WorldWideScience

Sample records for pedestrian congestions influence

  1. Transit Station Congestion Index Research Based on Pedestrian Simulation and Gray Clustering Evaluation

    Directory of Open Access Journals (Sweden)

    Shu-wei Wang

    2013-01-01

    Full Text Available A congestion phenomenon in a transit station could lead to low transfer efficiency as well as a hidden danger. Effective management of congestion phenomenon shall help to reduce the efficiency decline and danger risk. However, due to the difficulty in acquiring microcosmic pedestrian density, existing researches lack quantitative indicators to reflect congestion degree. This paper aims to solve this problem. Firstly, platform, stair, transfer tunnel, auto fare collection (AFC machine, and security check machine were chosen as key traffic facilities through large amounts of field investigation. Key facilities could be used to reflect the passenger density of a whole station. Secondly, the pedestrian density change law of each key traffic facility was analyzed using pedestrian simulation, and the load degree calculating method of each facility was defined, respectively, afterwards. Taking pedestrian density as basic data and gray clustering evaluation as algorithm, an index called Transit Station Congestion Index (TSCI was constructed to reflect the congestion degree of transit stations. Finally, an evaluation demonstration was carried out with five typical transit transfer stations in Beijing, and the evaluation results show that TSCI can objectively reflect the congestion degree of transit stations.

  2. Mendenhall Glacier Visitor Center vehicular and pedestrian traffic congestion study

    Science.gov (United States)

    2007-05-01

    The Mendenhall Glacier Visitor Center of Tongass National Forest in Juneau, Alaska is experiencing vehicular and pedestrian congestion. This study was initiated by the United States Forest Service, Alaska Region, in cooperation with Western Federal L...

  3. Improving pedestrian facilities in congested urban areas: a case study of Chennai city

    Science.gov (United States)

    Subramanyam, B.; Prasanna Kumar, R.

    2017-07-01

    Traffic congestion and lack of public pedestrian space are some problems faced by most urban metropolises. Conventionally walking has been a mode of transportation in Indian cities. The percentage of pedestrians may vary from 16 to 57 depending upon the city. Encounters between vehicular traffic and pedestrian traffic are at its rise currently. Rapid industrialization and urbanization in India has resulted in neglecting of pedestrian facilities. Consequently pedestrian are at greater risk for their safety more especially in the commercial zones of large cities. A change in perspective spotlight will create a sense of awareness that the pedestrian traffic is also vital as the vehicular traffic. Soothing the traffic would moderately cut the driving expediency but the pedestrians will get a much safer and peaceful route to their terminuses. Safety and comfort are the two pans of a balance while considering the pedestrian traffic. Considering these aspects, this study deals a study in improving pedestrian facilities by analysing the existing skeleton of the selected locations. The adequacy of facility is checked based on IRC latest guidelines and counteractive measures are postulated.

  4. Influence of children pedestrian behaviour on pedestrian space usage

    Science.gov (United States)

    Makalew, F. P.; Adisasmita, S. A.; Wunas, S.; Hamid, S.

    2017-11-01

    School children pedestrian behaviour can be seen along their journey to and from school. Pedestrian spaces used by children are places available in urban and rural areas including streets with and without pedestrian pathways. Samples data are collected from 23 elementary schools in urban and rural areas in North Sulawesi, Indonesia in the form of video records and photos taken. The aim of this research is to analyse children pedestrian behaviour and its influence on the space usage on pedestrian areas. Method of analysis is a comparative study on urban and rural areas. Results of this research are types of behaviour, factors that influence the behaviour, physical condition of pedestrian areas and space usage by children. The behaviours are duck-line walking, running, playing, walking backward and walking with bare foot in which running is the main behaviour. These behaviours are influenced by factors including following friends and responding to acts. There are similarities and differences between pedestrian space usage in urban and rural areas. Space use by children pedestrian demonstrates the way pedestrian areas should be planned. Space usage by children pedestrian indicates that there is a need of evaluation of the space available considering pedestrian children behaviour.

  5. Influence of pedestrian age and gender on spatial and temporal distribution of pedestrian crashes.

    Science.gov (United States)

    Toran Pour, Alireza; Moridpour, Sara; Tay, Richard; Rajabifard, Abbas

    2018-01-02

    Every year, about 1.24 million people are killed in traffic crashes worldwide and more than 22% of these deaths are pedestrians. Therefore, pedestrian safety has become a significant traffic safety issue worldwide. In order to develop effective and targeted safety programs, the location- and time-specific influences on vehicle-pedestrian crashes must be assessed. The main purpose of this research is to explore the influence of pedestrian age and gender on the temporal and spatial distribution of vehicle-pedestrian crashes to identify the hotspots and hot times. Data for all vehicle-pedestrian crashes on public roadways in the Melbourne metropolitan area from 2004 to 2013 are used in this research. Spatial autocorrelation is applied in examining the vehicle-pedestrian crashes in geographic information systems (GIS) to identify any dependency between time and location of these crashes. Spider plots and kernel density estimation (KDE) are then used to determine the temporal and spatial patterns of vehicle-pedestrian crashes for different age groups and genders. Temporal analysis shows that pedestrian age has a significant influence on the temporal distribution of vehicle-pedestrian crashes. Furthermore, men and women have different crash patterns. In addition, results of the spatial analysis shows that areas with high risk of vehicle-pedestrian crashes can vary during different times of the day for different age groups and genders. For example, for those between ages 18 and 65, most vehicle-pedestrian crashes occur in the central business district (CBD) during the day, but between 7:00 p.m. and 6:00 a.m., crashes among this age group occur mostly around hotels, clubs, and bars. This research reveals that temporal and spatial distributions of vehicle-pedestrian crashes vary for different pedestrian age groups and genders. Therefore, specific safety measures should be in place during high crash times at different locations for different age groups and genders to

  6. Update schemes of multi-velocity floor field cellular automaton for pedestrian dynamics

    Science.gov (United States)

    Luo, Lin; Fu, Zhijian; Cheng, Han; Yang, Lizhong

    2018-02-01

    Modeling pedestrian movement is an interesting problem both in statistical physics and in computational physics. Update schemes of cellular automaton (CA) models for pedestrian dynamics govern the schedule of pedestrian movement. Usually, different update schemes make the models behave in different ways, which should be carefully recalibrated. Thus, in this paper, we investigated the influence of four different update schemes, namely parallel/synchronous scheme, random scheme, order-sequential scheme and shuffled scheme, on pedestrian dynamics. The multi-velocity floor field cellular automaton (FFCA) considering the changes of pedestrians' moving properties along walking paths and heterogeneity of pedestrians' walking abilities was used. As for parallel scheme only, the collisions detection and resolution should be considered, resulting in a great difference from any other update schemes. For pedestrian evacuation, the evacuation time is enlarged, and the difference in pedestrians' walking abilities is better reflected, under parallel scheme. In face of a bottleneck, for example a exit, using a parallel scheme leads to a longer congestion period and a more dispersive density distribution. The exit flow and the space-time distribution of density and velocity have significant discrepancies under four different update schemes when we simulate pedestrian flow with high desired velocity. Update schemes may have no influence on pedestrians in simulation to create tendency to follow others, but sequential and shuffled update scheme may enhance the effect of pedestrians' familiarity with environments.

  7. Neighborhood Influences on Vehicle-Pedestrian Crash Severity.

    Science.gov (United States)

    Toran Pour, Alireza; Moridpour, Sara; Tay, Richard; Rajabifard, Abbas

    2017-12-01

    Socioeconomic factors are known to be contributing factors for vehicle-pedestrian crashes. Although several studies have examined the socioeconomic factors related to the location of the crashes, limited studies have considered the socioeconomic factors of the neighborhood where the road users live in vehicle-pedestrian crash modelling. This research aims to identify the socioeconomic factors related to both the neighborhoods where the road users live and where crashes occur that have an influence on vehicle-pedestrian crash severity. Data on vehicle-pedestrian crashes that occurred at mid-blocks in Melbourne, Australia, was analyzed. Neighborhood factors associated with road users' residents and location of crash were investigated using boosted regression tree (BRT). Furthermore, partial dependence plots were applied to illustrate the interactions between these factors. We found that socioeconomic factors accounted for 60% of the 20 top contributing factors to vehicle-pedestrian crashes. This research reveals that socioeconomic factors of the neighborhoods where the road users live and where the crashes occur are important in determining the severity of the crashes, with the former having a greater influence. Hence, road safety countermeasures, especially those focussing on the road users, should be targeted at these high-risk neighborhoods.

  8. The Study on In-City Capacity Affected by Pedestrian Crossing

    Directory of Open Access Journals (Sweden)

    Chang-jiang Zheng

    2016-01-01

    Full Text Available Currently, the urban road traffic congestion is serious and the traffic accident is happening at a high frequency; thus it has not satisfied the travel needs of security and affects the quality of urban trips. In order to effectively relieve the confliction of people and motor vehicle, to make sure of the safety of pedestrians crossing the road, and to improve the capacity of urban roads, this passage focuses on studying the influence of pedestrians crossing the roads on the capacity of urban roads in three pedestrian crossing approaches including freely crossing the street, uncontrolled crossing of the pedestrian crosswalk, and controlled crossing of the pedestrian crosswalk. Firstly, it confirms the general formula of the road capacity when pedestrians are crossing the road based on three preassumptions, combined with the survey data, and then constructs the empirical mathematical model of pedestrian crossing on the capacity impact. Lastly, it takes the step of case calculation and simulation evaluation and calculates errors between them, finding that the error between the model calculation and software simulation is small. The efficiency of the model is validated and improved.

  9. Development of Model for Pedestrian Gap Based on Land Use Pattern at Midblock Location and Estimation of Delay at Intersections

    Science.gov (United States)

    Ramesh, Adepu; Ashritha, Kilari; Kumar, Molugaram

    2018-04-01

    Walking has always been a prime source of human mobility for short distance travel. Traffic congestion has become a major problem for safe pedestrian crossing in most of the metropolitan cities. This has emphasized for providing a sufficient pedestrian gap for safe crossing on urban road. The present works aims in understanding factors that influence pedestrian crossing behaviour. Four locations were chosen for identification of pedestrian crossing behaviour, gap characteristics, waiting time etc., in Hyderabad city. From the study it was observed that pedestrian behaviour and crossing patterns are different and is influenced by land use pattern. A gap acceptance model was developed from the data for improving pedestrian safety at mid-block location; the model was validated using the existing data. Pedestrian delay was estimated at intersection using Highway Capacity Manual (HCM). It was observed that field delays are less when compared to delay arrived from HCM method.

  10. The effects of peer influence on adolescent pedestrian road-crossing decisions.

    Science.gov (United States)

    Pfeffer, K; Hunter, E

    2013-01-01

    Adolescence is a high-risk period for pedestrian injury. It is also a time of heightened susceptibility to peer influence. The aim of this research was to examine the effects of peer influence on the pedestrian road-crossing decisions of adolescents. Using 10 videos of road-crossing sites, 80 16- to 18-year-olds were asked to make pedestrian road-crossing decisions. Participants were assigned to one of 4 experimental conditions: negative peer (influencing unsafe decisions), positive peer (influencing cautious decisions), silent peer (who observed but did not comment), and no peer (the participant completed the task alone). Peers from the adolescent's own friendship group were recruited to influence either an unsafe or a cautious decision. Statistically significant differences were found between peer conditions. Participants least often identified safe road-crossing sites when accompanied by a negative peer and more frequently identified dangerous road-crossing sites when accompanied by a positive peer. Both cautious and unsafe comments from a peer influenced adolescent pedestrians' decisions. These findings showed that road-crossing decisions of adolescents were influenced by both unsafe and cautious comments from their peers. The discussion highlighted the role that peers can play in both increasing and reducing adolescent risk-taking.

  11. Influence of approaching tram on behaviour of pedestrians in signalised crosswalks in Poland.

    Science.gov (United States)

    Kruszyna, Maciej; Rychlewski, Jeremi

    2013-06-01

    Research done in two Polish cities has uncovered an influence of an approaching tram on pedestrian behaviour. The measurements were done by counting pedestrians waiting for a green signal, crossing on red signal safely, or crossing on red signal taking a risk of being hit by a car, differentiating between pedestrians attempting to board a public transport vehicle and other pedestrians. It was expected, that pedestrian behaviour might be influenced by traffic control predictability, therefore two cities were chosen for the task: Wrocław with fixed time traffic control and Poznań with a majority of traffic responsive traffic signals. Data from the measurements was compared in order to find behaviour patterns - the comparison led to a conclusion, that an attempt to get on board of an incoming public transport vehicle can be a major cause for pedestrians to violate a red signal, including an increase of unsafe behaviour. These pedestrians may provoke other pedestrians to cross on a red signal. On the other hand if traffic control guarantees boarding the public transport vehicle, passengers-to-be may be even more obedient than other pedestrians. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Dynamic analysis of pedestrian crossing behaviors on traffic flow at unsignalized mid-block crosswalks

    Science.gov (United States)

    Liu, Gang; He, Jing; Luo, Zhiyong; Yang, Wunian; Zhang, Xiping

    2015-05-01

    It is important to study the effects of pedestrian crossing behaviors on traffic flow for solving the urban traffic jam problem. Based on the Nagel-Schreckenberg (NaSch) traffic cellular automata (TCA) model, a new one-dimensional TCA model is proposed considering the uncertainty conflict behaviors between pedestrians and vehicles at unsignalized mid-block crosswalks and defining the parallel updating rules of motion states of pedestrians and vehicles. The traffic flow is simulated for different vehicle densities and behavior trigger probabilities. The fundamental diagrams show that no matter what the values of vehicle braking probability, pedestrian acceleration crossing probability, pedestrian backing probability and pedestrian generation probability, the system flow shows the "increasing-saturating-decreasing" trend with the increase of vehicle density; when the vehicle braking probability is lower, it is easy to cause an emergency brake of vehicle and result in great fluctuation of saturated flow; the saturated flow decreases slightly with the increase of the pedestrian acceleration crossing probability; when the pedestrian backing probability lies between 0.4 and 0.6, the saturated flow is unstable, which shows the hesitant behavior of pedestrians when making the decision of backing; the maximum flow is sensitive to the pedestrian generation probability and rapidly decreases with increasing the pedestrian generation probability, the maximum flow is approximately equal to zero when the probability is more than 0.5. The simulations prove that the influence of frequent crossing behavior upon vehicle flow is immense; the vehicle flow decreases and gets into serious congestion state rapidly with the increase of the pedestrian generation probability.

  13. New insights into turbulent pedestrian movement pattern in crowd-quakes

    International Nuclear Information System (INIS)

    Ma, J; Song, W G; Lo, S M; Fang, Z M

    2013-01-01

    Video recordings right before the Love Parade disaster have been quantitatively analyzed to explore the bursts of unusual crowd movement patterns, crowd-quakes. The pedestrian movement pattern in this incident was special for the reason that it happened in a congested counter flow scenario, where stopped pedestrians were involved. No one was believed to have pushed others intentionally at the beginning, however, under this situation, the body contacts among the pedestrians still induced a force spread, which then led to velocity fluctuation. As indicated by the individual velocity-related features, the densely crowded pedestrian movement displayed turbulent flow features. Further analyzing the overall flow field, we also found that the pedestrian flow field shared typical patterns with turbulent fluid flow. As a result of the turbulent state, different clusters of pedestrians displayed different velocity features. Thus crowd pressure which took into account the velocity and density information was proved to be a good indicator of crowd disasters. Based on these essential features of pedestrian crowd-quakes, a minimal model, i.e., a pedestrian crowd-quake model, was established. Effects including pedestrian gait, stress conservation level and personal intention to escape were explored. (paper)

  14. Cellular automaton simulation of counter flow with paired pedestrians

    Directory of Open Access Journals (Sweden)

    Hui Xiong

    2011-12-01

    Full Text Available Knowledge on pedestrian behavior is the basis to build decision support system for crowd evacuation management in emergency. In this paper, the impact of paired walking behavior on pedestrian counter flow in a channel is studied. The pedestrian walking behaviors are simulated by the cellular automaton model and the pedestrians are classified as single right walker, single left walker, paired right walker, and paired left walker. Single walker can move forward, leftward, rightward or stand still. The paired pedestrians are considered as a combined unit similar to the single walker in terms of route choice and they can move to the same direction simultaneously. It is found that flow and velocity decrease with increase of the paired rate in case of stable density. Simulation results reveal the phase transitions in terms of density from free flow to the unstable flow and from the unstable flow to the congestion flow. However, the critical densities of phase transition are unaffected by the channel size.

  15. Vehicle-pedestrian collisions - Aspects regarding pedestrian kinematics, dynamics and biomechanics

    Science.gov (United States)

    Petrescu, L.; Petrescu, Al

    2017-10-01

    Vehicle-pedestrian collisions result in a substantial number of pedestrian fatalities and injuries worldwide. Concern continues to limit and reduce the tragic consequences suffered by pedestrians involved in road accidents, caused the vehicle-pedestrian accident reconstruction become an important area and distinctly outlined in the reconstruction of road incidents involving vehicle. This paper analyzes the dynamics of vehicle-pedestrian impact influence over pedestrian biomechanics, which is directly connected with the severity of injury after contact with the vehicle profile and with the place where the pedestrian is projected. The main goal of this paper is to highlight some features of reconstruction of road accidents involving pedestrian, looking at the kinematics and dynamics of pedestrian impact for a better understanding of the phenomena that occur. The study on the dynamics and biomechanics of the pedestrian hit by the vehicle is useful in order to understand how the injuries, including the lethal ones, are generated in the collision, what is essential in road accidents reconstruction.

  16. Situational Factors of Influencing Drivers to Give Precedence to Jaywalking Pedestrians at Signalized Crosswalk

    Directory of Open Access Journals (Sweden)

    Xiaobei Jiang

    2011-12-01

    Full Text Available A large number of fatalities are caused by the vehicle-pedestrian accidents. Under a potential conflict between the vehicle and jaywalking pedestrian, giving precedence to the pedestrian will be a proper decision taken by the driver to avoid collision. Field traffic data has been collected by video recording and image processing at two signalized crosswalks. Vehicle speed performance in the single vehicle-pedestrian encounter and platoon vehicle-pedestrian encounter were analyzed for understanding the driver behavior in the conflict process. Binary logic model was proposed to estimate the drivers' giving precedence influenced by the situational factors and the model was validated to predict the drivers' choices accurately. The vehicle speed, pedestrian speed, pedestrian lateral distance and the vehicle longitudinal distance to the conflict point were proved to affect the drivers' choices in platoon driving. The research results would hopefully be helpful to the design of intelligent vehicles and pedestrian protection systems by the knowledge-based decision making process.

  17. Traffic flow behavior at un-signalized intersection with crossings pedestrians

    Science.gov (United States)

    Khallouk, A.; Echab, H.; Ez-Zahraouy, H.; Lakouari, N.

    2018-02-01

    Mixed traffic flux composed of crossing pedestrians and vehicles extensively exists in cities. To study the characteristics of the interference traffic flux, we develop a pedestrian-vehicle cellular automata model to present the interaction behaviors on a simple cross road. By realizing the fundamental parameters (i.e. injecting rates α1, α2, the extracting rate β and the pedestrian arrival rate αP), simulations are carried out. The vehicular traffic flux is calculated in terms of rates. The effect of the crosswalk can be regarded as a dynamic impurity. The system phase diagrams in the (α1 ,αP) plane are built. It is found that the phase diagrams consist essentially of four phases namely Free Flow, Congested, Maximal Current and Gridlock. The value of the Maximal current phase depends on the extracting rate β, while the Gridlock phase is achieved only when the pedestrians generating rate is higher than a critical value. Furthermore, the effect of vehicles changing lane (Pch1 ,Pch2) and the location of the crosswalk XP on the dynamic characteristics of vehicles flow are investigated. It is found that traffic situation in the system is slightly enhanced if the location of the crosswalks XP is far from the intersection. However, when Pch1, Pch2 increase, the traffic becomes congested and the Gridlock phase enlarges.

  18. Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system

    Science.gov (United States)

    Liu, Mianfang; Xiong, Shengwu; Li, Bixiang

    2016-05-01

    With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.

  19. INFLUENCE OF PLANNING, ORGANIZATIONAL CHARACTERISTICS AND REGULATION ON ROAD TRAFFIC SAFETY OF PEDESTRIANS

    Directory of Open Access Journals (Sweden)

    G. M. Kuharenok

    2011-01-01

    Full Text Available The paper presents results of research on planning, organizational characteristics and regulation modes at  the regulated pedestrian crossings, located out of crossroads in the street and road network of Minsk. Some regularities pertaining to the influence of the investigated characteristics on road traffic safety of pedestrians are revealed in the paper. Practical offers on increase of road traffic safety of pedestrians in the Republic of Belarus have been developed on the basis of the executed investigations and cited in the paper. 

  20. Isolated and Single Pedestrians and Pedestrian Groups on Sidewalks

    Directory of Open Access Journals (Sweden)

    Francesco Pinna

    2017-11-01

    Full Text Available Walking freedom can define the quality of an urban area, but this freedom is conditioned by various factors. The research objective is to study pedestrian behavior on sidewalks. Data are collected during on site surveys by means of concealed camcorders. For each pedestrian many factors are observed, such as gender, age, direction, distractions, transport of objects, etc., which could influence pedestrian behavior. Data processing allows the identification of mathematical models describing the average pedestrian’s behavior, subdivided for user type (isolated, single, group. In general, the mean walking pedestrian speed decreases depending on user type (in a linear manner if age class grows for isolated pedestrians, while with the square of age for other user types, of gender, and of facing type. Models obtained for the different pedestrian types were compared to understand the differences in speeds, underlining that pedestrian interferences play a significant role in defining behavior and, therefore, speed. The results support the idea that, to define a smooth pedestrian speed as an indicator of the “walkability” of a path, in addition to considering the path and user’s characteristics, it is also necessary to define the type of user for which the infrastructure is designed.

  1. New a priori estimates for mean-field games with congestion

    KAUST Repository

    Evangelista, David; Gomes, Diogo A.

    2016-01-01

    We present recent developments in crowd dynamics models (e.g. pedestrian flow problems). Our formulation is given by a mean-field game (MFG) with congestion. We start by reviewing earlier models and results. Next, we develop our model. We establish new a priori estimates that give partial regularity of the solutions. Finally, we discuss numerical results.

  2. New a priori estimates for mean-field games with congestion

    KAUST Repository

    Evangelista, David

    2016-01-06

    We present recent developments in crowd dynamics models (e.g. pedestrian flow problems). Our formulation is given by a mean-field game (MFG) with congestion. We start by reviewing earlier models and results. Next, we develop our model. We establish new a priori estimates that give partial regularity of the solutions. Finally, we discuss numerical results.

  3. How Smog Awareness Influences Public Acceptance of Congestion Charge Policies

    OpenAIRE

    Lingyi Zhou; Yixin Dai

    2017-01-01

    Although various studies have investigated public acceptance of congestion charge policies, most of them have focused on behavioral and policy-related factors, and did not consider the moderating influence that individual concern about smog and perceived smog risk may have on public acceptance. This paper takes the congestion charge policy in China, targeted at smog and traffic control, and checks how smog awareness—including smog concerns and perceived smog risks, besides behavioral and poli...

  4. Jamming transitions induced by an attraction in pedestrian flow

    Science.gov (United States)

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2017-08-01

    We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on the social force model for pedestrians who can join the attraction. We formulate the joining probability as a function of social influence from others, reflecting that individual choice behavior is likely influenced by others. By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns. For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing phenomena with a certain probability when pedestrian flux is high with strong social influence. This study highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx especially when the social influence is strong.

  5. Jamming transitions induced by an attraction in pedestrian flow.

    Science.gov (United States)

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2017-08-01

    We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on the social force model for pedestrians who can join the attraction. We formulate the joining probability as a function of social influence from others, reflecting that individual choice behavior is likely influenced by others. By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns. For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing phenomena with a certain probability when pedestrian flux is high with strong social influence. This study highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx especially when the social influence is strong.

  6. Factors influencing safety in a sample of marked pedestrian crossings selected for safety inspections in the city of Oslo.

    Science.gov (United States)

    Elvik, Rune; Sørensen, Michael W J; Nævestad, Tor-Olav

    2013-10-01

    This paper reports an analysis of factors influencing safety in a sample of marked pedestrian crossings in the city of Oslo, Norway. The sample consists of 159 marked pedestrian crossings where a total of 316 accidents were recorded during a period of five years. The crossings were selected for inspection because of they were, for various reasons, regarded as sub-standard. The sample of crossings is therefore not representative of all pedestrian crossings in Oslo. Factors influencing the number of accidents were studied by means of negative binomial regression. Factors that were studied included the volume of pedestrians and vehicles, the number of traffic lanes at the crossing, the location of the crossing (midblock or junction), the type of traffic control, the share of pedestrians using the crossing and the speed of approaching vehicles. The analysis confirmed the presence of a "safety-in-numbers" effect, meaning that an increase in the number of pedestrians is associated with a lower risk of accident for each pedestrian. Crossings located in four-leg junctions or roundabouts had more accidents than crossings located in three-leg junctions or on sections between junctions. A high share of pedestrians crossing the road outside the marked crossing was associated with a high number of accidents. Increased speed was associated with an increased number of accidents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Managing Pedestrian and Car Interactions

    Science.gov (United States)

    2017-05-26

    In urban areas and especially in inner cities, pedestrians crossing the road considerably influence the road traffic flow. For political (environmental) reasons, priority could be given to pedestrians. A larger number of crossings reduces the pedestr...

  8. An M/M/c/K State-Dependent Model for Pedestrian Flow Control and Design of Facilities.

    Directory of Open Access Journals (Sweden)

    Khalidur Rahman

    Full Text Available Pedestrian overflow causes queuing delay and in turn, is controlled by the capacity of a facility. Flow control or blocking control takes action to avoid queues from building up to extreme values. Thus, in this paper, the problem of pedestrian flow control in open outdoor walking facilities in equilibrium condition is investigated using M/M/c/K queuing models. State dependent service rate based on speed and density relationship is utilized. The effective rate of the Poisson arrival process to the facility is determined so as there is no overflow of pedestrians. In addition, the use of the state dependent queuing models to the design of the facilities and the effect of pedestrian personal capacity on the design and the traffic congestion are discussed. The study does not validate the sustainability of adaptation of Western design codes for the pedestrian facilities in the countries like Bangladesh.

  9. Video-processing-based system for automated pedestrian data collection and analysis when crossing the street

    Science.gov (United States)

    Mansouri, Nabila; Watelain, Eric; Ben Jemaa, Yousra; Motamed, Cina

    2018-03-01

    Computer-vision techniques for pedestrian detection and tracking have progressed considerably and become widely used in several applications. However, a quick glance at the literature shows a minimal use of these techniques in pedestrian behavior and safety analysis, which might be due to the technical complexities facing the processing of pedestrian videos. To extract pedestrian trajectories from a video automatically, all road users must be detected and tracked during sequences, which is a challenging task, especially in a congested open-outdoor urban space. A multipedestrian tracker based on an interframe-detection-association process was proposed and evaluated. The tracker results are used to implement an automatic tool for pedestrians data collection when crossing the street based on video processing. The variations in the instantaneous speed allowed the detection of the street crossing phases (approach, waiting, and crossing). These were addressed for the first time in the pedestrian road security analysis to illustrate the causal relationship between pedestrian behaviors in the different phases. A comparison with a manual data collection method, by computing the root mean square error and the Pearson correlation coefficient, confirmed that the procedures proposed have significant potential to automate the data collection process.

  10. Analysis on influencing factors and decision-making of pedestrian crossing at intersections

    Science.gov (United States)

    Liu, Likun; Wang, Ziyang

    2017-10-01

    The city signal intersection always has complex traffic flow and many traffic accidents. As vulnerable participants, the proportion of traffic accidents involving pedestrians remain high. And a lot of insecure crossing behavior seriously reduce the safety of the intersection. Therefore, it is necessary to carry out in-depth study on the traversing characteristics of pedestrians, reveal the inherent laws of pedestrian crossing, and then put forward targeted measures to improve pedestrian traffic environment, protect pedestrian crossing safety and improve traffic efficiency.

  11. Pedestrian ascent and descent fundamental diagram on stairway

    Science.gov (United States)

    Chen, Juan; Lo, S. M.; Ma, Jian

    2017-08-01

    Due to the interaction among individuals, pedestrian walking speeds in relatively dense crowds when descending and ascending stairs may present different features from a single pedestrian moving freely. Thus, to obtain a large range of densities, a series of single-file pedestrian movement experiments under laboratory conditions were performed. The trends of the fundamental diagram in a wide pedestrian density range for staircase movement are captured. Detailed features of pedestrian speed with the increase of pedestrian density, headway, and the influence of pedestrians’ lateral sway are further discussed. It is found that with the increase of pedestrian density, the speed decrease rate varies. Meanwhile, the decrease of headway, leads to two speed regimes, i.e. free movement and linear constrained movement. We show that pedestrian speed can be described by counting the number of steps separating pedestrians in longitudinal direction. These enrichments can benefit pedestrian modelling and improve the evaluation of the evacuation performance of a staircase.

  12. The Crossing Speed of Elderly Pedestrians

    Directory of Open Access Journals (Sweden)

    Ana Trpković

    2017-04-01

    Full Text Available The population of elderly people is rapidly growing and in terms of safety, senior pedestrians represent one of the most vulnerable group. The pedestrian crossing speed is a significant input parameter in traffic engineering, which can have effect on pedestrians’ safety, especially of older population. The objective of this study was to determine the value of the crossing speed of elderly pedestrians (65+ for different types of urban crossings. The research was conducted at ten intersections in the city of Belgrade, Serbia, using the method of direct observation and a questionnaire for collecting data. The data were analysed in the statistical software package IBM SPSS Statistics. The results showed that elderly pedestrians walk slower and the crossing type significantly influenced the speed of older population. The order of crossing types in relation to the measured speed is ranked as follows, from the lowest to the highest speed value: unsignalized, signalized, signalized with pedestrian countdown display, signalized with pedestrian island and pedestrian countdown display and finally signalized crossing with pedestrian island. According to the questionnaire results, the elderly recognize the importance of implementing pedestrian counters. This indicates the necessity to provide safe street crossing for the elderly using the corresponding engineering measures.

  13. [Parental practices and pedestrian risk behaviors in Chilean adolescents].

    Science.gov (United States)

    Herrera, Andrea C; Repetto, Paula B

    2014-08-01

    Traffic accidents are the second leading cause of death among adolescents and young adults in Chile. However, few studies have examined this behavior among this age group. Parental practices have a great influence on risk behaviors in adolescents, such as substance use, sexuality and violence, among others. Specifically, we propose that these practices will influence pedestrian risk behaviors among adolescents. To study the role of parental practices such as mother and father support, and behavioral control (monitoring and presence of rules) in pedestrian risk behaviors of teenagers. A sample of 470 adolescents attending schools in the Metropolitan Region of Santiago, Chile were studied. They answered a self-administered questionnaire in which they were asked about parental practices and pedestrian risk behaviors. Analyses were performed using descriptive and inferential statistics, using multiple regression. Paternal support and the presence of rules were protective factors for pedestrian risky behaviors. However, maternal support or monitoring did not influence these behaviors. Parental practices influence pedestrian behaviors of teenagers. The study provides further evidence for the importance of these practices in the development of behavioral self-regulation.

  14. Development Study of Pedestrian Bridge at Gramedia Bookstore Jalan Raden Intan Bandar Lampung

    Science.gov (United States)

    Bernaditha, C. M.

    2018-03-01

    Bandar Lampung with high enough population densities has provides transportation facilities for pedestrian such as pedestrian bridge. This pedestrian bridges spread at Bandar Lampung’s traffic congested area, shopping centre nor education centre. Jl. Raden Intan as one of primary collector road with four lanes one direction at Bandar Lampung has high LHR (average daily traffic) movemenet pattern especially at morning, day and afternoon rush hour that make it difficult for pedestrian who want to cross the road. Therefore pedes trian bridge at this section Jl. Raden Intan highly needed especially at in front of Gramedia Bookstore with large amount of crossing pedestrian volume. From this research and analysis, found that number of LHR (average daily traffic) at Jl. Raden Intan shows large number traffic volume that is 4509 passenger car unit/hour at morning rush hour (07.00-08.30), with value of V/C Ratio or Degree of Saturation reach 0,92 (E category), while the amount of pedestrian who cross ahead from Gramedia Bookstore to Bank Muammalat is 29 people per 15 minutes. Other than that based on the calculation results of pedestrian volume and traffic volume at rush hour as follow: average pedestrian volume at rush hour is 146 people/hour between the range 100-1250 people/hour and traffic volume 7521 vehicles/hour over than 7000 vehicles/hour, and also the value PV2=1,682x1010 which is means the value of PV2 worth over 2x108, moreover the speed plan Jl. Raden Intan between 60-80 km/hour above 70 km/hour. Based on the calculation and analysis above, it can be concluded transportation facilities recommended for Jl. Raden Intan is pedestrian bridge.

  15. The influence of passenger car front shape on pedestrian injury risk observed from German in-depth accident data.

    Science.gov (United States)

    Li, Guibing; Lyons, Mathew; Wang, Bingyu; Yang, Jikuang; Otte, Dietmar; Simms, Ciaran

    2017-04-01

    Quantified relationships between passenger car front shape and pedestrian injury risk derived from accident data are sparse, especially considering the significant recent changes in car front design. The purpose of this paper is therefore to investigate the detailed effects of passenger car front shape on injury risk to a pedestrian's head, thorax, pelvis and leg in the event of a vehicle pedestrian impact. Firstly, an accident sample of 594 pedestrian cases captured during 2000-2015 from the German In-Depth Accident Study (GIDAS) database was employed. Multicollinearity diagnostic statistics were then used to detect multicollinearity between the predictors. Following this, logistic regression was applied to quantify the effects of passenger car front shape on injury risks while controlling for impact speed and pedestrian age. Results indicate that the bumper lower depth (BLD), bumper lower height (BLH), bumper upper height (BUH) and normalised bumper lower/upper height (NBLH/NBUH) are statistically significant for AIS2+ leg injury risk. The normalised bonnet leading edge height (NBLEH) has a statistically significant influence on AIS2+ femur/pelvis injury occurrence. The passenger car front shape did not show statistical significance for AIS3+ thorax and head injuries. The impact speed and pedestrian age are generally significant factors influencing AIS2+ leg and pelvis injuries, and AIS3+ thorax and head injuries. However, when head impacts are fixed on the central windscreen region both pedestrian age and impact speed are not statistically significant for AIS3+ head injury. For quantified effects, when controlling for speed, age and BUH, an average 7% and 6% increase in AIS2+ leg injury odds was observed for every 1cm increase in BLD and BLH respectively; 1cm increase in BUH results in a 7% decrease in AIS2+ leg injury odds when the BLD or BLH are fixed respectively (again controlling for impact speed and pedestrian age); the average AIS2+ femur/pelvis injury

  16. Effects of Switching Behavior for the Attraction on Pedestrian Dynamics.

    Science.gov (United States)

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2015-01-01

    Walking is a fundamental activity of our daily life not only for moving to other places but also for interacting with surrounding environment. While walking on the streets, pedestrians can be aware of attractions like shopping windows. They can be influenced by the attractions and some of them might shift their attention towards the attractions, namely switching behavior. As a first step to incorporate the switching behavior, this study investigates collective effects of switching behavior for an attraction by developing a behavioral model. Numerical simulations exhibit different patterns of pedestrian behavior depending on the strength of the social influence and the average length of stay. When the social influence is strong along with a long length of stay, a saturated phase can be defined at which all the pedestrians have visited the attraction. If the social influence is not strong enough, an unsaturated phase appears where one can observe that some pedestrians head for the attraction while others walk in their desired direction. These collective patterns of pedestrian behavior are summarized in a phase diagram by comparing the number of pedestrians who visited the attraction to the number of passersby near the attraction. Measuring the marginal benefits with respect to the strength of the social influence and the average length of stay enables us to identify under what conditions enhancing these variables would be more effective. The findings from this study can be understood in the context of the pedestrian facility management, for instance, for retail stores.

  17. Effects of Switching Behavior for the Attraction on Pedestrian Dynamics.

    Directory of Open Access Journals (Sweden)

    Jaeyoung Kwak

    Full Text Available Walking is a fundamental activity of our daily life not only for moving to other places but also for interacting with surrounding environment. While walking on the streets, pedestrians can be aware of attractions like shopping windows. They can be influenced by the attractions and some of them might shift their attention towards the attractions, namely switching behavior. As a first step to incorporate the switching behavior, this study investigates collective effects of switching behavior for an attraction by developing a behavioral model. Numerical simulations exhibit different patterns of pedestrian behavior depending on the strength of the social influence and the average length of stay. When the social influence is strong along with a long length of stay, a saturated phase can be defined at which all the pedestrians have visited the attraction. If the social influence is not strong enough, an unsaturated phase appears where one can observe that some pedestrians head for the attraction while others walk in their desired direction. These collective patterns of pedestrian behavior are summarized in a phase diagram by comparing the number of pedestrians who visited the attraction to the number of passersby near the attraction. Measuring the marginal benefits with respect to the strength of the social influence and the average length of stay enables us to identify under what conditions enhancing these variables would be more effective. The findings from this study can be understood in the context of the pedestrian facility management, for instance, for retail stores.

  18. How Smog Awareness Influences Public Acceptance of Congestion Charge Policies

    Directory of Open Access Journals (Sweden)

    Lingyi Zhou

    2017-09-01

    Full Text Available Although various studies have investigated public acceptance of congestion charge policies, most of them have focused on behavioral and policy-related factors, and did not consider the moderating influence that individual concern about smog and perceived smog risk may have on public acceptance. This paper takes the congestion charge policy in China, targeted at smog and traffic control, and checks how smog awareness—including smog concerns and perceived smog risks, besides behavioral and policy-related factors—might influence public acceptance of the policy. In this paper, we found both a direct and moderating causal relationship between smog awareness and public acceptance. Based on a sample of 574 valid questionnaires in Beijing and Shanghai in 2016, an ordered logistic regression modeling approach was used to delineate the causality between smog awareness and public acceptance. We found that both smog concerns, such as perceived smog risk, and willingness to pay (WTP were both directly and indirectly positively correlated with public acceptance. These findings imply that policymakers should increase policy fairness with environmental-oriented policy design and should express potential policy effectiveness of the smog controlling policy to citizens to increase their acceptance level.

  19. Kinematic responses and injuries of pedestrian in car-pedestrian collisions

    Science.gov (United States)

    Teng, T. L.; Liang, C. C.; Hsu, C. Y.; Tai, S. F.

    2017-10-01

    How to protect pedestrians and reduce the collision injury has gradually become the new field of automotive safety research and focus in the world. Many engineering studies have appeared and their purpose is trying to reduce the pedestrian injuries caused by traffic accident. The physical model involving impactor model and full scale pedestrian model are costly when taking the impact test. This study constructs a vehicle-pedestrian collision model by using the MADYMO. To verify the accuracy of the proposed vehicle-pedestrian collision model, the experimental data are used in the pedestrian model test. The proposed model also will be applied to analyze the kinematic responses and injuries of pedestrian in collisions in this study. The modeled results can help assess the pedestrian friendliness of vehicles and assist in the future development of pedestrian friendliness vehicle technologies.

  20. Crossing Behaviour of Pedestrians Along Urban Streets in Malaysia

    Directory of Open Access Journals (Sweden)

    Al Bargi Walid A.

    2017-01-01

    Full Text Available Road crossings are considered as an unavoidable part of walking in which the desirable route of pedestrians interacts with vehicles. These interactions may expose the pedestrians to risks or delays. In Malaysia, road accident statistics show that pedestrian casualties are fairly high. Inappropriate gap acceptance when pedestrians cross roads is a main contributing element to this situation. In this context, the purpose of this study was to develop realistic models for pedestrian road crossing behaviour using the regression technique for mid-block street crossing. A choice model was produced to capture the decision making process of pedestrians whereas rejected or accepted vehicular gaps was based on the discrete choice theory. Gap acceptance data under real mix traffic conditions was collected using video camera on a typical unsignalised two lane one way urban street section in the city center of Kuala Lumpur, Malaysia. The lognormal regression model developed for the crossing behaviour model shows that traffic speed, pedestrian waiting time, gender, crossing distance, age group, frequency of attempts and pedestrian number are the significant factors which are able to predict 77.0% of variance or changes in accepted gap size at 0.05 significance level. Higher traffic speed, lower waiting time, being a male, wider crossing distance, older age group, lower frequency of attempts and higher number of pedestrian were found to influence pedestrians to accept a bigger gap size. The binary logistic regression developed for the crossing choice model was found to be influenced by traffic speed, driver yield, pedestrian number and age group. Furthermore, lower traffic speed, willingness of drivers to slow down, more pedestrian crossings at the same time and a younger age group lead to a higher chance or probability of crossing roads. The model was validated again using 100 isolated samples and an accuracy of 98% was obtained compared to the calibrated

  1. Linking pedestrian flow characteristics with stepping locomotion

    Science.gov (United States)

    Wang, Jiayue; Boltes, Maik; Seyfried, Armin; Zhang, Jun; Ziemer, Verena; Weng, Wenguo

    2018-06-01

    While properties of human traffic flow are described by speed, density and flow, the locomotion of pedestrian is based on steps. To relate characteristics of human locomotor system with properties of human traffic flow, this paper aims to connect gait characteristics like step length, step frequency, swaying amplitude and synchronization with speed and density and thus to build a ground for advanced pedestrian models. For this aim, observational and experimental study on the single-file movement of pedestrians at different densities is conducted. Methods to measure step length, step frequency, swaying amplitude and step synchronization are proposed by means of trajectories of the head. Mathematical models for the relations of step length or frequency and speed are evaluated. The problem how step length and step duration are influenced by factors like body height and density is investigated. It is shown that the effect of body height on step length and step duration changes with density. Furthermore, two different types of step in-phase synchronization between two successive pedestrians are observed and the influence of step synchronization on step length is examined.

  2. Simulation of Cognitive Pedestrian Agents Crowds in Crisis Situations

    Directory of Open Access Journals (Sweden)

    Margaret Lyell

    2006-06-01

    Full Text Available In crisis situations in an urban environment, first responder teams often must deal with crowds of people. Consider the case of a building fire in a dense city environment. People may be injured; walkways may be blocked, with fire equipment attempting to reach the scene. Crowd behavior can become an issue when trying to reach the injured, ensure safety and restore conditions to normal. The motivations of pedestrians that form the crowd can vary. Some are there because they are curious about the crisis situation. Others, attending to their individual concerns, may have found themselves in the 'wrong' location. They may be trying to leave the area, but the density of people as well as the spatial layout of the walkways may be impeding their progress. Other individuals, unaware of the fire, may be attempting to reach their intended destinations that happen to be near the crisis area, thus adding to crowd congestion. With a model of crowd behavior, effective strategies for resource usage in managing crowd behavior can be developed. Our approach to this problem is that of agent-based modeling and simulation. We develop a cognitive pedestrian agent model. Utilizing this model, we simulate crowd behavior in a 'city fire' scenario. Characteristics of crowd behavior with different pedestrian personality mixes and a strategy for crowd management are investigated

  3. Level of service for pedestrian movement towards the performance of passenger information in public transport stations in Klang Valley

    Science.gov (United States)

    Ramli, M. Z.; Hanipah, M. H.; Lee, L. G.; Loo, K. F.; Wong, J. K.; Zawawi, M. H.; Fuad, N. F. S.

    2017-09-01

    Rapid growth in car ownership in Malaysia plays a major role to traffic congestion. Hence, public transportation is crucial to cater the residents in high-density area especially in Klang Valley. Signage information in public transport station is one of an important passenger information system. Poor placement of sign information will decrease the efficiency of passenger flow and caused congestion in the station. Passenger information system is very useful for trip planning and decision making. Therefore, it is interesting to study the performance of passenger information system in focusing the movement behavior of pedestrian at non-peak period. Thus, the study on pedestrian movement during non-peak period on weekdays and weekends in mass transit stations and bus transit stations in Klang Valley was carried out by using video observation. The observation of the pedestrian movement was made in Mass Transit Station 1 in the middle of Kuala Lumpur and Mass Transit Station 2 in southern of Kuala Lumpur. The other site was focused at Bus Transit Station 1 in Putrajaya and Bus Transit Station 2 in Kajang. Findings shown that Mass Transit Station 1 having the best facility in terms of passenger information which the level of service obtained is LOS A, while the lowest level of service which is LOS E was obtained in Bus Transit Station 2.

  4. Assessment methodologies for forward looking integrated pedestrian systems and further extension to cyclist safety: experimental and virtual testing for pedestrian protection

    NARCIS (Netherlands)

    Ferrer, A.; Hair-Buijssen, S.H.H.M. de; Zander, O.; Fredriksson, R.; Schaub, S.; Nuss, F.; Caspar, M.

    2015-01-01

    Pedestrians and cyclists are the most unprotected road users and their injury risk in case of accidents is significantly higher than for other road users. The understanding of the influence and sensitivity between important variables describing a pedestrian crash is key for the development of more

  5. Pedestrian-driver communication and decision strategies at marked crossings.

    Science.gov (United States)

    Sucha, Matus; Dostal, Daniel; Risser, Ralf

    2017-05-01

    The aim of this work is to describe pedestrian-driver encounters, communication, and decision strategies at marked but unsignalised crossings in urban areas in the Czech Republic and the ways in which the parties involved experience and handle these encounters. A mixed-methods design was used, consisting of focus groups with pedestrians and drivers regarding their subjective views of the situations, on-site observations, camera recordings, speed measurements, the measurement of car and pedestrian densities, and brief on-site interviews with pedestrians. In close correspondence with the literature, our study revealed that the most relevant predictors of pedestrians' and drivers' behaviour at crossings were the densities of car traffic and pedestrian flows and car speed. The factors which influenced pedestrians' wait/go behaviour were: car speed, the distance of the car from the crossing, traffic density, whether there were cars approaching from both directions, various signs given by the driver (eye contact, waving a hand, flashing their lights), and the presence of other pedestrians. The factors influencing drivers' yield/go behaviour were: speed, traffic density, the number of pedestrians waiting to cross, and pedestrians being distracted. A great proportion of drivers (36%) failed to yield to pedestrians at marked crossings. The probability of conflict situations increased with cars travelling at a higher speed, higher traffic density, and pedestrians being distracted by a different activity while crossing. The findings of this study can add to the existing literature by helping to provide an understanding of the perception of encounter situations by the parties involved and the motives lying behind certain aspects of behaviour associated with these encounters. This seems necessary in order to develop suggestions for improvements. For instance, the infrastructure near pedestrian crossings should be designed in such a way as to take proper account of pedestrians

  6. Motorcycle On-Road Driving Parameters Influencing Fuel Consumption and Emissions on Congested Signalized Urban Corridor

    Directory of Open Access Journals (Sweden)

    Atthapol Seedam

    2017-01-01

    Full Text Available This study aims to find the on-road driving parameters influencing fuel consumption and emissions of motorcycle driving on a congested signalized urban corridor. A motorcycle onboard measurement system was developed to measure instantaneously and continuously record on-road driving data, including speed-time profile, emissions, and fuel consumption, by the second. The test motorcycles were driven by 30 sample motorcyclists on a signalized urban corridor in Khon Kaen City, Thailand, to collect their on-road driving behavior during the morning peak period. Cluster analysis was applied to analyze collected driving data and to categorize the drivers by level of fuel consumption and on-road driver behavior. The on-road driving parameter influencing fuel consumption and emissions was then determined. Results revealed that proportion of idle time significantly influenced fuel consumption and emissions of motorcycle driving on a congested signalized urban corridor, though aggressive driving behavior, hard acceleration and deceleration, did not have the same kind of influence.

  7. Study on Evaluation Indicators System of Crowd Management for Transfer Stations Based on Pedestrian Simulation

    Directory of Open Access Journals (Sweden)

    Guanghou Zhang

    2011-12-01

    Full Text Available Improving safety and convenience of transfer is one of the most vital tasks in subway system planning, design and operation management. Because of complicated space layout and crowded pedestrian, crowd control is a big challenge for management of transfer stations. Thus, a quantitative evaluation should be done before improvement measures are carried out. Literature review showed that present evaluation indicators about crowd management in subway system were all based on fixed value or experience. Dynamic effect caused by pedestrian congestion and various facility combination cannot be represented based on these indicators. Thus, in this paper, based on the pedestrian simulation tool, dynamic evaluation indicators system of crowd management was established from the point of safety, cost-effectiveness and comfort. In order to aid decision makers to identify the most appropriate scenario to improve the effectiveness of crowd management, Matter-Element Analysis (MEA was used to rate different scenarios. A pedestrian simulation model of a designing intermodal transfer station was built and four different scenarios were tested to demonstrate how to use this indicators system. Simulation results were evaluated based on the dynamic indicators system and MEA. The application results show that the dynamic evaluation indicators system is operational and can reflect level of the crowd management in transfer station comprehensively and precisely.

  8. Study on the Weaving Behavior of High Density Bidirectional Pedestrian Flow

    Directory of Open Access Journals (Sweden)

    Lishan Sun

    2014-01-01

    Full Text Available Weaving area may be the critical risk place in the subway transfer station. When improving service level of the weaving area, the characteristic of pedestrian weaving behavior should be systemically discussed. This paper described the mechanism of weaving behavior on high density pedestrian which was analyzed by the collection data of controlled experiment. Different weaving behaviors were contrasted due to different volumes in the bidirectional passageway. Video analysis was conducted to extract pedestrian moving behavior and calibrate the movement data with SIMI Motion. Influence of the high density weaving pedestrian was studied based on the statistical results (e.g., velocity, walking distance, and journey time. Furthermore, the quantitative method by speed analysis was announced to discriminate the conflict point. The scopes of weaving area and impact area at different pedestrian volumes were revealed to analyze the pedestrian turning angle. The paper concluded that walking pedestrians are significantly influenced by the weaving conflict and trend to turn the moving direction to avoid the conflict in weaving area; the ratio of stable weaving area and impact area is 2 to 3. The conclusions do provide a method to evaluate the transfer station safety and a facility layout guidance to improve the capacity.

  9. Pedestrian signalization and the risk of pedestrian-motor vehicle collisions in Lima, Peru.

    Science.gov (United States)

    Quistberg, D Alex; Koepsell, Thomas D; Boyle, Linda Ng; Miranda, J Jaime; Johnston, Brian D; Ebel, Beth E

    2014-09-01

    Safe walking environments are essential for protecting pedestrians and promoting physical activity. In Peru, pedestrians comprise over three-quarters of road fatality victims. Pedestrian signalization plays an important role managing pedestrian and vehicle traffic and may help improve pedestrian safety. We examined the relationship between pedestrian-motor vehicle collisions and the presence of visible traffic signals, pedestrian signals, and signal timing to determine whether these countermeasures improved pedestrian safety. A matched case-control design was used where the units of study were crossing locations. We randomly sampled 97 control-matched collisions (weighted N=1134) at intersections occurring from October, 2010 to January, 2011 in Lima. Each case-control pair was matched on proximity, street classification, and number of lanes. Sites were visited between February, 2011 and September, 2011. Each analysis accounted for sampling weight and matching and was adjusted for vehicle and pedestrian traffic flow, crossing width, and mean vehicle speed. Collisions were more common where a phased pedestrian signal (green or red-light signal) was present compared to no signalization (odds ratio [OR] 8.88, 95% Confidence Interval [CI] 1.32-59.6). A longer pedestrian-specific signal duration was associated with collision risk (OR 5.31, 95% CI 1.02-9.60 per 15-s interval). Collisions occurred more commonly in the presence of any signalization visible to pedestrians or pedestrian-specific signalization, though these associations were not statistically significant. Signalization efforts were not associated with lower risk for pedestrians; rather, they were associated with an increased risk of pedestrian-vehicle collisions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Influence of the Built Environment on Pedestrian Route Choices of Adolescent Girls

    DEFF Research Database (Denmark)

    Rodriguez, Daniel A.; Merlin, Louis; Prato, Carlo Giacomo

    2015-01-01

    We examined the influence of the built environment on pedestrian route selection among adolescent girls. Portable global positioning system units, accelerometers, and travel diaries were used to identify the origin, destination, and walking routes of girls in San Diego, California, and Minneapolis...... of route choice. Shorter distance had the strongest positive association with route choice, whereas the presence of a greenway or trail, higher safety, presence of sidewalks, and availability of destinations along a route were also consistently positively associated with route choice at both sites...

  11. Pedestrian injury causation study (pedestrian accident typing)

    Science.gov (United States)

    1982-08-01

    A new computerized pedestrian accident typing procedure was tested on 1,997 cases from the Pedestrian Injury Causation Study (PICS). Two coding procedures were used to determine the effects of quantity and quality of information on accident typing ac...

  12. Pedestrian and motorists' actions at pedestrian hybrid beacon sites: findings from a pilot study.

    Science.gov (United States)

    Pulugurtha, Srinivas S; Self, Debbie R

    2015-01-01

    This paper focuses on an analysis of pedestrian and motorists' actions at sites with pedestrian hybrid beacons and assesses their effectiveness in improving the safety of pedestrians. Descriptive and statistical analyses (one-tail two-sample T-test and two-proportion Z-test) were conducted using field data collected during morning and evening peak hours at three study sites in the city of Charlotte, NC, before and after the installation of pedestrian hybrid beacons. Further, an analysis was conducted to assess the change in pedestrian and motorists' actions over time (before the installation; 1 month, 3 months, 6 months, and 12 months after the installation). Results showed an increase in average traffic speed at one of the pedestrian hybrid beacon sites while no specific trends were observed at the other two pedestrian hybrid beacon sites. A decrease in the number of motorists not yielding to pedestrians, pedestrians trapped in the middle of the street, and pedestrian-vehicle conflicts were observed at all the three pedestrian hybrid beacon sites. The installation of pedestrian hybrid beacons did not have a negative effect on pedestrian actions at two out of the three sites. Improvements seem to be relatively more consistent 3 months after the installation of the pedestrian hybrid beacon.

  13. Influence of TCSC on congestion and spot price in electricity market with bilateral contract

    International Nuclear Information System (INIS)

    Acharya, Naresh; Mithulananthan, Nadarajah

    2007-01-01

    This paper presents a quantitative analysis of the effect of TCSC on congestion and spot price in deregulated electricity markets. The paper could also be considered as a comprehensive tutorial on the influence of TCSC in electricity market. A voluntary pool market, where the market participants can trade electricity either via a pool or through bilateral contracts is considered. The electricity market is modeled in an optimal power flow framework with the objective of maximizing the social welfare. In such formulation, the Lagrange operators associated with the equality constraints associated with real power balance give the spot prices of energy at each bus of the system. Studies are carried out with and without TCSC at peak and low loading conditions to capture the influence and to see the effectiveness of TCSC at different loading conditions. The paper further explores the effect of TCSC compensation level on the spot prices and the congestion under varying pool and bilateral loading conditions. A 5-bus test system is used for numerical studies and to showcase the influence of TCSC in an electricity market environment. (author)

  14. Research on the Effects of Heterogeneity on Pedestrian Dynamics in Walkway of Subway Station

    Directory of Open Access Journals (Sweden)

    Haoling Wu

    2016-01-01

    Full Text Available The major objective of this paper is to study the effects of heterogeneity on pedestrian dynamics in walkway of subway station. We analyze the observed data of the selected facility and find that walking speed and occupied space were varied in the population. In reality, pedestrians are heterogeneous individuals with different attributes. However, the research on how the heterogeneity affects the pedestrian dynamics in facilities of subway stations is insufficient. The improved floor field model is therefore presented to explore the effects of heterogeneity. Pedestrians are classified into pedestrians walking in pairs, fast pedestrians, and ordinary pedestrians. For convenience, they are denoted as P-pedestrians, F-pedestrians, and O-pedestrians, respectively. The proposed model is validated under homogeneous and heterogeneous conditions. Three pedestrian compositions are simulated to analyze the effects of heterogeneity on pedestrian dynamics. The results show that P-pedestrians have negative effect and F-pedestrians have positive effect. All of the results in this paper indicate that the capacity of walkway is not a constant value. It changes with different component proportions of heterogeneous pedestrians. The heterogeneity of pedestrian has an important influence on the pedestrian dynamics in the walkway of the subway station.

  15. Gender Differences in Pedestrian Perception and Satisfaction on the Walkability of Kuala Lumpur City Center

    Directory of Open Access Journals (Sweden)

    Arshad Ahmad Kamil

    2016-01-01

    Full Text Available The quality of built environment usually influences the walkability of a city. This is because each pedestrian walk differently on different type of facilities or built environment provided to them. This paper aims to investigate whether gender differences influences the pedestrian perception and satisfaction level at three sidewalks located within the Kuala Lumpur City Center by means of questionnaire survey. A total of 317 pedestrians were involved in the questionnaire survey at the three different sidewalk locations. The result shows significant differences in mean satisfaction value between male and female pedestrians. Female pedestrian give lower satisfaction value for overall travel experience at Jalan Tuanku Abdul Rahman but higher satisfaction value at Petaling Street and Bukit Bintang compared to male pedestrian. Overall, the satisfaction level was rated between acceptable to satisfactory regardless of gender differences. Improvements should be made for the safety parameter because both male and female pedestrian gives lowest satisfaction level in that area.

  16. Safer passenger car front shapes for pedestrians: A computational approach to reduce overall pedestrian injury risk in realistic impact scenarios.

    Science.gov (United States)

    Li, Guibing; Yang, Jikuang; Simms, Ciaran

    2017-03-01

    Vehicle front shape has a significant influence on pedestrian injuries and the optimal design for overall pedestrian protection remains an elusive goal, especially considering the variability of vehicle-to-pedestrian accident scenarios. Therefore this study aims to develop and evaluate an efficient framework for vehicle front shape optimization for pedestrian protection accounting for the broad range of real world impact scenarios and their distributions in recent accident data. Firstly, a framework for vehicle front shape optimization for pedestrian protection was developed based on coupling of multi-body simulations and a genetic algorithm. This framework was then applied for optimizing passenger car front shape for pedestrian protection, and its predictions were evaluated using accident data and kinematic analyses. The results indicate that the optimization shows a good convergence and predictions of the optimization framework are corroborated when compared to the available accident data, and the optimization framework can distinguish 'good' and 'poor' vehicle front shapes for pedestrian safety. Thus, it is feasible and reliable to use the optimization framework for vehicle front shape optimization for reducing overall pedestrian injury risk. The results also show the importance of considering the broad range of impact scenarios in vehicle front shape optimization. A safe passenger car for overall pedestrian protection should have a wide and flat bumper (covering pedestrians' legs from the lower leg up to the shaft of the upper leg with generally even contacts), a bonnet leading edge height around 750mm, a short bonnet (17° or car front shape for head and leg protection are generally consistent, but partially conflict with pelvis protection. In particular, both head and leg injury risk increase with increasing bumper lower height and depth, and decrease with increasing bonnet leading edge height, while pelvis injury risk increases with increasing bonnet leading

  17. FUNGSI DAN PERAN JALUR PEDESTRIAN BAGI PEJALAN KAKI Sebuah Studi Banding Terhadap Fungsi Pedestrian

    Directory of Open Access Journals (Sweden)

    Lily Mauliani

    2010-07-01

    Full Text Available ABSTRAK. Jalur pedestrian pada sebuah kota adalah bagian yang sangat penting, baik sebagai kelengkapan (amenity kota maupun sebagai tempat orang berjalan kaki dengan aman dan nyaman. Namun untuk kota Jakarta, dan mungkin juga kota-kota lainnya di Indonesia, pedestrian seringkali mengalami perubahan fungsi tidak hanya sekedar sebagai jalur pejalan kaki namun juga bisa menjadi jalur kendaraan bermotor, area berjualan para pedagang kaki lima yang bersifat mobile, tetapi bisa juga menjadi “ruko” alias rumah toko. Permasalahannya adalah bagaimana nasib para pejalan kaki, dimana mereka dapat berjalan kaki dengan aman, tanpa takut tertabrak pengendara sepeda motor, tersenggol bajay, mikrolet atau mobil pribadi? Pembahasan tentang pedestrian ini dilakukan dengan cara mengamati dan membandingkan antara pedestrian yang ada di Jakarta dan di Singapura, dilihat dari segi fungsi dan penataannya.   Kata kunci : pedestrian, fungsi, pejalan kaki   ABSTRACT. Pedestrian path within the city has been regarded as an important element, either as a city amenity which contribute an aesthetic of city space or as a space for people or pedestrian to walk safely and comfort. Jakarta as one of a big city in Indonesia, has many pedestrian paths within it, but there are many pedestrian paths which have been changed in function. The pedestrian paths are not as a space for people to walk but have been accommodated as motorcycle lines as well as mobile shop or shop-house which has been known as RUKO or rumah toko. The main problem is how people could walk safely and comfort. This discussion of pedestrian paths will be explored in this paper by comparing the function and the design as well as the plan of pedestrian paths in Jakarta and Singapore.   Keywords : pedestrian path, function, pedestrian.

