate ionisation chambers for relative dose assessment at levels of 2cGy to 10cGy. The use of the MOSFET dosimeter at low doses can extend the life expectancy of the device and may provide useful information for areas where low dose assessment is required. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  12. Assessment of swallowability and palatability of oral dosage forms in children: Report from an M-CERSI pediatric formulation workshop.

    Science.gov (United States)

    Ternik, Robert; Liu, Fang; Bartlett, Jeremy A; Khong, Yuet Mei; Thiam Tan, David Cheng; Dixit, Trupti; Wang, Siri; Galella, Elizabeth A; Gao, Zhihui; Klein, Sandra

    2018-02-05

    The acceptability of pediatric pharmaceutical products to patients and their caregivers can have a profound impact on the resulting therapeutic outcome. However, existing methodology and approaches used for acceptability assessments for pediatric products is fragmented, making robust and consistent product evaluations difficult. A pediatric formulation development workshop took place in Washington, DC in June 2016 through the University of Maryland's Center of Excellence in Regulatory Science and Innovation (M-CERSI). A session at the workshop was dedicated to acceptability assessments and focused on two major elements that affect the overall acceptability of oral medicines, namely swallowability and palatability. The session started with presentations to provide an overview of literature, background and current state on swallowability and palatability assessments. Five parallel breakout discussions followed the presentations on each element, focusing on three overarching themes, risk-based approaches, methodology and product factors. This article reports the key outcomes of the workshop related to swallowability and palatability assessments. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Needs assessment for collaborative network in pediatric clinical research and education.

    Science.gov (United States)

    Ishiguro, Akira; Sasaki, Hatoko; Yahagi, Naohisa; Kato, Hitoshi; Kure, Shigeo; Mori, Rintaro

    2017-01-01

    A collaborative network for pediatric research has not been fully established in Japan. To identify the network infrastructure, we conducted a survey on the support and education for clinical research currently available in children's hospitals. In November 2014, a 27-question survey was distributed to 31 hospitals belonging to the Japanese Association of Children's Hospitals and Related Institutions (JACHRI) to assess clinical research support, research education, research achievements, and their expectations. All the hospitals responded to the survey. Overall, 74.2% of hospitals had clinical research support divisions. Although all hospitals had ethics committees, manager, intellectual property management unit, biostatistician, and English-language editor. Seven hospitals had education programs for clinical research. The number of seminars and workshops for clinical research had significant correlations with the number of physicians (r = 0.927), pediatricians (r = 0.922), and clinical trial management physicians (r = 0.962). There was a significant difference in the number of clinical trials initiated by physicians between hospitals with research education programs and those without (P leader to establish a collaborative network for clinical research. Important factors for creating a collaborative system for pediatric research in Japan were identified. Human resources to support clinical research are a key factor to improve clinical research education and research achievements. © 2016 Japan Pediatric Society.

  14. Confidence in Assessment of Lumbar Spondylolysis Using Three-Dimensional Volumetric T2-Weighted MRI Compared With Limited Field of View, Decreased-Dose CT.

    Science.gov (United States)

    Delavan, Joshua Adam; Stence, Nicholas V; Mirsky, David M; Gralla, Jane; Fadell, Michael F

    2016-07-01

    Limited z-axis-coverage computed tomography (CT) to evaluate for pediatric lumbar spondylolysis, altering the technique such that the dose to the patient is comparable or lower than radiographs, is currently used at our institution. The objective of the study was to determine whether volumetric 3-dimensional fast spin echo magnetic resonance imaging (3D MRI) can provide equal or greater diagnostic accuracy compared with limited CT in the diagnosis of pediatric lumbar spondylolysis without ionizing radiation. Volumetric 3D MRI can provide equal or greater diagnostic accuracy compared with low-dose CT for pediatric lumbar spondylolysis without ionizing radiation. Clinical review. Level 2. Three pediatric neuroradiologists evaluated 2-dimensional (2D) MRI, 2D + 3D MRI, and limited CT examinations in 42 pediatric patients who obtained imaging for low back pain and suspected spondylolysis. As there is no gold standard for the diagnosis of spondylolysis besides surgery, interobserver agreement and degree of confidence were compared to determine which modality is preferable. Decreased-dose CT provided a greater level of agreement than 2D MRI and 2D + 3D MRI. The kappa for rater agreement with 2D MRI, 2D + 3D MRI, and CT was 0.19, 0.32, and 1.0, respectively. All raters agreed in 31%, 40%, and 100% of cases with 2D MRI, 2D + 3D MRI, and CT. Lack of confidence was significantly lower with CT (0%) than with 2D MRI (30%) and 2D + 3D MRI (25%). For diagnosing spondylolysis, radiologist agreement and confidence trended toward improvement with the addition of a volumetric 3D MRI sequence to standard 2D MRI sequences compared with 2D MRI alone; however, agreement and confidence remain significantly greater using decreased-dose CT when compared with either MRI acquisition. Decreased-dose CT of the lumbar spine remains the optimal examination to confirm a high suspicion of spondylolysis, with dose essentially equivalent to radiographs. If clinical symptoms are not classic for

  15. Case Study of High-Dose Ketamine for Treatment of Complex Regional Pain Syndrome in the Pediatric Intensive Care Unit.

    Science.gov (United States)

    Pasek, Tracy Ann; Crowley, Kelli; Campese, Catherine; Lauer, Rachel; Yang, Charles

    2017-06-01

    Complex regional pain syndrome (CRPS) is a life-altering and debilitating chronic pain condition. The authors are presenting a case study of a female who received high-dose ketamine for the management of her CRPS. The innovative treatment lies not only within the pharmacologic management of her pain, but also in the fact that she was the first patient to be admitted to our pediatric intensive care unit solely for pain control. The primary component of the pharmacotherapy treatment strategy plan was escalating-dose ketamine infusion via patient-controlled-analgesia approved by the pharmacy and therapeutics committee guided therapy for this patient. The expertise of advanced practice nurses blended exquisitely to ensure patient and family-centered care and the coordination of care across the illness trajectory. The patient experienced positive outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Prophylactic antibiotics in pediatric shunt surgery.

    Science.gov (United States)

    Biyani, N; Grisaru-Soen, G; Steinbok, P; Sgouros, S; Constantini, S

    2006-11-01

    The optimal antibiotic prophylaxis for pediatric shunt-related procedures is not clear. There is much inconsistency among different medical centers. This paper summarizes and analyzes the various prophylactic antibiotic regiments used for shunt-related surgeries at different pediatric neurosurgery centers in the world. A survey questionnaire was distributed through the Pediatric Neurosurgery list-server (an e-mail-based special interest group in pediatric neurosurgery). Forty-five completed questionnaires were received, one per medical center, primarily from pediatric neurosurgeons with the following geographic breakdown: 25 from North America, 13 from Europe, and 7 from Asia and other countries. All centers routinely administered prophylactic antibiotics for shunt-related procedures. The drugs of choice were first-generation cephalosporins (23), second-generation cephalosporins (10), naficillin/oxacillin (4), vancomycin (3), clindamycin (1), amoxicillin (1), and mixed protocols in three centers. The initial drug administration ("first dose") was: in the department before transfer to operating room (5), upon arrival to operating room (11), at induction of anesthesia (13), and at initial skin incision (16). The duration of antibiotic dosage also varied: single dose (13), 24-h administration (26), 48-h administration (2), and longer than 48 h in four centers. Two general tendencies were noted, common to the majority of participating centers. There was a general trend to modify antibiotic treatment protocol in "high-risk" populations. The second common theme noted in more than half of responding centers was the use of long-term antibiotic treatment for externalized devices (such as externalized shunts, external ventricular drains or lumbar drains), usually till the device was in place.

  17. Influence of Flat-Panel Fluoroscopic Equipment Variables on Cardiac Radiation Doses

    International Nuclear Information System (INIS)

    Nickoloff, Edward L.; Lu Zhengfeng; Dutta, Ajoy; So, James; Balter, Stephen; Moses, Jeffrey

    2007-01-01

    Purpose. To assess the influence of physician-selectable equipment variables on the potential radiation dose reductions during cardiac catheterization examinations using modern imaging equipment. Materials. A modern bi-plane angiography unit with flat-panel image receptors was used. Patients were simulated with 15-30 cm of acrylic plastic. The variables studied were: patient thickness, fluoroscopy pulse rates, record mode frame rates, image receptor field-of-view (FoV), automatic dose control (ADC) mode, SID/SSD geometry setting, automatic collimation, automatic positioning, and others. Results. Patient radiation doses double for every additional 3.5-4.5 cm of soft tissue. The dose is directly related to the imaging frame rate; a decrease from 30 pps to 15 pps reduces the dose by about 50%. The dose is related to [(FoV) -N ] where 2.0 < N < 3.0. Suboptimal positioning of the patient can nearly double the dose. The ADC system provides three selections that can vary the radiation level by 50%. For pediatric studies (2-5 years old), the selection of equipment variables can result in entrance radiation doses that range between 6 and 60 cGy for diagnostic cases and between 15 and 140 cGy for interventional cases. For adult studies, the equipment variables can produce entrance radiation doses that range between 13 and 130 cGy for diagnostic cases and between 30 and 400 cGy for interventional cases. Conclusions. Overall dose reductions of 70-90% can be achieved with pediatric patients and about 90% with adult patients solely through optimal selection of equipment variables

  18. Assessing Competence in Pediatric Cardiology

    Science.gov (United States)

    Johnson, Apul E.; And Others

    1976-01-01

    In response to the need to assure physician competence, a rating scale was developed at the University of Minnesota Medical School for use in evaluating clinical competence in pediatric cardiology. It was tested on first- and second-year specialists. Development and testing procedures are described. (JT)

  19. Measurement Properties of Questionnaires Assessing Complementary and Alternative Medicine Use in Pediatrics: A Systematic Review

    Science.gov (United States)

    Toupin April, Karine; Moher, David; Stinson, Jennifer; Byrne, Ani; White, Meghan; Boon, Heather; Duffy, Ciarán M.; Rader, Tamara; Vohra, Sunita; Tugwell, Peter

    2012-01-01

    Objective Complementary and alternative medicine (CAM) is commonly used by children, but estimates of that use vary widely partly due to the range of questionnaires used to assess CAM use. However, no studies have attempted to appraise measurement properties of these questionnaires. The aim of this systematic review was to critically appraise and summarize measurement properties of questionnaires of CAM use in pediatrics. Study design A search strategy was implemented in major electronic databases in March 2011 and conference websites, scientific journals and experts were consulted. Studies were included if they mentioned a questionnaire assessing the prevalence of CAM use in pediatrics. Members of the team independently rated the methodological quality of the studies (using the COSMIN checklist) and measurement properties of the questionnaires (using the Terwee and Cohen criteria). Results A total of 96 CAM questionnaires were found in 104 publications. The COSMIN checklist showed that no studies reported adequate methodological quality. The Terwee criteria showed that all included CAM questionnaires had indeterminate measurement properties. According to the Cohen score, none were considered to be a well-established assessment, two approached the level of a well-established assessment, seven were promising assessments and the remainder (n = 87) did not reach the score’s minimum standards. Conclusion None of the identified CAM questionnaires have been thoroughly validated. This systematic review highlights the need for proper validation of CAM questionnaires in pediatrics, which may in turn lead to improved research and knowledge translation about CAM in clinical practice. PMID:22768098

  20. Quality of evidence-based pediatric guidelines

    NARCIS (Netherlands)

    Boluyt, Nicole; Lincke, Carsten R.; Offringa, Martin

    2005-01-01

    Objective. To identify evidence-based pediatric guidelines and to assess their quality. Methods. We searched Medline, Embase, and relevant Web sites of guideline development programs and national pediatric societies to identify evidence-based pediatric guidelines. A list with titles of identified

  1. Development of Reliable and Validated Tools to Evaluate Technical Resuscitation Skills in a Pediatric Simulation Setting: Resuscitation and Emergency Simulation Checklist for Assessment in Pediatrics.

    Science.gov (United States)

    Faudeux, Camille; Tran, Antoine; Dupont, Audrey; Desmontils, Jonathan; Montaudié, Isabelle; Bréaud, Jean; Braun, Marc; Fournier, Jean-Paul; Bérard, Etienne; Berlengi, Noémie; Schweitzer, Cyril; Haas, Hervé; Caci, Hervé; Gatin, Amélie; Giovannini-Chami, Lisa

    2017-09-01

    To develop a reliable and validated tool to evaluate technical resuscitation skills in a pediatric simulation setting. Four Resuscitation and Emergency Simulation Checklist for Assessment in Pediatrics (RESCAPE) evaluation tools were created, following international guidelines: intraosseous needle insertion, bag mask ventilation, endotracheal intubation, and cardiac massage. We applied a modified Delphi methodology evaluation to binary rating items. Reliability was assessed comparing the ratings of 2 observers (1 in real time and 1 after a video-recorded review). The tools were assessed for content, construct, and criterion validity, and for sensitivity to change. Inter-rater reliability, evaluated with Cohen kappa coefficients, was perfect or near-perfect (>0.8) for 92.5% of items and each Cronbach alpha coefficient was ≥0.91. Principal component analyses showed that all 4 tools were unidimensional. Significant increases in median scores with increasing levels of medical expertise were demonstrated for RESCAPE-intraosseous needle insertion (P = .0002), RESCAPE-bag mask ventilation (P = .0002), RESCAPE-endotracheal intubation (P = .0001), and RESCAPE-cardiac massage (P = .0037). Significantly increased median scores over time were also demonstrated during a simulation-based educational program. RESCAPE tools are reliable and validated tools for the evaluation of technical resuscitation skills in pediatric settings during simulation-based educational programs. They might also be used for medical practice performance evaluations. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Real time source term and dose assessment

    International Nuclear Information System (INIS)

    Breznik, B.; Kovac, A.; Mlakar, P.

    2001-01-01

    The Dose Projection Programme is a tool for decision making in case of nuclear emergency. The essential input data for quick emergency evaluation in the case of hypothetical pressurised water reactor accident are following: source term, core damage assessment, fission product radioactivity, release source term and critical exposure pathways for an early phase of the release. A reduced number of radio-nuclides and simplified calculations can be used in dose calculation algorithm. Simple expert system personal computer programme has been developed for the Krsko Nuclear Power Plant for dose projection within the radius of few kilometers from the pressurised water reactor in early phase of an accident. The input data are instantaneous data of core activity, core damage indicators, release fractions, reduction factor of the release pathways, spray operation, release timing, and dispersion coefficient. Main dose projection steps are: accurate in-core radioactivity determination using reactor power input; core damage and in-containment source term assessment based on quick indications of instrumentation or on activity analysis data; user defines release pathway for typical PWR accident scenarius; dose calculation is performed only for exposure pathway critical for decision about evacuation or sheltering in early phase of an accident.(author)

  3. Scoping review of pediatric tonsillectomy quality of life assessment instruments.

    Science.gov (United States)

    Kao, Stephen Shih-Teng; Peters, Micah D J; Dharmawardana, Nuwan; Stew, Benjamin; Ooi, Eng Hooi

    2017-10-01

    Sleep-disordered breathing or recurrent tonsillitis have detrimental effects on the child's physical health and quality of life. Tonsillectomy is commonly performed to treat these common conditions and improve the child's quality of life. This scoping review aims to present a comprehensive and descriptive analysis of quality of life questionnaires as a resource for clinicians and researchers when deciding which tool to use when assessing the quality of life effects after tonsillectomy. A comprehensive search strategy was undertaken across MEDLINE (PubMed), CINAHL, Embase, and Cochrane CENTRAL. Quality of life questionnaires utilized in studies investigating pediatric patients undergoing tonsillectomy for chronic tonsillitis or sleep-disordered breathing were included. Methodological quality and data extraction were conducted as per Joanna Briggs Institute methodology. Ten questionnaires were identified, consisting of six generic and four disease-specific instruments. The Pediatric Quality of Life Inventory was the most commonly utilized generic questionnaire. The Obstructive Sleep Apnea-18 was the most commonly utilized disease-specific questionnaire. This review identified a range of generic and disease-specific quality of life questionnaires utilized in pediatric patients who have undergone tonsillectomy with or without adenoidectomy for sleep-disordered breathing or chronic tonsillitis. Important aspects of each questionnaire have been summarized to aid researchers and clinicians in choosing the appropriate questionnaire when evaluating the quality of life effects of tonsillectomy. NA Laryngoscope, 127:2399-2406, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  4. TH-B-207B-00: Pediatric Image Quality Optimization

    International Nuclear Information System (INIS)

    2016-01-01

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker will review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children

  5. TH-B-207B-00: Pediatric Image Quality Optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker will review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children.

  6. MCNPX dosimetry and radiation-induced cancer risk estimation from 18F-FDG pediatric PET at Brazilian population

    International Nuclear Information System (INIS)

    Mendes, Bruno M.; Fonseca, Telma C.F.; Campos, Tarcisio P.R.

    2017-01-01

    Positron emission tomography (PET) using 18 F-FDG has increased significantly in pediatric patients. PET with 18 F-FDG has often been applied in oncology. Cancer induction is one of the main stochastic risk from exposure to ionizing radiation of 18 F-FDG. Radiation-induced cancer risk estimation due to medical exposures is an important tool for risk/benefit assessing. The objective was to perform dosimetry and estimate the risk of cancer induction due to pediatric use of 18 F-FDG. MCNPX Computational dosimetry was performed to estimate organ absorbed doses resulting from 18 F-FDG pediatric use. Two voxelized phantoms, kindly provided by the GSF - Helmholtz Zentrum, were used: 'Child' - 7 years child and 'Baby' 8-week-old infant. ICRP-128 publication provided the radiopharmaceutical biodistribution of F-18. Tables containing organ absorbed dose and effective dose per unit of injected activity for the two phantoms were obtained. The injected activities were estimated according to data provided in the literature. Images of the absorbed dose distribution were generated from both models. The BEIR VII methodology was used to calculate the risk of cancer induction. The risk of cancer induction (per imaging procedure) for the seven-year-old child was (0.09% ♂ and 0.15% ♀) and for the eight-week old baby was (0.11% ♂ and 0.21% ♀). The 18 F-FDG absorbed dose distribution in the children and infants showed some divergences in comparison to adult data. Probably, the biokinetic data used to children and infants is the main reason for this disconnection. (author)

  7. Internal dose assessment in radiation accidents

    International Nuclear Information System (INIS)

    Toohey, R.E.

    2003-01-01

    Although numerous models have been developed for occupational and medical internal dosimetry, they may not be applicable to an accident situation. Published dose coefficients relate effective dose to intake, but if acute deterministic effects are possible, effective dose is not a useful parameter. Consequently, dose rates to the organs of interest need to be computed from first principles. Standard bioassay methods may be used to assess body contents, but, again, the standard models for bioassay interpretation may not be applicable because of the circumstances of the accident and the prompt initiation of decorporation therapy. Examples of modifications to the standard methodologies include adjustment of biological half-times under therapy, such as in the Goiania accident, and the same effect, complicated by continued input from contaminated wounds, in the Hanford 241 Am accident. (author)

  8. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model of the histone deacetylase (HDAC) inhibitor vorinostat for pediatric and adult patients and its application for dose specification.

    Science.gov (United States)

    Moj, Daniel; Britz, Hannah; Burhenne, Jürgen; Stewart, Clinton F; Egerer, Gerlinde; Haefeli, Walter E; Lehr, Thorsten

    2017-11-01

    This study aimed at recommending pediatric dosages of the histone deacetylase (HDAC) inhibitor vorinostat and potentially more effective adult dosing regimens than the approved standard dosing regimen of 400 mg/day, using a comprehensive physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling approach. A PBPK/PD model for vorinostat was developed for predictions in adults and children. It includes the maturation of relevant metabolizing enzymes. The PBPK model was expanded by (1) effect compartments to describe vorinostat concentration-time profiles in peripheral blood mononuclear cells (PBMCs), (2) an indirect response model to predict the HDAC inhibition, and (3) a thrombocyte model to predict the dose-limiting thrombocytopenia. Parameterization of drug and system-specific processes was based on published and unpublished in silico, in vivo, and in vitro data. The PBPK modeling software used was PK-Sim and MoBi. The PBPK/PD model suggests dosages of 80 and 230 mg/m 2 for children of 0-1 and 1-17 years of age, respectively. In comparison with the approved standard treatment, in silico trials reveal 11 dosing regimens (9 oral, and 2 intravenous infusion rates) increasing the HDAC inhibition by an average of 31%, prolonging the HDAC inhibition by 181%, while only decreasing the circulating thrombocytes to a tolerable 53%. The most promising dosing regimen prolongs the HDAC inhibition by 509%. Thoroughly developed PBPK models enable dosage recommendations in pediatric patients and integrated PBPK/PD models, considering PD biomarkers (e.g., HDAC activity and platelet count), are well suited to guide future efficacy trials by identifying dosing regimens potentially superior to standard dosing regimens.

