WorldWideScience

Sample records for pearlitic steel wire

  1. Hardening and softening mechanisms of pearlitic steel wire under torsion

    International Nuclear Information System (INIS)

    Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming

    2014-01-01

    Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test

  2. Hierarchical Structure and Strengthening Mechanisms in Pearlitic Steel Wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Huang, Xiaoxu

    Microstructure evolution and strengthening mechanisms have been analyzed in a cold-drawn pearlitic steel wire (the strongest engineering materials in the world) with a nanostructure down to 10 nm and a flow stress up to 5.4 GPa. The interlamellar spacing and the cementite lamellae thickness...... are reduced during drawing in accordance with the change in wire diameter up to a strain of 2.5. At a higher strain enhanced thinning of cementite lamellae points to decomposition and carbon enrichment of the ferrite lamellae. Dislocations are stored as individual dislocations and in low angle boundaries...

  3. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains P 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  4. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains ⩾ 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  5. Low temperature annealing of cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Bech, Jakob Ilsted; Hansen, Niels

    2015-01-01

    Cold-drawn pearlitic steel wires are nanostructured and the flow stress at room temperature can reach values above 6 GPa. A typical characteristic of the nanostructured metals, is the low ductility and thermal stability. In order to optimize both the processing and application of the wires......, the thermal behaviour is of interest. This has been studied by annealing the wires for 1h at temperatures from ambient temperature to 300 ℃ (573 K). It is expected that a raising temperature may lead to structural changes and a reduction in strength. The change in strength is however not expected to be large....... For this reason we have applied a very precise technique to measure the tensile properties of the wires from a strain of 10-4 to the maximum strain of about 1-2%. The structural changes have also been followed to estimate and relate strength changes to changes in structural parameters and morphology....

  6. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    International Nuclear Information System (INIS)

    Zhang Xiaodan; Godfrey, Andrew; Hansen, Niels; Huang Xiaoxu; Liu Wei; Liu Qing

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110} α or {112} α slip plane traces in the ferrite.

  7. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron...... microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates...... decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110...

  8. Revealing microstructural and mechanical characteristics of cold-drawn pearlitic steel wires undergoing simulated galvanization treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fang Feng, E-mail: fangfeng@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Hu Xianjun [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Sha-Steel Group, Zhangjiagang City, Jiangsu Province 215625 (China); Chen Shaohui [Jiangsu Sha-Steel Group, Zhangjiagang City, Jiangsu Province 215625 (China); Xie Zonghan [School of Engineering, Edith Cowen University, Joondalup, WA 6027 (Australia); Jiang Jianqing [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Annealing time on microstructure and mechanical properties of cold-drawn steel wires were studied. Black-Right-Pointing-Pointer Exothermic peak in cold-drawn wire was resulting from the spheroidization of lamellar cementite. Black-Right-Pointing-Pointer Spheroidization of lamellar cementite is the main effect for torsion property of wires after annealing. - Abstract: Spheroidization of lamellar cementite often occurs in cold-drawn pearlitic steel wires during galvanizing treatment, leading to the degradation of mechanical properties. Therefore, it is important to understand effects of galvanization process on microstructure and mechanical properties of cold-drawn wires. In this paper, cold-drawn steel wires were fabricated by cold drawing pearlitic steel rods from 13 mm to 6.9 mm in diameter. Thermal annealing at 450 Degree-Sign C was used to simulate galvanizing treatment of steel wires. Tensile strength, elongation and torsion laps of steel rods and wires with, and without, annealing treatment were determined. Microstructure was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, differential scanning calorimetry (DSC) was used to probe the spheroidization temperature of cementite. Experimental results showed that tensile strength of wires increased from 1780 MPa to 1940 MPa for annealing <5 min, and then decreased. Tensile strength became constant for annealing >10 min. Elongation of wires decreased for annealing <2.5 min, and then recovered slightly. It approached a constant value for annealing >5 min. Tensile strength and elongation of wires were both influenced by the strain age hardening and static recovery processes. Notably, torsion laps of wires hardly changed when annealing time was less than 2.5 min, and then decreased rapidly. Its value became constant when the hold time is greater than 10 min. Lamellar cementite began to spheroidize at annealing >2.5 min

  9. Structural Parameters and Strengthening Mechanisms in Cold-Drawn Pearlitic Steel Wires

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andy; Huang, Xiaoxu

    2012-01-01

    Pearlitic steel wires have a nanoscale structure and a strength which can reach 5 GPa. In order to investigate strengthening mechanisms, structural parameters including interlamellar spacing, dislocation density and cementite decomposition, have been analyzed by transmission electron microscopy...... and high resolution electron microscopy in wires cold drawn up to a strain of 3.7. Three strengthening mechanisms, namely boundary strengthening, dislocation strengthening and solid solution hardening have been analyzed and good agreement has been found between the measured flow stress and the value...

  10. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andy; Huang, Xiaoxu

    2011-01-01

    Strengthening mechanisms and strength–structure relationships have been analyzed in a cold-drawn pearlitic steel with a structural scale in the nanometer range and a flow stress of about 3.5GPa. The wires have been drawn up to a strain of 3.7 and the structures analyzed and quantified by transmis......Strengthening mechanisms and strength–structure relationships have been analyzed in a cold-drawn pearlitic steel with a structural scale in the nanometer range and a flow stress of about 3.5GPa. The wires have been drawn up to a strain of 3.7 and the structures analyzed and quantified...... by transmission electron microscopy and high resolution electron microscopy. The mechanical properties have been determined by tensile testing. It is found that the interlamellar spacing and the thickness of the cementite lamellae are reduced in accordance with the changes in wire diameter up to a strain of 2...... at the ferrite/cementite interface. Three strengthening mechanisms have been analyzed: (i) boundary strengthening, (ii) dislocation strengthening and (iii) solid solution hardening. The individual and combined contributions, based on an assumption of linear additivity, of these mechanisms to the wire strength...

  11. Comparative study and quantification of cementite decomposition in heavily drawn pearlitic steel wires

    Energy Technology Data Exchange (ETDEWEB)

    Lamontagne, A. [University of Lyon, INSA Lyon, MATEIS–UMR CNRS 5510, Bât. St Exupéry, 3ème étage, 25 Avenue Jean Capelle, Villeurbanne Cedex 69621 (France); Massardier, V., E-mail: veronique.massardier@insa-lyon.fr [University of Lyon, INSA Lyon, MATEIS–UMR CNRS 5510, Bât. St Exupéry, 3ème étage, 25 Avenue Jean Capelle, Villeurbanne Cedex 69621 (France); Kléber, X. [University of Lyon, INSA Lyon, MATEIS–UMR CNRS 5510, Bât. St Exupéry, 3ème étage, 25 Avenue Jean Capelle, Villeurbanne Cedex 69621 (France); Sauvage, X. [University of Rouen, GPM, UMR CNRS 6634, BP 12, Avenue de l’Université, 76801 Saint-Etienne du Rouvray (France); Mari, D. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne, Station 3, Lausanne CH-1015 (Switzerland)

    2015-09-17

    Heavily cold-drawing was performed on a pearlitic steel wire and on an ultra-low carbon (ULC) steel wire in order to highlight and quantify the microstructural changes caused by this type of deformation. Both global techniques (thermoelectric power, electrical resistivity, internal fiction background) and local techniques (Atom Probe Tomography) were combined for this study. It was shown that two distinct stages have to be taken into account during the cold-drawing of pearlitic steels. The first stage (below a true strain of 1.5) was attributed mainly to the lamellar alignment, while the second stage (above a true strain of 1.5) was unambiguously interpreted as being due to a gradual enrichment of the carbon content of ferrite arising from the strain induced cementite decomposition. The carbon content in solid solution in ferrite was assessed as a function of the true strain. All the techniques showed that this carbon content exceeds the solubility limit of carbon in the ferrite above a true strain of 2.2. A correlation between the increase in the carbon content of ferrite and the increase in yield strength was also highlighted. Moreover, a scenario was proposed to explain the microstructural changes caused by drawing.

  12. Comparative study and quantification of cementite decomposition in heavily drawn pearlitic steel wires

    International Nuclear Information System (INIS)

    Lamontagne, A.; Massardier, V.; Kléber, X.; Sauvage, X.; Mari, D.

    2015-01-01

    Heavily cold-drawing was performed on a pearlitic steel wire and on an ultra-low carbon (ULC) steel wire in order to highlight and quantify the microstructural changes caused by this type of deformation. Both global techniques (thermoelectric power, electrical resistivity, internal fiction background) and local techniques (Atom Probe Tomography) were combined for this study. It was shown that two distinct stages have to be taken into account during the cold-drawing of pearlitic steels. The first stage (below a true strain of 1.5) was attributed mainly to the lamellar alignment, while the second stage (above a true strain of 1.5) was unambiguously interpreted as being due to a gradual enrichment of the carbon content of ferrite arising from the strain induced cementite decomposition. The carbon content in solid solution in ferrite was assessed as a function of the true strain. All the techniques showed that this carbon content exceeds the solubility limit of carbon in the ferrite above a true strain of 2.2. A correlation between the increase in the carbon content of ferrite and the increase in yield strength was also highlighted. Moreover, a scenario was proposed to explain the microstructural changes caused by drawing

  13. Delamination of Pearlitic Steel Wires: The Defining Role of Prior-Drawing Microstructure

    Science.gov (United States)

    Durgaprasad, A.; Giri, S.; Lenka, S.; Sarkar, Sudip Kumar; Biswas, Aniruddha; Kundu, S.; Mishra, S.; Chandra, S.; Doherty, R. D.; Samajdar, I.

    2018-03-01

    This article reports the occasional (alignment of the pearlite: 22 ± 5 pct vs 34 ± 4 pct in the nondelaminated wires. Although all wires had similar through-thickness texture and stress gradients, delaminated wires had stronger gradients in composition and higher hardness across the ferrite-cementite interface. Carbide dissolution and formation of supersaturated ferrite were clearly correlated with delamination, which could be effectively mitigated by controlled laboratory annealing at 673 K. Direct observations on samples subjected to simple shear revealed significant differences in shear localizations. These were controlled by pearlite morphology and interlamellar spacing. Prior-drawing microstructure of coarse misaligned pearlite thus emerged as a critical factor in the wire drawing-induced delamination of the pearlitic wires.