  18. From Ant Trails to Pedestrian Dynamics

    Directory of Open Access Journals (Sweden)

    Andreas Schadschneider

    2003-01-01

    Full Text Available This paper presents a model for the simulation of pedestrian dynamics inspired by the behaviour of ants in ant trails. Ants communicate by producing a pheromone that can be smelled by other ants. In this model, pedestrians produce a virtual pheromone that influences the motion of others. In this way all interactions are strictly local, and so even large crowds can be simulated very efficiently. Nevertheless, the model is able to reproduce the collective effects observed empirically, eg the formation of lanes in counterflow. As an application, we reproduce a surprising result found in experiments of evacuation from an aircraft.

  19. Air congestion delay: a review

    Directory of Open Access Journals (Sweden)

    Daniel Alberto Pamplona

    2016-04-01

    Full Text Available This article is a literature review of the air congestion delay and its costs. Air congestion is a worldwide problem. Its existence brings costs for airlines and discomfort for passengers. With the increasing demand for air transport, the study of air congestion has attracted the attention of many researchers around the world. The cause for the delays is erroneously attributed only to the lack of infrastructure investments. The literature review shows that other factors such as population growth, increasing standards of living, lack of operational planning and environmental issues exercise decisive influence. Several studies have been conducted in order to analyze and propose solutions to this problem that affects society as a whole.

  20. A heterogeneous lattice gas model for simulating pedestrian evacuation

    Science.gov (United States)

    Guo, Xiwei; Chen, Jianqiao; Zheng, Yaochen; Wei, Junhong

    2012-02-01

    Based on the cellular automata method (CA model) and the mobile lattice gas model (MLG model), we have developed a heterogeneous lattice gas model for simulating pedestrian evacuation processes in an emergency. A local population density concept is introduced first. The update rule in the new model depends on the local population density and the exit crowded degree factor. The drift D, which is one of the key parameters influencing the evacuation process, is allowed to change according to the local population density of the pedestrians. Interactions including attraction, repulsion, and friction between every two pedestrians and those between a pedestrian and the building wall are described by a nonlinear function of the corresponding distance, and the repulsion forces increase sharply as the distances get small. A critical force of injury is introduced into the model, and its effects on the evacuation process are investigated. The model proposed has heterogeneous features as compared to the MLG model or the basic CA model. Numerical examples show that the model proposed can capture the basic features of pedestrian evacuation, such as clogging and arching phenomena.

  1. Situations of car-to-pedestrian contact.

    Science.gov (United States)

    Matsui, Yasuhiro; Hitosugi, Masahito; Takahashi, Kunio; Doi, Tsutomu

    2013-01-01

    To reduce the severity of injuries and the number of pedestrian deaths in traffic accidents, active safety devices providing pedestrian detection are considered effective countermeasures. The features of car-to-pedestrian collisions need to be known in detail to develop such safety devices. Because information on real-world accidents is limited, this study investigated near-miss situations captured by drive recorders installed in passenger cars. We showed similarities of the contact situation between near-miss incidents and real-world fatal pedestrian accidents in Japan. We analyzed the near-miss incident data via video capturing pedestrians crossing the road in front of forward-moving cars. Using a video frame captured by a drive recorder, the time to collision (TTC) was calculated from the car velocity and the distance between the car and pedestrian at the moment that the pedestrian initially appeared. The average TTC in the cases where pedestrians were not using a pedestrian crossing was shorter than that in the cases where pedestrians were using a pedestrian crossing. The average TTC in the cases where pedestrians emerged from behind obstructions was shorter than that in the cases where drivers had unobstructed views of the pedestrians. We propose that the specifications of the safety device for pedestrian detection and automatic braking should reflect the severe approach situation for a pedestrian and car including the TTC observed for near-miss incidents.

  2. Modeling the Perceptions and Preferences of Pedestrians on Crossing Facilities

    Directory of Open Access Journals (Sweden)

    Hongwei Guo

    2014-01-01

    Full Text Available Pedestrian’s street-crossing behaviour has a significant effect on traffic performance and safety. The crossing behaviour is determined by human factors and environmental factors. Aiming at examining the pedestrian perceptions toward crossing facilities and preferences for crossing locations, an observational study of pedestrian crossing behaviour at urban street is conducted. The perceptions and preferences of pedestrians are collected using stated preference technique. A specific questionnaire is designed to conduct the stated preference survey. A multinomial logit model is proposed to describe the perceptions and preferences of pedestrians on crossing facilities and locations. The sensitivity analysis is performed to discuss the influence of various factors on crossing behaviour. Then the relationship between crossing locations and crossing distances is analyzed by a new proposed method. With the theoretical analysis, the engineering solutions considering pedestrian behaviour are suggested. The results are helpful to design human-centered crossing facilities in urban traffic.

  3. Pedestrian safety action plan.

    Science.gov (United States)

    2009-06-01

    In 2005, Arizona ranked 5th among states in pedestrian fatalities per 100,000 residents, with 164 : pedestrian fatalities on Arizonas roadwaysa nearly 30 percent increase from 2003 levels. To reduce : the number of pedestrian crashes in Arizona...

  4. Increasing of visibility on the pedestrian crossing by the additional lighting systems

    Science.gov (United States)

    Baleja, Richard; Bos, Petr; Novak, Tomas; Sokansky, Karel; Hanusek, Tomas

    2017-09-01

    Pedestrian crossings are critical places for road accidents between pedestrians and motor vehicles. For this reason, it is very important to increase attention when the pedestrian crossings are designed and it is necessary to take into account all factors that may contribute to higher safety. Additional lighting systems for pedestrian crossings are one of them and the lighting systems must fulfil the requirements for higher visibility from the point of view of car drivers from both directions. This paper describes the criteria for the suitable additional lighting system on pedestrian crossings. Generally, it means vertical illuminance on the pedestrian crossing from the driver’s view, horizontal illuminance on the crossing and horizontal illuminance both in front of and behind the crossing placed on the road and their acceptable ratios. The article also describes the choice of the colours of the light (correlated colour temperature) and its influence on visibility. As a part of the article, there are case designs of additional lighting systems for pedestrian crossings and measurements from realized additional lighting systems by luxmeters and luminance cameras and their evaluation.

  5. A least-effort principle based model for heterogeneous pedestrian flow considering overtaking behavior

    Science.gov (United States)

    Liu, Chi; Ye, Rui; Lian, Liping; Song, Weiguo; Zhang, Jun; Lo, Siuming

    2018-05-01

    In the context of global aging, how to design traffic facilities for a population with a different age composition is of high importance. For this purpose, we propose a model based on the least effort principle to simulate heterogeneous pedestrian flow. In the model, the pedestrian is represented by a three-disc shaped agent. We add a new parameter to realize pedestrians' preference to avoid changing their direction of movement too quickly. The model is validated with numerous experimental data on unidirectional pedestrian flow. In addition, we investigate the influence of corridor width and velocity distribution of crowds on unidirectional heterogeneous pedestrian flow. The simulation results reflect that widening corridors could increase the specific flow for the crowd composed of two kinds of pedestrians with significantly different free velocities. Moreover, compared with a unified crowd, the crowd composed of pedestrians with great mobility differences requires a wider corridor to attain the same traffic efficiency. This study could be beneficial in providing a better understanding of heterogeneous pedestrian flow, and quantified outcomes could be applied in traffic facility design.

  6. The use of a transport simulation system (AIMSUN to determine the environmental effects of pedestrianization and traffic management in the center of Thessaloniki

    Directory of Open Access Journals (Sweden)

    Evangelos Mintsis

    2016-06-01

    Full Text Available Traffic congestion in urban areas results in increased energy consumption and vehicle emissions. Traffic management that alleviates traffic congestion also mitigates the environmental effects of vehicular traffic. This study uses the transport simulation model AIMSUN to evaluate the environmental effect of a set of traffic management and pedestrianization schemes. The effects of the pedestrianization of specific sections of roads, converting two-way roads into one-way roads for traffic and changing the direction of flow of traffic along one-way roads were simulated for different areas of Thessaloniki’s city centre network. The assessment of the environmental effect was done by determining the predicted fuel consumption and emissions of greenhouse gases (GHG and air pollutants. Fuel consumption and the environmental indicators were quantified directly using the fuel consumption and emissions model in AIMSUN. A typical weekday morning peak period, between 09:00am–10:00am, was simulated and the demand data obtained using a macroscopic traffic assignment model previously developed for the wider area of Thessaloniki. The results presented in this paper are for network-wide simulation statistics (i.e. fuel consumed, carbon dioxide (CO2, nitrogen oxides (NOx and particulate matter (PM.

  7. Pedestrian Friendly Outdoor Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koltai, R. N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGowan, T. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    The GATEWAY program followed two pedestrian-scale lighting projects that required multiple mockups – one at Stanford University in California and the other at Chautauqua Institution in upstate New York. The report provides insight into pedestrian lighting criteria, how they differ from street and area lighting criteria, and how solid-state lighting can be better applied in pedestrian applications.

  8. Pedestrian Safety in Road Traffic in Poland

    Science.gov (United States)

    Budzynski, Marcin; Jamroz, Kazimierz; Mackun, Tomasz

    2017-10-01

    Every third road accident in Poland involves a pedestrian as a participant or, most of the time, a casualty. Pedestrian accidents are usually the result of complex situations and the outcome of a number of factors related to driver and pedestrian behaviour and road infrastructure. Safety depends largely on how well the traffic condition is perceived and on visibility in traffic. The paper presents the results of analyses of methodologies for systematic studies of pedestrian behaviour and pedestrian-driver relations. The effects of the location of the site, type of cross-section and other selected parameters on pedestrian and driver behaviour are demonstrated. The analyses showed that pedestrians are most often put at risk by too long pedestrian crossings, vehicles going too fast around pedestrian crossings, lack of proper sight distance and poorly lit or unlit pedestrian crossings. The reason for such defective infrastructure is that planners, designers, contractors and maintenance services are not receiving any support from design, marking and maintenance regulations for pedestrian traffic. In addition, the Road Traffic Law is not restrictive enough when it comes to drivers’ obligations towards pedestrian safety. Polish design regulations allow long pedestrian crossings up to four lanes in one direction or three lanes in two directions irrespective of traffic control and speed limits. Pedestrian crossings should be kept at a maximum of three lanes. There is nothing in the design regulations about the required driver-pedestrian sight distance. Neither does the Road Traffic Law help engineers with that. It is legal to park vehicles within 10 m of a pedestrian crossing which does not guarantee the necessary sight distance. Drivers must be able to see a pedestrian waiting or stepping onto the crossing from a distance that will help them come to a stop safely. It is safer to follow the principle of providing adequate pedestrian sight distance. Recommendations for

  9. The relationship between the availability of the supporting elements of pedestrian with pedestrian crossing facility usage based on user preferences (Case Study corridor of Sumbersari Street, Gajayana Street, MT. Haryono Street, Malang City)

    Science.gov (United States)

    Soetrisno, D. P.

    2017-06-01

    Pedestrian crossing facilities are effective enough to avoid pedestrians with vehicles, but its utilization is still quite low. It indicated that safety is not the only factor that influences a person to utilize the pedestrian crossing facilities. In addition, the availability of supporting elements of the pedestrian is still not quite attention, which is also became a factor that causes the pedestrians doesn’t utilize the pedestrian crossing facilities. Therefore, this research was structured to examine the relationship between the availability of the supporting elements of the pedestrian with pedestrian crossing facility usage based on user preferences. Data collection method used is primary survey consist of observation and the questionnaire. Sampling techniques used is purposive sampling with the number of respondents as many as 211 respondents by using questionnaire with ordinal scales to identify respondents’ consideration level of supporting elements pedestrian and crossing facility utilization factors. The survey is done on 15 crossing facilities area in 3 different locations with the same characteristics of land use in the form of higher education area (university area) and trades and services activities area. The analysis technique used is frequency distribution analysis in order to identify preference pedestrian on the availability of supporting elements of pedestrian and pedestrian crossing facility utilization factors, and chi square analysis is used to analyze the relationship between the availability of the supporting elements of the pedestrian with pedestrian crossing facility utilization. Based on the chi square analysis results with significance 5 % obtained the result that there are six supporting elements of pedestrian having correlation to the factors of pedestrian crossing facility utilization consist of the availability of sidewalk, pedestrian lights, Street Lighting Lamps, Pedestrian Crossing Markings Facilities, Sign Crossings

  10. The effects of acute sleep restriction on adolescents' pedestrian safety in a virtual environment.

    Science.gov (United States)

    Davis, Aaron L; Avis, Kristin T; Schwebel, David C

    2013-12-01

    Over 8,000 American adolescents ages 14-15 years require medical attention owing to pedestrian injury annually. Cognitive factors contributing to pedestrian safety include reaction time, impulsivity, risk taking, attention, and decision making. These characteristics are also influenced by sleep restriction. Experts recommend that adolescents obtain 8.5 hours of uninterrupted sleep each night, but most American adolescents do not. Inadequate sleep may place adolescents at risk for pedestrian injury. Using a within-subjects design, 55 14- and 15-year-olds engaged in a virtual reality pedestrian environment under two conditions, scheduled a week apart: sleep-restricted (4 hours' sleep the previous night) and adequate sleep (8.5 hours). Sleep was assessed using actigraphy and pedestrian behavior via four outcome measures: time to initiate crossing, time before contact with vehicle while crossing, virtual hits or close calls and attention to traffic (looks left and right). While acutely sleep restricted, adolescents took more time to initiate pedestrian crossings, crossed with less time before contact with vehicles, experienced more virtual hits or close calls, and looked left and right more often compared with when adequately rested. Results were maintained after controlling for age, gender, ethnicity, and average total sleep duration before each condition. Adolescent pedestrian behavior in the simulated virtual environment was markedly different, and generally more risky, when acutely sleep restricted compared with adequately rested. Inadequate sleep may influence cognitive functioning to the extent that pedestrian safety is jeopardized among adolescents capable of crossing streets safely when rested. Policy decisions might be educated by these results. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  11. Pedestrian and bicyclist motivation: an assessment of influences on pedestrians’ and bicyclists’ mode choice in Mt. Pleasant, Vancouver

    Directory of Open Access Journals (Sweden)

    Jeffery M. Guinn

    2014-01-01

    Full Text Available The majority of short distance travel in North America is completed by single occupancy vehicles. Substituting walking and bicycling for these trips would reduce energy use and environmental pollution, while improving quality of life. Therefore, understanding influences on non-automotive travel behavior is crucial. Researchers and planners have touted specific factors for encouraging walking and biking, but the body of work remains fragmented. Previous studies have focused on a smaller number of factors and most of them relate to physical design. This study tests the relative importance of a range of factors, both physical and perceptual that could influence one’s choice to walk or bike. The Mt. Pleasant neighborhood in Vancouver, B.C., Canada was chosen as the location for this study as all of the pedestrian-motivating factors identified in a literature review were present. A questionnaire-based survey addressing distance, sidewalks/bike lanes, pedestrian/bicycle traffic signals, buffering from auto traffic, sense of security, cleanliness, opportunities to talk with others, enforcement of traffic laws, concern for the environment, weather, terrain, saving money, opportunities for exercise, and a visually appealing environment as influential factors was administered in person and online yielding 774 responses. All factors were shown to influence the decision to walk or bike, but some proved more significant than others, especially opportunities for exercise.

  12. Internet Congestion Control System

    Directory of Open Access Journals (Sweden)

    Pranoto Rusmin

    2010-10-01

    Full Text Available Internet congestion occurs when resource demands exceeds the network capacity. But, it is not the only reason. Congestion can happen on some users because some others user has higher sending rate. Then some users with lower sending rate will experience congestion. This partial congestion is caused by inexactly feedback. At this moment congestion are solved by the involvement of two controlling mechanisms. These mechanisms are flow/congestion control in the TCP source and Active Queue Management (AQM in the router. AQM will provide feedback to the source a kind of indication for the occurrence of the congestion in the router, whereas the source will adapt the sending rate appropriate with the feedback. These mechanisms are not enough to solve internet congestion problem completely. Therefore, this paper will explain internet congestion causes, weakness, and congestion control technique that researchers have been developed. To describe congestion system mechanisms and responses, the system will be simulated by Matlab.

  13. Effects of mobile Internet use on college student pedestrian injury risk.

    Science.gov (United States)

    Byington, Katherine W; Schwebel, David C

    2013-03-01

    College-age individuals have the highest incidence of pedestrian injuries of any age cohort. One factor that might contribute to elevated pedestrian injuries among this age group is injuries incurred while crossing streets distracted by mobile devices. Examine whether young adult pedestrian safety is compromised while crossing a virtual pedestrian street while distracted using the Internet on a mobile "smartphone." A within-subjects design was implemented with 92 young adults. Participants crossed a virtual pedestrian street 20 times, half the time while undistracted and half while completing an email-driven "scavenger hunt" to answer mundane questions using mobile Internet on their cell phones. Six measures of pedestrian behavior were assessed during crossings. Participants also reported typical patterns of street crossing and mobile Internet use. Participants reported using mobile Internet with great frequency in daily life, including while walking across streets. In the virtual street environment, pedestrian behavior was greatly altered and generally more risky when participants were distracted by Internet use. While distracted, participants waited longer to cross the street (F=42.37), missed more safe opportunities to cross (F=42.63), took longer to initiate crossing when a safe gap was available (F=53.03), looked left and right less often (F=124.68), spent more time looking away from the road (F=1959.78), and were more likely to be hit or almost hit by an oncoming vehicle (F=29.54; all psmobile Internet experience. Pedestrian behavior was influenced, and generally considerably riskier, when participants were simultaneously using mobile Internet and crossing the street than when crossing the street with no distraction. This finding reinforces the need for increased awareness concerning the risks of distracted pedestrian behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Internet congestion control

    CERN Document Server

    Varma, Subir

    2015-01-01

    Internet Congestion Control provides a description of some of the most important topics in the area of congestion control in computer networks, with special emphasis on the analytical modeling of congestion control algorithms. The field of congestion control has seen many notable advances in recent years and the purpose of this book, which is targeted towards the advanced and intermediate reader, is to inform about the most important developments in this area. The book should enable the reader to gain a good understanding of the application of congestion control theory to a number of applic

  15. Correlation Between Euro NCAP Pedestrian Test Results and Injury Severity in Injury Crashes with Pedestrians and Bicyclists in Sweden.

    Science.gov (United States)

    Strandroth, Johan; Sternlund, Simon; Lie, Anders; Tingvall, Claes; Rizzi, Matteo; Kullgren, Anders; Ohlin, Maria; Fredriksson, Rikard

    2014-11-01

    Pedestrians and bicyclists account for a significant share of deaths and serious injuries in the road transport system. The protection of pedestrians in car-to-pedestrian crashes has therefore been addressed by friendlier car fronts and since 1997, the European New Car Assessment Program (Euro NCAP) has assessed the level of protection for most car models available in Europe. In the current study, Euro NCAP pedestrian scoring was compared with real-life injury outcomes in car-to-pedestrian and car-tobicyclist crashes occurring in Sweden. Approximately 1200 injured pedestrians and 2000 injured bicyclists were included in the study. Groups of cars with low, medium and high pedestrian scores were compared with respect to pedestrian injury severity on the Maximum Abbreviated Injury Scale (MAIS)-level and risk of permanent medical impairment (RPMI). Significant injury reductions to both pedestrians and bicyclists were found between low and high performing cars. For pedestrians, the reduction of MAIS2+, MAIS3+, RPMI1+ and RPMI10+ ranged from 20-56% and was significant on all levels except for MAIS3+ injuries. Pedestrian head injuries had the highest reduction, 80-90% depending on level of medical impairment. For bicyclist, an injury reduction was only observed between medium and high performing cars. Significant injury reductions were found for all body regions. It was also found that cars fitted with autonomous emergency braking including pedestrian detection might have a 60-70% lower crash involvement than expected. Based on these results, it was recommended that pedestrian protection are implemented on a global scale to provide protection for vulnerable road users worldwide.

  16. Prevention of pedestrian accidents.

    OpenAIRE

    Kendrick, D

    1993-01-01

    Child pedestrian accidents are the most common road traffic accident resulting in injury. Much of the existing work on road traffic accidents is based on analysing clusters of accidents despite evidence that child pedestrian accidents tend to be more dispersed than this. This paper analyses pedestrian accidents in 573 children aged 0-11 years by a locally derived deprivation score for the years 1988-90. The analysis shows a significantly higher accident rate in deprived areas and a dose respo...

  17. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  18. Effect of interactions between vehicles and pedestrians on fuel consumption and emissions

    Science.gov (United States)

    Li, Xiang; Sun, Jian-Qiao

    2014-12-01

    This paper presents a study of variations of fuel consumption and emissions of vehicles due to random street crossings of pedestrians. The pedestrian and vehicle movement models as well as the interaction model between the two entities are presented. Extensive numerical simulations of single and multiple cars are carried out to investigate the traffic flow rate, vehicle average speed, fuel consumption, CO, HC and NOx emissions. Generally more noncompliant road-crossings of pedestrians lead to higher level of fuel consumptions and emissions of vehicles, and the traffic situation can be improved by imposing higher vehicle speed limit to some extent. Different traffic characteristics in low and high vehicle density regions are studied. The traffic flow is more influenced by crossing pedestrians in the low vehicle density region, while in the high vehicle density region, the interactions among vehicles dominate. The main contribution of this paper lies in the qualitative analysis of the impact of the interactions between pedestrians and vehicles on the traffic, its energy economy and emissions.

  19. Concept of an enhanced V2X pedestrian collision avoidance system with a cost function-based pedestrian model.

    Science.gov (United States)

    Kotte, Jens; Schmeichel, Carsten; Zlocki, Adrian; Gathmann, Hauke; Eckstein, Lutz

    2017-05-29

    State-of-the-art collision avoidance and collision mitigation systems predict the behavior of pedestrians based on trivial models that assume a constant acceleration or velocity. New sources of sensor information-for example, smart devices such as smartphones, tablets, smartwatches, etc.-can support enhanced pedestrian behavior models. The objective of this article is the development and implementation of a V2Xpedestrian collision avoidance system that uses new information sources. A literature review of existing state-of-the-art pedestrian collision avoidance systems, pedestrian behavior models in advanced driver assistance systems (ADAS), and traffic simulations is conducted together with an analysis of existing studies on typical pedestrian patterns in traffic. Based on this analysis, possible parameters for predicting pedestrian behavior were investigated. The results led to new requirements from which a concept was developed and implemented. The analysis of typical pedestrian behavior patterns in traffic situations showed the complexity of predicting pedestrian behavior. Requirements for an improved behavior prediction were derived. A concept for a V2X collision avoidance system, based on a cost function that predicts pedestrian near future presence, and its implementation is presented. The concept presented considers several challenges such as information privacy, inaccuracies of the localization, and inaccuracies of the prediction. A concept for an enhanced V2X pedestrian collision avoidance system was developed and introduced. The concept uses new information sources such as smart devices to improve the prediction of the pedestrian's presence in the near future and considers challenges that come along with the usage of these information sources.

  20. Methodological Analysis about the Potential Avoidabilty of Motor Vehicles Colliding Against Pedestrians in Urban Areas

    Energy Technology Data Exchange (ETDEWEB)

    Cabrerizo Sinca, J.; Campos Cacheda, J.M.; Perez Diez, F.

    2016-07-01

    The main motivation of the authors of this article is to establish a rigorous definition of the potential capacity that a motor vehicle driver has to avoid a collision against a pedestrian. Henceforth we will call this capacity avoidability. To calculate the avoidability, it is necessary to analyze time, distance and itinerary, initial position of the pedestrian when exposed to the risk, initial speed; theoretical maximum speed developed by the vehicle and road limit speed; the driver’s reaction time and the influence of the environment; and the interrelation of the initial positions of vehicle and pedestrian with respect to the transversal axis of the road. The definition, categorized by variables, of a driver’s ability to avoid run over a pedestrian in an urban area has an evident usefulness: it allows knowing the influence of the initial speed of a vehicle as an isolated variable and the importance of the road limit speed in the ability to prevent an accident. (Author)

  1. DATA COLLECTION METHOD FOR PEDESTRIAN MOVEMENT VARIABLES

    Directory of Open Access Journals (Sweden)

    Hajime Inamura

    2000-01-01

    Full Text Available The need of tools for design and evaluation of pedestrian areas, subways stations, entrance hall, shopping mall, escape routes, stadium etc lead to the necessity of a pedestrian model. One approach pedestrian model is Microscopic Pedestrian Simulation Model. To be able to develop and calibrate a microscopic pedestrian simulation model, a number of variables need to be considered. As the first step of model development, some data was collected using video and the coordinate of the head path through image processing were also taken. Several numbers of variables can be gathered to describe the behavior of pedestrian from a different point of view. This paper describes how to obtain variables from video taking and simple image processing that can represent the movement of pedestrians and its variables

  2. Pedestrian injury mitigation by autonomous braking.

    Science.gov (United States)

    Rosén, Erik; Källhammer, Jan-Erik; Eriksson, Dick; Nentwich, Matthias; Fredriksson, Rikard; Smith, Kip

    2010-11-01

    The objective of this study was to calculate the potential effectiveness of a pedestrian injury mitigation system that autonomously brakes the car prior to impact. The effectiveness was measured by the reduction of fatally and severely injured pedestrians. The database from the German In-Depth Accident Study (GIDAS) was queried for pedestrians hit by the front of cars from 1999 to 2007. Case by case information on vehicle and pedestrian velocities and trajectories were analysed to estimate the field of view needed for a vehicle-based sensor to detect the pedestrians one second prior to the crash. The pre-impact braking system was assumed to activate the brakes one second prior to crash and to provide a braking deceleration up to the limit of the road surface conditions, but never to exceed 0.6 g. New impact speeds were then calculated for pedestrians that would have been detected by the sensor. These calculations assumed that all pedestrians who were within a given field of view but not obstructed by surrounding objects would be detected. The changes in fatality and severe injury risks were quantified using risk curves derived by logistic regression of the accident data. Summing the risks for all pedestrians, relationships between mitigation effectiveness, sensor field of view, braking initiation time, and deceleration were established. The study documents that the effectiveness at reducing fatally (severely) injured pedestrians in frontal collisions with cars reached 40% (27%) at a field of view of 40 degrees. Increasing the field of view further led to only marginal improvements in effectiveness. 2010 Elsevier Ltd. All rights reserved.

  3. Evaluating the impact of connectivity, continuity, and topography of sidewalk network on pedestrian safety.

    Science.gov (United States)

    Osama, Ahmed; Sayed, Tarek

    2017-10-01

    With the increasing demand for sustainability, walking is being encouraged as one of the main active modes of transportation. However, pedestrians are vulnerable to severe injuries when involved in crashes which can discourage road users from walking. Therefore, studying factors that affect the safety of pedestrians is important. This paper investigates the relationship between pedestrian-motorist crashes and various sidewalk network indicators in the city of Vancouver. The goal is to assess the impact of network connectivity, directness, and topography on pedestrian safety using macro-level collision prediction models. The models were developed using generalized linear regression and full Bayesian techniques. Both walking trips and vehicle kilometers travelled were used as the main traffic exposure variables in the models. The safety models supported the safety in numbers hypothesis showing a non-linear positive association between pedestrian-motorist crashes and the increase in walking trips and vehicle traffic. The model results also suggested that higher continuity, linearity, coverage, and slope of sidewalk networks were associated with lower crash occurrence. However, network connectivity was associated with higher crash occurrence. The spatial effects were accounted for in the full Bayes models and were found significant. The models provide insights about the factors that influence pedestrian safety and the spatial variability of pedestrian crashes within a city, which can be useful for the planning of pedestrian networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of cell phone distraction on pediatric pedestrian injury risk.

    Science.gov (United States)

    Stavrinos, Despina; Byington, Katherine W; Schwebel, David C

    2009-02-01

    Early adolescents are using cell phones with increasing frequency. Cell phones are known to distract motor vehicle drivers to the point that their safety is jeopardized, but it is unclear if cell phones might also distract child pedestrians. This study was designed to examine the influence of talking on a cell phone for pediatric pedestrian injury risk. Seventy-seven children aged 10 to 11 years old completed simulated road crossings in an immersive, interactive virtual pedestrian environment. In a within-subjects design, children crossed the virtual street 6 times while undistracted and 6 times while distracted by a cell phone conversation with an unfamiliar research assistant. Participants also completed several other experimental tasks hypothesized to predict the impact of distraction while crossing the street and talking on a cell phone. Children's pedestrian safety was compromised when distracted by a cell phone conversation. While distracted, children were less attentive to traffic; left less safe time between their crossing and the next arriving vehicle; experienced more collisions and close calls with oncoming traffic; and waited longer before beginning to cross the street. Analyses testing experience using a cell phone and experience as a pedestrian yielded few significant results, suggesting that distraction on the cell phone might affect children's pedestrian safety no matter what their experience level. There was some indication that younger children and children who are less attentive and more oppositional may be slightly more susceptible to distraction while talking on the cell phone than older, more attentive, and less oppositional children. Our results suggest that cell phones distract preadolescent children while crossing streets.

  5. A Partial Proportional Odds Model for Pedestrian Crashes at Mid-Blocks in Melbourne Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Toran Pour Alireza

    2016-01-01

    Full Text Available Pedestrian crashes account for 11% of all reported traffic crashes in Melbourne metropolitan area between 2004 and 2013. There are very limited studies on pedestrian accidents at mid-blocks. Mid-block crashes account for about 46% of the total pedestrian crashes in Melbourne metropolitan area. Meanwhile, about 50% of all pedestrian fatalities occur at mid-blocks. In this research, Partial Proportional Odds (PPO model is applied to examine vehicle-pedestrian crash severity at mid-blocks in Melbourne metropolitan area. The PPO model is a logistic regression model that allows the covariates that meet the proportional odds assumption to affect different crash severity levels with the same magnitude; whereas the covariates that do not meet the proportional odds assumption can have different effects on different severity levels. In this research vehicle-pedestrian crashes at mid-blocks are analysed for first time. In addition, some factors such as distance of crashes to public transport stops, average road slope and some social characteristics are considered to develop the model in this research for first time. Results of PPO model show that speed limit, light condition, pedestrian age and gender, and vehicle type are the most significant factors that influence vehicle-pedestrian crash severity at mid-blocks.

  6. Diagnosis and management of nasal congestion: the role of intranasal corticosteroids.

    Science.gov (United States)

    Benninger, Michael

    2009-01-01

    Nasal congestion is considered the most bothersome of allergic rhinitis (AR) symptoms and can significantly impair ability to function at work, home, and school. Effective management of AR-related nasal congestion depends on accurate diagnosis and appropriate treatment. Many individuals with AR and AR-related congestion remain undiagnosed and do not receive prescription medication. However, new tools intended to improve the diagnosis of nasal congestion have been developed and validated. Intranasal corticosteroids (INSs) are recommended as first-line therapy for patients with moderate-to-severe AR and also when nasal congestion is a prominent symptom. Double blind, randomized clinical trials have demonstrated greater efficacy of INSs versus placebo, antihistamines, or montelukast for relief of all nasal symptoms, especially congestion. Patient adherence to treatment also affects outcomes, and this may be influenced by patient preferences for the sensory attributes of an individual drug. Increased awareness of the effects of AR-related nasal congestion, the efficacy and safety of available pharmacotherapies, and barriers to adherence may improve clinical outcomes.

  7. Expanding pedestrian injury risk to the body region level: how to model passive safety systems in pedestrian injury risk functions.

    Science.gov (United States)

    Niebuhr, Tobias; Junge, Mirko; Achmus, Stefanie

    2015-01-01

    Assessment of the effectiveness of advanced driver assistance systems (ADAS) plays a crucial role in accident research. A common way to evaluate the effectiveness of new systems is to determine the potentials for injury severity reduction. Because injury risk functions describe the probability of an injury of a given severity conditional on a technical accident severity (closing speed, delta V, barrier equivalent speed, etc.), they are predestined for such evaluations. Recent work has stated an approach on how to model the pedestrian injury risk in pedestrian-to-passenger car accidents as a family of functions. This approach gave explicit and easily interpretable formulae for the injury risk conditional on the closing speed of the car. These results are extended to injury risk functions for pedestrian body regions. Starting with a double-checked German In-depth Accident Study (GIDAS) pedestrian-to-car accident data set (N = 444) and a functional-anatomical definition of the body regions, investigations on the influence of specific body regions on the overall injury severity will be presented. As the measure of injury severity, the ISSx, a rescaled version of the well-known Injury Severity Score (ISS), was used. Though traditional ISS is computed by summation of the squares of the 3 most severe injured body regions, ISSx is computed by the summation of the exponentials of the Abbreviated Injury Scale (AIS) severities of the 3 most severely injured body regions. The exponentials used are scaled to fit the ISS range of values between 0 and 75. Three body regions (head/face/neck, thorax, hip/legs) clearly dominated abdominal and upper extremity injuries; that is, the latter 2 body regions had no influence at all on the overall injury risk over the range of technical accident severities. Thus, the ISSx is well described by use of the injury codes from the same body regions for any pedestrian injury severity. As a mathematical consequence, the ISSx becomes explicitly

  8. Pedestrian Friendly Outdoor Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Naomi J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koltai, Rita [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGowan, Terry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-31

    This GATEWAY report discusses the problems of pedestrian lighting that occur with all technologies with a focus on the unique optical options and opportunities offered by LEDs through the findings from two pedestrian-focused projects, one at Stanford University in California, and one at the Chautauqua Institution in upstate New York. Incorporating user feedback this report reviews the tradeoffs that must be weighed among visual comfort, color, visibility, efficacy and other factors to stimulate discussion among specifiers, users, energy specialists, and in industry in hopes that new approaches, metrics, and standards can be developed to support pedestrian-focused communities, while reducing energy use.

  9. Issues and challenges for pedestrian active safety systems based on real world accidents.

    Science.gov (United States)

    Hamdane, Hédi; Serre, Thierry; Masson, Catherine; Anderson, Robert

    2015-09-01

    The purpose of this study was to analyze real crashes involving pedestrians in order to evaluate the potential effectiveness of autonomous emergency braking systems (AEB) in pedestrian protection. A sample of 100 real accident cases were reconstructed providing a comprehensive set of data describing the interaction between the vehicle, the environment and the pedestrian all along the scenario of the accident. A generic AEB system based on a camera sensor for pedestrian detection was modeled in order to identify the functionality of its different attributes in the timeline of each crash scenario. These attributes were assessed to determine their impact on pedestrian safety. The influence of the detection and the activation of the AEB system were explored by varying the field of view (FOV) of the sensor and the level of deceleration. A FOV of 35° was estimated to be required to detect and react to the majority of crash scenarios. For the reaction of a system (from hazard detection to triggering the brakes), between 0.5 and 1s appears necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Pedestrians' estimates of their own nighttime conspicuity are unaffected by severe reductions in headlight illumination.

    Science.gov (United States)

    Whetsel Borzendowski, Stephanie A; Rosenberg, Rachel L; Sewall, Ashley Stafford; Tyrrell, Richard A

    2013-12-01

    At night pedestrians tend to overestimate their conspicuity to oncoming drivers, but little is known about factors affecting pedestrians' conspicuity estimates. This study examines how headlamp intensity and pedestrians' clothing influence judgments of their own conspicuity. Forty-eight undergraduate students estimated their own conspicuity on an unilluminated closed road by walking in front of a stationary vehicle to the point at which they judged that they were just recognizable to the driver. Unknown to the participants, high beam intensity was manipulated between subjects by placing neutral density filters on the headlamps. Estimated conspicuity distances did not significantly vary with changes in headlamp intensity even when only 3% of the illumination from the headlamps was present. These findings underscore the need to educate pedestrians about the visual challenges that drivers face at night and the need to minimize pedestrians' exposure to traffic flow at night. © 2013.

  11. Detecting New Pedestrian Facilities from VGI Data Sources

    Science.gov (United States)

    Zhong, S.; Xie, Z.

    2017-12-01

    Pedestrian facility (e.g. footbridge, pedestrian crossing and underground passage) information is an important basic data of location based service (LBS) for pedestrians. However, timely updating pedestrian facility information challenges due to facilities change frequently. Previous pedestrian facility information collecting and updating tasks are mainly completed by highly trained specialized persons. However, this conventional approach has several disadvantages such as high cost, long update cycle and so on. Volunteered Geographic Information (VGI) has proven efficiency to provide new, free and fast growing spatial data. Pedestrian trajectory, which can be seen as measurements of real pedestrian road, is one of the most valuable information of VGI data. Although the accuracy of the trajectories is not too high, due to the large number of measurements, an improvement of quality of the road information can be achieved. Thus, we develop a method for detecting new pedestrian facilities based on the current road network and pedestrian trajectories. Specifically, 1) by analyzing speed, distance and direction, those outliers of pedestrian trajectories are removed, 2) a road network matching algorithm is developed for eliminating redundant trajectories, and 3) a space-time cluster algorithm is adopted for detecting new walking facilities. The performance of the method is evaluated with a series of experiments conducted on a part of the road network of Heifei and a large number of real pedestrian trajectories, and verified the results by using Tencent Street map. The results show that the proposed method is able to detecting new pedestrian facilities from VGI data accurately. We believe that the proposed method provides an alternative way for general road data acquisition, and can improve the quality of LBS for pedestrians.

  12. Biomechanically Excited SMD Model of a Walking Pedestrian

    DEFF Research Database (Denmark)

    Zhang, Mengshi; Georgakis, Christos T.; Chen, Jun

    2016-01-01

    Through their biomechanical properties, pedestrians interact with the structures they occupy. Although this interaction has been recognized by researchers, pedestrians' biomechanical properties have not been fully addressed. In this paper, a spring-mass-damper (SMD) system, with a pair of biomech......Through their biomechanical properties, pedestrians interact with the structures they occupy. Although this interaction has been recognized by researchers, pedestrians' biomechanical properties have not been fully addressed. In this paper, a spring-mass-damper (SMD) system, with a pair...... produced the pedestrian's center of mass (COM) trajectories from the captured motion markers. The vertical COM trajectory was approximated to be the pedestrian SMD dynamic responses under the excitation of biomechanical forces. SMD model parameters of a pedestrian for a specific walking frequency were...... estimated from a known walking frequency and the pedestrian's weight, assuming that pedestrians always walk in displacement resonance and retain a constant damping ratio of 0.3. Thus, biomechanical forces were extracted using the measured SMD dynamic responses and the estimated SMD parameters. Extracted...

  13. Dual effects of pedestrian density on emergency evacuation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yi, E-mail: yima23-c@my.cityu.edu.hk [School of Transportation and Logistics, Southwest Jiaotong University, Chengdu (China); Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon (Hong Kong); Lee, Eric Wai Ming; Yuen, Richard Kwok Kit [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon (Hong Kong)

    2017-02-05

    This paper investigates the effect of the pedestrian density in building on the evacuation dynamic with simulation method. In the simulations, both the visibility in building and the exit limit of building are taken into account. The simulation results show that the effect of the pedestrian density in building on the evacuation dynamics is dual. On the one hand, when the visibility in building is very large, the increased pedestrian density plays a negative effect. On the other hand, when the visibility in building is very small, the increased pedestrian density can play a positive effect. The simulation results also show that when both the exit width and visibility are very small, the varying of evacuation time with regard to the pedestrian density is non-monotonous and presents a U-shaped tendency. That is, in this case, too large or too small pedestrian density in building is disadvantageous to the evacuation process. Our findings provide a new insight about the effect of the pedestrian density in building on the evacuation dynamic. - Highlights: • Pedestrian density inside buildings has dual effects on evacuation. • Increased pedestrian density has a negative effect in cases of increased visibility. • Increased pedestrian density has a positive effect in cases of decreased visibility.

  14. Dual effects of pedestrian density on emergency evacuation

    International Nuclear Information System (INIS)

    Ma, Yi; Lee, Eric Wai Ming; Yuen, Richard Kwok Kit

    2017-01-01

    This paper investigates the effect of the pedestrian density in building on the evacuation dynamic with simulation method. In the simulations, both the visibility in building and the exit limit of building are taken into account. The simulation results show that the effect of the pedestrian density in building on the evacuation dynamics is dual. On the one hand, when the visibility in building is very large, the increased pedestrian density plays a negative effect. On the other hand, when the visibility in building is very small, the increased pedestrian density can play a positive effect. The simulation results also show that when both the exit width and visibility are very small, the varying of evacuation time with regard to the pedestrian density is non-monotonous and presents a U-shaped tendency. That is, in this case, too large or too small pedestrian density in building is disadvantageous to the evacuation process. Our findings provide a new insight about the effect of the pedestrian density in building on the evacuation dynamic. - Highlights: • Pedestrian density inside buildings has dual effects on evacuation. • Increased pedestrian density has a negative effect in cases of increased visibility. • Increased pedestrian density has a positive effect in cases of decreased visibility.

  15. Numerical analysis of a pedestrian to car collision: Effect of variations in walk

    Directory of Open Access Journals (Sweden)

    Špička J.

    2016-12-01

    Full Text Available This work is focused on the modelling of car to pedestrian crash scenario. Virtual hybrid human body model VIRTHUMAN as well as a simplified model of car chassis is modelled under Virtual Performance Solution software. The main idea of the work is the investigation and sensitivity analysis of various initial conditions of the pedestrian during frontal car crash scenario, such as position of the extremities due to different step phases or turning of the pedestrian around his own axis. The experimental data of human gait measurement are used so that one human step is divided into 9 phases to capture the effect of walk when the pedestrian crosses a road. Consequently, the influence of different initial conditions on the kinematics, dynamics of the collision together with injury prediction of pedestrian is discussed. Moreover, the effect of walk is taken into account within translational velocities of the full human body and rotational velocities of the extremities. The trend of the injury prediction for varying initial conditions is monitored. The configurations with zero and non-zero initial velocities are compared with each other, in order to study the effect of walking speed of the pedestrian. Note that only the average walking speed is considered. On the basis of the achieved results, the importance or redundancy of modelling the walking motion and the consideration of different step phases in the car-pedestrian accident can be examined.

  16. Pedestrian recognition using automotive radar sensors

    Science.gov (United States)

    Bartsch, A.; Fitzek, F.; Rasshofer, R. H.

    2012-09-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insights into the object classification process. The impact of raw radar data properties can be directly observed in every layer of the classification system by avoiding machine learning and tracking. This gives information on the limiting factors of raw radar data in terms of classification decision making. To accomplish the very challenging distinction between pedestrians and static objects, five significant and stable object features from the spatial distribution and Doppler information are found. Experimental results with data from a 77 GHz automotive radar sensor show that over 95% of pedestrians can be classified correctly under optimal conditions, which is compareable to modern machine learning systems. The impact of the pedestrian's direction of movement, occlusion, antenna beam elevation angle, linear vehicle movement, and other factors are investigated and discussed. The results show that under real life conditions, radar only based pedestrian recognition is limited due to insufficient Doppler frequency and spatial resolution as well as antenna side lobe effects.

  17. Towards an integrated approach of pedestrian behaviour and exposure.

    Science.gov (United States)

    Papadimitriou, Eleonora

    2016-07-01

    In this paper, an integrated methodology for the analysis of pedestrian behaviour and exposure is proposed, allowing to identify and quantify the effect of pedestrian behaviour, road and traffic characteristics on pedestrian risk exposure, for each pedestrian and for populations of pedestrians. The paper builds on existing research on pedestrian exposure, namely the Routledge microscopic indicator, proposes adjustments to take into account road, traffic and human factors and extends the use of this indicator on area-wide level. Moreover, this paper uses integrated choice and latent variables (ICLV) models of pedestrian behaviour, taking into account road, traffic and human factors. Finally, a methodology is proposed for the integrated estimation of pedestrian behaviour and exposure on the basis of road, traffic and human factors. The method is tested with data from a field survey in Athens, Greece, which used pedestrian behaviour observations as well as a questionnaire on human factors of pedestrian behaviour. The data were used (i) to develop ICLV models of pedestrian behaviour and (ii) to estimate the behaviour and exposure of pedestrians for different road, traffic and behavioural scenarios. The results suggest that both pedestrian behaviour and exposure are largely defined by a small number of factors: road type, traffic volume and pedestrian risk-taking. The probability for risk-taking behaviour and the related exposure decrease in less demanding road and traffic environments. A synthesis of the results allows to enhance the understanding of the interactions between behaviour and exposure of pedestrians and to identify conditions of increased risk exposure. These conditions include principal urban arterials (where risk-taking behaviour is low but the related exposure is very high) and minor arterials (where risk-taking behaviour is more frequent, and the related exposure is still high). A "paradox" of increased risk-taking behaviour of pedestrians with low

  18. Evaluation of pedestrian safety at intersections: A theoretical framework based on pedestrian-vehicle interaction patterns.

    Science.gov (United States)

    Ni, Ying; Wang, Menglong; Sun, Jian; Li, Keping

    2016-11-01

    Pedestrians are the most vulnerable road users, and pedestrian safety has become a major research focus in recent years. Regarding the quality and quantity issues with collision data, conflict analysis using surrogate safety measures has become a useful method to study pedestrian safety. However, given the inequality between pedestrians and vehicles in encounters and the multiple interactions between pedestrians and vehicles, it is insufficient to simply use the same indicator(s) or the same way to aggregate indicators for all conditions. In addition, behavioral factors cannot be neglected. To better use information extracted from trajectories for safety evaluation and pay more attention on effects of behavioral factors, this paper develops a more sophisticated framework for pedestrian conflict analysis that takes pedestrian-vehicle interactions into consideration. A concept of three interaction patterns has been proposed for the first time, namely "hard interaction," "no interaction," and "soft-interaction." Interactions have been categorized under one of these patterns by analyzing profiles of speed and conflict indicators during the whole interactive processes. In this paper, a support vector machine (SVM) approach has been adopted to classify severity levels for a dataset including 1144 events extracted from three intersections in Shanghai, China, followed by an analysis of variable importance. The results revealed that different conflict indicators have different contributions to indicating the severity level under various interaction patterns. Therefore, it is recommended either to use specific conflict indicators or to use weighted indicator aggregation for each interaction pattern when evaluating pedestrian safety. The implementation has been carried out at the fourth crosswalk, and the results indicate that the proposed method can achieve a higher accuracy and better robustness than conventional methods. Furthermore, the method is helpful for better

  19. Relationship between pedestrian headform tests and injury and fatality rates in vehicle-to-pedestrian crashes in the United States.

    Science.gov (United States)

    Mueller, Becky; Farmer, Charles; Jermakian, Jessica; Zuby, David

    2013-11-01

    Pedestrian protection evaluations have been developed to encourage vehicle front-end designs that mitigate the consequences of vehicle-to-pedestrian crashes. The European New Car Assessment Program (Euro NCAP) evaluates pedestrian head protection with impacts against vehicle hood, windshield, and A-pillars. The Global Technical Regulation No. 9 (GTR 9), being evaluated for U.S. regulation, limits head protection evaluations to impacts against vehicle hoods. The objective of this study was to compare results from pedestrian head impact testing to the real-world rates of fatal and incapacitating injuries in U.S. pedestrian crashes. Data from police reported pedestrian crashes in 14 states were used to calculate real-world fatal and in- capacitating injury rates for seven 2002-07 small cars. Rates were 2.17-4.04 per 100 pedestrians struck for fatal injuries and 10.45-15.35 for incapacitating injuries. Euro NCAP style pedestrian headform tests were conducted against windshield, A-pillar, and hoods of the study vehicles. When compared with pedestrian injury rates, the vehicles' Euro NCAP scores, ranging 5-10 points, showed strong negative correlations (-0.6) to injury rates, though none were statistically significant. Data from the headform impacts for each of the study vehicles were used to calculate that vehicle's predicted serious injury risk. The predicted risks from both the Euro NCAP and GTR 9 test zones showed high positive correlations with the pedestrian fatal and incapacitating injury rates, though few were statistically significant. Whether vehicle stiffness is evaluated on all components of vehicle front ends (Euro NCAP) or is limited to hoods (GTR 9), softer vehicle components correspond to a lower risk of fatality.

  20. Pedestrian Friendly Traffic Signal Control.

    Science.gov (United States)

    2016-01-01

    This project continues research aimed at real-time detection and use of pedestrian : traffic flow information to enhance adaptive traffic signal control in urban areas : where pedestrian traffic is substantial and must be given appropriate attention ...

  1. Psychological distance of pedestrian at the bus terminal area

    Science.gov (United States)

    Firdaus Mohamad Ali, Mohd; Salleh Abustan, Muhamad; Hidayah Abu Talib, Siti; Abustan, Ismail; Rahman, Noorhazlinda Abd; Gotoh, Hitoshi

    2018-03-01

    Walking is a part of transportation modes that is effective for pedestrian in either short or long trips. All people are classified as pedestrian because people do walk every day and the higher number of people walking will lead to crowd conditions and that is the reason of the importance to study about the behaviour of pedestrian specifically the psychological distance in both indoor and outdoor. Nowadays, the number of studies of crowd dynamics among pedestrian have increased due to the concern about the safety issues primarily related to the emergency cases such as fire, earthquake, festival and etc. An observation of pedestrian was conducted at one of the main bus terminals in Kuala Lumpur with the main objective to obtain pedestrian psychological distance and it took place for 45 minutes by using a camcorder that was set up by using a tripod on the upper floor from the area of observation at the main lobby and the trapped area was approximately 100 m2. The analysis was focused on obtaining the gap between pedestrian based on two different categories, which are; (a) Pedestrian with relationship, and (b) Pedestrian without relationship. In total, 1,766 data were obtained during the analysis in which 561 data were obtained for `Pedestrian with relationship' and 1,205 data were obtained for "Pedestrian without relationship". Based on the obtained results, "Pedestrian without relationship" had shown a slightly higher average value of psychological distance between them compare to "Pedestrian with relationship" with the results of 1.6360m and 1.5909m respectively. In gender case, "Pedestrian without relationship" had higher mean of psychological distance in all three categories as well. Therefore, it can be concluded that pedestrian without relationship tend to have longer distance when walking in crowds.

  2. Flow of pedestrians through narrow doors with different competitiveness

    International Nuclear Information System (INIS)

    Garcimartín, A; Pastor, J M; Zuriguel, I; Parisi, D R; Martín-Gómez, C

    2016-01-01

    We report a thorough analysis of the intermittent flow of pedestrians through a narrow door. The observations include five different sets of evacuation drills with which we have investigated the effect of door size and competitiveness on the flow dynamics. Although the outcomes are in general compatible with the existence of the faster-is-slower effect, the temporal evolution of the instantaneous flow rate provides evidence of new features. These stress the crucial role of the number of people performing the tests, which has an influence on the obtained results. Once the transients at the beginning and end of the evacuation are removed, we have found that the time lapses between the passage of two consecutive pedestrians display heavy-tailed distributions in all the scenarios studied. Meanwhile, the distribution of burst sizes decays exponentially; this can be linked to a constant probability of finding a long-lasting clog during the evacuation process. Based on these results, a discussion is presented on the caution that should be exercised when measuring or describing the intermittent flow of pedestrians through narrow doors. (paper: interdisciplinary statistical mechanics)

  3. Framework for Traffic Congestion Management

    Directory of Open Access Journals (Sweden)

    Mahmud Hassan TALUKDAR

    2013-06-01

    Full Text Available Traffic Congestion is one of many serious global problems in all great cities resulted from rapid urbanization which always exert negative externalities upon society. The solution of traffic congestion is highly geocentric and due to its heterogeneous nature, curbing congestion is one of the hard tasks for transport planners. It is not possible to suggest unique traffic congestion management framework which could be absolutely applied for every great cities. Conversely, it is quite feasible to develop a framework which could be used with or without minor adjustment to deal with congestion problem. So, the main aim of this paper is to prepare a traffic congestion mitigation framework which will be useful for urban planners, transport planners, civil engineers, transport policy makers, congestion management researchers who are directly or indirectly involved or willing to involve in the task of traffic congestion management. Literature review is the main source of information of this study. In this paper, firstly, traffic congestion is defined on the theoretical point of view and then the causes of traffic congestion are briefly described. After describing the causes, common management measures, using world- wide, are described and framework for supply side and demand side congestion management measures are prepared.

  4. Predicting the walking speed of pedestrians on stairs

    OpenAIRE

    Fujiyama, T.; Tyler, N.

    2010-01-01

    In this paper, we propose a framework in which the behaviour of a pedestrian is predicted based on the characteristics of both the pedestrian and the facility the pedestrian uses. As an example of its application, we develop a model to predict the walking speed of a pedestrian on stairs. We examine the physiology and biomechanics of walking on stairs, and then develop a model that predicts walking speed based on the weight and leg extensor power of the pedestrian, and the gradient of the stai...

  5. Pedestrian recognition using automotive radar sensors

    OpenAIRE

    A. Bartsch; F. Fitzek; R. H. Rasshofer

    2012-01-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insight...

  6. Effects of transverse rumble strips on safety of pedestrian crosswalks on rural roads in China.

    Science.gov (United States)

    Liu, Pan; Huang, Jia; Wang, Wei; Xu, Chengcheng

    2011-11-01

    The primary objective of this study is to evaluate the impacts of transverse rumble strips in reducing crashes and vehicle speeds at pedestrian crosswalks on rural roads in China. Using crash data reported at 366 sites, the research team conducted an observational before-after study using a comparison group and the Empirical Bayesian (EB) method to evaluate the effectiveness of transverse rumble strips in reducing crashes at pedestrian crosswalks. It was found that transverse rumble strips may reduce expected crash frequency at pedestrian crosswalks by 25%. The research team collected more than 15,000 speed observations at 12 sites. The speed data analysis results show that transverse rumble strips significantly reduce vehicle speeds in vicinity of pedestrian crosswalks on rural roads with posted speed limits of 60 km/h and 80 km/h. On average, the mean speed at pedestrian crosswalks declined 9.2 km/h on roads with a speed limit of 60 km/h; and 11.9 km/h on roads with a speed limit of 80 km/h. The 85th percentile speed declined 9.1 km/h on roads with a speed limit of 60 km/h; and 12.0 km/h on roads with a speed limit of 80 km/h. However, the speed reduction impacts were not found to be statistically significant for the pedestrian crosswalk on the road with a speed limit of 40 km/h. The study also looked extensively at the influence area of transverse rumble strips on rural roads. Speed profiles developed in this study show that the influence area of transverse rumble strips is generally less than 0.3 km. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Beaconing Performance in IEEE 802.11p Vehicular Networks: the Effect of Radio Channel Congestion

    OpenAIRE

    Librino, Francesco; Renda, Maria Elena; Santi, Paolo

    2013-01-01

    In this paper, we study the performance of the beaconing mechanism underlying active safety vehicular applications in presence of different levels of channel congestion. The importance of this study lies in the fact that channel congestion is considered a major factor influencing communication performance in vehicular networks, and that ours is the first investigation of the effects of congestion based on extensive, real-world measurements. The results of our study reveal that congestion has ...

  8. Pedestrian and Evacuation Dynamics 2012

    CERN Document Server

    Kirsch, Uwe; Schreckenberg, Michael

    2014-01-01

    The 6th International Conference on Pedestrian and Evacuation Dynamics conference (PED2012) showcased research on human locomotion. This book presents the proceedings of PED2012. Humans have walked for eons; our drive to settle the globe began with a walk out of Africa. However, much remains to discover. As the world moves toward sustainability while racing to assess and accommodate climate change, research must provide insight on the physical requirements of walking, the dynamics of pedestrians on the move and more. We must understand, predict and simulate pedestrian behaviour, to avoid dangerous situations, to plan for emergencies, and not least, to make walking more attractive and enjoyable. PED2012 offered 70 presentations and keynotes and 70 poster presentations covering new and improved mathematical models, describing new insights on pedestrian behaviour in normal and emergency cases and presenting research based on sensors and advanced observation methods. These papers offer a starting point for innova...

  9. Crossing Behaviour of Pedestrians Along Urban Streets in Malaysia

    OpenAIRE

    Al Bargi Walid A.; David Daniel Basil; Prasetijo Joewono; Rohani Munzilah Md; Mohamad Nor Siti Naquiyah

    2017-01-01

    Road crossings are considered as an unavoidable part of walking in which the desirable route of pedestrians interacts with vehicles. These interactions may expose the pedestrians to risks or delays. In Malaysia, road accident statistics show that pedestrian casualties are fairly high. Inappropriate gap acceptance when pedestrians cross roads is a main contributing element to this situation. In this context, the purpose of this study was to develop realistic models for pedestrian road crossing...

  10. Making the Traffic Operations Case for Congestion Pricing: Operational Impacts of Congestion Pricing

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Shih-Miao [ORNL; Hu, Patricia S [ORNL; Davidson, Diane [ORNL

    2011-02-01

    Congestion begins when an excess of vehicles on a segment of roadway at a given time, resulting in speeds that are significantly slower than normal or 'free flow' speeds. Congestion often means stop-and-go traffic. The transition occurs when vehicle density (the number of vehicles per mile in a lane) exceeds a critical level. Once traffic enters a state of congestion, recovery or time to return to a free-flow state is lengthy; and during the recovery process, delay continues to accumulate. The breakdown in speed and flow greatly impedes the efficient operation of the freeway system, resulting in economic, mobility, environmental and safety problems. Freeways are designed to function as access-controlled highways characterized by uninterrupted traffic flow so references to freeway performance relate primarily to the quality of traffic flow or traffic conditions as experienced by users of the freeway. The maximum flow or capacity of a freeway segment is reached while traffic is moving freely. As a result, freeways are most productive when they carry capacity flows at 60 mph, whereas lower speeds impose freeway delay, resulting in bottlenecks. Bottlenecks may be caused by physical disruptions, such as a reduced number of lanes, a change in grade, or an on-ramp with a short merge lane. This type of bottleneck occurs on a predictable or 'recurrent' basis at the same time of day and same day of week. Recurrent congestion totals 45% of congestion and is primarily from bottlenecks (40%) as well as inadequate signal timing (5%). Nonrecurring bottlenecks result from crashes, work zone disruptions, adverse weather conditions, and special events that create surges in demand and that account for over 55% of experienced congestion. Figure 1.1 shows that nonrecurring congestion is composed of traffic incidents (25%), severe weather (15%), work zones, (10%), and special events (5%). Between 1995 and 2005, the average percentage change in increased peak traveler

  11. Slot allocation on congested motorways : An alternative to congestion pricing

    NARCIS (Netherlands)

    Koolstra, K.