  9. Optimal Pain Assessment in Pediatric Rehabilitation: Implementation of a Nursing Guideline.

    Science.gov (United States)

    Kingsnorth, Shauna; Joachimides, Nick; Krog, Kim; Davies, Barbara; Higuchi, Kathryn Smith

    2015-12-01

    In Ontario, Canada, the Registered Nurses' Association promotes a Best Practice Spotlight Organization initiative to enhance evidence-based practice. Qualifying organizations are required to implement strategies, evaluate outcomes, and sustain practices aligned with nursing clinical practice guidelines. This study reports on the development and evaluation of a multifaceted implementation strategy to support adoption of a nursing clinical practice guideline on the assessment and management of acute pain in a pediatric rehabilitation and complex continuing care hospital. Multiple approaches were employed to influence behavior, attitudes, and awareness around optimal pain practice (e.g., instructional resources, electronic reminders, audits, and feedback). Four measures were introduced to assess pain in communicating and noncommunicating children as part of a campaign to treat pain as the fifth vital sign. A prospective repeated measures design examined survey and audit data to assess practice aligned with the guideline. The Knowledge and Attitudes Survey (KNAS) was adapted to ensure relevance to the local practice setting and was assessed before and after nurses' participation in three education modules. Audit data included client demographics and pain scores assessed annually over a 3-year window. A final sample of 69 nurses (78% response rate) provided pre-/post-survey data. A total of 108 pediatric surgical clients (younger than 19 years) contributed audit data across the three collection cycles. Significant improvements in nurses' knowledge, attitudes, and behaviors related to optimal pain care for children with disabilities were noted following adoption of the pain clinical practice guideline. Targeted guideline implementation strategies are central to supporting optimal pain practice. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  10. The MESORAD dose assessment model: Computer code

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Athey, G.F.; Bander, T.J.; Scherpelz, R.I.

    1988-10-01

    MESORAD is a dose equivalent model for emergency response applications that is designed to be run on minicomputers. It has been developed by the Pacific Northwest Laboratory for use as part of the Intermediate Dose Assessment System in the US Nuclear Regulatory Commission Operations Center in Washington, DC, and the Emergency Management System in the US Department of Energy Unified Dose Assessment Center in Richland, Washington. This volume describes the MESORAD computer code and contains a listing of the code. The technical basis for MESORAD is described in the first volume of this report (Scherpelz et al. 1986). A third volume of the documentation planned. That volume will contain utility programs and input and output files that can be used to check the implementation of MESORAD. 18 figs., 4 tabs

  11. Assessment of external dose indoors in Lithuania

    International Nuclear Information System (INIS)

    Pilkyte, L.; Butkus, D.; Morkunas, G.

    2006-01-01

    The aim of this paper was an assessment of external exposure indoors and its dependence on construction materials and indoor radon concentrations in Lithuanian living houses. Relationship of absorbed dose rate in air indoors and activity indexes of the most commonly used construction materials (wood, concrete and bricks) have been studied using results received in measurements done in >4700 rooms in 1995-2005. Possible connections of dose rate indoors with indoor radon concentrations are also discussed. Findings of this study helped to make an assessment of the mean value of effective dose of Lithuanian population due to external exposure indoors which is equal to 0.58 mSv y -1 . The received data might also be used in improvement of quality of personal dosimetric measurements done in premises constructed of different construction materials. (authors)

  12. Assessment of a new p-Mosfet usable as a dose rate insensitive gamma dose sensor

    International Nuclear Information System (INIS)

    Vettese, F.; Donichak, C.; Bourgeault, P.

    1995-01-01

    Dosimetric response of unbiased MOS devices has been assessed at dose rates greater than 2000 cGy/h. Application have been made to a personal dosemeter / dose rate meter to measure the absorbed tissue dose received in the case of acute external irradiation. (D.L.)

  13. A randomized, non-inferiority study comparing efficacy and safety of a single dose of pegfilgrastim versus daily filgrastim in pediatric patients after autologous peripheral blood stem cell transplant.

    Directory of Open Access Journals (Sweden)

    Simone Cesaro

    Full Text Available PURPOSE: To assess the non-inferiority of pegfilgrastim versus filgrastim in speeding the recovery of polymorphonuclear cells (PMN in pediatric patients who underwent autologous peripheral blood stem cell transplant (PBSCT. METHODS: The sample size of this randomized, multicenter, phase III study, was calculated assuming that a single dose of pegfilgrastim of 100 ug/kg was not inferior to 9 doses of filgrastim of 5 ug/kg/day. Randomization was performed by a computer-generated list and stored by sequentially numbered sealed envelopes. RESULTS: Sixty-one patients, with a median age of 11.5 years, were recruited: 29 in the filgrastim arm and 32 in the pegfilgrastim arm. Twenty percent were affected by lymphoma/leukaemia and eighty percent by solid tumors. The mean time to PMN engraftment was 10.48 days (standard deviation [SD] 1.57 and 10.44 days (SD 2.44 in the filgrastim and pegfilgrastim arms, respectively. Having fixed a non-inferiority margin Delta of 3, the primary endpoint of non-inferiority was reached. No differences were observed for other secondary endpoints: platelet engraftment, mean time to platelet recovery (28 days vs. 33 days, fever of unknown origin (79% vs. 78%, proven infection (34% vs. 28%, mucositis (76% vs. 59%. After a median follow-up of 2.3 years (95% C.I.: 1.5, 3.3, 20 deaths were observed due to disease progression. CONCLUSIONS: We conclude that pegfilgrastim was not inferior to daily filgrastim in pediatric patients who underwent PBSCT. EU CLINICAL TRIAL REGISTER NUMBER: 2007-001430-14.

  14. The Bereaved Parent Needs Assessment: a new instrument to assess the needs of parents whose children died in the pediatric intensive care unit*.

    Science.gov (United States)

    Meert, Kathleen L; Templin, Thomas N; Michelson, Kelly N; Morrison, Wynne E; Hackbarth, Richard; Custer, Joseph R; Schim, Stephanie M; Briller, Sherylyn H; Thurston, Celia S

    2012-11-01

    To evaluate the reliability and validity of the Bereaved Parent Needs Assessment, a new instrument to measure parents' needs and need fulfillment around the time of their child's death in the pediatric intensive care unit. We hypothesized that need fulfillment would be negatively related to complicated grief and positively related to quality of life during bereavement. Cross-sectional survey. Five U.S. children's hospital pediatric intensive care units. Parents (n = 121) bereaved in a pediatric intensive care unit 6 months earlier. Surveys included the 68-item Bereaved Parent Needs Assessment, the Inventory of Complicated Grief, and the abbreviated version of the World Health Organization Quality of Life questionnaire. Each Bereaved Parent Needs Assessment item described a potential need and was rated on two scales: 1) a 5-point rating of importance (1 = not at all important, 5 = very important) and 2) a 5-point rating of fulfillment (1 = not at all met, 5 = completely met). Three composite scales were computed: 1) total importance (percentage of all needs rated ≥4 for importance), 2) total fulfillment (percentage of all needs rated ≥4 for fulfillment), and 3) percent fulfillment (percentage of important needs that were fulfilled). Internal consistency reliability was assessed by Cronbach's α and Spearman-Brown-corrected split-half reliability. Generalized estimating equations were used to test predictions between composite scales and the Inventory of Complicated Grief and World Health Organization Quality of Life questionnaire. Two items had mean importance ratings 4. Reliability of composite scores ranged from 0.92 to 0.94. Total fulfillment was negatively correlated with Inventory of Complicated Grief (r = -.29; p Quality of Life questionnaire (r = .21; p education, and loss of an only child, percent fulfillment remained significantly correlated with Inventory of Complicated Grief but not with World Health Organization Quality of Life questionnaire. The

  15. Going beyond the most exposed people in a dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hjerpe, Thomas; Broed, Robert [Facilia AB, Gustavslundsvaegen 151C, SE-167 51 Bromma (Sweden); Ikonen, Ari T.K. [Environmental Research and Assessment, EnviroCase, Ltd., Hallituskatu 1 D 4, FI-28 100 Pori (Finland)

    2014-07-01

    The dose assessment in a long-term radiation safety assessment often focus on assessing dose of a representative person to be used for determining compliance with a radiation dose constraint. This representative person is often assumed to receive a dose that is representative of the most exposed people, i.e., the more highly exposed individuals in the population. This is not always sufficient, the Finnish regulations for disposal of nuclear waste has radiation dose constraint to the most exposed people as well as for larger groups of exposed people. This work presents the methodology to assessing dose of a representative person for a larger group of exposed people as applied by Posiva in the TURVA-2012 safety case for the spent nuclear fuel disposal at Olkiluoto. In addition, annual doses from the set of biosphere calculation cases analysed in TURVA-2012 are presented and discussed. Special focus is given on explaining the differences in exposure levels and exposure routes between the estimated annual doses to representative persons for most exposed people and a larger exposed group. The results show that the annual doses to a larger group of people ranges from one to three orders of magnitude below the annual doses to the most exposed people. Furthermore, the exposure route related to food ingestion is less significant for the larger group of people compared to the most exposed people and that the exposure route related to water ingestion shows the opposite behaviour. (authors)

  16. Novopen Echo® for the delivery of insulin: a comparison of usability, functionality and preference among pediatric subjects, their parents, and health care professionals

    DEFF Research Database (Denmark)

    Olsen, Birthe S; Lilleøre, Søren Kruse; Korsholm, Conny Nøhr

    2010-01-01

    Despite advances in insulin pen design and functionality, the selection of pens available for children with diabetes is limited. This study assessed the usability, functionality and attitudes towards NovoPen Echo®, a new durable insulin pen designed for pediatric patients that combines a simple...... memory function with half-increment dosing, versus NovoPen® Junior and HumaPen® Luxura™ HD in pediatric subjects, their parents, and health care professionals (HCPs)....

  17. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-01-01

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides

  18. Assessment of pediatric residents burnout in a tertiary academic centre

    Directory of Open Access Journals (Sweden)

    Roaa S. Jamjoom

    2018-03-01

    Full Text Available Objectives: To study burnout among pediatric residents at King Abdulazaiz University Hospital in Jeddah, Saudi Arabia. Methods: This is a cross-sectional survey that was administered to all pediatric residents enrolled in the Saudi Paediatric Board program (PGY1-PGY4 in a large tertiary academic hospital in the Western region of Saudi Arabia (King Abdulaziz University Hospital. The survey were sent via E-mail to 50 registered general pediatric residents. Results: Seventy percent of the pediatric residents completed the survey. More than 70% of residents experiencing severe burnout. Forty-three percent suffering emotional exhaustion, 71.8% experiencing depersonalization and 40.6% suffering from low accomplishment. Conclusion: Burnout syndrome appear to be a serious threat to resident well-being in our program. Moreover, pediatric residents in our institute experienced higher levels of depersonalization than their peers nationally and internationally.

  19. Dose. Detriment. Limit assessment

    International Nuclear Information System (INIS)

    Breckow, J.

    2015-01-01

    One goal of radiation protection is the limitation of stochastic effects due to radiation exposure. The probability of occurrence of a radiation induced stochastic effect, however, is only one of several other parameters which determine the radiation detriment. Though the ICRP-concept of detriment is a quantitative definition, the kind of detriment weighting includes somewhat subjective elements. In this sense, the detriment-concept of ICRP represents already at the stage of effective dose a kind of assessment. Thus, by comparing radiation protection standards and concepts interconvertible or with those of environment or occupational protection one should be aware of the possibly different principles of detriment assessment.

  20. Advances in pediatric dentistry.

    Science.gov (United States)

    Yoon, Richard K; Best, Jed M

    2011-07-01

    This article addresses advances in 4 key areas related to pediatric dentistry: (1) caries detection tools, (2) early interventions to arrest disease progression, (3) caries-risk assessment tools, and (4) trends in pediatric procedures and dental materials. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Assessment of concomitant testicular dose with radiochromic film

    International Nuclear Information System (INIS)

    Fricker, Katherine; Thompson, Christine; Meyer, Juergen

    2013-01-01

    To assess the suitability of EBT2 and XRQA2 Gafchromic film for measuring low doses in the periphery of treatment fields, and to measure the accumulative concomitant dose to the contralateral testis resulting from CT imaging, pre-treatment imaging (CBCT) and seminoma radiotherapy with and without gonadal shielding. Superficial peripheral dose measurements made using EBT2 Gafchromic film on the surface of water equivalent material were compared to measurements made with an ionisation chamber in a water phantom to evaluate the suitability and accuracy of the film dosimeter for such measurements. Similarly, XRQA2 was used to measure surface doses within a kilovoltage beam and compared with ionisation chamber measurements. Gafchromic film was used to measure CT, CBCT and seminoma treatment related testicular doses on an anthropomorphic phantom. Doses were assessed for two clinical plans, both with and without gonadal shielding. Testicular doses resulting from the treatment of up to 0.83 ± 0.17 Gy were measured per treatment. Additional doses of up to 0.49 ± 0.01 and 2.35 ± 0.05 cGy were measured per CBCT and CT image, respectively. Reductions in the testicular dose in the order of 10, 36 and 78 % were observed when gonadal shielding was fitted for treatment, CT and CBCT imaging, respectively. Gafchromic film was found to be suitable for measuring dose in the periphery of treatment fields. The dose to the testis should be limited to minimise the risk of radiation related side effects. This can be achieved by using appropriate gonadal shielding, irrespective of the treatment fields employed.

  2. Assessment of exposure dose to workers in virtual decommissioning environments

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, GeunHo; Seo, JaeSeok

    2014-01-01

    This paper is intended to suggest the method analyze and assess the exposure dose to workers in virtual decommissioning environments. To simulate a lot of decommissioning scenarios, decommissioning environments were designed in virtual reality. To simulate and assess the exposure dose to workers, human model also was designed in virtual environments. These virtual decommissioning environments made it possible to real-time simulate and assess the exposure dose to workers. This work was to be able to simulate scenarios of decommissioning so that exposure dose to workers could be measured and assessed. To establish the plan of exposure dose to workers during decommissioning of nuclear facilities before decommissioning activities are accomplished, the method of simulation assessment was developed in virtual radiological environments. But this work was developed as a tool of simulation for single subject mode. Afterwards, the simulation environment for multi-subjects mode will be upgraded by simultaneous modules with networking environments. Then the much more practical method will be developed by changing number of workers and duration of time under any circumstances of decommissioning

  3. Assessment of exposure dose to workers in virtual decommissioning environments

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, KwanSeong; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, GeunHo; Seo, JaeSeok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    This paper is intended to suggest the method analyze and assess the exposure dose to workers in virtual decommissioning environments. To simulate a lot of decommissioning scenarios, decommissioning environments were designed in virtual reality. To simulate and assess the exposure dose to workers, human model also was designed in virtual environments. These virtual decommissioning environments made it possible to real-time simulate and assess the exposure dose to workers. This work was to be able to simulate scenarios of decommissioning so that exposure dose to workers could be measured and assessed. To establish the plan of exposure dose to workers during decommissioning of nuclear facilities before decommissioning activities are accomplished, the method of simulation assessment was developed in virtual radiological environments. But this work was developed as a tool of simulation for single subject mode. Afterwards, the simulation environment for multi-subjects mode will be upgraded by simultaneous modules with networking environments. Then the much more practical method will be developed by changing number of workers and duration of time under any circumstances of decommissioning.

  4. Digital radiography of the chest in pediatric patients

    International Nuclear Information System (INIS)

    Puig, S.

    2003-01-01

    The hopes placed in digital radiography have been fulfilled only partly in pediatric radiology. Specifically, the option of gaining reduced radiation exposure in combination with a similar or even improved image quality was hard to realize. The only portable digital system available for a long time were storage phosphors which were disadvantaged by an extremely limited dose-quantum-efficiency (DQE) in comparison to digital flat panel detectors. New developments and the introduction of the dual-reading system led to image qualities comparable to film-screen-systems with high resolution and achievable without dose increase, sometimes even with dose reduction. A study using an animal model suggests that these systems can even be used in preterm infants with very low birth weights. A new portable flat panel detector by Canon may improve digital chest radiography in pediatric patients. (orig.) [de

  5. Thermoluminescent dosimetry and assessment of personal dose

    International Nuclear Information System (INIS)

    Boas, J.F.; Martin, L.J.; Young, J.G.

    1982-01-01

    Thermoluminescence is discussed in terms of the energy band structure of a crystalline solid and the trapping of charge carriers by point defects. Some general properties of thermoluminescent materials used for dosimetry are outlined, with thermoluminescence of CaSO 4 :Dy being described in detail. The energy response function and the modification of the energy response of a dosimeter by shielding are discussed. The final section covers the connection between exposure, as recorded by a TLD badge, and the absorbed dose to various organs from gamma radiation in a uranium mine; the conversion from absorbed dose to dose equivalent; and uncertainties in assessment of dose equivalent

  6. [Assessment of quality indicators in pediatric poisoning in an emergency service].

    Science.gov (United States)

    Giménez Roca, C; Martínez Sánchez, L; Calzada Baños, Y; Trenchs Sainz de la Maza, V; Quintilla Martínez, J M; Luaces Cubells, C

    2014-01-01

    Assessment of quality indicators allows clinicians to evaluate clinical assistance with a standard, to detect deficiencies and to improve medical assistance. Patients who came to emergency services of a tertiary level hospital for suspicion of poisoning from January 2011 to June 2012 were assessed using 20 quality indicators of pediatric poisoning. Data collection was performed by retrospective review of clinical reports. A total of 393 patients were admitted for suspicion of poisoning (0.3% of all admissions).The standard was reached in 11 indicators and not reached in 6: administration of activated charcoal within 2hours of poison ingestion (standard=90%, result=83.5%); attention within the first 15minutes of arriving in the emergency service (standard=90%, result=60.4%); start of gastrointestinal decontamination within 20minutes of arrival in emergency services (standard=90%, result=29.7%); performing of electrocardiogram on the patients poisoned with cardiotoxic substances (standard=95%, result=87%); judicial communication of cases of poisoning that could conceal a crime (standard=95%, result=31.3%), and collection of the minimal set of information of poisoned patients (standard=90%, result=1.9%). Three indicators could not be evaluated as a consequence of the limited number of cases where they could be applied (de Pediatría. Published by Elsevier Espana. All rights reserved.

  7. Iodine-129 Dose in LLW Disposal Facility Performance Assessments

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1999-01-01

    Iodine-129 has the lowest Performance Assessment derived inventory limit in SRS disposal facilities. Because iodine is concentrated in the body to one organ, the thyroid, it has been thought that dilution with stable iodine would reduce the dose effects of 129I.Examination of the dose model used to establish the Dose conversion factor for 129I shows that, at the levels considered in performance assessments of low-level waste disposal facilities, the calculated 129I dose already accounts for ingestion of stable iodine. At higher than normal iodine ingestion rates, the uptake of iodine by the thyroid itself decrease, which effectively cancels out the isotopic dilution effect

  8. Capnography and the Bispectral Index—Their Role in Pediatric Sedation: A Brief Review

    Directory of Open Access Journals (Sweden)

    Maria Sammartino

    2010-01-01

    Full Text Available Sedation in children is increasingly emerging as a minimally invasive technique that may be associated with local anaesthesia or diagnostic and therapeutic procedures which do not necessarily require general anaesthesia. Standard monitoring requirements are not sufficient to ensure an effective control of pulmonary ventilation and deep sedation. Capnography in pediatric sedation assesses the effect of different drugs on the occurrence of respiratory failure and records early indicators of respiratory impairment. The Bispectral index (BIS allows the reduction of dose requirements of anaesthetic drugs, the reduction in the time to extubation and eye opening, and the reduction in the time to discharge. In the field of pediatric sedation, capnography should be recommended to prevent respiratory complications, particularly in spontaneous ventilation. The use of the BIS index, however, needs further investigation due to a lack of evidence, especially in infants. In this paper, we will investigate the role of capnography and the BIS index in improving monitoring standards in pediatric sedation.