  14. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Godfrey, Andrew

    2016-01-01

    The tensile properties and the deformation microstructure of pearlitic steel (0.8 wt % C) have been quantified in wires drawn to strains in the range from 3.7 to 5.4, having a flow stress in the range from 3.5 to 4.5 GPa. With increasing strain the interlamellar spacing (ILS) decreases from about...... mechanism in the wire and three strengthening mechanisms are applied: boundary strengthening, dislocation strengthening and solid solution hardening with their relative contributions to the total flow stress which change as the strain is increased. Based on linear additivity good correspondence between...

  15. Evolution of carbon distribution and mechanical properties during the static strain ageing of heavily drawn pearlitic steel wires

    International Nuclear Information System (INIS)

    Lamontagne, A.; Massardier, V.; Sauvage, X.; Kléber, X.; Mari, D.

    2016-01-01

    The static strain ageing of heavily cold-drawn pearlitic steel wires was investigated using both global techniques and local techniques (Atom Probe Tomography (APT)), in order to highlight how the cold-drawn destabilized microstructure returns to a more stable state during post-drawing treatments between 20 °C and 150 °C. The global techniques (thermoelectric power, differential scanning calorimetry) clearly showed that ageing occurs in three successive ageing stages and is due to a redistribution of the carbon atoms coming from the strain-induced cementite dissolution. The first ageing stage was unambiguously attributed to the carbon segregation to the defects, while the second and third stages were interpreted as being due to the precipitation of intermediate carbides (2nd stage) and cementite (3rd stage). The true strain was not found to significantly affect the ageing kinetics and mechanisms but appeared to play a role in the amount of carbon atoms involved in the different ageing stages. APT analyses confirmed that ageing is governed by the carbon depletion of strain-induced supersaturated ferrite. The strengthening mechanisms associated with the different ageing stages were also discussed.

  16. Hirarchical structures and strength in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Godfrey, Andrew

    2014-01-01

    and the cementite decomposition, have been analyzed and quantified by scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy for wires cold drawn up to a strain of 3.68. Three strengthening mechanisms, boundary strengthening, dislocation strengthening and solid...... solution hardening, have been analyzed based on the microstructural analysis. The individual and combined contributions, of these mechanisms to the wire strength have been estimated and good agreement has been found between the measured flow stress and values estimated based on an assumption of linear...... additivity of the three strengthening mechanisms. Mechanisms behind the higher strength of about 6.4 GPa in the wires drawn to higher strains and to a finer microstructural scale is also discussed....

  17. The morphology and formation mechanism of pearlite in steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.-X., E-mail: Mingxing.Zhang@uq.edu.au [Division of Materials, School of Engineering, University of Queensland, St. Lucia, Queensland 4072 (Australia); Kelly, P.M. [Division of Materials, School of Engineering, University of Queensland, St. Lucia, Queensland 4072 (Australia)

    2009-06-15

    A number of morphological features of pearlite were revealed through scanning electron microscopy using deeply etched specimens. These include cementite branching, bridging, gaps, holes and curvature. The presence of cementite thin films or networks along the austenite grain boundaries in eutectoid steel and at the interface between pearlite and proeutectoid ferrite in hypoeutectoid steel is another characteristic of pearlite. Furthermore, ferrite thin films surrounding the proeutectoid cementite in hypereutectoid steels are also observed. Hence, it is considered that in hypoeutectoid steels the nucleus for pearlite is a film of cementite rather than the expected proeutectoid ferrite and, similarly, in hypereutectoid steels pearlite forms from a ferrite film rather than from proeutectoid cementite. Convergent beam Kikuchi line diffraction was used to accurately determine the orientation relationships between pearlitic constituents and parent austenite in a Hadfields steel. The results show that neither the pearlitic ferrite nor the cementite is crystallographically related to the austenite grain into which the pearlite was growing and to that into which it was not growing. In addition, a new orientation relationship between pearlitic cementite and ferrite in the Hadfield steel was also observed.

  18. Tensile Fracture Behavior of Progressively-Drawn Pearlitic Steels

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2016-05-01

    Full Text Available In this paper a study is presented of the tensile fracture behavior of progressively-drawn pearlitic steels obtained from five different cold-drawing chains, including each drawing step from the initial hot-rolled bar (not cold-drawn at all to the final commercial product (pre-stressing steel wire. To this end, samples of the different wires were tested up to fracture by means of standard tension tests, and later, all of the fracture surfaces were analyzed by scanning electron microscopy (SEM. Micro-fracture maps (MFMs were assembled to characterize the different fractographic modes and to study their evolution with the level of cumulative plastic strain during cold drawing.

  19. Characterization of deformed pearlitic rail steel

    Science.gov (United States)

    Nikas, Dimitrios; Meyer, Knut Andreas; Ahlström, Johan

    2017-07-01

    Pearlitic steels are commonly used for railway rails because they combine good strength and wear properties. During service, the passage of trains results in a large accumulation of shear strains in the surface layer of the rail, leading to crack initiation. Knowledge of the material properties in this region is therefore important for fatigue life prediction. As the strain is limited to a thin surface layer, very large strain gradients can be found. This makes it very difficult to quantify changes in material behavior. In this study hardness measurements were performed close to the surface using the Knoop hardness test method. The orientation of the pearlitic lamellas was measured to give an overview of the deformed microstructure in the surface of the rail. Microstructural characterization of the material was done by optical microscopy and scanning electron microscopy to evaluate the changes in the microstructure due to the large deformation. A strong gradient can be observed in the top 50 μm of the rail, while deeper into the rail the microstructure of the base material is preserved.

  20. Influence of surface defects on the fatigue crack initiation in pearlitic steel

    Directory of Open Access Journals (Sweden)

    Toribio Jesús

    2014-06-01

    Full Text Available Tensile fatigue tests were performed under load control, with constant stress range Δσ on pearlitic steel wires, from the hot rolled bar to the commercial prestressing steel wire (which has undergone seven cold drawing steps. Results show that fatigue cracks in pearlitic steels initiate at the wire surface starting from small defects, whose size decreases with the drawing process. Fatigue cracks created from defects (initiation phase exhibit a fractographic appearance consisting of ductile microtearing events which can be classified as tearing topography surface or TTS, and exhibit a remarkably lower spacing in the prestressing steel wire than in the hot rolled bar. In addition, some S-N tests were performed in both material forms under a stress range of about half the yield strength. In these tests, the main part of the fatigue life corresponds to the propagation stage in the hot rolled bar whereas such a main part of the life is associated with the initiation stage in the case of the prestressing steel wire.

  1. Crack tip fields and mixed mode fracture behaviour of progressively drawn pearlitic steel

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2015-07-01

    Full Text Available This paper deals with the influence of the cold drawing process on the fracture behaviour of pearlitic steels. To this end, fracture tests under axial loading were performed on steel wires with different drawing degree (from a hot rolled bar to a commercial prestressing steel wire, transversely pre-cracked by fatigue, analyzing in detail the changes in fracture micromechanisms. The deflection angles of the fracture path were measured by longitudinal metallographic sections and the characteristic parameters of the loaddisplacement plot were related to different fracture events. Results allowed a calculation of critical stress intensity factors for different fracture angles and drawing degrees, thus evaluating the strength anisotropy and obtaining a sort of directional toughness.

  2. New mesoscopic constitutive model for deformation of pearlitic steels up to moderate strains

    Science.gov (United States)

    Alkorta, J.; Martínez-Esnaola, J. M.; de Jaeger, P.; Gil Sevillano, J.

    2017-07-01

    A new constitutive model for deformation of pearlitic steels has been developed that describes the mechanical behaviour and microstructural evolution of lamellar multi-colony pearlite. The model, a two-phase continuum model, considers the plastic anisotropy of ferrite derived from its lamellar structure but ignores any anisotropy associated with cementite and does not consider the crystal structure of either constituent. The resulting plastic constitutive equation takes into account a dependence on both the pearlitic spacing (arising from the confined slip of dislocations in the lamellae) and on strengthening from the evolving intra-lamellar dislocation density. A Kocks-Mecking strain hardening/recovery model is used for the lamellar ferrite, whereas perfect-plastic behaviour is assumed for cementite. The model naturally captures the microstructural evolution and the internal micro-stresses developed due to the different mechanical behaviour of both phases. The model is also able to describe the lamellar evolution (orientation and interlamellar spacing) with good accuracy. The role of plastic anisotropy in the ferritic phase has also been studied, and the results show that anisotropy has an important impact on both microstructural evolution and strengthening of heavily drawn wires.

  3. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    International Nuclear Information System (INIS)

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Du, Lin-Xiu; Liu, Yong-Ning

    2014-01-01

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain size for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET

  4. Multiscale description of carbon-supersaturated ferrite in severely drawn pearlitic wires

    International Nuclear Information System (INIS)

    Nematollahi, Gh. Ali; Grabowski, Blazej; Raabe, Dierk; Neugebauer, Jörg

    2016-01-01

    A multiscale simulation approach based on atomistic calculations and a discrete diffusion model is developed and applied to carbon-supersaturated ferrite, as experimentally observed in severely deformed pearlitic steel. We employ the embedded atom method and the nudged elastic band technique to determine the energetic profile of a carbon atom around a screw dislocation in bcc iron. The results clearly indicate a special region in the proximity of the dislocation core where C atoms are strongly bound, but where they can nevertheless diffuse easily due to low barriers. Our analysis suggests that the previously proposed pipe mechanism for the case of a screw dislocation is unlikely. Instead, our atomistic as well as the diffusion model results support the so-called drag mechanism, by which a mobile screw dislocation is able to transport C atoms along its glide plane. Combining the C-dislocation interaction energies with density-functional-theory calculations of the strain dependent C formation energy allows us to investigate the C supersaturation of the ferrite phase under wire drawing conditions. Corresponding results for local and total C concentrations agree well with previous atom probe tomography measurements indicating that a significant contribution to the supersaturation during wire drawing is due to dislocations.