    1999-01-01

    With respect to the prevailing congestion problems in the more urbanised regions of the European Union, transportation planners and policymakers are facing a dilemma. Supply-side measures, i.e. increasing the capacities, might shorten the congestion duration, especially if bottlenecks can be

  12. Pedestrian hybrid beacon guide : recommendations and case study.

    Science.gov (United States)

    2014-01-01

    A pedestrian hybrid beacon (PHB) is a traffic control : device similar to a European pedestrian signal : (PELICAN) that was imported to the US and adapted by : engineers in Arizona to increase motorists awareness of : pedestrian crossings at uncon...

  13. Pedestrian safety management using the risk-based approach

    Directory of Open Access Journals (Sweden)

    Romanowska Aleksandra

    2017-01-01

    Full Text Available The paper presents a concept of a multi-level pedestrian safety management system. Three management levels are distinguished: strategic, tactical and operational. The basis for the proposed approach to pedestrian safety management is a risk-based method. In the approach the elements of behavioural and systemic theories were used, allowing for the development of a formalised and repeatable procedure integrating the phases of risk assessment and response to the hazards of road crashes involving pedestrians. Key to the method are tools supporting pedestrian safety management. According to the risk management approach, the tools can be divided into two groups: tools supporting risk assessment and tools supporting risk response. In the paper attention is paid to selected tools supporting risk assessment, with particular emphasis on the methods for estimating forecasted pedestrian safety measures (at strategic, national and regional level and identification of particularly dangerous locations in terms of pedestrian safety at tactical (regional and local and operational level. The proposed pedestrian safety management methods and tools can support road administration in making rational decisions in terms of road safety, safety of road infrastructure, crash elimination measures or reducing the consequences suffered by road users (particularly pedestrians as a result of road crashes.

  14. Mapping patterns of pedestrian fatal accidents in Israel

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo; Gitelman, Victoria; Bekhor, Shlomo

    2010-01-01

    This study intends to provide insight into pedestrian accidents by uncovering their patterns in order to design preventive measures and to allocate resources for identifiable problems. Kohonen neural networks are applied to a database of pedestrian fatal accidents occurred during the four-year pe......, results suggest the necessity of designing education campaigns for parents, promoting information campaigns for road users and allocating resources for infrastructural interventions and law enforcement in order to address the identified major problems.......-year period between 2003 and 2006. Results show the existence of five pedestrian accident patterns: (i) elderly pedestrians crossing on crosswalks far from intersection in metropolitan areas; (ii) pedestrians crossing suddenly or from hidden places and colliding with two-wheel vehicles on urban road sections......; (iii) male pedestrians crossing at night and being hit by four-wheel vehicles on rural road sections; (iv) young male pedestrians crossing at night wide road sections in both urban and rural areas; (v) children and teenagers crossing road sections in small rural communities. From the policy perspective...

  15. Dual effects of pedestrian density on emergency evacuation

    Science.gov (United States)

    Ma, Yi; Lee, Eric Wai Ming; Yuen, Richard Kwok Kit

    2017-02-01

    This paper investigates the effect of the pedestrian density in building on the evacuation dynamic with simulation method. In the simulations, both the visibility in building and the exit limit of building are taken into account. The simulation results show that the effect of the pedestrian density in building on the evacuation dynamics is dual. On the one hand, when the visibility in building is very large, the increased pedestrian density plays a negative effect. On the other hand, when the visibility in building is very small, the increased pedestrian density can play a positive effect. The simulation results also show that when both the exit width and visibility are very small, the varying of evacuation time with regard to the pedestrian density is non-monotonous and presents a U-shaped tendency. That is, in this case, too large or too small pedestrian density in building is disadvantageous to the evacuation process. Our findings provide a new insight about the effect of the pedestrian density in building on the evacuation dynamic.

  16. Modeling pedestrian crossing speed profiles considering speed change behavior for the safety assessment of signalized intersections.

    Science.gov (United States)

    Iryo-Asano, Miho; Alhajyaseen, Wael K M

    2017-11-01

    Pedestrian safety is one of the most challenging issues in road networks. Understanding how pedestrians maneuver across an intersection is the key to applying countermeasures against traffic crashes. It is known that the behaviors of pedestrians at signalized crosswalks are significantly different from those in ordinary walking spaces, and they are highly influenced by signal indication, potential conflicts with vehicles, and intersection geometries. One of the most important characteristics of pedestrian behavior at crosswalks is the possible sudden speed change while crossing. Such sudden behavioral change may not be expected by conflicting vehicles, which may lead to hazardous situations. This study aims to quantitatively model the sudden speed changes of pedestrians as they cross signalized crosswalks under uncongested conditions. Pedestrian speed profiles are collected from empirical data and speed change events are extracted assuming that the speed profiles are stepwise functions. The occurrence of speed change events is described by a discrete choice model as a function of the necessary walking speed to complete crossing before the red interval ends, current speed, and the presence of turning vehicles in the conflict area. The amount of speed change before and after the event is modeled using regression analysis. A Monte Carlo simulation is applied for the entire speed profile of the pedestrians. The results show that the model can represent the pedestrian travel time distribution more accurately than the constant speed model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of Pedestrian Prompts on Motorist Yielding at Crosswalks

    Science.gov (United States)

    Crowley-Koch, Brian J.; Van Houten, Ron; Lim, Eunyoung

    2011-01-01

    Pedestrian safety is a serious concern at busy intersections and pedestrian campuses across the nation. Although crosswalks and signs inform pedestrians where to cross, there is no standard protocol for pedestrians to signal drivers that they wish to use the crosswalks, except to stand in or at the crosswalk. We examined the effects of two…

  18. An Algorithm for Pedestrian Detection in Multispectral Image Sequences

    Science.gov (United States)

    Kniaz, V. V.; Fedorenko, V. V.

    2017-05-01

    The growing interest for self-driving cars provides a demand for scene understanding and obstacle detection algorithms. One of the most challenging problems in this field is the problem of pedestrian detection. Main difficulties arise from a diverse appearances of pedestrians. Poor visibility conditions such as fog and low light conditions also significantly decrease the quality of pedestrian detection. This paper presents a new optical flow based algorithm BipedDetet that provides robust pedestrian detection on a single-borad computer. The algorithm is based on the idea of simplified Kalman filtering suitable for realization on modern single-board computers. To detect a pedestrian a synthetic optical flow of the scene without pedestrians is generated using slanted-plane model. The estimate of a real optical flow is generated using a multispectral image sequence. The difference of the synthetic optical flow and the real optical flow provides the optical flow induced by pedestrians. The final detection of pedestrians is done by the segmentation of the difference of optical flows. To evaluate the BipedDetect algorithm a multispectral dataset was collected using a mobile robot.

  19. Exploring the mechanisms of vehicle front-end shape on pedestrian head injuries caused by ground impact.

    Science.gov (United States)

    Yin, Sha; Li, Jiani; Xu, Jun

    2017-09-01

    In pedestrian-vehicle accidents, pedestrians typically suffer from secondary impact with the ground after the primary contact with vehicles. However, information about the fundamental mechanism of pedestrian head injury from ground impact remains minimal, thereby hindering further improvement in pedestrian safety. This study addresses this issue by using multi-body modeling and computation to investigate the influence of vehicle front-end shape on pedestrian safety. Accordingly, a simulation matrix is constructed to vary bonnet leading-edge height, bonnet length, bonnet angle, and windshield angle. Subsequently, a set of 315 pedestrian-vehicle crash simulations are conducted using the multi-body simulation software MADYMO. Three vehicle velocities, i.e., 20, 30, and 40km/h, are set as the scenarios. Results show that the top governing factor is bonnet leading-edge height. The posture and head injury at the instant of head ground impact vary dramatically with increasing height because of the significant rise of the body bending point and the movement of the collision point. The bonnet angle is the second dominant factor that affects head-ground injury, followed by bonnet length and windshield angle. The results may elucidate one of the critical barriers to understanding head injury caused by ground impact and provide a solid theoretical guideline for considering pedestrian safety in vehicle design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pedestrian fatalities and injuries involving Irish older people.

    LENUS (Irish Health Repository)

    Martin, A J

    2012-02-01

    BACKGROUND: It has been established internationally that road traffic accidents (RTAs) involving older drivers follow clearly different patterns of timing, location and outcomes from those of younger age groups. Older pedestrians are also a vulnerable group and fewer analyses have been undertaken of the phenomenology of their injuries and fatalities. We studied the pattern of pedestrian RTAs in Ireland over a five-year period with the aim of identifying differences between older pedestrians (aged 65 or older) and younger adults. METHODS: We examined the datasets of the Irish National Road Authority (now the Road Safety Authority) from 1998-2002. We analysed patterns of crashes involving older pedestrians (aged 65) and compared them with younger adults (aged 18-64). RESULTS: Older people represented 36% (n = 134) of pedestrian fatalities and 23% of serious injuries while they only account for 19% of total RTAs. Mortality in RTA is more than doubled for older pedestrians compared to younger adults (RR 2.30). Most accidents involving older pedestrians happen in daylight with good visibility (56%) and in good weather conditions (77%). CONCLUSIONS: Older pedestrians are particularly vulnerable in RTAs. These occur more frequently during daylight hours and in good weather conditions. This may point to a need for prevention strategies that are targeted at the traffic environment and other road users rather than at older people.

  1. Creating pedestrian crash scenarios in a driving simulator environment.

    Science.gov (United States)

    Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W

    2015-01-01

    In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to

  2. Fuzzy Pheromone Potential Fields for Virtual Pedestrian Simulation

    Directory of Open Access Journals (Sweden)

    Meriem Mandar

    2016-01-01

    Full Text Available The study of collective movement of pedestrians is crucial in various situations, such as evacuation of buildings, stadiums, or external events like concerts or public events. In such situations and under panic conditions, several incidents and disasters may arise, resulting in loss of human lives. Hence, the study and modeling of the pedestrians behavior are imperative in both normal and panic situations. In a previous work, we developed a microscopic model for pedestrian movement based on the algorithm of Ant Colonies and the principles of cellular automata. We took advantage of a fuzzy model to better reflect the uncertainty and vagueness of the perception of space to pedestrians, especially to represent the desirability or blurred visibility of virtual pedestrians. This paper uses the mechanism of artificial potential fields. Said fields provide virtual pedestrians with better visibility of their surroundings and its various components (goals and obstacles. The predictions provided by the first-order traffic flow theory are confirmed by the results of the simulation. The advantage of this model lies in the combination of benefits provided by the model of ants and artificial potential fields in a fuzzy modeling, to better understand the perceptions of pedestrians.

  3. How Congested Jakarta is? Perception of Jakarta’s Citizen on Traffic Congestion

    Directory of Open Access Journals (Sweden)

    Muhammad Halley Yudhistira

    2017-11-01

    Full Text Available This paper aims to reveal the behavior and perception of Jakarta’s citizens on traffic congestion in Jakarta. Although this approach is somewhat well-developed in behavioral science, its utilization in urban economics study, is still limited. Detecting the traffic congestion and its cause mainly relies on physical (engineering methods, i.e V/C ratio. Here, we define the traffic congestion through two variables; ordinal traffic congestion perception and proportion of expected travel time to perceived travel time. Using a non-probabilistic sampling survey held in one of densest business district in Jakarta called Sudirman-Thamrin Golden Triangle Area; the estimation results show that travel behavior plays a major role in affecting travel time perceptions.

  4. Pedestrian detection based on redundant wavelet transform

    Science.gov (United States)

    Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun

    2016-10-01

    Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.

  5. Spatial environmental risk factors for pedestrian injury collisions in Ciudad Juárez, Mexico (2008-2009): implications for urban planning.

    Science.gov (United States)

    Fuentes, Cesar Mario; Hernandez, Vladimir

    2013-01-01

    The aim of this study is to examine the spatial distribution of pedestrian injury collisions and analyse the environmental (social and physical) risk factors in Ciudad Juarez, Mexico. More specifically, this study investigates the influence of land use, density, traffic and socio-economic characteristics. This cross sectional study is based on pedestrian injury collision data that were collected by the Municipal Transit Police during 2008-2009. This research presents an analysis of vehicle-pedestrian collisions and their spatial risk determinants using mixed methods that included (1) spatial/geographical information systems (GIS) analysis of pedestrian collision data and (2) ordinary least squares (OLS) regression analysis to explain the density of pedestrian collisions data. In our model, we found a higher probability for pedestrian collisions in census tracts with population and employment density, large concentration of commercial/retail land uses and older people (65 and more). Interventions to alleviate this situation including transportation planning such as decentralisation of municipal transport system, investment in road infrastructure - density of traffic lights, pedestrian crossing, road design, improves lane demarcation. Besides, land use planning interventions should be implemented in commercial/retail areas, in particular separating pedestrian and vehicular spaces.

  6. Pedestrian Crashes

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — This data set maps the locations of crashes involving pedestrians in the Chapel Hill Region of North Carolina.The data comes from police-reported bicycle-motor...

  7. Empirical study on social groups in pedestrian evacuation dynamics

    Science.gov (United States)

    von Krüchten, Cornelia; Schadschneider, Andreas

    2017-06-01

    Pedestrian crowds often include social groups, i.e. pedestrians that walk together because of social relationships. They show characteristic configurations and influence the dynamics of the entire crowd. In order to investigate the impact of social groups on evacuations we performed an empirical study with pupils. Several evacuation runs with groups of different sizes and different interactions were performed. New group parameters are introduced which allow to describe the dynamics of the groups and the configuration of the group members quantitatively. The analysis shows a possible decrease of evacuation times for large groups due to self-ordering effects. Social groups can be approximated as ellipses that orientate along their direction of motion. Furthermore, explicitly cooperative behaviour among group members leads to a stronger aggregation of group members and an intermittent way of evacuation.

  8. Evaluation of geometrically personalized THUMS pedestrian model response against sedan-pedestrian PMHS impact test data.

    Science.gov (United States)

    Chen, Huipeng; Poulard, David; Forman, Jason; Crandall, Jeff; Panzer, Matthew B

    2018-07-04

    Evaluating the biofidelity of pedestrian finite element models (PFEM) using postmortem human subjects (PMHS) is a challenge because differences in anthropometry between PMHS and PFEM could limit a model's capability to accurately capture cadaveric responses. Geometrical personalization via morphing can modify the PFEM geometry to match the specific PMHS anthropometry, which could alleviate this issue. In this study, the Total Human Model for Safety (THUMS) PFEM (Ver 4.01) was compared to the cadaveric response in vehicle-pedestrian impacts using geometrically personalized models. The AM50 THUMS PFEM was used as the baseline model, and 2 morphed PFEM were created to the anthropometric specifications of 2 obese PMHS used in a previous pedestrian impact study with a mid-size sedan. The same measurements as those obtained during the PMHS tests were calculated from the simulations (kinematics, accelerations, strains), and biofidelity metrics based on signals correlation (correlation and analysis, CORA) were established to compare the response of the models to the experiments. Injury outcomes were predicted deterministically (through strain-based threshold) and probabilistically (with injury risk functions) and compared with the injuries reported in the necropsy. The baseline model could not accurately capture all aspects of the PMHS kinematics, strain, and injury risks, whereas the morphed models reproduced biofidelic response in terms of trajectory (CORA score = 0.927 ± 0.092), velocities (0.975 ± 0.027), accelerations (0.862 ± 0.072), and strains (0.707 ± 0.143). The personalized THUMS models also generally predicted injuries consistent with those identified during posttest autopsy. The study highlights the need to control for pedestrian anthropometry when validating pedestrian human body models against PMHS data. The information provided in the current study could be useful for improving model biofidelity for vehicle-pedestrian impact scenarios.

  9. Modelling Behaviour Patterns of Pedestrians for Mobile Robot Trajectory Generation

    Directory of Open Access Journals (Sweden)

    Yusuke Tamura

    2013-08-01

    Full Text Available Robots are expected to be operated in environments where they coexist with humans, such as shopping malls and offices. Both the safety and efficiency of a robot are necessary in such environments. To achieve this, pedestrian behaviour should be accurately predicted. However, the behaviour is uncertain and cannot be easily predicted. This paper proposes a probabilistic method of determining pedestrian trajectory based on an estimation of pedestrian behaviour patterns. The proposed method focuses on the specific behaviour of pedestrians around the robot. The proposed model classifies the behaviours of pedestrians into definite patterns. The behaviour patterns, distribution of the positions of the pedestrians, and the direction of each behaviour pattern are determined by learning through observation. The behaviour pattern of a pedestrian can be estimated correctly by a likelihood calculation. A robot decides to move with an emphasis on either safety or efficiency depending on the result of the pattern estimation. If the pedestrian trajectory follows a known behaviour pattern, the robot would move with an emphasis on efficiency because the pedestrian trajectory can be predicted. Otherwise, the robot would move with an emphasis on safety because the behaviour of the pedestrian cannot be predicted. Experimental results show that robots can move efficiently and safely when passing by a pedestrian by applying the proposed method.

  10. Pedestrian wind environment around tall buildings

    NARCIS (Netherlands)

    Stathopoulos, T.; Blocken, B.; Tamura, Yukio; Yoshie, Ryuichiro

    2016-01-01

    Pedestrian-level wind conditions around tall buildings are described by examining the aerodynamics of the urban environment and the various wind comfort criteria established in the wind engineering field. Experimental and, possibly, computational assessment of pedestrian-level wind conditions in the

  11. The correlation between pedestrian injury severity in real-life crashes and Euro NCAP pedestrian test results.

    Science.gov (United States)

    Strandroth, Johan; Rizzi, Matteo; Sternlund, Simon; Lie, Anders; Tingvall, Claes

    2011-12-01

    The aim of the present study was to estimate the correlation between Euro NCAP pedestrian rating scores and injury outcome in real-life car-to-pedestrian crashes, with special focus on long-term disability. Another aim was to determine whether brake assist (BA) systems affect the injury outcome in real-life car-to-pedestrian crashes and to estimate the combined effects in injury reduction of a high Euro NCAP ranking score and BA. In the current study, the Euro NCAP pedestrian scoring was compared with the real-life outcome in pedestrian crashes that occurred in Sweden during 2003 to 2010. The real-life crash data were obtained from the data acquisition system Swedish Traffic Accident Data Acquisition (STRADA), which combines police records and hospital admission data. The medical data consisted of International Classification of Diseases (ICD) diagnoses and Abbreviated Injury Scale (AIS) scoring. In all, approximately 500 pedestrians submitted to hospital were included in the study. Each car model was coded according to Euro NCAP pedestrian scores. In addition, the presence or absence of BA was coded for each car involved. Cars were grouped according to their scoring. Injury outcomes were analyzed with AIS and, at the victim level, with permanent medical impairment. This was done by translating the injury scores for each individual to the risk of serious consequences (RSC) at 1, 5, and 10 percent risk of disability level. This indicates the total risk of a medical disability for each victim, given the severity and location of injuries. The mean RSC (mRSC) was then calculated for each car group and t-tests were conducted to falsify the null hypothesis at p ≤ .05 that the mRSC within the groups was equal. The results showed a significant reduction of injury severity for cars with better pedestrian scoring, although cars with a high score could not be studied due to lack of cases. The reduction in RSC for medium-performing cars in comparison with low-performing cars

  12. Analysis of Pedestrian Gap Acceptance and Crossing Decision in Kuala Lumpur

    Directory of Open Access Journals (Sweden)

    Mohamad Nor Siti Naquiyah

    2017-01-01

    Full Text Available Pedestrians are most vulnerable of all road users. This research aims to investigate and model pedestrian road crossing behaviour at crossing facilities. In particular, they have two aspects of pedestrians crossing behaviour are examined, namely the size of traffic gaps acceptance by pedestrians and the decision of pedestrians either to cross the road or not. A fields survey was carried out at six crossing facilities which from a zebra crossing at midblock. In this survey, the data were recorded in real traffic condition using video recorder. Determine the associations between characteristics of pedestrians, crossing facilities and vehicular traffic through on-site observations of pedestrian behaviour. This data will analysis using statistical analysis which is multiple regression and binary logit regression method. It is hope that through this research, the model of pedestrian gap acceptance and pedestrian crossing decision can be reached and what are the indicators that pedestrians look for when accepting gaps to cross the road.

  13. Impact Analysis of Land Use on Traffic Congestion Using Real-Time Traffic and POI

    Directory of Open Access Journals (Sweden)

    Tianqi Zhang

    2017-01-01

    Full Text Available This paper proposed a new method to describe, compare, and classify the traffic congestion points in Beijing, China, by using the online map data and further revealed the relationship between traffic congestion and land use. The data of the point of interest (POI and the real-time traffic was extracted from an electronic map of the area in the fourth ring road of Beijing. The POIs were quantified based on the architectural area of the land use; the congestion points were identified based on real-time traffic. Then, the cluster analysis using the attributes of congestion time was conducted to identify the main traffic congestion areas. The result of a linear regression analysis between the congestion time and the land use showed that the influence of the high proportion of commercial land use on the traffic congestion was significant. Also, we considered five types of land use through performing a linear regression analysis between the congestion time and the ratio of four types of land use. The results showed that the reasonable ratio of land use types could efficiently reduce congestion time. This study makes contributions to the policy-making of urban land use.

  14. Day-Ahead Congestion Management in Distribution Systems through Household Demand Response and Distribution Congestion Prices

    DEFF Research Database (Denmark)

    Liu, Weijia; Wu, Qiuwei; Wen, Fushuan

    2014-01-01

    into balancing power might challenge the operation of electric distribution systems and cause congestions. This paper presents a distribution congestion price (DCP) based market mechanism to alleviate possible distribution system congestions. By employing the loca- tional marginal pricing (LMP) model...... is proposed. Finally, a practical Danish 60kV/10.5kV distribution system is employed as the test case to verify the proposed method for mitigating congestion....

  15. An extension of the theory of planned behavior to predict pedestrians' violating crossing behavior using structural equation modeling.

    Science.gov (United States)

    Zhou, Hongmei; Romero, Stephanie Ballon; Qin, Xiao

    2016-10-01

    This paper aimed to examine pedestrians' self-reported violating crossing behavior intentions by applying the theory of planned behavior (TPB). We studied the behavior intentions regarding instrumental attitude, subjective norm, perceived behavioral control, the three basic components of TPB, and extended the theory by adding new factors including descriptive norm, perceived risk and conformity tendency to evaluate their respective impacts on pedestrians' behavior intentions. A questionnaire presented with a scenario that pedestrians crossed the road violating the pedestrian lights at an intersection was designed, and the survey was conducted in Dalian, China. Based on the 260 complete and valid responses, reliability and validity of the data for each question was evaluated. The data were then analyzed by using the structural equation modeling (SEM). The results showed that people had a negative attitude toward the behavior of violating road-crossing rules; they perceived social influences from their family and friends; and they believed that this kind of risky behavior would potentially harm them in a traffic accident. The results also showed that instrumental attitude and subjective norm were significant in the basic TPB model. After adding descriptive norm, subjective norm was no more significant. Other models showed that conformity tendency was a strong predictor, indicating that the presence of other pedestrians would influence behavioral intention. The findings could help to design more effective interventions and safety campaigns, such as changing people's attitude toward this violation behavior, correcting the social norms, increasing their safety awareness, etc. in order to reduce pedestrians' road crossing violations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Pedestrians have the right of way at CERN

    CERN Multimedia

    2002-01-01

    At CERN, we are all pedestrians, often drivers, and occasionally cyclists. But our means of locomotion do not matter so long as we exercise caution and remember that a pedestrian has equal rights as a road user, except that he runs greater risks.   Whether we also travel by bike or car, irrrespective of our means of locomotion at CERN we are all pedestrians! Whether going on foot to our office, the cafeteria or a building where colleagues work, we are much more in harm's way than as a driver sitting in the shell of steel that is a car. There are some 8000 people working on the different sites of CERN. That means 8000 potential pedestrians and 8000 reasons for trying to keep the roads safe. Whether behind the steering wheel or on a bike, we sometimes forget that the roadway is not just for vehicles. Pedestrians are also fully fledged road users with equal rights. That is why drivers must remain alert and take care not to block pedestrian crossings, pavements or access ways, and why special caution...

  17. Pedestrian Detection by Laser Scanning and Depth Imagery

    Science.gov (United States)

    Barsi, A.; Lovas, T.; Molnar, B.; Somogyi, A.; Igazvolgyi, Z.

    2016-06-01

    Pedestrian flow is much less regulated and controlled compared to vehicle traffic. Estimating flow parameters would support many safety, security or commercial applications. Current paper discusses a method that enables acquiring information on pedestrian movements without disturbing and changing their motion. Profile laser scanner and depth camera have been applied to capture the geometry of the moving people as time series. Procedures have been developed to derive complex flow parameters, such as count, volume, walking direction and velocity from laser scanned point clouds. Since no images are captured from the faces of pedestrians, no privacy issues raised. The paper includes accuracy analysis of the estimated parameters based on video footage as reference. Due to the dense point clouds, detailed geometry analysis has been conducted to obtain the height and shoulder width of pedestrians and to detect whether luggage has been carried or not. The derived parameters support safety (e.g. detecting critical pedestrian density in mass events), security (e.g. detecting prohibited baggage in endangered areas) and commercial applications (e.g. counting pedestrians at all entrances/exits of a shopping mall).

  18. Congestion with incidents

    DEFF Research Database (Denmark)

    Fosgerau, Mogens

    2010-01-01

    This paper considers the impact of random delays during a repeatedly occurring demand peak in a congested facility, such as an airport or an urban road. Congestion is described in the form of a dynamic queue using the Vickrey bottleneck model and assuming Nash equilibrium in departure times. Ever...

  19. Analyzing fault in pedestrian-motor vehicle crashes in North Carolina.

    Science.gov (United States)

    Ulfarsson, Gudmundur F; Kim, Sungyop; Booth, Kathleen M

    2010-11-01

    Crashes between pedestrians and motor vehicles are an important traffic safety concern. This paper explores the assignment of fault in such crashes, where observed factors are associated with pedestrian at fault, driver at fault, or both at fault. The analysis is based on police reported crash data for 1997 through 2000 in North Carolina, U.S.A. The results show that pedestrians are found at fault in 59% of the crashes, drivers in 32%, and both are found at fault in 9%. The results indicate drivers need to take greater notice of pedestrians when drivers are turning, merging, and backing up as these are some of the prime factors associated with the driver being found at fault in a crash. Pedestrians must apply greater caution when crossing streets, waiting to cross, and when walking along roads, as these are correlated with pedestrians being found at fault. The results suggest a need for campaigns focused on positively affecting pedestrian street-crossing behavior in combination with added jaywalking enforcement. The results also indicate that campaigns to increase the use of pedestrian visibility improvements at night can have a significant positive impact on traffic safety. Intoxication is a concern and the results show that it is not only driver intoxication that is affecting safety, but also pedestrian intoxication. The findings show in combination with other research in the field, that results from traffic safety studies are not necessarily transferable between distant geographic locations, and that location-specific safety research needs to take place. It is also important to further study the specific effects of the design of the pedestrian environment on safety, e.g. crosswalk spacing, signal timings, etc., which together may affect pedestrian safety and pedestrian behavior. 2010 Elsevier Ltd. All rights reserved.

  20. Underground pedestrian routes as an option for arranging the transfer from one type of public transport to another

    Science.gov (United States)

    Glozman, O.

    2017-10-01

    The article highlights the issues of pedestrian movements within cities and focuses on the architectural and planning organization of transfer between two types of public transport. The amount of time citizens lose on the pedestrian sections of their way from home to work were analyzed. The article describes factors that influence the speed and the comfort of pedestrian movements as well as provides rationalization for connecting two types of transport in the underground space. The article also touches upon the issue of the negative cost impact caused by excessive time losses, including the ones that appear on the pedestrian sections of the route. Architectural methods that may ease a pedestrian’s psychological adaptation to the underground space are listed in the article. The results of experimental designing that prove the reduction of the travel time by forming underground pedestrian ways in cities were described. The article features the model of a multi-functional underground space under Serpukhovskaya Zastava square in Moscow. It is noted that pedestrian routes in the cities which do not allow easy movement on the above-the-surface space provide comfortable movement for the citizens.

  1. Vehicular camera pedestrian detection research

    Science.gov (United States)

    Liu, Jiahui

    2018-03-01

    With the rapid development of science and technology, it has made great development, but at the same time of highway traffic more convenient in highway traffic and transportation. However, in the meantime, traffic safety accidents occur more and more frequently in China. In order to deal with the increasingly heavy traffic safety. So, protecting the safety of people's personal property and facilitating travel has become a top priority. The real-time accurate pedestrian and driving environment are obtained through a vehicular camera which are used to detection and track the preceding moving targets. It is popular in the domain of intelligent vehicle safety driving, autonomous navigation and traffic system research. Based on the pedestrian video obtained by the Vehicular Camera, this paper studies the trajectory of pedestrian detection and its algorithm.

  2. Impact of Train Schedule on Pedestrian Movement on Stairway at Suburban Rail Transit Station in Mumbai, India

    Directory of Open Access Journals (Sweden)

    Shah Jiten

    2015-01-01

    Full Text Available Pedestrian flow takes place in confined environment on stairways under the influence of composition, direction of movement, and schedule of trains. During peak-period, alighting and boarding rate is quite high resulting in very high pedestrian movement from one platform to the other to catch the next train at interchange stations. The transfer of passengers from railway platforms through common undivided stairways becomes difficult, uncomfortable, and unsafe at times when pedestrian flow reaches the capacity level. Understanding of criteria defining quality of flow that affect the effectiveness of facilities like stairways in handling the pedestrian traffic is vital for planning and designing of such facilities to ensure the desired level of service as well as safety in case of emergency. The present paper is based on the study of pedestrian movement on stairways at busy suburban rail transit interchange station at Dadar in Mumbai, India. Pedestrian movements are captured through videography at two stairways and the effect of bidirectional movement on average walking speed is analyzed. The ascending flow in small proportion is found to be more influential in causing speed reduction on undivided stairways. The outcome of the study is useful for capacity and level of service analysis while planning and designing the transit station stairways.

  3. The effect of road network patterns on pedestrian safety: A zone-based Bayesian spatial modeling approach.

    Science.gov (United States)

    Guo, Qiang; Xu, Pengpeng; Pei, Xin; Wong, S C; Yao, Danya

    2017-02-01

    Pedestrian safety is increasingly recognized as a major public health concern. Extensive safety studies have been conducted to examine the influence of multiple variables on the occurrence of pedestrian-vehicle crashes. However, the explicit relationship between pedestrian safety and road network characteristics remains unknown. This study particularly focused on the role of different road network patterns on the occurrence of crashes involving pedestrians. A global integration index via space syntax was introduced to quantify the topological structures of road networks. The Bayesian Poisson-lognormal (PLN) models with conditional autoregressive (CAR) prior were then developed via three different proximity structures: contiguity, geometry-centroid distance, and road network connectivity. The models were also compared with the PLN counterpart without spatial correlation effects. The analysis was based on a comprehensive crash dataset from 131 selected traffic analysis zones in Hong Kong. The results indicated that higher global integration was associated with more pedestrian-vehicle crashes; the irregular pattern network was proved to be safest in terms of pedestrian crash occurrences, whereas the grid pattern was the least safe; the CAR model with a neighborhood structure based on road network connectivity was found to outperform in model goodness-of-fit, implying the importance of accurately accounting for spatial correlation when modeling spatially aggregated crash data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. PEDESTRIAN DETECTION BY LASER SCANNING AND DEPTH IMAGERY

    Directory of Open Access Journals (Sweden)

    A. Barsi

    2016-06-01

    Full Text Available Pedestrian flow is much less regulated and controlled compared to vehicle traffic. Estimating flow parameters would support many safety, security or commercial applications. Current paper discusses a method that enables acquiring information on pedestrian movements without disturbing and changing their motion. Profile laser scanner and depth camera have been applied to capture the geometry of the moving people as time series. Procedures have been developed to derive complex flow parameters, such as count, volume, walking direction and velocity from laser scanned point clouds. Since no images are captured from the faces of pedestrians, no privacy issues raised. The paper includes accuracy analysis of the estimated parameters based on video footage as reference. Due to the dense point clouds, detailed geometry analysis has been conducted to obtain the height and shoulder width of pedestrians and to detect whether luggage has been carried or not. The derived parameters support safety (e.g. detecting critical pedestrian density in mass events, security (e.g. detecting prohibited baggage in endangered areas and commercial applications (e.g. counting pedestrians at all entrances/exits of a shopping mall.

  5. Modeling Spatially Unrestricted Pedestrian Traffic on Footbridges

    DEFF Research Database (Denmark)

    Zivanovic, Stana; Pavic, Aleksandar; Ingólfsson, Einar Thór

    2010-01-01

    restricted movement of pedestrians, has kept attracting attention of researchers. However, it is the normal spatially unrestricted pedestrian traffic, and its vertical dynamic loading component, that are most relevant for vibration serviceability checks for most footbridges. Despite the existence of numerous...... design procedures concerned with this loading, the current confidence in its modelling is low due to lack of verification of the models on as-built structures. This is the motivation behind reviewing the existing design procedures for modelling normal pedestrian traffic in this paper and evaluating...

  6. A study of pedestrian compliance with traffic signals for exclusive and concurrent phasing.

    Science.gov (United States)

    Ivan, John N; McKernan, Kevin; Zhang, Yaohua; Ravishanker, Nalini; Mamun, Sha A

    2017-01-01

    This paper describes a comparison of pedestrian compliance at traffic signals with two types of pedestrian phasing: concurrent, where both pedestrians and vehicular traffic are directed to move in the same directions at the same time, and exclusive, where pedestrians are directed to move during their own dedicated phase while all vehicular traffic is stopped. Exclusive phasing is usually perceived to be safer, especially by senior and disabled advocacy groups, although these safety benefits depend upon pedestrians waiting for the walk signal. This paper investigates whether or not there are differences between pedestrian compliance at signals with exclusive pedestrian phasing and those with concurrent phasing and whether these differences continue to exist when compliance at exclusive phasing signals is evaluated as if they had concurrent phasing. Pedestrian behavior was observed at 42 signalized intersections in central Connecticut with both concurrent and exclusive pedestrian phasing. Binary regression models were estimated to predict pedestrian compliance as a function of the pedestrian phasing type and other intersection characteristics, such as vehicular and pedestrian volume, crossing distance and speed limit. We found that pedestrian compliance is significantly higher at intersections with concurrent pedestrian phasing than at those with exclusive pedestrian phasing, but this difference is not significant when compliance at exclusive phase intersections is evaluated as if it had concurrent phasing. This suggests that pedestrians treat exclusive phase intersections as though they have concurrent phasing, rendering the safety benefits of exclusive pedestrian phasing elusive. No differences were observed for senior or non-senior pedestrians. Published by Elsevier Ltd.

  7. Calibrating cellular automaton models for pedestrians walking through corners

    Science.gov (United States)

    Dias, Charitha; Lovreglio, Ruggiero

    2018-05-01

    Cellular Automata (CA) based pedestrian simulation models have gained remarkable popularity as they are simpler and easier to implement compared to other microscopic modeling approaches. However, incorporating traditional floor field representations in CA models to simulate pedestrian corner navigation behavior could result in unrealistic behaviors. Even though several previous studies have attempted to enhance CA models to realistically simulate pedestrian maneuvers around bends, such modifications have not been calibrated or validated against empirical data. In this study, two static floor field (SFF) representations, namely 'discrete representation' and 'continuous representation', are calibrated for CA-models to represent pedestrians' walking behavior around 90° bends. Trajectory data collected through a controlled experiment are used to calibrate these model representations. Calibration results indicate that although both floor field representations can represent pedestrians' corner navigation behavior, the 'continuous' representation fits the data better. Output of this study could be beneficial for enhancing the reliability of existing CA-based models by representing pedestrians' corner navigation behaviors more realistically.

  8. Optimal Tradable Credits Scheme and Congestion Pricing with the Efficiency Analysis to Congestion

    Directory of Open Access Journals (Sweden)

    Ge Gao

    2015-01-01

    Full Text Available We allow for three traffic scenarios: the tradable credits scheme, congestion pricing, and no traffic measure. The utility functions of different modes (car, bus, and bicycle are developed by considering the income’s impact on travelers’ behaviors. Their purpose is to analyze the demand distribution of different modes. A social optimization model is built aiming at maximizing the social welfare. The optimal tradable credits scheme (distribution of credits, credits charging, and the credit price, congestion pricing fees, bus frequency, and bus fare are obtained by solving the model. Mode choice behavior under the tradable credits scheme is also studied. Numerical examples are presented to demonstrate the model’s availability and explore the effects of the three schemes on traffic system’s performance. Results show congestion pricing would earn more social welfare than the other traffic measures. However, tradable credits scheme will give travelers more consumer surplus than congestion pricing. Travelers’ consumer surplus with congestion pricing is the minimum, which injures the travelers’ benefits. Tradable credits scheme is considered the best scenario by comparing the three scenarios’ efficiency.

  9. Safety effects of exclusive and concurrent signal phasing for pedestrian crossing.

    Science.gov (United States)

    Zhang, Yaohua; Mamun, Sha A; Ivan, John N; Ravishanker, Nalini; Haque, Khademul

    2015-10-01

    This paper describes the estimation of pedestrian crash count and vehicle interaction severity prediction models for a sample of signalized intersections in Connecticut with either concurrent or exclusive pedestrian phasing. With concurrent phasing, pedestrians cross at the same time as motor vehicle traffic in the same direction receives a green phase, while with exclusive phasing, pedestrians cross during their own phase when all motor vehicle traffic on all approaches is stopped. Pedestrians crossing at each intersection were observed and classified according to the severity of interactions with motor vehicles. Observation intersections were selected to represent both types of signal phasing while controlling for other physical characteristics. In the nonlinear mixed models for interaction severity, pedestrians crossing on the walk signal at an exclusive signal experienced lower interaction severity compared to those crossing on the green light with concurrent phasing; however, pedestrians crossing on a green light where an exclusive phase was available experienced higher interaction severity. Intersections with concurrent phasing have fewer total pedestrian crashes than those with exclusive phasing but more crashes at higher severity levels. It is recommended that exclusive pedestrian phasing only be used at locations where pedestrians are more likely to comply. Copyright © 2015. Published by Elsevier Ltd.

  10. OPTIMAL CONGESTION CHARGES IN GENERAL EQUILIBRIUM

    Directory of Open Access Journals (Sweden)

    Dong-Joo MOON, Ph.D.

    2002-01-01

    Another maximization problem involves characterizing the second-best optimal solution. In this problem, it is assumed to impose the congestion toll only on a single highway link. This problem yields the second-best congestion toll different from the first-best one. This second-best optimal congestion toll has the structure to reflect its impact on other highway links exempt from the congestion charge program.

  11. FPGA Congestion-Driven Placement Refinement

    Energy Technology Data Exchange (ETDEWEB)

    Vicente de, J.

    2005-07-01

    The routing congestion usually limits the complete proficiency of the FPGA logic resources. A key question can be formulated regarding the benefits of estimating the congestion at placement stage. In the last years, it is gaining acceptance the idea of a detailed placement taking into account congestion. In this paper, we resort to the Thermodynamic Simulated Annealing (TSA) algorithm to perform a congestion-driven placement refinement on the top of the common Bounding-Box pre optimized solution. The adaptive properties of TSA allow the search to preserve the solution quality of the pre optimized solution while improving other fine-grain objectives. Regarding the cost function two approaches have been considered. In the first one Expected Occupation (EO), a detailed probabilistic model to account for channel congestion is evaluated. We show that in spite of the minute detail of EO, the inherent uncertainty of this probabilistic model impedes to relieve congestion beyond the sole application of the Bounding-Box cost function. In the second approach we resort to the fast Rectilinear Steiner Regions algorithm to perform not an estimation but a measurement of the global routing congestion. This second strategy allows us to successfully reduce the requested channel width for a set of benchmark circuits with respect to the widespread Versatile Place and Route (VPR) tool. (Author) 31 refs.

  12. Modeling pedestrian gap crossing index under mixed traffic condition.

    Science.gov (United States)

    Naser, Mohamed M; Zulkiple, Adnan; Al Bargi, Walid A; Khalifa, Nasradeen A; Daniel, Basil David

    2017-12-01

    There are a variety of challenges faced by pedestrians when they walk along and attempt to cross a road, as the most recorded accidents occur during this time. Pedestrians of all types, including both sexes with numerous aging groups, are always subjected to risk and are characterized as the most exposed road users. The increased demand for better traffic management strategies to reduce the risks at intersections, improve quality traffic management, traffic volume, and longer cycle time has further increased concerns over the past decade. This paper aims to develop a sustainable pedestrian gap crossing index model based on traffic flow density. It focusses on the gaps accepted by pedestrians and their decision for street crossing, where (Log-Gap) logarithm of accepted gaps was used to optimize the result of a model for gap crossing behavior. Through a review of extant literature, 15 influential variables were extracted for further empirical analysis. Subsequently, data from the observation at an uncontrolled mid-block in Jalan Ampang in Kuala Lumpur, Malaysia was gathered and Multiple Linear Regression (MLR) and Binary Logit Model (BLM) techniques were employed to analyze the results. From the results, different pedestrian behavioral characteristics were considered for a minimum gap size model, out of which only a few (four) variables could explain the pedestrian road crossing behavior while the remaining variables have an insignificant effect. Among the different variables, age, rolling gap, vehicle type, and crossing were the most influential variables. The study concludes that pedestrians' decision to cross the street depends on the pedestrian age, rolling gap, vehicle type, and size of traffic gap before crossing. The inferences from these models will be useful to increase pedestrian safety and performance evaluation of uncontrolled midblock road crossings in developing countries. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  13. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-08-01

    Full Text Available Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods.

  14. Congestion levies; Congestieheffingen

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, E.T. [Vakgroep Ruimtelijke Economie, Vrije Universiteit en Tinbergen Instituut, Amsterdam (Netherlands)

    1998-02-20

    Traffic jams or congestion can be controlled by means of Pigouvian levies. Congestion costs comprise both time losses as scheduling costs. Because a part of those costs are external costs, the free market output is not Pareto-efficient, and therefore levies are required to recover the efficiency. With some restrictions, road-pricing for the western part of the Netherlands is considered to be a feasible option

  15. Evaluation of pedestrian mid-block road crossing behaviour using artificial neural network

    Directory of Open Access Journals (Sweden)

    B. Raghuram Kadali

    2014-04-01

    Full Text Available Pedestrians usually cross the road at mid-block locations in India because of the ease and convenience to reach their destination as compared to intersection locations. It is important to evaluate the pedestrian gap acceptance behavior at mid-block locations because of inadequate vehicular gaps under mixed traffic condition, which translates into the pedestrian road crossing behavior. The present study examines the pedestrian gap acceptance behaviour by employing an artificial neural network (ANN model for understanding the decision making process of pedestrians, i.e., acceptance or rejection of vehicular gaps at a mid-block location. From the results it has been found that the pedestrian rolling gap, frequency of attempt, vehicular gap size, pedestrian speed change condition and vehicle speed have major role in pedestrian gap acceptance. These results can lead to a better design of pedestrian crossing facilities where adequate gaps are not available in vehicular flow at mid-block crosswalk locations.

  16. Modelling of pedestrian level wind environment on a high-quality mesh: A case study for the HKPolyU campus

    DEFF Research Database (Denmark)

    Du, Yaxing; Mak, Cheuk Ming; Ai, Zhengtao

    2018-01-01

    Quality and efficiency of computational fluid dynamics (CFD) simulation of pedestrian level wind environment in a complex urban area are often compromised by many influencing factors, particularly mesh quality. This paper first proposes a systematic and efficient mesh generation method and then p......Quality and efficiency of computational fluid dynamics (CFD) simulation of pedestrian level wind environment in a complex urban area are often compromised by many influencing factors, particularly mesh quality. This paper first proposes a systematic and efficient mesh generation method...... and then performs detailed sensitivity analysis of some important computational parameters. The geometrically complex Hong Kong Polytechnic University (HKPolyU) campus is taken as a case study. Based on the high-quality mesh system, the influences of three important computational parameters, namely, turbulence...... model, near-wall mesh density and computational domain size, on the CFD predicted results of pedestrian level wind environment are quantitatively evaluated. Validation of CFD models is conducted against wind tunnel experimental data, where a good agreement is achieved. It is found that the proposed mesh...

  17. The risk of pedestrian collisions with peripheral visual field loss

    OpenAIRE

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L.; Goldstein, Robert B.

    2016-01-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed...

  18. Road traffic congestion a concise guide

    CERN Document Server

    Falcocchio, John C

    2015-01-01

    This book on road traffic congestion in cities and suburbs describes congestion problems and shows how they can be relieved. The first part (Chapters 1 - 3) shows how congestion reflects transportation technologies and settlement patterns. The second part (Chapters 4 - 13) describes the causes, characteristics, and consequences of congestion. The third part (Chapters 14 - 23) presents various relief strategies - including supply adaptation and demand mitigation - for nonrecurring and recurring congestion. The last part (Chapter 24) gives general guidelines for congestion relief and provides a general outlook for the future. The book will be useful for a wide audience - including students, practitioners and researchers in a variety of professional endeavors: traffic engineers, transportation planners, public transport specialists, city planners, public administrators, and private enterprises that depend on transportation for their activities.  

  19. In pedestrian crashes, it's vehicle speed that matters the most

    Science.gov (United States)

    2000-05-13

    A recently prepared report on pedestrian injuries provides these two main findings: 1) regardless of age, pedestrians involved in crashes are more likely to be killed as vehicle speeds increase; and 2) in crashes at any speed, older pedestrians are m...

  20. Signalling and obfuscation for congestion control

    Science.gov (United States)

    Mareček, Jakub; Shorten, Robert; Yu, Jia Yuan

    2015-10-01

    We aim to reduce the social cost of congestion in many smart city applications. In our model of congestion, agents interact over limited resources after receiving signals from a central agent that observes the state of congestion in real time. Under natural models of agent populations, we develop new signalling schemes and show that by introducing a non-trivial amount of uncertainty in the signals, we reduce the social cost of congestion, i.e., improve social welfare. The signalling schemes are efficient in terms of both communication and computation, and are consistent with past observations of the congestion. Moreover, the resulting population dynamics converge under reasonable assumptions.

  1. Temporal-Spatial Analysis of Traffic Congestion Based on Modified CTM

    Directory of Open Access Journals (Sweden)

    Chenglong Chu

    2015-01-01

    Full Text Available A modified cell transmission model (CTM is proposed to depict the temporal-spatial evolution of traffic congestion on urban freeways. Specifically, drivers’ adaptive behaviors and the corresponding influence on traffic flows are emphasized. Two piecewise linear regression models are proposed to describe the relationship of flow and density (occupancy. Several types of cellular connections are designed to depict urban rapid roads with on/off-ramps and junctions. Based on the data collected on freeway of Queen Elizabeth, Ontario, Canada, we show that the new model provides a relatively higher accuracy of temporal-spatial evolution of traffic congestions.

  2. Pedestrian injury risk and the effect of age.

    Science.gov (United States)

    Niebuhr, Tobias; Junge, Mirko; Rosén, Erik

    2016-01-01

    Older adults and pedestrians both represent especially vulnerable groups in traffic. In the literature, hazards are usually described by the corresponding injury risks of a collision. This paper investigates the MAIS3+F risk (the risk of sustaining at least one injury of AIS 3 severity or higher, or fatal injury) for pedestrians in full-frontal pedestrian-to-passenger car collisions. Using some assumptions, a model-based approach to injury risk, allowing for the specification of individual injury risk parameters for individuals, is presented. To balance model accuracy and sample size, the GIDAS (German In-depth Accident Study) data set is divided into three age groups; children (0-14); adults (15-60); and older adults (older than 60). For each group, individual risk curves are computed. Afterwards, the curves are re-aggregated to the overall risk function. The derived model addresses the influence of age on the outcome of pedestrian-to-car accidents. The results show that older people compared with younger people have a higher MAIS3+F injury risk at all collision speeds. The injury risk for children behaves surprisingly. Compared to other age groups, their MAIS3+F injury risk is lower at lower collision speeds, but substantially higher once a threshold has been exceeded. The resulting injury risk curve obtained by re-aggregation looks surprisingly similar to the frequently used logistic regression function computed for the overall injury risk. However, for homogenous subgroups - such as the three age groups - logistic regression describes the typical risk behavior less accurately than the introduced model-based approach. Since the effect of demographic change on traffic safety is greater nowadays, there is a need to incorporate age into established models. Thus far, this is one of the first studies incorporating traffic participant age to an explicit risk function. The presented approach can be especially useful for the modeling and prediction of risks, and for the

  3. A Multilevel Congestion-Based Global Router

    Directory of Open Access Journals (Sweden)

    Logan Rakai

    2009-01-01

    Full Text Available Routing in nanometer nodes creates an elevated level of importance for low-congestion routing. At the same time, advances in mathematical programming have increased the power to solve complex problems, such as the routing problem. Hence, new routing methods need to be developed that can combine advanced mathematical programming and modeling techniques to provide low-congestion solutions. In this paper, a hierarchical mathematical programming-based global routing technique that considers congestion is proposed. The main contributions presented in this paper include (i implementation of congestion estimation based on actual routing solutions versus purely probabilistic techniques, (ii development of a congestion-based hierarchy for solving the global routing problem, and (iii generation of a robust framework for solving the routing problem using mathematical programming techniques. Experimental results illustrate that the proposed global router is capable of reducing congestion and overflow by as much as 36% compared to the state-of-the-art mathematical programming models.

  4. Pedestrian and bicycle crash data analysis : 2005-2010.

    Science.gov (United States)

    2012-04-03

    The safety of pedestrians and bicyclists using the roadway is an increasing concern for the Michigan Department of Transportation (MDOT). This report summarizes data for motor vehicle crashes involving pedestrians and bicyclists in Michigan from 2005...

  5. Spatial Analysis in Determining Physical Factors of Pedestrian Space Livability, Case Study: Pedestrian Space on Jalan Kemasan, Yogyakarta

    Science.gov (United States)

    Fauzi, A. F.; Aditianata, A.

    2018-02-01

    The existence of street as a place to perform various human activities becomes an important issue nowadays. In the last few decades, cars and motorcycles dominate streets in various cities in the world. On the other hand, human activity on the street is the determinant of the city livability. Previous research has pointed out that if there is lots of human activity in the street, then the city will be interesting. Otherwise, if the street has no activity, then the city will be boring. Learning from that statement, now various cities in the world are developing the concept of livable streets. Livable streets shown by diversity of human activities conducted in the streets’ pedestrian space. In Yogyakarta, one of the streets shown diversity of human activities is Jalan Kemasan. This study attempts to determine the physical factors of pedestrian space affecting the livability in Jalan Kemasan Yogyakarta through spatial analysis. Spatial analysis was performed by overlay technique between liveable point (activity diversity) distribution map and variable distribution map. Those physical pedestrian space research variable included element of shading, street vendors, building setback, seat location, divider between street and pedestrian way, and mixed use building function. More diverse the activity of one variable, then those variable are more affected then others. Overlay result then strengthened by field observation to qualitatively ensure the deduction. In the end, this research will provide valuable input for street and pedestrian space planning that is comfortable for human activities.

  6. Performance of collision damage mitigation braking systems and their effects on human injury in the event of car-to-pedestrian accidents.

    Science.gov (United States)

    Matsui, Yasuhiro; Han, Yong; Mizuno, Koji

    2011-11-01

    The number of traffic deaths in Japan was 4,863 in 2010. Pedestrians account for the highest number (1,714, 35%), and vehicle occupants the second highest (1,602, 33%). Pedestrian protection is a key countermeasure to reduce casualties in traffic accidents. A striking vehicle's impact velocity could be considered a parameter influencing the severity of injury and possibility of death in pedestrian crashes. A collision damage mitigation braking system (CDMBS) using a sensor to detect pedestrians could be effective for reducing the vehicle/pedestrian impact velocity. Currently in Japan, cars equipped with the CDMBS also have vision sensors such as a stereo camera for pedestrian detection. However, the ability of vision sensors in production cars to properly detect pedestrians has not yet been established. The effect of reducing impact velocity on the pedestrian injury risk has also not been determined. The first objective of this study is to evaluate the performance of the CDMBS in detecting pedestrians when it is installed in production cars. The second objective of this study is to evaluate the effect of reducing impact velocity on mitigating pedestrian injury. Firstly, impact experiments were performed using a car with the CDMBS in which the car collided with a pedestrian surrogate. In these tests, the velocity was chosen for the various test runs to be 20, 40 and 60 km/h, respectively, which were based on the velocity distribution in real-world pedestrian crashes. The results indicated that the impact velocity reduction ranged approximately from 10 to 15 km/h at the standing location of a pedestrian surrogate at both daytime and nighttime lighting conditions. These results show that the system has the potential to reduce pedestrian casualties from car-to-pedestrian contacts. Secondly, finite-element analyses were performed simulating vehicle-to- pedestrian impacts with the THUMS pedestrian models. The vehicle models selected for the study included a medium sedan

  7. Evaluating Countermeasures to Improve Pedestrian and Bicycle Safety

    Science.gov (United States)

    2018-11-01

    Pedestrian crashes have reached an alarming level in the U.S. Different factors could contribute to the occurrence of these crashes at an intersection, including driver errors, the type of maneuver, and pedestrian behaviors. All these factors highlig...

  8. Oriented regions grouping based candidate proposal for infrared pedestrian detection

    Science.gov (United States)

    Wang, Jiangtao; Zhang, Jingai; Li, Huaijiang

    2018-04-01

    Effectively and accurately locating the positions of pedestrian candidates in image is a key task for the infrared pedestrian detection system. In this work, a novel similarity measuring metric is designed. Based on the selective search scheme, the developed similarity measuring metric is utilized to yield the possible locations for pedestrian candidate. Besides this, corresponding diversification strategies are also provided according to the characteristics of the infrared thermal imaging system. Experimental results indicate that the presented scheme can achieve more efficient outputs than the traditional selective search methodology for the infrared pedestrian detection task.

  9. Virtual reality by mobile smartphone: improving child pedestrian safety.

    Science.gov (United States)

    Schwebel, David C; Severson, Joan; He, Yefei; McClure, Leslie A

    2017-10-01

    Pedestrian injuries are a leading cause of paediatric injury. Effective, practical and cost-efficient behavioural interventions to teach young children street crossing skills are needed. They must be empirically supported and theoretically based. Virtual reality (VR) offers promise to fill this need and teach child pedestrian safety skills for several reasons, including: (A) repeated unsupervised practice without risk of injury, (B) automated feedback on crossing success or failure, (C) tailoring to child skill levels: (D) appealing and fun training environment, and (E) most recently given technological advances, potential for broad dissemination using mobile smartphone technology. Extending previous work, we will evaluate delivery of an immersive pedestrian VR using mobile smartphones and the Google Cardboard platform, technology enabling standard smartphones to function as immersive VR delivery systems. We will overcome limitations of previous research suggesting children learnt some pedestrian skills after six VR training sessions but did not master adult-level pedestrian skills by implementing a randomised non-inferiority trial with two equal-sized groups of children ages 7-8 years (total N=498). All children will complete baseline, postintervention and 6-month follow-up assessments of pedestrian safety and up to 25 30-min pedestrian safety training trials until they reach adult levels of functioning. Half the children will be randomly assigned to train in Google Cardboard and the other half in a semi-immersive kiosk VR. Analysis of Covariance (ANCOVA) models will assess primary outcomes. If results are as hypothesised, mobile smartphones offer substantial potential to overcome barriers of dissemination and implementation and deliver pedestrian safety training to children worldwide. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Quantitative analysis of pedestrian safety at uncontrolled multi-lane mid-block crosswalks in China.

    Science.gov (United States)

    Zhang, Cunbao; Zhou, Bin; Chen, Guojun; Chen, Feng

    2017-11-01

    A lot of pedestrian-vehicle crashes at mid-block crosswalks severely threaten pedestrian's safety around the world. The situations are even worse in China due to low yielding rate of vehicles at crosswalks. In order to quantitatively analyze pedestrian's safety at multi-lane mid-block crosswalks, the number of pedestrian-vehicle conflicts was utilized to evaluate pedestrian's accident risk. Five mid-block crosswalks (Wuhan, China) were videoed to collect data of traffic situation and pedestrian-vehicle conflicts, and the quantity and spatial distribution of pedestrian-vehicle conflicts at multi-lane mid-block crosswalk were analyzed according to lane-based post-encroachment time(LPET). Statistical results indicate that conflicts are mainly concentrated in lane3 and lane6. Percentage of conflict of each lane numbered from 1 to 6 respectively are 4.1%, 13.1%, 19.8%, 8.4%, 19.0%, 28.1%. Conflict rate under different crossing strategies are also counted. Moreover, an order probit (OP) model of pedestrian-vehicle conflict analysis (PVCA) was built to find out the contributions corresponding to those factors (such as traffic volume, vehicle speed, pedestrian crossing behavior, pedestrian refuge, etc.) to pedestrian-vehicle conflicts. The results show that: pedestrian refuge have positive effects on pedestrian safety; on the other hand, high vehicle speed, high traffic volume, rolling gap crossing pattern, and larger pedestrian platoon have negative effects on pedestrian safety. Based on our field observation and PVCA model, the number of conflicts will rise by 2% while the traffic volume increases 200 pcu/h; similarly, if the vehicle speed increases 5km/h, the number of conflicts will rise by 12% accordingly. The research results could be used to evaluate pedestrian safety at multi-lane mid-block crosswalks, and useful to improve pedestrian safety by means of pedestrian safety education, pedestrian refuge setting, vehicle speed limiting, and so on. Copyright © 2017

  11. 76 FR 19519 - Intent To Prepare an Environmental Impact Statement for the Downtown San Francisco Ferry Terminal...

    Science.gov (United States)

    2011-04-07

    ... alleviates congestion over the Bay Bridge and through the Bay Area Rapid Transit (BART) Transbay Tube... pedestrian promenades, and separation of ferry patron queuing from other pedestrian and vehicular movements...

  12. Modeling Unidirectional Pedestrian Movement: An Investigation of Diffusion Behavior in the Built Environment

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-01-01

    Full Text Available Unidirectional pedestrian movement is a special phenomenon in the evacuation process of large public buildings and urban environments at pedestrian scale. Several macroscopic models for collective behaviors have been built to predict pedestrian flow. However, current models do not explain the diffusion behavior in pedestrian crowd movement, which can be important in representing spatial-temporal crowd density differentiation in the movement process. This study builds a macroscopic model for describing crowd diffusion behavior and evaluating unidirectional pedestrian flow. The proposed model employs discretization of time and walking speed in geometric distribution to calculate downstream pedestrian crowd flow and analyze movement process based on upstream number of pedestrians and average walking speed. The simulated results are calibrated with video observation data in a baseball stadium to verify the model precision. Statistical results have verified that the proposed pedestrian diffusion model could accurately describe pedestrian macromovement behavior within the margin of error.

  13. Pedestrian count estimation using texture feature with spatial distribution

    Directory of Open Access Journals (Sweden)

    Hongyu Hu

    2016-12-01

    Full Text Available We present a novel pedestrian count estimation approach based on global image descriptors formed from multi-scale texture features that considers spatial distribution. For regions of interest, local texture features are represented based on histograms of multi-scale block local binary pattern, which jointly constitute the feature vector of the whole image. Therefore, to achieve an effective estimation of pedestrian count, principal component analysis is used to reduce the dimension of the global representation features, and a fitting model between image global features and pedestrian count is constructed via support vector regression. The experimental result shows that the proposed method exhibits high accuracy on pedestrian count estimation and can be applied well in the real world.