  9. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    International Nuclear Information System (INIS)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-01-01

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology

  10. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of

  11. Effectiveness of intravenous levetiracetam as an adjunctive treatment in pediatric refractory status epilepticus.

    Science.gov (United States)

    Kim, Jon Soo; Lee, Jeong Ho; Ryu, Hye Won; Lim, Byung Chan; Hwang, Hee; Chae, Jong-Hee; Choi, Jieun; Kim, Ki Joong; Hwang, Yong Seung; Kim, Hunmin

    2014-08-01

    Intravenous levetiracetam (LEV) has been shown to be effective and safe in treating adults with refractory status epilepticus (SE). We sought to investigate the efficacy and safety of intravenous LEV for pediatric patients with refractory SE. We performed a retrospective medical-record review of pediatric patients who were treated with intravenous LEV for refractory SE. Clinical information regarding age, sex, seizure type, and underlying neurological status was collected. We evaluated other anticonvulsants that were used prior to administration of intravenous LEV and assessed loading dose, response to treatment, and any adverse events from intravenous LEV administration. Fourteen patients (8 boys and 6 girls) received intravenous LEV for the treatment of refractory SE. The mean age of the patients was 4.4 ± 5.5 years (range, 4 days to 14.6 years). Ten of the patients were neurologically healthy prior to the refractory SE, and the other 4 had been previously diagnosed with epilepsy. The mean loading dose of intravenous LEV was 26 ± 4.6 mg/kg (range, 20-30 mg/kg). Seizure termination occurred in 6 (43%) of the 14 patients. In particular, 4 (57%) of the 7 patients younger than 2 years showed seizure termination. No immediate adverse events occurred during or after infusions. The current study demonstrated that the adjunctive use of intravenous LEV was effective and well tolerated in pediatric patients with refractory SE, even in patients younger than 2 years. Intravenous LEV should be considered as an effective and safe treatment option for refractory SE in pediatric patients.

  12. Feasibility of the music therapy assessment tool for awareness in disorders of consciousness (MATADOC) for use with pediatric populations.

    Science.gov (United States)

    Magee, Wendy L; Ghetti, Claire M; Moyer, Alvin

    2015-01-01

    Measuring responsiveness to gain accurate diagnosis in populations with disorders of consciousness (DOC) is of central concern because these patients have such complex clinical presentations. Due to the uncertainty of accuracy for both behavioral and neurophysiological measures in DOC, combined assessment approaches are recommended. A number of standardized behavioral measures can be used with adults with DOC with minor to moderate reservations relating to the measures' psychometric properties and clinical applicability. However, no measures have been standardized for use with pediatric DOC populations. When adapting adult measures for children, confounding factors include developmental considerations for language-based items included in all DOC measures. Given the lack of pediatric DOC measures, there is a pressing need for measures that are sensitive to the complex clinical presentations typical of DOC and that can accommodate the developmental levels of pediatric populations. The music therapy assessment tool for awareness in disorders of consciousness (MATADOC) is a music-based measure that has been standardized for adults with DOC. Given its emphasis on non-language based sensory stimuli, it is well-suited to pediatric populations spanning developmental stages. In a pre-pilot exploratory study, we examined the clinical utility of this measure and explored trends for test-retest and inter-rater agreement as well as its performance against external reference standards. In several cases, MATADOC items in the visual and auditory domains produced outcomes suggestive of higher level functioning when compared to outcomes provided by other DOC measures. Preliminary findings suggest that the MATADOC provides a useful protocol and measure for behavioral assessment and clinical treatment planning with pediatric DOC. Further research with a larger sample is warranted to test a version of the MATADOC that is refined to meet developmental needs of pediatric DOC populations.

  13. Feasibility of the music therapy assessment tool for awareness in disorders of consciousness (MATADOC) for use with pediatric populations

    Science.gov (United States)

    Magee, Wendy L.; Ghetti, Claire M.; Moyer, Alvin

    2015-01-01

    Measuring responsiveness to gain accurate diagnosis in populations with disorders of consciousness (DOC) is of central concern because these patients have such complex clinical presentations. Due to the uncertainty of accuracy for both behavioral and neurophysiological measures in DOC, combined assessment approaches are recommended. A number of standardized behavioral measures can be used with adults with DOC with minor to moderate reservations relating to the measures’ psychometric properties and clinical applicability. However, no measures have been standardized for use with pediatric DOC populations. When adapting adult measures for children, confounding factors include developmental considerations for language-based items included in all DOC measures. Given the lack of pediatric DOC measures, there is a pressing need for measures that are sensitive to the complex clinical presentations typical of DOC and that can accommodate the developmental levels of pediatric populations. The music therapy assessment tool for awareness in disorders of consciousness (MATADOC) is a music-based measure that has been standardized for adults with DOC. Given its emphasis on non-language based sensory stimuli, it is well-suited to pediatric populations spanning developmental stages. In a pre-pilot exploratory study, we examined the clinical utility of this measure and explored trends for test-retest and inter-rater agreement as well as its performance against external reference standards. In several cases, MATADOC items in the visual and auditory domains produced outcomes suggestive of higher level functioning when compared to outcomes provided by other DOC measures. Preliminary findings suggest that the MATADOC provides a useful protocol and measure for behavioral assessment and clinical treatment planning with pediatric DOC. Further research with a larger sample is warranted to test a version of the MATADOC that is refined to meet developmental needs of pediatric DOC

  14. Feasibility of the Music Therapy Assessment Tool for Awareness in Disorders Of Consciousness (MATADOC for use with Pediatric Populations

    Directory of Open Access Journals (Sweden)

    Wendy L Magee

    2015-05-01

    Full Text Available Measuring responsiveness to gain accurate diagnosis in populations with disorders of consciousness (DOC is of central concern because these patients have such complex clinical presentations. Due to the uncertainty of accuracy for both behavioral and neurophysiological measures in DOC, combined assessment approaches are recommended. A number of standardized behavioral measures can be used with adults with DOC with minor to moderate reservations relating to the measures’ psychometric properties and clinical applicability. However, no measures have been standardized for use with pediatric DOC populations. When adapting adult measures for children, confounding factors include developmental considerations for language-based items included in all DOC measures. Given the lack of pediatric DOC measures, there is a pressing need for measures that are sensitive to the complex clinical presentations typical of DOC and that can accommodate the developmental levels of pediatric populations. The Music Therapy Assessment Tool for Awareness in Disorders of Consciousness (MATADOC is a music-based measure that has been standardized for adults with DOC. Given its emphasis on non-language based sensory stimuli, it is well-suited to pediatric populations spanning developmental stages. In a pre-pilot exploratory study, we examined the clinical utility of this measure and explored trends for test-retest and inter-rater agreement as well as its performance against external reference standards. In several cases, MATADOC items in the visual and auditory domains produced outcomes suggestive of higher level functioning when compared to outcomes provided by other DOC measures. Preliminary findings suggest that the MATADOC provides a useful protocol and measure for behavioral assessment and clinical treatment planning with pediatric DOC. Further research with a larger sample is warranted to test a version of the MATADOC that is refined to meet developmental needs of

  15. The application of sacral block anesthesia in pediatric interventional therapy

    International Nuclear Information System (INIS)

    Zhong Liang; Qin Zenghui

    2009-01-01

    Objective: To discuss the management and feasibility of sacral block anesthesia in pediatric interventional therapy. Methods: A total of 80 pediatric patients were randomly and equally divided into two groups. Patients in group A received sacral block anesthesia together with basic anesthesia with propofol, while patients in group B received intravenous anesthesia with propofol. Small amount of ketamine as maintaining dose was used in both groups when needed. Results: The interventional management was successfully completed in all patients. A marked decrease in blood pressure occurred in three patients of group A receiving sacral block anesthesia. In group B receiving intravenous anesthesia, a decrease of SpO 2 to below 90 percent was seen in 8 cases, and obvious bradycardia developed in 12 cases. All these patients were treated with intravenous medication or by reducing the dose of propofol. Additional small dose of ketamine was needed in 4 patients during the procedure. Conclusion: Sacral block anesthesia combined with intravenous anesthesia is one of the effective anesthesia management schemes for pediatric interventional therapy. (authors)

  16. Relationship between dose and risk, and assessment of carcinogenic risks associated with low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Tubiana, M.; Aurengo, A.

    2005-01-01

    This report raises doubts on the validity of using LNT (linear no-threshold) relationship for evaluating the carcinogenic risk of low doses (< 100 mSv) and even more for very low doses (< 10 mSv). The LNT concept can be a useful pragmatic tool for assessing rules in radioprotection for doses above 10 mSv; however since it is not based on biological concepts of our current knowledge, it should not be used without precaution for assessing by extrapolation the risks associated with low and even more so, with very low doses (< 10 mSv), especially for benefit-risk assessments imposed on radiologists by the European directive 97-43. The biological mechanisms are different for doses lower than a few dozen mSv and for higher doses. The eventual risks in the dose range of radiological examinations (0.1 to 5 mSv, up to 20 mSv for some examinations) must be estimated taking into account radiobiological and experimental data. An empirical relationship which has been just validated for doses higher than 200 mSv may lead to an overestimation of risks (associated with doses one hundred fold lower), and this overestimation could discourage patients from undergoing useful examinations and introduce a bias in radioprotection measures against very low doses (< 10 mSv). Decision makers confronted with problems of radioactive waste or risk of contamination, should re-examine the methodology used for the evaluation of risks associated with very low doses and with doses delivered at a very low dose rate. This report confirms the inappropriateness of the collective dose concept to evaluate population irradiation risks

  17. Evaluation of doses received by pediatric and adult patients undergoing to CT exams; Evaluacion de la dosis recibida por pacientes adultos y pediatricos en examenes de tomografia computarizada

    Energy Technology Data Exchange (ETDEWEB)

    Lavie, Maria F. Jimenez; Tejeda, Adalberto Machado, E-mail: felicia@cceem.sld.cu, E-mail: adalberto@cceem.sld.cu [Centro para el Control Estatal de Medicamentos, Equipos y Dispositivos Medicos (CECMED), La Habana (Cuba); Otano, Anisia; Zuniga, Dora Maya [Hospital Pediatrico Centro Habana (Cuba); Perdomo, Jorge Hing; Rodriguez, Gustavo Guadarrama [Hospital Docente Clinico Quirurgico Freyre Andrade, La Habana (Cuba)

    2013-07-01

    This paper aims to evaluated the dose to adult and pediatric patients due to the execution of tests CT scan of head, chest and abdomen, as well as establish a comparative analysis between these results and protocols involving employees to begin a process optimization in the practice.

  18. The development of the PARENTS: a tool for parents to assess residents' non-technical skills in pediatric emergency departments.

    Science.gov (United States)

    Moreau, Katherine A; Eady, Kaylee; Tang, Kenneth; Jabbour, Mona; Frank, Jason R; Campbell, Meaghan; Hamstra, Stanley J

    2017-11-14

    Parents can assess residents' non-technical skills (NTS) in pediatric emergency departments (EDs). There are no assessment tools, with validity evidence, for parental use in pediatric EDs. The purpose of this study was to develop the Parents' Assessment of Residents Enacting Non-Technical Skills (PARENTS) educational assessment tool and collect three sources of validity evidence (i.e., content, response process, internal structure) for it. We established content evidence for the PARENTS through interviews with physician-educators and residents, focus groups with parents, a literature review, and a modified nominal group technique with experts. We collected response process evidence through cognitive interviews with parents. To examine the internal structure evidence, we administered the PARENTS and performed exploratory factor analysis. Initially, a 20-item PARENTS was developed. Cognitive interviews led to the removal of one closed-ended item, the addition of resident photographs, and wording/formatting changes. Thirty-seven residents and 434 parents participated in the administration of the resulting 19-item PARENTS. Following factor analysis, a one-factor model prevailed. The study presents initial validity evidence for the PARENTS. It also highlights strategies for potentially: (a) involving parents in the assessment of residents, (b) improving the assessment of NTS in pediatric EDs, and (c) capturing parents' perspectives to improve the preparation of future physicians.

  19. Pediatric emergence delirium: Canadian Pediatric Anesthesiologists' experience.

    Science.gov (United States)

    Rosen, H David; Mervitz, Deborah; Cravero, Joseph P

    2016-02-01

    Pediatric emergence agitation/delirium (ED) is a cluster of behaviors seen in the early postanesthetic period with negative emotional consequences for families and increased utilization of healthcare resources. Many studies have looked at identifying risk factors for ED and at pharmacologic regimens to prevent ED. There are few published reports on treatment options and efficacy for established ED episodes, and essentially no data concerning current practice in the treatment of ED. We sought to elicit the experience and opinions of Canadian Pediatric Anesthesiologists on the incidence of ED in their practice, definitions and diagnostic criteria, preventative strategies, treatments, and their perceived efficacy. A web-based survey was sent to pediatric anesthesiologists working at academic health science centers across Canada. The participants were selected based on being members of the Canadian Pediatric Anesthesia Society (CPAS), which represents the subspecialty in Canada. All members of CPAS who had e-mail contact information available in the membership database were invited to participate. A total of 209 members out of the total of 211 fulfilled these criteria and were included in the study population. The response rate was 51% (106/209). Of respondents, 42% felt that ED was a significant problem at their institutions, with 45% giving medication before or during anesthesia to prevent the development of ED. Propofol was the most common medication given to prevent ED (68%) and to treat ED (42%). Total intravenous anesthesia (TIVA) was considered by 38% of respondents as a technique used to prevent ED. Medications used for treatment included propofol (42%), midazolam (31%), fentanyl (10%), morphine (7%), and dexmedetomidine (5%), with 87% of respondents rating effectiveness of treatment as 'usually works quickly with one dose'. We present information on current practice patterns with respect to prophylaxis and treatment of ED among a specialized group of pediatric

  20. Pediatric Biopharmaceutical Classification System: Using Age-Appropriate Initial Gastric Volume.

    Science.gov (United States)

    Shawahna, Ramzi

    2016-05-01

    Development of optimized pediatric formulations for oral administration can be challenging, time consuming, and financially intensive process. Since its inception, the biopharmaceutical classification system (BCS) has facilitated the development of oral drug formulations destined for adults. At least theoretically, the BCS principles are applied also to pediatrics. A comprehensive age-appropriate BCS has not been fully developed. The objective of this work was to provisionally classify oral drugs listed on the latest World Health Organization's Essential Medicines List for Children into an age-appropriate BCS. A total of 38 orally administered drugs were included in this classification. Dose numbers were calculated using age-appropriate initial gastric volume for neonates, 6-month-old infants, and children aging 1 year through adulthood. Using age-appropriate initial gastric volume and British National Formulary age-specific dosing recommendations in the calculation of dose numbers, the solubility classes shifted from low to high in pediatric subpopulations of 12 years and older for amoxicillin, 5 years, 12 years and older for cephalexin, 9 years and older for chloramphenicol, 3-4 years, 9-11 and 15 years and older for diazepam, 18 years and older (adult) for doxycycline and erythromycin, 8 years and older for phenobarbital, 10 years and older for prednisolone, and 15 years and older for trimethoprim. Pediatric biopharmaceutics are not fully understood where several knowledge gaps have been recently emphasized. The current biowaiver criteria are not suitable for safe application in all pediatric populations.

  1. Improvement of Off-site Dose Assessment Code for Operating Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juyub; Kim, Juyoul; Shin, Kwangyoung [FNC Technology Co. Ltd., Yongin (Korea, Republic of); You, Songjae; Moon, Jongyi [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    XOQDOQ code which calculates atmospheric Dispersion factor was included into INDAC also. A research on the improvement of off-site dose assessment system for an operating nuclear power plant was performed by KINS in 2011. As a result, following improvements were derived: - Separation of dose assessment for new and existing facilities - Update of food ingestion data - Consideration of multi-unit operation and so on In order to reflect the results, INDAC is under modification. INDAC is an integrated dose assessment code for an operating nuclear power plant and consists of three main modules: XOQDOQ, GASDOS and LIQDOS. The modules are under modification in order to improve the accuracy of assessment and usability. Assessment points for multi-unit release can be calculated through the improved code and the method on dose assessment for multi-unit release has been modified, so that the dose assessment result of multi-unit site becomes more realistic by relieving excessive conservatism. Finally, as the accuracy of calculation modules has been improved, the reliability of dose assessment result has been strengthened.

  2. Pediatric Tape: Accuracy and Medication Delivery in the National Park Service

    Directory of Open Access Journals (Sweden)

    Danielle D. Campagne

    2015-10-01

    Full Text Available Introduction: The objective is to evaluate the accuracy of medication dosing and the time to medication administration in the prehospital setting using a novel length-based pediatric emergency resuscitation tape. Methods: This study was a two-period, two-treatment crossover trial using simulated pediatric patients in the prehospital setting. Each participant was presented with two emergent scenarios; participants were randomized to which case they encountered first, and to which case used the National Park Service (NPS emergency medical services (EMS length-based pediatric emergency resuscitation tape. In the control (without tape case, providers used standard methods to determine medication dosing (e.g. asking parents to estimate the patient’s weight; in the intervention (with tape case, they used the NPS EMS length-based pediatric emergency resuscitation tape. Each scenario required dosing two medications (Case 1 [febrile seizure] required midazolam and acetaminophen; Case 2 [anaphylactic reaction] required epinephrine and diphenhydramine. Twenty NPS EMS providers, trained at the Parkmedic/Advanced Emergency Medical Technician level, served as study participants. Results: The only medication errors that occurred were in the control (no tape group (without tape: 5 vs. with tape: 0, p=0.024. Time to determination of medication dose was significantly shorter in the intervention (with tape group than the control (without tape group, for three of the four medications used. In case 1, time to both midazolam and acetaminophen was significantly faster in the intervention (with tape group (midazolam: 8.3 vs. 28.9 seconds, p=0.005; acetaminophen: 28.6 seconds vs. 50.6 seconds, p=0.036. In case 2, time to epinephrine did not differ (23.3 seconds vs. 22.9 seconds, p=0.96, while time to diphenhydramine was significantly shorter in the intervention (with tape group (13 seconds vs. 37.5 seconds, p<0.05. Conclusion: Use of a length-based pediatric emergency

  3. Radiation protection problems by diagnostic procedures of pediatric nuclear medicine

    International Nuclear Information System (INIS)

    Kletter, K.

    1994-01-01

    Special dosimetry considerations are necessary in the application of radiopharmaceuticals in pediatric nuclear medicine. The influence of differences in irradiation geometry and biokinetic parameters on the radiation dose in children and adults is discussed. Assuming an equal activity concentration, both factors lead rather to a reduced radiation dose than an increased radiation burden in children compared to adults. However, the same radiation dose in children and adults may lead to a different detriment. This is explained by differences in life expectancy and radiation sensitivity for both groups. From special formulas an age dependent reduction factor can be calculated for the application of radiopharmaceuticals in pediatric nuclear medicine. Radiation exposure to hospital staff and parents from children, undergoing nuclear medicine diagnostic or therapeutic procedures, is low. (author)

  4. Radiation measurement and risk estimation for pediatrics during routine diagnostic examination in some hospitals of Khartoum state

    International Nuclear Information System (INIS)

    Saeed, E. B. Y.

    2010-01-01

    Patient dose monitoring was formalized in the national protocol for patient dose measurement in Diagnostic Radiology. Entrance Skin Dose (ESD) and Effective Dose have been measured for pediatric patient under going some routine pediatric x-ray examination in five Hospitals in Sudan namely (Ahmed Gasim for Paediatric Hospital, Khartoum state for main paediatric Hospital (Omdurman, Khartoum , Ah Gassim, Ab naof) Paediatric Hospitals. Two examination projection have been investigated, namely anterior posterior (AP) and posterior Anterior ( PA). Patient were classed into three different age groups 0-2 year, 2-5 year, 5-15 year. The result have been obtained with the use of the TLD as first time in Sudan. The mean of ESD and thyroid dose are represented and comparisons were made between these dose and international standard dose, local study also between doses and those from other counters. The mean of ESD and ED in Ah Gasim and Khartoum Hospital are higher than reference dose and low than other counters. The reason for the higher dose have been discussed and suggestions are given to reduced dosed to pediatric patient during x-ray examination especially in developing countries. (Author)

  5. Management of Pediatric Delirium in Pediatric Cardiac Intensive Care Patients: An International Survey of Current Practices.

    Science.gov (United States)

    Staveski, Sandra L; Pickler, Rita H; Lin, Li; Shaw, Richard J; Meinzen-Derr, Jareen; Redington, Andrew; Curley, Martha A Q

    2018-06-01

    The purpose of this study was to describe how pediatric cardiac intensive care clinicians assess and manage delirium in patients following cardiac surgery. Descriptive self-report survey. A web-based survey of pediatric cardiac intensive care clinicians who are members of the Pediatric Cardiac Intensive Care Society. Pediatric cardiac intensive care clinicians (physicians and nurses). None. One-hundred seventy-three clinicians practicing in 71 different institutions located in 13 countries completed the survey. Respondents described their clinical impression of the occurrence of delirium to be approximately 25%. Most respondents (75%) reported that their ICU does not routinely screen for delirium. Over half of the respondents (61%) have never attended a lecture on delirium. The majority of respondents (86%) were not satisfied with current delirium screening, diagnosis, and management practices. Promotion of day/night cycle, exposure to natural light, deintensification of care, sleep hygiene, and reorientation to prevent or manage delirium were among nonpharmacologic interventions reported along with the use of anxiolytic, antipsychotic, and medications for insomnia. Clinicians responding to the survey reported a range of delirium assessment and management practices in postoperative pediatric cardiac surgery patients. Study results highlight the need for improvement in delirium education for pediatric cardiac intensive care clinicians as well as the need for systematic evaluation of current delirium assessment and management practices.