  5. High-temperature magnetisation measurements on the pearlite transformation kinetics in nearly eutectoid steel

    International Nuclear Information System (INIS)

    Dijk, N.H. van; Offerman, S.E.; Klaasse, J.C.P.; Sietsma, J.; Zwaag, S. van der

    2004-01-01

    The isothermal transformation kinetics of the austenite to pearlite transformation in (nearly) eutectoid steel was studied by in situ magnetisation measurements at high temperatures. In eutectoid steel the high temperature austenite (γ-Fe) phase decomposes into pearlite, which consists of a lamellar structure of ferrite (α-Fe) and cementite (Fe 3 C). Below the Curie temperature of ferrite T C =1043 K the ferrite phase fraction can be probed by the magnetisation measurements. For our nearly eutectoid steel not only pearlite but also a small fraction of pro-eutectoid ferrite is formed. The transformation kinetics of the pearlite and the pro-eutectoid ferrite is studied by magnetisation measurements as a function of the isothermal transformation temperature and compared with the results from additional dilatometry measurements. The transformation kinetics was found to vary over four orders of magnitude over the range of transformation temperatures and was compared with model predictions

  6. Fracture behaviour of weld joints made of pearlitic and bainitic steel

    Directory of Open Access Journals (Sweden)

    Libor Válka

    2016-06-01

    Full Text Available The paper is concerned with microstructure evaluations and the hardness and fracture behaviour of welded joints made from cast bainitic Lo8CrNiMo steel and pearlitic rail steel of the type UIC 900A. The materials mentioned are predetermined for frogs of switches. The study is based mainly on microstructural observations and hardness measurements of the base materials, weld, and heat affected zone (HAZ. Dynamic fracture toughness was evaluated based on data from pre-cracked Charpy type specimens. The pearlitic UIC 900A steel and its HAZ had the lowest dynamic fracture toughness values and therefore the highest risk of brittle fracture. At application temperature range, this steel is on the lower shelf of the ductile-to-brittle transition, and the tempering in the HAZ did not affect the toughness substantially. The cast bainitic steel in the weld joint is characterized by higher toughness values compared to the pearlitic one, and a further increase in toughness may be expected in the HAZ. The weld zone itself is characterized by high scatter of toughness data; nevertheless, all the values are above the scatter band characterizing the pearlitic steel.

  7. Sensitivity of Microstructural Factors Influencing the Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure using Multiple Regression Analysis

    International Nuclear Information System (INIS)

    Lee, Seung-Yong; Lee, Sang-In; Hwang, Byoung-chul

    2016-01-01

    In this study, the effect of microstructural factors on the impact toughness of hypoeutectoid steels with ferrite-pearlite structure was quantitatively investigated using multiple regression analysis. Microstructural analysis results showed that the pearlite fraction increased with increasing austenitizing temperature and decreasing transformation temperature which substantially decreased the pearlite interlamellar spacing and cementite thickness depending on carbon content. The impact toughness of hypoeutectoid steels usually increased as interlamellar spacing or cementite thickness decreased, although the impact toughness was largely associated with pearlite fraction. Based on these results, multiple regression analysis was performed to understand the individual effect of pearlite fraction, interlamellar spacing, and cementite thickness on the impact toughness. The regression analysis results revealed that pearlite fraction significantly affected impact toughness at room temperature, while cementite thickness did at low temperature.

  8. Microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Rui [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China); School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Li, Shengli, E-mail: lishengli@sdu.edu.cn [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China); Zhu, Xinde [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Ao, Qing [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China)

    2015-10-15

    In order to further reveal the microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel, the microstructure of this type steel was intensively studied with Scanning Auger Microprobe (SAM), etc. The results show that severe C–Mn segregation exists in the abnormal segregation band region at the center of hot rolled ferrite/pearlite steel, which results from the Mn segregation during solidification process of the continuous casting slab. The C–Mn segregation causes relative displacement of pearlite transformation curve and bainite transformation curve of C curve in the corresponding region, leading to bay-like shaped C curve. The bay-like shaped C curve creates conditions for the transformation from supercooling austenite to bainite at relatively lower cooling rate in this region. The Fe–Mn–C Atomic Segregation Zone (FASZ) caused by C–Mn segregation can powerfully retard the atomic motion, and increase the lattice reconstruction resistance of austenite transformation. These two factors provide thermodynamic and kinetic conditions for the bainite transformation, and result in the emergence of granular bainitic abnormal segregation band at the center of steel plate, which leads to lower plasticity and toughness of this region, and induces the layered fracture. - Highlights: • Scanning Auger Microprobe (SAM) is applied in the fracture analysis. • The abnormal segregation band region appears obvious C–Mn segregation. • The C–Mn segregation leads to bay-like shaped C curve. • The C–Mn segregation leads to Fe–Mn–C Atomic Segregation Zone.

  9. VARIATION OF SUBSTRUCTURES OF PEARLITIC HEAT RESISTANT STEEL AFTER HIGH TEMPERATURE AGING

    Institute of Scientific and Technical Information of China (English)

    R.C.Yang; K.Chen; H.X.Feng; H.Wang

    2004-01-01

    The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12Cr1Mo V pearlitic heat-resistant steel. It is shown that during the high temperature long-term aging, the disordered and jumbled phasetransformed dislocations caused by normalized cooling are recovered and rearranged into cell substructures, and then the dislocation density is reduced gradually. Finally a low density linear dislocation configuration and a stabler dislocation network are formed and ferritic grains grow considerably.

  10. Resistance to fracture of carbon weldable structural steel with ferrite-pearlite and widmanstaetten structure

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Guzovskaya, M.A.

    1977-01-01

    Consideration is given to mechanical properties of St3 steel with varying ferritic-peartilic and widmanstaetten structures typical of a weld seam and adjacent zones. It has been found that mechanical properties determined at static tension are sensitive to structure variation in the limits under study. A considerable difference has been detected during impact tests CT 50 , asub(p)). The highest resistance to breakage is observed for the steel with a fine-grain ferritic-pearlitic structure (T 50 =-10 deg C, asub(p)=4.3 kgxm/cm 2 ). The enlargement of such a structure enhances transition temperature (T 50 =+20 deg C) and reduces resistance to crack development (asub(p)2.4 kgxm/cm 2 ). The appearance of widmanstaetten zones in the fine-grain structure leads also to a higher T 50 , up to +10 deg C, and at a completely widmanstaetten structure T 50 =+25 deg C. An especially unfavorable effect on the resistance of steel to breakage is produced by structure nonuniformity, i.e. accumulation of loop-like pearlitic and ferritic zones

  11. Formable ferrite-degenerated pearlite steel (FDP-55) for automotive use

    International Nuclear Information System (INIS)

    Nagao, N.; Hamamatsu, S.; Kunishige, K.

    1984-01-01

    In order to help the gauge reduction of wheels and chassis parts of automobiles, a formable and weldable hot rolled steel of 550 MPa grade, named FDP-55, has been developed. FDP-55 is an 0.14% C, 0.1% Si, 1.1% Mn and Nb free Alkilled steel obtained by controlled-cooling to a low coiling temperature on a runout table, and it is featured by ferrite-degenerated pearlite microstructure. Results of co-operative works with automotive makers showed that FDP-55 was successful in the application to wheels and chassis parts attaining the large weight reduction. This paper reports the metallurgical features and characteristics of the steel

  12. Operational reliability of high pressure steam lines of pearlitic steels after 150-200 thousand h service

    International Nuclear Information System (INIS)

    Veksler, E.Ya.; Chajkovskij, V.M.; Osasyuk, V.V.

    1980-01-01

    Usage of both calculational and physical methods is recommended to estimate a service operating life of long-term working steam line materials. Application of these methods is demonstrated when studying steam line bends made of 12MKh and 12Kh1MF pearlitic steels. Good coincidence of results for the determination of residual durability of steam lines is obtained using these two methods [ru

  13. Generalization of the existing relations between microstructure and yield stress from ferrite-pearlite to high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Iza-Mendia, A., E-mail: aiza@ceit.es [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 Donostia-San Sebastian, Basque Country (Spain); Gutierrez, I. [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 Donostia-San Sebastian, Basque Country (Spain)

    2013-01-20

    A series of available equations allows the yield and the tensile strength of low carbon ferrite-pearlite microstructures to be expressed as a function of the optical grain size, steel composition and interstitials in solution. Over the years, as the complexity of steel microstructures has increased, some additional terms have been added to account for precipitation and forest dislocation contributions. In theory, this opens the door for an extension of these equations to bainitic microstructures. Nevertheless, there is a series of difficulties that needs to be overcome in order to improve prediction accuracy. In the present work, different microstructures (ferrite-pearlite, bainite, quenched, and quenched and tempered) were produced and tension tested in a C-Mn-Nb steel. Optical microscopy and EBSD (Electron Back Scattered Diffraction) were applied and the results were compared as a function of the tolerance angle. Based on this work, an adaptation to Pickering's equation is proposed, including its extension to other microstructures rather than ferrite-pearlite.

  14. Effects of Controlled Cooling-Induced Ferrite-Pearlite Microstructure on the Cold Forgeability of XC45 Steel

    Science.gov (United States)

    Hu, Chengliang; Chen, Lunqiang; Zhao, Zhen; Gong, Aijun; Shi, Weibing

    2018-05-01

    The combination of hot/warm and cold forging with an intermediate controlled cooling process is a promising approach to saving costs in the manufacture of automobile parts. In this work, the effects of the ferrite-pearlite microstructure, which formed after controlled cooling, on the cold forgeability of a medium-carbon steel were investigated. Different specimens for both normal and notched tensile tests were directly heated to high temperature and then cooled down at different cooling rates, producing different ferrite volume fractions, ranging from 6.69 to 40.53%, in the ferrite-pearlite microstructure. The yield strength, ultimate tensile strength, elongation rate, percentage reduction of area, and fracture strain were measured by tensile testing. The yield strength, indicating deformation resistance, and fracture strain, indicating formability, were used to evaluate the cold forgeability. As the ferrite volume fraction increased, the cold forgeability of the dual-phase ferritic-pearlitic steel improved. A quantitatively relationship between the ferrite volume fraction and the evaluation indexes of cold forgeability for XC45 steel was obtained from the test data. To validate the mathematical relationship, different tensile specimens machined from real hot-forged workpieces were tested. There was good agreement between the predicted and measured values. Our predictions from the relationship for cold forgeability had an absolute error less than 5%, which is acceptable for industrial applications and will help to guide the design of combined forging processes.

  15. Study Of The Wet Multipass Drawing Process Applied On High Strength Thin Steel Wires

    Science.gov (United States)

    Thimont, J.; Felder, E.; Bobadilla, C.; Buessler, P.; Persem, N.; Vaubourg, JP.

    2011-05-01

    Many kinds of high strength thin steel wires are involved in so many applications. Most of the time, these wires are made of a pearlitic steel grade. The current developments mainly concern the wire last drawing operation: after a patenting treatment several reduction passes are performed on a slip-type multipass drawing machine. This paper focuses on modeling this multipass drawing process: a constitutive law based on the wire microstructure evolutions is created, a mechanical study is performed, a set of experiments which enables determining the process friction coefficients is suggested and finally the related analytical model is introduced. This model provides several general results about the process and can be used in order to set the drawing machines.