  14. Effect of prediction on the self-organization of pedestrian counter flow

    International Nuclear Information System (INIS)

    Wang Ziyang; Zhao Hui; Ma Jian; Qin Yong; Jia Limin

    2012-01-01

    Pedestrians may predict the behavior of others and then adjust their movement accordingly to avoid potential conflicts in advance. Motivated by this fact, we propose a predictive control theory-based pedestrian counter flow model, which describes the predictive mechanism underlying pedestrian self-organization phenomena. In this model, a pedestrian will make in-advance-avoid behavior based on the estimation of future moving gain within a given predictive length to reduce potential conflicts. The future gain in the present model is affected by three factors, i.e. the predictive length, the smooth degree of entrance and the influential area of coming pedestrians. Simulation results of the model show that increasing predictive length has a remarkable effect on reducing conflicts, improving pedestrian velocity, smoothing pedestrian movement and stabilizing the self-organized lanes. When enlarging the influential area of coming pedestrians, pedestrians tend to aggregate to the formed self-organized lanes, which makes the lanes wider and the lane number reduced. Interestingly, moderate enlargement (of the influential area) will reduce conflicts significantly, while excessive enlargement will lead to an increase in conflicts. We also discuss the predictive effect toward the smooth degree of entrance. When there are some formed self-organized lanes in the system, the effect is significant, and it will make the lanes more regular and stable, while when the existing lanes are unstable, the effect has little impact on the system. (paper)

  15. Development of a portable bicycle/pedestrian monitoring system for safety enhancement

    Science.gov (United States)

    Usher, Colin; Daley, W. D. R.

    2015-03-01

    Pedestrians involved in roadway accidents account for nearly 12 percent of all traffic fatalities and 59,000 injuries each year. Most injuries occur when pedestrians attempt to cross roads, and there have been noted differences in accident rates midblock vs. at intersections. Collecting data on pedestrian behavior is a time consuming manual process that is prone to error. This leads to a lack of quality information to guide the proper design of lane markings and traffic signals to enhance pedestrian safety. Researchers at the Georgia Tech Research Institute are developing and testing an automated system that can be rapidly deployed for data collection to support the analysis of pedestrian behavior at intersections and midblock crossings with and without traffic signals. This system will analyze the collected video data to automatically identify and characterize the number of pedestrians and their behavior. It consists of a mobile trailer with four high definition pan-tilt cameras for data collection. The software is custom designed and uses state of the art commercial pedestrian detection algorithms. We will be presenting the system hardware and software design, challenges, and results from the preliminary system testing. Preliminary results indicate the ability to provide representative quantitative data on pedestrian motion data more efficiently than current techniques.

  16. Training strategy for convolutional neural networks in pedestrian gender classification

    Science.gov (United States)

    Ng, Choon-Boon; Tay, Yong-Haur; Goi, Bok-Min

    2017-06-01

    In this work, we studied a strategy for training a convolutional neural network in pedestrian gender classification with limited amount of labeled training data. Unsupervised learning by k-means clustering on pedestrian images was used to learn the filters to initialize the first layer of the network. As a form of pre-training, supervised learning for the related task of pedestrian classification was performed. Finally, the network was fine-tuned for gender classification. We found that this strategy improved the network's generalization ability in gender classification, achieving better test results when compared to random weights initialization and slightly more beneficial than merely initializing the first layer filters by unsupervised learning. This shows that unsupervised learning followed by pre-training with pedestrian images is an effective strategy to learn useful features for pedestrian gender classification.

  17. Dual effects of guide-based guidance on pedestrian evacuation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yi, E-mail: yima23-c@my.cityu.edu.hk; Lee, Eric Wai Ming; Shi, Meng

    2017-06-15

    This study investigates the effects of guide-based guidance on the pedestrian evacuation under limited visibility via the simulations based on an extended social force model. The results show that the effects of guides on the pedestrian evacuation under limited visibility are dual, and related to the neighbor density within the visual field. On the one hand, in many cases, the effects of guides are positive, particularly when the neighbor density within the visual field is moderate; in this case, a few guides can already assist the evacuation effectively and efficiently. However, when the neighbor density within the visual field is particularly small or large, the effects of guides may be adverse and make the evacuation time longer. Our results not only provide a new insight into the effects of guides on the pedestrian evacuation under limited visibility, but also give some practical suggestions as to how to assign guides to assist the evacuation under different evacuation conditions. - Highlights: • Extended social force model is used to simulate guided pedestrian evacuation. • Effects of guides on pedestrian evacuation under limited visibility are dual. • Effects of guides on pedestrian evacuation under limited visibility are related to neighbor density within visual field.

  18. Pedestrian Tracking Based on Camshift with Kalman Prediction for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Lie Guo

    2016-06-01

    Full Text Available Pedestrian detection and tracking is the key to autonomous vehicle navigation systems avoiding potentially dangerous situations. Firstly, the probability distribution of colour information is established after a pedestrian is located in an image. Then the detected results are utilized to initialize a Kalman filter to predict the possible position of the pedestrian centroid in the future frame. A Camshift tracking algorithm is used to track the pedestrian in the specific search window of the next frame based on the prediction results. The actual position of the pedestrian centroid is output from the Camshift tracking algorithm to update the gain and error covariance matrix of the Kalman filter. Experimental results in real traffic situations show the proposed pedestrian tracking algorithm can achieve good performance even when they are partly occluded in inconsistent illumination circumstances.

  19. Disparities in pedestrian streetscape environments by income and race/ethnicity

    Directory of Open Access Journals (Sweden)

    Christina M. Thornton

    2016-12-01

    Full Text Available Growing evidence suggests that microscale pedestrian environment features, such as sidewalk quality, crosswalks, and neighborhood esthetics, may affect residents’ physical activity. This study examined whether disparities in microscale pedestrian features existed between neighborhoods of differing socioeconomic and racial/ethnic composition. Using the validated Microscale Audit of Pedestrian Streetscapes (MAPS, pedestrian environment features were assessed by trained observers along 1/4-mile routes (N=2117 in neighborhoods in three US metropolitan regions (San Diego, Seattle, and Baltimore during 2009–2010. Neighborhoods, defined as Census block groups, were selected to maximize variability in median income and macroscale walkability factors (e.g., density. Mixed-model linear regression analyses explored main and interaction effects of income and race/ethnicity separately by region. Across all three regions, low-income neighborhoods and neighborhoods with a high proportion of racial/ethnic minorities had poorer esthetics and social elements (e.g., graffiti, broken windows, litter than neighborhoods with higher median income or fewer racial/ethnic minorities (p<.05. However, there were also instances where neighborhoods with higher incomes and fewer racial/ethnic minorities had worse or absent pedestrian amenities such as sidewalks, crosswalks, and intersections (p<.05. Overall, disparities in microscale pedestrian features occurred more frequently in residential as compared to mixed-use routes with one or more commercial destination. However, considerable variation existed between regions as to which microscale pedestrian features were unfavorable and whether the unfavorable features were associated with neighborhood income or racial/ethnic composition. The variation in pedestrian streetscapes across cities suggests that findings from single-city studies are not generalizable. Local streetscape audits are recommended to identify disparities

  20. Pedestrian-induced lateral vibrations of footbridges

    DEFF Research Database (Denmark)

    Ingólfsson, Einar Thór

    by pedestrians during walking on a laterally moving treadmill. Two different conditions are investigated; initially the treadmill is fixed and then it is laterally driven in a sinusoidal motion at varying combinations of frequencies (0.33 – 1.07 Hz) and amplitudes (4.5 – 48mm). The experimental campaign involved...... is triggered. This disproportionate increase in the lateral vibration response is caused by a dynamic interaction between the pedestrian and the laterally moving structure, although the governing mechanism which generates the load is still disputed. In this thesis, a comprehensive literature review...... 71 test subjects who covered approximately 55 km of walking distributed on almost 5000 individual tests. An in-depth analysis of the movement of the pedestrians that participated in the experimental campaign reveal that synchronisation is not a pre-condition for the ix development of large amplitude...

  1. Young drivers' perception of adult and child pedestrians in potential street-crossing situations.

    Science.gov (United States)

    Ābele, Līva; Haustein, Sonja; Møller, Mette

    2018-04-03

    Despite overall improvements in road traffic safety, pedestrian accidents continue to be a serious public health problem. Due to lack of experience, limited cognitive and motoric skills, and smaller size, children have a higher injury risk as pedestrians than adults. To what extent drivers adjust their driving behaviour to children's higher vulnerability is largely unknown. To determine whether young male drivers' behaviour and scanning pattern differs when approaching a child and an adult pedestrian in a potential street-crossing situation, sixty-five young (18-24) male drivers' speed, lateral position and eye movements were recorded in a driving simulator. Results showed that fewer drivers responded by slowing down and that drivers had a higher driving speed when approaching a child pedestrian, although the time of the first fixation on both types of pedestrians was the same. However, drivers drove farther away from a child than an adult pedestrian. Additionally, fewer drivers who did not slow down fixated on the speedometer while approaching the child pedestrian. The results show that young drivers behave differently when approaching a child and an adult pedestrian, though not in a way that appropriately accounts for the limitations of a child pedestrian. A better understanding of how drivers respond to different types of pedestrians and why could contribute to the development of pedestrian detection and emergency braking systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Investigating the risk factors associated with pedestrian injury severity in Illinois.

    Science.gov (United States)

    Pour-Rouholamin, Mahdi; Zhou, Huaguo

    2016-06-01

    Pedestrians are known as the most vulnerable road users, which means their needs and safety require specific attention in strategic plans. Given the fact that pedestrians are more prone to higher injury severity levels compared to other road users, this study aims to investigate the risk factors associated with various levels of injury severity that pedestrians experience in Illinois. Ordered-response models are used to analyze single-vehicle, single-pedestrian crash data from 2010 to 2013 in Illinois. As a measure of net change in the effect of significant variables, average direct pseudo-elasticities are calculated that can be further used to prioritize safety countermeasures. A model comparison using AIC and BIC is also provided to compare the performance of the studied ordered-response models. The results recognized many variables associated with severe injuries: older pedestrians (more than 65years old), pedestrians not wearing contrasting clothing, adult drivers (16-24), drunk drivers, time of day (20:00 to 05:00), divided highways, multilane highways, darkness, and heavy vehicles. On the other hand, crossing the street at crosswalks, older drivers (more than 65years old), urban areas, and presence of traffic control devices (signal and sign) are associated with decreased probability of severe injuries. The comparison between three proposed ordered-response models shows that the partial proportional odds (PPO) model outperforms the conventional ordered (proportional odds-PO) model and generalized ordered logit model (GOLM). Based on the findings, stricter rules to address DUI driving is suggested. Educational programs need to focus on older pedestrians given the increasing number of older people in Illinois in the upcoming years. Pedestrians should be educated to use pedestrian crosswalks and contrasting clothing at night. In terms of engineering countermeasures, installation of crosswalks where pedestrian activity is high seems a promising practice

  3. Study on bi-directional pedestrian movement using ant algorithms

    International Nuclear Information System (INIS)

    Gokce, Sibel; Kayacan, Ozhan

    2016-01-01

    A cellular automata model is proposed to simulate bi-directional pedestrian flow. Pedestrian movement is investigated by using ant algorithms. Ants communicate with each other by dropping a chemical, called a pheromone, on the substrate while crawling forward. Similarly, it is considered that oppositely moving pedestrians drop ‘visual pheromones’ on their way and the visual pheromones might cause attractive or repulsive interactions. This pheromenon is introduced into modelling the pedestrians’ walking preference. In this way, the decision-making process of pedestrians will be based on ‘the instinct of following’. At some densities, the relationships of velocity–density and flux–density are analyzed for different evaporation rates of visual pheromones. Lane formation and phase transition are observed for certain evaporation rates of visual pheromones. (paper)

  4. Measuring accident risk exposure for pedestrians in different micro-environments.

    Science.gov (United States)

    Lassarre, Sylvain; Papadimitriou, Eleonora; Yannis, George; Golias, John

    2007-11-01

    Pedestrians are mainly exposed to the risk of road accident when crossing a road in urban areas. Traditionally in the road safety field, the risk of accident for pedestrian is estimated as a rate of accident involvement per unit of time spent on the road network. The objective of this research is to develop an approach of accident risk based on the concept of risk exposure used in environmental epidemiology, such as in the case of exposure to pollutants. This type of indicator would be useful for comparing the effects of urban transportation policy scenarios on pedestrian safety. The first step is to create an indicator of pedestrians' exposure, which is based on motorised vehicles' "concentration" by lane and also takes account of traffic speed and time spent to cross. This is applied to two specific micro-environments: junctions and mid-block locations. A model of pedestrians' crossing behaviour along a trip is then developed, based on a hierarchical choice between junctions and mid-block locations and taking account of origin and destination, traffic characteristics and pedestrian facilities. Finally, a complete framework is produced for modelling pedestrians' exposure in the light of their crossing behaviour. The feasibility of this approach is demonstrated on an artificial network and a first set of results is obtained from the validation of the models in observational studies.

  5. Software-Defined Congestion Control Algorithm for IP Networks

    Directory of Open Access Journals (Sweden)

    Yao Hu

    2017-01-01

    Full Text Available The rapid evolution of computer networks, increase in the number of Internet users, and popularity of multimedia applications have exacerbated the congestion control problem. Congestion control is a key factor in ensuring network stability and robustness. When the underlying network and flow information are unknown, the transmission control protocol (TCP must increase or reduce the size of the congestion window to adjust to the changes of traffic in the Internet Protocol (IP network. However, it is possible that a software-defined approach can relieve the network congestion problem more efficiently. This approach has the characteristic of centralized control and can obtain a global topology for unified network management. In this paper, we propose a software-defined congestion control (SDCC algorithm for an IP network. We consider the difference between TCP and the user datagram protocol (UDP and propose a new method to judge node congestion. We initially apply the congestion control mechanism in the congested nodes and then optimize the link utilization to control network congestion.

  6. Mapping patterns of pedestrian fatal accidents in Israel

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo; Gitelman, Victoria; Bekhor, Shlomo

    2012-01-01

    This study intends to provide insight into pedestrian accidents by uncovering their patterns in order to design preventive measures and to allocate resources for identified problems. Kohonen neural networks are applied to a database of pedestrian fatal accidents occurred during the four-year peri...

  7. Trajectory Analysis and Prediction for Improved Pedestrian Safety

    DEFF Research Database (Denmark)

    Møgelmose, Andreas; Trivedi, Mohan M.; Moeslund, Thomas B.

    2015-01-01

    This paper presents a monocular and purely vision based pedestrian trajectory tracking and prediction framework with integrated map-based hazard inference. In Advanced Driver Assistance systems research, a lot of effort has been put into pedestrian detection over the last decade, and several pede...

  8. Pedestrian Urban Safety System and Comfort at Traffic Signals PUSSYCATS : new pedestrian facilities : technique, observations and opinions, a drive-project in France, the UK and The Netherlands.

    NARCIS (Netherlands)

    Levelt, P.B.M.

    1994-01-01

    PUSSYCATS (Pedestrian Urban Safety System and Comfort at Traffic Signals) is a new system incorporating technical improvements better adapted to pedestrians needs and behaviour. A Kerb-side detector mat replaces the push buttons, with infrared sensors detecting the presence of pedestrians on the

  9. A FORM ANALYSIS OF JAPANESE PEDESTRIAN DECKS AND EUROPEAN PLAZAS

    Directory of Open Access Journals (Sweden)

    ANDO Naomi

    2015-06-01

    Full Text Available This study compares Japanese pedestrian decks and European plazas as public pedestrian spaces. The characteristics of both types of spaces will be clarified through a schematic analysis. The connections of these spaces with their surroundings will also be analyzed. Further, the spatial image of these spaces are discussed. Pedestrian spaces in Romania will be discussed as well.

  10. The flashing right turn signal with pedestrian indication : human factors studies to understand the potential of a new signal to increase awareness of and attention to crossing pedestrians.

    Science.gov (United States)

    2015-12-01

    The flashing pedestrian indicator (FPI) is intended to alert turning drivers to the potential presence of : pedestrians in the roadway, facilitate scanning in the likely direction of pedestrians, and encourage caution and : yielding behavior in respo...

  11. Automatic Pedestrian Crossing Detection and Impairment Analysis Based on Mobile Mapping System

    Science.gov (United States)

    Liu, X.; Zhang, Y.; Li, Q.

    2017-09-01

    Pedestrian crossing, as an important part of transportation infrastructures, serves to secure pedestrians' lives and possessions and keep traffic flow in order. As a prominent feature in the street scene, detection of pedestrian crossing contributes to 3D road marking reconstruction and diminishing the adverse impact of outliers in 3D street scene reconstruction. Since pedestrian crossing is subject to wearing and tearing from heavy traffic flow, it is of great imperative to monitor its status quo. On this account, an approach of automatic pedestrian crossing detection using images from vehicle-based Mobile Mapping System is put forward and its defilement and impairment are analyzed in this paper. Firstly, pedestrian crossing classifier is trained with low recall rate. Then initial detections are refined by utilizing projection filtering, contour information analysis, and monocular vision. Finally, a pedestrian crossing detection and analysis system with high recall rate, precision and robustness will be achieved. This system works for pedestrian crossing detection under different situations and light conditions. It can recognize defiled and impaired crossings automatically in the meanwhile, which facilitates monitoring and maintenance of traffic facilities, so as to reduce potential traffic safety problems and secure lives and property.

  12. A Model for Assessing Pedestrian Corridors. Application to Vitoria-Gasteiz City (Spain

    Directory of Open Access Journals (Sweden)

    Javier Delso

    2017-03-01

    Full Text Available From a mobility perspective, walking is considered to be the most sustainable transport mode. One of the consequences of motor-oriented urban configuration on pedestrian mobility is urban fragmentation, which affects sustainability in cities. In this paper, we use a natural-based approach to landscape fragmentation and connectivity (inherited from landscape ecology for pedestrian mobility planning. Our aim is to design a useful methodology to identify priority pedestrian corridors, and to assess the effects of implementing barrier-free pedestrian corridors in the city. For this purpose, we developed a method that integrates Geographical Information Systems (GIS network analysis with kernel density methods, which are commonly used for designating habitat corridors. It was applied to Vitoria-Gasteiz (Spain. Pedestrian mobility was assessed by comparison of travel times between different scenarios. Results show that the implementation of pedestrian corridors reduces travel time by approximately 6%. Thus, an intervention in a small percentage of the city’s street network could considerably reduce pedestrian travel times. The proposed methodology is a useful tool for urban and transport planners to improve pedestrian mobility and manage motorised traffic.

  13. The importance of rotational kinematics in pedestrian head to windshield impacts

    NARCIS (Netherlands)

    Mordaka, J.; Kleiven, S.; Schijndel-de Nooij, M. van; Lange, R. de; Casanova, L.J.G.; Carter, E.L.; Holst, H. von

    2007-01-01

    The objective of the present study was to analyze the effect of angular kinematics on head injury in pedestrian head-to-windshield impacts. Three cases of pedestrian head impacts were simulated with FE head and windshield models. The initial impact conditions were obtained from pedestrian accident

  14. Influence of TCSC Devices on Congestion Management in a Deregulated Power System Using Evolutionary Programming Technique

    Science.gov (United States)

    Ananthichristy, A., Dr.; Elanthirayan, R.; Brindha, R., Dr.; Siddhiq, M. S.; Venkatesh, N.; Harshit, M. V.; Nikhilreddy, M.

    2018-04-01

    Congestion management is one of the technical challenges in power system deregulation. In deregulated electricity market it may always not be possible to dispatch all of the contracted power transactions due to congestion of the transmission corridors. Transmission congestion occurs when there is insufficient transmission capacity to simultaneously accommodate all constraints for transmission of a line. Flexible Alternative Current Transmission System (FACTS) devices can be an alternative to reduce the flows in the heavily loaded lines, resulting in an increased loadability, low system loss, improved stability of the network, reduced cost of production and fulfilled contractual requirement by controlling the power flow in the network. A method to determine the optimal location of FACTS has been suggested based on reduction of total system VAR power losses. The simulation was done on IEEE 14 bus system and results were obtained.

  15. Cellular automaton simulation of pedestrian counter flow with different walk velocities

    International Nuclear Information System (INIS)

    Weng, W. G.; Chen, T.; Yuan, H. Y.; Fan, W. C.

    2006-01-01

    This paper presents a cellular automaton model without step back for pedestrian dynamics considering the human behaviors which can make judgments in some complex situations. This model can simulate pedestrian movement with different walk velocities through update at different time-step intervals. Two kinds of boundary conditions including periodic and open boundary for pedestrian counter flow are considered, and their dynamical characteristics are discussed. Simulation results show that for periodic boundary condition there are three phases of pedestrian patterns, i.e., freely moving phase, lane formation phase, and perfectly stopped phase at some certain total density ranges. In the stage of lane formation, the phenomenon that pedestrians exceed those with lower walk velocity through a narrow walkway can be found. For open boundary condition, at some certain entrance densities, there are two steady states of pedestrian patterns; but the first is metastable. Spontaneous fluctuations can break the first steady state, i.e., freely moving phase, and run into the second steady state, i.e., perfectly stopped phase

  16. Macro-level safety analysis of pedestrian crashes in Shanghai, China.

    Science.gov (United States)

    Wang, Xuesong; Yang, Junguang; Lee, Chris; Ji, Zhuoran; You, Shikai

    2016-11-01

    Pedestrian safety has become one of the most important issues in the field of traffic safety. This study aims at investigating the association between pedestrian crash frequency and various predictor variables including roadway, socio-economic, and land-use features. The relationships were modeled using the data from 263 Traffic Analysis Zones (TAZs) within the urban area of Shanghai - the largest city in China. Since spatial correlation exists among the zonal-level data, Bayesian Conditional Autoregressive (CAR) models with seven different spatial weight features (i.e. (a) 0-1 first order, adjacency-based, (b) common boundary-length-based, (c) geometric centroid-distance-based, (d) crash-weighted centroid-distance-based, (e) land use type, adjacency-based, (f) land use intensity, adjacency-based, and (g) geometric centroid-distance-order) were developed to characterize the spatial correlations among TAZs. Model results indicated that the geometric centroid-distance-order spatial weight feature, which was introduced in macro-level safety analysis for the first time, outperformed all the other spatial weight features. Population was used as the surrogate for pedestrian exposure, and had a positive effect on pedestrian crashes. Other significant factors included length of major arterials, length of minor arterials, road density, average intersection spacing, percentage of 3-legged intersections, and area of TAZ. Pedestrian crashes were higher in TAZs with medium land use intensity than in TAZs with low and high land use intensity. Thus, higher priority should be given to TAZs with medium land use intensity to improve pedestrian safety. Overall, these findings can help transportation planners and managers understand the characteristics of pedestrian crashes and improve pedestrian safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. TINGKAT KENYAMANAN JALUR PEDESTRIAN DI KAWASAN SIMPANG LIMA KOTA SEMARANG BERDASARKAN PERSEPSI PENGGUNA

    Directory of Open Access Journals (Sweden)

    Andi Purnomo

    2015-07-01

    Full Text Available The comfortability of access from each region in big cities has led to the rapid increasing of regional mobility.The mobility incude the motorists and also pedestrians. Pedestrian path is a container or space for pedestrian activities and activities to provide services to pedestrians so as to improve the smoothness, safety, and comfort for pedestrians. Convenience is one of the vital values that should be enjoyed by people when doing activities. Pedestrian path in Semarang in Simpang Lima area itself is fairly crowded, and has been laid out in such a way for vendors. Crowd arising from the existence of street vendors sometimes make some people feel less comfortable to pass through. Problems that occur will be observed and analyzed, namely the level of comfort in the pedestrian path in Simpang Lima area based on user perception. The method used is descriptive qualitative theory describing the pedestrian path and direct observation to the object observed coupled with interviewing some respondents.

  18. Pedestrian fatality risk as a function of car impact speed.

    Science.gov (United States)

    Rosén, Erik; Sander, Ulrich

    2009-05-01

    Knowledge of the amount of violence tolerated by the human body is essential when developing and implementing pedestrian safety strategies. When estimating the potential benefits of new countermeasures, the pedestrian fatality risk as a function of impact speed is of particular importance. Although this function has been analysed previously, we state that a proper understanding does not exist. Based on the largest in-depth, pedestrian accident study undertaken to date, we derive an improved risk function for adult pedestrians hit by the front of passenger cars. Our results show far lower fatality risks than generally reported in the traffic safety literature. This discrepancy is primarily explained by sample bias towards severe injury accidents in earlier studies. Nevertheless, a strong dependence on impact speed is found, with the fatality risk at 50 km/h being more than twice as high as the risk at 40 km/h and more than five times higher than the risk at 30 km/h. Our findings should have important implications for the development of pedestrian accident countermeasures worldwide. In particular, the scope of future pedestrian safety policies and research should be broadened to include accidents with impact speeds exceeding 50 km/h.

  19. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Yalong Ma

    2016-03-01

    Full Text Available Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs, more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG and Discrete Cosine Transform (DCT features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness.

  20. Proposing a Revised Pedestrian Walkway Level of Service Based on Characteristics of Pedestrian Interactive Behaviours in China

    Directory of Open Access Journals (Sweden)

    Xiaonian Shan

    2016-12-01

    Full Text Available The objective of this study is to analyse characteristics of Pedestrian Interactive Behaviours (PIBs in order to propose a revised pedestrian walkway Level of Service (LOS in China. Field data on overtaking and evasive behaviours were collected at a metro station walkway in Shanghai, China to calculate macro and micro indicators. Occurrence intensities of these two PIBs initially increased with moderate density and later decreased with high density that reduced available space. PIBs were also analysed in terms of sideways behaviours to account for the varying difficulties of PIBs at different densities. It was found that available space for PIBs was the main factor contributing to the intensity features. Moreover, the different space demands of the two PIBs resulted in different features between them. Finally, a revised pedestrian walkway LOS was proposed based on the macro and micro characteristics of PIBs in China.

  1. Impact of social and technological distraction on pedestrian crossing behaviour: an observational study.

    Science.gov (United States)

    Thompson, Leah L; Rivara, Frederick P; Ayyagari, Rajiv C; Ebel, Beth E

    2013-08-01

    The objective of the present work was to study the impact of technological and social distraction on cautionary behaviours and crossing times in pedestrians. Pedestrians were observed at 20 high-risk intersections during 1 of 3 randomly assigned time windows in 2012. Observers recorded demographic and behavioural information, including use of a mobile device (talking on the phone, text messaging, or listening to music). We examined the association between distraction and crossing behaviours, adjusting for age and gender. All multivariate analyses were conducted with random effect logistic regression (binary outcomes) and random effect linear regression (continuous outcomes), accounting for clustering by site. Observers recorded crossing behaviours for 1102 pedestrians. Nearly one-third (29.8%) of all pedestrians performed a distracting activity while crossing. Distractions included listening to music (11.2%), text messaging (7.3%) and using a handheld phone (6.2%). Text messaging, mobile phone use and talking with a companion increased crossing time. Texting pedestrians took 1.87 additional seconds (18.0%) to cross the average intersection (3.4 lanes), compared to undistracted pedestrians. Texting pedestrians were 3.9 times more likely than undistracted pedestrians to display at least 1 unsafe crossing behaviour (disobeying the lights, crossing mid-intersection, or failing to look both ways). Pedestrians listening to music walked more than half a second (0.54) faster across the average intersection than undistracted pedestrians. Distracting activity is common among pedestrians, even while crossing intersections. Technological and social distractions increase crossing times, with text messaging associated with the highest risk. Our findings suggest the need for intervention studies to reduce risk of pedestrian injury.

  2. 32 CFR 636.26 - Pedestrian's rights and duties.

    Science.gov (United States)

    2010-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort Stewart, Georgia § 636.26 Pedestrian's rights and duties. (a) Pedestrians will obey all traffic control... signals are not in place or not in operation, the driver of a vehicle will yield the right of way, by...

  3. Spatiotemporal approaches to analyzing pedestrian fatalities: the case of Cali, Colombia.

    Science.gov (United States)

    Fox, Lani; Serre, Marc L; Lippmann, Steven J; Rodríguez, Daniel A; Bangdiwala, Shrikant I; Gutiérrez, María Isabel; Escobar, Guido; Villaveces, Andrés

    2015-01-01

    Injuries among pedestrians are a major public health concern in Colombian cities such as Cali. This is one of the first studies in Latin America to apply Bayesian maximum entropy (BME) methods to visualize and produce fine-scale, highly accurate estimates of citywide pedestrian fatalities. The purpose of this study is to determine the BME method that best estimates pedestrian mortality rates and reduces statistical noise. We further utilized BME methods to identify and differentiate spatial patterns and persistent versus transient pedestrian mortality hotspots. In this multiyear study, geocoded pedestrian mortality data from the Cali Injury Surveillance System (2008 to 2010) and census data were utilized to accurately visualize and estimate pedestrian fatalities. We investigated the effects of temporal and spatial scales, addressing issues arising from the rarity of pedestrian fatality events using 3 BME methods (simple kriging, Poisson kriging, and uniform model Bayesian maximum entropy). To reduce statistical noise while retaining a fine spatial and temporal scale, data were aggregated over 9-month incidence periods and censal sectors. Based on a cross-validation of BME methods, Poisson kriging was selected as the best BME method. Finally, the spatiotemporal and urban built environment characteristics of Cali pedestrian mortality hotspots were linked to intervention measures provided in Mead et al.'s (2014) pedestrian mortality review. The BME space-time analysis in Cali resulted in maps displaying hotspots of high pedestrian fatalities extending over small areas with radii of 0.25 to 1.1 km and temporal durations of 1 month to 3 years. Mapping the spatiotemporal distribution of pedestrian mortality rates identified high-priority areas for prevention strategies. The BME results allow us to identify possible intervention strategies according to the persistence and built environment of the hotspot; for example, through enforcement or long-term environmental

  4. Literature review on vehicle travel speeds and pedestrian injuries

    Science.gov (United States)

    1999-10-01

    The relationship between vehicle travel speeds and resulting pedestrian injury was reviewed in the literature and in existing data sets. Results indicated that higher vehicle speeds are strongly associated with both a greater likelihood of pedestrian...

  5. Pedestrian Safety Treatments for Signalized Intersections : Training Course Development

    Science.gov (United States)

    2017-11-01

    When drivers make left turns during a permissive turn phase, they must yield to pedestrians as well as oncoming through vehicles. Left-turning drivers sometimes overlook pedestrians in the crosswalk while watching the opposing intersection approach. ...

  6. Application of demographic analysis to pedestrian safety : final report.

    Science.gov (United States)

    2017-04-01

    In recent years, many departments of transportation in the US have invested additional resources to enhance : pedestrian safety. However, there is still a need to effectively and systematically address the pedestrian experience : in low-income areas....

  7. Identification of contributing factors to pedestrian overpass selection

    Directory of Open Access Journals (Sweden)

    Yao Wu

    2014-12-01

    Full Text Available In order to improve the efficiency of overpass and the safety level of pedestrian, this paper aims to investigate the contributing factors for selective preference of overpass. Eight overpasses were investigated in Xi’an, and a questionnaire was conducted by the pedestrians near the overpass. Totally, 1131 valid samples (873 used of overpasses and 258 non-used of overpasses were collected. Based on the data, a binary logit (BL model was developed to identify what and how the factors affect the selective preference of overpass. The BL model was calibrated by the maximum likelihood method. Likelihood ratio test and McFadden-R2 were used to analyze the goodness-of-fit of the model. The results show that the BL model has a reasonable goodness-of-fit, and the prediction accuracy of the BL model can reach 81.9%. The BL model showed that the selective preference of overpass was significantly influenced by eight factors, including gender, age, career, education level, license, detour wishes, detour distance, and crossing time. Besides, the odds ratios of significant factors were also analyzed to explain the impacts of the factors on selective preference of overpass.

  8. Young drivers' perception of adult and child pedestrians in potential street-crossing situations

    DEFF Research Database (Denmark)

    Abele, Liva; Haustein, Sonja; Møller, Mette

    2018-01-01

    Despite overall improvements in road traffic safety, pedestrian accidents continue to be a serious public health problem. Due to lack of experience, limited cognitive and motoric skills, and smaller size, children have a higher injury risk as pedestrians than adults. To what extent drivers adjust...... that appropriately accounts for the limitations of a child pedestrian. A better understanding of how drivers respond to different types of pedestrians and why could contribute to the development of pedestrian detection and emergency braking systems....

  9. Investigation of pedestrian crashes on two-way two-lane rural roads in Ethiopia.

    Science.gov (United States)

    Tulu, Getu Segni; Washington, Simon; Haque, Md Mazharul; King, Mark J

    2015-05-01

    Understanding pedestrian crash causes and contributing factors in developing countries is critically important as they account for about 55% of all traffic crashes. Not surprisingly, considerable attention in the literature has been paid to road traffic crash prediction models and methodologies in developing countries of late. Despite this interest, there are significant challenges confronting safety managers in developing countries. For example, in spite of the prominence of pedestrian crashes occurring on two-way two-lane rural roads, it has proven difficult to develop pedestrian crash prediction models due to a lack of both traffic and pedestrian exposure data. This general lack of available data has further hampered identification of pedestrian crash causes and subsequent estimation of pedestrian safety performance functions. The challenges are similar across developing nations, where little is known about the relationship between pedestrian crashes, traffic flow, and road environment variables on rural two-way roads, and where unique predictor variables may be needed to capture the unique crash risk circumstances. This paper describes pedestrian crash safety performance functions for two-way two-lane rural roads in Ethiopia as a function of traffic flow, pedestrian flows, and road geometry characteristics. In particular, random parameter negative binomial model was used to investigate pedestrian crashes. The models and their interpretations make important contributions to road crash analysis and prevention in developing countries. They also assist in the identification of the contributing factors to pedestrian crashes, with the intent to identify potential design and operational improvements. Copyright © 2015. Published by Elsevier Ltd.

  10. Real-time pedestrian detection with the videos of car camera

    Directory of Open Access Journals (Sweden)

    Yunling Zhang

    2015-12-01

    Full Text Available Pedestrians in the vehicle path are in danger of being hit, thus causing severe injury to pedestrians and vehicle occupants. Therefore, real-time pedestrian detection with the video of vehicle-mounted camera is of great significance to vehicle–pedestrian collision warning and traffic safety of self-driving car. In this article, a real-time scheme was proposed based on integral channel features and graphics processing unit. The proposed method does not need to resize the input image. Moreover, the computationally expensive convolution of the detectors and the input image was converted into the dot product of two larger matrixes, which can be computed effectively using a graphics processing unit. The experiments showed that the proposed method could be employed to detect pedestrians in the video of car camera at 20+ frames per second with acceptable error rates. Thus, it can be applied in real-time detection tasks with the videos of car camera.

  11. A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads.

    Directory of Open Access Journals (Sweden)

    Junqing Tang

    Full Text Available Traffic congestion brings not only delay and inconvenience, but other associated national concerns, such as greenhouse gases, air pollutants, road safety issues and risks. Identification, measurement, tracking, and control of urban recurrent congestion are vital for building a livable and smart community. A considerable amount of works has made contributions to tackle the problem. Several methods, such as time-based approaches and level of service, can be effective for characterizing congestion on urban streets. However, studies with systemic perspectives have been minor in congestion quantification. Resilience, on the other hand, is an emerging concept that focuses on comprehensive systemic performance and characterizes the ability of a system to cope with disturbance and to recover its functionality. In this paper, we symbolized recurrent congestion as internal disturbance and proposed a modified metric inspired by the well-applied "R4" resilience-triangle framework. We constructed the metric with generic dimensions from both resilience engineering and transport science to quantify recurrent congestion based on spatial-temporal traffic patterns and made the comparison with other two approaches in freeway and signal-controlled arterial cases. Results showed that the metric can effectively capture congestion patterns in the study area and provides a quantitative benchmark for comparison. Also, it suggested not only a good comparative performance in measuring strength of proposed metric, but also its capability of considering the discharging process in congestion. The sensitivity tests showed that proposed metric possesses robustness against parameter perturbation in Robustness Range (RR, but the number of identified congestion patterns can be influenced by the existence of ϵ. In addition, the Elasticity Threshold (ET and the spatial dimension of cell-based platform differ the congestion results significantly on both the detected number and

  12. Rapid detection and identification of pedestrian impacts using a distributed sensor network

    Science.gov (United States)

    Kim, Andrew C.; Chang, Fu-Kuo

    2005-05-01

    Pedestrian fatalities from automobile accidents often occur as a result of head injuries suffered from impacts with an automobile front end. Active pedestrian protection systems with proper pedestrian recognition algorithms can protect pedestrians from such head trauma. An investigation was conducted to assess the feasibility of using a network of piezoelectric sensors mounted on the front bumper beam of an automobile to discriminate between impacts with "pedestrian" and "non-pedestrian" objects. This information would be used to activate a safety device (e.g., external airbag or pop-up hood) to provide protection for the vulnerable pedestrian. An analytical foundation for the object-bumper impact problem will be presented, as well as the classical beam impact theory. The mechanical waves that propagate in the structure from an external impact contain a wealth of information about the specifics of a particular impact -- object mass, size, impact speed, etc. -- but most notably the object stiffness, which identifies the impacted object. Using the frequency content of the sensor signals, it can be shown that impacts with a "pedestrian" object of varying size, weight, and speed can be easily differentiated from impacts with other "non-pedestrian" objects. Simulation results will illustrate this phenomenon, and experimental tests will verify the results. A comprehensive series of impact tests were performed for validation, using both a stationary front bumper with a drop-pendulum impactor and a moving car with stationary impact objects. Results from both tests will be presented.

  13. Using Cellular Automata to Investigate Pedestrian Conflicts with Vehicles in Crosswalk at Signalized Intersection

    Directory of Open Access Journals (Sweden)

    Xiaomeng Li

    2012-01-01

    Full Text Available The operational efficiency and safety of pedestrian flows at intersections is an important aspect of urban traffic. Particularly, conflicts between pedestrians and vehicles in crosswalk are one of the most influential factors for intersection safety. This paper presents a cellular automata model that simulates pedestrian and vehicle crossing behaviors at signalized intersections. Through the simulation, we investigate the effects of different pedestrian signal timing and crosswalk widths on the crosswalk capacity, the number of traffic conflicts between pedestrians and vehicles, and pedestrian delay due to the conflicts. The simulation results indicate that the cellular automata is an effective simulation platform for investigating complex pedestrian-related traffic phenomenon at signalized intersections.

  14. Ranking the types of intersections for assessing the safety of pedestrians using TOPSIS method

    Directory of Open Access Journals (Sweden)

    Călin ŞERBU

    2014-11-01

    Full Text Available Every year, more than 1500 accidents with pedestrian occur in the intersections in Romania. The number of accidents involving pedestrians in roundabouts intersections type increased approximately three times in 2013 compared to 2009 in Romania. This alarming increase led to the need of assessing the safety of pedestrians in intersections with or without safety systems. The safety systems for pedestrians and drivers include: the road marking, the pedestrian crossings marking, signal intersections with road signs, traffic lights or pedestrian safety barriers. We propose to assess the types of intersections with TOPSIS method.

  15. Considering built environment and spatial correlation in modelling pedestrian injury severity

    DEFF Research Database (Denmark)

    Prato, Carlo G.; Kaplan, Sigal; Patrier, Alexandre

    traffic calming measures, illumination solutions, road maintenance programs and speed limit reductions. Moreover, this study emphasises the role of the built environment, as shopping areas, residential areas, and walking traffic density are positively related to a reduction in pedestrian injury severity......This study looks at mitigating and aggravating factors that are associated with the injury severity of pedestrians when they have crashes with another road user and overcomes existing limitations in the literature by posing attention on the built environment and considering spatial correlation...... of pedestrians to sustain a severe or fatal injury conditional on the occurrence of a crash with another road user. This study confirms previous findings about older pedestrians and intoxicated pedestrians being the most vulnerable road users, and crashes with heavy vehicles and in roads with higher speed limits...

  16. Considering built environment and spatial correlation in modelling pedestrian injury severity

    DEFF Research Database (Denmark)

    Prato, Carlo G.; Kaplan, Sigal; Patrier, Alexandre

    2018-01-01

    traffic calming measures, illumination solutions, road maintenance programs and speed limit reductions. Moreover, this study emphasises the role of the built environment, as shopping areas, residential areas, and walking traffic density are positively related to a reduction in pedestrian injury severity......This study looks at mitigating and aggravating factors that are associated with the injury severity of pedestrians when they have crashes with another road user and overcomes existing limitations in the literature by posing attention on the built environment and considering spatial correlation...... of pedestrians to sustain a severe or fatal injury conditional on the occurrence of a crash with another road user. This study confirms previous findings about older pedestrians and intoxicated pedestrians being the most vulnerable road users, and crashes with heavy vehicles and in roads with higher speed limits...

  17. Modeling detour behavior of pedestrian dynamics under different conditions

    Science.gov (United States)

    Qu, Yunchao; Xiao, Yao; Wu, Jianjun; Tang, Tao; Gao, Ziyou

    2018-02-01

    Pedestrian simulation approach has been widely used to reveal the human behavior and evaluate the performance of crowd evacuation. In the existing pedestrian simulation models, the social force model is capable of predicting many collective phenomena. Detour behavior occurs in many cases, and the important behavior is a dominate factor of the crowd evacuation efficiency. However, limited attention has been attracted for analyzing and modeling the characteristics of detour behavior. In this paper, a modified social force model integrated by Voronoi diagram is proposed to calculate the detour direction and preferred velocity. Besides, with the consideration of locations and velocities of neighbor pedestrians, a Logit-based choice model is built to describe the detour direction choice. The proposed model is applied to analyze pedestrian dynamics in a corridor scenario with either unidirectional or bidirectional flow, and a building scenario in real-world. Simulation results show that the modified social force model including detour behavior could reduce the frequency of collision and deadlock, increase the average speed of the crowd, and predict more practical crowd dynamics with detour behavior. This model can also be potentially applied to understand the pedestrian dynamics and design emergent management strategies for crowd evacuations.

  18. The role of fluctuations and interactions in pedestrian dynamics

    Science.gov (United States)

    Corbetta, Alessandro; Meeusen, Jasper; Benzi, Roberto; Lee, Chung-Min; Toschi, Federico

    Understanding quantitatively the statistical behaviour of pedestrians walking in crowds is a major scientific challenge of paramount societal relevance. Walking humans exhibit a rich (stochastic) dynamics whose small and large deviations are driven, among others, by own will as well as by environmental conditions. Via 24/7 automatic pedestrian tracking from multiple overhead Microsoft Kinect depth sensors, we collected large ensembles of pedestrian trajectories (in the order of tens of millions) in different real-life scenarios. These scenarios include both narrow corridors and large urban hallways, enabling us to cover and compare a wide spectrum of typical pedestrian dynamics. We investigate the pedestrian motion measuring the PDFs, e.g. those of position, velocity and acceleration, and at unprecedentedly high statistical resolution. We consider the dependence of PDFs on flow conditions, focusing on diluted dynamics and pair-wise interactions (''collisions'') for mutual avoidance. By means of Langevin-like models we provide models for the measured data, inclusive typical fluctuations and rare events. This work is part of the JSTP research programme ``Vision driven visitor behaviour analysis and crowd management'' with Project Number 341-10-001, which is financed by the Netherlands Organisation for Scientific Research (NWO).

  19. Pedestrian Walking Behavior Revealed through a Random Walk Model

    Directory of Open Access Journals (Sweden)

    Hui Xiong

    2012-01-01

    Full Text Available This paper applies method of continuous-time random walks for pedestrian flow simulation. In the model, pedestrians can walk forward or backward and turn left or right if there is no block. Velocities of pedestrian flow moving forward or diffusing are dominated by coefficients. The waiting time preceding each jump is assumed to follow an exponential distribution. To solve the model, a second-order two-dimensional partial differential equation, a high-order compact scheme with the alternating direction implicit method, is employed. In the numerical experiments, the walking domain of the first one is two-dimensional with two entrances and one exit, and that of the second one is two-dimensional with one entrance and one exit. The flows in both scenarios are one way. Numerical results show that the model can be used for pedestrian flow simulation.

  20. Greenways Pedestrian & Cyclist Counters

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Pedestrian and cyclist sensor data time stamped from sensors on the Bolin Creek Trail and Meadowmont Trail in Chapel Hill. Each sensor has four value points that...

  1. Complementary methods to plan pedestrian evacuation of the French Riviera's beaches in case of tsunami threat: graph- and multi-agent-based modelling

    Directory of Open Access Journals (Sweden)

    A. Sahal

    2013-07-01

    Full Text Available Small amplitude tsunamis have impacted the French Mediterranean shore (French Riviera in the past centuries. Some caused casualties; others only generated economic losses. While the North Atlantic and Mediterranean tsunami warning system is being tested and is almost operational, no awareness and preparedness measure is being implemented at a local scale. Evacuation is to be considered along the French Riviera, but no plan exists within communities. We show that various approaches can provide local stakeholders with evacuation capacities assessments to develop adapted evacuation plans through the case study of the Cannes–Antibes region. The complementarity between large- and small-scale approaches is demonstrated with the use of macro-simulators (graph-based and micro-simulators (multi-agent-based to select shelter points and choose evacuation routes for pedestrians located on the beach. The first one allows automatically selecting shelter points and measuring and mapping their accessibility. The second one shows potential congestion issues during pedestrian evacuations, and provides leads for the improvement of urban environment. Temporal accessibility to shelters is compared to potential local and distal tsunami travel times, showing a 40 min deficit for an adequate crisis management in the first scenario, and a 30 min surplus for the second one.

  2. Complementary methods to plan pedestrian evacuation of the French Riviera's beaches in case of tsunami threat: graph- and multi-agent-based modelling

    Science.gov (United States)

    Sahal, A.; Leone, F.; Péroche, M.

    2013-07-01

    Small amplitude tsunamis have impacted the French Mediterranean shore (French Riviera) in the past centuries. Some caused casualties; others only generated economic losses. While the North Atlantic and Mediterranean tsunami warning system is being tested and is almost operational, no awareness and preparedness measure is being implemented at a local scale. Evacuation is to be considered along the French Riviera, but no plan exists within communities. We show that various approaches can provide local stakeholders with evacuation capacities assessments to develop adapted evacuation plans through the case study of the Cannes-Antibes region. The complementarity between large- and small-scale approaches is demonstrated with the use of macro-simulators (graph-based) and micro-simulators (multi-agent-based) to select shelter points and choose evacuation routes for pedestrians located on the beach. The first one allows automatically selecting shelter points and measuring and mapping their accessibility. The second one shows potential congestion issues during pedestrian evacuations, and provides leads for the improvement of urban environment. Temporal accessibility to shelters is compared to potential local and distal tsunami travel times, showing a 40 min deficit for an adequate crisis management in the first scenario, and a 30 min surplus for the second one.

  3. Pedestrian Counting with Occlusion Handling Using Stereo Thermal Cameras

    DEFF Research Database (Denmark)

    Kristoffersen, Miklas Strøm; Dueholm, Jacob Velling; Gade, Rikke

    2016-01-01

    and the complexity of scenes with many people occluding one another. To address these challenges, this paper introduces the use of a stereo thermal camera setup for pedestrian counting. We investigate the reconstruction of 3D points in a pedestrian street with two thermal cameras and propose an algorithm......The number of pedestrians walking the streets or gathered in public spaces is a valuable piece of information for shop owners, city governments, event organizers and many others. However, automatic counting that takes place day and night is challenging due to changing lighting conditions...

  4. Exploring physical attributes of walkability from perspective of blind pedestrians

    Directory of Open Access Journals (Sweden)

    Bona Frazila Russ

    2018-01-01

    Full Text Available Access has become a crucial issue for the persons with disabilities (PWDs, in which the inconvenient transportation facilities is contributed to the dependent living issue of PWD, specifically the visual impaired person. As a primary aspect of transportation, the walking facilities further needs to be carefully considered for facilitating their moving activities. Recently, the effect of built environment on walking behavior has obtained significant attention, which is generally constructed within the framework of walkability concept. The walkability has been extensively used for evaluating the physical attributes of pedestrian facilities by comparing it to the walker perception. Hence, the evaluation result can directly answer the needs of pedestrian. Despite of their recent research achievements, the walkability concept is mostly unsuccessful to take into account the blind walker characteristics. This paper then explore physical attributes of walkability environment in order to provide the friendly pedestrian facilities for the blind pedestrian, which is rarely explored. The research is established based on the blind walker perspectives within the micro-level analysis that incorporates a smaller unit of measurement (i.e., the street-level physical attributes. The physical attributes result are thus potentially to be utilized for analyzing the required pedestrian facilities for the blind pedestrians.

  5. Effective Road Model for Congestion Control in VANETs

    OpenAIRE

    Dongre, Manoj M.; Bawane, Narendra G.

    2016-01-01

    Congestion on the roads is a key problem to deal with, which wastes valuable time.. Due to high mobility rate and relative speed link failure occur very often. VANET is used to tackle the problem of congestion, and make decisions well in advance to avoid traffic congestion. In this paper we proposed a solution to detect and control the traffic congestion by using of both (V2V) and (V2I), as a result the drivers become aware of the location of congestion as well as way to avoid getting stuck i...

  6. Considering built environment and spatial correlation in modeling pedestrian injury severity.

    Science.gov (United States)

    Prato, Carlo G; Kaplan, Sigal; Patrier, Alexandre; Rasmussen, Thomas K

    2018-01-02

    This study looks at mitigating and aggravating factors that are associated with the injury severity of pedestrians when they have crashes with another road user and overcomes existing limitations in the literature by focusing attention on the built environment and considering spatial correlation across crashes. Reports for 6,539 pedestrian crashes occurred in Denmark between 2006 and 2015 were merged with geographic information system resources containing detailed information about the built environment and exposure at the crash locations. A linearized spatial logit model estimated the probability of pedestrians sustaining a severe or fatal injury conditional on the occurrence of a crash with another road user. This study confirms previous findings about older pedestrians and intoxicated pedestrians being the most vulnerable road users and crashes with heavy vehicles and in roads with higher speed limits being related to the most severe outcomes. This study provides novel perspectives by showing positive spatial correlations of crashes with the same severity outcomes and emphasizing the role of the built environment in the proximity of the crash. This study emphasizes the need for thinking about traffic calming measures, illumination solutions, road maintenance programs, and speed limit reductions. Moreover, this study emphasizes the role of the built environment, because shopping areas, residential areas, and walking traffic density are positively related to a reduction in pedestrian injury severity. Often, these areas have in common a larger pedestrian mass that is more likely to make other road users more aware and attentive, whereas the same does not seem to apply to areas with lower pedestrian density.

  7. Enhancing the Driver Awareness of Pedestrian using Augmented Reality Cues

    OpenAIRE

    Phan , Minh Tien; Thouvenin , Indira; Frémont , Vincent

    2016-01-01

    International audience; Pedestrian accident is a serious problem for the society. Pedestrian Collision Warning Systems (PCWS) are proposed to detect the presence of pedestrians and to warn the driver about the potential dangers. However, their interfaces associated with ambiguous alerts can distract drivers and create more dangers. On the other hand, Augmented Reality (AR) with Head-Up Display (HUD) interfaces have recently attracted the attention in the field of automotive research as they c...

  8. Training Children in Pedestrian Safety: Distinguishing Gains in Knowledge from Gains in Safe Behavior

    OpenAIRE

    Schwebel, David C.; McClure, Leslie A.

    2014-01-01

    Pedestrian injuries contribute greatly to child morbidity and mortality. Recent evidence suggests that training within virtual pedestrian environments may improve children’s street crossing skills, but may not convey knowledge about safety in street environments. We hypothesized that (a) children will gain pedestrian safety knowledge via videos/software/internet websites, but not when trained by virtual pedestrian environment or other strategies; (b) pedestrian safety knowledge will be associ...

  9. Congestion management in liberalized market environment

    International Nuclear Information System (INIS)

    2006-01-01

    This paper is based on the survey conducted by WG C5.4 on congestion management. It describes market conditions and institutional arrangements in the 18 countries participating in the survey, and internal and cross-border congestion management. The interaction with the electricity market is discussed, considering allocation of transmission capacity, market schedule, congestion management tools and payment for the costs incurred. The survey shows that there is a tendency towards the use of market-based methods. (author)

  10. Traffic instabilities in self-organized pedestrian crowds.

    Directory of Open Access Journals (Sweden)

    Mehdi Moussaïd

    Full Text Available In human crowds as well as in many animal societies, local interactions among individuals often give rise to self-organized collective organizations that offer functional benefits to the group. For instance, flows of pedestrians moving in opposite directions spontaneously segregate into lanes of uniform walking directions. This phenomenon is often referred to as a smart collective pattern, as it increases the traffic efficiency with no need of external control. However, the functional benefits of this emergent organization have never been experimentally measured, and the underlying behavioral mechanisms are poorly understood. In this work, we have studied this phenomenon under controlled laboratory conditions. We found that the traffic segregation exhibits structural instabilities characterized by the alternation of organized and disorganized states, where the lifetime of well-organized clusters of pedestrians follow a stretched exponential relaxation process. Further analysis show that the inter-pedestrian variability of comfortable walking speeds is a key variable at the origin of the observed traffic perturbations. We show that the collective benefit of the emerging pattern is maximized when all pedestrians walk at the average speed of the group. In practice, however, local interactions between slow- and fast-walking pedestrians trigger global breakdowns of organization, which reduce the collective and the individual payoff provided by the traffic segregation. This work is a step ahead toward the understanding of traffic self-organization in crowds, which turns out to be modulated by complex behavioral mechanisms that do not always maximize the group's benefits. The quantitative understanding of crowd behaviors opens the way for designing bottom-up management strategies bound to promote the emergence of efficient collective behaviors in crowds.

  11. Pedestrian-induced lateral forces on footbridges

    DEFF Research Database (Denmark)

    Ingolfsson, Einar Thor; Georgakis, Christos T.; Jönsson, Jeppe

    2012-01-01

    of the underlying pavement. An extensive experimental analysis has been carried out to determine the lateral forces generated by pedestrians when walking on a laterally moving treadmill. Two different conditions are investigated; initially the treadmill is fixed and then it is laterally driven in a sinusoidal...... motion at varying combinations of frequencies (0.33-1.07 Hz) and amplitudes (4.5-48 mm). The component of the pedestrian-induced force which is caused by the laterally moving surface is herewith quantified through equivalent velocity and acceleration proportional coefficients. It is shown that large...

  12. Pedestrian-induced lateral forces on footbridges

    DEFF Research Database (Denmark)

    Ingólfsson, Einar Thór; Georgakis, Christos T.; Jönsson, Jeppe

    2011-01-01

    of the underlying pavement. An extensive experimental analysis has been carried out to determine the lateral forces generated by pedestrians when walking on a laterally moving treadmill. Two different conditions are investigated; initially the treadmill is fixed and then it is laterally driven in a sinusoidal...... motion at varying combinations of frequencies (0.33-1.07 Hz) and amplitudes (4.5-48 mm). The component of the pedestrian-induced force which is caused by the laterally moving surface is herewith quantified through equivalent velocity and acceleration proportional coefficients. It is shown that large...

  13. Effect of Pedestrians on the Saturation Flow Rate of Right Turn Movements at Signalized Intersection - Case Study from Rasht City

    Science.gov (United States)

    Roshani, Mostafa; Bargegol, Iraj

    2017-10-01

    Saturation flow rate is one of the important items in the analysis of the capacity of signalized intersections that are affected by some factors. Pedestrian crossing on signalized intersection is one of the factors which influence the vehicles flow. In addition, the released researches determined that the greatest impact of pedestrian on the saturation flow occurred in the Conflict zone where the highest chance of the encounter of pedestrians and vehicles has in turning movements. The purpose of this paper is to estimate the saturation flow rate considering the effect of a pedestrian on right turn movements of the signalized intersections in Rasht city. For this goal, 6 signalized intersections with 90 cycles of reviews were selected for the estimation of saturation flow rate by the microscopic method and also 3 right turn lanes containing radius differences with 70 cycles of reviews were collected for the investigation of the pedestrians’ effects. Each phase of right turn lanes cycle was divided in the pieces of 10-second period which was totally 476 sample volumes of considered pedestrians and vehicles at that period. Only 101 samples of those were ranged as saturated conditions. Finally, using different regression models, the best relationship between pedestrian’s volume and right turning vehicles flow parameters was evaluated. The results indicate that there is a primarily linear relationship between pedestrian volume and right turning vehicles flow with R2=0.6261. According to this regression model with the increase in pedestrians, saturation flow rate will be reduced. In addition, by comparing the adjustment factor obtained in the present study and other studies, it was found that the effect of pedestrians on the right-turn movements in Rasht city is less than the rest of the world.

  14. Fast Pedestrian Recognition Based on Multisensor Fusion

    Directory of Open Access Journals (Sweden)

    Hongyu Hu

    2012-01-01

    Full Text Available A fast pedestrian recognition algorithm based on multisensor fusion is presented in this paper. Firstly, potential pedestrian locations are estimated by laser radar scanning in the world coordinates, and then their corresponding candidate regions in the image are located by camera calibration and the perspective mapping model. For avoiding time consuming in the training and recognition process caused by large numbers of feature vector dimensions, region of interest-based integral histograms of oriented gradients (ROI-IHOG feature extraction method is proposed later. A support vector machine (SVM classifier is trained by a novel pedestrian sample dataset which adapt to the urban road environment for online recognition. Finally, we test the validity of the proposed approach with several video sequences from realistic urban road scenarios. Reliable and timewise performances are shown based on our multisensor fusing method.

  15. Rerouting algorithms solving the air traffic congestion

    Science.gov (United States)

    Adacher, Ludovica; Flamini, Marta; Romano, Elpidio

    2017-06-01

    Congestion in the air traffic network is a problem with an increasing relevance for airlines costs as well as airspace safety. One of the major issue is the limited operative capacity of the air network. In this work an Autonomous Agent approach is proposed to solve in real time the problem of air traffic congestion. The air traffic infrastructures are modeled with a graph and are considered partitioned in different sectors. Each sector has its own decision agent dealing with the air traffic control involved in it. Each agent sector imposes a real time aircraft scheduling to respect both delay and capacity constrains. When a congestion is predicted, a new aircraft scheduling is computed. Congestion is solved when the capacity constrains are satisfied once again. This can be done by delaying on ground aircraft or/and rerouting aircraft and/or postponing the congestion. We have tested two different algorithms that calculate K feasible paths for each aircraft involved in the congestion. Some results are reported on North Italian air space.