  6. Personal monitoring and assessment of doses received by radiation workers

    International Nuclear Information System (INIS)

    Swindon, T.N.; Morris, N.D.

    1981-12-01

    The Personal Radiation Monitoring Service operated by the Australian Radiation Laboratory is outlined and the types of monitors used for assessment of doses received by radiation workers are described. The distribution of doses received by radiation workers in different occupational categories is determined. From these distributions, the average doses received have been assessed and the maximum likely additional increase in cancer deaths in Australia as a result of occupational exposure estimated. This increase is shown to be very small. There is, however, a considerable spread of doses received by individuals within occupational groups

  7. Cost effectiveness of pediatric pneumococcal conjugate vaccines: a comparative assessment of decision-making tools.

    Science.gov (United States)

    Chaiyakunapruk, Nathorn; Somkrua, Ratchadaporn; Hutubessy, Raymond; Henao, Ana Maria; Hombach, Joachim; Melegaro, Alessia; Edmunds, John W; Beutels, Philippe

    2011-05-12

    Several decision support tools have been developed to aid policymaking regarding the adoption of pneumococcal conjugate vaccine (PCV) into national pediatric immunization programs. The lack of critical appraisal of these tools makes it difficult for decision makers to understand and choose between them. With the aim to guide policymakers on their optimal use, we compared publicly available decision-making tools in relation to their methods, influential parameters and results. The World Health Organization (WHO) requested access to several publicly available cost-effectiveness (CE) tools for PCV from both public and private provenance. All tools were critically assessed according to the WHO's guide for economic evaluations of immunization programs. Key attributes and characteristics were compared and a series of sensitivity analyses was performed to determine the main drivers of the results. The results were compared based on a standardized set of input parameters and assumptions. Three cost-effectiveness modeling tools were provided, including two cohort-based (Pan-American Health Organization (PAHO) ProVac Initiative TriVac, and PneumoADIP) and one population-based model (GlaxoSmithKline's SUPREMES). They all compared the introduction of PCV into national pediatric immunization program with no PCV use. The models were different in terms of model attributes, structure, and data requirement, but captured a similar range of diseases. Herd effects were estimated using different approaches in each model. The main driving parameters were vaccine efficacy against pneumococcal pneumonia, vaccine price, vaccine coverage, serotype coverage and disease burden. With a standardized set of input parameters developed for cohort modeling, TriVac and PneumoADIP produced similar incremental costs and health outcomes, and incremental cost-effectiveness ratios. Vaccine cost (dose price and number of doses), vaccine efficacy and epidemiology of critical endpoint (for example

  8. Is OSCE successful in pediatrics?

    Directory of Open Access Journals (Sweden)

    M Imani

    2009-02-01

    Full Text Available Background: The Faculty of Medical Sciences, University of Zahedan implemented the Objective Structured Clinical Examination (OSCE in the final Examination during the 2003–2004 academic year. Simultaneously, the pediatric department initiated faculty and student training, and instituted the OSCE as an assessment instrument during the pediatric clerkship in year 5. The study set out to explore student acceptance of the OSCE as part of an evaluation of the Pediatric clerkship.Purpose: This study implemented to evaluate a new method of assessment in medical education in pediatrics.Methods: A self-administered questionnaire was completed by successive groups of students immediately after the OSCE at the end of each clerkship rotation. Main outcome measures were student perception of examination attributes, which included the quality of instructions and organization, the quality of performance, authenticity and transparency of the process, and usefulness of the OSCE as an assessment instrument compared to other methods.Results: There was overwhelming acceptance of the OSCE in Pediatric with respect to the comprehensiveness (90%, transparency (87%, fairness (57% and authenticity of the required tasks (58–78%. However, students felt that it was a strong anxiety-producing experience. And concerns were expressed regarding the ambiguity of some questions and inadequacy of time for expected tasks.Conclusion: Student feedback was invaluable in influencing faculty teaching, curriculum direction and appreciation of student opinion. Further psychometric evaluation will strengthen the development of the OSCE.Key words: OSCE, COMPETENCE ASSESSMENT

  9. Methadone conversion in infants and children: Retrospective cohort study of 199 pediatric inpatients.

    Science.gov (United States)

    Fife, Alexandra; Postier, Andrea; Flood, Andrew; Friedrichsdorf, Stefan J

    2016-01-01

    Methadone administration has increased in pediatric clinical settings. This review is an attempt to ascertain an equianalgesic dose ratio for methadone in the pediatric population using standard adult dose conversion guidelines. US tertiary children's hospital. Hospitalized pediatric patients, 0-18 years of age. A retrospective chart review was conducted for patients who were converted from their initial opioid therapy regimen (morphine, hydromorphone, and/or fentanyl) to methadone. The primary endpoint was whether or not a dose correction was needed for methadone in the 6 days following conversion using standard dose conversion charts for adults. Documented clinical signs of withdrawal, unrelieved pain, or oversedation were examined. The majority (53.7 percent) of the 199 children were converted to methadone on intensive care units prior extubation or postextubation. The mean conversion ratio was 23.7 mg of oral morphine to 1 mg of oral methadone (median, 18.8 mg:1 mg, SD=25.7). Most patients experienced an adequate conversion (n=115, 57.8 percent), while 83 (41.7 percent) appeared undermedicated, and one child was oversedated. There were no associations found with conversion ratios for initial morphine dose, days to conversion, or effect of withdrawal of concomitant agents with potential for withdrawal. Opioid conversion to methadone is commonly practiced at our institution; however, dosing was significantly lower compared to adult conversion ratios, and more than 40 percent of children were undermedicated. The majority of children in this study received opioids for sedation while intubated and ventilated; therefore, safe and efficacious pediatric methadone conversion rates remain unclear. Prospective studies are needed.

  10. Pediatric dental chair vs. traditional dental chair: A pediatric dentist′s poll

    Directory of Open Access Journals (Sweden)

    Khushboo Barjatya

    2015-01-01

    Full Text Available Objective: Proper positioning of the child patient, can not only have positive ramifications for the operator′s posture, comfort, and career longevity - it can also lead to better treatment and increased productivity. The aim of the survey questionnaire was to assess the utilization, need, and attitude concerning dental chairs among pediatric dentist while working on and managing the child patient. Study Design: The questions were structured using adobe forms central online software, regarding the user-friendliness of pediatric dental chair vs. traditional adult dental chair available in the market. Results: Our result shows that out of 337 respondents, 79% worked on pediatric dental chair, whereas 21% had no experience of it. Of these 79% pediatric dentist, 48% preferred pediatric dental chair. But pediatric dental problem still has certain disadvantages like higher cost, leg space problem, lower availability, etc. Conclusion: During the research it was found that ergonomics and usability issues were the main problems. Thus, pediatric dental chair is not so popular in the current scenario. This study allowed for general ideas for the improvement of dental chairs and thus improved dental chair would fill the gap in the current scenario.

  11. Radiation Dose from Voiding Cystourethrography (VCUG) Examination in Children

    International Nuclear Information System (INIS)

    Siriwiladluk, T.; Krisanachinda, A.

    2012-01-01

    Introduction: The purpose of this study is to determine entrance skin dose (ESD) from fluoroscopy and radiography procedures in voiding cystourethrography (VCUG) studies of pediatric patients by dose-area product (DAP) recording. Methods: Radiation doses received by 70 patients underwent VCUG procedures were determined by the DAP Meter, Wellh?fer Dosimetrie GmbH, Germany) directly coupled to the x-ray tube window (Philips Omni Diagnost Eleva) and an electrometer connected to a computer for data collection. The study revealed the radiation dose for VCUG and the baseline data on the entrance skin dose, ESD, dose area-product (DAP) and the effective dose, E, to establish local reference dose levels for VCUG in pediatric patients. Results: The mean(minimum-maximum) ESD, DAP and the effective dose of pediatric patients in 4 age ranges were 3.41(1-9) mGy, 46.58 (21.90-158.90) cGycm 2 and 0.10(0.05-0.33) mSv for 0- 1 years, 6.80(2-16) mGy, 115.55 (20.70-258.70)cGycm 2 and 0.24(0.04-0.54) mSv for >1-5 years, 11.76 (3-23) mGy, 292.28 (88.90-593.50)cGycm 2 and 0.61(0.19-1.25) mSv for >5-10 years, and 20.50(10-42) mGy, 575.98(255.60-1247.80) cGycm 2 and 1.12(0.54-2.62) mSv for >10-15 years respectively. Discussion: The dose levels for VCUG as recommended by the national reference doses (NRDs) of UK are classified at patient age of 0-1 years, 90 cGy.cm 2 , >1-5 years, 110 cGy.cm 2 , >5-10 years, 210 cGy.cm 2 and >10-15 years, 470 cGy.cm 2 respectively. Conclusions: The mean DAP of pediatric patients were higher than the dose level as recommended by NRD at the age range >1-5, >5-10 and >10-15 years. The limitation in this study was the non uniform in the number of patients at the higher age. Attempts could be made to lower the radiation dose to avoid the higher risk of developing radiation-induced cancer in children. (author)

  12. Development of a real-time radiological dose assessment system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Lee, Young Bok; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae; Choi, Young Gil

    1997-07-01

    A radiological dose assessment system named FADAS has been developed. This system is necessary to estimated the radiological consequences against a nuclear accident. Mass-consistent wind field module was adopted for the generation of wind field over the whole domain using the several measured wind data. Random-walk dispersion module is used for the calculation of the distribution of radionuclides in the atmosphere. And volume-equivalent numerical integration method has been developed for the assessment of external gamma exposure given from a randomly distributed radioactive materials and a dose data library has been made for rapid calculation. Field tracer experiments have been carried out for the purpose of analyzing the site-specific meteorological characteristics and increasing the accuracy of wind field generation and atmospheric dispersion module of FADAS. At first, field tracer experiment was carried out over flat terrain covered with rice fields using the gas samplers which were designed and manufactured by the staffs of KAERI. The sampled gas was analyzed using gas chromatograph. SODAR and airsonde were used to measure the upper wind. Korean emergency preparedness system CARE was integrated at Kori 4 nuclear power plants in 1995. One of the main functions of CARE is to estimate the radiological dose. The developed real-time dose assessment system FADAS was adopted in CARE as a tool for the radiological dose assessment. (author). 79 refs., 52 tabs., 94 figs.

  13. Benchmarking pediatric cranial CT protocols using a dose tracking software system: a multicenter study.

    Science.gov (United States)

    De Bondt, Timo; Mulkens, Tom; Zanca, Federica; Pyfferoen, Lotte; Casselman, Jan W; Parizel, Paul M

    2017-02-01

    To benchmark regional standard practice for paediatric cranial CT-procedures in terms of radiation dose and acquisition parameters. Paediatric cranial CT-data were retrospectively collected during a 1-year period, in 3 different hospitals of the same country. A dose tracking system was used to automatically gather information. Dose (CTDI and DLP), scan length, amount of retakes and demographic data were stratified by age and clinical indication; appropriate use of child-specific protocols was assessed. In total, 296 paediatric cranial CT-procedures were collected. Although the median dose of each hospital was below national and international diagnostic reference level (DRL) for all age categories, statistically significant (p-value benchmarking showed that further dose optimization and standardization is possible by using age-stratified protocols for paediatric cranial CT. Moreover, having a dose tracking system revealed that adult protocols are still applied for paediatric CT, a practice that must be avoided. • Significant differences were observed in the delivered dose between age-groups and hospitals. • Using age-adapted scanning protocols gives a nearly linear dose increase. • Sharing dose-data can be a trigger for hospitals to reduce dose levels.

  14. Toxicity assessment of molecularly targeted drugs incorporated into multiagent chemotherapy regimens for pediatric Acute Lymphocytic Leukemia (ALL): Review from an International Consensus Conference

    NARCIS (Netherlands)

    T.M. Horton (Terzah); R. Sposto (Richard); P. Brown (Patrick); C.P. Reynolds (Patrick); S.P. Hunger (Stephen); N.J. Winick (Naomi); E.A. Raetz (Elizabeth); W.L. Carroll (William); R.J. Arceci (Robert); M.J. Borowitz (Michael); P.S. Gaynon (Paul); L. Gore (Lia); S. Jeha (Sima); B.J. Maurer (Barry); S.E. Siegel (Stuart); A. Biondi (Andrea); P. Kearns (Pamela); A. Narendran (Aru); L.B. Silverman (Lewis); M.A. Smith (Malcolm); C.M. Zwaan (Christian Michel); J.A. Whitlock (James)

    2010-01-01

    textabstractOne of the challenges of incorporating molecularly targeted drugs into multi-agent chemotherapy (backbone) regimens is defining dose-limiting toxicities (DLTs) of the targeted agent against the background of toxicities of the backbone regimen. An international panel of 22 pediatric acute

  15. WE-E-18A-10: Comparison of Patient Dose and Vessel Visibility Between Antiscatter Grid Removal and Lower Angiographic Radiation Dose Settings for Pediatric Imaging: A Preclinical Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, K; Nachabe, R; Racadio, J [Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2014-06-15

    Purpose: To define an alternative to antiscatter grid (ASG) removal in angiographic systems which achieves similar patient dose reduction as ASG removal without degrading image quality during pediatric imaging. Methods: This study was approved by the local institution animal care and use committee (IACUC). Six different digital subtraction angiography settings were evaluated that altered the mAs, (100, 70, 50, 35, 25, 17.5% of reference mAs) with and without ASG. Three pigs of 5, 15, and 20 kg (9, 15, and 17 cm abdominal thickness; smaller than a newborn, average 3 yr old, and average 10 year old human abdomen respectively) were imaged using the six dose settings with and without ASG. Image quality was defined as the order of vessel branch that is visible relative to the injected vessel. Five interventional radiologists evaluated all images. Image quality and patient dose were statistically compared using analysis of variance and receiver operating curve (ROC) analysis to define the preferred dose level and use of ASG for a minimum visibility of 2nd or 3rd order branches of vessel visibility. Results: ASG grid removal reduces dose by 26% with reduced image quality. Only with the ASG present can 3rd order branches be visualized; 100% mAs is required for 9 cm pig while 70% mAs is adequate for the larger pigs. 2nd order branches can be visualized with ASG at 17.5% mAs for all three pig sizes. Without the ASG, 50%, 35% and 35% mAs is required for smallest to largest pig. Conclusion: Removing ASG reduces patient dose and image quality. Image quality can be improved with the ASG present while further reducing patient dose if an optimized radiographic technique is used. Rami Nachabe is an employee of Philips Health Care; Keith Strauss is a paid consultant of Philips Health Care.

  16. Guideline for fluoroscopy of low gastrointestinal tract in pediatrics

    International Nuclear Information System (INIS)

    Chang, Yun Woo; Jeon, Tae Yeon; Kim, Ji Hye; Lee, Mi Jung; Lim, Yun Jung; Yoon, Hye Kyung; Lim, Gye Yeon; Lee, Hee Jung

    2015-01-01

    Although the availability of CT, MRI and endoscopy has resulted in a marked decline in fluoroscopic procedures in adult patients, fluoroscopy remains an important and frequently used procedure in pediatric patients because there is no appropriate choice of diagnostic imaging or treatment modality for certain diseases. The Korean Society of Pediatric Radiology has formulated evidence-based guidelines for fluoroscopy of the lower intestinal tract in the pediatric population (under age 18 including neonates) in order to assist physicians in clinical practice. The guidelines offer standards of examination practice including radiation doses that are as low as reasonably achievable for children under 18 years old, including neonates, for fluoroscopy of the lower intestinal tract, which has typically used relatively high doses. The recommendations of these guidelines should not be used as an absolute standard, and physicians should always refer to methods that do not adhere to the guidelines when those methods are considered more reasonable and beneficial to an individual patient's medical situation

  17. The development of a population of 4D pediatric XCAT phantoms for CT imaging research and optimization

    Science.gov (United States)

    Norris, Hannah; Zhang, Yakun; Frush, Jack; Sturgeon, Gregory M.; Minhas, Anum; Tward, Daniel J.; Ratnanather, J. Tilak; Miller, M. I.; Frush, Donald; Samei, Ehsan; Segars, W. Paul

    2014-03-01

    With the increased use of CT examinations, the associated radiation dose has become a large concern, especially for pediatrics. Much research has focused on reducing radiation dose through new scanning and reconstruction methods. Computational phantoms provide an effective and efficient means for evaluating image quality, patient-specific dose, and organ-specific dose in CT. We previously developed a set of highly-detailed 4D reference pediatric XCAT phantoms at ages of newborn, 1, 5, 10, and 15 years with organ and tissues masses matched to ICRP Publication 89 values. We now extend this reference set to a series of 64 pediatric phantoms of a variety of ages and height and weight percentiles, representative of the public at large. High resolution PET-CT data was reviewed by a practicing experienced radiologist for anatomic regularity and was then segmented with manual and semi-automatic methods to form a target model. A Multi-Channel Large Deformation Diffeomorphic Metric Mapping (MC-LDDMM) algorithm was used to calculate the transform from the best age matching pediatric reference phantom to the patient target. The transform was used to complete the target, filling in the non-segmented structures and defining models for the cardiac and respiratory motions. The complete phantoms, consisting of thousands of structures, were then manually inspected for anatomical accuracy. 3D CT data was simulated from the phantoms to demonstrate their ability to generate realistic, patient quality imaging data. The population of pediatric phantoms developed in this work provides a vital tool to investigate dose reduction techniques in 3D and 4D pediatric CT.

  18. Skill qualifications in pediatric minimally invasive surgery.

    Science.gov (United States)

    Iwanaka, Tadashi; Morikawa, Yasuhide; Yamataka, Atsuyuki; Nio, Masaki; Segawa, Osamu; Kawashima, Hiroshi; Sato, Masahito; Terakura, Hirotsugu; Take, Hiroshi; Hirose, Ryuichiro; Yagi, Makoto

    2011-07-01

    In 2006, The Japanese Society of Pediatric Endoscopic Surgeons devised a plan to develop a pediatric endoscopic surgical skill qualification (ESSQ) system. This system is controlled by The Japan Society for Endoscopic Surgery. The standard requirement for skills qualification is the ability of each applicant to complete common types of laparoscopic surgery. The main goal of the system is to decrease complications of laparoscopic surgery by evaluating the surgical skills of each applicant and subsequently certify surgeons with adequate skills to perform laparoscopic operations safely. A committee of pediatric ESSQ created a checklist to assess the applicant's laparoscopic surgical skills. Skills are assessed in a double-blinded fashion by evaluating an unedited video recording of a fundoplication for pediatric gastroesophageal reflux disease. The initial pediatric ESSQ system was started in 2008. In 2008 and 2009, respectively, 9 out of 17 (53%) and 6 out of 12 (50%) applicants were certified as expert pediatric laparoscopic surgeons. Our ultimate goal is to provide safe and appropriate pediatric minimally invasive procedures and to avoid severe complications. To prove the predictive validity of this system, a survey of the outcomes of operations performed by certified pediatric surgeons is required.

  19. Boots on the ground: how to influence your local radiology departments to use appropriate CT dose

    International Nuclear Information System (INIS)

    Slovis, Thomas L.

    2014-01-01

    Most pediatric CT examinations (as many as 85%) are performed at non-pediatric-focused facilities. In contrast to children's hospitals and pediatric emergency departments, the number of CT examinations is increasing at these non-pediatric facilities. Compliance with diagnostic reference levels (DRLs) for dose has been shown to be poor at several metropolitan centers. Several high-yield interventions are worth exploring in an effort to achieve more optimal imaging care of children, such as electronic transfer of images to prevent duplication of examinations as well as personal feedback to referring institutions on dose, indications and quality by the pediatric referral center. (orig.)

  20. Radiological assessment. A textbook on environmental dose analysis

    Energy Technology Data Exchange (ETDEWEB)

    Till, J.E.; Meyer, H.R. (eds.)

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

  1. Radiological assessment. A textbook on environmental dose analysis

    International Nuclear Information System (INIS)

    Till, J.E.; Meyer, H.R.

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides

  2. Population pharmacokinetics of busulfan in pediatric and young adult patients undergoing hematopoietic cell transplant: a model-based dosing algorithm for personalized therapy and implementation into routine clinical use.

    Science.gov (United States)

    Long-Boyle, Janel R; Savic, Rada; Yan, Shirley; Bartelink, Imke; Musick, Lisa; French, Deborah; Law, Jason; Horn, Biljana; Cowan, Morton J; Dvorak, Christopher C

    2015-04-01

    Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation. Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02). When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in

  3. Dose assessment activities in the Republic of the Marshall Islands

    International Nuclear Information System (INIS)

    Simon, S.L.; Graham, J.C.