  16. Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures

    International Nuclear Information System (INIS)

    Guan, Mingfei; Yu, Hao

    2013-01-01

    The roles of microstructure types in fatigue crack growth behaviors in ferrite–pearlite steel and ferrite–bainite steel were investigated. The ferrite–bainite dual-phase microstructure was obtained by intermediate heat treatment, conducted on ferrite–pearlite hot-rolled low carbon steel. This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy (SEM), fatigue crack growth (FCG) rate tests, and fatigue fractography analysis. Microscopy images arrested by in-situ SEM showed that the fatigue crack propagation in F–P steel could become unstable more ealier compared with that in F–B steel. The fatigue cracks in ferrite–pearlite were more tortuous and could propagate more freely than that in ferrite–bainite microstructures. However, frequent crack branching were observed in ferrite–bainite steel and it indicated that the second hard bainite phase effectively retarded the crack propagation. The variation of FCG rate (da/dN) with stress intensity factor range (ΔK) for F–P and F–B steels was discussed within the Paris region. It was shown that FCG rate of F–P steel was higher than that of F–B steel. Moreover, the fatigue fracture surface analysis proved that grain boundaries could also play a role in the resistance of crack propagation.

  17. Effect of Pipe Flattening in API X65 Linepipe Steels Having Bainite vs. Ferrite/Pearlite Microstructures

    Directory of Open Access Journals (Sweden)

    Singon Kang

    2018-05-01

    Full Text Available The influence of microstructure on pipe flattening response was assessed using two different commercially produced U-ing, O-ing, and expansion (UOE pipes from API X65 steels having either a bainitic microstructure (steel B or a ferrite/pearlite microstructure (steel FP. A four-point bending apparatus and distinctive procedure were used to minimize strain localization during flattening. The flattened specimens were sectioned at different positions through the thickness, and tensile tested in both the longitudinal (LD and transverse directions (TD to assess the through-thickness variation in properties. Yield strength (YS distributions in the LD show V-shaped profiles through thickness in both steels, whereas the YS in the TD nearest the outside diameter (OD surface is reduced. These variations in YS are due to the Bauschinger effect associated with the compressive flattening pre-strain. The uniform elongation (UE of steel FP is almost independent of specimen position through the thickness, but for steel B there is a substantial reduction of the UE at both the inside and outside diameter positions and this reduction is greater in the LD. This work confirms that flattened pipe mechanical properties exhibit an important dependence on their microstructure type and it is postulated that the flattening procedure also influences the mechanical properties.

  18. Welding wires for high-tensile steels

    International Nuclear Information System (INIS)

    Laz'ko, V.E.; Starova, L.L.; Koval'chuk, V.G.; Maksimovich, T.L.; Labzina, I.E.; Yadrov, V.M.

    1993-01-01

    Strength of welded joints in arc welding of high-tensile steels of mean and high thickness by welding wires is equal to approximately 1300 MPa in thermohardened state and approximately 600 MPa without heat treatment. Sv-15Kh2NMTsRA-VI (EhK44-VI) -Sv-30Kh2NMTsRA-VI (EkK47-VI) welding wires are suggested for welding of medium-carbon alloyed steels. These wires provide monotonous growth of ultimate strength of weld metal in 1250-1900 MPa range with increase of C content in heat-treated state

  19. RESEARCH OF SYNERGETIC RELIABILITY OF PEARLITE-REDUCED STRUCTURAL STEEL 09G2FB

    Directory of Open Access Journals (Sweden)

    Gustov Yuriy Ivanovich

    2012-10-01

    Full Text Available The primary objective of the research is the synergetic reliability of perlite-reduced structural steel 09G2FB exposed to various thermal and mechanical treatments. In the aftermath of the above exposure, the steel in question has proved to assume a set of strength-related and plastic mechanical properties (σσδ and ψ.

  20. 76 FR 29266 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-05-20

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from China and Mexico of galvanized steel wire, provided for in subheading 7217.20.30... subsidized imports of galvanized steel wire from China and Mexico. Accordingly, effective March 31, 2011, the...

  1. 77 FR 28404 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2012-05-14

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from Mexico of galvanized steel wire, provided for in subheadings 7217.20.30, 7217.20... galvanized steel wire from China and Mexico were sold at LTFV within the meaning of 733(b) of the Act (19 U.S...

  2. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)], E-mail: Ivan.Nikitin@infineon.com; Besel, M. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)

    2008-09-15

    Mechanical surface treatments such as deep rolling are known to affect the near-surface microstructure and induce, e.g. residual stresses and/or increase the surface hardness. It is well known that, e.g. compressive residual stress states usually increase the lifetime under fatigue loading. The stress relaxation behaviour and the stability of the residual stress during fatigue loading depend on the mechanical surface treatment method. In this paper three different surface treatments are used and their effects on the low cycle fatigue behaviour of austenitic stainless steel (AISI 304) and ferritic-pearlitic steel (SAE 1045) are investigated. X-ray diffraction is applied for the non-destructive evaluation of the stress state and the microstructure. It is found that consecutive deep rolling and annealing as well as high temperature deep rolling produce more stable near-surface stress states than conventional deep rolling at room temperature. The plastic strain amplitudes during fatigue loading are measured and it is shown that they correlate well with the induced residual stress and its relaxation, respectively. Furthermore, Coffin-Manson plots are presented which clearly show the correlation between the plastic strain amplitude and the fatigue lifetime.

  3. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    International Nuclear Information System (INIS)

    Akdemir, Ahmet; Kus, Recai; Simsir, Mehmet

    2011-01-01

    Research highlights: → Metal matrix composite (MMC) is an important structural material. → Gray cast irons as a matrix material in MMC have more advantages than other cast irons. → Interface greatly determines the mechanical properties of MMC. → Interface formed by diffusion of carbon atoms. → While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  4. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    Energy Technology Data Exchange (ETDEWEB)

    Akdemir, Ahmet [Department of Mechanical Engineering, Selcuk University, Konya (Turkey); Kus, Recai [Department of Mechanical Education, Selcuk University, Konya (Turkey); Simsir, Mehmet, E-mail: msimsir@cumhuriyet.edu.tr [Department of Metallurgical and Materials Engineering, Cumhuriyet University, Kayseri Yolu 7. Km, 58140 Sivas (Turkey)

    2011-04-25

    Research highlights: {yields} Metal matrix composite (MMC) is an important structural material. {yields} Gray cast irons as a matrix material in MMC have more advantages than other cast irons. {yields} Interface greatly determines the mechanical properties of MMC. {yields} Interface formed by diffusion of carbon atoms. {yields} While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  5. Corrosion fatigue behaviors of steel wires used in coalmine

    International Nuclear Information System (INIS)

    Wang, Songquan; Zhang, Dekun; Chen, Kai; Xu, Linmin; Ge, Shirong

    2014-01-01

    Highlights: • The CF life of steel wire in acid solution is the shortest. • The fatigue source zone showed dimple morphology when coupled with anode potential. • The area of dimple increases with the increase of the applied anode potential. • The strong cathode potential cannot reduce the CF life of the smooth steel wire. • The hydrogen impacted mainly on the plastic deformation of the wire surface. - Abstract: The corrosion fatigue (CF) behaviors of the mining steel wire in different solutions at different applied polarization potentials were investigated in this paper. The surfaces and fracture morphologies of the steel wire at different applied potentials were observed by scanning electron microscope (SEM). The results showed that the CF life of steel wire in acid solution is the shortest. Moreover, the strong anodic polarization potential greatly reduced the CF life of steel wire, while the strong cathode potential did not reduce the CF life. For the smooth steel wire, the hydrogen impacted mainly on the plastic deformation of the wire surface. There was obvious dimple in the fatigue source zone of the wire when coupled with anode potential, and the area of the dimple increased with the increase of the applied anode potential. Conversely, the fatigue source zone of the fracture was relatively smooth at cathode polarization potential, which indicated that the crack propagation followed the mechanism of hydrogen induced cracking

  6. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  7. 78 FR 7452 - Steel Wire Garment Hangers From Vietnam; Determinations

    Science.gov (United States)

    2013-02-01

    ...), that an industry in the United States is materially injured by reason of imports of steel wire garment... Garment Hangers From Vietnam; Determinations On the basis of the record \\1\\ developed in the subject... duty orders on steel wire garment hangers from Vietnam. Background The Commission instituted these...

  8. Effect of smelting method on the austenite grain size and properties of heat-resisting pearlitic steel

    International Nuclear Information System (INIS)

    Balakhovskaya, M.B.; Khusainova, N.A.; Davlyatova, L.N.

    1975-01-01

    Influence of smelting method on austenite grain size and properties of refractory perlite steel were studied. An opportunity was found to increase the steel refractoriness without deteriorating its other properties. The steel 12Kh1MF of electric or common open-hearth smelting was used. The dependence of kinetics of austenite grain growth on the smelting method was studied in the temperature range 950 deg - 1200 deg C with 1 hour exposure. The grain size of austenite in steel is supposedly determined by aluminium nitrides and vanadium carbides. In tests of normalized (kept for 20 minutes at 950-980 deg C) and tempered (kept for 3 hours at 730 deg C) transverse (tangential) pipe cross-section samples the electric steel had higher impact viscosity than the open-hearth metal. At working temperatures (540 deg -580 deg C) the difference in viscosity has its minimum. Viscosity of both steels 12Kh1MF begins to sharply decrease from 20 deg C. However, electric steel has rather high viscosity even at - 40 deg C, while the open-hearth one becomes brittle as early as at - 20 deg C. Long-term strength tests at 580 deg C under stresses 10-14 kG/mm 2 show that the coarse-grain steel is more refractory, i.e. time till fracture of open-hearth steel samples is twice as long as that of electric steel samples

  9. Effect of smelting method on the austenite grain size and properties of heat-resisting pearlitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Balakhovskaya, M B; Khusainova, N A; Davlyatova, L N [Vsesoyuznyj Nauchno-Issledovatel' skij Teplotekhnicheskij Inst., Moscow (USSR)

    1975-12-01

    Influence of smelting method on austenite grain size and properties of refractory perlite steel were studied. An opportunity was found to increase the steel refractoriness without deteriorating its other properties. The steel 12Kh1MF of electric or common open-hearth smelting was used. The dependence of kinetics of austenite grain growth on the smelting method was studied in the temperature range 950 deg - 1200 deg C with 1 hour exposure. The grain size of austenite in steel is supposedly determined by aluminium nitrides and vanadium carbides. In tests of normalized (kept for 20 minutes at 950-980 deg C) and tempered (kept for 3 hours at 730 deg C) transverse (tangential) pipe cross-section samples the electric steel had higher impact viscosity than the open-hearth metal. At working temperatures (540 deg -580 deg C) the difference in viscosity has its minimum. Viscosity of both steels 12Kh1MF begins to sharply decrease from 20 deg C. However, electric steel has rather high viscosity even at /sup -/40 deg C, while the open-hearth one becomes brittle as early as at /sup -/20 deg C. Long-term strength tests at 580 deg C under stresses 10-14 kG/mm/sup 2/ show that the coarse-grain steel is more refractory, i.e. time till fracture of open-hearth steel samples is twice as long as that of electric steel samples.