  16. Evaluation of pulmonary congestion by computed tomography

    International Nuclear Information System (INIS)

    Morooka, Nobuhiro; Yamamoto, Hironori; Yoshida, Hideo; Watanabe, Shigeru; Nakamura, Mamoru

    1980-01-01

    Pulmonary congestion and pulmonary water distribution of lung fields were evaluated by computed tomography (CT) in 31 patients with congestive heart failure and 19 normal subjects in the supine position. In normal subjects, no difference was noted in the CT value between levels of intercostal spaces as well as between right and left lung fields. CT values were greater in posterior lung fields than in anterior lung fields. A significant increase of CT values at both anterior and posterior lung fields was shown in patients with congestive heart failure compared to normal subjects. In congestive heart failure, pulmonary CT values were correlated with various clinical parameters in the order of chest X-ray findings, NYHA functional classification, venous pressure, right heart catheter findings and circulation time. CT values were decreased with the improvement of parameters by medical treatment. Thus, the increase of pulmonary CT values in patients with congestive heart failure indicated the increase of pulmonary blood content and pulmonary tissue edema in a unit volume. This method was particularly useful for the evaluation of pulmonary congestion and pulmonary water distribution. (author)

  17. AUTOMATIC PEDESTRIAN CROSSING DETECTION AND IMPAIRMENT ANALYSIS BASED ON MOBILE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    X. Liu

    2017-09-01

    Full Text Available Pedestrian crossing, as an important part of transportation infrastructures, serves to secure pedestrians’ lives and possessions and keep traffic flow in order. As a prominent feature in the street scene, detection of pedestrian crossing contributes to 3D road marking reconstruction and diminishing the adverse impact of outliers in 3D street scene reconstruction. Since pedestrian crossing is subject to wearing and tearing from heavy traffic flow, it is of great imperative to monitor its status quo. On this account, an approach of automatic pedestrian crossing detection using images from vehicle-based Mobile Mapping System is put forward and its defilement and impairment are analyzed in this paper. Firstly, pedestrian crossing classifier is trained with low recall rate. Then initial detections are refined by utilizing projection filtering, contour information analysis, and monocular vision. Finally, a pedestrian crossing detection and analysis system with high recall rate, precision and robustness will be achieved. This system works for pedestrian crossing detection under different situations and light conditions. It can recognize defiled and impaired crossings automatically in the meanwhile, which facilitates monitoring and maintenance of traffic facilities, so as to reduce potential traffic safety problems and secure lives and property.

  18. Pedestrians and cyclists interaction in urban settings of Pardubice city

    Directory of Open Access Journals (Sweden)

    Josef Bulíček

    2014-12-01

    Full Text Available Presented paper is focused on questions of cyclist transport in urban settings, specifically in the city of Pardubice. Emphasis is put on analysis of potentially conflict places, especially in interaction with pedestrians. Direct terrain observation and consequent evaluation of conflict potential are used as method for data collecting. When cycling routes are designed, the requirements of the cyclists should be taken into account in order to ensure that the routes are accepted. In order to make planning user oriented one has to know which criteria are important for cyclists` route choice. Until now not many studies were conducted on this topic in Czech Republic. Theoretical background used states 5 basic requirements for cycle routes. These are: 1. Coherence (the cycling infrastructure forms a coherent unit and links with all departure points and destinations of cyclist, 2. Directness (the cycling infrastructure continually offers the cyclists as direct a route as possible, so detours are kept to a minimum, 3. attractiveness (the cycling infrastructure is designed and fitted to the surroundings in such a way that cycling is attractive, 4. safety (the cycling infrastructure guarantees the road safety of cyclists and other road users, 5. comfort (the cycling infrastructure enables a quick and comfortable flow of bicycle traffic.. Planners need a clear understanding of what influences bicycling behavior to develop effective strategies to increase use of those modes. Transportation practitioners have largely focused on infrastructure and the built environment, although researchers have found that attitudes are also very important. Theory of planned behavior (Ajzen, 1985 - intentions to perform behaviors of different kinds can be predicted with high accuracy from attitudes toward the behavior, subjective norms, and perceived behavioral control; and these intentions, together with perceptions of behavioral control, account for considerable variance in

  19. Small-size pedestrian detection in large scene based on fast R-CNN

    Science.gov (United States)

    Wang, Shengke; Yang, Na; Duan, Lianghua; Liu, Lu; Dong, Junyu

    2018-04-01

    Pedestrian detection is a canonical sub-problem of object detection with high demand during recent years. Although recent deep learning object detectors such as Fast/Faster R-CNN have shown excellent performance for general object detection, they have limited success for small size pedestrian detection in large-view scene. We study that the insufficient resolution of feature maps lead to the unsatisfactory accuracy when handling small instances. In this paper, we investigate issues involving Fast R-CNN for pedestrian detection. Driven by the observations, we propose a very simple but effective baseline for pedestrian detection based on Fast R-CNN, employing the DPM detector to generate proposals for accuracy, and training a fast R-CNN style network to jointly optimize small size pedestrian detection with skip connection concatenating feature from different layers to solving coarseness of feature maps. And the accuracy is improved in our research for small size pedestrian detection in the real large scene.

  20. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon

    Science.gov (United States)

    Rakowska, Agata; Wong, Ka Chun; Townsend, Thomas; Chan, Ka Lok; Westerdahl, Dane; Ng, Simon; Močnik, Griša; Drinovec, Luka; Ning, Zhi

    2014-12-01

    Vehicle emissions are identified as a major source of air pollution in metropolitan areas. Emission control programs in many cities have been implemented as part of larger scale transport policy interventions to control traffic pollutants and reduce public health risks. These interventions include provision of traffic-free and low emission zones and congestion charging. Various studies have investigated the impact of urban street configurations, such as street canyon in urban centers, on pollutants dispersion and roadside air quality. However, there are few investigations in the literature to study the impact of change of fleet composition and street canyon effects on the on-road pollutants concentrations and associated roadside pedestrian exposure to the pollutants. This study presents an experimental investigation on the traffic related gas and particle pollutants in and near major streets in one of the most developed business districts in Hong Kong, known as Central. Both street canyon and open roadway configurations were included in the study design. Mobile measurement techniques were deployed to monitor both on-road and roadside pollutants concentrations at different times of the day and on different days of a week. Multiple traffic counting points were also established to concurrently collect data on traffic volume and fleet composition on individual streets. Street canyon effects were evident with elevated on-road pollutants concentrations. Diesel vehicles were found to be associated with observed pollutant levels. Roadside black carbon concentrations were found to correlate with their on-road levels but with reduced concentrations. However, ultrafine particles showed very high concentrations in roadside environment with almost unity of roadside/on-road ratios possibly due to the accumulation of primary emissions and secondary PM formation. The results from the study provide useful information for the effective urban transport design and bus route

  1. Temporal and Fine-Grained Pedestrian Action Recognition on Driving Recorder Database.

    Science.gov (United States)

    Kataoka, Hirokatsu; Satoh, Yutaka; Aoki, Yoshimitsu; Oikawa, Shoko; Matsui, Yasuhiro

    2018-02-20

    The paper presents an emerging issue of fine-grained pedestrian action recognition that induces an advanced pre-crush safety to estimate a pedestrian intention in advance. The fine-grained pedestrian actions include visually slight differences (e.g., walking straight and crossing), which are difficult to distinguish from each other. It is believed that the fine-grained action recognition induces a pedestrian intention estimation for a helpful advanced driver-assistance systems (ADAS). The following difficulties have been studied to achieve a fine-grained and accurate pedestrian action recognition: (i) In order to analyze the fine-grained motion of a pedestrian appearance in the vehicle-mounted drive recorder, a method to describe subtle change of motion characteristics occurring in a short time is necessary; (ii) even when the background moves greatly due to the driving of the vehicle, it is necessary to detect changes in subtle motion of the pedestrian; (iii) the collection of large-scale fine-grained actions is very difficult, and therefore a relatively small database should be focused. We find out how to learn an effective recognition model with only a small-scale database. Here, we have thoroughly evaluated several types of configurations to explore an effective approach in fine-grained pedestrian action recognition without a large-scale database. Moreover, two different datasets have been collected in order to raise the issue. Finally, our proposal attained 91.01% on National Traffic Science and Environment Laboratory database (NTSEL) and 53.23% on the near-miss driving recorder database (NDRDB). The paper has improved +8.28% and +6.53% from baseline two-stream fusion convnets.

  2. Temporal and Fine-Grained Pedestrian Action Recognition on Driving Recorder Database

    Directory of Open Access Journals (Sweden)

    Hirokatsu Kataoka

    2018-02-01

    Full Text Available The paper presents an emerging issue of fine-grained pedestrian action recognition that induces an advanced pre-crush safety to estimate a pedestrian intention in advance. The fine-grained pedestrian actions include visually slight differences (e.g., walking straight and crossing, which are difficult to distinguish from each other. It is believed that the fine-grained action recognition induces a pedestrian intention estimation for a helpful advanced driver-assistance systems (ADAS. The following difficulties have been studied to achieve a fine-grained and accurate pedestrian action recognition: (i In order to analyze the fine-grained motion of a pedestrian appearance in the vehicle-mounted drive recorder, a method to describe subtle change of motion characteristics occurring in a short time is necessary; (ii even when the background moves greatly due to the driving of the vehicle, it is necessary to detect changes in subtle motion of the pedestrian; (iii the collection of large-scale fine-grained actions is very difficult, and therefore a relatively small database should be focused. We find out how to learn an effective recognition model with only a small-scale database. Here, we have thoroughly evaluated several types of configurations to explore an effective approach in fine-grained pedestrian action recognition without a large-scale database. Moreover, two different datasets have been collected in order to raise the issue. Finally, our proposal attained 91.01% on National Traffic Science and Environment Laboratory database (NTSEL and 53.23% on the near-miss driving recorder database (NDRDB. The paper has improved +8.28% and +6.53% from baseline two-stream fusion convnets.

  3. Features of microscopic pedestrian movement in a panic situation based on cellular automata model

    Science.gov (United States)

    Ibrahim, Najihah; Hassan, Fadratul Hafinaz

    2017-10-01

    Pedestrian movement is the one of the subset for the crowd management under simulation objective. During panic situation, pedestrian usually will create a microscopic movement that lead towards the self-organization. During self-organizing, the behavioral and physical factors had caused the mass effect on the pedestrian movement. The basic CA model will create a movement path for each pedestrian over a time step. However, due to the factors immerge, the CA model needs some enhancement that will establish a real simulation state. Hence, this concept paper will discuss on the enhanced features of CA model for microscopic pedestrian movement during panic situation for a better pedestrian simulation.

  4. Enlightenment of Qilou Street Space Intelligence to Pedestrian System Design in Commercial District

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2016-01-01

    Full Text Available Aiming at those generally existing problems in urban commercial pedestrian districts, through the design methods of extracting separation of man from vehicle in traditional Qilou pedestrian street space, continuous pedestrian space with shelter, and the behavior paths with combination of commercial activities, this thesis sets about from the behaviors of pedestrians in walking state, and finds that the traditional Qilou pedestrian street space can satisfy pedestrians’ physiological and psychological demands in shopping better. At the same time, combining current urban commercial districts developing demands, and the successful experience from traditional Qilou, this thesis also proposes relevant improvement measures. The improvements in design means are expected to improve pedestrian environment for, and achieve the commercial values of these districts, as well as the win-win of environment improvement and commercial activity development.

  5. Epidemiology of pedestrian-MVCs by road type in Cluj, Romania.

    Science.gov (United States)

    Hamann, Cara; Peek-Asa, Corinne; Rus, Diana

    2015-04-01

    Pedestrian-motor vehicle (PMV) crash rates in Romania are among the highest in all of Europe. The purpose of this study was to examine the characteristics of pedestrian-MVCs in Cluj County, Romania, on the two major types of roadways: national or local. Cluj County police crash report data from 2010 were used to identify pedestrian, driver and crash characteristics of pedestrian-MVCs. Crashes with available location data were geocoded and road type (national or local) for each crash was determined. Distributions of crash characteristics were examined by road type and multivariable logistic regression models were built to determine predictors of crash road type. Crashes occurring on national roads involved more teenagers and adults, while those on local roads involved more young children (0-12) and older adults (65+) (pRomania. Results from this study suggest that factors leading to PMV crashes on national roads are more likely to involve driver-related causes compared with local roads. Intervention priorities to reduce pedestrian crashes on national roads should be directed towards driver behaviour on national roads. Further examination of driver and pedestrian behaviours related to crash risk on both national and local roads, such as distraction and speeding, is warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Conditions that Influence Drivers' Yielding Behavior for Uncontrolled Crossings

    Science.gov (United States)

    Bourquin, Eugene; Emerson, Robert Wall; Sauerburger, Dona

    2011-01-01

    Pedestrians with visual impairments need to cross streets where traffic signals and traffic signage are not present. This study examined the influences of several interventions, including a pedestrian's use of a mobility cane, on the behavior of drivers when they were expected to yield to a pedestrian crossing at an uncontrolled crossing.…

  7. Qualitative comparison of north-american procedures for areawide pedestrian travel measurement

    Directory of Open Access Journals (Sweden)

    Ryan Greene-Roesel

    2009-10-01

    Full Text Available

    There is no standard system for estimating area-wide pedestrian volumes in the United States. As a result, pedestrian volumes cannot be routinely used to guide transportation investments and monitoring measures performance. Vehicle volumes, by contrast, are measured systematically in each state and are reported to the Federal Highway Administration annually to be used in the allocation of federal funds. This paper investigates the advantages and disadvantages of three approaches to the creation of a standard system of pedestrian volume measurement: direct sampling, survey methods, and modeling. Examples of each method are given, and the potential of each to become a national standard is discussed. Of the three approaches, the modeling methods were judged to be most suitable for tracking pedestrian volumes at the national, state, and sub-state level. A standardized pedestrian volume modeling method could make use of existing data sources without generating the need for a new national pedestrian data collection effort.

  8. Delay-based virtual congestion control in multi-tenant datacenters

    Science.gov (United States)

    Liu, Yuxin; Zhu, Danhong; Zhang, Dong

    2018-03-01

    With the evolution of cloud computing and virtualization, the congestion control of virtual datacenters has become the basic issue for multi-tenant datacenters transmission. Regarding to the friendly conflict of heterogeneous congestion control among multi-tenant, this paper proposes a delay-based virtual congestion control, which translates the multi-tenant heterogeneous congestion control into delay-based feedback uniformly by setting the hypervisor translation layer, modifying three-way handshake of explicit feedback and packet loss feedback and throttling receive window. The simulation results show that the delay-based virtual congestion control can effectively solve the unfairness of heterogeneous feedback congestion control algorithms.

  9. A Case Study on the Walking Speed of Pedestrian at the Bus Terminal Area

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Mohd Firdaus

    2018-01-01

    Full Text Available Walking speed is one of the factors in understanding the pedestrian walking behaviours. Every pedestrian has different level of walking speed that are regulated by some factors such as gender and age. This study was conducted at a bus terminal area with two objectives in which the first one was to determine the average walking speed of pedestrian by considering the factors of age, gender, people with and without carrying baggage; and the second one was to make a comparison of the average walking speed that considered age as the factor of comparison between pedestrian at the bus terminal area and crosswalk. Demographic factor of pedestrian walking speed in this study are gender and age consist of male, female, and 7 groups of age categories that are children, adult men and women, senior adult men and women, over 70 and disabled person. Data of experiment was obtained by making a video recording of the movement of people that were walking and roaming around at the main lobby for 45 minutes by using a camcorder. Hence, data analysis was done by using software named Human Behaviour Simulator (HBS for analysing the data extracted from the video. The result of this study was male pedestrian walked faster than female with the average of walking speed 1.13m/s and 1.07m/s respectively. Averagely, pedestrian that walked without carrying baggage had higher walking speed compared to pedestrian that were carrying baggage with the speed of 1.02m/s and 0.70m/s respectively. Male pedestrian walks faster than female because they have higher level of stamina and they are mostly taller than female pedestrian. Furthermore, pedestrian with baggage walks slower because baggage will cause distractions such as pedestrian will have more weight to carry and people tend to walk slower.

  10. A Case Study on the Walking Speed of Pedestrian at the Bus Terminal Area

    Science.gov (United States)

    Firdaus Mohamad Ali, Mohd; Salleh Abustan, Muhamad; Hidayah Abu Talib, Siti; Abustan, Ismail; Rahman, Noorhazlinda Abd; Gotoh, Hitoshi

    2018-03-01

    Walking speed is one of the factors in understanding the pedestrian walking behaviours. Every pedestrian has different level of walking speed that are regulated by some factors such as gender and age. This study was conducted at a bus terminal area with two objectives in which the first one was to determine the average walking speed of pedestrian by considering the factors of age, gender, people with and without carrying baggage; and the second one was to make a comparison of the average walking speed that considered age as the factor of comparison between pedestrian at the bus terminal area and crosswalk. Demographic factor of pedestrian walking speed in this study are gender and age consist of male, female, and 7 groups of age categories that are children, adult men and women, senior adult men and women, over 70 and disabled person. Data of experiment was obtained by making a video recording of the movement of people that were walking and roaming around at the main lobby for 45 minutes by using a camcorder. Hence, data analysis was done by using software named Human Behaviour Simulator (HBS) for analysing the data extracted from the video. The result of this study was male pedestrian walked faster than female with the average of walking speed 1.13m/s and 1.07m/s respectively. Averagely, pedestrian that walked without carrying baggage had higher walking speed compared to pedestrian that were carrying baggage with the speed of 1.02m/s and 0.70m/s respectively. Male pedestrian walks faster than female because they have higher level of stamina and they are mostly taller than female pedestrian. Furthermore, pedestrian with baggage walks slower because baggage will cause distractions such as pedestrian will have more weight to carry and people tend to walk slower.

  11. Congestive index of portal vein

    International Nuclear Information System (INIS)

    Kim, Won Ho; Kim, H. K.; Lee, S. C.; Han, S. H.; Han, K. H.; Chung, J. B.; Choi, H. J.

    1989-01-01

    In patients with portal hypertension, the blood flow volume is maintained despite decreased blood flow velocity due to enlargement of the vascular cross sectional area. Thus, the 'congestion index' of the portal vein, which is the ratio between the cross sectional area (cm2) and the blood flow velocity (cm/sec) determined by a Doppler ultrasonography, may be a sensitive index by which to assess portal hypertension. We performed Doppler ultrasonography on 24 normal subjects, 14 patients with biopsy proved chronic active hepatitis and 55 patients with liver cirrhosis in order to assess the diagnostic value of the congestion index. The cross sectional area of the portal vein was significantly enlarged and the mean blood flow velocity was significantly reduced in patients with liver cirrhosis compared with controls. However, the blood flow volume was no difference. The congestion index of the portal vein was significantly increased in patients with liver cirrhosis (0.113+0.035) compared with patients with chronic active hepatitis(0.078+0.029) (p<0.001) and controls (0.053+0.016) (p<0.001). The sensitivity, specificity and predictability of the congestion index for detection of patients with the cirrhosis of the liver were 76.4%, 100% and 100% respectively, when the normal range was set at mean+2SD. The results suggest that the congestion index of the portal vein may pla a significant role in diagnosis of portal hypertensive patients

  12. Understanding congested travel in urban areas

    Science.gov (United States)

    Çolak, Serdar; Lima, Antonio; González, Marta C.

    2016-03-01

    Rapid urbanization and increasing demand for transportation burdens urban road infrastructures. The interplay of number of vehicles and available road capacity on their routes determines the level of congestion. Although approaches to modify demand and capacity exist, the possible limits of congestion alleviation by only modifying route choices have not been systematically studied. Here we couple the road networks of five diverse cities with the travel demand profiles in the morning peak hour obtained from billions of mobile phone traces to comprehensively analyse urban traffic. We present that a dimensionless ratio of the road supply to the travel demand explains the percentage of time lost in congestion. Finally, we examine congestion relief under a centralized routing scheme with varying levels of awareness of social good and quantify the benefits to show that moderate levels are enough to achieve significant collective travel time savings.

  13. Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis

    Science.gov (United States)

    Szafran, J.; Kamiński, M.

    2017-02-01

    The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.

  14. Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis

    Directory of Open Access Journals (Sweden)

    Szafran J.

    2017-02-01

    Full Text Available The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.

  15. Simulation of Pedestrian Behavior in the Collision-Avoidance Process considering Their Moving Preferences

    Directory of Open Access Journals (Sweden)

    Zhilu Yuan

    2017-01-01

    Full Text Available Walking habits can affect the self-organizing movement in pedestrian flow. In China, pedestrians prefer to walk along the right-hand side in the collision-avoidance process, and the same is true for the left-hand preference that is followed in several countries. Through experiments with pedestrian flow, we find that the relative position between pedestrians can affect their moving preferences. We propose a kind of collision-avoidance force based on the social force model, which considers the predictions of potential conflict and the relative position between pedestrians. In the simulation, we use the improved model to explore the effect of moving preference on the collision-avoidance process and self-organizing pedestrian movement. We conclude that the improved model can bring the simulation closer to reality and that moving preference is conducive to the self-adjustment of counterflow.

  16. Focus on renal congestion in heart failure.

    Science.gov (United States)

    Afsar, Baris; Ortiz, Alberto; Covic, Adrian; Solak, Yalcin; Goldsmith, David; Kanbay, Mehmet

    2016-02-01

    Hospitalizations due to heart failure are increasing steadily despite advances in medicine. Patients hospitalized for worsening heart failure have high mortality in hospital and within the months following discharge. Kidney dysfunction is associated with adverse outcomes in heart failure patients. Recent evidence suggests that both deterioration in kidney function and renal congestion are important prognostic factors in heart failure. Kidney congestion in heart failure results from low cardiac output (forward failure), tubuloglomerular feedback, increased intra-abdominal pressure or increased venous pressure. Regardless of the cause, renal congestion is associated with increased morbidity and mortality in heart failure. The impact on outcomes of renal decongestion strategies that do not compromise renal function should be explored in heart failure. These studies require novel diagnostic markers that identify early renal damage and renal congestion and allow monitoring of treatment responses in order to avoid severe worsening of renal function. In addition, there is an unmet need regarding evidence-based therapeutic management of renal congestion and worsening renal function. In the present review, we summarize the mechanisms, diagnosis, outcomes, prognostic markers and treatment options of renal congestion in heart failure.

  17. Assessment of Integrated Pedestrian Protection Systems with Autonomous Emergency Braking (AEB) and Passive Safety Components.

    Science.gov (United States)

    Edwards, Mervyn; Nathanson, Andrew; Carroll, Jolyon; Wisch, Marcus; Zander, Oliver; Lubbe, Nils

    2015-01-01

    estimated AEB benefit. German and Great Britain versions of the methodology are available. The methodology was used to assess cars with good, average, and poor Euro NCAP pedestrian ratings, in combination with a current AEB system. The fitment of a hypothetical A-pillar airbag was also investigated. It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Because the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area, a hypothetical A-pillar airbag showed high potential to reduce overall casualty cost. A benefit-based methodology for assessment of integrated pedestrian protection systems with AEB has been developed and tested. It uses input from AEB tests and Euro NCAP passive safety tests to give an integrated assessment of the system performance, which includes consideration of effects such as the change in head impact location caused by the impact speed reduction given by the AEB.

  18. Pedestrian crossing behavior, an observational study in the city of Ushuaia, Argentina.

    Science.gov (United States)

    Poó, Fernando Martín; Ledesma, Ruben Daniel; Trujillo, Roberto

    2018-04-03

    Pedestrian crashes are a critical problem in Latin American countries. However, little research has been published about pedestrians and even less about their behaviors in a naturalistic context. The objective of the present research was to explore risky pedestrian crossing behaviors in traffic intersections in an argentine city (Ushuaia). It is focused in different stages of the crossing process, traffic code violations, and other potentially risky behaviors such as distractions. A high frequency of risky behaviors among pedestrians was expected. Moreover, according to previous findings, it was hypothesized that men and younger pedestrians would show riskier behaviors. Participants were 802 pedestrians (53.9% females) observed at several intersections (with and without traffic lights) in the city of Ushuaia. Behaviors were codified following a standardized observation protocol. Observers documented information on behavior previous to, during, and after crossing. Gender and age were also registered. Data were gathered through video recording. Frequency analyses of observed behaviors were conducted for the total sample, as well as by gender and by age group. A general crossing risk index was calculated to facilitate comparisons between the genders and age groups. We conducted an analysis of variance to evaluate gender and age differences for this index. A high proportion of risky behaviors were observed among pedestrians. The majority of pedestrian waited in the street (as opposed to on the sidewalk) before crossing, did not comply with traffic lights, or crossed outside the crosswalk. A large number of pedestrians were distracted while crossing. Men presented higher scores on risky behaviors than women. No differences were observed by age group. The high level of risk behaviors during the different stages of street crossing is worrisome and reinforces the idea that pedestrians are responsible for many of the conflicts with motorists. Many of the risky behaviors

  19. Distributed Pedestrian Detection Alerts Based on Data Fusion with Accurate Localization

    Directory of Open Access Journals (Sweden)

    Arturo de la Escalera

    2013-09-01

    Full Text Available Among Advanced Driver Assistance Systems (ADAS pedestrian detection is a common issue due to the vulnerability of pedestrians in the event of accidents. In the present work, a novel approach for pedestrian detection based on data fusion is presented. Data fusion helps to overcome the limitations inherent to each detection system (computer vision and laser scanner and provides accurate and trustable tracking of any pedestrian movement. The application is complemented by an efficient communication protocol, able to alert vehicles in the surroundings by a fast and reliable communication. The combination of a powerful location, based on a GPS with inertial measurement, and accurate obstacle localization based on data fusion has allowed locating the detected pedestrians with high accuracy. Tests proved the viability of the detection system and the efficiency of the communication, even at long distances. By the use of the alert communication, dangerous situations such as occlusions or misdetections can be avoided.

  20. Distributed pedestrian detection alerts based on data fusion with accurate localization.

    Science.gov (United States)

    García, Fernando; Jiménez, Felipe; Anaya, José Javier; Armingol, José María; Naranjo, José Eugenio; de la Escalera, Arturo

    2013-09-04

    Among Advanced Driver Assistance Systems (ADAS) pedestrian detection is a common issue due to the vulnerability of pedestrians in the event of accidents. In the present work, a novel approach for pedestrian detection based on data fusion is presented. Data fusion helps to overcome the limitations inherent to each detection system (computer vision and laser scanner) and provides accurate and trustable tracking of any pedestrian movement. The application is complemented by an efficient communication protocol, able to alert vehicles in the surroundings by a fast and reliable communication. The combination of a powerful location, based on a GPS with inertial measurement, and accurate obstacle localization based on data fusion has allowed locating the detected pedestrians with high accuracy. Tests proved the viability of the detection system and the efficiency of the communication, even at long distances. By the use of the alert communication, dangerous situations such as occlusions or misdetections can be avoided.

  1. Investigating and improving pedestrian safety in an urban environment.

    Science.gov (United States)

    Pollack, Keshia M; Gielen, Andrea C; Mohd Ismail, Mohd Nasir; Mitzner, Molly; Wu, Michael; Links, Jonathan M

    2014-12-01

    Prompted by a series of fatal and nonfatal pedestrian-vehicle collisions, university leadership from one urban institution collaborated with its academic injury research center to investigate traffic-related hazards facing pedestrians. This descriptive epidemiologic study used multiple data collection strategies to determine the burden of pedestrian injury in the target area. Data were collected in 2011 through a review of university crash reports from campus police; a systematic environmental audit and direct observations using a validated instrument and trained raters; and focus groups with faculty, students, and staff. Study findings were synthesized and evidence-informed recommendations were developed and disseminated to university leadership. Crash reports provided some indication of the risks on the streets adjacent to the campus. The environmental audit identified a lack of signage posting the speed limit, faded crosswalks, issues with traffic light and walk sign synchronization, and limited formal pedestrian crossings, which led to jaywalking. Focus groups participants described dangerous locations and times, signal controls and signage, enforcement of traffic laws, use of cell phones and iPods, and awareness of pedestrian safety. Recommendations to improve pedestrian safety were developed in accordance with the three E's of injury prevention (education, enforcement, and engineering), and along with plans for implementation and evaluation, were presented to university leadership. These results underscore the importance of using multiple methods to understand fully the problem, developing pragmatic recommendations that align with the three E's of injury prevention, and collaborating with leadership who have the authority to implement recommended injury countermeasures. These lessons are relevant for the many colleges and universities in urban settings where a majority of travel to offices, classrooms, and surrounding amenities are by foot.

  2. Powered two-wheeler drivers' risk of hitting a pedestrian in towns.

    Science.gov (United States)

    Clabaux, Nicolas; Fournier, Jean-Yves; Michel, Jean-Emmanuel

    2014-12-01

    The risk of collision between pedestrians and powered two-wheelers is poorly understood today. The objective of this research is to determine the risk for powered two-wheeler drivers of hitting and injuring a pedestrian per kilometer driven in towns and to compare this risk with that run by four-wheeled vehicle drivers. Using the bodily injury accidents recorded by the police on nine roads in the city of Marseille in 2011 and a campaign of observations of powered two-wheeler traffic, we estimated the risk per kilometer driven by powered two-wheeler drivers of hitting a pedestrian and compared it with the risk run by four-wheeled vehicle drivers. The results show that the risk for powered two-wheeler drivers of hitting and injuring a pedestrian is significantly higher than the risk run by four-wheeled vehicle drivers. On the nine roads studied, it is on average 3.33 times higher (95% CI: 1.63; 6.78). Taking four more years into account made it possible to consolidate these results and to tighten the confidence interval. There does indeed seem to be problems in the interactions between pedestrians and powered two-wheeler users in urban traffic. These interaction problems lead to a higher risk of hitting and injuring a pedestrian for powered two-wheeler drivers than for four-wheeled vehicle drivers. The analysis of the police reports suggests that part of this increased risk comes from filtering maneuvers by powered two-wheelers. Possible countermeasures deal with the urban street layout. Measures consisting in reducing the width and the number of traffic lanes to a strict minimum and installing medians or pedestrian islands could be an effective way for the prevention of urban accidents between pedestrians and powered two-wheelers. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.

  3. Pedestrian-vehicle crashes and analytical techniques for stratified contingency tables.

    Science.gov (United States)

    Al-Ghamdi, Ali S

    2002-03-01

    In 1999 there were 450 fatalities due to road crashes in Riyadh, the capital of Saudi Arabia, of which 130 were pedestrians. Hence, every fourth person killed on the roads is a pedestrian. The aim of this study is to investigate pedestrian-vehicle crashes in this fast-growing city with two objectives in mind: to analyze pedestrian collisions with regard to their causes, characteristics, location of injury on the victim's body, and most common patterns and to determine the potential for use of the odds ratio technique in the analysis of stratified contingency tables. Data from 638 pedestrian-vehicle crashes reported by police, during the period 1997-1999, were used. A systematic sampling technique was followed in which every third record was used. The analysis showed that the pedestrian fatality rate per 10(5) population is 2.8. The rates were relatively high within the childhood (1-9 years) and young adult (10-19 years) groups, and the old-age groups (60 - > 80 years), which indicate that young as well as the elderly people in this city are more likely to be involved in fatal accidents of this type than are those in other age groups. The analysis revealed that 77.1% of pedestrians were probably struck while crossing a roadway either not in a crosswalk or where no crosswalk existed. In addition, the distribution of injuries on the victims' bodies was determined from hospital records. More than one-third of the fatal injuries were located on the head and chest. An attempt was made to conduct an association analysis between crash severity (i.e. injury or fatal) and some of the study variables using chi-square and odds ratio techniques. The categorical nature of the data helped in using these analytical techniques.

  4. The risk of pedestrian collisions with peripheral visual field loss.

    Science.gov (United States)

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L; Goldstein, Robert B

    2016-12-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed to be moving in all directions with equal probability within a reasonable range of walking speeds. The risk density was found to be highly anisotropic. It peaked at ≈45° eccentricity. Increasing pedestrian speed range shifted the risk to higher eccentricities. The risk density is independent of time to collision. The model results were compared to the binocular residual peripheral island locations of 42 patients with forms of retinitis pigmentosa. The natural residual island prevalence also peaked nasally at about 45° but temporally at about 75°. This asymmetry resulted in a complementary coverage of the binocular field of view. Natural residual binocular island eccentricities seem well matched to the collision-risk density function, optimizing detection of other walking pedestrians (nasally) and of faster hazards (temporally). Field expansion prism devices will be most effective if they can create artificial peripheral islands at about 45° eccentricities. The collision risk and residual island findings raise interesting questions about normal visual development.

  5. Validity of instruments to assess students' travel and pedestrian safety

    Directory of Open Access Journals (Sweden)

    Baranowski Tom

    2010-05-01

    Full Text Available Abstract Background Safe Routes to School (SRTS programs are designed to make walking and bicycling to school safe and accessible for children. Despite their growing popularity, few validated measures exist for assessing important outcomes such as type of student transport or pedestrian safety behaviors. This research validated the SRTS school travel survey and a pedestrian safety behavior checklist. Methods Fourth grade students completed a brief written survey on how they got to school that day with set responses. Test-retest reliability was obtained 3-4 hours apart. Convergent validity of the SRTS travel survey was assessed by comparison to parents' report. For the measure of pedestrian safety behavior, 10 research assistants observed 29 students at a school intersection for completion of 8 selected pedestrian safety behaviors. Reliability was determined in two ways: correlations between the research assistants' ratings to that of the Principal Investigator (PI and intraclass correlations (ICC across research assistant ratings. Results The SRTS travel survey had high test-retest reliability (κ = 0.97, n = 96, p Conclusions These validated instruments can be used to assess SRTS programs. The pedestrian safety behavior checklist may benefit from further formative work.

  6. Congestion and flow control in signaling system no. 7: Impacts of intelligent networks and new services

    Science.gov (United States)

    Zepf, Joachim; Rufa, Gerhard

    1994-04-01

    This paper focuses on the transient performance analysis of the congestion and flow control mechanisms in CCITT Signaling System No. 7 (SS7). Special attention is directed to the impacts of the introduction of intelligent services and new applications, e.g., Freephone, credit card services, user-to-user signaling, etc. In particular, we show that signaling traffic characteristics like signaling scenarios or signaling message length as well as end-to-end signaling capabilities have a significant influence on the congestion and flow control and, therefore, on the real-time signaling performance. One important result of our performance studies is that if, e.g., intelligent services are introduced, the SS7 congestion and flow control does not work correctly. To solve this problem, some reinvestigations into these mechanisms would be necessary. Therefore, some approaches, e.g., modification of the Signaling Connection Control Part (SCCP) congestion control, usage of the SCCP relay function, or a redesign of the MTP flow control procedures are discussed in order to guarantee the efficacy of the congestion and flow control mechanisms also in the future.

  7. Distracted walking: Examining the extent to pedestrian safety problems

    Directory of Open Access Journals (Sweden)

    Judith Mwakalonge

    2015-10-01

    Full Text Available Pedestrians, much like drivers, have always been engaged in multi-tasking like using hand-held devices, listening to music, snacking, or reading while walking. The effects are similar to those experienced by distracted drivers. However, distracted walking has not received similar policies and effective interventions as distracted driving to improve pedestrian safety. This study reviewed the state-of-practice on policies, campaigns, available data, identified research needs, and opportunities pertaining to distracted walking. A comprehensive review of literature revealed that some of the agencies/organizations disseminate useful information about certain distracting activities that pedestrians should avoid while walking to improve their safety. Various walking safety rules/tips have been given, such as not wearing headphones or talking on a cell phone while crossing a street, keeping the volume down, hanging up the phone while walking, being aware of traffic, and avoiding distractions like walking with texting. The majority of the past observational-based and experimental-based studies reviewed in this study on distracted walking is in agreement that there is a positive correlation between distraction and unsafe walking behavior. However, limitations of the existing crash data suggest that distracted walking may not be a severe threat to the public health. Current pedestrian crash data provide insufficient information for researchers to examine the extent to which distracted walking causes and/or contributes to actual pedestrian safety problems.

  8. The roles of gender, age and cognitive development in children's pedestrian route selection.

    Science.gov (United States)

    Barton, B K; Ulrich, T; Lyday, B

    2012-03-01

    Thousands of American children under the age of 10 years are injured annually as pedestrians. Despite the scope of this public health problem, knowledge about behavioural control and developmental factors involved in the aetiology of child pedestrian safety is limited. The present study examined the roles of gender, age and two aspects of cognitive development (visual search and efficiency of processing) in children's safe pedestrian route selection. Measures of cognitive functioning (visual search and efficiency) and selections of risky pedestrian routes were collected from 65 children aged 5-9 years. Boys, younger children and those with less developed cognitive functioning selected riskier pedestrian routes. Cognitive functioning also subsumed age as a predictor of risky route selections. Our findings suggest developmental differences, specifically less developed cognitive functioning, play important roles in children's pedestrian decision making. Directions for future examination are discussed. © 2011 Blackwell Publishing Ltd.

  9. Child pedestrian safety knowledge, behaviour and road injury in Cape Town, South Africa.

    Science.gov (United States)

    Koekemoer, Karin; Van Gesselleen, Megan; Van Niekerk, Ashley; Govender, Rajen; Van As, Arjan Bastiaan

    2017-02-01

    Pedestrian injuries are a leading cause of death among South African children, and young children residing in low-income communities are more at risk, due to various factors such as inadequate road infrastructure, exposure to traffic due to reliance on walking as a means of transport, and lack of supervision. This study used a cross-sectional, non-randomized self-report survey to assess pedestrian safety knowledge, road-crossing behaviour and pedestrian injuries of primary school children in selected low-income settings in Cape Town. The survey focused on three primary schools that had joined the Safe Kids Worldwide Model School Zone Project and was administered to 536 children aged 6-15 years, in their home language of isiXhosa. Descriptive and bivariate analyses as well as multivariate regression analyses were conducted to investigate potential predictor variables for pedestrian collision severity and unsafe road-crossing behaviour. Walking was the sole form of travel for 81% of the children, with a large proportion regularly walking unsupervised. Children who walk to or from school alone were younger and reported riskier road-crossing behaviour, although children who walk accompanied tended to have higher pedestrian collision severity. "Negligent Behaviour" related to road-crossing was significantly associated with higher pedestrian collision severity, with predictors of "Negligent Behaviour" including the lack of pedestrian safety knowledge and greater exposure to traffic in terms of time spent walking. More than half of the reported pedestrian collisions involved a bicycle, and older boys (10-15 years) were most at risk of experiencing a severe pedestrian injury. The findings substantiate emerging evidence that children in low-income settings are at greater risk for child pedestrian injury, and emphasise the need for evidence-based safety promotion and injury prevention interventions in these settings. Copyright © 2016. Published by Elsevier Ltd.

  10. Congestion and cascades in payment systems

    Science.gov (United States)

    Beyeler, Walter E.; Glass, Robert J.; Bech, Morten L.; Soramäki, Kimmo

    2007-10-01

    We develop a parsimonious model of the interbank payment system. The model incorporates an endogenous instruction arrival process, a scale-free topology of payments between banks, a fixed total liquidity which limits banks’ capacity to process arriving instructions, and a global market that distributes liquidity. We find that at low liquidity the system becomes congested and payment settlement loses correlation with payment instruction arrival, becoming coupled across the network. The onset of congestion is evidently related to the relative values of three characteristic times: the time for banks’ net position to return to 0, the time for a bank to exhaust its liquidity endowment, and the liquidity market relaxation time. In the congested regime settlement takes place in cascades having a characteristic length scale. A global liquidity market substantially attenuates congestion, requiring only a small fraction of the payment-induced liquidity flow to achieve strong beneficial effects.

  11. Treatment of congestion in upper respiratory diseases

    Directory of Open Access Journals (Sweden)

    Eli O Meltzer

    2010-02-01

    Full Text Available Eli O Meltzer1, Fernan Caballero2, Leonard M Fromer3, John H Krouse4, Glenis Scadding51Allergy and Asthma Medical Group and Research Center, San Diego, CA and Department of Pediatrics, University of California, San Diego, USA; 2Allergy and Clinical Immunology Service, Centro Medico-Docente La Trinidad, Caracas, Venezuela; 3David Geffen School of Medicine, University of California, Los Angeles, USA; 4Wayne State University School of Medicine, Detroit, Michigan, USA; 5Department of Allergy and Rhinology, Royal National TNE Hospital, London, UKAbstract: Congestion, as a symptom of upper respiratory tract diseases including seasonal and perennial allergic rhinitis, acute and chronic rhinosinusitis, and nasal polyposis, is principally caused by mucosal inflammation. Though effective pharmacotherapy options exist, no agent is universally efficacious; therapeutic decisions must account for individual patient preferences. Oral H1-antihistamines, though effective for the common symptoms of allergic rhinitis, have modest decongestant action, as do leukotriene receptor antagonists. Intranasal antihistamines appear to improve congestion better than oral forms. Topical decongestants reduce congestion associated with allergic rhinitis, but local adverse effects make them unsuitable for long-term use. Oral decongestants show some efficacy against congestion in allergic rhinitis and the common cold, and can be combined with oral antihistamines. Intranasal corticosteroids have broad anti-inflammatory activities, are the most potent long-term pharmacologic treatment of congestion associated with allergic rhinitis, and show some congestion relief in rhinosinusitis and nasal polyposis. Immunotherapy and surgery may be used in some cases refractory to pharmacotherapy. Steps in congestion management include (1 diagnosis of the cause(s, (2 patient education and monitoring, (3 avoidance of environmental triggers where possible, (4 pharmacotherapy, and (5 immunotherapy

  12. Pedestrian deaths in children--potential for prevention.

    LENUS (Irish Health Repository)

    Hamilton, K

    2015-01-01

    The National Paediatric Mortality Database was reviewed for the six year period 1st January 2006 to 31st December 2011 and all pedestrian deaths extracted, after review of available data the deaths were categorized as either traffic or non-traffic related. There were 45 child pedestrian fatalities in the period examined. Traffic related deaths accounted for 26 (58%) vs. 19 (42%) non-traffic related. Analysis of the deaths showed there was a male preponderance 28 (62%), weekend trend 22 (49%) with an evening 16 (35%) and summer peak 20 (44%). The highest proportion of deaths occurred in the 1-4 year age group 24 (53%), with 13 (28%) due to low speed vehicle rollovers, mainly occurring in residential driveways 8 (61%). Child pedestrian fatalities are highly preventable through the modification of risk factors including behavioural, social and environmental. Preventative action needs to be addressed, particularly in relation to non-traffic related deaths i.e, low speed vehicle rollovers.

  13. Pedestrian Flow in the Mean Field Limit

    KAUST Repository

    Haji Ali, Abdul Lateef

    2012-11-01

    We study the mean-field limit of a particle-based system modeling the behavior of many indistinguishable pedestrians as their number increases. The base model is a modified version of Helbing\\'s social force model. In the mean-field limit, the time-dependent density of two-dimensional pedestrians satisfies a four-dimensional integro-differential Fokker-Planck equation. To approximate the solution of the Fokker-Planck equation we use a time-splitting approach and solve the diffusion part using a Crank-Nicholson method. The advection part is solved using a Lax-Wendroff-Leveque method or an upwind Backward Euler method depending on the advection speed. Moreover, we use multilevel Monte Carlo to estimate observables from the particle-based system. We discuss these numerical methods, and present numerical results showing the convergence of observables that were calculated using the particle-based model as the number of pedestrians increases to those calculated using the probability density function satisfying the Fokker-Planck equation.

  14. Continuous integration congestion cost allocation based on sensitivity

    International Nuclear Information System (INIS)

    Wu, Z.Q.; Wang, Y.N.

    2004-01-01

    Congestion cost allocation is a very important topic in congestion management. Allocation methods based on the Aumann-Shapley value use the discrete numerical integration method, which needs to solve the incremented OPF solution many times, and as such it is not suitable for practical application to large-scale systems. The optimal solution and its sensitivity change tendency during congestion removal using a DC optimal power flow (OPF) process is analysed. A simple continuous integration method based on the sensitivity is proposed for the congestion cost allocation. The proposed sensitivity analysis method needs a smaller computation time than the method based on using the quadratic method and inner point iteration. The proposed congestion cost allocation method uses a continuous integration method rather than discrete numerical integration. The method does not need to solve the incremented OPF solutions; which allows it use in large-scale systems. The method can also be used for AC OPF congestion management. (author)

  15. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-10-01

    Full Text Available Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.

  16. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model.

    Science.gov (United States)

    Li, Jing; Zhang, Fangbing; Wei, Lisong; Yang, Tao; Lu, Zhaoyang

    2017-10-16

    Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.

  17. Agent Based Modeling and Simulation of Pedestrian Crowds In Panic Situations

    KAUST Repository

    Alrashed, Mohammed

    2016-11-01

    The increasing occurrence of panic stampedes during mass events has motivated studying the impact of panic on crowd dynamics and the simulation of pedestrian flows in panic situations. The lack of understanding of panic stampedes still causes hundreds of fatalities each year, not to mention the scarce methodical studies of panic behavior capable of envisaging such crowd dynamics. Under those circumstances, there are thousands of fatalities and twice that many of injuries every year caused be crowd stampede worldwide, despite the tremendous efforts of crowd control and massive numbers of safekeeping forces. Pedestrian crowd dynamics are generally predictable in high-density crowds where pedestrians cannot move freely and thus gives rise to self-propelling interactions between pedestrians. Although every pedestrian has personal preferences, the motion dynamics can be modeled as a social force in such crowds. These forces are representations of internal preferences and objectives to perform certain actions or movements. The corresponding forces can be controlled for each individual to represent a different variety of behaviors that can be associated with panic situations such as escaping danger, clustering, and pushing. In this thesis, we use an agent-based model of pedestrian behavior in panic situations to predict the collective human behavior in such crowd dynamics. The proposed simulations suggests a practical way to alleviate fatalities and minimize the evacuation time in panic situations. Moreover, we introduce contagious panic and pushing behavior, resulting in a more realistic crowd dynamics model. The proposed methodology describes the intensity and spread of panic for each individual as a function of distances between pedestrians.

  18. Autonomous Congestion Control in Delay-Tolerant Networks

    Science.gov (United States)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    This presentation highlights communication congestion control in delay-tolerant networks (DTNs). Large-scale future space exploration will offer complex communication challenges that may be best addressed by establishing a network infrastructure. However, current internet techniques for congestion control are not well suited for operation of a network over interplanetary distances. An alternative, delay-tolerant technique for congestion control in a delay-tolerant network is presented. A simple DTN was constructed and an experimental congestion control mechanism was applied. The mechanism appeared to be effective and each router was able to make its bundle acceptance decisions autonomously. Future research will examine more complex topologies and alternative bundle acceptance rules that might enhance performance.

  19. Using connected vehicle technology to deliver timely warnings to pedestrians.

    Science.gov (United States)

    2016-07-01

    Pedestrian injuries and deaths caused by collisions with motor vehicles are on the : rise in the U.S. One factor that may increase the risk of such collisions is pedestrian : mobile device use. Both field observations and controlled experiments indic...

  20. Method for Pedestrian Crossing Risk Assessment and Safety Level Determination: the Case Study of Tallinn

    Energy Technology Data Exchange (ETDEWEB)

    Pashkevich, M.; Krasilnikova, A.; Antov, D.

    2016-07-01

    Pedestrians are a part of vulnerable road users which safety requires a special attention. Official statistics in Estonia from the last decade returns the following numbers: around 30 % of all road traffic accidents in the country were accidents with pedestrians, 32 % of all traffic fatalities were finished with pedestrian death. Pedestrian crossing has the biggest risk level between all kinds of pedestrian facilities, because it includes a direct conflict point between vehicle and pedestrian traffics. The article presents a method to assess risk of pedestrian crossing users and to determine safety level of this road infrastructure element. This approach is based on observation and collection of infrastructural as well as traffic data, which includes: (1) information about each pedestrian crossing facility, its location and state, (2) data about accidents with pedestrians and their features, (3) data from road traffic measurements. The main advantages of the described method are universality and comprehensiveness. The case study was done in Kristiine district of the city Tallinn, which was chosen as the most typical average district of Estonian capital. Results of this study are also presented in the article. (Author)

  1. Contemporary approaches to congestion pricing : lessons learned from the national evaluation of congestion pricing strategies at six sites.

    Science.gov (United States)

    2015-08-01

    This document represents the final report of the national evaluation of congestion reduction strategies at six sites that received federal funding under the Urban Partnership Agreement (UPA) and Congestion Reduction Demonstration (CRD) programs. The ...

  2. Real-time Pedestrian Crossing Recognition for Assistive Outdoor Navigation.

    Science.gov (United States)

    Fontanesi, Simone; Frigerio, Alessandro; Fanucci, Luca; Li, William

    2015-01-01

    Navigation in urban environments can be difficult for people who are blind or visually impaired. In this project, we present a system and algorithms for recognizing pedestrian crossings in outdoor environments. Our goal is to provide navigation cues for crossing the street and reaching an island or sidewalk safely. Using a state-of-the-art Multisense S7S sensor, we collected 3D pointcloud data for real-time detection of pedestrian crossing and generation of directional guidance. We demonstrate improvements to a baseline, monocular-camera-based system by integrating 3D spatial prior information extracted from the pointcloud. Our system's parameters can be set to the actual dimensions of real-world settings, which enables robustness of occlusion and perspective transformation. The system works especially well in non-occlusion situations, and is reasonably accurate under different kind of conditions. As well, our large dataset of pedestrian crossings, organized by different types and situations of pedestrian crossings in order to reflect real-word environments, is publicly available in a commonly used format (ROS bagfiles) for further research.

  3. Endogenous scheduling preferences and congestion

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Small, Kenneth

    2017-01-01

    We consider the timing of activities through a dynamic model of commuting with congestion, in which workers care solely about leisure and consumption. Implicit preferences for the timing of the commute form endogenously due to temporal agglomeration economies. Equilibrium exists uniquely and is i......We consider the timing of activities through a dynamic model of commuting with congestion, in which workers care solely about leisure and consumption. Implicit preferences for the timing of the commute form endogenously due to temporal agglomeration economies. Equilibrium exists uniquely...... and is indistinguishable from that of a generalized version of the classical Vickrey bottleneck model, based on exogenous trip-timing preferences, but optimal policies differ: the Vickrey model will misstate the benefits of a capacity increase, it will underpredict the benefits of congestion pricing, and pricing may make...

  4. Bifurcation and stability of an improved time-delayed fluid flow model in internet congestion control

    International Nuclear Information System (INIS)

    Yu-Liang, Liu; Jie, Zhu; Xiao-Shu, Luo

    2009-01-01

    Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, the effectiveness and feasibility of the novel model in internet congestion control are verified

  5. Bifurcation and stability of an improved time-delayed fluid flow model in internet congestion control

    Science.gov (United States)

    Liu, Yu-Liang; Zhu, Jie; Luo, Xiao-Shu

    2009-09-01

    Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, the effectiveness and feasibility of the novel model in internet congestion control are verified.

  6. Modeling of pedestrian evacuation based on the particle swarm optimization algorithm

    Science.gov (United States)

    Zheng, Yaochen; Chen, Jianqiao; Wei, Junhong; Guo, Xiwei

    2012-09-01

    By applying the evolutionary algorithm of Particle Swarm Optimization (PSO), we have developed a new pedestrian evacuation model. In the new model, we first introduce the local pedestrian’s density concept which is defined as the number of pedestrians distributed in a certain area divided by the area. Both the maximum velocity and the size of a particle (pedestrian) are supposed to be functions of the local density. An attempt to account for the impact consequence between pedestrians is also made by introducing a threshold of injury into the model. The updating rule of the model possesses heterogeneous spatial and temporal characteristics. Numerical examples demonstrate that the model is capable of simulating the typical features of evacuation captured by CA (Cellular Automata) based models. As contrast to CA-based simulations, in which the velocity (via step size) of a pedestrian in each time step is a constant value and limited in several directions, the new model is more flexible in describing pedestrians’ velocities since they are not limited in discrete values and directions according to the new updating rule.

  7. Laser-based pedestrian tracking in outdoor environments by multiple mobile robots.

    Science.gov (United States)

    Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko

    2012-10-29

    This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.

  8. Exploring pedestrian movement patterns

    NARCIS (Netherlands)

    Orellana, D.A.

    2012-01-01

    The main objective of this thesis is to develop an approach for exploring, analysing and interpreting movement patterns of pedestrians interacting with the environment. This objective is broken down in sub-objectives related to four research questions. A case study of the movement of visitors in a

  9. Validity of instruments to assess students' travel and pedestrian safety.

    Science.gov (United States)

    Mendoza, Jason A; Watson, Kathy; Baranowski, Tom; Nicklas, Theresa A; Uscanga, Doris K; Hanfling, Marcus J

    2010-05-18

    Safe Routes to School (SRTS) programs are designed to make walking and bicycling to school safe and accessible for children. Despite their growing popularity, few validated measures exist for assessing important outcomes such as type of student transport or pedestrian safety behaviors. This research validated the SRTS school travel survey and a pedestrian safety behavior checklist. Fourth grade students completed a brief written survey on how they got to school that day with set responses. Test-retest reliability was obtained 3-4 hours apart. Convergent validity of the SRTS travel survey was assessed by comparison to parents' report. For the measure of pedestrian safety behavior, 10 research assistants observed 29 students at a school intersection for completion of 8 selected pedestrian safety behaviors. Reliability was determined in two ways: correlations between the research assistants' ratings to that of the Principal Investigator (PI) and intraclass correlations (ICC) across research assistant ratings. The SRTS travel survey had high test-retest reliability (kappa = 0.97, n = 96, p < 0.001) and convergent validity (kappa = 0.87, n = 81, p < 0.001). The pedestrian safety behavior checklist had moderate reliability across research assistants' ratings (ICC = 0.48) and moderate correlation with the PI (r = 0.55, p = < 0.01). When two raters simultaneously used the instrument, the ICC increased to 0.65. Overall percent agreement (91%), sensitivity (85%) and specificity (83%) were acceptable. These validated instruments can be used to assess SRTS programs. The pedestrian safety behavior checklist may benefit from further formative work.

  10. Kinetic theory of situated agents applied to pedestrian flow in a corridor

    Science.gov (United States)

    Rangel-Huerta, A.; Muñoz-Meléndez, A.

    2010-03-01

    A situated agent-based model for simulation of pedestrian flow in a corridor is presented. In this model, pedestrians choose their paths freely and make decisions based on local criteria for solving collision conflicts. The crowd consists of multiple walking agents equipped with a function of perception as well as a competitive rule-based strategy that enables pedestrians to reach free access areas. Pedestrians in our model are autonomous entities capable of perceiving and making decisions. They apply socially accepted conventions, such as avoidance rules, as well as individual preferences such as the use of specific exit points, or the execution of eventual comfort turns resulting in spontaneous changes of walking speed. Periodic boundary conditions were considered in order to determine the density-average walking speed, and the density-average activity with respect to specific parameters: comfort angle turn and frequency of angle turn of walking agents. The main contribution of this work is an agent-based model where each pedestrian is represented as an autonomous agent. At the same time the pedestrian crowd dynamics is framed by the kinetic theory of biological systems.

  11. A collision avoidance model for two-pedestrian groups: Considering random avoidance patterns

    Science.gov (United States)

    Zhou, Zhuping; Cai, Yifei; Ke, Ruimin; Yang, Jiwei

    2017-06-01

    Grouping is a common phenomenon in pedestrian crowds and group modeling is still an open challenging problem. When grouping pedestrians avoid each other, different patterns can be observed. Pedestrians can keep close with group members and avoid other groups in cluster. Also, they can avoid other groups separately. Considering this randomness in avoidance patterns, we propose a collision avoidance model for two-pedestrian groups. In our model, the avoidance model is proposed based on velocity obstacle method at first. Then grouping model is established using Distance constrained line (DCL), by transforming DCL into the framework of velocity obstacle, the avoidance model and grouping model are successfully put into one unified calculation structure. Within this structure, an algorithm is developed to solve the problem when solutions of the two models conflict with each other. Two groups of bidirectional pedestrian experiments are designed to verify the model. The accuracy of avoidance behavior and grouping behavior is validated in the microscopic level, while the lane formation phenomenon and fundamental diagrams is validated in the macroscopic level. The experiments results show our model is convincing and has a good expansibility to describe three or more pedestrian groups.

  12. Anticipation Behavior Upstream of a Bottleneck

    NARCIS (Netherlands)

    Duives, D.C.; Daamen, W.; Hoogendoorn, S.P.

    2014-01-01

    Whether pedestrian movements do or do not follow similar patterns as vehicular traffic while experiencing congestion is not entirely understood. Using data gathered during bottleneck experiments under laboratory conditions, the phenomenon of anticipation before entering congestion is studied. This

  13. London-type congestion tax with revenue-recycling

    OpenAIRE

    Yukihiro Kidokoro

    2005-01-01

    Road pricing in London attracts a great deal of interest. A challenging aspect of the London scheme is that congestion tax revenue is used to upgrade public transit networks. Although Parry and Bento (2001) show that the total social surplus would increase if congestion tax revenues are used to cut labor taxes, political difficulties exist in implementing revenue-recycling between congestion taxes and labor taxes. Given such political difficulties, the London scheme seems to be very attractiv...

  14. Pedestrian interaction with vehicles : roles of explicit and implicit communication

    NARCIS (Netherlands)

    Dey, D.; Terken, J.M.B.

    This paper presents a study that aimed to identify the importance of eye contact and gestures between pedestrians and drivers. A video-based observation and coding was undertaken to categorize the road-crossing and communication behavior of pedestrians and drivers in busy traffic situations where

  15. Pedestrian Choice Behavior at Shopping Mall Intersections in China and the United States

    Science.gov (United States)

    Bitgood, Stephen; Davey, Gareth; Huang, Xiaoyi; Fung, Holly

    2013-01-01

    Pedestrian navigation through public spaces reflects the nature of interaction between behavior and environment. This study compared pedestrian choice behavior at shopping mall intersections in China and the United States. The study found that in both countries (a) pedestrians chose movement patterns that involved the fewest steps and (b) there…

  16. Pedestrian temporal and spatial gap acceptance at mid-block street crossing in developing world.

    Science.gov (United States)

    Pawar, Digvijay S; Patil, Gopal R

    2015-02-01

    Most of the midblock pedestrian crossings on urban roads in India are uncontrolled; wherein the high degree of discretion in pedestrians' behavior while crossing the traffic stream, has made the situation complex to analyze. Vehicles do not yield to pedestrians, even though the traffic laws give priority to pedestrians over motorized vehicles at unsignalized pedestrian crossings. Therefore, a pedestrian has to decide if an available gap is safe or not for crossing. This paper aims to investigate pedestrian temporal and spatial gap acceptance for midblock street crossings. Field data were collected using video camera at two midblock pedestrian crossings. The data extraction in laboratory resulted in 1107 pedestrian gaps. Available gaps, pedestrians' decision, traffic volume, etc. were extracted from the videos. While crossing a road with multiple lanes, rolling gap acceptance behavior was observed. Using binary logit analysis, six utility models were developed, three each for temporal and spatial gaps. The 50th percentile temporal and spatial gaps ranged from 4.1 to 4.8s and 67 to 79 m respectively, whereas the 85th percentile temporal and spatial gaps ranged from 5 to 5.8s and 82 to 95 m respectively. These gap values were smaller than that reported in the studies in developed countries. The speed of conflicting vehicle was found to be significant in spatial gap but not in temporal gap acceptance. The gap acceptance decision was also found to be affected by the type of conflicting vehicles. The insights from this study can be used for the safety and performance evaluation of uncontrolled midblock street crossings in developing countries. Copyright © 2014 Elsevier Ltd and National Safety Council. All rights reserved.

  17. Congestion management rules and trading strategies in the Spanish electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Furio, Dolores; Lucia, Julio J. [Departamento de Economia Financiera y Actuarial, Universidad de Valencia, Avda. Los Naranjos, s/n, 46022 - Valencia (Spain)

    2009-01-15

    This paper analyses the economic incentives embodied in the rules governing the resolution of transmission constraints in the Spanish wholesale electricity market and the way these incentives may have influenced on the trading behaviour of both the generators and the demand side. The evidence obtained is consistent with them responding to these incentives. In particular, buyers would respond to the way congestion costs are billed to them by abandoning the daily market in favour of the intraday market as far as possible. Additionally, some strategic generators may have been prompted the system operator to require them to inject electricity into the system to solve network congestions. Finally, these results may contribute to shed light on what should be expected of the reform in the aforementioned rules. (author)

  18. Congestion management rules and trading strategies in the Spanish electricity market

    International Nuclear Information System (INIS)

    Furio, Dolores; Lucia, Julio J.