    1996-01-01

    Dose assessments, both retrospective and prospective, comprise one important function of a radiological study commissioned by the Republic of the Marshall Islands (RMI) government in late 1989. Estimating past or future exposure requires the synthesis of information from historical data, results from a recently completed field monitoring program, laboratory measurements, and some experimental studies. Most of the activities in the RMI to date have emphasized a pragmatic rather than theoretical approach. In particular, most of the recent effort has been expended on conducting an independent radiological monitoring program to determine the degree of deposition and the geographical extent of weapons test fallout over the nation. Contamination levels on 70% of the land mass of the Marshall Islands were unknown prior to 1994. The environmental radioactivity data play an integral role in both retrospective and prospective assessments. One recent use of dose assessment has been to interpret environmental measurements of radioactivity into annual doses that might be expected at every atoll. A second use for dose assessment has been to determine compliance with dose action level for the rehabitation of Rongelap Island. Careful examination of exposure pathways relevant to the island lifestyle has been necessary to accommodate these purposes. Finally, an examination is underway of gummed film, fixed-instrument, and aerial survey data accumulated during the 1950's by the Health and Safety Laboratory of the U.S. AEC. This article gives an overview of these many different activities and a summary of recent dose assessments

  4. Assessment of prospective foodchain doses from radioactive discharges from BNFL Sellafield

    International Nuclear Information System (INIS)

    Ould-Dada, Z.; Tucker, S.; Webbe-Wood, D.; Mondon, K.; Hunt, J.

    2002-01-01

    This paper presents the method used by the UK Food Standards Agency (FSA) to assess the potential impact of proposed radioactive discharges from the Sellafield nuclear site on food and determine their acceptability. It explains aspects of a cautious method that has been adopted to reflect the UK government policy and uncertainties related to people's habits with regard to food production and consumption. Two types of ingestion doses are considered in this method: 'possible' and 'probable' doses. The method is specifically applied to Sellafield discharge limits and calculated possible and probable ingestion doses are presented and discussed. Estimated critical group ingestion doses are below the dose limit and constraint set for members of the public. The method may be subject to future amendments to take account of changes in government policy and the outcome of a recent Consultative Exercise on Dose Assessments carried out by FSA. Uncertainties inherent in dose assessments are discussed and quantified wherever possible

  5. MCNPX dosimetry and radiation-induced cancer risk estimation from {sup 18}F-FDG pediatric PET at Brazilian population

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Bruno M.; Fonseca, Telma C.F. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Campos, Tarcisio P.R., E-mail: bmm@cdtn.br, E-mail: tcff@cdtn.br, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (PCTN/UFMG), Belo Horizonte, MG (Brazil). Programa de Pós-Graduação em Ciências e Técnicas Nucleares

    2017-07-01

    Positron emission tomography (PET) using {sup 18}F-FDG has increased significantly in pediatric patients. PET with {sup 18}F-FDG has often been applied in oncology. Cancer induction is one of the main stochastic risk from exposure to ionizing radiation of {sup 18}F-FDG. Radiation-induced cancer risk estimation due to medical exposures is an important tool for risk/benefit assessing. The objective was to perform dosimetry and estimate the risk of cancer induction due to pediatric use of {sup 18}F-FDG. MCNPX Computational dosimetry was performed to estimate organ absorbed doses resulting from {sup 18}F-FDG pediatric use. Two voxelized phantoms, kindly provided by the GSF - Helmholtz Zentrum, were used: 'Child' - 7 years child and 'Baby' 8-week-old infant. ICRP-128 publication provided the radiopharmaceutical biodistribution of F-18. Tables containing organ absorbed dose and effective dose per unit of injected activity for the two phantoms were obtained. The injected activities were estimated according to data provided in the literature. Images of the absorbed dose distribution were generated from both models. The BEIR VII methodology was used to calculate the risk of cancer induction. The risk of cancer induction (per imaging procedure) for the seven-year-old child was (0.09% ♂ and 0.15% ♀) and for the eight-week old baby was (0.11% ♂ and 0.21% ♀). The {sup 18}F-FDG absorbed dose distribution in the children and infants showed some divergences in comparison to adult data. Probably, the biokinetic data used to children and infants is the main reason for this disconnection. (author)

  6. Development of dose assessment code for accidental releases of activation products

    International Nuclear Information System (INIS)

    Noguchi, H.; Yokoyama, S.

    2000-01-01

    It is expected that activation products will be important radionuclides as well as tritium in the assessment of the public doses necessary for licensing of a future fusion reactor. In order to calculate the public doses due to the activation products released in cases of accidents, a code named ACUTAP (dose assessment code for ACUTe Activation Product releases) has been developed. Major characteristics of the code are as follows: (1) the transfer model reflects specific behavior of the activation products in the environment, (2) the doses are assessed based on ICRP dose models, (3) it is possible to calculate individual doses using annual meteorological data statistically according to the guide of the Nuclear Safety Commission of Japan, and (4) the code can calculate collective doses as well as individual doses. Individual doses are calculated for the following pathways: internal exposure by inhalation of activation products in a plume and those resuspended from the ground, external exposure from a plume (cloudshine), and external exposure from activation products deposited on the ground (groundshine). The inhalation in a plume and cloudshine pathways are included in the model for calculating collective doses. In addition to parent nuclides released from the facilities, progeny nuclides produced during the atmospheric dispersion are considered in calculating inhalation doses, and those during the deposition period in calculating groundshine doses. External doses from the cloudshine are calculated for 18 energy groups instead of individual energy of emitted gamma rays in order to save the computation time. Atmospheric concentrations are calculated using a Gaussian plume model with atmospheric dispersion parameters prescribed in the guide of the Nuclear Safety Commission of Japan. Data sets of parameters necessary for the dose assessment, such as internal dos coefficients, external dose rate conversion factors and half lives, are prepared for about 100 radionuclides

  7. Mesorad dose assessment model. Volume 1. Technical basis

    International Nuclear Information System (INIS)

    Scherpelz, R.I.; Bander, T.J.; Athey, G.F.; Ramsdell, J.V.

    1986-03-01

    MESORAD is a dose assessment model for emergency response applications. Using release data for as many as 50 radionuclides, the model calculates: (1) external doses resulting from exposure to radiation emitted by radionuclides contained in elevated or deposited material; (2) internal dose commitment resulting from inhalation; and (3) total whole-body doses. External doses from airborne material are calculated using semi-infinite and finite cloud approximations. At each stage in model execution, the appropriate approximation is selected after considering the cloud dimensions. Atmospheric processes are represented in MESORAD by a combination of Lagrangian puff and Gaussian plume dispersion models, a source depletion (deposition velocity) dry deposition model, and a wet deposition model using washout coefficients based on precipitation rates

  8. Conformal radiotherapy by intensity modulation of pediatrics tumors

    International Nuclear Information System (INIS)

    Leseur, J.; Le Prise, E.; Carrie, C.; Bernier, V.; Beneyton, V.; Mahe, M.A.; Supiot, S.

    2009-01-01

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  9. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Cheng, Jonathan C.; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age ≥18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function

  10. Intraoperative high-dose-rate brachytherapy for the treatment of pediatric tumors: the Ohio State University experience

    International Nuclear Information System (INIS)

    Nag, Subir; Tippin, Douglas; Ruymann, Frederick B.

    2001-01-01

    Purpose: To determine whether intraoperative high-dose-rate brachytherapy (IO-HDRBT) can be used to decrease the dose of external beam radiotherapy (EBRT) in the treatment of children with soft-tissue sarcomas and, thereby, reduce morbidity without compromising local control. Methods and Materials: From March 1992 through April 1999, 13 pediatric patients were treated with IO-HDRBT, low-dose EBRT, chemotherapy, and radical surgery at 21 sites that were not amenable to intraoperative electron beam therapy. The IO-HDRBT dose at 5 mm depth was 10 to 12.5 Gy for close margins/microscopic disease at 14 sites and 12.5 to 15 Gy for gross disease at 7 sites. The treatment volumes ranged from 4 to 96 cm 3 (mean 27). The EBRT dose was limited to 27-30 Gy in most cases to minimize growth retardation and preserve normal organ function. Results: After a median follow-up of 47 months (range 12-97), 11 patients were alive and without evidence of disease (overall survival rate 85%, 4-year actuarial survival rate 77%). Of the 2 who died, 1 had Stage III pulmonary blastoma with a sacral recurrence; the other had Stage IV undifferentiated synovial sarcoma with a pulmonary recurrence. One local failure occurred in a patient with gross residual disease after incomplete resection for Stage IV pulmonary blastoma. The local control rate was 95%, and morbidity was observed in 3 patients (23%). One patient developed impaired orbital growth with mild ptosis. Another patient required orthopedic pinning of her femoral subcapital epiphysis and construction of a neobladder secondary to urethral obstruction. The third patient required reimplantation of her autotransplanted kidney secondary to chronic urinary tract infection and ureteral reflux. Conclusions: IO-HDRBT allowed for reduction in EBRT without compromising local control or disease-free survival in children with soft-tissue sarcomas. Tumor beds inaccessible to electron beam methods could be satisfactorily encompassed with IO

  11. Benchmarking pediatric cranial CT protocols using a dose tracking software system: a multicenter study

    Energy Technology Data Exchange (ETDEWEB)

    Bondt, Timo de; Parizel, Paul M. [Antwerp University Hospital and University of Antwerp, Department of Radiology, Antwerp (Belgium); Mulkens, Tom [H. Hart Hospital, Department of Radiology, Lier (Belgium); Zanca, Federica [GE Healthcare, DoseWatch, Buc (France); KU Leuven, Imaging and Pathology Department, Leuven (Belgium); Pyfferoen, Lotte; Casselman, Jan W. [AZ St. Jan Brugge-Oostende AV Hospital, Department of Radiology, Brugge (Belgium)

    2017-02-15

    To benchmark regional standard practice for paediatric cranial CT-procedures in terms of radiation dose and acquisition parameters. Paediatric cranial CT-data were retrospectively collected during a 1-year period, in 3 different hospitals of the same country. A dose tracking system was used to automatically gather information. Dose (CTDI and DLP), scan length, amount of retakes and demographic data were stratified by age and clinical indication; appropriate use of child-specific protocols was assessed. In total, 296 paediatric cranial CT-procedures were collected. Although the median dose of each hospital was below national and international diagnostic reference level (DRL) for all age categories, statistically significant (p-value < 0.001) dose differences among hospitals were observed. The hospital with lowest dose levels showed smallest dose variability and used age-stratified protocols for standardizing paediatric head exams. Erroneous selection of adult protocols for children still occurred, mostly in the oldest age-group. Even though all hospitals complied with national and international DRLs, dose tracking and benchmarking showed that further dose optimization and standardization is possible by using age-stratified protocols for paediatric cranial CT. Moreover, having a dose tracking system revealed that adult protocols are still applied for paediatric CT, a practice that must be avoided. (orig.)

  12. An update on local anesthesia for pediatric dental patients

    Science.gov (United States)

    Peedikayil, Faizal C.; Vijayan, Ajoy

    2013-01-01

    Pain control is an important part of dentistry, particularly in the management of children. Behavior guidance, and dose and technique of administration of the local anesthetic are important considerations in the successful treatment of a pediatric patient. The purpose of the present review is to discuss the relevant data on topics involved, and on the current methods available in the administration of local anesthesia used for pediatric dental patients. PMID:25885712

  13. An update on local anesthesia for pediatric dental patients

    OpenAIRE

    Peedikayil, Faizal C.; Vijayan, Ajoy

    2013-01-01

    Pain control is an important part of dentistry, particularly in the management of children. Behavior guidance, and dose and technique of administration of the local anesthetic are important considerations in the successful treatment of a pediatric patient. The purpose of the present review is to discuss the relevant data on topics involved, and on the current methods available in the administration of local anesthesia used for pediatric dental patients.

  14. Risk in pediatric anesthesia.

    Science.gov (United States)

    Paterson, Neil; Waterhouse, Peter

    2011-08-01

    Risk in pediatric anesthesia can be conveniently classified as minor or major. Major morbidity includes cardiac arrest, brain damage and death. Minor morbidity can be assessed by clinical audits with small patient samples. Major morbidity is rare. It is best assessed by very large clinical studies and by review of closed malpractice claims. Both minor and major morbidity occur most commonly in infants and children under three, especially those with severe co-morbidities. Knowledge of risk profiles in pediatric anesthesia is a starting point for the reduction of risk. © 2010 Blackwell Publishing Ltd.

  15. Assessment of population external irradiation doses with consideration of Rospotrebnadzor bodies equipment for monitoring of photon radiation dose

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2016-01-01

    Full Text Available This paper provides review of equipment and methodology for measurement of photon radiation dose; analysis of possible reasons for considerable deviation between the Russian Federation population annual effective external irradiation doses and the relevant average global value. Data on Rospotrebnadzor bodies dosimetry equipment used for measurement of gamma radiation dose are collected and systematized. Over 60 kinds of dosimeters are used for monitoring of population external irradiation doses. Most of dosimeters used in the country have gas-discharge detectors (Geiger-Mueller counters, minor biochemical annunciators, etc. which have higher total values of own background level and of space radiation response than the modern dosimeters with scintillation detectors. This feature of dosimeters is apparently one of most plausible reasons of a bit overstating assessment of population external irradiation doses. The options for specification of population external irradiation doses assessment are: correction of gamma radiation dose measurement results with consideration of dosimeters own background level and space radiation response, introduction of more up-to-date dosimeters with scintillation detectors, etc. The most promising direction of research in verification of population external irradiation doses assessment is account of dosimetry equipment.

  16. Research and assessment of national population dose

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1984-01-01

    This article describes the necessity and probability of making researches on assessment of national population dose, and discusses some problems which might be noticeable in the research work. (author)

  17. Calculational Tool for Skin Contamination Dose Assessment

    CERN Document Server

    Hill, R L

    2002-01-01

    Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.

  18. Assessment and recording of radiation doses to workers

    International Nuclear Information System (INIS)

    1986-01-01

    The assessment and recording of the radiation exposure of workers in activities involving radiation risks are required for demonstrating compliance with institutional dose limitations and for a number of other complementary purposes. A significant proportion of the labor force involved in radiation work is currently represented by those specialised workers who operate as itinerant contractors for different nuclear installations and in different countries. In order to ensure that the exposure of these workers is adequately and consistently controlled and kept within acceptable limits, there is a need for the criteria and methods for dose assessment and recording to be harmonised throughout the different countries. An attempt in that direction has been made in this report, which has been prepared by a group of experts convened by the Committee on Radiation Protection and Public Health of the OECD Nuclear Energy Agency. Its primary purpose is to describe recommended technical procedures for an unified approach to the assessment and recording of worker doses. The report is published under the responsibility of the Secretary-General of the OECD, and does not commit Member governments

  19. North American Pediatric Gastroenterology Fellowship Needs Assessment in Inflammatory Bowel Disease: Trainee and Program Director Perspectives.

    Science.gov (United States)

    Dotson, Jennifer L; Falaiye, Tolulope; Bricker, Josh B; Strople, Jennifer; Rosh, Joel

    2016-07-01

    Pediatric inflammatory bowel disease (IBD) care is complex and rapidly evolving. The Crohn's and Colitis Foundation of America and North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition cosponsored a needs assessment survey of pediatric gastroenterology trainees and program directors (PDs) to inform on educational programming. A Web-based, self-completed survey was provided to North American trainees and PDs during the 2013-2014 academic year. Standard descriptive statistics summarized demographics and responses. One hundred sixty-six of 326 (51%) trainees (62% female) and 37 of 74 (50%) PDs responded. Median trainees per program = 5 and median total faculty = 10 (3 IBD experts); 15% of programs did not have a self-identified "IBD expert" faculty member. Sixty-nine percent of trainees were confident/somewhat confident in their IBD inpatient training, whereas 54% were confident/somewhat confident in their outpatient training. Trainees identified activities that would most improve their education, including didactics (55%), interaction with national experts (50%), trainee-centered IBD Web resources (42%), and increased patient exposure (42%). Trainees were most confident in managing inpatient active Crohn's disease/ulcerative colitis, phenotype classification, managing biological therapies, and using clinical disease activity indices. They were least confident in managing J-pouch complications, performing pouchoscopy, managing extraintestinal manifestations, and ostomy-related complications. Eighty-five percent would like an IBD-focused training elective. Most directors (86%) would allow trainees to do electives at other institutions. This IBD needs assessment survey of pediatric gastroenterology trainees and PDs demonstrated a strong resource commitment to IBD training and clinical care. Areas for educational enrichment emerged, including pouch and ostomy complications.

  20. Determination of dosimetric quantities in pediatric abdominal computed tomography scans

    Energy Technology Data Exchange (ETDEWEB)

    Jornada, Tiago da Silva [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostipo por Imagem; Silva, Teogenes Augusto da, E-mail: silvata@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2014-09-15

    Objective: aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods: the study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results: No significant difference was observed in the values for weighted air kerma index (C{sub W}), but the differences were relevant in values for volumetric air kerma index (C{sub VOL}), air kerma-length product (P{sub KL,CT}) and effective dose. Conclusion: Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, P{sub KL,CT} and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. (author)

  1. Determination of dosimetric quantities in pediatric abdominal computed tomography scans*

    Science.gov (United States)

    Jornada, Tiago da Silva; da Silva, Teógenes Augusto

    2014-01-01

    Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103

  2. Dose assessment under incidental and accidental conditions

    International Nuclear Information System (INIS)

    Huebschmann, W.G.

    1988-01-01

    Dose assessment for the licesing process of a nuclear power plant covers the routine release of radioactive substances into the atmosphere as well as releases due to incidents. Source terms for these incidents are evaluated by the detailed incident analysis of the plant. The types of incidents to be covered are determined in the FRG by the ''Stoerfall-Leitlinien'' of the Ministry of the Interior. The calculation of dose equivalents in the environment of the plant differs from the calculation of doses due to routine releases, as incidents are single events occuring at undeterminate time, and the results must be conservative. Some details are being described. During the operation of the plant it is essential to measure not only the radioactivity release rates but also the necessary meteorological parameters for the instantaneous determination of the atmospheric dispersion in case of incidental or accidental releases of radioactivity. This instantaneous assessment assists in taking measurements of ground contamination and in deciding about countermeasures for the protection of plant personnell and population. (author) [pt

  3. Boots on the ground: how to influence your local radiology departments to use appropriate CT dose

    Energy Technology Data Exchange (ETDEWEB)

    Slovis, Thomas L. [Wayne State University School of Medicine, Children' s Hospital of Michigan, Department of Radiology, Detroit, MI (United States)

    2014-10-15

    Most pediatric CT examinations (as many as 85%) are performed at non-pediatric-focused facilities. In contrast to children's hospitals and pediatric emergency departments, the number of CT examinations is increasing at these non-pediatric facilities. Compliance with diagnostic reference levels (DRLs) for dose has been shown to be poor at several metropolitan centers. Several high-yield interventions are worth exploring in an effort to achieve more optimal imaging care of children, such as electronic transfer of images to prevent duplication of examinations as well as personal feedback to referring institutions on dose, indications and quality by the pediatric referral center. (orig.)

  4. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    The International Commission on Radiological Protection (Publication 26) has recommended a tissue depth of 5 to 10 mg.cm -2 for skin dose assessments. This requirement is generally not fulfilled by routine monitoring procedures because of practical difficulties in using very thin dosemeters with low sensitivity and therefore a high minimum detectable dose. Especially for low-energy beta-ray exposures underestimations of the skin dose by a factor of more than ten may occur. Low-transparent graphite-mixed sintered LiF and Li 2 B 4 0 7 : Mn dosemeters were produced which show a skin-equivalent response to beta and gamma exposures over a wide range of energies. These have found wide-spread application for extremity dosimetry but have not yet been generally introduced in routine personnel beta/gamma monitoring. The following adaptations of existing routine monitoring systems for improved skin dose assessments have been investigated: 1) Placement of a supplementary, thin, skin-dose equivalent dosemeter in the TLD badge to give additional information on low-energy exposures. 2) Introduction of a second photomultiplier in the read-out chamber which enables a simultaneous determination of emitted TL from both sides of the dosemeter separately. This method makes use of the selfshielding of the dosemeter to give information on the low-energy dose contribution. 3) By diffusion of Li 2 B 4 0 7 into solid LiF-dosemeters it was possible to produce a surface layer with a new distinct glow-peak at about 340 deg C which is not present in the undiffused part of the LiF chip, and which can be utilized for the assessment of the skin-dose. Data on energy response and accuracy of dose measurement for beta/gamma exposures are given for the three methods and advantages and disadvantages are discussed (H.K.)