  10. 76 FR 19382 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-04-07

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-479 and 731-TA-1183-1184 (Preliminary)] Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission. ACTION... the United States is materially retarded, by reason of [[Page 19383

  11. Development of cutting techniques of steel pipe by wire sawing

    International Nuclear Information System (INIS)

    Kamiyama, Yoshinori; Inai, Shinsuke

    2004-01-01

    A cutting method has a high cutting efficiency and enable cutting in safe. A wire saw cutting method is used for dismantling of massive concrete structures such as nuclear power plants with an effective and safe mean. In the case of dismantling of structures with multiple pipes installed at these facilities, an effective method is also demanded. If a wire saw method to remotely cut target objects in a large block in bulk is applicable, it will be expected an effective dismantling work under severe conditions with radioactivity. Although the wire saw method has adaptability for any shapes of cutting target objects and is widely adopted in dismantling of concrete constructs, it has few actual achievements in dismantling of steel structures such as steel pipe bundle. This study aims to verify its cutting characteristics and adaptability as a cutting method by conducting a cutting basic test to develop a diamond wire saw method to efficiently cut constructs with multiple pipes in a bundle. The test proved that a wire saw cutting method apply to dismantle structures with steel pipe bundle. A wire saw for metal cutting is adaptable in dismantling of bundle of thick carbon steel and stainless steel pipes. And also a wire saw for concrete cutting is adaptable in dismantling of pipe bundle structure with a mortar. (author)

  12. 75 FR 4104 - Prestressed Concrete Steel Wire Strand From China

    Science.gov (United States)

    2010-01-26

    ... retarded, by reason of subsidized and less-than-fair-value imports from China of prestressed concrete steel... in prestressed concrete (both pre-tensioned and post- tensioned) applications. The product definition..., producers, or exporters in China of prestressed concrete steel wire strand, and that such products are being...

  13. 77 FR 17418 - Galvanized Steel Wire From the People's Republic of China: Final Affirmative Countervailing Duty...

    Science.gov (United States)

    2012-03-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... exporters of galvanized steel wire (galvanized wire) from the People's Republic of China (the PRC). For... three parties withdrew their requests for a hearing. \\1\\ See Galvanized Steel Wire From the People's...

  14. 7 CFR 1755.370 - RUS specification for seven wire galvanized steel strand.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false RUS specification for seven wire galvanized steel..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.370 RUS specification for seven wire galvanized... Steel Wire Strand, issued May 1978. All seven wire galvanized steel strand purchased after April 1, 1990...

  15. MATHEMATICAL FORMULATION OF PLASTIC CHARACTERISTICS OF WIRE OF STEEL 70 AT HIGH-SPEED WIRE DRAWING

    Directory of Open Access Journals (Sweden)

    Yu. L. Bobarikin

    2011-01-01

    Full Text Available The carried out numerical experiments subject to initial and boundary conditions indicate that mathematical model of elastic-plastic characteristics of steel 90 can be used for numerical calculations of wire drawing routes for this grade of steel.

  16. APPLICATION OF THE X-RAY STRUCTURE ANALYSIS FOR IMPROVEMENT OF TECHNOLOGICAL PROCES- SES OF WIRE PRODUCTION AT BMZ

    Directory of Open Access Journals (Sweden)

    D. V. Kuznetsov

    2012-01-01

    Full Text Available The X-ray diffraction methods of qualitative and quantative analysis of phase composition of the brass coating, scale on the surface of brass wire, rod, patented wire, methods of determining the characteristics of the microstrains the lattice ferritic matrix pearlitic high-carbon steel, are explored.

  17. 78 FR 75545 - Prestressed Concrete Steel Rail Tie Wire From the People's Republic of China: Preliminary...

    Science.gov (United States)

    2013-12-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-990] Prestressed Concrete Steel... (``Department'') preliminarily determines that prestressed concrete steel rail tie wire (``PC tie wire'') from... prestressed tendons in concrete railroad ties (``PC tie wire''). High carbon steel is defined as steel that...

  18. Resistance microwelding of 316L stainless steel wire to block

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Khan, M.I.; Bay, Niels

    2011-01-01

    The excellent corrosion resistance of low carbon vacuum melted 316 stainless steel coupled with its non-magnetic properties makes it ideal for biomedical applications. The typical joint geometry for microcomponents, such as medical implants, includes joining of fine wire to a larger block. However......, this type of joint has received little attention in the current literature. The present study was conducted to examine the microstructure and mechanical properties of low carbon vacuum melted 316 stainless steel wire welded to a larger block. Results revealed solid state bonding occurring at low currents......, while fusion bonding occurred at higher currents. This was due to the highly asymmetrical heat generation resulting in almost complete melting of the wire before the initiation of interfacial melting. This is a distinctly different bonding mechanism compared to previous studies on crossed wire joints....

  19. 75 FR 32747 - Prestressed Concrete Steel Wire Strand from Mexico: Rescission of Antidumping Duty Administrative...

    Science.gov (United States)

    2010-06-09

    ... DEPARTMENT OF COMMERCE INTERNATIONAL TRADE ADMINISTRATION [A-201-831] Prestressed Concrete Steel Wire Strand from Mexico: Rescission of Antidumping Duty Administrative Review AGENCY: Import... request an administrative review of the antidumping duty order on prestressed concrete steel wire strand...

  20. Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    Directory of Open Access Journals (Sweden)

    Koiprasert, H.

    2005-01-01

    Full Text Available Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings.

  1. 76 FR 55031 - Galvanized Steel Wire From the People's Republic of China: Preliminary Affirmative Countervailing...

    Science.gov (United States)

    2011-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... galvanized steel wire (galvanized wire) from the People's Republic of China (PRC). For information on the..., filed in proper form, concerning imports of galvanized wire from the PRC.\\1\\ The Department initiated a...

  2. 76 FR 73589 - Galvanized Steel Wire From the People's Republic of China: Amended Preliminary Determination of...

    Science.gov (United States)

    2011-11-29

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975] Galvanized Steel Wire From... galvanized steel wire from the People's Republic of China (``PRC'').\\1\\ We are amending our Preliminary... Fair Value and Postponement of Final Determination: Galvanized Steel Wire from the People's Republic of...

  3. 76 FR 33242 - Galvanized Steel Wire From the People's Republic of China: Postponement of Preliminary...

    Science.gov (United States)

    2011-06-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-976] Galvanized Steel Wire From... the countervailing duty investigation of galvanized steel wire from the People's Republic of China. See Galvanized Steel Wire From the People's Republic of China: Initiation of Countervailing Duty...

  4. Role of steel wire ropes in mine safety

    CSIR Research Space (South Africa)

    Peake, A

    2008-11-01

    Full Text Available Today there are an estimated 2 300 steel wire ropes installed in roughly 200 underground mines in South Africa. These mines employ more than 280 000 workers underground and hoist several millions of tonnes of rock to the surface every month...

  5. Static friction of stainless steel wire rope–rubber contacts.

    NARCIS (Netherlands)

    Loeve, A.J.; Krijger, T.; Mugge, W.; Breedveld, P.; Dodou, D.; Dankelman, J.

    2014-01-01

    Little is known about static friction of stainless-steel wire ropes ('cables') in contact with soft rubbers, an interface of potential importance for rigidifiable medical instruments. Although friction theories imply that the size and profile of the cables affect static friction, there are no

  6. 77 FR 72884 - Steel Wire Garment Hangers From Taiwan

    Science.gov (United States)

    2012-12-06

    ... From Taiwan Determination On the basis of the record \\1\\ developed in the subject investigation, the... Tariff Act of 1930 (19 U.S.C. 1673d(b)) (the Act), that an industry in the United States is materially injured by reason of imports of steel wire garment hangers from Taiwan, provided for in subheading 7326.20...

  7. 76 FR 21914 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-479 and 731-TA-1183-1184 (Preliminary)] Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date...

  8. 75 FR 8113 - Prestressed Concrete Steel Wire Strand From China

    Science.gov (United States)

    2010-02-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-464 and 731-TA-1160 (Final)] Prestressed Concrete Steel Wire Strand From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject investigations. DATES: Effective Date: February 16, 2010. FOR FURTHER INFORMATION...

  9. Development of austenitic stainless steel PC wire and strand

    International Nuclear Information System (INIS)

    Tsubono, Hideyoshi; Kawabata, Yoshinori; Yamaoka, Yukio

    1986-01-01

    The effects of aging and stress-aging (called hot stretching) at the temperatures from 120 deg C to 700 deg C on the mechanical properties, relaxation values, Charpy impact values and SCC behavior of hard drawn SUS 304, SUS 316 stainless steel wires have been studied. The main results obtained are as follows: (1) Yield and tensile strength of the wires increased by aging at 230 deg C and 530 deg C as well as by hot stretching. The strengthening after 230 deg C treatment may be due to the strain aging by C and the increase of strength after 530 deg C treatment results from precipitation of Cr 23 C 6 on dislocations. (2) Stress relaxation values up to 250 deg C are low due to precipitation of Cr 23 C 6 . Almost no difference can be observed between aging and hot stretching. (3) Impact value at -196 deg C of SUS 304 stainless steel wire which was measured with 1 mm V-notched specimen was found to be about the same as that of 9 % Ni steel. (4) It is considered that in comparison with high carbon PC wire SUS 304 stainless steel showing high tensile strength is insensitive to SCC in NH 4 SCN and NH 4 NO 3 solutions. (5) In practice, tension member of the austenitic stainless steel wire and strand which were produced by aging at 500 deg C may be useful in special industrial field, for example, (a) SUS 304, in cryogenic field use (b) SUS 316, in intensive magnetic field use as a nonmagnetic material. (author)

  10. 76 FR 68422 - Galvanized Steel Wire From Mexico: Preliminary Determination of Sales at Less Than Fair Value and...

    Science.gov (United States)

    2011-11-04

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-840] Galvanized Steel Wire From... determines that galvanized steel wire (galvanized wire) from Mexico is being, or is likely to be, sold in the... investigation on galvanized wire from Mexico. See Galvanized Steel Wire from the People's Republic of China and...