    2009-01-01

    This paper analyses the economic incentives embodied in the rules governing the resolution of transmission constraints in the Spanish wholesale electricity market and the way these incentives may have influenced on the trading behaviour of both the generators and the demand side. The evidence obtained is consistent with them responding to these incentives. In particular, buyers would respond to the way congestion costs are billed to them by abandoning the daily market in favour of the intraday market as far as possible. Additionally, some strategic generators may have been prompted the system operator to require them to inject electricity into the system to solve network congestions. Finally, these results may contribute to shed light on what should be expected of the reform in the aforementioned rules. (author)

  19. Congestion management considering voltage security of power systems

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Shayanfar, Heidar Ali; Amjady, Nima

    2009-01-01

    Congestion in a power network is turned up due to system operating limits. To relieve congestion in a deregulated power market, the system operator pays to market participants, GENCOs and DISCOs, to alter their active powers considering their bids. After performing congestion management, the network may be operated with a low security level because of hitting some flows their upper limit and some voltages their lower limit. In this paper, a novel congestion management method based on the voltage stability margin sensitivities is introduced. Using the proposed method, the system operator so alleviates the congestion that the network can more retain its security. The proposed method not only makes the system more secure after congestion management than other methods already presented for this purpose but also its cost of providing security is lower than the earlier methods. Test results of the proposed method along with the earlier ones on the New-England test system elaborate the efficiency of the proposed method from the viewpoint of providing a better voltage stability margin and voltage profile as well as a lower security cost. (author)

  20. A Review on Macroscopic Pedestrian Flow Modelling

    Directory of Open Access Journals (Sweden)

    Anna Kormanová

    2013-12-01

    Full Text Available This paper reviews several various approaches to macroscopic pedestrian modelling. It describes hydrodynamic models based on similarity of pedestrian flow with fluids and gases; first-order flow models that use fundamental diagrams and conservation equation; and a model similar to LWR vehicular traffic model, which allows non-classical shocks. At the end of the paper there is stated a comparison of described models, intended to find appropriate macroscopic model to eventually be a part of a hybrid model. The future work of the author is outlined.

  1. Age and pedestrian injury severity in motor-vehicle crashes: a heteroskedastic logit analysis.

    Science.gov (United States)

    Kim, Joon-Ki; Ulfarsson, Gudmundur F; Shankar, Venkataraman N; Kim, Sungyop

    2008-09-01

    This research explores the injury severity of pedestrians in motor-vehicle crashes. It is hypothesized that the variance of unobserved pedestrian characteristics increases with age. In response, a heteroskedastic generalized extreme value model is used. The analysis links explanatory factors with four injury outcomes: fatal, incapacitating, non-incapacitating, and possible or no injury. Police-reported crash data between 1997 and 2000 from North Carolina, USA, are used. The results show that pedestrian age induces heteroskedasticity which affects the probability of fatal injury. The effect grows more pronounced with increasing age past 65. The heteroskedastic model provides a better fit than the multinomial logit model. Notable factors increasing the probability of fatal pedestrian injury: increasing pedestrian age, male driver, intoxicated driver (2.7 times greater probability of fatality), traffic sign, commercial area, darkness with or without streetlights (2-4 times greater probability of fatality), sport-utility vehicle, truck, freeway, two-way divided roadway, speeding-involved, off roadway, motorist turning or backing, both driver and pedestrian at fault, and pedestrian only at fault. Conversely, the probability of a fatal injury decreased: with increasing driver age, during the PM traffic peak, with traffic signal control, in inclement weather, on a curved roadway, at a crosswalk, and when walking along roadway.

  2. Experimental validation and calibration of pedestrian loading models for footbridges

    DEFF Research Database (Denmark)

    Ricciardelli, Fransesco; Briatico, C; Ingólfsson, Einar Thór

    2006-01-01

    Different patterns of pedestrian loading of footbridges exist, whose occurrence depends on a number of parameters, such as the bridge span, frequency, damping and mass, and the pedestrian density and activity. In this paper analytical models for the transient action of one walker and for the stat...

  3. Mapping of pedestrian characteristics and level of service for facilities at Universitas Negeri Malang using geographic information system

    Science.gov (United States)

    Rahayuningsih, Titi; Pranoto, Nindyawati, Umniati, B. Sri; Mardhika, Moch Aqfa Syabahid

    2017-09-01

    Universitas Negeri Malang (UM) is a university with the second largest academic community in Malang. The activities of the academic community should be supported by adequate facilities, such as pedestrian facilities—crucial yet much neglected matters, so pedestrians to walk along the roadway. As a result, conflicts between pedestrians with motor vehicle users and accidents might occur at any time. This research aimed at: 1) investigating the geometric conditions of pedestrian facilities at UM; 2) identifying the characteristics of pedestrians and the pedestrian facilities at UM; and 3) determining the level of service for pedestrian facilities at UM using Geographic Information System (GIS). The research was conducted through survey of location, survey of geometric conditions, estimation of the number of pedestrians using sidewalk (data were recorded every 15 minutes), measurement of pedestrian speed, and questionnaire about pedestrians' identity, destination, as well as travel time and distance. Data analysis was carried out to identify the pedestrian characteristics, pedestrian flow characteristics, and pedestrian level of service. The research result showed that the percentage of road segments in campus without sidewalks was 52%. The average width of sidewalk was 1.33 m, which was less than the minimum standard of i.e. 2 m. In terms of pedestrian characteristics, the pedestrians consisted of more female (51%) who were mostly students of the Faculty of Letters whose destination was classroom building. The maximum pedestrian flow was at 10.00-13.30 i.e. 4.2018 p/m/min. The average speed of pedestrian was 63.49 m/min. The highest pedestrian density of 0.0609 p/m2 occurred at 10.00-13.30. The largest walking space was 28.0348 m2/p and occurred in the afternoon at 13.30-17.00. The level of service for pedestrian facilities belonged to category A in the morning and afternoon. The level of service at 10.00-13.30 decreased to category B.

  4. Study design and analysis of automobile bumper for pedestrian safety

    Science.gov (United States)

    Kulkarni, Akash; Vora, Rushabh; Ravi, K.

    2017-11-01

    This paper aims to design and analyse the bumper beam structure, in order to ensure the protection of the pedestrians along with the occupants inside the vehicle. The concern shown towards the pedestrian safety is because, each year about 2,70,000 pedestrians are killed in road accidents that accounts to 22% of the total deaths. From the literature review, it was inferred that the mounting position of bumper and material selection play a crucial role in maximising the pedestrian safety. Hence in this paper, the effects of bumper mounting position and the bumper beam material have been studied, with reference to an explicit dynamic collision involving with a dummy human lower leg set-up. The acceptance of a particular mounting position/material was based on the fact that the maximum stress and deformation induced were less than the yield limits of the human leg form structure (representing the skin, femur and tibia).

  5. An Efficient Traffic Congestion Monitoring System on Internet of Vehicles

    Directory of Open Access Journals (Sweden)

    Duc-Binh Nguyen

    2018-01-01

    Full Text Available Existing intelligent transport systems (ITS do not fully consider and resolve accuracy, instantaneity, and compatibility challenges while resolving traffic congestion in Internet of Vehicles (IoV environments. This paper proposes a traffic congestion monitoring system, which includes data collection, segmented structure establishment, traffic-flow modelling, local segment traffic congestion prediction, and origin-destination traffic congestion service for drivers. Macroscopic model-based traffic-flow factors were formalized on the basis of the analysis results. Fuzzy rules-based local segment traffic congestion prediction was performed to determine the traffic congestion state. To enhance prediction efficiency, this paper presents a verification process for minimizing false predictions which is based on the Rankine-Hugoniot condition and an origin-destination traffic congestion service is also provided. To verify the feasibility of the proposed system, a prototype was implemented. The experimental results demonstrate that the proposed scheme can effectively monitor traffic congestion in terms of accuracy and system response time.

  6. Electricity transmission congestion costs: A review of recent reports

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, Bernard C.; Eto, Joseph H.

    2003-10-01

    Recently, independent system operators (ISOs) and others have published reports on the costs of transmission congestion. The magnitude of congestion costs cited in these reports has contributed to the national discussion on the current state of U.S. electricity transmission system and whether it provides an adequate platform for competition in wholesale electricity markets. This report reviews reports of congestion costs and begins to assess their implications for the current national discussion on the importance of the U.S. electricity transmission system for enabling competitive wholesale electricity markets. As a guiding principle, we posit that a more robust electricity system could reduce congestion costs; and thereby, (1) facilitate more vibrant and fair competition in wholesale electricity markets, and (2) enable consumers to seek out the lowest prices for electricity. Yet, examining the details suggests that, sometimes, there will be trade-offs between these goals. Therefore, it is essential to understand who pays, how much, and how do they benefit in evaluating options (both transmission and non-transmission alternatives) to address transmission congestion. To describe the differences among published estimates of congestion costs, we develop and motivate three ways by which transmission congestion costs are calculated in restructured markets. The assessment demonstrates that published transmission congestion costs are not directly comparable because they have been developed to serve different purposes. More importantly, critical information needed to make them more comparable, for example in order to evaluate the impacts of options to relieve congestion, is sometimes not available.

  7. Mean field games with nonlinear mobilities in pedestrian dynamics

    KAUST Repository

    Burger, Martin; Di Francesco, Marco; Markowich, Peter A.; Wolfram, Marie Therese

    2014-01-01

    In this paper we present an optimal control approach modeling fast exit scenarios in pedestrian crowds. In particular we consider the case of a large human crowd trying to exit a room as fast as possible. The motion of every pedestrian is determined by minimizing a cost functional, which depends on his/her position, velocity, exit time and the overall density of people. This microscopic setup leads in the mean-field limit to a parabolic optimal control problem. We discuss the modeling of the macroscopic optimal control approach and show how the optimal conditions relate to the Hughes model for pedestrian flow. Furthermore we provide results on the existence and uniqueness of minimizers and illustrate the behavior of the model with various numerical results.

  8. Mean field games with nonlinear mobilities in pedestrian dynamics

    KAUST Repository

    Burger, Martin

    2014-04-01

    In this paper we present an optimal control approach modeling fast exit scenarios in pedestrian crowds. In particular we consider the case of a large human crowd trying to exit a room as fast as possible. The motion of every pedestrian is determined by minimizing a cost functional, which depends on his/her position, velocity, exit time and the overall density of people. This microscopic setup leads in the mean-field limit to a parabolic optimal control problem. We discuss the modeling of the macroscopic optimal control approach and show how the optimal conditions relate to the Hughes model for pedestrian flow. Furthermore we provide results on the existence and uniqueness of minimizers and illustrate the behavior of the model with various numerical results.

  9. Agent Based Modeling and Simulation of Pedestrian Crowds In Panic Situations

    KAUST Repository

    Alrashed, Mohammed

    2016-01-01

    to self-propelling interactions between pedestrians. Although every pedestrian has personal preferences, the motion dynamics can be modeled as a social force in such crowds. These forces are representations of internal preferences and objectives to perform

  10. Increased neurofibrillary tangles in the brains of older pedestrians killed in traffic accidents.

    Science.gov (United States)

    Gorrie, C A; Rodriguez, M; Sachdev, P; Duflou, J; Waite, P M E

    2006-01-01

    Older people are over-represented in pedestrian fatalities, and it has been suggested that the presence of cognitive impairment or dementia in these individuals may contribute to their accidents. Using neuropathological methods, we aimed to compare the prevalence of dementia pathology in fatally injured older pedestrians with similarly aged ambulatory subjects who died from other causes. The brains of 52 pedestrians (65-93 years) and 52 controls (65-92 years) were assessed for neurofibrillary tangles (NFT), neuritic plaques, Lewy bodies and vascular lesions using established neuropathological criteria. The examination for Alzheimer's disease (AD) pathology showed that 43% of the pedestrians had NFT scores of III-VI using Braak and Braak staging, compared with 23% of the controls (p vascular dementia or dementia with Lewy bodies. These results suggest that cognitive decline associated with AD, even in the earliest stages of the disease, may be a factor in fatal traffic accidents for older pedestrians. Special measures for pedestrian safety are necessary in areas with high densities of older citizens and especially for those diagnosed as having a mild cognitive impairment or AD.

  11. Some aspects of the safety of elderly pedestrians and cyclists.

    NARCIS (Netherlands)

    Hagenzieker, M.P.

    1996-01-01

    In this paper some aspects of the safety of elderly pedestrians and cyclists will be addressed. First, fatality data concerning older pedestrians and cyclists will be presented for a number of countries. Then, attention will be paid to fatality rates per 100,000 inhabitants, and the risks of elderly

  12. Pedestrian-motorcycle collisions: associated risks and issues

    Directory of Open Access Journals (Sweden)

    Ariffin Aqbal Hafeez

    2017-01-01

    Full Text Available From the statistics, there are serious concerns over the relatively high number of fatal motor vehicle crashes involving pedestrianmotorcycle in Malaysia. The high number of motorcycle registration on road, compounded by its popularity as the major mode of transportation in the nation, imposes safety risk to pedestrians, as well as to other road users. Data from 1,626 related road crashes of Royal Malaysia Police (RMP for the 2009-2013 period were retrospectively collected via MIROS Road Accident Analysis and Database System (M-ROADS. The data were then analyzed via logistic regression method to determine associations between risks and injury severity in pedestrian-motorcycle collisions. The results indicate that five factors were significantly related to injury severity, which include age, location of body injury, as well as speed limit, road geometry and lighting condition of collision site. Subsequently, focus group discussions with stakeholders were also conducted to gather relevant data to identify related issues and suggestions on motorcycle safety technology with regards to collision with pedestrian.

  13. Development of Statewide Guidelines for Implementing Leading Pedestrian Intervals in Florida

    Science.gov (United States)

    2017-12-01

    Pedestrian safety is an ongoing major concern throughout the United States and is one of the highest priorities for the Florida Department of Transportation (FDOT). Vehicles often fail to yield to pedestrians at intersections, especially when pedestr...

  14. Pedestrian Movement Direction Recognition Using Convolutional Neural Networks

    OpenAIRE

    Dominguez-Sanchez, Alex; Cazorla, Miguel; Orts-Escolano, Sergio

    2017-01-01

    Pedestrian movement direction recognition is an important factor in autonomous driver assistance and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in streets, roads, and events, where thousands of people may gather on a regular basis. People flow analysis on zebra crossings and in shopping centers or events such as demonstrations are a key element to improve safety and to enable autonomous cars to drive in real life environments. This paper focuses...

  15. Velocity correlations and spatial dependencies between neighbors in a unidirectional flow of pedestrians

    Science.gov (United States)

    Porzycki, Jakub; WÄ s, Jarosław; Hedayatifar, Leila; Hassanibesheli, Forough; Kułakowski, Krzysztof

    2017-08-01

    The aim of the paper is an analysis of self-organization patterns observed in the unidirectional flow of pedestrians. On the basis of experimental data from Zhang et al. [J. Zhang et al., J. Stat. Mech. (2011) P06004, 10.1088/1742-5468/2011/06/P06004], we analyze the mutual positions and velocity correlations between pedestrians when walking along a corridor. The angular and spatial dependencies of the mutual positions reveal a spatial structure that remains stable during the crowd motion. This structure differs depending on the value of n , for the consecutive n th -nearest-neighbor position set. The preferred position for the first-nearest neighbor is on the side of the pedestrian, while for further neighbors, this preference shifts to the axis of movement. The velocity correlations vary with the angle formed by the pair of neighboring pedestrians and the direction of motion and with the time delay between pedestrians' movements. The delay dependence of the correlations shows characteristic oscillations, produced by the velocity oscillations when striding; however, a filtering of the main frequency of individual striding out reduces the oscillations only partially. We conclude that pedestrians select their path directions so as to evade the necessity of continuously adjusting their speed to their neighbors'. They try to keep a given distance, but follow the person in front of them, as well as accepting and observing pedestrians on their sides. Additionally, we show an empirical example that illustrates the shape of a pedestrian's personal space during movement.

  16. Congestion Management Strategies of Real-Time Market

    DEFF Research Database (Denmark)

    Wang, Qi; Zhang, Chunyu; Ding, Yi

    2014-01-01

    The high penetration of distributed energy resources (DERs) will significantly challenge the power system operation and control due to their stochastic, intermittent, and fluctuation characteristics. This enhances the difficulty of congestion management of power systems in cross-border electricity...... are introduced with the congestion constraints complied. Pre-Contingency strategy is proposed as the advance preparation for the future congestion, and In-Day re-dispatch is used for regulation. Accordingly, the requirements on facilities considering telemetry and remote control in a fast manner are discussed...

  17. Simulating bi-directional pedestrian flow in a cellular automaton model considering the body-turning behavior

    Science.gov (United States)

    Jin, Cheng-Jie; Jiang, Rui; Yin, Jun-Lin; Dong, Li-Yun; Li, Dawei

    2017-09-01

    In the experiments of bi-directional pedestrian flow, it is often observed that pedestrians turn their bodies and change from walking straight to walking sideways, in order to mitigate or avoid the conflicts with opposite walking ones. When these conflicts disappear, pedestrians restore and walk straight again. In the turning states, the forward velocities of pedestrians are not affected. In order to simulate this body-turning behavior, we use a cellular automaton (CA) model named ITP model, which has been proposed before. But the occupied area of one pedestrian is set as 0.4 m∗0.2 m. After the introduction of new rules of turnings and restorations, the pedestrians become more intelligent and flexible during the lane formation process, and some improvements of the fundamental diagram of pedestrian flow can be found. The simulation results of two different scenarios under open boundary conditions are also presented, and compared with the experimental data. It is shown that the new model performs much better than the original model in various tests, which further confirms the validity of the new rules. We think this approach is one useful contribution to the pedestrian flow modeling.

  18. Walk This Way: Improving Pedestrian Agent-Based Models through Scene Activity Analysis

    Directory of Open Access Journals (Sweden)

    Andrew Crooks

    2015-09-01

    Full Text Available Pedestrian movement is woven into the fabric of urban regions. With more people living in cities than ever before, there is an increased need to understand and model how pedestrians utilize and move through space for a variety of applications, ranging from urban planning and architecture to security. Pedestrian modeling has been traditionally faced with the challenge of collecting data to calibrate and validate such models of pedestrian movement. With the increased availability of mobility datasets from video surveillance and enhanced geolocation capabilities in consumer mobile devices we are now presented with the opportunity to change the way we build pedestrian models. Within this paper we explore the potential that such information offers for the improvement of agent-based pedestrian models. We introduce a Scene- and Activity-Aware Agent-Based Model (SA2-ABM, a method for harvesting scene activity information in the form of spatiotemporal trajectories, and incorporate this information into our models. In order to assess and evaluate the improvement offered by such information, we carry out a range of experiments using real-world datasets. We demonstrate that the use of real scene information allows us to better inform our model and enhance its predictive capabilities.

  19. Vector Graph Assisted Pedestrian Dead Reckoning Using an Unconstrained Smartphone

    Directory of Open Access Journals (Sweden)

    Jiuchao Qian

    2015-03-01

    Full Text Available The paper presents a hybrid indoor positioning solution based on a pedestrian dead reckoning (PDR approach using built-in sensors on a smartphone. To address the challenges of flexible and complex contexts of carrying a phone while walking, a robust step detection algorithm based on motion-awareness has been proposed. Given the fact that step length is influenced by different motion states, an adaptive step length estimation algorithm based on motion recognition is developed. Heading estimation is carried out by an attitude acquisition algorithm, which contains a two-phase filter to mitigate the distortion of magnetic anomalies. In order to estimate the heading for an unconstrained smartphone, principal component analysis (PCA of acceleration is applied to determine the offset between the orientation of smartphone and the actual heading of a pedestrian. Moreover, a particle filter with vector graph assisted particle weighting is introduced to correct the deviation in step length and heading estimation. Extensive field tests, including four contexts of carrying a phone, have been conducted in an office building to verify the performance of the proposed algorithm. Test results show that the proposed algorithm can achieve sub-meter mean error in all contexts.

  20. Road users’ opinion about pedestrian safety in the emirate of Sharjah, UAE- survey results

    Directory of Open Access Journals (Sweden)

    Alhmoudi Mariam

    2017-01-01

    Full Text Available This paper is to investigate the pedestrian safety in Sharjah (UAE, and suggest recommendations to improve safety in the emirate. A survey data was collected from 570 participants in December, 2016, and included the following informations: measure the awareness of drivers and pedestrians, determine the behavior of road users, take general views from the road users, and measure the level of users` satisfaction. The results showed that characteristics of road users including (gender, age group, nationality, social status, education level and the income can affect their behavior at different levels and that may lead to pedestrian accidents. Also, most participants noticed that there are differences in the behavior of drivers and pedestrians based on their nationalities, and they indicated that pedestrian mistakes are main cause of this type of accidents. Moreover, the data showed that most drivers confirmed that they give more attention to pedestrians in mixed land used than other areas and they mentioned that “traffic signal + marked lines” is the clearest place for them to be attentive to pedestrians crossing the road. Overall, based on the results of this paper, there is an urgent need to re-evaluate the pedestrian facilities in the Emirate such as (Design, locations, and their availability as well as focusing more on the education and the law enforcement.

  1. Survey of pedestrian detection for advanced driver assistance systems.

    Science.gov (United States)

    Gerónimo, David; López, Antonio M; Sappa, Angel D; Graf, Thorsten

    2010-07-01

    Advanced driver assistance systems (ADASs), and particularly pedestrian protection systems (PPSs), have become an active research area aimed at improving traffic safety. The major challenge of PPSs is the development of reliable on-board pedestrian detection systems. Due to the varying appearance of pedestrians (e.g., different clothes, changing size, aspect ratio, and dynamic shape) and the unstructured environment, it is very difficult to cope with the demanded robustness of this kind of system. Two problems arising in this research area are the lack of public benchmarks and the difficulty in reproducing many of the proposed methods, which makes it difficult to compare the approaches. As a result, surveying the literature by enumerating the proposals one--after-another is not the most useful way to provide a comparative point of view. Accordingly, we present a more convenient strategy to survey the different approaches. We divide the problem of detecting pedestrians from images into different processing steps, each with attached responsibilities. Then, the different proposed methods are analyzed and classified with respect to each processing stage, favoring a comparative viewpoint. Finally, discussion of the important topics is presented, putting special emphasis on the future needs and challenges.

  2. Effect of obesity and being overweight on long-term mortality in congestive heart failure: influence of left ventricular systolic function

    DEFF Research Database (Denmark)

    Gustafsson, Finn; Kragelund, Charlotte B; Torp-Pedersen, Christian

    2004-01-01

    AIMS: Previous studies have suggested that a high body mass index (BMI) is associated with an improved outcome in congestive heart failure (CHF). However, the studies addressing this problem have not included enough patients with non-systolic heart failure to evaluate how left ventricular systolic...... function interacts with obesity on prognosis in CHF. The aim of this study was to evaluate how BMI influences mortality in patients hospitalized with CHF, and to address in particular whether the effect of BMI is influenced by left ventricular (LV) systolic function. METHODS AND RESULTS: Retrospective...... analysis of baseline and survival data for 4700 hospitalized CHF patients for whom BMI was available. LV systolic function, as assessed by wall motion index was available for 95% of the patients. Follow-up time ranged from 5 to 8 years. In the total population, the risk of death decreased steadily...

  3. Fuzzy Logic-Based Model That Incorporates Personality Traits for Heterogeneous Pedestrians

    Directory of Open Access Journals (Sweden)

    Zhuxin Xue

    2017-10-01

    Full Text Available Most models designed to simulate pedestrian dynamical behavior are based on the assumption that human decision-making can be described using precise values. This study proposes a new pedestrian model that incorporates fuzzy logic theory into a multi-agent system to address cognitive behavior that introduces uncertainty and imprecision during decision-making. We present a concept of decision preferences to represent the intrinsic control factors of decision-making. To realize the different decision preferences of heterogeneous pedestrians, the Five-Factor (OCEAN personality model is introduced to model the psychological characteristics of individuals. Then, a fuzzy logic-based approach is adopted for mapping the relationships between the personality traits and the decision preferences. Finally, we have developed an application using our model to simulate pedestrian dynamical behavior in several normal or non-panic scenarios, including a single-exit room, a hallway with obstacles, and a narrowing passage. The effectiveness of the proposed model is validated with a user study. The results show that the proposed model can generate more reasonable and heterogeneous behavior in the simulation and indicate that individual personality has a noticeable effect on pedestrian dynamical behavior.

  4. Congestion control for vehicular delay tolerant network routing protocols

    OpenAIRE

    Oham, Chuka Finbars

    2014-01-01

    The Vehicular Delay Tolerant Network (VDTN) is a special and challenging type of the Delay Tolerant Network because of its high mobility, frequent disconnections and nodal congestion features. These challenging features make it prone to congestion which leads to a considerable amount of message drops in the network. To minimize the impact of congestion in the network, we designed and implemented the Congestion Aware Spray and Wait (CASaW) routing protocol. We varied the buffer sizes of the no...

  5. The effect of spatial planning patterns on distribution of pedestrians ...

    African Journals Online (AJOL)

    This study focuses on public spaces of residential neighbourhoods in the City of Nairobi. It establishes various spatial characteristics, hence patterns, that have a bearing on the distribution of pedestrians therein. A higher encounter rate of pedestrians is a desirable public space quality given that the higher degree of ...

  6. Experimental research on pedestrian lower leg impact

    Science.gov (United States)

    Constantin, B. A.; Iozsa, D. M.; Stan, C.

    2017-10-01

    The present paper is centred on the research of deceleration measured at the level of the lower leg during a pedestrian impact in multiple load cases. Basically, the used methodology for physical test setup is similar to EuroNCAP and European Union regulatory requirements. Due cost reduction reasons, it was not used a pneumatic system in order to launch the lower leg impactor in the direction of the vehicle front-end. During the test it was used an opposite solution, namely the vehicle being in motion, aiming the standstill lower leg impactor. The impactor has similar specifications to those at EU level, i.e. dimensions, materials, and principle of measurement of the deceleration magnitude. Therefore, all the results obtained during the study comply with the requirements of both EU regulation and EuroNCAP. As a limitation, due to unavailability of proper sensors in the equipment of the lower leg impactor, that could provide precise results, the bending angle, the shearing and the detailed data at the level of knee ligaments were not evaluated. The knee joint should be improved for future studies as some bending angles observed during the post processing of several impact video files were too high comparing to other studies. The paper highlights the first pedestrian impact physical test conducted by the author, following an extensive research in the field. Deceleration at the level of pedestrian knee can be substantially improved by providing enough volume between the bumper fascia and the front-end structure and by using pedestrian friendly materials for shock absorbers, such as foams.

  7. Congestion cost allocation method in a pool model

    International Nuclear Information System (INIS)

    Jung, H.S.; Hur, D.; Park, J.K.

    2003-01-01

    The congestion cost caused by transmission capacities and voltage limit is an important issue in a competitive electricity market. To allocate the congestion cost equitably, the active constraints in a constrained dispatch and the sequence of these constraints should be considered. A multi-stage method is proposed which reflects the effects of both the active constraints and the sequence. In a multi-stage method, the types of congestion are analysed in order to consider the sequence, and the relationship between congestion and the active constraints is derived in a mathematical way. The case study shows that the proposed method can give more accurate and equitable signals to customers. (Author)

  8. Comparative Study on New AQM Mechanisms for Congestion Control

    Directory of Open Access Journals (Sweden)

    Ramakrishna B B

    2013-09-01

    Full Text Available As usage of network goes increasing day by day, managing network traffic becomes a very difficult task. It is important to avoid high packet loss rates in the Internet. Congestion is the one of the major issue in the present networks. Congestion Control is one of the solutions adopted to solve the congestion issue and to control it. Numbers of queue management algorithms are proposed for congestion control and to reduce high packet loss rates. Active Queue Management (AQM is one such mechanism which provides better control over congestion. In this paper a study is made on recent load based AQM techniques that are proposed and its merits and shortfall is presented.

  9. Exit selection strategy in pedestrian evacuation simulation with multi-exits

    International Nuclear Information System (INIS)

    Yue Hao; Zhang Bin-Ya; Shao Chun-Fu; Xing Yan

    2014-01-01

    A mixed strategy of the exit selection in a pedestrian evacuation simulation with multi-exits is constructed by fusing the distance-based and time-based strategies through a cognitive coefficient, in order to reduce the evacuation imbalance caused by the asymmetry of exits or pedestrian layout, to find a critical density to distinguish whether the strategy of exit selection takes effect or not, and to analyze the exit selection results with different cognitive coefficients. The strategy of exit selection is embedded in the computation of the shortest estimated distance in a dynamic parameter model, in which the concept of a jam area layer and the procedure of step-by-step expending are introduced. Simulation results indicate the characteristics of evacuation time gradually varying against cognitive coefficient and the effectiveness of reducing evacuation imbalance caused by the asymmetry of pedestrian or exit layout. It is found that there is a critical density to distinguish whether a pedestrian jam occurs in the evacuation and whether an exit selection strategy is in effect. It is also shown that the strategy of exit selection has no effect on the evacuation process in the no-effect phase with a low density, and that evacuation time and exit selection are dependent on the cognitive coefficient and pedestrian initial density in the in-effect phase with a high density. (general)

  10. Dynamic Response to Pedestrian Loads with Statistical Frequency Distribution

    DEFF Research Database (Denmark)

    Krenk, Steen

    2012-01-01

    on the magnitude of the resulting response. A frequency representation of vertical pedestrian load is developed, and a compact explicit formula is developed for the magnitude of the resulting response, in terms of the damping ratio of the structure, the bandwidth of the pedestrian load, and the mean footfall...... frequency. The accuracy of the formula is verified by a statistical moment analysis using the Lyapunov equations....

  11. Dynamic voltage stability constrained congestion management framework for deregulated electricity markets

    International Nuclear Information System (INIS)

    Amjady, Nima; Hakimi, Mahmood

    2012-01-01

    Highlights: ► A new congestion management method for electricity markets is proposed. ► The proposed method includes dynamic models of generators and loads. ► Dynamic voltage stability limits are properly modeled in the proposed method. ► The proposed method is compared with several other congestion management methods. ► It leads to a more robust power system with a lower congestion management cost. - Abstract: Congestion management is an important part of power system operation in today deregulated electricity markets. However, congestion management is traditionally performed based on static analysis tools, while these tools may not correctly capture dynamic voltage stability limits of a power system. In this paper, a new congestion management framework considering dynamic voltage stability boundary of power system is proposed. For this purpose, precise dynamic modeling of power system equipment, including generators and loads, is incorporated into the proposed congestion management framework. The proposed method alleviates congestion with a lower congestion management cost and more dynamic voltage stability margin, resulting in a more robust power system, compared with the previous congestion management methods. The validity of proposed congestion management framework is studied based on the New England 39-bus power system. The obtained results confirm the validity of the developed approach.

  12. Driving with a congestion assistant : mental workload and acceptance

    NARCIS (Netherlands)

    Brookhuis, K.A.; Driel, C. J.G. van; Hof, T.; Arem, B. van; Hoedemaeker, M.

    2009-01-01

    New driver support systems are developed and introduced to the market at increasing speed. In conditions of traffic congestion drivers may be supported by a" Congestion Assistant", a system that combines the features of a Congestion Warning System (acoustic warning and gas pedal counterforce) and a

  13. Research on Urban Road Traffic Congestion Charging Based on Sustainable Development

    Science.gov (United States)

    Ye, Sun

    Traffic congestion is a major problem which bothers our urban traffic sustainable development at present. Congestion charging is an effective measure to alleviate urban traffic congestion. The paper first probes into several key issues such as the goal, the pricing, the scope, the method and the redistribution of congestion charging from theoretical angle. Then it introduces congestion charging practice in Singapore and London and draws conclusion and suggestion that traffic congestion charging should take scientific plan, support of public, public transportation development as the premise.

  14. Efficacy of virtual reality in pedestrian safety research.

    Science.gov (United States)

    Deb, Shuchisnigdha; Carruth, Daniel W; Sween, Richard; Strawderman, Lesley; Garrison, Teena M

    2017-11-01

    Advances in virtual reality technology present new opportunities for human factors research in areas that are dangerous, difficult, or expensive to study in the real world. The authors developed a new pedestrian simulator using the HTC Vive head mounted display and Unity software. Pedestrian head position and orientation were tracked as participants attempted to safely cross a virtual signalized intersection (5.5 m). In 10% of 60 trials, a vehicle violated the traffic signal and in 10.84% of these trials, a collision between the vehicle and the pedestrian was observed. Approximately 11% of the participants experienced simulator sickness and withdrew from the study. Objective measures, including the average walking speed, indicate that participant behavior in VR matches published real world norms. Subjective responses indicate that the virtual environment was realistic and engaging. Overall, the study results confirm the effectiveness of the new virtual reality technology for research on full motion tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Auditory detectability of hybrid electric vehicles by pedestrians who are blind

    Science.gov (United States)

    2010-11-15

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...

  16. Cellular automata model for urban road traffic flow considering pedestrian crossing street

    Science.gov (United States)

    Zhao, Han-Tao; Yang, Shuo; Chen, Xiao-Xu

    2016-11-01

    In order to analyze the effect of pedestrians' crossing street on vehicle flows, we investigated traffic characteristics of vehicles and pedestrians. Based on that, rules of lane changing, acceleration, deceleration, randomization and update are modified. Then we established two urban two-lane cellular automata models of traffic flow, one of which is about sections with non-signalized crosswalk and the other is on uncontrolled sections with pedestrians crossing street at random. MATLAB is used for numerical simulation of the different traffic conditions; meanwhile space-time diagram and relational graphs of traffic flow parameters are generated and then comparatively analyzed. Simulation results indicate that when vehicle density is lower than around 25 vehs/(km lane), pedestrians have modest impact on traffic flow, whereas when vehicle density is higher than about 60 vehs/(km lane), traffic speed and volume will decrease significantly especially on sections with non-signal-controlled crosswalk. The results illustrate that the proposed models reconstruct the traffic flow's characteristic with the situation where there are pedestrians crossing and can provide some practical reference for urban traffic management.

  17. Far-infrared pedestrian detection for advanced driver assistance systems using scene context

    Science.gov (United States)

    Wang, Guohua; Liu, Qiong; Wu, Qingyao

    2016-04-01

    Pedestrian detection is one of the most critical but challenging components in advanced driver assistance systems. Far-infrared (FIR) images are well-suited for pedestrian detection even in a dark environment. However, most current detection approaches just focus on pedestrian patterns themselves, where robust and real-time detection cannot be well achieved. We propose a fast FIR pedestrian detection approach, called MAP-HOGLBP-T, to explicitly exploit the scene context for the driver assistance system. In MAP-HOGLBP-T, three algorithms are developed to exploit the scene contextual information from roads, vehicles, and background objects of high homogeneity, and we employ the Bayesian approach to build a classifier learner which respects the scene contextual information. We also develop a multiframe approval scheme to enhance the detection performance based on spatiotemporal continuity of pedestrians. Our empirical study on real-world datasets has demonstrated the efficiency and effectiveness of the proposed method. The performance is shown to be better than that of state-of-the-art low-level feature-based approaches.

  18. Busy hour traffic congestion analysis in mobile macrocells | Ozovehe ...

    African Journals Online (AJOL)

    In this work, real live traffic data from integrated GSM/GPRS network was used for traffic congestion analysis. The analysis was carried out on 10 congesting cells using network management system (NMS) statistics data span for three years period. Correlation test showed that traffic channel (TCH) congestion depend only ...

  19. The safety of pedestrian crossing

    NARCIS (Netherlands)

    Goede, M. de; Groenewoud, C.; Horst, A.R.A. van der

    2010-01-01

    More than half of all severe traffic accidents in which pedestrians or cyclists are involved, occur during road crossing. In this chapter insights, based on previous studies and literature, concerning requirements for safe and comfortable crossing facilities are discussed. In order to develop

  20. An excess of pedestrian injuries in icy conditions

    DEFF Research Database (Denmark)

    Merrild, Ulrik; Bak, Soeren

    1983-01-01

    An "icy condition epidemic" has been analyzed in an investigation of patients treated in the casualty department of Odense University Hospital: it was found that the victims were mainly comprised of pedestrians and that the pedestrians had 14 times more injuries than during a normal winter period...... clearing of the snow, and (3) spreading of sand, and possibly salt, on footpaths and bicycle paths. Specific measures should be launched to help the elderly during such periods, in order that outdoor activities may be cut to a minimum....

  1. Estimating the value of life and injury for pedestrians using a stated preference framework.

    Science.gov (United States)

    Niroomand, Naghmeh; Jenkins, Glenn P

    2017-09-01

    The incidence of pedestrian death over the period 2010 to 2014 per 1000,000 in North Cyprus is about 2.5 times that of the EU, with 10.5 times more pedestrian road injuries than deaths. With the prospect of North Cyprus entering the EU, many investments need to be undertaken to improve road safety in order to reach EU benchmarks. We conducted a stated choice experiment to identify the preferences and tradeoffs of pedestrians in North Cyprus for improved walking times, pedestrian costs, and safety. The choice of route was examined using mixed logit models to obtain the marginal utilities associated with each attribute of the routes that consumers chose. These were used to estimate the individuals' willingness to pay (WTP) to save walking time and to avoid pedestrian fatalities and injuries. We then used the results to obtain community-wide estimates of the value of a statistical life (VSL) saved, the value of an injury (VI) prevented, and the value per hour of walking time saved. The estimate of the VSL was €699,434 and the estimate of VI was €20,077. These values are consistent, after adjusting for differences in incomes, with the median results of similar studies done for EU countries. The estimated value of time to pedestrians is €7.20 per person hour. The ratio of deaths to injuries is much higher for pedestrians than for road accidents, and this is completely consistent with the higher estimated WTP to avoid a pedestrian accident than to avoid a car accident. The value of time of €7.20 is quite high relative to the wages earned. Findings provide a set of information on the VRR for fatalities and injuries and the value of pedestrian time that is critical for conducing ex ante appraisals of investments to improve pedestrian safety. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  2. Pedestrian Falls: A review of the literature and future research directions

    NARCIS (Netherlands)

    Schepers, JP; Den Brinker, B; Methorst, R; Helbich, M

    Introduction Pedestrian falls (PFs) – falls in public spaces without collisions with other road users – are a significant cause of serious transport-related injuries, amounting to three-quarters of all pedestrians admitted to hospital. Methods This scoping review examined peer-reviewed research on

  3. Pedestrian falls : A review of the literature and future research directions

    NARCIS (Netherlands)

    Schepers, Paul; den Brinker, Berry; Methorst, Rob; Helbich, Marco

    2017-01-01

    Introduction Pedestrian falls (PFs) – falls in public spaces without collisions with other road users – are a significant cause of serious transport-related injuries, amounting to three-quarters of all pedestrians admitted to hospital. Methods This scoping review examined peer-reviewed research on

  4. Similarities and differences in pedestrian shopping behavior in emerging Chinese metropolises

    NARCIS (Netherlands)

    Zhu, W.; Wang, Donggen; Timmermans, H.J.P.; Saito, S.

    2007-01-01

    To give a general impression on the fast development of Chinese retailing, this paper reports a study on pedestrian shopping behavior in two city centers, East Nanjing Road and Wang Fujing Street in Shanghai and Beijing. Similarities and differences in pedestrian profiles, activities and movement

  5. Multiscale modeling of pedestrian dynamics

    CERN Document Server

    Cristiani, Emiliano; Tosin, Andrea

    2014-01-01

    This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually, and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.

  6. Measuring accessibility and congestion in Accra

    DEFF Research Database (Denmark)

    Møller-Jensen, Lasse; Kofie, Richard Y.; Allotey, Albert N.M.

    2012-01-01

    Based on extensive gps-measurements, the paper addresses the level of intra-urban accessibility and provides indications of the level of congestion in Accra, Ghana. Traffic flows within the urban area are analyzed with respect to speed, time-of-day, direction, road type and land cover type. The s...... and less during off-peak hours. Delays are frequently found within the inner fringe areas. The paper discusses the methodological potentials and barriers for applying gps tracklog points for analysing traffic flows within an urban road network........ The speed information is extrapolated to cover the total mapped urban road net¬work with time- and direction-specific data. A series of time-distance maps are created using network analysis to illustrate the level of accessibility at different times of the day and at different directions relative...... to the city centre. Peak hour traffic speeds are compared with off-peak levels and theoretical free-flow estimations to provide an indica-tion of the level of congestion. It is found that the core areas are somewhat congested during the day period, while the fringe areas are more congested during peak hours...

  7. Experiential exposure to texting and walking in virtual reality: A randomized trial to reduce distracted pedestrian behavior.

    Science.gov (United States)

    Schwebel, David C; McClure, Leslie A; Porter, Bryan E

    2017-05-01

    Distracted pedestrian behavior is a significant public health concern, as research suggests distracted pedestrians have significantly higher risk of injury compared to fully attentive pedestrians. Despite this, efforts to reduce distracted pedestrian behavior are scant. Using a repeated measures experimental research design, we implemented a behavioral intervention to reduce distracted pedestrian behavior in the high-risk environment of an urban college campus and simultaneously monitored behavior on a control urban college campus not exposed to the intervention. We had two primary aims: reduce perceived vulnerability to injury among individual pedestrians and reduce distracted pedestrian behavior in the environment through a change in community-based norms. The hallmark of the behavioral intervention was a week-long opportunity for community members to experience personally the risks of distracted pedestrian behavior by attempting to cross a virtual pedestrian environment street while text-messaging. This was supplemented by traditional and social marketing and publicity through various campus partners. A sample of 219 individuals completed self-report surveys about perceived vulnerability to distracted pedestrian injury before experiencing the distracted virtual street-crossing and again after 2 weeks and 5 months. Observational assessment of distracted pedestrian behavior was conducted at a busy intersection on the campus as well as at a control campus not exposed to the intervention at baseline, post-intervention, 10 weeks, and 6 months. The intervention achieved mixed results. Individuals exposed to texting within a simulated pedestrian environment reported changes in their intentions to cross streets while distracted and in perceived vulnerability to risk while crossing streets, but we did not witness evidence of changed community norms based on observed rates of distracted pedestrian behavior before and after the intervention compared to a control campus not

  8. The flashing right turn signal with pedestrian indication : human factors studies to understand the potential of a new signal to increase awareness of and attention to crossing pedestrians, [summary].

    Science.gov (United States)

    2015-12-01

    The Florida Department of Transportation (FDOT) has placed a high priority on understanding : the nature of pedestrian injury and fatality incidents and on developing interventions that will : make Floridas roads safer for pedestrians.

  9. Congestion management in a market environment. 2. CIGRE/PES Symposium

    International Nuclear Information System (INIS)

    2005-01-01

    With the opening of electricity markets and changes in the power flows, the issue of available transmission capacity is of more and more importance. Market orientated answers and real-time solutions are implemented or under consideration; diligent management of existing assets and timely investment decisions to increase capacity and to improve the management systems are fundamental. This Symposium discusses the congestion management issue for internal and cross border exchanges, covering six subject areas: international Practices for Congestion Management, tariffs and Pricing, operations for Congestion, information Technology Issues, experiences with Congestion Management, tools for Congestion Management. (author)

  10. Optimal Design of HGV Front Structure for Pedestrian Safety

    Science.gov (United States)

    Ramli, Faiz Redza; Yamazaki, Koetsu

    This paper addresses a pedestrian safety design of front structure of Heavy Goods Vehicle (HGV) by two concepts; firstly by equipping a lower bumper stiffener structure under the front bumper and secondly by putting an airbag in front of the HGV front panel. In this study, HGV-pedestrian collision accident was simulated by the crash analysis solver MADYMO environment, where the HGV model with the speed of 20 km/h was collided with an adult male and with an adult female pedestrian, respectively. The bumper and lower bumper stiffener were varied their positions, while the airbag was adjusted the vent hole size and the position of airbag in front of front panel vertically. The pedestrian injuries that can be sustained during the simulation impact were limited at the critical body parts of head, chest, upper leg; an injury criteria of Head Injury Criterion (HIC), Thorax Cumulative 3ms Acceleration (C3ms) and peak loads of femur, respectively. Because of various parameters and constraints of initial conditions and injury thresholds, a multi-objective optimization design problem considered these main injury criterion is solved in order to achieve the best solution for this study. The results of optimized design parameters for each cases and conditions were obtained and the possibilities of the proposed concept were discussed.

  11. Pedestrian detection from thermal images: A sparse representation based approach

    Science.gov (United States)

    Qi, Bin; John, Vijay; Liu, Zheng; Mita, Seiichi

    2016-05-01

    Pedestrian detection, a key technology in computer vision, plays a paramount role in the applications of advanced driver assistant systems (ADASs) and autonomous vehicles. The objective of pedestrian detection is to identify and locate people in a dynamic environment so that accidents can be avoided. With significant variations introduced by illumination, occlusion, articulated pose, and complex background, pedestrian detection is a challenging task for visual perception. Different from visible images, thermal images are captured and presented with intensity maps based objects' emissivity, and thus have an enhanced spectral range to make human beings perceptible from the cool background. In this study, a sparse representation based approach is proposed for pedestrian detection from thermal images. We first adopted the histogram of sparse code to represent image features and then detect pedestrian with the extracted features in an unimodal and a multimodal framework respectively. In the unimodal framework, two types of dictionaries, i.e. joint dictionary and individual dictionary, are built by learning from prepared training samples. In the multimodal framework, a weighted fusion scheme is proposed to further highlight the contributions from features with higher separability. To validate the proposed approach, experiments were conducted to compare with three widely used features: Haar wavelets (HWs), histogram of oriented gradients (HOG), and histogram of phase congruency (HPC) as well as two classification methods, i.e. AdaBoost and support vector machine (SVM). Experimental results on a publicly available data set demonstrate the superiority of the proposed approach.

  12. A thermostatted kinetic theory model for event-driven pedestrian dynamics

    Science.gov (United States)

    Bianca, Carlo; Mogno, Caterina

    2018-06-01

    This paper is devoted to the modeling of the pedestrian dynamics by means of the thermostatted kinetic theory. Specifically the microscopic interactions among pedestrians and an external force field are modeled for simulating the evacuation of pedestrians from a metro station. The fundamentals of the stochastic game theory and the thermostatted kinetic theory are coupled for the derivation of a specific mathematical model which depicts the time evolution of the distribution of pedestrians at different exits of a metro station. The perturbation theory is employed in order to establish the stability analysis of the nonequilibrium stationary states in the case of a metro station consisting of two exits. A general sensitivity analysis on the initial conditions, the magnitude of the external force field and the number of exits is presented by means of numerical simulations which, in particular, show how the asymptotic distribution and the convergence time are affected by the presence of an external force field. The results show how, in evacuation conditions, the interaction dynamics among pedestrians can be negligible with respect to the external force. The important role of the thermostat term in allowing the reaching of the nonequilibrium stationary state is stressed out. Research perspectives are underlined at the end of paper, in particular for what concerns the derivation of frameworks that take into account the definition of local external actions and the introduction of the space and velocity dynamics.

  13. Methodology for assessing the lighting of pedestrian crossings based on light intensity parameters

    Directory of Open Access Journals (Sweden)

    Tomczuk Piotr

    2017-01-01

    Full Text Available One of the possible preventive measures that could improve safety at crossings is to assess the state of illumination of the lighting installation located in the transition area for pedestrians. The City of Warsaw has undertaken to comprehensively assess the pedestrian crossings to determine the level of road safety and the condition of lighting. The lighting conditions related to pedestrian crossings without traffic lights in three central districts of the city were investigated. The conducted field research and the work of the team of experts lead to the development of tools to assess the level of risk due to the lighting conditions measured at night. The newly developed and used method of assessment and the experience gained should provide a valuable contribution to the development of uniform risk assessment rules for pedestrian crossings in Poland. The authors of this paper have attempted to systematize the description of the method of evaluation of the lighting installed in the area of pedestrian crossings.

  14. Domain Adaptation for Pedestrian Detection Based on Prediction Consistency

    Directory of Open Access Journals (Sweden)

    Yu Li-ping

    2014-01-01

    Full Text Available Pedestrian detection is an active area of research in computer vision. It remains a quite challenging problem in many applications where many factors cause a mismatch between source dataset used to train the pedestrian detector and samples in the target scene. In this paper, we propose a novel domain adaptation model for merging plentiful source domain samples with scared target domain samples to create a scene-specific pedestrian detector that performs as well as rich target domain simples are present. Our approach combines the boosting-based learning algorithm with an entropy-based transferability, which is derived from the prediction consistency with the source classifications, to selectively choose the samples showing positive transferability in source domains to the target domain. Experimental results show that our approach can improve the detection rate, especially with the insufficient labeled data in target scene.

  15. Time-dependent spectral analysis of interactions within groups of walking pedestrians and vertical structural motion using wavelets

    Science.gov (United States)

    Bocian, M.; Brownjohn, J. M. W.; Racic, V.; Hester, D.; Quattrone, A.; Gilbert, L.; Beasley, R.

    2018-05-01

    A multi-scale and multi-object interaction phenomena can arise when a group of walking pedestrians crosses a structure capable of exhibiting dynamic response. This is because each pedestrian is an autonomous dynamic system capable of displaying intricate behaviour affected by social, psychological, biomechanical and environmental factors, including adaptations to the structural motion. Despite a wealth of mathematical models attempting to describe and simulate coupled crowd-structure system, their applicability can generally be considered uncertain. This can be assigned to a number of assumptions made in their development and the scarcity or unavailability of data suitable for their validation, in particular those associated with pedestrian-pedestrian and pedestrian-structure interaction. To alleviate this problem, data on behaviour of individual pedestrians within groups of six walkers with different spatial arrangements are gathered simultaneously with data on dynamic structural response of a footbridge, from a series of measurements utilising wireless motion monitors. Unlike in previous studies on coordination of pedestrian behaviour, the collected data can serve as a proxy for pedestrian vertical force, which is of critical importance from the point of view of structural stability. A bivariate analysis framework is proposed and applied to these data, encompassing wavelet transform, synchronisation measures based on Shannon entropy and circular statistics. A topological pedestrian map is contrived showing the strength and directionality of between-subjects interactions. It is found that the coordination in pedestrians' vertical force depends on the spatial collocation within a group, but it is generally weak. The relationship between the bridge and pedestrian behaviour is also analysed, revealing stronger propensity for pedestrians to coordinate their force with the structural motion rather than with each other.

  16. A NEW CONGESTION MANAGEMENT MECHANISM FOR NEXT GENERATION ROUTERS

    Directory of Open Access Journals (Sweden)

    MOHAMMED M. KADHUM

    2008-12-01

    Full Text Available While computer networks go towards dealing with varied traffic types with different service requirements, there is a necessity for modern network control mechanisms that can control the network traffic to meet the users' service requirements. Optimizing the network utilization by improving the network performance can help to accommodate more users and thus increase operators’ profits. Controlling the congestion at the gateway leads to better performance of the network. Sending congestion signal sooner can be of great benefit to the TCP connection. In this paper, we propose Fast Congestion Notification (FCN mechanism which is a new method for managing the gateway queues and fast sending of congestion signal to the sender. We tested our mechanism on Explicit Congestion Notification (ECN packets which have higher priority; we achieved good results in terms of faster congestion signal propagation and better network utilization. Our analysis and simulations results show that the use of FCN over TCP connections sharing one bottleneck can improve the throughput, having less loss, less delay time, and better network utilization.

  17. Potential of pedestrian protection systems--a parameter study using finite element models of pedestrian dummy and generic passenger vehicles.

    Science.gov (United States)

    Fredriksson, Rikard; Shin, Jaeho; Untaroiu, Costin D

    2011-08-01

    To study the potential of active, passive, and integrated (combined active and passive) safety systems in reducing pedestrian upper body loading in typical impact configurations. Finite element simulations using models of generic sedan car fronts and the Polar II pedestrian dummy were performed for 3 impact configurations at 2 impact speeds. Chest contact force, head injury criterion (HIC(15)), head angular acceleration, and the cumulative strain damage measure (CSDM(0.25)) were employed as injury parameters. Further, 3 countermeasures were modeled: an active autonomous braking system, a passive deployable countermeasure, and an integrated system combining the active and passive systems. The auto-brake system was modeled by reducing impact speed by 10 km/h (equivalent to ideal full braking over 0.3 s) and introducing a pitch of 1 degree and in-crash deceleration of 1 g. The deployable system consisted of a deployable hood, lifting 100 mm in the rear, and a lower windshield air bag. All 3 countermeasures showed benefit in a majority of impact configurations in terms of injury prevention. The auto-brake system reduced chest force in a majority of the configurations and decreased HIC(15), head angular acceleration, and CSDM in all configurations. Averaging all impact configurations, the auto-brake system showed reductions of injury predictors from 20 percent (chest force) to 82 percent (HIC). The passive deployable countermeasure reduced chest force and HIC(15) in a majority of configurations and head angular acceleration and CSDM in all configurations, although the CSDM decrease in 2 configurations was minimal. On average a reduction from 20 percent (CSDM) to 58 percent (HIC) was recorded in the passive deployable countermeasures. Finally, the integrated system evaluated in this study reduced all injury assessment parameters in all configurations compared to the reference situations. The average reductions achieved by the integrated system ranged from 56 percent

  18. Development of Statewide Guidelines for Implementing Leading Pedestrian Intervals in Florida [Summary

    Science.gov (United States)

    2018-02-01

    Pedestrian safety is always a high priority for the Florida Department of Transportation (FDOT), especially as FDOT moves Florida toward a truly multimodal transportation system. Intersections are where vehicles and pedestrians are most likely to int...

  19. Multilevel models for evaluating the risk of pedestrian-motor vehicle collisions at intersections and mid-blocks.

    Science.gov (United States)

    Quistberg, D Alex; Howard, Eric J; Ebel, Beth E; Moudon, Anne V; Saelens, Brian E; Hurvitz, Philip M; Curtin, James E; Rivara, Frederick P

    2015-11-01

    Walking is a popular form of physical activity associated with clear health benefits. Promoting safe walking for pedestrians requires evaluating the risk of pedestrian-motor vehicle collisions at specific roadway locations in order to identify where road improvements and other interventions may be needed. The objective of this analysis was to estimate the risk of pedestrian collisions at intersections and mid-blocks in Seattle, WA. The study used 2007-2013 pedestrian-motor vehicle collision data from police reports and detailed characteristics of the microenvironment and macroenvironment at intersection and mid-block locations. The primary outcome was the number of pedestrian-motor vehicle collisions over time at each location (incident rate ratio [IRR] and 95% confidence interval [95% CI]). Multilevel mixed effects Poisson models accounted for correlation within and between locations and census blocks over time. Analysis accounted for pedestrian and vehicle activity (e.g., residential density and road classification). In the final multivariable model, intersections with 4 segments or 5 or more segments had higher pedestrian collision rates compared to mid-blocks. Non-residential roads had significantly higher rates than residential roads, with principal arterials having the highest collision rate. The pedestrian collision rate was higher by 9% per 10 feet of street width. Locations with traffic signals had twice the collision rate of locations without a signal and those with marked crosswalks also had a higher rate. Locations with a marked crosswalk also had higher risk of collision. Locations with a one-way road or those with signs encouraging motorists to cede the right-of-way to pedestrians had fewer pedestrian collisions. Collision rates were higher in locations that encourage greater pedestrian activity (more bus use, more fast food restaurants, higher employment, residential, and population densities). Locations with higher intersection density had a lower

  20. The effect of road and environmental characteristics on pedestrian hit-and-run accidents in Ghana.

    Science.gov (United States)

    Aidoo, Eric Nimako; Amoh-Gyimah, Richard; Ackaah, Williams

    2013-04-01

    The number of pedestrians who have died as a result of being hit by vehicles has increased in recent years, in addition to vehicle passenger deaths. Many pedestrians who were involved in road traffic accident died as a result of the driver leaving the pedestrian who was struck unattended at the scene of the accident. This paper seeks to determine the effect of road and environmental characteristics on pedestrian hit-and-run accidents in Ghana. Using pedestrian accident data extracted from the National Road Traffic Accident Database at the Building and Road Research Institute (BRRI) of the Council for Scientific and Industrial Research (CSIR), Ghana, a binary logit model was employed in the analysis. The results from the estimated model indicate that fatal accidents, unclear weather, nighttime conditions, and straight and flat road sections without medians and junctions significantly increase the likelihood that the vehicle driver will leave the scene after hitting a pedestrian. Thus, integrating median separation and speed humps into road design and construction and installing street lights will help to curb the problem of pedestrian hit-and-run accidents in Ghana. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Safety effectiveness of pavement design treatment at intersections: Left turning vehicles and pedestrians on crosswalks

    Directory of Open Access Journals (Sweden)

    Hasina Iasmin

    2016-07-01

    Full Text Available Pedestrians are the most vulnerable road users as they are more exposed than other road users. Pedestrian safety at road intersections still remains the most vital and yet unsolved issue. One of the critical points in pedestrian safety is the occurrence of accidents between left-turning vehicle and pedestrians on crosswalks at signalized intersections. A crosswalk is a place designated for pedestrians and cyclists to cross vehicular roads safely. Drivers are expected to give priority to pedestrians or cyclists during interactions between them on the crosswalk. If a driver exhibits non-yielding behavior, the interaction will turn into a collision. This study examined the safety effect of three crosswalks designed with different materials such as red-colored material or brick pavement based on a safety performance study. The safety performance study considered left-turning driver's gap acceptance behavior and the severity of traffic conflict events between left-turning vehicles and pedestrians. The results of the study indicates that using brick pavement on a crosswalk increases the safety level of the crosswalk. Drivers at such crosswalks are more acquiescent to the priority rule.

  2. Public open spaces and walking for recreation: moderation by attributes of pedestrian environments.

    Science.gov (United States)

    Sugiyama, Takemi; Paquet, Catherine; Howard, Natasha J; Coffee, Neil T; Taylor, Anne W; Adams, Robert J; Daniel, Mark

    2014-05-01

    This study examined whether attributes of pedestrian environments moderate the relationships between access to public open spaces (POS) and adults' recreational walking. Data were collected from participants of the North West Adelaide Health Study in 2007. Recreational walking was determined using self-reported walking frequency. Measures of POS access (presence, count, and distance to the nearest POS) were assessed using a Geographic Information System. Pedestrian environmental attributes included aesthetics, walking infrastructure, barrier/traffic, crime concern, intersection density, and access to walking trails. Regression analyses examined whether associations between POS access and recreational walking were moderated by pedestrian environmental attributes. The sample included 1574 participants (45% men, mean age: 55). POS access measures were not associated with recreational walking. However, aesthetics, walking infrastructure, and access to walking trail were found to moderate the POS-walking relationships. The presence of POS was associated with walking among participants with aesthetically pleasing pedestrian environments. Counter-intuitively, better access to POS was associated with recreational walking for those with poorer walking infrastructure or no access to walking trails. Local pedestrian environments moderate the relationships between access to POS and recreational walking. Our findings suggest the presence of complex relationships between POS availability and pedestrian environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Endogenous scheduling preferences and congestion

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Small, Kenneth

    2010-01-01

    and leisure, but agglomeration economies at home and at work lead to scheduling preferences forming endogenously. Using bottleneck congestion technology, we obtain an equilibrium queuing pattern consistent with a general version of the Vickrey bottleneck model. However, the policy implications are different....... Compared to the predictions of an analyst observing untolled equilibrium and taking scheduling preferences as exogenous, we find that both the optimal capacity and the marginal external cost of congestion have changed. The benefits of tolling are greater, and the optimal time varying toll is different....