  5. SU-E-CAMPUS-T-03: Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D; Summers, P; Followill, D; Sahoo, N; Mahajan, A; Stingo, F; Kry, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC). Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120kVp, and the RSP was obtained from depth ionization scans using the Zebra multilayer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU. Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%. Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma analysis

  6. SU-E-CAMPUS-T-03: Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy

    International Nuclear Information System (INIS)

    Lewis, D; Summers, P; Followill, D; Sahoo, N; Mahajan, A; Stingo, F; Kry, S

    2014-01-01

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC). Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120kVp, and the RSP was obtained from depth ionization scans using the Zebra multilayer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU. Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%. Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma analysis

  7. Dosimetric study in chest computed tomography scans of adult and pediatric phantoms

    International Nuclear Information System (INIS)

    Namen A, W.; Prata M, A.; Guedes, G.

    2016-10-01

    The computed tomography scan is a radiological technique that permits an evaluation of the patient internal structures. In the last ten years, this technique has had a high growth due to clinical cases of medical emergencies, cancer and pediatric trauma. Widespread of this technique has a significant increase in the patient dose. The risk associated with the radiological examination can be considered very low compared to the natural risk. However, any additional risk, no matter how small, is unacceptable if it does not benefit the patient. To be aware of the dose distribution is important when the objective is to vary the acquisition parameters aiming a dose reduction. The aim os this study is develop a pediatric chest phantom to evaluate the dose variation in CT scans. In this work, a cylindrical adult chest phantom made in polymethyl methacrylate was used and a second chest phantom was developed, based on dimensions of in eight year old patient in oblong shape. The two simulators have 5 openings, one is central and four are peripheral lagged by 90 degrees Celsius, which allow positioning a pencil chamber aiming and observation of the dose in 5 regions. In a GE CT scanner, Discovery model and 64 channels, the central slice of both simulators were irradiated successively to obtain dose measurements using a pencil chamber. The irradiation of the central slice was conducted using the service protocol. The registered dose values showed that the pediatric phantom had higher doses especially in the anterior, posterior and central regions. The results also enabled a comparison among the index dose values obtained from the measurements with the pencil chamber. (Author)

  8. Dosimetric study in chest computed tomography scans of adult and pediatric phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Namen A, W.; Prata M, A. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil); Guedes, G., E-mail: wadia.namen@gmail.com [Centro Federal de Educacao Tecnologica de Minas Gerais, Centro de Engenharia Biomedica, Av. Amazonas 5253, 30421-169 Nova Suica, Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    The computed tomography scan is a radiological technique that permits an evaluation of the patient internal structures. In the last ten years, this technique has had a high growth due to clinical cases of medical emergencies, cancer and pediatric trauma. Widespread of this technique has a significant increase in the patient dose. The risk associated with the radiological examination can be considered very low compared to the natural risk. However, any additional risk, no matter how small, is unacceptable if it does not benefit the patient. To be aware of the dose distribution is important when the objective is to vary the acquisition parameters aiming a dose reduction. The aim os this study is develop a pediatric chest phantom to evaluate the dose variation in CT scans. In this work, a cylindrical adult chest phantom made in polymethyl methacrylate was used and a second chest phantom was developed, based on dimensions of in eight year old patient in oblong shape. The two simulators have 5 openings, one is central and four are peripheral lagged by 90 degrees Celsius, which allow positioning a pencil chamber aiming and observation of the dose in 5 regions. In a GE CT scanner, Discovery model and 64 channels, the central slice of both simulators were irradiated successively to obtain dose measurements using a pencil chamber. The irradiation of the central slice was conducted using the service protocol. The registered dose values showed that the pediatric phantom had higher doses especially in the anterior, posterior and central regions. The results also enabled a comparison among the index dose values obtained from the measurements with the pencil chamber. (Author)

  9. Internal Dose Conversion Coefficients of Domestic Reference Animal and Plants for Dose Assessment of Non-human Species

    International Nuclear Information System (INIS)

    Keum, Dong Kwon; Jun, In; Lim, Kwang Muk; Choi, Yong Ho

    2009-01-01

    Traditionally, radiation protection has been focused on a radiation exposure of human beings. In the international radiation protection community, one of the recent key issues is to establish the methodology for assessing the radiological impact of an ionizing radiation on non-human species for an environmental protection. To assess the radiological impact to non-human species dose conversion coefficients are essential. This paper describes the methodology to calculate the internal dose conversion coefficient for non-human species and presents calculated internal dose conversion coefficients of 25 radionuclides for 8 domestic reference animal and plants

  10. Using a computerized provider order entry system to meet the unique prescribing needs of children: description of an advanced dosing model

    Directory of Open Access Journals (Sweden)

    Schellenberger Patricia

    2011-02-01

    Full Text Available Abstract Background It is well known that the information requirements necessary to safely treat children with therapeutic medications cannot be met with the same approaches used in adults. Over a 1-year period, Duke University Hospital engaged in the challenging task of enhancing an established computerized provider order entry (CPOE system to address the unique medication dosing needs of pediatric patients. Methods An advanced dosing model (ADM was designed to interact with our existing CPOE application to provide decision support enabling complex pediatric dose calculations based on chronological age, gestational age, weight, care area in the hospital, indication, and level of renal impairment. Given that weight is a critical component of medication dosing that may change over time, alerting logic was added to guard against erroneous entry or outdated weight information. Results Pediatric CPOE was deployed in a staggered fashion across 6 care areas over a 14-month period. Safeguards to prevent miskeyed values became important in allowing providers the flexibility to override the ADM logic if desired. Methods to guard against over- and under-dosing were added. The modular nature of our model allows us to easily add new dosing scenarios for specialized populations as the pediatric population and formulary change over time. Conclusions The medical needs of pediatric patients vary greatly from those of adults, and the information systems that support those needs require tailored approaches to design and implementation. When a single CPOE system is used for both adults and pediatrics, safeguards such as redirection and suppression must be used to protect children from inappropriate adult medication dosing content. Unlike other pediatric dosing systems, our model provides active dosing assistance and dosing process management, not just static dosing advice.

  11. Self-assessment on the competencies and reported improvement priorities for pediatrics residents.

    Science.gov (United States)

    Li, Su-Ting T; Tancredi, Daniel J; Burke, Ann E; Guillot, Ann; Guralnick, Susan; Trimm, R Franklin; Mahan, John D

    2012-12-01

    Self-assessment and self-directed learning are essential to becoming an effective physician. To identify factors associated with resident self-assessment on the competencies, and to determine whether residents chose areas of self-assessed relative weakness as areas for improvement in their Individualized Learning Plan (ILP). We performed a cross-sectional analysis of the American Academy of Pediatrics' PediaLink ILP database. Pediatrics residents self-assessed their competency in the 6 Accreditation Council for Graduate Medical Education competencies using a color-coded slider scale with end anchors "novice" and "proficient" (0-100), and then chose at least 1 competency to improve. Multivariate regression explored the relationship between overall confidence in core competencies, sex, level of training, and degree (MD or DO) status. Correlation examined whether residents chose to improve competencies in which they rated themselves as lower. A total of 4167 residents completed an ILP in academic year 2009-2010, with residents' ratings improving from advanced beginner (48 on a 0-100 scale) in postgraduate year-1 residents (PGY-1s) to competent (75) in PGY-3s. Residents rated themselves as most competent in professionalism (mean, 75.3) and least competent in medical knowledge (mean, 55.8) and systems-based practice (mean, 55.2). In the adjusted regression model, residents' competency ratings increased by level of training and whether they were men. In PGY-3s, there was no difference between men and women. Residents selected areas for improvement that correlated to competencies where they had rated themselves lower (P knowledge and systems-based practice, even as PGY-3s. Residents tended to choose subcompetencies, which they rated as lower to focus on improving.

  12. Radiation dose reduction in paediatric coronary computed tomography: assessment of effective dose and image quality

    International Nuclear Information System (INIS)

    Habib Geryes, Bouchra; Calmon, Raphael; Boddaert, Nathalie; Khraiche, Diala; Bonnet, Damien; Raimondi, Francesca

    2016-01-01

    To assess the impact of different protocols on radiation dose and image quality for paediatric coronary computed tomography (cCT). From January-2012 to June-2014, 140 children who underwent cCT on a 64-slice scanner were included. Two consecutive changes in imaging protocols were performed: 1) the use of adaptive statistical iterative reconstruction (ASIR); 2) the optimization of acquisition parameters. Effective dose (ED) was calculated by conversion of the dose-length product. Image quality was assessed as excellent, good or with significant artefacts. Patients were divided in three age groups: 0-4, 5-7 and 8-18 years. The use of ASIR combined to the adjustment of scan settings allowed a reduction in the median ED of 58 %, 82 % and 85 % in 0-4, 5-7 and 8-18 years group, respectively (7.3 ± 1.4 vs 3.1 ± 0.7 mSv, 5.5 ± 1.6 vs 1 ± 1.9 mSv and 5.3 ± 5.0 vs 0.8 ± 2.0 mSv, all p < 0,05). Prospective protocol was used in 51 % of children. The reduction in radiation dose was not associated with reduction in diagnostic image quality as assessed by the frequency of coronary segments with excellent or good image quality (88 %). cCT can be obtained at very low radiation doses in children using ASIR, and prospective acquisition with optimized imaging parameters. (orig.)

  13. Dose assessments for SFR 1

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la

    2008-05-01

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  14. Dose assessments for SFR 1

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la (Facilia AB, Bromma (Sweden))

    2008-06-15

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  15. Pediatrics patient in computed tomography: risk awareness among medical staff

    International Nuclear Information System (INIS)

    Arandjic, D.; Ciraj-Bjelac, O.; Kosutic, D.; Lazarevic, Dj.

    2009-01-01

    In this paper the results of investigation about risk awareness in pediatrics computed tomography among medical staff are presented. Questionnaires were distributed along seven hospitals, 84 people were enrolled in this investigation. The results showed awareness of the potential risks associated with ionizing radiation in computed tomography. However, there is still widespread underestimation of relative doses and risks in case of pediatric patients. (author) [sr

  16. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  17. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the Savannah River Site

    International Nuclear Information System (INIS)

    Jannik, G. T.; Dixon, K. L.

    2016-01-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  18. Measuring pediatric hematology-oncology fellows' skills in humanism and professionalism: A novel assessment instrument.

    Science.gov (United States)

    Kesselheim, Jennifer C; Agrawal, Anurag K; Bhatia, Nita; Cronin, Angel; Jubran, Rima; Kent, Paul; Kersun, Leslie; Rao, Amulya Nageswara; Rose, Melissa; Savelli, Stephanie; Sharma, Mukta; Shereck, Evan; Twist, Clare J; Wang, Michael

    2017-05-01

    Educators in pediatric hematology-oncology lack rigorously developed instruments to assess fellows' skills in humanism and professionalism. We developed a novel 15-item self-assessment instrument to address this gap in fellowship training. Fellows (N = 122) were asked to assess their skills in five domains: balancing competing demands of fellowship, caring for the dying patient, confronting depression and burnout, responding to challenging relationships with patients, and practicing humanistic medicine. An expert focus group predefined threshold scores on the instrument that could be used as a cutoff to identify fellows who need support. Reliability and feasibility were assessed and concurrent validity was measured using three established instruments: Maslach Burnout Inventory (MBI), Flourishing Scale (FS), and Jefferson Scale of Physician Empathy (JSPE). For 90 participating fellows (74%), the self-assessment proved feasible to administer and had high internal consistency reliability (Cronbach's α = 0.81). It was moderately correlated with the FS and MBI (Pearson's r = 0.41 and 0.4, respectively) and weakly correlated with the JSPE (Pearson's r = 0.15). Twenty-eight fellows (31%) were identified as needing support. The self-assessment had a sensitivity of 50% (95% confidence interval [CI]: 31-69) and a specificity of 77% (95% CI: 65-87) for identifying fellows who scored poorly on at least one of the three established scales. We developed a novel assessment instrument for use in pediatric fellowship training. The new scale proved feasible and demonstrated internal consistency reliability. Its moderate correlation with other established instruments shows that the novel assessment instrument provides unique, nonredundant information as compared to existing scales. © 2016 Wiley Periodicals, Inc.

  19. Pharmacokinetics and pharmacodynamics of edivoxetine (LY2216684), a norepinephrine reuptake inhibitor, in pediatric patients with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Kielbasa, William; Quinlan, Tonya; Jin, Ling; Xu, Wen; Lachno, D Richard; Dean, Robert A; Allen, Albert J

    2012-08-01

    Edivoxetine (LY2216684) is a selective and potent norepinephrine reuptake inhibitor (NERI). The pharmacokinetics (PK) and pharmacodynamics (PD) of edivoxetine were assessed in children and adolescent patients with attention-deficit/hyperactivity disorder (ADHD) following single and once-daily oral doses of edivoxetine. During a phase 1 open-label safety, tolerability, and PK study, pediatric patients were administered edivoxetine at target doses of 0.05, 0.1, 0.2 and 0.3 mg/kg, and blood samples were collected to determine plasma concentrations of edivoxetine for PK assessments and plasma 3,4-dihydroxyphenylglycol (DHPG) concentrations for PD assessments. Edivoxetine plasma concentrations were measured using liquid chromatography with tandem mass spectrometric detection, and DHPG was measured using liquid chromatography with electrochemical detection. Edivoxetine PK was comparable between children and adolescents. The time to maximum concentration (t(max)) of edivoxetine was ∼2 hours, which was followed by a mono-exponential decline in plasma concentrations with a terminal elimination half-life (t(1/2)) of ∼6 hours. Dose-dependent increases in area under the edivoxetine plasma concentration versus time curve from zero to infinity (AUC(0-∞)) and maximum plasma concentration (C(max)) were observed, and there was no discernable difference in the apparent clearance (CL/F) or the apparent volume of distribution at steady state (V(ss)/F) across the dose range. In adolescents, edivoxetine caused a maximum decrease in plasma DHPG concentrations from baseline of ∼28%, most notably within 8 hours of edivoxetine administration. This initial study in pediatric patients with ADHD provides new information on the PK profile of edivoxetine, and exposures that decrease plasma DHPG consistent with the mechanism of action of a NERI. The PK and PD data inform edivoxetine pharmacology and can be used to develop comprehensive population PK and/or PK-PD models to guide dosing

  20. SU-F-T-50: Evaluation of Monte Carlo Simulations Performance for Pediatric Brachytherapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chatzipapas, C; Kagadis, G [University Patras, Rion, Ahaia (Greece); Papadimitroulas, P [BET Solutions, Athens, Attiki (Greece); Loudos, G [Technological Educational Institute of Athens, Egaleo, Attiki (Greece); Papanikolaou, N [University of Texas HSC SA, San Antonio, TX (United States)

    2016-06-15

    Purpose: Pediatric tumors are generally treated with multi-modal procedures. Brachytherapy can be used with pediatric tumors, especially given that in this patient population low toxicity on normal tissues is critical as is the suppression of the probability for late malignancies. Our goal is to validate the GATE toolkit on realistic brachytherapy applications, and evaluate brachytherapy plans on pediatrics for accurate dosimetry on sensitive and critical organs of interest. Methods: The GATE Monte Carlo (MC) toolkit was used. Two High Dose Rate (HDR) 192Ir brachytherapy sources were simulated (Nucletron mHDR-v1 and Varian VS2000), and fully validated using the AAPM and ESTRO protocols. A realistic brachytherapy plan was also simulated using the XCAT anthropomorphic computational model .The simulated data were compared to the clinical dose points. Finally, a 14 years old girl with vaginal rhabdomyosarcoma was modelled based on clinical procedures for the calculation of the absorbed dose per organ. Results: The MC simulations resulted in accurate dosimetry in terms of dose rate constant (Λ), radial dose gL(r) and anisotropy function F(r,θ) for both sources.The simulations were executed using ∼1010 number of primaries resulting in statistical uncertainties lower than 2%.The differences between the theoretical values and the simulated ones ranged from 0.01% up to 3.3%, with the largest discrepancy (6%) being observed in the dose rate constant calculation.The simulated DVH using an adult female XCAT model was also compared to a clinical one resulting in differences smaller than 5%. Finally, a realistic pediatric brachytherapy simulation was performed to evaluate the absorbed dose per organ and to calculate DVH with respect to heterogeneities of the human anatomy. Conclusion: GATE is a reliable tool for brachytherapy simulations both for source modeling and for dosimetry in anthropomorphic voxelized models. Our project aims to evaluate a variety of pediatric

  1. Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits

    International Nuclear Information System (INIS)

    Maldonado, Delis

    2012-01-01

    The Oak Ridge Institute for Science and Education (ORISE), a U.S. Department of Energy (DOE) prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct a peak dose assessment in support of the Authorized Limits Request for Solid Waste Disposal at Landfill C-746-U at the Paducah Gaseous Diffusion Plant (DOE-PPPO 2011a). The peak doses were calculated based on the DOE-PPPO Proposed Single Radionuclides Soil Guidelines and the DOE-PPPO Proposed Authorized Limits (AL) Volumetric Concentrations available in DOE-PPPO 2011a. This work is provided as an appendix to the Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (ORISE 2012). The receptors evaluated in ORISE 2012 were selected by the DOE-PPPO for the additional peak dose evaluations. These receptors included a Landfill Worker, Trespasser, Resident Farmer (onsite), Resident Gardener, Recreational User, Outdoor Worker and an Offsite Resident Farmer. The RESRAD (Version 6.5) and RESRAD-OFFSITE (Version 2.5) computer codes were used for the peak dose assessments. Deterministic peak dose assessments were performed for all the receptors and a probabilistic dose assessment was performed only for the Offsite Resident Farmer at the request of the DOE-PPPO. In a deterministic analysis, a single input value results in a single output value. In other words, a deterministic analysis uses single parameter values for every variable in the code. By contrast, a probabilistic approach assigns parameter ranges to certain variables, and the code randomly selects the values for each variable from the parameter range each time it calculates the dose (NRC 2006). The receptor scenarios, computer codes and parameter input files were previously used in ORISE 2012. A few modifications were made to the parameter input files as appropriate for this effort. Some of these changes

  2. Immunological low-dose radiation modulates the pediatric medulloblastoma antigens and enhances antibody-dependent cellular cytotoxicity.

    Science.gov (United States)

    Das, Arabinda; McDonald, Daniel; Lowe, Stephen; Bredlau, Amy-Lee; Vanek, Kenneth; Patel, Sunil J; Cheshier, Samuel; Eskandari, Ramin

    2017-03-01

    Immunotherapy can be an effective treatment for pediatric medulloblastoma (MB) patients. However, major subpopulations do not respond to immunotherapy, due to the lack of antigenic mutations or the immune-evasive properties of MB cells. Clinical observations suggest that radiation therapy (RT) may expand the therapeutic reach of immunotherapy. The aim of the present investigation is to study the effect of low-dose X-ray radiation (LDXR, 1 Gy) on the functional immunological responses of MB cells (DAOY, D283, and D341). Induction of MB cell death was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Production of reactive oxygen species (ROS) was measured by fluorescent probes. Changes in the expression of  human leukocyte antigen (HLA) molecules and caspase-3 activities during treatment were analyzed using Western blotting and caspase-3 assay. Western blot analysis demonstrated that LDXR upregulated the expression of HLA class I and HLA II molecules by more than 20% compared with control and high-dose (12 Gy) groups in vitro. Several of these HLA subtypes, such as MAGE C1, CD137, and ICAM-1, have demonstrated upregulation. In addition, LDXR increases ROS production in association with phosphorylation of NF-κB and cell surface expression of mAb target molecules (HER2 and VEGF). These data suggest that a combined LDXR and mAb therapy can create a synergistic effect in vitro. These results suggest that LDXR modulates HLA molecules, leading to alterations in T-cell/tumor-cell interaction and enhancement of T-cell-mediated MB cell death. Also, low-dose radiotherapy combined with monoclonal antibody therapy may one day augment the standard treatment for MB, but more investigation is needed to prove its utility as a new therapeutic combination for MB patients.

  3. Combination TLD/TED dose assessment

    International Nuclear Information System (INIS)

    Parkhurst, M.A.