  11. Locating the displacement of the steel wire implantation with the stereotactic mammography

    International Nuclear Information System (INIS)

    Ma Jie; Xu Jianmin; Sun Guomin; Sun Guoping; Zang Da; Zhou Dongxian; Mai Peicheng

    2007-01-01

    Objective: To analyze the manifestation, reason, the processing method of the steel wire implantation with the stereotactic mammography to improve the accuracy of the preoperative positioning. Methods: Seventy-nine cases which got the stereotactic steel wire implantation. In 96 lesions, 13 had steel wire displacement. Among them, 5 cases got steel wire displacement during the stereotactic process, 5 cases got steel wire displacement after the stereotactic process, 2 cases got steel wire displacement during the operation, one case did not show the calcification on the postoperative radiography. Results: The steel wire displacement occurred in 5 cases during the stereotactic process came from the patients and doctors respectively and the repositioning was needed. The steel wire displacement after the stereoscopic positioning was attributed to the overdose injection of local anesthesia, which led to the mismatch between the depth of Z axis of the mammary gland and the actual depth the computer given, the incorrect method for needle placement, and, neglecting whether the steel wire have got the lesion anchored when pulling out the needle set of steel wire hood, besides, these three kinds of instances above were all exaggerated by the accordion effect. For the displacement within 2 cm, the lesion can be excised toward the pathological change direction according to the position that steel wire prompted and re-place the second steel wire, putting the J-shaped steel wire into the needle hood and taking it out of the body. After repositioning, 2 cases had the steel wire prolapse during operation, which resulted from the over-lifting of the steel wire. After placing the steel wire, the radiologist should give an accurate description on the depth and direction to the surgeon and the notch should be taken for incision from the steel wire head end which is proximate to skin. The postoperative specimen from one case had no calcification, which might be related to the condition

  12. Nano-crystallization of steel wire and its wear behavior

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China) and School of Materials Science and Engineering, Northwestern Polytecnical University, Xian 710072 (China)], E-mail: xuyunhua@vip.163.com; Peng, J.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China); Fang, L. [State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xian 710049 (China)

    2008-06-15

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons.

  13. Nano-crystallization of steel wire and its wear behavior

    International Nuclear Information System (INIS)

    Xu, Y.H.; Peng, J.H.; Fang, L.

    2008-01-01

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons

  14. Wire-Arc-Sprayed Aluminum Protects Steel Against Corrosion

    Science.gov (United States)

    Zimmerman, Frank R.; Poorman, Richard; Sanders, Heather L.; Mckechnie, Timothy N.; Bonds, James W., Jr.; Daniel, Ronald L., Jr.

    1995-01-01

    Aluminum coatings wire-arc sprayed onto steel substrates found effective in protecting substrates against corrosion. Coatings also satisfy stringent requirements for adhesion and flexibility, both at room temperature and at temperatures as low as liquid hydrogen. Developed as alternatives to corrosion-inhibiting primers and paints required by law to be phased out because they contain and emit such toxic substances as chromium and volatile organic compounds.

  15. Correlation between grade of pearlite spheroidization and laser induced spectra

    Science.gov (United States)

    Yao, Shunchun; Dong, Meirong; Lu, Jidong; Li, Jun; Dong, Xuan

    2013-12-01

    Laser induced breakdown spectroscopy (LIBS) which is used traditionally as a spectrochemical analytical technique was employed to analyze the grade of pearlite spheroidization. Three 12Cr1MoV steel specimens with different grades of pearlite spheroidization were ablated to produce plasma by pulse laser at 266 nm. In order to determine the optimal temporal condition and plasma parameters for correlating the grade of pearlite spheroidization and laser induced spectra, a set of spectra at different delays were analyzed by the principal component analysis method. Then, the relationship between plasma temperature, intensity ratios of ionic to atomic lines and grade of pearlite spheroidization was studied. The analysis results show that the laser induced spectra of different grades of pearlite spheroidization can be readily identifiable by principal component analysis in the range of 271.941-289.672 nm with 1000 ns delay time. It is also found that a good agreement exists between the Fe ionic to atomic line ratios and the tensile strength, whereas there is no obvious difference in the plasma temperature. Therefore, LIBS may be applied not only as a spectrochemical analytical technique but also as a new way to estimate the grade of pearlite spheroidization.

  16. Correlation between grade of pearlite spheroidization and laser induced spectra

    International Nuclear Information System (INIS)

    Yao, Shunchun; Dong, Meirong; Lu, Jidong; Li, Jun; Dong, Xuan

    2013-01-01

    Laser induced breakdown spectroscopy (LIBS) which is used traditionally as a spectrochemical analytical technique was employed to analyze the grade of pearlite spheroidization. Three 12Cr1MoV steel specimens with different grades of pearlite spheroidization were ablated to produce plasma by pulse laser at 266 nm. In order to determine the optimal temporal condition and plasma parameters for correlating the grade of pearlite spheroidization and laser induced spectra, a set of spectra at different delays were analyzed by the principal component analysis method. Then, the relationship between plasma temperature, intensity ratios of ionic to atomic lines and grade of pearlite spheroidization was studied. The analysis results show that the laser induced spectra of different grades of pearlite spheroidization can be readily identifiable by principal component analysis in the range of 271.941–289.672 nm with 1000 ns delay time. It is also found that a good agreement exists between the Fe ionic to atomic line ratios and the tensile strength, whereas there is no obvious difference in the plasma temperature. Therefore, LIBS may be applied not only as a spectrochemical analytical technique but also as a new way to estimate the grade of pearlite spheroidization. (paper)

  17. 78 FR 29325 - Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and...

    Science.gov (United States)

    2013-05-20

    ...] Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and Thailand: Initiation... of prestressed concrete steel rail tie wire (``PC tie wire'') from Mexico, the PRC, and Thailand... Prestressed Concrete Steel Rail Tie Wire from the PRC, Mexico, and Thailand, filed on April 23, 2013 (the...

  18. 76 FR 68407 - Galvanized Steel Wire From the People's Republic of China: Preliminary Determination of Sales at...

    Science.gov (United States)

    2011-11-04

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975] Galvanized Steel Wire From... galvanized steel wire from the People's Republic of China (``PRC'') is being, or is likely to be, sold in the... concerning imports of galvanized steel wire from the PRC, filed in proper form by Davis Wire Corporation...

  19. The anchors of steel wire ropes, testing methods and their results

    Directory of Open Access Journals (Sweden)

    J. Krešák

    2012-10-01

    Full Text Available The present paper introduces an application of the acoustic and thermographic method in the defectoscopic testing of immobile steel wire ropes at the most critical point, the anchor. First measurements and their results by these new defectoscopic methods are shown. In defectoscopic tests at the anchor, the widely used magnetic method gives unreliable results, and therefore presents a problem for steel wire defectoscopy. Application of the two new methods in the steel wire defectoscopy at the anchor point will enable increased safety measures at the anchor of steel wire ropes in bridge, roof, tower and aerial cable lift constructions.

  20. Detection of fatigue fracture in pearlitic flake graphite cast iron with the help of scanning and transmission electron microscopy

    International Nuclear Information System (INIS)

    Dunger, B.; Hunger, J.

    1976-01-01

    To prove the existence of the characteristic features of fatigue fracture in a pearlitic flake graphite cast iron, its fracture surface topography revealed by scanning electron microscopy has been compared with that of a pearlitic steel, the fractures having been caused by static tensile and by cyclic bending tests. The characteristic features of fatigue fracture were visible in the pearlitic matrix of the steel and of the flake graphite cast iron as well. These features differ characteristically from the lamellar structure of the pearlite, particularly after etching the surface area of the fractures. The graphite structures as viewed on the electron scanning and the electron transmission microscope are described. (orig.) [de

  1. 76 FR 72721 - Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty...

    Science.gov (United States)

    2011-11-25

    ...)] Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty and... galvanized steel wire, provided for in subheading 7217.20 of the Harmonized Tariff Schedule of the United... merchandise as galvanized steel wire which is a cold- drawn carbon quality steel product in coils, of solid...

  2. Torque resistance of different stainless steel wires commonly used for fixed retainers in orthodontics

    DEFF Research Database (Denmark)

    Arnold, Dario; Dalstra, Michel; Verna, Carlalberta

    2016-01-01

    Objective: Movements of teeth splinted by fixed retention wires after orthodontic treatment have been observed. The aetiological factors for these movements are unknown. The aim of this in vitro study was to compare the resistance to torque of different stainless steel wires commonly used for fixed...... retainers in orthodontics. Materials and Methods: Torquing moments acting on a retainer wire were measured in a mechanical force testing system by applying buccal crown torque to an upper lateral incisor in both a 3-teeth and in a 2-teeth setup. Seven stainless steel wires with different shape, type (plain...... or a braided 0.016 × 0.022-inch stainless steel wire. A tooth attached by a retainer wire to only one neighbouring tooth is less resistant to torque than a tooth connected to two neighbouring teeth. Annealing a retainer wire with a flame reduces the stiffness of the wire markedly and can lead to a non...

  3. Gaseous hydrogen embrittlement of an API X80 ferrito-pearlitic steel; Fragilisation par l'hydrogene gazeux d'un acier ferrito-perlitique de grade API X80

    Energy Technology Data Exchange (ETDEWEB)

    Moro, I.

    2009-11-15

    This work deals with hydrogen embrittlement, at ambient temperature and under a high pressure gaseous way, of an API X80 high elasticity limit steel used for pipelines construction, and with the understanding of the associated physical mechanisms of the embrittlement. At first has been described a bibliographic study of the adsorption, absorption, diffusion, transport and trapping of hydrogen in the steels. Then has been carried out an experimental and numerical study concerning the implantation in the finite element code CASTEM3M of a hydrogen diffusion model coupled to mechanical fields. The hydrogen influence on the mechanical characteristics of the X80 steel, of a ferrito-pearlitic microstructure has been studied with tensile tests under 300 bar of hydrogen and at ambient temperature. The sensitivity of the X80 steel to hydrogen embrittlement has been analyzed by tensile tests at different deformation velocities and under different hydrogen pressures on axisymmetrical notched test specimens. These studies show that the effect of the hydrogen embrittlement vary effectively with the experimental conditions. Moreover, correlated with the results of the tests simulations, it has been shown too that in these experimental conditions and for that steel, the hydrogen embrittlement is induced by three different hydrogen populations: the hydrogen trapped at the ferrite/perlite interfaces, the hydrogen adsorbed on surface and the reticular hydrogen trapped in the material volume. At last, the tensile and rupture tests of specimens, during which atmosphere changes have been carried out, have shown a strong reversibility of the hydrogen embrittlement, associated with its initiation as soon as hydrogen is introduced in the atmosphere. At last, three hydrogen mechanisms, depending of the different hydrogen populations are presented and discussed. (O.M.)