  4. Managing congestion and intermittent renewable generation in liberalized electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Friedrich

    2013-02-27

    This dissertation focuses on selected aspects of network congestion arising in liberalized electricity markets and their management methods with a special weight placed on the integration of increased renewable generation in Europe and Germany. In a first step, the theoretical concepts of congestion management are introduced complemented by a review of current management regimes in selected countries. In the second step, the European approach of managing congestion on international as well as national transmission links is analyzed and the benefits of an integrated congestion management regime are quantified. It is concluded that benefits can be achieved by a closer cooperation of national transmission system operators (TSOs). Thirdly, the German congestion management regime is investigated and the impact of higher renewable generation up to 2020 on congestion management cost is determined. It is shown that a homogeneous and jointly development of generation and transmission infrastructure is a prerequisite for the application of congestion alleviation methods and once they diverge congestion management cost tend to increase substantially. Lastly, the impact of intermittent and uncertain wind generation on electricity markets is analyzed. A stochastic electricity market model is described, which replicates the daily subsequent clearing of reserve, day ahead, and intraday market typical for European countries, and numerical results are presented.

  5. The walking behaviour of pedestrian social groups and its impact on crowd dynamics.

    Directory of Open Access Journals (Sweden)

    Mehdi Moussaïd

    Full Text Available Human crowd motion is mainly driven by self-organized processes based on local interactions among pedestrians. While most studies of crowd behaviour consider only interactions among isolated individuals, it turns out that up to 70% of people in a crowd are actually moving in groups, such as friends, couples, or families walking together. These groups constitute medium-scale aggregated structures and their impact on crowd dynamics is still largely unknown. In this work, we analyze the motion of approximately 1500 pedestrian groups under natural condition, and show that social interactions among group members generate typical group walking patterns that influence crowd dynamics. At low density, group members tend to walk side by side, forming a line perpendicular to the walking direction. As the density increases, however, the linear walking formation is bent forward, turning it into a V-like pattern. These spatial patterns can be well described by a model based on social communication between group members. We show that the V-like walking pattern facilitates social interactions within the group, but reduces the flow because of its "non-aerodynamic" shape. Therefore, when crowd density increases, the group organization results from a trade-off between walking faster and facilitating social exchange. These insights demonstrate that crowd dynamics is not only determined by physical constraints induced by other pedestrians and the environment, but also significantly by communicative, social interactions among individuals.

  6. A theory of traffic congestion at moving bottlenecks

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Boris S [Daimler AG, GR/PTF, HPC: G021, 71059 Sindelfingen (Germany); Klenov, Sergey L, E-mail: boris.kerner@daimler.co [Department of Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region (Russian Federation)

    2010-10-22

    The physics of traffic congestion occurring at a moving bottleneck on a multi-lane road is revealed based on the numerical analyses of vehicular traffic with a discrete stochastic traffic flow model in the framework of three-phase traffic theory. We find that there is a critical speed of a moving bottleneck at which traffic breakdown, i.e. a first-order phase transition from free flow to synchronized flow, occurs spontaneously at the moving bottleneck, if the flow rate upstream of the bottleneck is great enough. The greater the flow rate, the higher the critical speed of the moving bottleneck. A diagram of congested traffic patterns at the moving bottleneck is found, which shows regions in the flow-rate-moving-bottleneck-speed plane in which congested patterns emerge spontaneously or can be induced through large enough disturbances in an initial free flow. A comparison of features of traffic breakdown and resulting congested patterns at the moving bottleneck with known ones at an on-ramp (and other motionless) bottleneck is made. Nonlinear features of complex interactions and transformations of congested traffic patterns occurring at on- and off-ramp bottlenecks due to the existence of the moving bottleneck are found. The physics of the phenomenon of traffic congestion due to 'elephant racing' on a multi-lane road is revealed.

  7. A theory of traffic congestion at moving bottlenecks

    International Nuclear Information System (INIS)

    Kerner, Boris S; Klenov, Sergey L

    2010-01-01

    The physics of traffic congestion occurring at a moving bottleneck on a multi-lane road is revealed based on the numerical analyses of vehicular traffic with a discrete stochastic traffic flow model in the framework of three-phase traffic theory. We find that there is a critical speed of a moving bottleneck at which traffic breakdown, i.e. a first-order phase transition from free flow to synchronized flow, occurs spontaneously at the moving bottleneck, if the flow rate upstream of the bottleneck is great enough. The greater the flow rate, the higher the critical speed of the moving bottleneck. A diagram of congested traffic patterns at the moving bottleneck is found, which shows regions in the flow-rate-moving-bottleneck-speed plane in which congested patterns emerge spontaneously or can be induced through large enough disturbances in an initial free flow. A comparison of features of traffic breakdown and resulting congested patterns at the moving bottleneck with known ones at an on-ramp (and other motionless) bottleneck is made. Nonlinear features of complex interactions and transformations of congested traffic patterns occurring at on- and off-ramp bottlenecks due to the existence of the moving bottleneck are found. The physics of the phenomenon of traffic congestion due to 'elephant racing' on a multi-lane road is revealed.

  8. Two-Stage Part-Based Pedestrian Detection

    DEFF Research Database (Denmark)

    Møgelmose, Andreas; Prioletti, Antonio; Trivedi, Mohan M.

    2012-01-01

    Detecting pedestrians is still a challenging task for automotive vision system due the extreme variability of targets, lighting conditions, occlusions, and high speed vehicle motion. A lot of research has been focused on this problem in the last 10 years and detectors based on classifiers has...... gained a special place among the different approaches presented. This work presents a state-of-the-art pedestrian detection system based on a two stages classifier. Candidates are extracted with a Haar cascade classifier trained with the DaimlerDB dataset and then validated through part-based HOG...... of several metrics, such as detection rate, false positives per hour, and frame rate. The novelty of this system rely in the combination of HOG part-based approach, tracking based on specific optimized feature and porting on a real prototype....

  9. Recognizing pedestrian's unsafe behaviors in far-infrared imagery at night

    Science.gov (United States)

    Lee, Eun Ju; Ko, Byoung Chul; Nam, Jae-Yeal

    2016-05-01

    Pedestrian behavior recognition is important work for early accident prevention in advanced driver assistance system (ADAS). In particular, because most pedestrian-vehicle crashes are occurred from late of night to early of dawn, our study focus on recognizing unsafe behavior of pedestrians using thermal image captured from moving vehicle at night. For recognizing unsafe behavior, this study uses convolutional neural network (CNN) which shows high quality of recognition performance. However, because traditional CNN requires the very expensive training time and memory, we design the light CNN consisted of two convolutional layers and two subsampling layers for real-time processing of vehicle applications. In addition, we combine light CNN with boosted random forest (Boosted RF) classifier so that the output of CNN is not fully connected with the classifier but randomly connected with Boosted random forest. We named this CNN as randomly connected CNN (RC-CNN). The proposed method was successfully applied to the pedestrian unsafe behavior (PUB) dataset captured from far-infrared camera at night and its behavior recognition accuracy is confirmed to be higher than that of some algorithms related to CNNs, with a shorter processing time.

  10. Design Issues for MEMS-Based Pedestrian Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    P. S. Marinushkin

    2015-01-01

    Full Text Available The paper describes design issues for MEMS-based pedestrian inertial navigation systems. By now the algorithms to estimate navigation parameters for strap-down inertial navigation systems on the basis of plural observations have been already well developed. At the same time mathematical and software processing of information in the case of pedestrian inertial navigation systems has its specificity, due to the peculiarities of their functioning and exploitation. Therefore, there is an urgent task to enhance existing fusion algorithms for use in pedestrian navigation systems. For this purpose the article analyzes the characteristics of the hardware composition and configuration of existing systems of this class. The paper shows advantages of various technical solutions. Relying on their main features it justifies a choice of the navigation system architecture and hardware composition enabling improvement of the estimation accuracy of user position as compared to the systems using only inertial sensors. The next point concerns the development of algorithms for complex processing of heterogeneous information. To increase an accuracy of the free running pedestrian inertial navigation system we propose an adaptive algorithm for joint processing of heterogeneous information based on the fusion of inertial info rmation with magnetometer measurements using EKF approach. Modeling of the algorithm was carried out using a specially developed functional prototype of pedestrian inertial navigation system, implemented as a hardware/software complex in Matlab environment. The functional prototype tests of the developed system demonstrated an improvement of the navigation parameters estimation compared to the systems based on inertial sensors only. It enables to draw a conclusion that the synthesized algorithm provides satisfactory accuracy for calculating the trajectory of motion even when using low-grade inertial MEMS sensors. The developed algorithm can be

  11. Pedestrian hybrid beacon crosswalk system (PHB) or high-intensity activated crosswalk (HAWK).

    Science.gov (United States)

    2014-11-01

    The Pedestrian Hybrid Beacon Crosswalk (PHB) is a type of traffic control system, used to aid : pedestrians safely crossing the street and to regulate traffic flow. This study examines the : success of the first PHB installed in the state of Vermont....

  12. Auctionable fixed transmission rights for congestion management

    Science.gov (United States)

    Alomoush, Muwaffaq Irsheid

    Electric power deregulation has proposed a major change to the regulated utility monopoly. The change manifests the main part of engineers' efforts to reshape three components of today's regulated monopoly: generation, distribution and transmission. In this open access deregulated power market, transmission network plays a major role, and transmission congestion is a major problem that requires further consideration especially when inter-zonal/intra-zonal scheme is implemented. Declaring that engineering studies and experience are the criteria to define zonal boundaries or defining a zone based on the fact that a zone is a densely interconnected area (lake) and paths connecting these densely interconnected areas are inter-zonal lines will render insufficient and fuzzy definitions. Moreover, a congestion problem formulation should take into consideration interactions between intra-zonal and inter-zonal flows and their effects on power systems. In this thesis, we introduce a procedure for minimizing the number of adjustments of preferred schedules to alleviate congestion and apply control schemes to minimize interactions between zones. In addition, we give the zone definition a certain criterion based on the Locational Marginal Price (LMP). This concept will be used to define congestion zonal boundaries and to decide whether any zone should be merged with another zone or split into new zones. The thesis presents a unified scheme that combines zonal and FTR schemes to manage congestion. This combined scheme is utilized with LMPs to define zonal boundaries more appropriately. The presented scheme gains the best features of the FTR scheme, which are providing financial certainty, maximizing the efficient use of the system and making users pay for the actual use of congested paths. LMPs may give an indication of the impact of wheeling transactions, and calculations of and comparisons of LMPs with and without wheeling transactions should be adequate criteria to approve

  13. Congestion patterns of electric vehicles with limited battery capacity

    Science.gov (United States)

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm. PMID:29543875

  14. Congestion patterns of electric vehicles with limited battery capacity.

    Science.gov (United States)

    Jing, Wentao; Ramezani, Mohsen; An, Kun; Kim, Inhi

    2018-01-01

    The path choice behavior of battery electric vehicle (BEV) drivers is influenced by the lack of public charging stations, limited battery capacity, range anxiety and long battery charging time. This paper investigates the congestion/flow pattern captured by stochastic user equilibrium (SUE) traffic assignment problem in transportation networks with BEVs, where the BEV paths are restricted by their battery capacities. The BEV energy consumption is assumed to be a linear function of path length and path travel time, which addresses both path distance limit problem and road congestion effect. A mathematical programming model is proposed for the path-based SUE traffic assignment where the path cost is the sum of the corresponding link costs and a path specific out-of-energy penalty. We then apply the convergent Lagrangian dual method to transform the original problem into a concave maximization problem and develop a customized gradient projection algorithm to solve it. A column generation procedure is incorporated to generate the path set. Finally, two numerical examples are presented to demonstrate the applicability of the proposed model and the solution algorithm.

  15. Preferences and behaviour of pedestrians and cyclists by age and gender

    DEFF Research Database (Denmark)

    Bernhoft, Inger Marie; Carstensen, Gitte

    2008-01-01

    significantly more than the younger respondents do. To a larger extent they feel that it is dangerous to cross the road where these facilities are missing. The older pedestrians also find the presence of a pavement very important on their route whereas the younger pedestrians more often focus on a fast passage...

  16. Impact of improving vehicle front design on the burden of pedestrian injuries in Germany, the United States, and India.

    Science.gov (United States)

    Moran, Dane; Bose, Dipan; Bhalla, Kavi

    2017-11-17

    European car design regulations and New Car Assessment Program (NCAP) ratings have led to reductions in pedestrian injuries. The aim of this study was to evaluate the impact of improving vehicle front design on mortality and morbidity due to pedestrian injuries in a European country (Germany) and 2 countries (the United States and India) that do not have pedestrian-focused NCAP testing or design regulations. We used data from the International Road Traffic and Accident Database and the Global Burden of Disease project to estimate baseline pedestrian deaths and nonfatal injuries in each country in 2013. The effect of improved passenger car star ratings on probability of pedestrian injury was based on recent evaluations of pedestrian crash data from Germany. The effect of improved heavy motor vehicle (HMV) front end design on pedestrian injuries was based on estimates reported by simulation studies. We used burden of disease methods to estimate population health loss by combining the burden of morbidity and mortality in disability-adjusted life years (DALYs) lost. Extrapolating from evaluations in Germany suggests that improving front end design of cars can potentially reduce the burden of pedestrian injuries due to cars by up to 24% in the United States and 41% in India. In Germany, where cars comply with the United Nations regulation on pedestrian safety, additional improvements would have led to a 1% reduction. Similarly, improved HMV design would reduce DALYs lost by pedestrian victims hit by HMVs by 20% in each country. Overall, improved vehicle design would reduce DALYs lost to road traffic injuries (RTIs) by 0.8% in Germany, 4.1% in the United States, and 6.7% in India. Recent evaluations show a strong correlation between Euro NCAP pedestrian scores and real-life pedestrian injuries, suggesting that improved car front end design in Europe has led to substantial reductions in pedestrian injuries. Although the United States has fewer pedestrian crashes, it would

  17. A theory of traffic congestion at heavy bottlenecks

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Boris S [Daimler AG, GR/ETI, HPC: G021, 71059 Sindelfingen (Germany)

    2008-05-30

    Spatiotemporal features and physics of vehicular traffic congestion occurring due to heavy highway bottlenecks caused for example by bad weather conditions or accidents are found based on simulations in the framework of three-phase traffic theory. A model of a heavy bottleneck is presented. Under a continuous non-limited increase in bottleneck strength, i.e., when the average flow rate within a congested pattern allowed by the heavy bottleneck decreases continuously up to zero, the evolution of the traffic phases in congested traffic, synchronized flow and wide moving jams, is studied. It is found that at a small enough flow rate within the congested pattern, the pattern exhibits a non-regular structure: a pinch region of synchronized flow within the pattern disappears and appears randomly over time; wide moving jams upstream of the pinch region exhibit a complex non-regular dynamics in which the jams appear and disappear randomly. At greater bottleneck strengths, wide moving jams merge onto a mega-wide moving jam (mega-jam) within which low-speed patterns with a complex non-regular spatiotemporal dynamics occur. We show that when the bottleneck strength is great enough, only the mega-jam survives and synchronized flow remains only within its downstream front separating free flow and congested traffic. Theoretical results presented can explain why no sequence of wide moving jams can often be distinguished in non-homogeneous traffic congestion measured at very heavy bottlenecks caused by bad weather conditions or accidents.

  18. A theory of traffic congestion at heavy bottlenecks

    International Nuclear Information System (INIS)

    Kerner, Boris S

    2008-01-01

    Spatiotemporal features and physics of vehicular traffic congestion occurring due to heavy highway bottlenecks caused for example by bad weather conditions or accidents are found based on simulations in the framework of three-phase traffic theory. A model of a heavy bottleneck is presented. Under a continuous non-limited increase in bottleneck strength, i.e., when the average flow rate within a congested pattern allowed by the heavy bottleneck decreases continuously up to zero, the evolution of the traffic phases in congested traffic, synchronized flow and wide moving jams, is studied. It is found that at a small enough flow rate within the congested pattern, the pattern exhibits a non-regular structure: a pinch region of synchronized flow within the pattern disappears and appears randomly over time; wide moving jams upstream of the pinch region exhibit a complex non-regular dynamics in which the jams appear and disappear randomly. At greater bottleneck strengths, wide moving jams merge onto a mega-wide moving jam (mega-jam) within which low-speed patterns with a complex non-regular spatiotemporal dynamics occur. We show that when the bottleneck strength is great enough, only the mega-jam survives and synchronized flow remains only within its downstream front separating free flow and congested traffic. Theoretical results presented can explain why no sequence of wide moving jams can often be distinguished in non-homogeneous traffic congestion measured at very heavy bottlenecks caused by bad weather conditions or accidents

  19. The impact of a congestion assistant on traffic flow efficiency and safety in congested traffic caused by a lane drop

    NARCIS (Netherlands)

    van Driel, Cornelie; van Arem, Bart

    2010-01-01

    This article presents the results of a microscopic traffic simulation study conducted to investigate the impact of a Congestion Assistant on traffic efficiency and traffic safety. The Congestion Assistant is an in-vehicle system in which an active pedal supports the driver when approaching

  20. Evaluating congestion management in the Dutch electricity transmission grid

    International Nuclear Information System (INIS)

    Blijswijk, Martti J. van; Vries, Laurens J. de

    2012-01-01

    Due to the increase in electricity generation capacity in the Netherlands and a new connection policy, transmission system operator (TSO) TenneT expects a significant increase in congestion in the Dutch transmission grid. To manage this, the Dutch government implemented redispatching, a method which is argued in the literature to potentially impose large congestion costs upon the TSO. A quantitative model of the Dutch electricity system was developed in order to evaluate this method. The outcomes were compared to the performance of three alternative congestion management methods. Regardless of the method, congestion costs were found to be substantially lower than in previous studies. Because combined-cycle gas turbines are the marginal generation technology in almost all cases, the costs of up and down regulation do not differ much. Consequently, the redispatching costs for the TSO are expected to be relatively low, and the opportunities for abuse of market power appear to be limited. While all the evaluated methods are effective and economically efficient, they have significantly different welfare effects. Market splitting creates significantly larger welfare effects than the different varieties of redispatching. - Highlights: ► Congestion management was recently introduced in the Netherlands. ► We quantitatively evaluate the effects of its application. ► We compare this to other congestion management methods. ► Given the specific situation that the marginal cost curve of production is flat, congestion costs are expected to be low.

  1. Autonomous pedestrian localization technique using CMOS camera sensors

    Science.gov (United States)

    Chun, Chanwoo

    2014-09-01

    We present a pedestrian localization technique that does not need infrastructure. The proposed angle-only measurement method needs specially manufactured shoes. Each shoe has two CMOS cameras and two markers such as LEDs attached on the inward side. The line of sight (LOS) angles towards the two markers on the forward shoe are measured using the two cameras on the other rear shoe. Our simulation results shows that a pedestrian walking down in a shopping mall wearing this device can be accurately guided to the front of a destination store located 100m away, if the floor plan of the mall is available.

  2. Investigating the Applicability of Upstream Detection Strategy at Pedestrian Signalised Crossings

    Directory of Open Access Journals (Sweden)

    Sitti A Hassan

    2017-10-01

    Full Text Available In the UK, the Puffin crossing has provision to extend pedestrian green time for those who take longer to cross. However, even at such a pedestrian friendly facility, the traffic signal control is usually designed to minimise vehicle delay while providing the crossing facility. This situation is rather contrary to the current policies to encourage walking. It is this inequity that has prompted the need to re-examine the traffic control of signalised crossings to provide more benefit to both pedestrians and vehicles. In this context, this paper explores the possibility of implementing an Upstream Detection strategy at a Puffin crossing to provide a user friendly crossing. The study has been carried out by simulating a mid-block Puffin crossing for various detector distances and a number of combinations of pedestrian and traffic flows. This paper presents the simulation results and recommends the situations at which Upstream Detection would be suitable.

  3. The economic cost of traffic congestion in Florida.

    Science.gov (United States)

    2010-08-01

    Traffic congestion in the U.S. is bad and getting worse, and it is expensive. Appropriate solutions to this problem require appropriate information. A comprehensive and accurate analysis of congestion costs is a critical tool for planning and impleme...

  4. Literature review on the preschool pedestrian

    Science.gov (United States)

    1985-01-01

    The purpose of this literature review was to describe (1) the factors leading to typical preschool pedestrian accidents, (2) the developmental characteristics of the preschool child that affect his/her behavior in traffic, (3) social factors that may...

  5. Evaluation of alternative pedestrian control devices.

    Science.gov (United States)

    2012-03-01

    A literature review, field study of Rectangular Rapid Flashing Beacon (RRFB) installations in Oregon, and a static survey : on the sequencing of the Pedestrian Hybrid Beacon (PHB) were completed. : The field study conducted in this project was design...

  6. 23 CFR 970.214 - Federal lands congestion management system (CMS).

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Federal lands congestion management system (CMS). 970....214 Federal lands congestion management system (CMS). (a) For purposes of this section, congestion...) Develop criteria to determine when a CMS is to be implemented for a specific transportation system; and (2...

  7. 23 CFR 972.214 - Federal lands congestion management system (CMS).

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Federal lands congestion management system (CMS). 972... § 972.214 Federal lands congestion management system (CMS). (a) For purposes of this section, congestion... interference. For those FWS transportation systems that require a CMS, in both metropolitan and non...

  8. Research on Congestion Pricing in Multimode Traffic considering Delay and Emission

    Directory of Open Access Journals (Sweden)

    Hongna Dai

    2015-01-01

    Full Text Available Rapid development of urbanization and automation has resulted in serious urban traffic congestion and air pollution problems in many Chinese cities recently. As a traffic demand management strategy, congestion pricing is acknowledged to be effective in alleviating the traffic congestion and improving the efficiency of traffic system. This paper proposes an urban traffic congestion pricing model based on the consideration of transportation network efficiency and environment effects. First, the congestion pricing problem under multimode (i.e., car mode and bus mode urban traffic network condition is investigated. Second, a traffic congestion pricing model based on bilevel programming is formulated for a dual-mode urban transportation network, in which the delay and emission of vehicles are considered. Third, an improved mathematical algorithm combining successive average method with the genetic algorithm is proposed to solve the bilevel programming problem. Finally, a numerical experiment based on a hypothetical network is performed to validate the proposed congestion pricing model and algorithm.

  9. Exploring spatio-temporal patterns in traffic congestion data

    DEFF Research Database (Denmark)

    Kveladze, Irma; Agerholm, Niels; Reinau, Kristian Hegner

    2017-01-01

    An efficient infrastructure is essential for economic development. However, economic growth has been closely connected to the increasing road transport. This increases traffic congestions significantly, and road network gets near or at its capacity limits. Hence, congestion has become a central...

  10. Using smartphone technology to deliver a virtual pedestrian environment: usability and validation.

    Science.gov (United States)

    Schwebel, David C; Severson, Joan; He, Yefei

    2017-09-01

    Various programs effectively teach children to cross streets more safely, but all are labor- and cost-intensive. Recent developments in mobile phone technology offer opportunity to deliver virtual reality pedestrian environments to mobile smartphone platforms. Such an environment may offer a cost- and labor-effective strategy to teach children to cross streets safely. This study evaluated usability, feasibility, and validity of a smartphone-based virtual pedestrian environment. A total of 68 adults completed 12 virtual crossings within each of two virtual pedestrian environments, one delivered by smartphone and the other a semi-immersive kiosk virtual environment. Participants completed self-report measures of perceived realism and simulator sickness experienced in each virtual environment, plus self-reported demographic and personality characteristics. All participants followed system instructions and used the smartphone-based virtual environment without difficulty. No significant simulator sickness was reported or observed. Users rated the smartphone virtual environment as highly realistic. Convergent validity was detected, with many aspects of pedestrian behavior in the smartphone-based virtual environment matching behavior in the kiosk virtual environment. Anticipated correlations between personality and kiosk virtual reality pedestrian behavior emerged for the smartphone-based system. A smartphone-based virtual environment can be usable and valid. Future research should develop and evaluate such a training system.

  11. Road Environments: Impact of Metals on Human Health in Heavily Congested Cities of Poland.

    Science.gov (United States)

    Adamiec, Ewa

    2017-06-29

    Road dust as a by-product of exhaust and non-exhaust emissions can be a major cause of systemic oxidative stress and multiple disorders. Substantial amounts of road dust are repeatedly resuspended, in particular at traffic lights and junctions where more braking is involved, causing potential threat to pedestrians, especially children. In order to determine the degree of contamination in the heavily traffic-congested cities of Poland, a total of 148 samples of road dust (RD), sludge from storm drains (SL) and roadside soil (RS) were collected. Sixteen metals were analysed using inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectroscopy (ICP-OES) and atomic absorption spectroscopy (AAS) in all samples. Chemical evaluation followed by Principal Component Analysis (PCA) revealed that road environments have been severely contaminated with traffic-related elements. Concentration of copper in all road-environment samples is even higher, exceeding even up to 15 times its average concentrations established for the surrounding soils. Non-carcinogenic health risk assessment revealed that the hazard index (HI) for children in all road-environment samples exceeds the safe level of 1. Therefore, greater attention should be paid to potential health risks caused by the ingestion of traffic-related particles during outdoor activities.

  12. Congestion, air pollution, and road safety in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Shefer, Daniel [Department of Urban and Regional Economics and Transport, Technion-Israel Institute of Technology, Haifa (Israel)

    1993-06-01

    The continuous rapid growth in Vehicle Miles Travelled (VMT), coupled with the rapid increase in traffic congestion on highways of virtually every large urban area, explain a major portion of the observed deterioration of urban air quality. To halt this deterioration process and to secure safe and healthy environments and improve the quality of life in our cities, it is paramount to initiate and implement programs which jointly treat traffic congestion, air quality, and road safety. A host of market-based strategies, driven by price mechanisms, have been proposed as the best and most efficient way to decrease traffic congestion and to reduce vehicle emission. Congestion pricing, emission fees, reducing emissions of high polluting vehicles, and introducing more efficient vehicle and/or fuel technologies are not mutually exclusive strategies and therefore they can, and perhaps should, be employed jointly within an overall strategy. In view of the conflicting objectives which may exist between improving urban air quality and reducing road fatalities and traffic congestion, it is of great importance to thoroughly investigate these functional relationships. The results of such studies will help decision makers identify the `socially optimal level of congestion` which will yield the highest net social benefit. 2 figs., 43 refs.

  13. Red light crossing, transportation time and attitudes in crossing with intelligent green light for pedestrians

    DEFF Research Database (Denmark)

    Øhlenschlæger, Rasmus; Tønning, Charlotte; Andersen, Camilla Sloth

    2018-01-01

    In order to increase mobility and promote modal shift to walking, intersections in the city of Aarhus, Denmark, have been equipped with intelligent management of green light for pedestrians. This allows adjustment of green time based on radar detection of pedestrians in the crossing...... and prolongation of the green time for the pedestrians if required. The effect is examined in a before/after study of a two-stage pedestrian crossing with a centre refuge island in an intersection of four-lane roads. The data consists of responses from an on-site questionnaire including 72+53 individuals and 266...

  14. Effective environmental factors on geographical distribution of traffic accidents on pedestrians, downtown Tehran city.

    Science.gov (United States)

    Moradi, Ali; Soori, Hamid; Kavousi, Amir; Eshghabadi, Farshid; Nematollahi, Shahrzad; Zeini, Salahdien

    2017-01-01

    In most countries, occurrence of traffic causalities is high in pedestrians. The aim of this study is to geographically analyze the traffic casualties in pedestrians in downtown Tehran city. The study population consisted of traffic injury accidents in pedestrians occurred during 2015 in Tehran city. Data were extracted from offices of traffic police and municipality. For analysis of environmental factors and site of accidents, ordinary least square regression models and geographically weighted regression were used. Fitness and performance of models were checked using the Akaike information criteria, Bayesian information criteria, deviance, and adjusted R 2 . Totally, 514 accidents were included in this study. Of them, site of accidents was arterial streets in 370 (71.9%) cases, collector streets in 133 cases (25.2%), and highways in 11 cases (2.1%). Geographical units of traffic accidents in pedestrians had statistically significant relationship with a number of bus stations, number of crossroads, and recreational areas. Distribution of injury traffic accidents in pedestrians is different in downtown Tehran city. Neighborhoods close to markets are considered as most dangerous neighborhoods for injury traffic accidents. Different environmental factors are involved in determining the distribution of these accidents. The health of pedestrians in Tehran city can be improved by proper traffic management, control of environmental factors, and educational programs.

  15. Multi-objective congestion management by modified augmented ε-constraint method

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Shayanfar, Heidar Ali; Amjady, Nima

    2011-01-01

    Congestion management is a vital part of power system operations in recent deregulated electricity markets. However, after relieving congestion, power systems may be operated with a reduced voltage or transient stability margin because of hitting security limits or increasing the contribution of risky participants. Therefore, power system stability margins should be considered within the congestion management framework. The multi-objective congestion management provides not only more security but also more flexibility than single-objective methods. In this paper, a multi-objective congestion management framework is presented while simultaneously optimizing the competing objective functions of congestion management cost, voltage security, and dynamic security. The proposed multi-objective framework, called modified augmented ε-constraint method, is based on the augmented ε-constraint technique hybridized by the weighting method. The proposed framework generates candidate solutions for the multi-objective problem including only efficient Pareto surface enhancing the competitiveness and economic effectiveness of the power market. Besides, the relative importance of the objective functions is explicitly modeled in the proposed framework. Results of testing the proposed multi-objective congestion management method on the New-England test system are presented and compared with those of the previous single objective and multi-objective techniques in detail. These comparisons confirm the efficiency of the developed method. (author)

  16. Cooper Drive pedestrian study : final report.

    Science.gov (United States)

    2006-07-01

    The purpose of this report is to summarize the findings of the pedestrian study conducted for Cooper Drive from Nicholasville Road to Sports Center Drive on the University of Kentucky Campus in Lexington, KY. This study was initiated by the Universit...

  17. 23 CFR 971.214 - Federal lands congestion management system (CMS).

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Federal lands congestion management system (CMS). 971... Federal lands congestion management system (CMS). (a) For purposes of this section, congestion means the...) Develop criteria to determine when a CMS is to be implemented for a specific FH; and (2) Have CMS coverage...

  18. Marginal Congestion Cost on a Dynamic Expressway Network

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Small, Kenneth A.

    2012-01-01

    a dynamic econometric model using unusually complete and accurate data from Danish motorways. We use the results to estimate the marginal external cost of adding a vehicle to a link's entry flow, finding it is highly influenced by the dynamic properties of the system of relationships between travel times......We formulate an empirical model of congestion for a series of sequential expressway links where queues may form and spill back. Its purpose is to disentangle the dynamic effect that a marginal vehicle has on the distribution of travel times experienced there and on connected links. We estimate...

  19. Avoiding congestion in recommender systems

    International Nuclear Information System (INIS)

    Ren, Xiaolong; Lü, Linyuan; Liu, Runran; Zhang, Jianlin

    2014-01-01

    Recommender systems use the historical activities and personal profiles of users to uncover their preferences and recommend objects. Most of the previous methods are based on objects’ (and/or users’) similarity rather than on their difference. Such approaches are subject to a high risk of increasingly exposing users to a narrowing band of popular objects. As a result, a few objects may be recommended to an enormous number of users, resulting in the problem of recommendation congestion, which is to be avoided, especially when the recommended objects are limited resources. In order to quantitatively measure a recommendation algorithm's ability to avoid congestion, we proposed a new metric inspired by the Gini index, which is used to measure the inequality of the individual wealth distribution in an economy. Besides this, a new recommendation method called directed weighted conduction (DWC) was developed by considering the heat conduction process on a user–object bipartite network with different thermal conductivities. Experimental results obtained for three benchmark data sets showed that the DWC algorithm can effectively avoid system congestion, and greatly improve the novelty and diversity, while retaining relatively high accuracy, in comparison with the state-of-the-art methods. (paper)

  20. Explaining reduction of pedestrian-motor vehicle crashes in Arkhangelsk, Russia, in 2005-2010.

    Science.gov (United States)

    Kudryavtsev, Alexander V; Nilssen, Odd; Lund, Johan; Grjibovski, Andrej M; Ytterstad, Børge

    2012-01-01

    To explain a reduction in pedestrian-motor vehicle crashes in Arkhangelsk, Russia, in 2005-2010. Retrospective ecological study. For 2005-2010, police data on pedestrian-motor vehicle crashes, traffic violations, and total motor vehicles (MVs) were combined with data on changes in national road traffic legislation and municipal road infrastructure. Negative binomial regression was used to investigate trends in monthly rates of pedestrian-motor vehicle crashes per total MVs and estimate changes in these rates per unit changes in the safety measures. During the 6 years, the police registered 2,565 pedestrian-motor vehicle crashes: 1,597 (62%) outside crosswalks, 766 (30%) on non-signalized crosswalks, and 202 (8%) on signalized crosswalks. Crash rates outside crosswalks and on signalized crosswalks decreased on average by 1.1% per month, whereas the crash rate on non-signalized crosswalks remained unchanged. Numbers of signalized and non-signalized crosswalks increased by 14 and 19%, respectively. Also, 10% of non-signalized crosswalks were combined with speed humps, and 4% with light-reflecting vertical signs. Pedestrian penalties for traffic violations increased 4-fold. Driver penalties for ignoring prohibiting signal and failure to give way to pedestrian on non-signalized crosswalk increased 7- and 8-fold, respectively. The rate of total registered drivers' traffic violations per total MVs decreased on average by 0.3% per month. All studied infrastructure and legislative measures had inverse associations with the rate of crashes outside crosswalks. The rate of crashes on signalized crosswalks showed inverse associations with related monetary penalties. The introduction of infrastructure and legislative measures is the most probable explanation of the reduction of pedestrian-motor vehicle crashes in Arkhangelsk. The overall reduction is due to decreases in rates of crashes outside crosswalks and on signalized crosswalks. No change was observed in the rate of

  1. Analysis of pedestrian accident costs in Sudan using the willingness-to-pay method.

    Science.gov (United States)

    Mofadal, Adam I A; Kanitpong, Kunnawee; Jiwattanakulpaisarn, Piyapong

    2015-05-01

    The willingness-to-pay (WTP) with contingent valuation (CV) method has been proven to be a valid tool for the valuation of non-market goods or socio-economic costs of road traffic accidents among communities in developed and developing countries. Research on accident costing tends to estimate the value of statistical life (VOSL) for all road users by providing a principle for the evaluation of road safety interventions in cost-benefit analysis. As in many other developing countries, the economic loss of traffic accidents in Sudan is noticeable; however, analytical research to estimate the magnitude and impact of that loss is lacking. Reports have shown that pedestrians account for more than 40% of the total number of fatalities. In this study, the WTP-CV approach was used to determine the amount of money that pedestrians in Sudan are willing to pay to reduce the risk of their own death. The impact of the socioeconomic factors, risk levels, and walking behaviors of pedestrians on their WTP for fatality risk reduction was also evaluated. Data were collected from two cities-Khartoum and Nyala-using a survey questionnaire that included 1400 respondents. The WTP-CV Payment Card Questionnaire was designed to ensure that Sudan pedestrians can easily determine the amount of money that would be required to reduce the fatality risk from a pedestrian-related accident. The analysis results show that the estimated VOSL for Sudanese pedestrians ranges from US$0.019 to US$0.101 million. In addition, the willingness-to-pay by Sudanese pedestrians to reduce their fatality risk tends to increase with age, household income, educational level, safety perception, and average time spent on social activities with family and community. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor

    Science.gov (United States)

    Ji, Xiangfeng; Zhou, Xuemei; Ran, Bin

    2013-04-01

    Pedestrian speed in a transfer station corridor is faster than usual and sometimes running can be found among some of them. In this paper, pedestrians are divided into two categories. The first one is aggressive, and the other is conservative. Aggressive pedestrians weaving their way through crowd in the corridor are the study object of this paper. During recent decades, much attention has been paid to the pedestrians' behavior, such as overtaking (also deceleration) and collision avoidance, and that continues in this paper. After sufficiently analyzing the characteristics of pedestrian flow in transfer station corridor, a cell-based model is presented in this paper, including the acceleration (also deceleration) and overtaking analysis. Acceleration (also deceleration) in a corridor is fixed according to Newton's Law and then speed calculated with a kinematic formula is discretized into cells based on the fuzzy logic. After the speed is updated, overtaking is analyzed based on updated speed and force explicitly, compared to rule-based models, which herein we call implicit ones. During the analysis of overtaking, a threshold value to determine the overtaking direction is introduced. Actually, model in this paper is a two-step one. The first step is to update speed, which is the cells the pedestrian can move in one time interval and the other is to analyze the overtaking. Finally, a comparison between the rule-based cellular automata, the model in this paper and data in HCM 2000 is made to demonstrate our model can be used to achieve reasonable simulation of acceleration (also deceleration) and overtaking among pedestrians.

  3. First-order, stationary mean-field games with congestion

    KAUST Repository

    Evangelista, David

    2018-04-30

    Mean-field games (MFGs) are models for large populations of competing rational agents that seek to optimize a suitable functional. In the case of congestion, this functional takes into account the difficulty of moving in high-density areas. Here, we study stationary MFGs with congestion with quadratic or power-like Hamiltonians. First, using explicit examples, we illustrate two main difficulties: the lack of classical solutions and the existence of areas with vanishing densities. Our main contribution is a new variational formulation for MFGs with congestion. With this formulation, we prove the existence and uniqueness of solutions. Finally, we consider applications to numerical methods.

  4. First-order, stationary mean-field games with congestion

    KAUST Repository

    Evangelista, David; Ferreira, Rita; Gomes, Diogo A.; Nurbekyan, Levon; Voskanyan, Vardan K.

    2018-01-01

    Mean-field games (MFGs) are models for large populations of competing rational agents that seek to optimize a suitable functional. In the case of congestion, this functional takes into account the difficulty of moving in high-density areas. Here, we study stationary MFGs with congestion with quadratic or power-like Hamiltonians. First, using explicit examples, we illustrate two main difficulties: the lack of classical solutions and the existence of areas with vanishing densities. Our main contribution is a new variational formulation for MFGs with congestion. With this formulation, we prove the existence and uniqueness of solutions. Finally, we consider applications to numerical methods.

  5. Stochastic congestion management in power markets using efficient scenario approaches

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Amjady, Nima; Shayanfar, Heidar Ali

    2010-01-01

    Congestion management in electricity markets is traditionally performed using deterministic values of system parameters assuming a fixed network configuration. In this paper, a stochastic programming framework is proposed for congestion management considering the power system uncertainties comprising outage of generating units and transmission branches. The Forced Outage Rate of equipment is employed in the stochastic programming. Using the Monte Carlo simulation, possible scenarios of power system operating states are generated and a probability is assigned to each scenario. The performance of the ordinary as well as Lattice rank-1 and rank-2 Monte Carlo simulations is evaluated in the proposed congestion management framework. As a tradeoff between computation time and accuracy, scenario reduction based on the standard deviation of accepted scenarios is adopted. The stochastic congestion management solution is obtained by aggregating individual solutions of accepted scenarios. Congestion management using the proposed stochastic framework provides a more realistic solution compared with traditional deterministic solutions. Results of testing the proposed stochastic congestion management on the 24-bus reliability test system indicate the efficiency of the proposed framework.

  6. Systematic review and meta-analysis of behavioral interventions to improve child pedestrian safety.

    Science.gov (United States)

    Schwebel, David C; Barton, Benjamin K; Shen, Jiabin; Wells, Hayley L; Bogar, Ashley; Heath, Gretchen; McCullough, David

    2014-09-01

    Pedestrian injuries represent a pediatric public health challenge. This systematic review/meta-analysis evaluated behavioral interventions to teach children pedestrian safety. Multiple strategies derived eligible manuscripts (published before April 1, 2013, randomized design, evaluated behavioral child pedestrian safety interventions). Screening 1,951 abstracts yielded 125 full-text retrievals. 25 were retained for data extraction, and 6 were later omitted due to insufficient data. In all, 19 articles reporting 25 studies were included. Risk of bias and quality of evidence were assessed. Behavioral interventions generally improve children's pedestrian safety, both immediately after training and at follow-up several months later. Quality of the evidence was low to moderate. Available evidence suggested interventions targeting dash-out prevention, crossing at parked cars, and selecting safe routes across intersections were effective. Individualized/small-group training for children was the most effective training strategy based on available evidence. Behaviorally based interventions improve children's pedestrian safety. Efforts should continue to develop creative, cost-efficient, and effective interventions. © The Author 2014. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Transvaginal ultrasound examination of women with and without pelvic venous congestion

    International Nuclear Information System (INIS)

    Halligan, Steve; Campbell, Deidre; Bartram, Clive I.; Rogers, Vera; El-Haddad, Cadria; Patel, Sujata; Beard, Richard W.

    2000-01-01

    AIM: To determine if transvaginal ultrasound, including power Doppler examination, can distinguish between women with and without pelvic congestion. MATERIALS AND METHODS: Thirty-six women with pelvic congestion were prospectively examined using transvaginal ultrasonography and standard uterine and ovarian measurements made. Additionally, planimetric measurements of each ovary were taken using an image analysis program to determine the cross-sectional area of ovarian stroma and follicles, if any. Power Doppler images of adnexal vessels were obtained and planimetric estimates of surface area calculated. A congestion score was assigned to each patient, based on vein number, diameter and morphology on grey-scale scanning. Identical measurements were obtained from 19 asymptomatic women and results compared. RESULTS: There was no significant difference between women with pelvic congestion and controls with respect to power Doppler or grey-scale images of adnexal vessels, or congestion score. However, women with pelvic congestion had significantly larger and multicystic ovaries when compared to controls. CONCLUSIONS: Transvaginal ultrasound measurements of adnexal vasculature, including power Doppler measurements, cannot reliably distinguish women with pelvic congestion from controls. However, ultrasound may remain useful for diagnosis of pelvic congestion, predominantly because it is able to visualize multi-cystic ovaries in these patients. Halligan, S. (2000).Clinical Radiology 55 , 954-958

  8. A NEW PREDICTIVE MODEL FOR CONGESTION CONTROL IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    NAJME TANZADE PANAH

    2017-06-01

    Full Text Available With the increase of various applications in the domain of wireless sensor networks, the tendency to use wireless sensors has gradually increased in different applications. On the other hand, diverse traffic with different priorities generated by these sensors requires providing adaptive quality of services based on users` needs. In this paper, a congestion control predictor model is proposed for wireless sensor networks, which considers parameters like network energy consumption, packet loss rate and percentage of delivered high and medium priority packets to the destination. This method consists of congestion prevention, congestion control, and energy control plans using shortest path selection algorithm. In the congestion prevention plan, congestion is prevented by investigating the queues length. In the congestion control plan, the congestion is controlled by reducing the transmission rate. Finally, the energy control plan aims to partially balance the energy of nodes to prevent network failures due to node energy outage. Simulation results indicated that the proposed method has a higher efficiency regarding the aforementioned parameters. In addition, comparisons with other well-known methods showed the effectiveness of the proposed method.

  9. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    Science.gov (United States)

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-08-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  10. Efficiency of equilibria in uniform matroid congestion games

    NARCIS (Netherlands)

    de Jong, Jasper; Klimm, Max; Uetz, Marc Jochen

    2016-01-01

    Network routing games, and more generally congestion games play a central role in algorithmic game theory, comparable to the role of the traveling salesman problem in combinatorial optimization. It is known that the price of anarchy is independent of the network topology for non-atomic congestion

  11. Effect of Aspiration and Mean Gain on the Emergence of Cooperation in Unidirectional Pedestrian Flow

    International Nuclear Information System (INIS)

    Wang Zi-Yang; Zhao Hui; Ma Jian; Qin Yong; Jia Li-Min; Zhu Wei

    2013-01-01

    When more than one pedestrian want to move to the same site, conflicts appear and thus the involved pedestrians play a motion game. In order to describe the emergence of cooperation during the conflict resolving process, an evolutionary cellular automation model is established considering the effect of aspiration and mean gain. In each game, pedestrian may be gentle cooperator or aggressive defector. We propose a set of win-stay-lose-shrift (WSLS) like rules for updating pedestrian's strategy. These rules prescribe that if the mean gain of current strategy between some given steps is larger than aspiration the strategy keeps, otherwise the strategy changes. The simulation results show that a high level aspiration will lead to more cooperation. With the increment of the statistic length, pedestrians will be more rational in decision making. It is also found that when the aspiration level is small enough and the statistic length is large enough all the pedestrian will turn to defectors. We use the prisoner's dilemma model to explain it. At last we discuss the effect of aspiration on fundamental diagram. (interdisciplinary physics and related areas of science and technology)

  12. Pedestrian simulation model based on principles of bounded rationality: results of validation tests

    NARCIS (Netherlands)

    Zhu, W.; Timmermans, H.J.P.; Lo, H.P.; Leung, Stephen C.H.; Tan, Susanna M.L.

    2009-01-01

    Over the years, different modelling approaches to simulating pedestrian movement have been suggested. The majority of pedestrian decision models are based on the concept of utility maximization. To explore alternatives, we developed the heterogeneous heuristic model (HHM), based on principles of

  13. Research on urban road congestion pricing strategy considering carbon dioxide emissions

    NARCIS (Netherlands)

    Wang, Y.; Peng, Z.; Wang, K.; Song, X.; Yao, B.; Feng, T.

    2015-01-01

    Congestion pricing strategy has been recognized as an effective countermeasure in the practical field of urban traffic congestion mitigation. In this paper, a bi-level programming model considering carbon dioxide emission is proposed to mitigate traffic congestion and reduce carbon dioxide

  14. Demonstration of Market-Based Real-Time Electricity Pricing on a Congested Feeder

    DEFF Research Database (Denmark)

    Larsen, Emil Mahler; Pinson, Pierre; le Ray, Guillaume

    2015-01-01

    Congestion management can delay grid reinforcements needed due to the growth of distributed technologies like photovoltaics and electric vehicles. This paper presents a method of congestion management for low voltage feeders using indirect control from the smart grid demonstration EcoGrid EU, where...... prices to 1900 houses, with a virtual feeder of 28 houses receiving congestion pricing. Simulations are used to calculate the cost from using this congestion management method, while demonstration results indicate that congestion can be managed successfully....

  15. The stepping behavior analysis of pedestrians from different age groups via a single-file experiment

    Science.gov (United States)

    Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang

    2018-03-01

    The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.

  16. Indirect Damage of Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling

    Directory of Open Access Journals (Sweden)

    Jingxuan Zhu

    2018-05-01

    Full Text Available In many countries, industrialization has led to rapid urbanization. Increased frequency of urban flooding is one consequence of the expansion of urban areas which can seriously affect the productivity and livelihoods of urban residents. Therefore, it is of vital importance to study the effects of rainfall and urban flooding on traffic congestion and driver behavior. In this study, a comprehensive method to analyze the influence of urban flooding on traffic congestion was developed. First, a flood simulation was conducted to predict the spatiotemporal distribution of flooding based on Storm Water Management Model (SWMM and TELAMAC-2D. Second, an agent-based model (ABM was used to simulate driver behavior during a period of urban flooding, and a car-following model was established. Finally, in order to study the mechanisms behind how urban flooding affects traffic congestion, the impact of flooding on urban traffic was investigated based on a case study of the urban area of Lishui, China, covering an area of 4.4 km2. It was found that for most events, two-hour rainfall has a certain impact on traffic congestion over a five-hour period, with the greatest impact during the hour following the cessation of the rain. Furthermore, the effects of rainfall with 10- and 20-year return periods were found to be similar and small, whereas the effects with a 50-year return period were obvious. Based on a combined analysis of hydrology and transportation, the proposed methods and conclusions could help to reduce traffic congestion during flood seasons, to facilitate early warning and risk management of urban flooding, and to assist users in making informed decisions regarding travel.

  17. Statewide GIS mapping of recurring congestion corridors : final report.

    Science.gov (United States)

    2009-07-01

    Recurring congestion occurs when travel demand reaches or exceeds the available roadway : capacity. This project developed an interactive geographic information system (GIS) map of the : recurring congestion corridors (labeled herein as hotspots) in ...

  18. Fair decentralized data-rate congestion control for V2V communications

    NARCIS (Netherlands)

    Belagal Math, C.; Li, H.; Heemstra De Groot, S.M.; Niemegeers, I.G.M.M.

    2017-01-01

    Channel congestion is one of the most critical issues in IEEE 802.11p-based vehicular ad hoc networks because congestion may lead to unreliability of applications. As a counter measure, the European Telecommunications Standard Institute (ETSI), proposes a mandatory Decentralized Congestion Control

  19. ANALYSIS OF SPATIO-TEMPORAL TRAFFIC PATTERNS BASED ON PEDESTRIAN TRAJECTORIES

    Directory of Open Access Journals (Sweden)

    S. Busch

    2016-06-01

    Full Text Available For driver assistance and autonomous driving systems, it is essential to predict the behaviour of other traffic participants. Usually, standard filter approaches are used to this end, however, in many cases, these are not sufficient. For example, pedestrians are able to change their speed or direction instantly. Also, there may be not enough observation data to determine the state of an object reliably, e.g. in case of occlusions. In those cases, it is very useful if a prior model exists, which suggests certain outcomes. For example, it is useful to know that pedestrians are usually crossing the road at a certain location and at certain times. This information can then be stored in a map which then can be used as a prior in scene analysis, or in practical terms to reduce the speed of a vehicle in advance in order to minimize critical situations. In this paper, we present an approach to derive such a spatio-temporal map automatically from the observed behaviour of traffic participants in everyday traffic situations. In our experiments, we use one stationary camera to observe a complex junction, where cars, public transportation and pedestrians interact. We concentrate on the pedestrians trajectories to map traffic patterns. In the first step, we extract trajectory segments from the video data. These segments are then clustered in order to derive a spatial model of the scene, in terms of a spatially embedded graph. In the second step, we analyse the temporal patterns of pedestrian movement on this graph. We are able to derive traffic light sequences as well as the timetables of nearby public transportation. To evaluate our approach, we used a 4 hour video sequence. We show that we are able to derive traffic light sequences as well as time tables of nearby public transportation.

  20. Analysis of Spatio-Temporal Traffic Patterns Based on Pedestrian Trajectories

    Science.gov (United States)

    Busch, S.; Schindler, T.; Klinger, T.; Brenner, C.

    2016-06-01

    For driver assistance and autonomous driving systems, it is essential to predict the behaviour of other traffic participants. Usually, standard filter approaches are used to this end, however, in many cases, these are not sufficient. For example, pedestrians are able to change their speed or direction instantly. Also, there may be not enough observation data to determine the state of an object reliably, e.g. in case of occlusions. In those cases, it is very useful if a prior model exists, which suggests certain outcomes. For example, it is useful to know that pedestrians are usually crossing the road at a certain location and at certain times. This information can then be stored in a map which then can be used as a prior in scene analysis, or in practical terms to reduce the speed of a vehicle in advance in order to minimize critical situations. In this paper, we present an approach to derive such a spatio-temporal map automatically from the observed behaviour of traffic participants in everyday traffic situations. In our experiments, we use one stationary camera to observe a complex junction, where cars, public transportation and pedestrians interact. We concentrate on the pedestrians trajectories to map traffic patterns. In the first step, we extract trajectory segments from the video data. These segments are then clustered in order to derive a spatial model of the scene, in terms of a spatially embedded graph. In the second step, we analyse the temporal patterns of pedestrian movement on this graph. We are able to derive traffic light sequences as well as the timetables of nearby public transportation. To evaluate our approach, we used a 4 hour video sequence. We show that we are able to derive traffic light sequences as well as time tables of nearby public transportation.

  1. Monocular pedestrian detection: Survey and experiments

    NARCIS (Netherlands)

    Enzweiler, M.; Gavrila, D.M.

    2009-01-01

    Pedestrian detection is a rapidly evolving area in computer vision with key applications in intelligent vehicles, surveillance, and advanced robotics. The objective of this paper is to provide an overview of the current state of the art from both methodological and experimental perspectives. The

  2. Congested Link Inference Algorithms in Dynamic Routing IP Network

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2017-01-01

    Full Text Available The performance descending of current congested link inference algorithms is obviously in dynamic routing IP network, such as the most classical algorithm CLINK. To overcome this problem, based on the assumptions of Markov property and time homogeneity, we build a kind of Variable Structure Discrete Dynamic Bayesian (VSDDB network simplified model of dynamic routing IP network. Under the simplified VSDDB model, based on the Bayesian Maximum A Posteriori (BMAP and Rest Bayesian Network Model (RBNM, we proposed an Improved CLINK (ICLINK algorithm. Considering the concurrent phenomenon of multiple link congestion usually happens, we also proposed algorithm CLILRS (Congested Link Inference algorithm based on Lagrangian Relaxation Subgradient to infer the set of congested links. We validated our results by the experiments of analogy, simulation, and actual Internet.

  3. Addressing congestion on single allocation hub-and-spoke networks

    Directory of Open Access Journals (Sweden)

    Ricardo Saraiva de Camargo

    2012-12-01

    Full Text Available When considering hub-and-spoke networks with single allocation, the absence of alternative routes makes this kind of systems specially vulnerable to congestion effects. In order to improve the design of such networks, congestion costs must be addressed. This article deploys two different techniques for addressing congestion on single allocation hub-and-spoke networks: the Generalized Benders Decomposition and the Outer Approximation method. Both methods are able to solve large scale instances. Computational experiments show how the adoption of advanced solution strategies, such as Pareto-optimal cut generation on the Master Problem branch-and-bound tree, may be decisive. They also demonstrate that the solution effort is not only associated with the size of the instances, but also with their combination of the installation and congestion costs.

  4. CONGESTION AS A RESULT OF SCHOOL AND SHOPPING CENTER ACTIVITY

    Directory of Open Access Journals (Sweden)

    Meike Kumaat

    2015-12-01

    Full Text Available Development of land use in public facilities such as shopping center and school gives an impact on transportation problem in Manado City, North Sulawesi.  To determine factors which have causal relationship with congestion  as a result of school and shopping center activity then it need to be assessed and studied.  Descriptive study with observational survey was used in this study. The study ran Structural Equation Modelling (SEM by using AMOS program. Estimated method was used to calculate sample size then found 300 repondents, comprised : visitors and mall managers, school visitors, parents, school managers, Public Works department, and urban planning department .The study yielded a statistically significant correlation between  school and shopping center activity with congestion s. The result  indicated that school activity was positively related to congestion with p value  at p=0,000 (p ≤ 0,05. Shopping center activity was positively related to congestion with p value  at p=0,000 (p ≤ 0,05. The closer proximity from school to shooping center will causes severe traffic congestion. The relationship between school facility with proximity was found in p value at  p=0,000 (p ≤ 0,05 . The relationship between shopping center facility with proximity was found in p value at  p= 0,020 (p ≤ 0,05. While, the relationship between proximity with congestion was p= 0,008 (p ≤ 0,05. Monastery school and Mega Mall activity were affecting congestion because a closer proximity of two facilities. This indicates that the occurence of traffic congestion in Monastery School  may be dependent on existence of  Piere Tendean road link

  5. Local empathy provides global minimization of congestion in communication networks

    Science.gov (United States)

    Meloni, Sandro; Gómez-Gardeñes, Jesús

    2010-11-01

    We present a mechanism to avoid congestion in complex networks based on a local knowledge of traffic conditions and the ability of routers to self-coordinate their dynamical behavior. In particular, routers make use of local information about traffic conditions to either reject or accept information packets from their neighbors. We show that when nodes are only aware of their own congestion state they self-organize into a hierarchical configuration that delays remarkably the onset of congestion although leading to a sharp first-order-like congestion transition. We also consider the case when nodes are aware of the congestion state of their neighbors. In this case, we show that empathy between nodes is strongly beneficial to the overall performance of the system and it is possible to achieve larger values for the critical load together with a smooth, second-order-like, transition. Finally, we show how local empathy minimize the impact of congestion as much as global minimization. Therefore, here we present an outstanding example of how local dynamical rules can optimize the system’s functioning up to the levels reached using global knowledge.

  6. Traffic Congestion Detection and Avoidance using Vehicular Communication

    Directory of Open Access Journals (Sweden)

    Ajay Narendrabhai Upadhyaya

    2015-01-01

    Full Text Available Traffic congestion is a serious problem in big cities. With the number of vehicles increasing rapidly, especially in cities whose economy is booming, the situation is getting even worse. Drivers, unaware of congestion ahead eventually join it and increase the severity of it. The ability of a driver to know the traffic conditions on the roads ahead enables him/her to seek alternate routes through which time and fuel can be saved. Due to recent advancements in vehicular technologies, vehicular communication has emerged. The objective of this work is to check feasibility of using infrastructure based vehicular communication for detecting and avoiding traffic congestion. In this paper we propose a Signal Agent (SA and Car Agent(CAbased approach for detecting and avoiding traffic congestion. We analyze performance of the proposed approach for two different road network scenarios using simulations: structured grid network (like Gandhinagar City of Gujarat, India and apart of typical city road network ( Tiwan city. With the proposed approach we get reduction of 10.05% in trip duration of vehicles, reduction of 10.08% in number of vehicles in entire traffic road network and 9.82% in heavy traffic area. In an accident scenario, about 72.63% vehicles changed their route due to awareness of congestion. Error in trip time estimation and vehicle count estimation is observed to be less than 1%.

  7. Evaluation of a "Smart" Pedestrian Counting System Based on Echo State Networks

    Directory of Open Access Journals (Sweden)

    Poigné Axel

    2009-01-01

    Full Text Available Abstract We have designed an inexpensive intelligent pedestrian counting system. The pedestrian counting system consists of several counters that can be connected together in a distributed fashion and communicate over the wireless channel. The motion pattern is recorded using a set of passive infrared (PIR sensors. Each counter has one wireless sensor node that processes the PIR sensor data and transmits it to a base station. Then echo state network, a special kind of recurrent neural network, is used to predict the pedestrian count from the input pattern. The evaluation of the performance of such networks in a novel kind of application is one focus of this work. The counter gave a performance of 80.4% which is better than the commercially available low-priced pedestrian counters. The article reports the experiments we did for analyzing the counterperformance and lists the strengths and limitations of the current implementation. It will also report the preliminary test results obtained by substituting the PIR sensors with low-cost active IR distance sensors which can improve the counter performance further.

  8. Identifying and tracking pedestrians based on sensor fusion and motion stability predictions.

    Science.gov (United States)

    Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Maria; de la Escalera, Arturo

    2010-01-01

    The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.

  9. Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions

    Directory of Open Access Journals (Sweden)

    Arturo de la Escalera

    2010-08-01

    Full Text Available The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem and dense disparity maps and u-v disparity (vision subsystem. Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.

  10. Evaluation of microwave detection equipment in terms of reliability, durability and pedestrian safety.

    NARCIS (Netherlands)

    Schagen, I. van & Sherborne, D.

    1991-01-01

    Urban traffic light cycle times are almost exclusively directed at maximizing throughput and minimizing delay of motorized traffic. The needs of pedestrians and pedal cyclists are of minor importance and their delay times are usually disregarded. Both safety and mobility of pedestrians and pedal

  11. 23 CFR 450.320 - Congestion management process in transportation management areas.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Congestion management process in transportation... Programming § 450.320 Congestion management process in transportation management areas. (a) The transportation planning process in a TMA shall address congestion management through a process that provides for safe and...