    1992-11-01

    During the early 1980s, an appraisal of dosimetry programs at US Department of Energy (DOE) facilities identified a significant weakness in dose assessment in fast neutron environments. Basing neutron dose equivalent on thermoluminescence dosimeters (TLDS) was not entirely satisfactory for environments that had not been well characterized. In most operational situations, the dosimeters overrespond to neutrons, and this overresponse could be further exaggerated with changes in the neutron quality factor (Q). Because TLDs are energy dependent with an excellent response to thermal and low-energy neutrons but a weak response to fast neutrons, calibrating the dosimetry system to account for mixed and moderated neutron energy fields is a difficult and seldom satisfactory exercise. To increase the detection of fast neutrons and help improve the accuracy of dose equivalent determinations, a combination dosimeter was developed using TLDs to detect thermal and low-energy neutrons and a track-etch detector (TED) to detect fast neutrons. By combining the albedo energy response function of the TLDs with the track detector elements, the dosimeter can nearly match the fluence-to-dose equivalent conversion curve. The polymer CR-39 has neutron detection characteristics superior to other materials tested. The CR-39 track detector is beta and gamma insensitive and does not require backscatter (albedo) from the body to detect the exposure. As part of DOE's Personnel Neutron and Upgrade Program, we have been developing a R-39 track detector over the past decade to address detection and measurement of fast neutrons. Using CR-39 TEDs in combination with TLDs will now allow us to detect the wide spectrum of occupational neutron energies and assign dose equivalents much more confidently

  4. The role of uncertainty analysis in dose reconstruction and risk assessment

    International Nuclear Information System (INIS)

    Hoffman, F.O.; Simon, S.L.; Thiessen. K.M.

    1996-01-01

    Dose reconstruction and risk assessment rely heavily on the use of mathematical models to extrapolate information beyond the realm of direct observation. Because models are merely approximations of real systems, their predictions are inherently uncertain. As a result, full disclosure of uncertainty in dose and risk estimates is essential to achieve scientific credibility and to build public trust. The need for formal analysis of uncertainty in model predictions was presented during the nineteenth annual meeting of the NCRP. At that time, quantitative uncertainty analysis was considered a relatively new and difficult subject practiced by only a few investigators. Today, uncertainty analysis has become synonymous with the assessment process itself. When an uncertainty analysis is used iteratively within the assessment process, it can guide experimental research to refine dose and risk estimates, deferring potentially high cost or high consequence decisions until uncertainty is either acceptable or irreducible. Uncertainty analysis is now mandated for all ongoing dose reconstruction projects within the United States, a fact that distinguishes dose reconstruction from other types of exposure and risk assessments. 64 refs., 6 figs., 1 tab

  5. Graduate medical education in humanism and professionalism: a needs assessment survey of pediatric gastroenterology fellows.

    Science.gov (United States)

    Garvey, Katharine C; Kesselheim, Jennifer C; Herrick, Daniel B; Woolf, Alan D; Leichtner, Alan M

    2014-01-01

    The deterioration of humanism and professionalism during graduate medical training is an acknowledged concern, and programs are required to provide professionalism education for pediatric fellows. We conducted a needs assessment survey in a national sample of 138 first- and second-year gastroenterology fellows (82% response rate). Most believed that present humanism and professionalism education met their needs, but this education was largely informal (eg, role modeling). Areas for formal education desired by >70% included competing demands of clinical practice versus research, difficult doctor-patient relationships, depression/burnout, angry parents, medical errors, work-life balance, and the patient illness experience. These results may guide curricula to formalize humanism and professionalism education in pediatric gastroenterology fellowships.

  6. Assessment of hemispheric dominance for receptive language in pediatric patients under sedation using magnetoencephalography.

    Science.gov (United States)

    Rezaie, Roozbeh; Narayana, Shalini; Schiller, Katherine; Birg, Liliya; Wheless, James W; Boop, Frederick A; Papanicolaou, Andrew C

    2014-01-01

    Non-invasive assessment of hemispheric dominance for receptive language using magnetoencephalography (MEG) is now a well-established procedure used across several epilepsy centers in the context of pre-surgical evaluation of children and adults while awake, alert and attentive. However, the utility of MEG for the same purpose, in cases of sedated patients, is contested. Establishment of the efficiency of MEG is especially important in the case of children who, for a number of reasons, must be assessed under sedation. Here we explored the efficacy of MEG language mapping under sedation through retrospective review of 95 consecutive pediatric patients, who underwent our receptive language test as part of routine clinical evaluation. Localization of receptive language cortex and subsequent determination of laterality was successfully completed in 78% (n = 36) and 55% (n = 27) of non-sedated and sedated patients, respectively. Moreover, the proportion of patients deemed left hemisphere dominant for receptive language did not differ between non-sedated and sedated patients, exceeding 90% in both groups. Considering the challenges associated with assessing brain function in pediatric patients, the success of passive MEG in the context of the cases reviewed in this study support the utility of this method in pre-surgical receptive language mapping.

  7. Assessment of hemispheric dominance for receptive language in pediatric patients under sedation using magnetoencephalography

    Directory of Open Access Journals (Sweden)

    Roozbeh eRezaie

    2014-08-01

    Full Text Available Non-invasive assessment of hemispheric dominance for receptive language using Magnetoencephalography (MEG is now a well-established procedure used across several epilepsy centers in the context of pre-surgical evaluation of children and adults while awake, alert and attentive. However, the utility of MEG for the same purpose, in cases of sedated patients, is contested. Establishment of the efficiency of MEG is especially important in the case of children who, for a number of reasons, must be assessed under sedation. Here we explored the efficacy of MEG language mapping under sedation through retrospective review of 95 consecutive pediatric patients, who underwent our receptive language test as part of routine clinical evaluation. Localization of receptive language cortex and subsequent determination of laterality was successfully completed in 78% (n=36 and 55% (n=27 of non-sedated and sedated patients, respectively. Moreover, the proportion of patients deemed left hemisphere dominant for receptive language did not differ between non-sedated and sedated patients, exceeding 90% in both groups. Considering the challenges associated with assessing brain function in pediatric patients, the success of passive MEG in the context of the cases reviewed in this study support the utility of this method in pre-surgical receptive language mapping.

  8. Study, assessment of radioactive dose on China's population

    Energy Technology Data Exchange (ETDEWEB)

    Ziqiang, P.

    1984-05-10

    The national population dose is defined as the radioactive dose from both natural and artificial sources which is received by the entire Chinese population. The necessity and prospects for developing ways to assess China's national population dose and some noteworthy problems in this area are described.

  9. SU-E-I-86: Ultra-Low Dose Computed Tomography Attenuation Correction for Pediatric PET CT Using Adaptive Statistical Iterative Reconstruction (ASiR™)

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S; Shulkin, B [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2015-06-15

    Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co

  10. Pediatric pain: prevalence, assessment, and management in a teaching hospital

    Directory of Open Access Journals (Sweden)

    M.B.M. Linhares

    2012-12-01

    Full Text Available The goal of this study was to examine the prevalence, assessment and management of pediatric pain in a public teaching hospital. The study sample consisted of 121 inpatients (70 infants, 36 children, and 15 adolescents, their families, 40 physicians, and 43 nurses. All participants were interviewed except infants and children who could not communicate due to their clinical status. The interview included open-ended questions concerning the inpatients’ pain symptoms during the 24 h preceding data collection, as well as pain assessment and pharmacological/non-pharmacological management of pain. The data were obtained from 100% of the eligible inpatients. Thirty-four children/adolescents (28% answered the questionnaire and for the other 72% (unable to communicate, the family/health professional caregivers reported pain. Among these 34 persons, 20 children/adolescents reported pain, 68% of whom reported that they received pharmacological intervention for pain relief. Eighty-two family caregivers were available on the day of data collection. Of these, 40 family caregivers (49% had observed their child’s pain response. In addition, 74% reported that the inpatients received pharmacological management. Physicians reported that only 38% of the inpatients exhibited pain signs, which were predominantly acute pain detected during clinical procedures. They reported that 66% of patients received pharmacological intervention. The nurses reported pain signs in 50% of the inpatients, which were detected during clinical procedures. The nurses reported that pain was managed in 78% of inpatients by using pharmacological and/or non-pharmacological interventions. The findings provide evidence of the high prevalence of pain in pediatric inpatients and the under-recognition of pain by health professionals.

  11. TH-B-207B-01: Optimizing Pediatric CT in the Emergency Department

    International Nuclear Information System (INIS)

    Dodge, C.

    2016-01-01

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker will review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children

  12. TH-B-207B-01: Optimizing Pediatric CT in the Emergency Department

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, C. [Texas Children’s Hospital (United States)

    2016-06-15

    This imaging educational program will focus on solutions to common pediatric image quality optimization challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children’s hospitals. One of the most commonly encountered pediatric imaging requirements for the non-specialist hospital is pediatric CT in the emergency room setting. Thus, this educational program will begin with optimization of pediatric CT in the emergency department. Though pediatric cardiovascular MRI may be less common in the non-specialist hospitals, low pediatric volumes and unique cardiovascular anatomy make optimization of these techniques difficult. Therefore, our second speaker will review best practices in pediatric cardiovascular MRI based on experiences from a children’s hospital with a large volume of cardiac patients. Learning Objectives: To learn techniques for optimizing radiation dose and image quality for CT of children in the emergency room setting. To learn solutions for consistently high quality cardiovascular MRI of children.

  13. Pediatric nuclear cardiology

    International Nuclear Information System (INIS)

    Gelfand, M.J.; Hannon, D.W.

    1987-01-01

    Nuclear cardiology methods have had less impact upon pediatric cardiology than upon adult cardiology. Most pediatric heart disease results from congenital malformations of the heart and great vessels, which is usually discovered in infancy, and is most often treated definitively in infancy or early childhood. Unfortunately, nuclear medicine techniques are limited in their spatial resolution - structures that overlie each other are separated with difficulty. As a result, nuclear cardiology is usually of limited value in the anatomic characterization of the congenital heart abnormalities. Nevertheless, it has been useful in the detection and quantification of the pathophysiologic consequences of many congenital cardiac malformations. The authors review application of nuclear medicine in pediatric cardiology, and attempt to assess each in terms of its clinical utility

  14. Scaling adult doses of antifungal and antibacterial agents to children.

    Science.gov (United States)

    Dawson, Thomas H

    2012-06-01

    My general pharmacokinetic scaling theory is discussed for the important matter of determining pediatric dosing for existing and new therapeutic drugs when optimal, or near-optimal, dosing for adults is known. The basis for the scaling is the requirement of a time-scaled likeness of the free-drug concentration time histories of children and adults. Broad categories of single and periodic dosing are considered. The former involves the scaling of dosage, and the latter involves both the dosage and schedule. The validity of the scaling relations is demonstrated by using measurements from previously reported clinical trials with adults and children (with ages generally 1 year or older) for the relatively new antifungal agent caspofungin and for the relatively new antibacterial agent linezolid. Standard pharmacodynamic effectiveness criteria are shown to be satisfied for the scaled dosage and schedule for children to the same extent that they are for the referenced adult. Consideration of scaling from adults to children is discussed for the case of new agents where no pediatric data are available and needed parameters are determined from in vitro measurements and preclinical animal data. A connection is also made between the allometric representation of clearance data and the dosing formulas. Limitations of the scaling results for infants because of growth and maturational matters are discussed. The general conclusion from this work is that the scaling theory does indeed have application to pediatric dosing for children, for both confirmation and refinement of present practice and guidance in pediatric treatment with new therapeutic agents.

  15. Pediatric emergency care capacity in a low-resource setting: An assessment of district hospitals in Rwanda.

    Directory of Open Access Journals (Sweden)

    Celestin Hategeka

    Full Text Available Health system strengthening is crucial to improving infant and child health outcomes in low-resource countries. While the knowledge related to improving newborn and child survival has advanced remarkably over the past few decades, many healthcare systems in such settings remain unable to effectively deliver pediatric advance life support management. With the introduction of the Emergency Triage, Assessment and Treatment plus Admission care (ETAT+-a locally adapted pediatric advanced life support management program-in Rwandan district hospitals, we undertook this study to assess the extent to which these hospitals are prepared to provide this pediatric advanced life support management. The results of the study will shed light on the resources and support that are currently available to implement ETAT+, which aims to improve care for severely ill infants and children.A cross-sectional survey was undertaken in eight district hospitals across Rwanda focusing on the availability of physical and human resources, as well as hospital services organizations to provide emergency triage, assessment and treatment plus admission care for severely ill infants and children.Many of essential resources deemed necessary for the provision of emergency care for severely ill infants and children were readily available (e.g. drugs and laboratory services. However, only 4/8 hospitals had BVM for newborns; while nebulizer and MDI were not available in 2/8 hospitals. Only 3/8 hospitals had F-75 and ReSoMal. Moreover, there was no adequate triage system across any of the hospitals evaluated. Further, guidelines for neonatal resuscitation and management of malaria were available in 5/8 and in 7/8 hospitals, respectively; while those for child resuscitation and management of sepsis, pneumonia, dehydration and severe malnutrition were available in less than half of the hospitals evaluated.Our assessment provides evidence to inform new strategies to enhance the capacity of

  16. Pediatric emergency care capacity in a low-resource setting: An assessment of district hospitals in Rwanda

    Science.gov (United States)

    Shoveller, Jean; Tuyisenge, Lisine; Kenyon, Cynthia; Cechetto, David F.; Lynd, Larry D.

    2017-01-01

    Background Health system strengthening is crucial to improving infant and child health outcomes in low-resource countries. While the knowledge related to improving newborn and child survival has advanced remarkably over the past few decades, many healthcare systems in such settings remain unable to effectively deliver pediatric advance life support management. With the introduction of the Emergency Triage, Assessment and Treatment plus Admission care (ETAT+)–a locally adapted pediatric advanced life support management program–in Rwandan district hospitals, we undertook this study to assess the extent to which these hospitals are prepared to provide this pediatric advanced life support management. The results of the study will shed light on the resources and support that are currently available to implement ETAT+, which aims to improve care for severely ill infants and children. Methods A cross-sectional survey was undertaken in eight district hospitals across Rwanda focusing on the availability of physical and human resources, as well as hospital services organizations to provide emergency triage, assessment and treatment plus admission care for severely ill infants and children. Results Many of essential resources deemed necessary for the provision of emergency care for severely ill infants and children were readily available (e.g. drugs and laboratory services). However, only 4/8 hospitals had BVM for newborns; while nebulizer and MDI were not available in 2/8 hospitals. Only 3/8 hospitals had F-75 and ReSoMal. Moreover, there was no adequate triage system across any of the hospitals evaluated. Further, guidelines for neonatal resuscitation and management of malaria were available in 5/8 and in 7/8 hospitals, respectively; while those for child resuscitation and management of sepsis, pneumonia, dehydration and severe malnutrition were available in less than half of the hospitals evaluated. Conclusions Our assessment provides evidence to inform new strategies

  17. Ultra-high pitch chest computed tomography at 70 kVp tube voltage in an anthropomorphic pediatric phantom and non-sedated pediatric patients: Initial experience with 3rd generation dual-source CT.

    Science.gov (United States)

    Hagelstein, Claudia; Henzler, Thomas; Haubenreisser, Holger; Meyer, Mathias; Sudarski, Sonja; Schoenberg, Stefan O; Neff, K Wolfgang; Weis, Meike

    2016-12-01

    Minimizing radiation dose while at the same time preserving image quality is of particular importance in pediatric chest CT. Very recently, CT imaging with a tube voltage of 70 kVp has become clinically available. However, image noise is inversely proportional to the tube voltage. We aimed to investigate radiation dose and image quality of pediatric chest CT performed at 70 kVp in an anthropomorphic pediatric phantom as well as in clinical patients. An anthropomorphic pediatric phantom, which resembles a one-year-old child in physiognomy, was scanned on the 3 rd generation dual-source CT (DSCT) system at 70 kVp and 80 kVp and a fixed ultra low tube-current of 8 mAs to solely evaluate the impact of lowering tube voltage. After the phantom measurements, 18 pediatric patients (mean 29.5 months; range 1-91 months; 21 examinations) underwent 3.2 high-pitch chest CT on the same DSCT system at 70 kVp tube voltage without any sedation. Radiation dose and presence of motion artifacts was compared to a retrospectively identified patient cohort examined at 80 kVp on a 16-slice single-source-CT (SSCT; n=15; 14/15 with sedation; mean 30.7 months; range 0-96 months; pitch=1.5) or on a 2 nd generation DSCT without any sedation (n=6; mean 32.8 months; range 4-61 months; pitch=3.2). Radiation dose in the phantom scans was reduced by approximately 40% when using a tube voltage of 70 kVp instead of 80 kVp. In the pediatric patient group examined at 70 kVp age-specific effective dose (ED; mean 0.5±0.2 mSv) was significantly lower when compared to the retrospective cohort scanned at 80 kVp on the 16-slice-SSCT (mean ED: 1.0±0.3 mSv; pCT examinations showed any motion artifacts whereas 13/15 examinations of the retrospective patient cohort scanned at 80 kVp with a pitch of 1.5 showed motion artifacts. 3.2 high-pitch chest CT performed with 70 kVp significantly reduces radiation dose when compared to 80 kVp while at the same time provides good image quality without any motion artifacts

  18. Development and implementation of an anthropomorphic pediatric spine phantom for the assessment of craniospinal irradiation procedures in proton therapy

    OpenAIRE

    Dana J Lewis; Paige A Summers; David S Followill; Narayan Sahoo; Anita Mahajan; Francesco C Stingo; Stephen F Kry

    2014-01-01

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC).Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the ...

  19. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    International Nuclear Information System (INIS)

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-01-01

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED adj ). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED adj between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED adj that differed by up to 44% from effective dose estimates that were not

  20. An airborne dispersion/dose assessment computer program. Phase 1

    International Nuclear Information System (INIS)

    Scott, C.K.; Kennedy, E.R.; Hughs, R.

    1991-05-01

    The Atomic Energy Control Board (AECB) staff have a need for an airborne dispersion-dose assessment computer programme for a microcomputer. The programme must be capable of analyzing the dispersion of both radioactive and non-radioactive materials. A further requirement of the programme is that it be implemented on the AECB complex of microcomputers and that it have an advanced graphical user interface. A survey of computer programs was conducted to determine which, if any, could meet the AECB's requirements in whole or in part. Ten programmes were selected for detailed review including programs for nuclear and non-radiological emergencies. None of the available programmes for radiation dose assessment meets all the requirements for reasons of user interaction, method of source term estimation or site specificity. It is concluded that the best option for meeting the AECB requirements is to adopt the CAMEO programme (specifically the ALOHA portion) which has a superior graphical user interface and add the necessary models for radiation dose assessment

  1. Integrating Interactive Web-Based Technology to Assess Adherence and Clinical Outcomes in Pediatric Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Lori E. Crosby

    2012-01-01

    Full Text Available Research indicates that the quality of the adherence assessment is one of the best predictors for improving clinical outcomes. Newer technologies represent an opportunity for developing high quality standardized assessments to assess clinical outcomes such as patient experience of care but have not been tested systematically in pediatric sickle cell disease (SCD. The goal of the current study was to pilot an interactive web-based tool, the Take-Charge Program, to assess adherence to clinic visits and hydroxyurea (HU, barriers to adherence, solutions to overcome these barriers, and clinical outcomes in 43 patients with SCD age 6–21 years. Results indicate that the web-based tool was successfully integrated into the clinical setting while maintaining high patient satisfaction (>90%. The tool provided data consistent with the medical record, staff report, and/or clinical lab data. Participants reported that forgetting and transportation were major barriers for adherence to both clinic attendance and HU. A greater number of self-reported barriers (P<.01 and older age (P<.05 were associated with poorer clinic attendance and HU adherence. In summary, the tool represents an innovative approach to integrate newer technology to assess adherence and clinical outcomes for pediatric patients with SCD.