  4. 77 FR 2958 - Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of Opportunity To...

    Science.gov (United States)

    2012-01-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-549-820] Prestressed Concrete Steel Wire Strand From Thailand: Correction to Notice of Opportunity To Request Administrative Review AGENCY... prestressed concrete steel wire strand (``PC Strand'') from Thailand. See Antidumping or Countervailing Duty...

  5. 78 FR 25303 - Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand

    Science.gov (United States)

    2013-04-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-1207-1209 (Preliminary)] Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand Institution of antidumping duty..., by reason of imports from prestressed concrete steel rail tie wire from China, Mexico, and Thailand...

  6. 78 FR 37236 - Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand

    Science.gov (United States)

    2013-06-20

    ... Concrete Steel Rail Tie Wire From China, Mexico, and Thailand Determinations On the basis of the record \\1... imports from China, Mexico, and Thailand of prestressed concrete steel rail tie wire, provided for in... China, Mexico, and Thailand. Accordingly, effective April 23, 2013, the Commission instituted...

  7. 77 FR 9701 - Steel Wire Garment Hangers From Taiwan And Vietnam

    Science.gov (United States)

    2012-02-17

    ...)] Steel Wire Garment Hangers From Taiwan And Vietnam Determinations On the basis of the record \\1...)) (the Act), that there is a reasonable indication that an industry in the United States is materially injured by reason of imports from Taiwan and Vietnam of steel wire garment hangers, provided for in...

  8. 75 FR 36678 - Prestressed Concrete Steel Wire Strand From China; Determinations

    Science.gov (United States)

    2010-06-28

    ... prestressed concrete steel wire strand (PC strand), provided for in subheading 7312.10.30 of the Harmonized... Publication 4162 (June 2010), entitled Prestressed Concrete Steel Wire Strand from China: Investigation Nos... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-464 and 731-TA-1160 (Final)] Prestressed...

  9. 78 FR 57619 - Prestressed Concrete Steel Rail Tie Wire From Mexico, Thailand, and the People's Republic of...

    Science.gov (United States)

    2013-09-19

    ...] Prestressed Concrete Steel Rail Tie Wire From Mexico, Thailand, and the People's Republic of China... prestressed concrete steel rail tie wire from Mexico, Thailand, and the People's Republic of China. See Prestressed Concrete Steel Rail Tie Wire From Mexico, the People's Republic of China, and Thailand: Initiation...

  10. STRENGTHENING OF A REINFORCED CONCRETE BRIDGE WITH PRESTRESSED STEEL WIRE ROPES

    Directory of Open Access Journals (Sweden)

    Kexin Zhang

    2017-10-01

    Full Text Available This paper describes prestressed steel wire ropes as a way to strengthen a 20-year-old RC T-beam bridge. High strength, low relaxation steel wire ropes with minor radius, high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel wire ropes—including wire rope measuring, extruding anchor heads making, anchorage installing, tensioning steel wire ropes and pouring mortar was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on the concrete structure theory. The flexural strength of RC T-beam bridges strengthened with prestressed steel wire ropes was governed by the failure of concrete crushing. To investigate effectiveness of the strengthening method, fielding-load tests were carried out before and after strengthening. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved. The crack width measurement also indicates that this technique could increase the durability of the bridge. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

  11. An ad-hoc fretting wear tribotester design for thin steel wires

    Directory of Open Access Journals (Sweden)

    Llavori Iñigo

    2018-01-01

    Full Text Available Steel wire ropes experience fretting wear damage when the rope runs over a sheave promoting an oscillatory motion between the wires. Consequently, wear scars appear between the contacting wires leading to an increase of the stress field and the following rupture of the wires due to fatigue. That is why the understanding and prediction of the fretting wear phenomena of thin wires is fundamental in order to improve the performance of steel wire ropes. The present research deals with the design of an ad-hoc fretting wear test machine for thin wires. The test apparatus is designed for testing thin wires with a maximum diameter of 1.0 mm, at slip amplitudes ranging from 5 to 300 μm, crossing angle between 0-90°, and contacting force ranging from 0,5 to 5 N. The working principle of displacement amplitude and contacting force as well as the crossing angle between the wires are described. Preliminary studies for understanding the fretting wear characteristics are presented, analysing 0.45 mm diameter cold-drawn eutectoid carbon steel (0.8% C wires (tensile strength higher than 3000 MPa.

  12. Corrosion resistance of premodeled wires made of stainless steel used for heart electrotherapy leaders

    International Nuclear Information System (INIS)

    Przondziono, J; Szatka, W; Walke, W; Młynarski, R

    2012-01-01

    The purpose of the study is to evaluate resistance to electrochemical corrosion of wire made of X10CrNi18-8 stainless steel designed for use in cardiology treatment. The influence of strain formed in the premodeling process and methods of wire surface preparation to corrosive resistance in artificial plasma solution were analysed. Wire corrosion tests were carried out in the solution of artificial plasma. Resistance to electrochemical corrosion was evaluated on the ground of recorded curves of anodic polarization by means of potentiodynamic method. Potentiodynamic tests carried out enabled to determine how the resistance to pitting corrosion of wire changes, depending on strain formed in the premodeling process as well as on the method of wire surface preparation. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied. Deterioration of corrosive properties of wire along with the increase in the formed strain hardening was observed.

  13. Evaluation of mechanical properties of steel wire ropes by statistical methods

    Directory of Open Access Journals (Sweden)

    Boroška Ján

    1999-12-01

    Full Text Available The contribution deals with the evaluation of mechanical properties of steel wire ropes using statistical methods from the viewpoint of the quality of single wires as well as the internal construction of the wire ropes. The evaluation is based on the loading capacity calculated from the strength, number of folds and torsions. For the better ilustration, a box plot has been constructed.

  14. 76 FR 13665 - Arcelor Mittal, Formerly Known as Mittal Steel Walker Wire, a Subsidiary of Arcelor Mittal...

    Science.gov (United States)

    2011-03-14

    ... Known as Mittal Steel Walker Wire, a Subsidiary of Arcelor Mittal--Montreal, Including On-Site Leased... Steel Walker Wire, a subsidiary of Arcelor Mittal-- Montreal, including on-site leased workers from... Walker Wire, Inc., Ferndale, Michigan, separated from employment on or after July 23, 2006 through August...

  15. 78 FR 75544 - Prestressed Concrete Steel Rail Tie Wire From Mexico: Preliminary Determination of Sales at Less...

    Science.gov (United States)

    2013-12-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-843] Prestressed Concrete Steel...'') preliminarily determines that prestressed concrete steel rail tie wire (``PC tie wire'') from Mexico is being... element levels; suitable for use as prestressed tendons in concrete railroad ties (``PC tie wire''). High...

  16. 77 FR 17430 - Galvanized Steel Wire From the People's Republic of China: Final Determination of Sales at Less...

    Science.gov (United States)

    2012-03-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975] Galvanized Steel Wire From... Determination of sales at less than fair value (``LTFV'') in the antidumping investigation of galvanized steel... galvanized steel wire from the PRC is being, or is likely to be, sold in the United States at LTFV, as...

  17. Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?

    Science.gov (United States)

    Aranda, M. M.; Rementeria, R.; Capdevila, C.; Hackenberg, R. E.

    2016-02-01

    It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C 0 lies between the extrapolated Ae3 ( γ/ α) and Acm ( γ/ θ) phase boundaries (the "Hultgren extrapolation"). This "mutual supersaturation" criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt's solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside.

  18. 7 CFR 1755.702 - Copper coated steel reinforced (CCSR) aerial service wire.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Copper coated steel reinforced (CCSR) aerial service wire. 1755.702 Section 1755.702 Agriculture Regulations of the Department of Agriculture (Continued..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.702 Copper coated steel reinforced (CCSR) aerial...

  19. Effect of cumulative strain on texture characteristics during wire drawing of eutectoid steels

    International Nuclear Information System (INIS)

    Yang, F.; Ma, C.; Jiang, J.Q.; Feng, H.P.; Zhai, S.Y.

    2008-01-01

    The texture characteristics associated with plastic deformation of Fe-C steels near-eutectoid composition during a continuous cold drawing process were thoroughly investigated by orientation distribution function analysis based on X-ray diffraction. The effect of cumulative drawing strains on the fiber texture in drawn hypereutectoid and hypoeutectoid steel wires was discussed

  20. Torque resistance of different stainless steel wires commonly used for fixed retainers in orthodontics.

    Science.gov (United States)

    Arnold, Dario T; Dalstra, Michel; Verna, Carlalberta

    2016-06-01

    Movements of teeth splinted by fixed retention wires after orthodontic treatment have been observed. The aetiological factors for these movements are unknown. The aim of this in vitro study was to compare the resistance to torque of different stainless steel wires commonly used for fixed retainers in orthodontics. Torquing moments acting on a retainer wire were measured in a mechanical force testing system by applying buccal crown torque to an upper lateral incisor in both a 3-teeth and in a 2-teeth setup. Seven stainless steel wires with different shape, type (plain, braided, coaxial, or chain) and dimensions were selected for this study. For a torquing angle of 16.2° in the 3-teeth setup torsion moments can vary between 390 cNmm and 3299 cNmm depending on the retainer wire. For the 2-teeth setup the torsion moments are much smaller. Exposure to the flame of a butane-gas torch for 10 seconds to anneal the wire reduces the stiffness of the retainer wire. Clinicians must select wires for fixed retainers very carefully since the difference in resistance to torque is large. A high level of torque control can be achieved with a plain 0.016 × 0.016-inch or a braided 0.016 × 0.022-inch stainless steel wire. A tooth attached by a retainer wire to only one neighbouring tooth is less resistant to torque than a tooth connected to two neighbouring teeth. Annealing a retainer wire with a flame reduces the stiffness of the wire markedly and can lead to a non-uniform and non-reproducible effect.

  1. Mechanical evaluation of quad-helix appliance made of low-nickel stainless steel wire.

    Science.gov (United States)

    dos Santos, Rogério Lacerda; Pithon, Matheus Melo

    2013-01-01

    The objective of this study was to test the hypothesis that there is no difference between stainless steel and low-nickel stainless steel wires as regards mechanical behavior. Force, resilience, and elastic modulus produced by Quad-helix appliances made of 0.032-inch and 0.036-inch wires were evaluated. Sixty Quad-helix appliances were made, thirty for each type of alloy, being fifteen for each wire thickness, 0.032-in and 0.036-in. All the archwires were submitted to mechanical compression test using an EMIC DL-10000 machine simulating activations of 4, 6, 9, and 12 mm. Analysis of variance (ANOVA) with multiple comparisons and Tukey's test were used (p nickel stainless steel alloy had force, resilience, and elastic modulus similar to those made of stainless steel alloy.