  12. A Fractional Micro-Macro Model for Crowds of Pedestrians Based on Fractional Mean Field Games

    Institute of Scientific and Technical Information of China (English)

    Kecai Cao; Yang Quan Chen; Daniel Stuart

    2016-01-01

    Modeling a crowd of pedestrians has been considered in this paper from different aspects. Based on fractional microscopic model that may be much more close to reality, a fractional macroscopic model has been proposed using conservation law of mass. Then in order to characterize the competitive and cooperative interactions among pedestrians, fractional mean field games are utilized in the modeling problem when the number of pedestrians goes to infinity and fractional dynamic model composed of fractional backward and fractional forward equations are constructed in macro scale. Fractional micromacro model for crowds of pedestrians are obtained in the end.Simulation results are also included to illustrate the proposed fractional microscopic model and fractional macroscopic model,respectively.

  13. Real-time pedestrian detection in a Truck's blind spot camera

    OpenAIRE

    Van Beeck, Kristof; Goedemé, Toon

    2014-01-01

    In this paper we present a multi-pedestrian detection and tracking framework targeting a specific application: detecting vulnerable road users in a truck's blind spot zone. Research indicates that existing non-vision based safety solutions are not able to handle this problem completely. Therefore we aim to develop an active safety system which warns the truck driver if pedestrians are present in the truck's blind spot zone. Our system solely uses the vision input from the truck's blind spot c...

  14. Transmission Congestion Management using a Wind Integrated Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    S. Gope

    2017-08-01

    Full Text Available Transmission congestion is a vital problem in the power system security and reliability sector. To ensure the stable operation of the system, a congestion free power network is desirable. In this paper, a new Congestion Management (CM technique, the Wind integrated Compressed Air Energy Storage (WCAES system is used to alleviate transmission congestion and to minimize congestion mitigation cost. The CM problem has been solved by using the Generator Sensitivity Factor (GSF and the Bus Sensitivity Factor (BSF. BSF is used for finding the optimal location of WCAES in the system. GSF with a Moth Flame Optimization (MFO algorithm is used for rescheduling the generators to alleviate congestion and to minimize congestion cost by improving security margin. The impact of the WCAES system is tested with a 39 bus system. To validate this approach, the same problem has been solved with a Particle Swarm Optimization (PSO algorithm and the obtained results are compared with the ones from the MFO algorithm.

  15. Risk Factors for Road Transport-Related Injury among Pedestrians in Rural Ghana: Implications for Road Safety Education

    Science.gov (United States)

    Teye-Kwadjo, Enoch

    2017-01-01

    Objectives: Injuries and mortality resulting from pedestrian road traffic crashes are a major public health problem in Ghana. This study investigated risk factors for road transport-related injury among pedestrians in rural Ghana. Design: Case study design using qualitative data. Method: In-depth interviews were conducted with pedestrians.…

  16. Smartphone-based integrated PDR/GPS/Bluetooth pedestrian location

    Science.gov (United States)

    Li, Xianghong; Wei, Dongyan; Lai, Qifeng; Xu, Ying; Yuan, Hong

    2017-02-01

    Typical indoor location method is fingerprint and traditional outdoor location system is GPS. Both of them are of poor accuracy and limited only for indoor or outdoor environments. As the smartphones are equipped with MEMS sensors, it means PDR can be widely used. In this paper, an algorithm of smartphone-based integrated PDR/GPS/Bluetooth for pedestrian location in the indoor/outdoor is proposed, which can be highly expected to realize seamless indoor/outdoor localization of the pedestrian. In addition, we also provide technologies to estimate orientation with Magnetometer and Gyroscope and detect context with output of sensors. The extensive experimental results show that the proposed algorithm can realize seamless indoor/outdoor localization.

  17. Research on Urban Road Congestion Pricing Strategy Considering Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Yitian Wang

    2015-08-01

    Full Text Available Congestion pricing strategy has been recognized as an effective countermeasure in the practical field of urban traffic congestion mitigation. In this paper, a bi-level programming model considering carbon dioxide emission is proposed to mitigate traffic congestion and reduce carbon dioxide emissions. The objective function of the upper level model is to minimize the sum of travel costs and the carbon dioxide emissions costs. The lower level is a multi-modal transportation network equilibrium model. To solve the model, the method of successive averages (MSA and the shuffled frog leaping algorithm (SFLA are introduced. The proposed method and algorithm are tested through the numerical example. The results show that the proposed congestion pricing strategy can mitigate traffic congestion and reduce carbon emissions effectively.

  18. 行人交通流基本特性研究现状与展望∗%A Review of Existing Methods and the Perspective of Studying the Features of Pedestrian Traffic Flow

    Institute of Scientific and Technical Information of China (English)

    周继彪; 董升; 陈红; 张敏捷

    2015-01-01

    diagram and overall motion characteristics of pedestrian traffic flow are illustrated,then speed features of individual pedestrian and interactions among individual pedestrian are discussed.The micro-features of pedestrian traffic flow is a natural reflection of its macro-features.Review results indicate that various aggregate behaviors of pedestrian flow dynamics results from non-linear interactions between pedestrians.Pedestrian traffic flows show 3 dis-tinct features:diversity of travel purpose,self-organization of travel behavior and avoidance of the collision within travel process.Pedestrian speed decreases with the increase of density;when pedestrian density is lower than 1.0 ~2.0 p/m2 , pedestrian traffic flow is in the complete free state,which means the speed is not affected by the density,but only affectedby personal preference,comfort level and travel purpose.When the pedestrian density increases to 4~5 p/m2 ,the speed will reduce to 0.2 m/s,that means the pedestrian traffic flow is under a congestion state and it is difficult to continuously move forward.Due to the difference in gender,physiological and psychological conditions,age,trip purpose,and survey locations,the pedestrian velocity fluctuates in the range of 0.9~1.9 m/s,and the density is in the range of 1.7~7.0 p/m2 , while the maximum blocking density is in the range of 3.8~10.0 p/m2 .It is also found that data collection methods,traf-fic simulation,and traffic modeling and empirical tests related to pedestrian traffic flows will be the study trend in pedes-trian traffic flow research.

  19. Crumple zone design for pedestrian protection using impact analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyung Il; Jeon, Young Eun; Kim, Dae Young; Kim, Heon Young [Kangwon National Univ., Chuncheon si (Korea, Republic of); Kim, Yong Soo [Product Development Team, Gyeongsan si (Korea, Republic of)

    2012-08-15

    This paper describes the design process for an automobile crumple zone for pedestrian protection. The impact load and bending moments predicted by impact analysis were used to design a plastic structure that may help reduce pedestrian injuries to the thigh area. The fracture effect was incorporated into the model by calculating the damage to the plastic material during impact, and the analysis was conducted under the European New Car Assessment Program (Euro NCAP) test conditions, using the upper legform developed by ESI Corporation. In addition, the values predicted by the analysis were validated by comparison with results of actual impact tests.

  20. Crumple zone design for pedestrian protection using impact analysis

    International Nuclear Information System (INIS)

    Moon, Hyung Il; Jeon, Young Eun; Kim, Dae Young; Kim, Heon Young; Kim, Yong Soo

    2012-01-01

    This paper describes the design process for an automobile crumple zone for pedestrian protection. The impact load and bending moments predicted by impact analysis were used to design a plastic structure that may help reduce pedestrian injuries to the thigh area. The fracture effect was incorporated into the model by calculating the damage to the plastic material during impact, and the analysis was conducted under the European New Car Assessment Program (Euro NCAP) test conditions, using the upper legform developed by ESI Corporation. In addition, the values predicted by the analysis were validated by comparison with results of actual impact tests

  1. A Lattice Model for Bidirectional Pedestrian Flow on Gradient Road

    International Nuclear Information System (INIS)

    Ge Hong-Xia; Cheng Rong-Jun; Lo Siu-Ming

    2014-01-01

    Ramps and sloping roads appear everywhere in the built environment. It is obvious that the movement pattern of people in the sloping path may be different as compared with the pattern on level roads. Previously, most of the studies, especially the mathematical and simulation models, on pedestrian movement consider the flow at level routes. This study proposes a new lattice model for bidirectional pedestrian flow on gradient road. The stability condition is obtained by using linear stability theory. The nonlinear analysis method is employed to derive the modified Korteweg-de Vries (mKdV) equation, and the space of pedestrian flow is divided into three regions: the stable region, the metastable region, and the unstable region respectively. Furthermore, the time-dependent Ginzburg—Landan (TDGL) equation is deduced and solved through the reductive perturbation method. Finally, we present detailed results obtained from the model, and it is found that the stability of the model is enhanced in uphill situation while reduced in downhill situation with increasing slope. (general)

  2. A Novel Congestion Detection Scheme in TCP Over OBS Networks

    KAUST Repository

    Shihada, Basem

    2009-02-01

    This paper introduces a novel congestion detection scheme for high-bandwidth TCP flows over optical burst switching (OBS) networks, called statistical additive increase multiplicative decrease (SAIMD). SAIMD maintains and analyzes a number of previous round-trip time (RTTs) at the TCP senders in order to identify the confidence with which a packet loss event is due to network congestion. The confidence is derived by positioning short-term RTT in the spectrum of long-term historical RTTs. The derived confidence corresponding to the packet loss is then taken in the developed policy for TCP congestion window adjustment. We will show through extensive simulation that the proposed scheme can effectively solve the false congestion detection problem and significantly outperform the conventional TCP counterparts without losing fairness. The advantages gained in our scheme are at the expense of introducing more overhead in the SAIMD TCP senders. Based on the proposed congestion control algorithm, a throughput model is formulated, and is further verified by simulation results.

  3. Do lower income areas have more pedestrian casualties?

    Science.gov (United States)

    Noland, Robert B; Klein, Nicholas J; Tulach, Nicholas K

    2013-10-01

    Pedestrian and motor vehicle casualties are analyzed for the State of New Jersey with the objective of determining how the income of an area may be associated with casualties. We develop a maximum-likelihood negative binomial model to examine how various spatially defined variables, including road, income, and vehicle ownership, may be associated with casualties using census block-group level data. Due to suspected spatial correlation in the data we also employ a conditional autoregressive Bayesian model using Markov Chain Monte Carlo simulation, implemented with Crimestat software. Results suggest that spatial correlation is an issue as some variables are not statistically significant in the spatial model. We find that both pedestrian and motor vehicle casualties are greater in lower income block groups. Both are also associated with less household vehicle ownership, which is not surprising for pedestrian casualties, but is a surprising result for motor vehicle casualties. Controls for various road categories provide expected relationships. Individual level data is further examined to determine relationships between the location of a crash victim and their residence zip code, and this largely confirms a residual effect associated with both lower income individuals and lower income areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Motor vehicle and pedestrian collisions: burden of severe injury on major versus neighborhood roads.

    Science.gov (United States)

    Rothman, Linda; Slater, Morgan; Meaney, Christopher; Howard, Andrew

    2010-02-01

    To determine whether the severity of injuries sustained by pedestrians involved in motor vehicle collisions varies by road type and age. All police-reported pedestrian motor vehicle collisions in the city of Toronto, Canada, between January 1, 2000, and December 31, 2005, were analyzed. Geographic Information Systems software was used to determine whether the collisions occurred on major or neighborhood roads. Age-specific estimates of the burden of pedestrian collisions are presented. Odds ratios and 95 percent confidence intervals were calculated to examine age-specific relationships between injury severity and road type. A second analysis comparing the distribution of severe injury location between age groups was also performed. The majority of collisions involved adults (68%), although elderly pedestrians were overrepresented in fatal collisions (49%). Severe and fatal collisions involving working-age and elderly adult pedestrians were more likely on major roads. Odds of severe injury occurring on a major road were 1.36 (95% CI: 1.17-1.57) times higher for adults ages 18 to 64, and 1.55 (95% CI: 1.22-1.99) times higher for elderly aged 65+. By contrast, severe injuries among children were more common on neighborhood roads, with odds of severe injury on a major road of 0.64 (95% CI: 0.37-1.1) for children aged 5 to 9. Among children under 9, 64-67 percent of hospitalized or fatal injuries occurred on neighborhood roads, a marked difference from the distribution of such injuries in adults or the elderly, for whom only 29-30 percent of hospitalized or fatal injuries occurred on neighborhood roads (chi-square = 52.6, p roads alone will not make child pedestrians safer. Pedestrian interventions specific to children and focused on neighborhood roads must be considered in urban centers like Toronto.

  5. Congestion Quantification Using the National Performance Management Research Data Set

    Directory of Open Access Journals (Sweden)

    Virginia P. Sisiopiku

    2017-11-01

    Full Text Available Monitoring of transportation system performance is a key element of any transportation operation and planning strategy. Estimation of dependable performance measures relies on analysis of large amounts of traffic data, which are often expensive and difficult to gather. National databases can assist in this regard, but challenges still remain with respect to data management, accuracy, storage, and use for performance monitoring. In an effort to address such challenges, this paper showcases a process that utilizes the National Performance Management Research Data Set (NPMRDS for generating performance measures for congestion monitoring applications in the Birmingham region. The capabilities of the relational database management system (RDBMS are employed to manage the large amounts of NPMRDS data. Powerful visual maps are developed using GIS software and used to illustrate congestion location, extent and severity. Travel time reliability indices are calculated and utilized to quantify congestion, and congestion intensity measures are developed and employed to rank and prioritize congested segments in the study area. The process for managing and using big traffic data described in the Birmingham case study is a great example that can be replicated by small and mid-size Metropolitan Planning Organizations to generate performance-based measures and monitor congestion in their jurisdictions.

  6. 78 FR 40488 - Availability of Draft Environmental Impact Statement for the Proposed Construction of a Highway...

    Science.gov (United States)

    2013-07-05

    ... operating conditions for vehicular and pedestrian traffic; Improve capacity of the local roadway network; Improve local mobility; reduce congestion; improve emergency response times; and Improve evacuation...

  7. Pedestrian Flow in the Mean Field Limit

    KAUST Repository

    Haji Ali, Abdul Lateef

    2012-01-01

    -dependent density of two-dimensional pedestrians satisfies a four-dimensional integro-differential Fokker-Planck equation. To approximate the solution of the Fokker-Planck equation we use a time-splitting approach and solve the diffusion part using a Crank

  8. Identifying the Onset of Congestion Rapidly with Existing Traffic Detectors

    OpenAIRE

    Coifman, Benjamin

    1999-01-01

    From an operations standpoint, the most important task of a traffic surveillance system is determining reliably whether the facility is free flowing or congested. The second most important task is responding rapidly when the facility becomes congested. Other tasks, such as quantifying the magnitude of congestion, are desirable, but tertiary. To address the first two tasks, this paper presents a new approach for traffic surveillance using existing detectors. Rather than expending a considerabl...

  9. Developing Policy for Urban Autonomous Vehicles: Impact on Congestion

    Directory of Open Access Journals (Sweden)

    David Metz

    2018-04-01

    Full Text Available An important problem for surface transport is road traffic congestion, which is ubiquitous and difficult to mitigate. Accordingly, a question for policymakers is the possible impact on congestion of autonomous vehicles. It seems likely that the main impact of vehicle automation will not be seen until driverless vehicles are sufficiently safe for use amid general traffic on urban streets. Shared use driverless vehicles could reduce the cost of taxis and a wider range of public transport vehicles could be economic. Individually owned autonomous vehicles would have the ability to travel unoccupied and may need to be regulated where this might add to congestion. It is possible that autonomous vehicles could provide mobility services at lower cost and wider scope, such that private car use in urban areas could decline and congestion reduce. City authorities should be alert to these possibilities in developing transport policy.

  10. Classification and checking model of pedestrian crossing

    Directory of Open Access Journals (Sweden)

    Luis Delgado Méndez

    2012-11-01

    After realizing this investigation it can be confirmed that the functionality of a pedestrian crossing depends on almost a hundred parameters which must be checked or measured, in turn proving that this design and construction process is indeed complex.

  11. Desk Congest Desktop Congesting Software for Desktop Clutter Congestion

    Directory of Open Access Journals (Sweden)

    Solomon A. Adepoju

    2015-06-01

    Full Text Available Abstract The computer desktop environment is a working environment which can be likened unto a users desk in homes and offices. Often times the computer desktop get cluttered with files either as shortcuts used for quick links files stored temporarily to be accessed later or just being dumped there for no vivid reasons. However previous researches have shown that cluttered desktop affects users productivity and getting these files organized is a laborious task for most users. To be able to conveniently alleviate the effect clutters have on users performances and productivity there is need for third party software that will help get the desktop environment organized in a logical and efficient manner. It is to this end that desktop decongesting software is being designed and implemented to help curb clutter problems which existing tools have only partially addressed. The system is designed using Visual Basic .Net and it proves to be effective in tackling desktop congestion problem.

  12. Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion.

    Science.gov (United States)

    Penry, J F; Upton, J; Mein, G A; Rasmussen, M D; Ohnstad, I; Thompson, P D; Reinemann, D J

    2017-01-01

    The primary objective of this experiment was to assess the effect of mouthpiece chamber vacuum on teat-end congestion. The secondary objective was to assess the interactive effects of mouthpiece chamber vacuum with teat-end vacuum and pulsation setting on teat-end congestion. The influence of system vacuum, pulsation settings, mouthpiece chamber vacuum, and teat-end vacuum on teat-end congestion were tested in a 2×2 factorial design. The low-risk conditions for teat-end congestion (TEL) were 40 kPa system vacuum (Vs) and 400-ms pulsation b-phase. The high-risk conditions for teat-end congestion (TEH) were 49 kPa Vs and 700-ms b-phase. The low-risk condition for teat-barrel congestion (TBL) was created by venting the liner mouthpiece chamber to atmosphere. In the high-risk condition for teat-barrel congestion (TBH) the mouthpiece chamber was connected to short milk tube vacuum. Eight cows (32 quarters) were used in the experiment conducted during 0400 h milkings. All cows received all treatments over the entire experimental period. Teatcups were removed after 150 s for all treatments to standardize the exposure period. Calculated teat canal cross-sectional area (CA) was used to assess congestion of teat tissue. The main effect of the teat-end treatment was a reduction in CA of 9.9% between TEL and TEH conditions, for both levels of teat-barrel congestion risk. The main effect of the teat-barrel treatment was remarkably similar, with a decrease of 9.7% in CA between TBL and TBH conditions for both levels of teat-end congestion risk. No interaction between treatments was detected, hence the main effects are additive. The most aggressive of the 4 treatment combinations (TEH plus TBH) had a CA estimate 20% smaller than for the most gentle treatment combination (TEL plus TBL). The conditions designed to impair circulation in the teat barrel also had a deleterious effect on circulation at the teat end. This experiment highlights the importance of elevated mouthpiece

  13. Statewide planning scenario synthesis : transportation congestion measurement and management.

    Science.gov (United States)

    2005-09-01

    This study is a review of current practices in 13 states to: (1) measure traffic congestion and its costs; and (2) manage congestion with programs and techniques that do not involve the building of new highway capacity. In regard to the measures of c...

  14. 75 FR 54145 - Environmental Impacts Statements; Notice of Availability

    Science.gov (United States)

    2010-09-03

    ..., FHWA, WA, Cattle Point Road Realignment Project, To Maintain Vehicular, Bicycle, and Pedestrian Road... to Ease Traffic Congestions, Accommodate Projected Growth, and Improve Safety, Solano County, CA...

  15. Fair and efficient network congestion control based on minority game

    Science.gov (United States)

    Wang, Zuxi; Wang, Wen; Hu, Hanping; Deng, Zhaozhang

    2011-12-01

    Low link utility, RTT unfairness and unfairness of Multi-Bottleneck network are the existing problems in the present network congestion control algorithms at large. Through the analogy of network congestion control with the "El Farol Bar" problem, we establish a congestion control model based on minority game(MG), and then present a novel network congestion control algorithm based on the model. The result of simulations indicates that the proposed algorithm can make the achievements of link utility closing to 100%, zero packet lose rate, and small of queue size. Besides, the RTT unfairness and the unfairness of Multi-Bottleneck network can be solved, to achieve the max-min fairness in Multi-Bottleneck network, while efficiently weaken the "ping-pong" oscillation caused by the overall synchronization.

  16. Intermittent renewable generation and network congestion: an empirical analysis of Italian Power Market

    International Nuclear Information System (INIS)

    Ardian, Faddy; Concettini, Silvia; Creti, Anna

    2015-01-01

    The literature demonstrates the likely reduction of wholesale electricity prices due to a larger penetration of renewable energy sources (RES). When markets are organized as two or more inter-connected sub-markets within a larger power market the final impact of increasing RES production may be less straightforward given the presence of network constraints. We tests this phenomenon by analyzing the impact of RES production on the probability of congestion and on the size of congestion cost in Italy. Using a database with hourly observations for a five year period we estimate two econometric models on five zonal pairings: a multinomial logit model for the occurrence and direction of congestion and a three stage least square model for the size of congestion costs. The analysis suggests that the effect of a larger local wind and solar supply is to decrease the probability of suffering congestion in entry and to increase the probability of causing a congestion in exit compared to no congestion case. Increasing hydroelectric production has a similar effect. These results hold for both importing and exporting regions, but importing regions are less likely to cause congestion in exit, therefore the installation of new RES capacity in these zones may have a positive effects in terms of flow balance between regions. Concerning the cost level, a larger local RES supply seems to push the congestion cost towards negative values as it decreases the marginal cost for balancing the system. This is true for all zones in the case of explicit congestion cost, but it is only verified in importing regions in the case of implicit congestion cost. This result suggests that the increase of RES production should be promoted in importing zones, but the overall growth should be controlled in order to avoid congestion in the opposite direction. (authors)

  17. Involvement of systemic venous congestion in heart failure.

    Science.gov (United States)

    Rubio Gracia, J; Sánchez Marteles, M; Pérez Calvo, J I

    2017-04-01

    Systemic venous congestion has gained significant importance in the interpretation of the pathophysiology of acute heart failure, especially in the development of renal function impairment during exacerbations. In this study, we review the concept, clinical characterisation and identification of venous congestion. We update current knowledge on its importance in the pathophysiology of acute heart failure and its involvement in the prognosis. We pay special attention to the relationship between abdominal congestion, the pulmonary interstitium as filtering membrane, inflammatory phenomena and renal function impairment in acute heart failure. Lastly, we review decongestion as a new therapeutic objective and the measures available for its assessment. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  18. Usability and Feasibility of an Internet-Based Virtual Pedestrian Environment to Teach Children to Cross Streets Safely

    Science.gov (United States)

    Schwebel, David C.; McClure, Leslie A.; Severson, Joan

    2013-01-01

    Child pedestrian injury is a preventable global health challenge. Successful training efforts focused on child behavior, including individualized streetside training and training in large virtual pedestrian environments, are laborious and expensive. This study considers the usability and feasibility of a virtual pedestrian environment “game” application to teach children safe street-crossing behavior via the internet, a medium that could be broadly disseminated at low cost. Ten 7- and 8-year-old children participated. They engaged in an internet-based virtual pedestrian environment and completed a brief assessment survey. Researchers rated children's behavior while engaged in the game. Both self-report and researcher observations indicated the internet-based system was readily used by the children without adult support. The youth understood how to engage in the system and used it independently and attentively. The program also was feasible. It provided multiple measures of pedestrian safety that could be used for research or training purposes. Finally, the program was rated by children as engaging and educational. Researcher ratings suggested children used the program with minimal fidgeting or boredom. The pilot test suggests an internet-based virtual pedestrian environment offers a usable, feasible, engaging, and educational environment for child pedestrian safety training. If future research finds children learn the cognitive and perceptual skills needed to cross streets safely within it, internet-based training may provide a low-cost medium to broadly disseminate child pedestrian safety training. The concept may be generalized to other domains of health-related functioning such as teen driving safety, adolescent sexual risk-taking, and adolescent substance use. PMID:24678263

  19. Acoustic characteristics of hybrid electric vehicles and the safety of pedestrians who are blind

    Science.gov (United States)

    2010-08-01

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...

  20. Pedestrian Zones As Important Urban Strategies in Redeveloping the Community - Case Study: Alba Iulia Borough Park

    Directory of Open Access Journals (Sweden)

    Oana Elena BLAGA

    2013-02-01

    Full Text Available The pedestrian zone issue is by far an important matter in the context of urban regeneration. Cities which adopted this strategy – the pedestrian zones – have recorded better urban attitudes regarding the urban environment, a continuous growth of the urban quality, an improved urban ecosystem  and continuous attractiveness for investment and  tourism. This article explores the evolution of the pedestrian zones as ideas in utopian urban models in the early 1900 and later as efficient environmental friendly strategies adopted by cities. After identifying the path this concept followed, from a simple idea to an important strategy of urban development, the paper focuses on the major characteristics and benefits of the pedestrian precincts. Next, the article focuses on the newest pedestrian zone in one of the Romanian cities, Alba Iulia and it tries to identify the types of impact this area has so far on the community and entire city.

  1. Conditions that influence drivers' yielding behavior at uncontrolled crossings and intersections with traffic signal controls.

    Science.gov (United States)

    2015-08-31

    There is a dearth of studies on how pedestrian who are blind might positively influence driver yielding in different travel situations. This project assessed common pedestrian behaviors (head turning, holding a cane, taking a step, holding up a hand,...

  2. Towards Scalable Distributed Framework for Urban Congestion Traffic Patterns Warehousing

    Directory of Open Access Journals (Sweden)

    A. Boulmakoul

    2015-01-01

    Full Text Available We put forward architecture of a framework for integration of data from moving objects related to urban transportation network. Most of this research refers to the GPS outdoor geolocation technology and uses distributed cloud infrastructure with big data NoSQL database. A network of intelligent mobile sensors, distributed on urban network, produces congestion traffic patterns. Congestion predictions are based on extended simulation model. This model provides traffic indicators calculations, which fuse with the GPS data for allowing estimation of traffic states across the whole network. The discovery process of congestion patterns uses semantic trajectories metamodel given in our previous works. The challenge of the proposed solution is to store patterns of traffic, which aims to ensure the surveillance and intelligent real-time control network to reduce congestion and avoid its consequences. The fusion of real-time data from GPS-enabled smartphones integrated with those provided by existing traffic systems improves traffic congestion knowledge, as well as generating new information for a soft operational control and providing intelligent added value for transportation systems deployment.

  3. Evaluation of users' satisfaction on pedestrian facilities using pair-wise comparison approach

    Science.gov (United States)

    Zainol, R.; Ahmad, F.; Nordin, N. A.; Aripin, A. W. M.

    2014-02-01

    Global climate change issues demand people of the world to change the way they live today. Thus, current cities need to be redeveloped towards less use of carbon in their day to day operations. Pedestrianized environment is one of the approaches used in reducing carbon foot print in cities. Heritage cities are the first to be looked into since they were built in the era in which motorized vehicles were minimal. Therefore, the research explores users' satisfaction on assessment of physical attributes of pedestrianization in Melaka Historical City, a UNESCO World Heritage Site. It aims to examine users' satisfaction on pedestrian facilities provided within the study area using pair wise questionnaire comparison approach. A survey of 200 respondents using random sampling was conducted in six different sites namely Jonker Street, Church Street, Kota Street, Goldsmith Street, Merdeka Street to Taming Sari Tower and Merdeka Street to River Cruise terminal. The survey consists of an assessment tool based on a nine-point scale of users' satisfaction level of pathway properties, zebra pedestrian crossing, street furniture, personal safety, adjacent to traffic flow, aesthetic and amenities. Analytical hierarchical process (AHP) was used to avoid any biasness in analyzing the data collected. Findings show that Merdeka Street to Taming Sari Tower as the street that scores the highest satisfaction level that fulfils all the required needs of a pedestrianized environment. Similar assessment elements can be used to evaluate existing streets in other cities and these criteria should also be used in planning for future cities.

  4. Stationery equipment for detecting radioactive material on passing pedestrians developed and made in RFYC - VNIIEF

    International Nuclear Information System (INIS)

    Kapustin, D.S.

    2000-01-01

    At VNIIEF, radiation monitors have been designed that measure for transported or pedestrian carried radioactive material and allow a quick determination of an excess gamma and/or neutron background on natural or fixed levels. For this problem, neither the type of the material or its amount need to be determined, but other parameters are measured to detect highly sensitive or priority materials, defined by the threshold of detection, operational monitoring efficiency, simplicity of use and demonstrative imaging of results. All these parameters were considered at VNlIEF in the design of pedestrian radiation monitor KPRM-P1. Post KPRM-P1 is an automatic pedestrian radiation monitor, installed on communicating and KPP enterprises, and intended for checking for authorized or unauthorized radioactive material possessed by pedestrians crossing a controlled space. (authors)

  5. Simple platelet markers: Mean platelet volume and congestive heart failure coexistent with periodontal disease. Pilot studies.

    Science.gov (United States)

    Czerniuk, Maciej R; Bartoszewicz, Zbigniew; Dudzik-Niewiadomska, Iwona; Pilecki, Tomasz; Górska, Renata; Filipiak, Krzysztof J

    2017-07-17

    Conducted pilot study concerning mean platelet volume parameter among patients suffering from congestive heart failure and periodontal disease. Examination of dynamic changes of platelet and periodontal markers in group of 50 patients before and an average of 6 months subsequent to professional periodontal treatment. Both platelet and periodontal parameters decreased after periodontal treatment, what is more, the decrease of mean platelet volume (MPV) value due to periodontal disease/mm improvement was shown to be statistically significant (p = 0.05). Improvement of periodontal status may influence decrease of MPV value andincrease of congestive heart failure treatment efficacy and effect patient comfort. It is a new, not frequently used pattern of chronic disease treatment optimalization.

  6. Congestion management enhancing transient stability of power systems

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Shayanfar, Heidar Ali; Amjady, Nima

    2010-01-01

    In a competitive electricity market, where market parties try to maximize their profits, it is necessary to keep an acceptable level of power system security to retain the continuity of electricity services to customers at a reasonable cost. Congestion in a power system is turned up due to network limits. After relieving congestion, the network may be operated with a reduced transient stability margin because of increasing the contribution of risky participants. In this paper, a novel congestion management method based on a new transient stability criterion is introduced. Using the sensitivity of corrected transient stability margin with respect to generations and demands, the proposed method so alleviates the congestion that the network can more retain its transient security compared with earlier methods. The proposed transient stability index is constructed considering the likelihood of credible faults. Indeed, market parties participate by their security-effective bids rather than raw bids. Results of testing the proposed method along with the earlier ones on the New-England test system elaborate the efficiency of the proposed method from the viewpoint of providing a better transient stability margin with a lower security cost. (author)

  7. Public bus services versus congestion and pollution in Lima and Callao

    OpenAIRE

    Martínez Espinal, Manuel

    2017-01-01

    This study measures the influence of public bus services on traffic congestion and environmental pollution in Lima and Callao. The effect of the flow of buses on the transportation network is measured by way of a dynamic traffic assignment program, Dynasmart. The database is constructed on the basis of the 2005-2025 Master Plan. To this end, the transportation network is verified using Google Earth, and field measurements of capacity, speed, and volume- relay functions to describe traffic con...

  8. Probabilistic assessment of the dynamic interaction between multiple pedestrians and vertical vibrations of footbridges

    Science.gov (United States)

    Tubino, Federica

    2018-03-01

    The effect of human-structure interaction in the vertical direction for footbridges is studied based on a probabilistic approach. The bridge is modeled as a continuous dynamic system, while pedestrians are schematized as moving single-degree-of-freedom systems with random dynamic properties. The non-dimensional form of the equations of motion allows us to obtain results that can be applied in a very wide set of cases. An extensive Monte Carlo simulation campaign is performed, varying the main non-dimensional parameters identified, and the mean values and coefficients of variation of the damping ratio and of the non-dimensional natural frequency of the coupled system are reported. The results obtained can be interpreted from two different points of view. If the characterization of pedestrians' equivalent dynamic parameters is assumed as uncertain, as revealed from a current literature review, then the paper provides a range of possible variations of the coupled system damping ratio and natural frequency as a function of pedestrians' parameters. Assuming that a reliable characterization of pedestrians' dynamic parameters is available (which is not the case at present, but could be in the future), the results presented can be adopted to estimate the damping ratio and natural frequency of the coupled footbridge-pedestrian system for a very wide range of real structures.

  9. Evaluation of a “Smart” Pedestrian Counting System Based on Echo State Networks

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We have designed an inexpensive intelligent pedestrian counting system. The pedestrian counting system consists of several counters that can be connected together in a distributed fashion and communicate over the wireless channel. The motion pattern is recorded using a set of passive infrared (PIR sensors. Each counter has one wireless sensor node that processes the PIR sensor data and transmits it to a base station. Then echo state network, a special kind of recurrent neural network, is used to predict the pedestrian count from the input pattern. The evaluation of the performance of such networks in a novel kind of application is one focus of this work. The counter gave a performance of 80.4% which is better than the commercially available low-priced pedestrian counters. The article reports the experiments we did for analyzing the counterperformance and lists the strengths and limitations of the current implementation. It will also report the preliminary test results obtained by substituting the PIR sensors with low-cost active IR distance sensors which can improve the counter performance further.

  10. Modeling pedestrian shopping behavior using principles of bounded rationality: model comparison and validation

    Science.gov (United States)

    Zhu, Wei; Timmermans, Harry

    2011-06-01

    Models of geographical choice behavior have been dominantly based on rational choice models, which assume that decision makers are utility-maximizers. Rational choice models may be less appropriate as behavioral models when modeling decisions in complex environments in which decision makers may simplify the decision problem using heuristics. Pedestrian behavior in shopping streets is an example. We therefore propose a modeling framework for pedestrian shopping behavior incorporating principles of bounded rationality. We extend three classical heuristic rules (conjunctive, disjunctive and lexicographic rule) by introducing threshold heterogeneity. The proposed models are implemented using data on pedestrian behavior in Wang Fujing Street, the city center of Beijing, China. The models are estimated and compared with multinomial logit models and mixed logit models. Results show that the heuristic models are the best for all the decisions that are modeled. Validation tests are carried out through multi-agent simulation by comparing simulated spatio-temporal agent behavior with the observed pedestrian behavior. The predictions of heuristic models are slightly better than those of the multinomial logit models.

  11. Smart Pedestrian Crossing Management at Traffic Light Junctions through a Fuzzy-Based Approach

    Directory of Open Access Journals (Sweden)

    Giovanni Pau

    2018-02-01

    Full Text Available In the last few years, numerous research efforts have been conducted to merge the Internet of Things (IoT with smart city environments. The goal to make a city “smart” is arising as a possible solution to lessen the issues caused by the urban population growth and fast urbanization. Attention also has focused on the pedestrian crossings because they are one of the most dangerous places in the transport field. Information and Communications Technologies (ICT can undoubtedly be an excellent support in developing infrastructures that can best manage pedestrian crossing. For this reason, this paper introduces a fuzzy logic-based solution able to manage dynamically the traffic lights’ phases in signalized pedestrian crossings. The proposed approach provides the possibility to change the phases of the traffic light taking into account the time of the day and the number of pedestrians about to cross the road. The paper presents a thorough description of the fuzzy logic controller configuration, an in-depth analysis of the application scenario and simulative assessments obtained through Vissim simulations.

  12. Weighted congestion coefficient feedback in intelligent transportation systems

    International Nuclear Information System (INIS)

    Dong Chuanfei; Ma Xu; Wang Binghong

    2010-01-01

    In traffic systems, a reasonable information feedback can improve road capacity. In this Letter, we study dynamics of traffic flow with real-time information. And the influence of a feedback strategy named Weighted Congestion Coefficient Feedback Strategy (WCCFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.

  13. Congestion Management System Process Report

    Science.gov (United States)

    1996-03-01

    In January 1995, the Indianapolis Metropolitan Planning Organization with the help of an interagency Study Review Committee began the process of developing a Congestion Management System (CMS) Plan resulting in this report. This report documents the ...

  14. End to end adaptive congestion control in TCP/IP networks

    CERN Document Server

    Houmkozlis, Christos N

    2012-01-01

    This book provides an adaptive control theory perspective on designing congestion controls for packet-switching networks. Relevant to a wide range of disciplines and industries, including the music industry, computers, image trading, and virtual groups, the text extensively discusses source oriented, or end to end, congestion control algorithms. The book empowers readers with clear understanding of the characteristics of packet-switching networks and their effects on system stability and performance. It provides schemes capable of controlling congestion and fairness and presents real-world app

  15. Analysis of Crossing Speed of the Pedestrians in Marked and Unmarked Crosswalks in the Signalized and Un-Signalized Intersections (Case Study: Rasht city)

    Science.gov (United States)

    Behbahani, Hamid; Najafi Moghaddam Gilani, Vahid; Jahangir Samet, Mehdi; Salehfard, Reza

    2017-10-01

    Pedestrians affect the traffic in the signalized and un-signalized intersections. Therefore, identifying the behavioural features of the pedestrians is of great importance and may result in better designing facilities for them. In this study, by shooting the four intersections in Rasht for 15 hours and inventory from 4568 pedestrians, crossing speed of the pedestrians in the marked crosswalks and unmarked crosswalks was evaluated and analysed. Results showed that pedestrians‧ crossing speed in the marked crosswalks is higher than their crossing speed in the unmarked crosswalks in both signalized and un-signalized intersections. Moreover, in the unmarked crosswalks in the signalized intersections, 15th percentile speed of male pedestrians, female pedestrians and group of pedestrians’ decrease 6.4%, 5.4% and 12.2%, respectively, compared with the 15th percentile speed in the marked crosswalks. Above-mentioned values in the unmarked crosswalks in the un-signalized intersections for male pedestrians, female pedestrians, and group of pedestrians decrease 1.2%, 3.8%, and 1.4%, respectively.

  16. Delving Deep into Multiscale Pedestrian Detection via Single Scale Feature Maps

    Directory of Open Access Journals (Sweden)

    Xinchuan Fu

    2018-04-01

    Full Text Available The standard pipeline in pedestrian detection is sliding a pedestrian model on an image feature pyramid to detect pedestrians of different scales. In this pipeline, feature pyramid construction is time consuming and becomes the bottleneck for fast detection. Recently, a method called multiresolution filtered channels (MRFC was proposed which only used single scale feature maps to achieve fast detection. However, there are two shortcomings in MRFC which limit its accuracy. One is that the receptive field correspondence in different scales is weak. Another is that the features used are not scale invariance. In this paper, two solutions are proposed to tackle with the two shortcomings respectively. Specifically, scale-aware pooling is proposed to make a better receptive field correspondence, and soft decision tree is proposed to relive scale variance problem. When coupled with efficient sliding window classification strategy, our detector achieves fast detecting speed at the same time with state-of-the-art accuracy.

  17. Mathematical principles of road congestion pricing | Pienaar | ORiON

    African Journals Online (AJOL)

    This paper briefly considers the objectives of road congestion pricing and identies prereq-uisites to the successful application of such a pricing scheme. The paper is divided into two sections. In the rst section, a mathematical analysis of the constituents of an optimal road congestion price is oered. The eliminated inefficiency ...

  18. Congestion control in wireless links based on selective delivery of erroneous packets

    DEFF Research Database (Denmark)

    Korhonen, Jari; Perkis, Andrew; Reiter, Ulrich

    2011-01-01

    Traditionally, congestion control in packet networks is performed by reducing the transmission rate when congestion is detected, in order to cut down the traffic that overwhelms the capacity of the network. However, if the bottleneck is a wireless link, congestion is often cumulated because...... the performance of the proposed mechanism against traditional congestion control with a simulation study. The results show that the proposed approach can improve the overall performance both by increasing the throughput over the wireless and improving the video quality in terms of peak signal-to-noise ratio (PSNR...

  19. Traffic signal phasing at intersections to improve safety for alcohol-affected pedestrians.

    Science.gov (United States)

    Lenné, Michael G; Corben, Bruce F; Stephan, Karen

    2007-07-01

    Alcohol-affected pedestrians are among the highest-risk groups involved in pedestrian casualty crashes. This paper investigates the opportunities to use a modified form of traffic signal operation during high-risk periods and at high-risk locations to reduce alcohol-affected pedestrian crashes and the severity of injuries that might otherwise occur. The 'Dwell-on-Red' treatment involves displaying a red traffic signal to all vehicle directions during periods when no vehicular traffic is detected, so that drivers approach high-risk intersections at a lower speed than if a green signal were displayed. Vehicle speed data were collected before and after treatment activation at both a control and treatment site. Speed data were collected both 30 m prior to and at the intersection stop line. The treatment was associated with a reduction in mean vehicle speeds of 3.9 kph (9%) and 11.0 kph (28%) at 30 m and stop line collection points, respectively, and substantial reductions in the proportion of vehicles travelling at threatening speeds with regard to the severity of pedestrian injury. Other important road safety concerns may also benefit from this form of traffic signal modification, and it is recommended that other areas of application be explored, including the other severe trauma categories typically concentrated around signalised intersections.

  20. An efficient statistical-based approach for road traffic congestion monitoring

    KAUST Repository

    Abdelhafid, Zeroual

    2017-12-14

    In this paper, we propose an effective approach which has to detect traffic congestion. The detection strategy is based on the combinational use of piecewise switched linear traffic (PWSL) model with exponentially-weighted moving average (EWMA) chart. PWSL model describes traffic flow dynamics. Then, PWSL residuals are used as the input of EWMA chart to detect traffic congestions. The evaluation results of the developed approach using data from a portion of the I210-W highway in Califorina showed the efficiency of the PWSL-EWMA approach in in detecting traffic congestions.

  1. An efficient statistical-based approach for road traffic congestion monitoring

    KAUST Repository

    Abdelhafid, Zeroual; Harrou, Fouzi; Sun, Ying

    2017-01-01

    In this paper, we propose an effective approach which has to detect traffic congestion. The detection strategy is based on the combinational use of piecewise switched linear traffic (PWSL) model with exponentially-weighted moving average (EWMA) chart. PWSL model describes traffic flow dynamics. Then, PWSL residuals are used as the input of EWMA chart to detect traffic congestions. The evaluation results of the developed approach using data from a portion of the I210-W highway in Califorina showed the efficiency of the PWSL-EWMA approach in in detecting traffic congestions.

  2. Impact of multilateral congestion management on the reliability of power transactions

    International Nuclear Information System (INIS)

    Rodrigues, A.B.; Da Silva, M.G.

    2003-01-01

    The restructuring of the electricity industry has caused an increase in the number of transactions in the energy market. These transactions are defined by market forces without considering operational constraints of the transmission system. Consequently, there are transactions that cause congestion in the transmission network. This paper has as objective to assess the impact of multilateral congestion management on the reliability of power transactions. This assessment is based on reliability indices such as expected power curtailments, curtailment probability, expected cost of congestion management and probability distributions of the total power curtailment. Tests results with IEEE RTS-1996 demonstrate that the multilateral management results in smaller curtailments and congestion costs than traditional bilateral management. (author)

  3. Does Pedestrian Danger Mediate the Relationship between Local Walkability and Active Travel to Work?

    Directory of Open Access Journals (Sweden)

    Sandy J Slater

    2016-05-01

    Full Text Available Background: Environmental and policy factors play an important role in influencing people’s lifestyles, physical activity (PA, and risks for developing obesity. Research suggests that more walkable communities are needed to sustain lifelong PA behavior, but there is a need to determine what local built environment features facilitate making being active the easy choice.Purpose: This county-level study examined the association between local walkability (walkability and traffic calming scales, pedestrian danger, and the percent of adults who used active transport to work. Methods: Built environment and PA outcome measures were constructed for the 496 most populous counties representing 74 percent of the U.S. population. GIS-based walkability scales were constructed and include a census of roads located within the counties using 2011 Navteq data. The pedestrian danger index (PDI includes data collected from the Fatality Analysis Reporting System 2009-2011, and measures the likelihood of a pedestrian being hit and killed by a vehicle. Four continuous outcome measures were constructed using 2009-2013 American Community Survey county-level 5-year estimates. The measures represent the percentage of workers living in a county who worked away from home and: 1 walked to work; 2 biked to work; 3 took public transit; and 4 used any form of active transport. Linear regression and mediation analyses were conducted to examine the association between walkability, PDI and active transport. Models accounted for clustering within state with robust standard errors, and controlled for median household income, families with children in poverty, race, ethnicity, urbanicity and region.Results: The walkability scale was significantly negatively associated with the PDI (β=-0.06, 95% CI=-0.111, -0.002. In all models, the PDI was significantly negatively associated with all active travel-related outcomes at the p<0.01 level. The walkability scale was positively

  4. Does Pedestrian Danger Mediate the Relationship between Local Walkability and Active Travel to Work?

    Science.gov (United States)

    Slater, Sandy J; Nicholson, Lisa; Abu Zayd, Haytham; Chriqui, Jamie Friedman

    2016-01-01

    Environmental and policy factors play an important role in influencing people's lifestyles, physical activity (PA), and risks for developing obesity. Research suggests that more walkable communities are needed to sustain lifelong PA behavior, but there is a need to determine what local built environment features facilitate making being active the easy choice. This county-level study examined the association between local walkability (walkability and traffic calming scales), pedestrian danger, and the percent of adults who used active transport to work. Built environment and PA outcome measures were constructed for the 496 most populous counties representing 74% of the U.S. population. Geographic information system-based walkability scales were constructed and include a census of roads located within the counties using 2011 Navteq data. The pedestrian danger index (PDI) includes data collected from the Fatality Analysis Reporting System 2009-2011, and measures the likelihood of a pedestrian being hit and killed by a vehicle. Four continuous outcome measures were constructed using 2009-2013 American Community Survey county-level 5-year estimates. The measures represent the percentage of workers living in a county who worked away from home and (1) walked to work; (2) biked to work; (3) took public transit; and (4) used any form of active transport. Linear regression and mediation analyses were conducted to examine the association between walkability, PDI, and active transport. Models accounted for clustering within state with robust SEs, and controlled for median household income, families with children in poverty, race, ethnicity, urbanicity, and region. The walkability scale was significantly negatively associated with the PDI (β = -0.06, 95% CI = -0.111, -0.002). In all models, the PDI was significantly negatively associated with all active travel-related outcomes at the p walkability scale was positively associated with all four outcomes at the p

  5. Effect of venous and lymphatic congestion on lymph capillary pressure of the skin in healthy volunteers and patients with lymph edema.

    Science.gov (United States)

    Gretener, S B; Läuchli, S; Leu, A J; Koppensteiner, R; Franzeck, U K

    2000-01-01

    The aim of the present study was to assess the influence of venous and lymphatic congestion on lymph capillary pressure (LCP) in the skin of the foot dorsum of healthy volunteers and of patients with lymph edema. LCP was measured at the foot dorsum of 12 patients with lymph edema and 18 healthy volunteers using the servo-nulling technique. Glass micropipettes (7-9 microm) were inserted under microscopic control into lymphatic microvessels visualized by fluorescence microlymphography before and during venous congestion. Venous and lymphatic congestion was attained by cuff compression (50 mm Hg) at the thigh level. Simultaneously, the capillary filtration rate was measured using strain gauge plethysmography. The mean LCP in patients with lymph edema increased significantly (p < 0.05) during congestion (15.7 +/- 8.8 mm Hg) compared to the control value (12.2 +/- 8.9 mm Hg). The corresponding values of LCP in healthy volunteers were 4.3 +/- 2.6 mm Hg during congestion and 2.6 +/- 2.8 mm Hg during control conditions (p < 0.01). The mean increase in LCP in patients with lymph edema was 3.4 +/- 4.1 mm Hg, and 1.7 +/- 2.0 mm Hg in healthy volunteers (NS). The maximum spread of the lymph capillary network in patients increased from 13.9 +/- 6.8 mm before congestion to 18.8 +/- 8.2 mm during thigh compression (p < 0.05). No increase could be observed in healthy subjects. In summary, venous and lymphatic congestion by cuff compression at the thigh level results in a significant increase in LCP in healthy volunteers as well as in patients with lymph edema. The increased spread of the contrast medium in the superficial microlymphatics in lymph edema patients indicates a compensatory mechanism for lymphatic drainage during congestion of the veins and lymph collectors of the leg. Copyright 2000 S. Karger AG, Basel

  6. An Optimal Enhanced Kalman Filter for a ZUPT-Aided Pedestrian Positioning Coupling Model.

    Science.gov (United States)

    Fan, Qigao; Zhang, Hai; Sun, Yan; Zhu, Yixin; Zhuang, Xiangpeng; Jia, Jie; Zhang, Pengsong

    2018-05-02

    Aimed at overcoming the problems of cumulative errors and low positioning accuracy in single Inertial Navigation Systems (INS), an Optimal Enhanced Kalman Filter (OEKF) is proposed in this paper to achieve accurate positioning of pedestrians within an enclosed environment. Firstly, the errors of the inertial sensors are analyzed, modeled, and reconstructed. Secondly, the cumulative errors in attitude and velocity are corrected using the attitude fusion filtering algorithm and Zero Velocity Update algorithm (ZUPT), respectively. Then, the OEKF algorithm is described in detail. Finally, a pedestrian indoor positioning experimental platform is established to verify the performance of the proposed positioning system. Experimental results show that the accuracy of the pedestrian indoor positioning system can reach 0.243 m, giving it a high practical value.

  7. A Credit-Based Congestion-Aware Incentive Scheme for DTNs

    Directory of Open Access Journals (Sweden)

    Qingfeng Jiang

    2016-12-01

    Full Text Available In Delay-Tolerant Networks (DTNs, nodes may be selfish and reluctant to expend their precious resources on forwarding messages for others. Therefore, an incentive scheme is necessary to motivate selfish nodes to cooperatively forward messages. However, the current incentive schemes mainly focus on encouraging nodes to participate in message forwarding, without considering the node congestion problem. When many messages are forwarded to the nodes with high connection degree, these nodes will become congested and deliberately discard messages, which will seriously degrade the routing performance and reduce the benefits of other nodes. To address this problem, we propose a credit-based congestion-aware incentive scheme (CBCAIS for DTNs. In CBCAIS, a check and punishment mechanism is proposed to prevent forwarding nodes from deliberately discarding message. In addition, a message acceptance selection mechanism is proposed to allow the nodes to decide whether to accept other messages, according to self congestion degree. The experimental results show that CBCAIS can effectively stimulate selfish nodes to cooperatively forward messages, and achieve a higher message delivery ratio with lower overhead ratio, compared with other schemes.

  8. Give or take? Rewards versus charges for a congested bottleneck

    NARCIS (Netherlands)

    Rouwendal, J.; Verhoef, E.T.; Knockaert, J.

    2012-01-01

    This paper analyzes the possibilities to relieve traffic congestion using subsidies instead of Pigouvian taxes, as well as revenue-neutral combinations of rewards and taxes ('feebates'). The model considers a Vickrey-ADL model of bottleneck congestion with endogenous scheduling. With inelastic

  9. Pedestrian detection in thermal images: An automated scale based region extraction with curvelet space validation

    Science.gov (United States)

    Lakshmi, A.; Faheema, A. G. J.; Deodhare, Dipti

    2016-05-01

    Pedestrian detection is a key problem in night vision processing with a dozen of applications that will positively impact the performance of autonomous systems. Despite significant progress, our study shows that performance of state-of-the-art thermal image pedestrian detectors still has much room for improvement. The purpose of this paper is to overcome the challenge faced by the thermal image pedestrian detectors, which employ intensity based Region Of Interest (ROI) extraction followed by feature based validation. The most striking disadvantage faced by the first module, ROI extraction, is the failed detection of cloth insulted parts. To overcome this setback, this paper employs an algorithm and a principle of region growing pursuit tuned to the scale of the pedestrian. The statistics subtended by the pedestrian drastically vary with the scale and deviation from normality approach facilitates scale detection. Further, the paper offers an adaptive mathematical threshold to resolve the problem of subtracting the background while extracting cloth insulated parts as well. The inherent false positives of the ROI extraction module are limited by the choice of good features in pedestrian validation step. One such feature is curvelet feature, which has found its use extensively in optical images, but has as yet no reported results in thermal images. This has been used to arrive at a pedestrian detector with a reduced false positive rate. This work is the first venture made to scrutinize the utility of curvelet for characterizing pedestrians in thermal images. Attempt has also been made to improve the speed of curvelet transform computation. The classification task is realized through the use of the well known methodology of Support Vector Machines (SVMs). The proposed method is substantiated with qualified evaluation methodologies that permits us to carry out probing and informative comparisons across state-of-the-art features, including deep learning methods, with six

  10. Congestion management in Alberta

    International Nuclear Information System (INIS)

    Way, R.

    2002-01-01

    The challenges facing Alberta regarding electricity market design and congestion management were described. The electricity market in the province consists of a central power pool, an open access transmission network, and a single pool price, unlike many other jurisdictions in North America which have adopted a location margin price (LMP) design with significant price differences between various locations within the power network. Alberta's transmission network is regulated and provides carrier functions. Power moves freely throughout Alberta's power pool network with no congestion, therefore the common pool price signals market participants throughout the entire network with no segregation into zones. Alberta is currently at a cross road in choosing between a single pool price model or a nodal price model. In the first instance, the province would have to strengthen the transmission network to maintain the market at a reasonable size. The alternative would permit Alberta to use market-based techniques to deal with the evolution of many smaller markets in the province, but these would be very small by North American standards and their ability to compete would be questionable

  11. Pedestrian Dynamics Feedback Control of Crowd Evacuation

    CERN Document Server

    Kachroo, Pushkin P.E; Al-nasur, Sadeq J; Shende, Apoorva

    2008-01-01

    Effective evacuation of people from closed spaces is an extremely important topic, since it can save real lives in emergency situations that can be brought about by natural and human made disasters. Usually there are static maps posted at various places at buildings that illustrate routes that should be taken during emergencies. However, when disasters happen, some of these routes might not be valid because of structural problems due to the disaster itself and more importantly because of the distribution of congestion of people spread over the area. The average flow of traffic depends on the traffic density. Therefore, if all the people follow the same route, or follow a route without knowing the congestion situation, they can end up being part of the congestion which results in very low flow rate or worse a traffic jam. Hence it becomes extremely important to design evacuations that inform people how fast and in which direction to move based on real-time information obtained about the people distribution usi...

  12. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching.

    Science.gov (United States)

    Wang, Guohua; Liu, Qiong

    2015-12-21

    Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians' head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians' size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only.

  13. Effective environmental factors on geographical distribution of traffic accidents on pedestrians, downtown of Tehran City.

    Science.gov (United States)

    Moradi, Ali; Rahmani, Khaled; Kavousi, Amir; Eshghabadi, Farshid; Nematollahi, Shahrzad; Zainni, Slahedyn; Soori, Hamid

    2018-02-20

    The aim of this study was to geographically analyse the traffic casualties in pedestrians in downtown of Tehran City. Study population consisted of pedestrians who had traffic injury accidents from April 2014 to March 2015 in Tehran City. Data were extracted from the offices of traffic police and municipality. For analysis of environmental factors and site of accidents, Ordinary Least Square (OLS) regression models and Geographically Weighted Regression (GWR) were used. All pedestrian accidents including 514 accidents were assessed in this study in which the site of accidents included arterial streets in 370 (71.9%) cases, collector streets in 133 cases (25.2%) and highways in 11 cases (2.1%). Geographical units of traffic accidents in pedestrians had statistically significant relationship with the number of bus stations, number of crossroads and recreational areas. Neighbourhoods close to markets are considered as the most dangerous places for injury in traffic accidents.

  14. Congestion Pricing for Aircraft Pushback Slot Allocation.

    Science.gov (United States)

    Liu, Lihua; Zhang, Yaping; Liu, Lan; Xing, Zhiwei

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  15. Congestion Pricing for Aircraft Pushback Slot Allocation.

    Directory of Open Access Journals (Sweden)

    Lihua Liu

    Full Text Available In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  16. Indices of pedestrian behavior in shopping areas

    NARCIS (Netherlands)

    Borgers, A.; Timmermans, H.

    2014-01-01

    A number of indices to describe and compare sets of pedestrian routes in shopping environments will be introduced. The first set of indices is related to characteristics of the trajectories and the second set to visiting outlets. These statistics can be used to assess the performance of models

  17. 49 CFR Attachment 1 - Form and Content of Statement

    Science.gov (United States)

    2010-10-01

    ... systems, traffic congestion, threats to health, or other consequences adverse to the environmental goals... changes in vehicular or pedestrian access. b. Statement of the “national, State or local significance” of...

  18. 49 CFR 520.34 - Comments on environmental statements prepared by other agencies.

    Science.gov (United States)

    2010-10-01

    ... systems, traffic congestion, threats to health, or other consequences adverse to the environmental goals... changes in vehicular or pedestrian access. b. Statement of the “national, State or local significance” of...

  19. Risk management in electricity markets emphasizing transmission congestion

    International Nuclear Information System (INIS)

    Kristiansen, Tarjei

    2004-01-01

    This thesis analyzes transmission pricing, transmission congestion risks and their associated hedging instruments as well as mechanisms for stimulating investments in transmission expansion. An example of risk management in the case of a hydropower producer is included. After liberalization and restructuring of electricity markets, risk management has become important. In particular the thesis analyzes risks due to transmission congestion both in the short- and long-term (investments) for market players such as generators, loads, traders, independent system operators and merchant investors. The work is focused on the northeastern United States electricity markets and the Nordic electricity markets. The first part of the thesis reviews the literature related to the eight research papers in the thesis. This describes the risks that are relevant for an electricity market player and how these can be managed. Next, the basic ingredients of a competitive electricity market are described including the design of the system operator. The transmission pricing method is decisive for hedging against transmission congestion risks and there is an overview of transmission pricing models considering their similarities and differences. Depending on the transmission pricing method used, locational or area (zonal) pricing, the electricity market players can use financial transmission rights or Contracts for Differences, respectively. In the long-term it is important to create mechanisms for investments in transmission expansion and the thesis describes one possible approach and its potential problems. The second part comprises eight research papers. It presents empirical analyses of existing markets for transmission congestion derivatives, theoretical analyses of transmission congestion derivatives, modeling of merchant long-term financial transmission rights, theoretical analysis of the risks of the independent system operator in providing financial transmission rights, an analysis

  20. Evaluation of users' satisfaction on pedestrian facilities using pair-wise comparison approach

    International Nuclear Information System (INIS)

    Zainol, R; Ahmad, F; Nordin, N A; Aripin, A W M

    2014-01-01

    Global climate change issues demand people of the world to change the way they live today. Thus, current cities need to be redeveloped towards less use of carbon in their day to day operations. Pedestrianized environment is one of the approaches used in reducing carbon foot print in cities. Heritage cities are the first to be looked into since they were built in the era in which motorized vehicles were minimal. Therefore, the research explores users' satisfaction on assessment of physical attributes of pedestrianization in Melaka Historical City, a UNESCO World Heritage Site. It aims to examine users' satisfaction on pedestrian facilities provided within the study area using pair wise questionnaire comparison approach. A survey of 200 respondents using random sampling was conducted in six different sites namely Jonker Street, Church Street, Kota Street, Goldsmith Street, Merdeka Street to Taming Sari Tower and Merdeka Street to River Cruise terminal. The survey consists of an assessment tool based on a nine-point scale of users' satisfaction level of pathway properties, zebra pedestrian crossing, street furniture, personal safety, adjacent to traffic flow, aesthetic and amenities. Analytical hierarchical process (AHP) was used to avoid any biasness in analyzing the data collected. Findings show that Merdeka Street to Taming Sari Tower as the street that scores the highest satisfaction level that fulfils all the required needs of a pedestrianized environment. Similar assessment elements can be used to evaluate existing streets in other cities and these criteria should also be used in planning for future cities