  2. A Standardized Needs Assessment Tool to Inform the Curriculum Development Process for Pediatric Resuscitation Simulation-Based Education in Resource-Limited Settings

    Directory of Open Access Journals (Sweden)

    Nicole Shilkofski

    2018-02-01

    Full Text Available IntroductionUnder five mortality rates (UFMR remain high for children in low- and middle-income countries (LMICs in the developing world. Education for practitioners in these environments is a key factor to improve outcomes that will address United Nations Sustainable Development Goals 3 and 10 (good health and well being and reduced inequalities. In order to appropriately contextualize a curriculum using simulation, it is necessary to first conduct a needs assessment of the target learner population. The World Health Organization (WHO has published a tool to assess capacity for emergency and surgical care in LMICs that is adaptable to this goal.Materials and methodsThe WHO Tool for Situational Analysis to Assess Emergency and Essential Surgical Care was modified to assess pediatric resuscitation capacity in clinical settings in two LMICs: Uganda and Myanmar. Modifications included assessment of self-identified learning needs, current practices, and perceived epidemiology of disease burden in each clinical setting, in addition to assessment of pediatric resuscitation capacity in regard to infrastructure, procedures, equipment, and supplies. The modified tool was administered to 94 respondents from the two settings who were target learners of a proposed simulation-based curriculum in pediatric and neonatal resuscitation.ResultsInfectious diseases (respiratory illnesses and diarrheal disease were cited as the most common causes of pediatric deaths in both countries. Self-identified learning needs included knowledge and skill development in pediatric airway/breathing topics, as well as general resuscitation topics such as CPR and fluid resuscitation in shock. Equipment and supply availability varied substantially between settings, and critical shortages were identified in each setting. Current practices and procedures were often limited by equipment availability or infrastructural considerations.Discussion and conclusionEpidemiology of disease

  3. Estimation of effective dose for children in interventional cardiology

    Directory of Open Access Journals (Sweden)

    S. S. Sarycheva

    2017-01-01

    Full Text Available This study is devoted to the estimation of effective dose for children undergoing interventional cardiology examinations. The conversion coefficients (CC from directly measured dose area product (DAP value to effective dose (ED were calculated within the approved effective dose assessment methodology (Guidelines 2.6.1. 2944-11. The CC, Ed K , [mSv / (Gy • cm2] for newborn infants and children of 1, 5, 10 and 15 years old (main(range were calculated as 2.5 (1.8-3.2; 1.1 (0.8-1.3; 0.6 (0.4-0.7; 0.4 (0.3-0.5; and 0,22 (0,18-0,30 respectively. A special Finnish computer program PCXMC 2.0 was used for calculating the dose CC. The series of calculations were made for different values of the physical and geometrical parameters based on their real-existing range of values. The value of CC from DAP to ED were calculated for all pediatric age groups. This work included 153 pediatric interventional studies carried out in two hospitals of the city of St. Petersburg for the period of one year from the summer of 2015. The dose CC dependency from the patient’s age and parameters of the examinations were under the study. The dependence from the beam quality (filtration and tube voltage and age of the patient were found. The younger is the patient, stronger is the filtration and higher is the voltage, the higher is the CC value. The CC in the younger (newborn and older (15 years age groups are different by the factor of 10. It was shown that the changes of the geometric parameters (in the scope of their real existing range have small effect on the value of the effective dose, not exceed 30-50% allowable for radiation protection purpose. The real values of effective doses of children undergoing cardiac interventions were estimated. In severe cases, the values of ED can reach several tens of mSv.

  4. Pediatric dosimetry for intrapleural lung injections of 32P chromic phosphate

    International Nuclear Information System (INIS)

    Konijnenberg, Mark W; Olch, Arthur

    2010-01-01

    Intracavitary injections of 32 P chromic phosphate are used in the therapy of pleuropulmonary blastoma and pulmonary sarcomas in children. The lung dose, however, has never been calculated despite the potential risk of lung toxicity from treatment. In this work the dosimetry has been calculated in target tissue and lung for pediatric phantoms. Pleural cavities were modeled in the Monte Carlo code MCNP within the pediatric MIRD phantoms. Both the depth-dose curves in the pleural lining and into the lung as well as 3D dose distributions were calculated for either homogeneous or inhomogeneous 32 P activity distributions. Dose-volume histograms for the lung tissue and isodose graphs were generated. The results for the 2D depth-dose curve to the pleural lining and tumor around the pleural cavity correspond well with the point kernel model-based recommendations. With a 2 mm thick pleural lining, one-third of the lung parenchyma volume gets a dose more than 30 Gy (V 30 ) for 340 MBq 32 P in a 10 year old. This is close to lung tolerance. Younger children will receive a larger dose to the lung when the lung density remains equal to the adult value; the V 30 relative lung volume for a 5 year old is 35% at an activity of 256 MBq and for a 1 year old 165 MBq yields a V 30 of 43%. At higher densities of the lung tissue V 30 stays below 32%. All activities yield a therapeutic dose of at least 225 Gy in the pleural lining. With a more normal pleural lining thickness (0.5 mm instead of 2 mm) the injected activities will have to be reduced by a factor 5 to obtain tolerable lung doses in pediatric patients. Previous dosimetry recommendations for the adult apply well down to lung surface areas of 400 cm 2 . Monte Carlo dosimetry quantitates the three-dimensional dose distribution, providing a better insight into the maximum tolerable activity for this therapy.

  5. Development on Dose Assessment Model of Northeast Asia Nuclear Accident Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Yub; Kim, Ju Youl; Kim, Suk Hoon; Lee, Seung Hee; Yoon, Tae Bin [FNC Techology, Yongin (Korea, Republic of)

    2016-05-15

    In order to support the emergency response system, the simulator for overseas nuclear accident is under development including source-term estimation, atmospheric dispersion modeling and dose assessment. The simulator is named NANAS (Northeast Asia Nuclear Accident Simulator). For the source-term estimation, design characteristics of each reactor type should be reflected into the model. Since there are a lot of reactor types in neighboring countries, the representative reactors of China, Japan and Taiwan have been selected and the source-term estimation models for each reactor have been developed, respectively. For the atmospheric dispersion modeling, Lagrangian particle model will be integrated into the simulator for the long range dispersion modeling in Northeast Asia region. In this study, the dose assessment model has been developed considering external and internal exposure. The dose assessment model has been developed as a part of the overseas nuclear accidents simulator which is named NANAS. It addresses external and internal pathways including cloudshine, groundshine and inhalation. Also, it uses the output of atmospheric dispersion model (i.e. the average concentrations of radionuclides in air and ground) and various coefficients (e.g. dose conversion factor and breathing rate) as an input. Effective dose and thyroid dose for each grid in the Korean Peninsula region are printed out as a format of map projection and chart. Verification and validation on the dose assessment model will be conducted in further study by benchmarking with the measured data of Fukushima Daiichi Nuclear Accident.

  6. Clinical Trials in Pediatrics and Neonatology: Reasons for Ups and Downs

    Directory of Open Access Journals (Sweden)

    A. A. Mosikian

    2016-01-01

    Full Text Available The predictability of results of pediatric clinical trials is often limited for a number of reasons. Among the main ones is the imperfect functioning of organ due to immature ontogeny of enzyme and organ systems in children, and the presence of special subpopulations of full-term newborns and preterm neonates sometimes being in a critical condition. The main task of a present-day pediatric investigational plan is to develop drugs and to elaborate doses that are «specifically designed», not simply «suitable» for neonates. Other reasons for limited predictability are as follows: adult data extrapolation constraint due to children’s anatomic and physiological features, the lack of clinical trial subjects resulting in inability to select an optimal dose by its escalation, the absence of consensus on the ethical aspect of pediatric clinical trials, the etiopathogenetic difference of some diseases and conditions depending on subject’s age, and prevalence of placebo-effect in children. Nowadays it is supposed to be very important to publish all, even failed, pediatric trials to improve the accuracy of pharmacological effects modeling in different subpopulations.

  7. The embryogenesis of dose assessment at Hanford

    International Nuclear Information System (INIS)

    Foster, R.F.

    1990-01-01

    Several significant events occurred between 1955 and 1960 that resulted in major changes in environmental monitoring at Hanford and in the initiation of comprehensive dose assessments. These included: (1) specification of dose limits for nonoccupational exposure (including internal emitters); (2) a national and international awakening to the need for managing the disposal of radioactive wastes; (3) identification of the most important radionuclides and their sources of exposure; (4) data that quantified the transfer coefficients of nuclides along environmental pathways; and (5) development of greatly improved radiation detection instrumentation. In response to a growing need, the Hanford Laboratories formed the Environmental Studies and Evaluation component. This group revamped the monitoring and sampling programs so that analytical results contributed directly to dose estimation. Special studies were conducted to ascertain local dietary and recreational habits that affected dose calculations and to calibrate the models. These studies involved extensive contact with the public and governmental agencies, which elicited a positive reaction

  8. Neonatal and pediatric regionalized systems in pediatric emergency mass critical care.

    Science.gov (United States)

    Barfield, Wanda D; Krug, Steven E; Kanter, Robert K; Gausche-Hill, Marianne; Brantley, Mary D; Chung, Sarita; Kissoon, Niranjan

    2011-11-01

    legal, operational, and information systems to provide effective pediatric mass critical care through: 1) predisaster/mass casualty planning, management, and assessment with input from child health professionals; 2) close cooperation, agreements, public-private partnerships, and unique delivery systems; and 3) use of existing public health data to assess pediatric populations at risk and to model graded response plans based on increasing patient volume and acuity.

  9. Positron emission tomography in pediatric radiation oncology: integration in the treatment-planning process

    International Nuclear Information System (INIS)

    Krasin, M.J.; Hudson, M.M.; Kaste, S.C.

    2004-01-01

    The application of PET imaging to pediatric radiation oncology allows new approaches to targeting and selection of radiation dose based not only on the size of a tumor, but also on its metabolic activity. In order to integrate PET into treatment planning for radiation oncology, logistical issues regarding patient setup, image fusion, and target selection must be addressed. Through prospective study, the role of PET in pediatric malignancies will be established for diagnosis, treatment, and surveillance. To explore the potential role of PET and its incorporation into treatment planning in pediatric radiation oncology, an example case of pediatric Hodgkin's disease is discussed. (orig.)

  10. Evaluation of the UF/NCI hybrid computational phantoms for use in organ dosimetry of pediatric patients undergoing fluoroscopically guided cardiac procedures

    Science.gov (United States)

    Marshall, Emily L.; Borrego, David; Tran, Trung; Fudge, James C.; Bolch, Wesley E.

    2018-03-01

    Epidemiologic data demonstrate that pediatric patients face a higher relative risk of radiation induced cancers than their adult counterparts at equivalent exposures. Infants and children with congenital heart defects are a critical patient population exposed to ionizing radiation during life-saving procedures. These patients will likely incur numerous procedures throughout their lifespan, each time increasing their cumulative radiation absorbed dose. As continued improvements in long-term prognosis of congenital heart defect patients is achieved, a better understanding of organ radiation dose following treatment becomes increasingly vital. Dosimetry of these patients can be accomplished using Monte Carlo radiation transport simulations, coupled with modern anatomical patient models. The aim of this study was to evaluate the performance of the University of Florida/National Cancer Institute (UF/NCI) pediatric hybrid computational phantom library for organ dose assessment of patients that have undergone fluoroscopically guided cardiac catheterizations. In this study, two types of simulations were modeled. A dose assessment was performed on 29 patient-specific voxel phantoms (taken as representing the patient’s true anatomy), height/weight-matched hybrid library phantoms, and age-matched reference phantoms. Two exposure studies were conducted for each phantom type. First, a parametric study was constructed by the attending pediatric interventional cardiologist at the University of Florida to model the range of parameters seen clinically. Second, four clinical cardiac procedures were simulated based upon internal logfiles captured by a Toshiba Infinix-i Cardiac Bi-Plane fluoroscopic unit. Performance of the phantom library was quantified by computing both the percent difference in individual organ doses, as well as the organ dose root mean square values for overall phantom assessment between the matched phantoms (UF/NCI library or reference) and the patient

  11. A study of knowledge, attitude and practice regarding administration of pediatric dosage forms and allied health literacy of caregivers for children

    Directory of Open Access Journals (Sweden)

    Amrita Sil

    2017-01-01

    Full Text Available Context: Caregivers of sick children have to be careful with medicine dosing and giving medicines to a reluctant child can be challenging. Aim: To assess the knowledge, attitude, and practices of caregivers regarding pediatric medicine administration and health literacy allied to this task. Settings and Design: This cross-sectional study was carried out on outpatient and inpatient basis in the pediatrics department of a teaching hospital over 6 months. Subjects and Methods: Data regarding sociodemographic profile of patient and caregiver, idea regarding pediatric dosage forms, dosing of medicines, and medication errors during administration were recorded from 377 caregivers. Reconstitution of dry powder and measurement of 5 mL liquid medicine using measuring cup of the medicine phial was demonstrated by the caregivers. Statistical Analysis: Association assessed by point biserial correlation and Spearman's rank correlation. Results: Majority of the primary caregivers surveyed were young, educated, homemaker mothers. Liquid medicines were used maximally (88.9%. Majority (87.3% of the caregivers used standardized dosing instruments to measure liquids and reconstitution (85.9%, and teaspoon measurement task (91% was performed satisfactorily by most. Some potentially wrong practices (e.g., adding medicine to milk, redilution of reconstituted medicine, and storing beyond the recommended period were recorded. Medication errors were reported by 44.5% caregivers, significantly more in the outpatient setting. Although the statistical correlation was weak, the chance of medication error was less, and the precision of measurement was better with increasing education of the caregiver. Conclusions: Physicians need to be aware of the limitations of knowledge and the possibility of wrong administration practices among caregivers of children. Remedial measures in this regard can reduce the risk of medication errors.

  12. Establishment of exposure dose assessment laboratory in National Radiation Emergency Medical Center (NREMC)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Ryong; Ha, Wi Ho; Yoon, Seok Won; Han, Eun Ae; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    As unclear industry grown, 432 of the nuclear power plants are operating and 52 of NPPs are under construction currently. Increasing use of radiation or radioisotopes in the field of industry, medical purpose and research such as non-destructive examination, computed tomography and x-ray, etc. constantly. With use of nuclear or radiation has incidence possibility for example the Fukushima NPP incident, the Goiania accident and the Chernobyl Nuclear accident. Also the risk of terror by radioactive material such as Radiological Dispersal Device(RDD) etc. In Korea, since the 'Law on protection of nuclear facilities and countermeasure for radioactive preparedness was enacted in 2003, the Korean institute of Radiological and Medical Sciences(KIRAMS) was established for the radiation emergency medical response in radiological disaster due to nuclear accident, radioactive terror and so on. Especially National Radiation Emergency Medical Center(NREMC) has the duty that is protect citizens from nuclear, radiological accidents or radiological terrors through the emergency medical preparedness. The NREMC was established by the 39-article law on physical protection of nuclear material and facilities and measures for radiological emergencies. Dose assessment or contamination survey should be performed which provide the radiological information for medical response. For this reason, the NREMC establish and re-organized dose assessment system based on the existing dose assessment system of the NREMC recently. The exposure dose could be measured by physical and biological method. With these two methods, we can have conservative dose assessment result. Therefore the NREMC established the exposure dose assessment laboratory which was re-organized laboratory space and introduced specialized equipment for dose assessment. This paper will report the establishment and operation of exposure dose assessment laboratory for radiological emergency response and discuss how to enhance

  13. Researches and Applications of ESR Dosimetry for Radiation Accident Dose Assessment

    International Nuclear Information System (INIS)

    Wu, K.; Guo, L.; Cong, J.B.; Sun, C.P.; Hu, J.M.; Zhou, Z.S.; Wang, S.; Zhang, Y.; Zhang, X.; Shi, Y.M.

    1998-01-01

    The aim of this work was to establish methods suitable for practical dose assessment of people involved in ionising radiation accidents. Some biological materials of the human body and materials possibly carried or worn by people were taken as detection samples. By using electron spin resonance (ESR) techniques, the basic dosimetric properties of selected materials were investigated in the range above the threshold dose of human acute haemopoietic radiation syndrome. The dosimetric properties involved included dose response properties of ESR signals, signal stabilities, distribution of background signals, the lowest detectable dose value, radiation conditions, environmental effects on the detecting process, etc. Several practical dose analytical indexes and detecting methods were set up. Some of them (bone, watch glass and tooth enamel) had also been successfully used in the dose assessment of people involved in three radiation accidents, including the Chernobyl reactor accident. This work further proves the important role of ESR techniques in radiation accident dose estimation. (author)

  14. EMP Attachment 3 DOE-SC PNNL Site Dose Assessment Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.

    2011-12-21

    This Dose Assessment Guidance (DAG) describes methods to use to determine the Maximally-Exposed Individual (MEI) location and to estimate dose impact to that individual under the U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site Environmental Monitoring Plan (EMP). This guidance applies to public dose from radioactive material releases to the air from PNNL Site operations. This document is an attachment to the Pacific Northwest National Laboratory (PNNL) Environmental Monitoring Plan (EMP) and describes dose assessment guidance for radiological air emissions. The impact of radiological air emissions from the U.S. Department of Energy Office of Science (DOE-SC) PNNL Site is indicated by dose estimates to a maximally exposed member of the public, referred to as the maximally exposed individual (MEI). Reporting requirements associated with dose to members of the public from radiological air emissions are in 40 CFR Part 61.94, WAC 246-247-080, and DOE Order 458.1. The DOE Order and state standards for dose from radioactive air emissions are consistent with U.S. Environmental Protection Agency (EPA) dose standards in 40 CFR 61.92 (i.e., 10 mrem/yr to a MEI). Despite the fact that the current Contract Requirements Document (CRD) for the DOE-SC PNNL Site operations does not include the requirement to meet DOE CRD 458.1, paragraph 2.b, public dose limits, the DOE dose limits would be met when EPA limits are met.

  15. Pediatric intensive care treatment of uncontrolled status epilepticus.

    Science.gov (United States)

    Wilkes, Ryan; Tasker, Robert C

    2013-04-01

    The critically ill mechanically ventilated child with ongoing seizures that are refractory to any treatment presents a distinct challenge in pediatric neurocritical care. The evidence base from randomized controlled trials on which anti-epileptic drug (AED) strategy should be used is inadequate. This review of refractory and super-refractory status epilepticus summarizes recent pediatric case series regarding definitions, the second-tier AED therapies once initial anticonvulsants have failed, and the experience of high-dose midazolam, barbiturate anesthesia, and volatile anesthetics for uncontrolled status epilepticus. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Local dose assessment for a contaminated wound

    International Nuclear Information System (INIS)

    Piechowski, J.; Chaptinel, Y.

    2004-01-01

    Contaminated wounds present a great variability concerning the type of lesion. Assessment of the local dose is one amongst other factors for a decision as to the surgical operation. A simple model has been used to calculate the doses in a representative volume, that of a phalanx for instance. The dose rates are given for current radionuclides. The method of calculation is enough simple in order to allow the practitioners to use it in situations involving other radionuclides. Committed dose depends on the biological half-life which can be estimated from the local measurements. Some examples of calculation of committed dose are given considering half-lives characteristic of the compound. Transposition of the dose to the local risk is easy for the non-stochastic risk. Conversely, this is not the case for the risk of chronic inflammation or cancer. The latter question could only be solved by a feedback based on the analysis of real till now observed cases, nevertheless taking into account the fact that the available data are generally not so easy to make use for establishing an unquestionable dose - effect relation. A critical issue remains open as to the use of these doses for their comparison to the regulatory limits and for the subsequent decisions in case of exceeding the limits. The actual impact of an irradiation, especially by alpha particles, is not linked to the calculated dose in a simple and direct way. This question needs further consideration and perhaps a practical guide concerning this topic would be useful. The anatomical (surgical side effects), psychological and professional consequences should have a large weight relatively to the doses, obviously except for the cases, involving actually large contamination. (authors)

  17. Biological dosimetry: chromosomal aberration analysis for dose assessment

    International Nuclear Information System (INIS)

    1986-01-01

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  18. The relationship between pediatric combination vaccines and market effects.

    Science.gov (United States)

    Behzad, Banafsheh; Jacobson, Sheldon H; Jokela, Janet A; Sewell, Edward C

    2014-06-01

    We explored market factors that affect pediatric combination vaccine uptake in the US public-sector pediatric vaccine market. We specifically examined how Pediarix and Pentacel earned a place in the 2009-2012 lowest overall cost formulary. Direct competition between Pediarix and Pentacel is driven by the indirect presence of the Merck Haemophilus influenzae type b vaccine and the Recommended Childhood Immunization Schedule requirement for a hepatitis B birth dose. The resulting analysis suggests that Pentacel would never have earned a place in the lowest overall cost formulary for 2009-2012 federal contract prices for any cost of an injection unless the Merck H influenzae type b advantage was ignored and the hepatitis B birth dose administration cost was recognized by health care providers in designing the lowest overall cost formularies.

  19. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    Energy Technology Data Exchange (ETDEWEB)

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan [Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States) and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2012-11-15

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose

  20. TSD-DOSE : a radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.

    1998-01-01

    In May 1991, the U.S. Department of Energy (DOE), Office of Waste Operations, issued a nationwide moratorium on shipping slightly radioactive mixed waste from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. Studies were subsequently conducted to evaluate the radiological impacts associated with DOE's prior shipments through DOE's authorized release process under DOE Order 5400.5. To support this endeavor, a radiological assessment computer code--TSD-DOSE (Version 1.1)--was developed and issued by DOE in 1997. The code was developed on the basis of detailed radiological assessments performed for eight commercial hazardous waste TSD facilities. It was designed to utilize waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste handling operations at a TSD facility. The code has since been released for use by DOE field offices and was recently used by DOE to evaluate the release of septic waste containing residual radioactive material to a TSD facility licensed under the Resource Conservation and Recovery Act. Revisions to the code were initiated in 1997 to incorporate comments received from users and to increase TSD-DOSE's capability, accuracy, and flexibility. These updates included incorporation of the method used to estimate external radiation doses from DOE's RESRAD model and expansion of the source term to include 85 radionuclides. In addition, a detailed verification and benchmarking analysis was performed