  2. On effect of some thermodeformation parameters of welding cycle on tendency of pearlitic heat-resisting steels to fracture in reheating

    International Nuclear Information System (INIS)

    Prokhorov, N.N.; Bardokin, E.V.

    1979-01-01

    Studied is the inclination of the 12Kh1MF, 15Kh3M1F and N18K9M5T steels subject to thermodeformation cycle imitating a welding one, to fracture in reheating. A hot-rolled metal then subject to the same thermal treatment was used. The imitation of thermodeformation cycle of the welding permitted to vary maximum heating temperatures, the period during which the metal is kept at temperatures higher than 1100 deg C, and the cooling rate of ajacent zone metal. It is shown that the curve of the dependence of deformation ability and the tendency to fracture at the reheating of adjacent zone metal on the rate of its cooling at welding is U-shaped. Deformation ability has its maximum value at the cooling rate of 30 deg c/s in the range 1300 to 1000 deg C

  3. Material and biofilm load of K wires in toe surgery: titanium versus stainless steel.

    Science.gov (United States)

    Clauss, Martin; Graf, Susanne; Gersbach, Silke; Hintermann, Beat; Ilchmann, Thomas; Knupp, Markus

    2013-07-01

    Recurrence rates for toe deformity correction are high and primarily are attributable to scar contractures. These contractures may result from subclinical infection. We hypothesized that (1) recurrence of toe deformities and residual pain are related to low-grade infections from biofilm formation on percutaneous K wires, (2) biofilm formation is lower on titanium (Ti) K wires compared with stainless steel (SS) K wires, and (3) clinical outcome is superior with the use of Ti K wires compared with SS K wires. In this prospective nonrandomized, comparative study, we investigated 135 lesser toe deformities (61 patients; 49 women; mean ± SD age, 60 ± 15 years) temporarily fixed with K wires between August 2010 and March 2011 (81 SS, 54 Ti). K wires were removed after 6 weeks. The presence of biofilm-related infections was analyzed by sonication. High bacterial loads (> 500 colony-forming units [CFU]/mL) were detected on all six toes requiring revision before 6 months. Increased bacterial load was associated with pain and swelling but not recurrence of the deformity. More SS K wires had greater than 100 CFU/mL bacteria than Ti K wires. For K wires with a bacterial count greater than 100 CFU/mL, toes with Ti K wires had a lower recurrence rate, less pain, and less swelling than toes with SS K wires. Ti K wires showed superior clinical outcomes to SS K wires. This appears to be attributable to reduced infection rates. Although additional study is needed, we currently recommend the use of Ti K wires for the transfixation of toe deformities. Level II, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  4. The influence of drawing speed on surface topography of high carbon steel wires

    Directory of Open Access Journals (Sweden)

    M. Suliga

    2017-01-01

    Full Text Available In this work the influence of the drawing speed on surface topography of high carbon steel wires has been assessed. The drawing process of f 5,5 mm wire rod to the final wire of f 1,7 mm was conducted in 12 passes by means of a modern Koch multi-die drawing machine. The drawing speeds in the last passes were: 5, 10, 15, 20 and 25 m/s. For final wires f 1,7 mm the three-dimensional analysis of the wire surface topography investigation was determined. It has been proved that the wire topography in the drawing process is characterized by a random anisotropy and the amount of directing the geometrical structure of the surface depends on the drawing speed.

  5. A Steel Wire Stress Measuring Sensor Based on the Static Magnetization by Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Dongge Deng

    2016-10-01

    Full Text Available A new stress measuring sensor is proposed to evaluate the axial stress in steel wires. Without using excitation and induction coils, the sensor mainly consists of a static magnetization unit made of permanent magnets and a magnetic field measurement unit containing Hall element arrays. Firstly, the principle is illustrated in detail. Under the excitation of the magnetization unit, a spatially varying magnetized region in the steel wire is utilized as the measurement region. Radial and axial magnetic flux densities at different lift-offs in this region are measured by the measurement unit to calculate the differential permeability curve and magnetization curve. Feature parameters extracted from the curves are used to evaluate the axial stress. Secondly, the special stress sensor for Φ5 and Φ7 steel wires is developed accordingly. At last, the performance of the sensor is tested experimentally. Experimental results show that the sensor can measure the magnetization curve accurately with the error in the range of ±6%. Furthermore, the obtained differential permeability at working points 1200 A/m and 10000 A/m change almost linearly with the stress in steel wires, the goodness of linear fits are all higher than 0.987. Thus, the proposed steel wire stress measuring sensor is feasible.

  6. Nanostructure and mechanical properties of heavily cold-drawn steel wires

    International Nuclear Information System (INIS)

    Yang, Y.S.; Bae, J.G.; Park, C.G.

    2009-01-01

    The effects of microstructure on the mechanical properties of the high-carbon steel wires were investigated. The wires were fabricated with carbon content of 0.82 and 1.02 wt.% and drawing strain from 4.12 to 4.32. The bending fatigue resistance and torsion ductility were measured by a Hunter fatigue tester and a torsion tester specially designed for fine wires. As the carbon content and drawing strain increased, the fatigue resistance and the torsional ductility of the steel wires decreased, and the tensile strength increased. To elucidate the causes of these behaviors, the microstructure in terms of lamellar spacing (λ P ), cementite thickness (t C ) and morphology of cementite was observed using transmission electron microscopy (TEM) and 3-dimensional atom probe (3-DAP).

  7. Comparing the cyclic behavior of concrete cylinders confined by shape memory alloy wire or steel jackets

    International Nuclear Information System (INIS)

    Park, Joonam; Choi, Eunsoo; Kim, Hong-Taek; Park, Kyoungsoo

    2011-01-01

    Shape memory alloy (SMA) wire jackets for concrete are distinct from conventional jackets of steel or fiber reinforced polymer (FRP) since they provide active confinement which can be easily achieved due to the shape memory effect of SMAs. This study uses NiTiNb SMA wires of 1.0 mm diameter to confine concrete cylinders with the dimensions of 300 mm × 150 mm (L × D). The NiTiNb SMAs have a relatively wider temperature hysteresis than NiTi SMAs; thus, they are more suitable for the severe temperature-variation environments to which civil structures are exposed. Steel jackets of passive confinement are also prepared in order to compare the cyclic behavior of actively and passively confined concrete cylinders. For this purpose, monotonic and cyclic compressive loading tests are conducted to obtain axial and circumferential strain. Both strains are used to estimate the volumetric strains of concrete cylinders. Plastic strains from cyclic behavior are also estimated. For the cylinders jacketed by NiTiNb SMA wires, the monotonic axial behavior differs from the envelope of cyclic behavior. The plastic strains of the actively confined concrete show a similar trend to those of passive confinement. This study proposed plastic strain models for concrete confined by SMA wire or steel jackets. For the volumetric strain, the active jackets of NiTiNb SMA wires provide more energy dissipation than the passive jacket of steel

  8. 78 FR 75547 - Prestressed Concrete Steel Rail Tie Wire From Thailand: Preliminary Determination of Sales at Not...

    Science.gov (United States)

    2013-12-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-549-829] Prestressed Concrete Steel...'') preliminarily determines that prestressed concrete steel rail tire wire (``PC tie wire'') from Thailand is not... shape, size or alloy element levels; suitable for use as prestressed tendons in concrete railroad ties...

  9. 75 FR 34424 - Stainless Steel Wire Rod from Italy, Japan, the Republic of Korea, Spain, and Taiwan...

    Science.gov (United States)

    2010-06-17

    ...-807, A-583-828] Stainless Steel Wire Rod from Italy, Japan, the Republic of Korea, Spain, and Taiwan... stainless steel wire rod (SSWR) from Italy, Japan, the Republic of Korea (Korea), Spain, and Taiwan would likely lead to a continuation or recurrence of dumping and material injury to an industry in the United...

  10. Galvanic coupling of steel and gold alloy lingual brackets with orthodontic wires.

    Science.gov (United States)

    Polychronis, Georgios; Al Jabbari, Youssef S; Eliades, Theodore; Zinelis, Spiros

    2018-03-06

    The aim of this research was to assess galvanic behavior of lingual orthodontic brackets coupled with representative types of orthodontic wires. Three types of lingual brackets: Incognito (INC), In-Ovation L (IOV), and STb (STB) were combined with a stainless steel (SS) and a nickel-titanium (NiTi) orthodontic archwire. All materials were initially investigated by scanning electron microscopy / x-ray energy dispersive spectroscopy (SEM/EDX) while wires were also tested by x-ray diffraction spectroscopy (XRD). All bracket-wire combinations were immersed in acidic 0.1M NaCl 0.1M lactic acid and neutral NaF 0.3% (wt) electrolyte, and the potential differences were continuously recorded for 48 hours. The SEM/EDX analysis revealed that INC is a single-unit bracket made of a high gold (Au) alloy while IOV and STB are two-piece appliances in which the base and wing are made of SS alloys. The SS wire demonstrated austenite and martensite iron phase, while NiTi wire illustrated an intense austenite crystallographic structure with limited martensite. All bracket wire combinations showed potential differences below the threshold of galvanic corrosion (200 mV) except for INC and STB coupled with NiTi wire in NaF media. The electrochemical results indicate that all brackets tested demonstrated galvanic compatibility with SS wire, but fluoride treatment should be used cautiously with NiTi wires coupled with Au and SS brackets.

  11. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    Science.gov (United States)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  12. Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires

    Science.gov (United States)

    Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong

    2018-04-01

    The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.

  13. Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis.

    Science.gov (United States)

    Popkov, Arnold V; Gorbach, Elena N; Kononovich, Natalia A; Popkov, Dmitry A; Tverdokhlebov, Sergey I; Shesterikov, Evgeniy V

    2017-08-01

    A lot of research was conducted on the use of various biomaterials in orthopedic surgery. Our study investigated the effects of nanostructured calcium-phosphate coating on metallic implants introduced into the bone marrow canal. Stainless steel or titanium 2-mm wires (groups 1 and 2, respectively), and hydroxyapatite-coated stainless steel or titanium wires of the same diameter (groups 3 and 4, respectively) were introduced into the tibial bone marrow canal of 20 dogs (each group = 5 dogs). Hydroxyapatite coating was deposited on the wires with the method of microarc oxidation. Light microscopy to study histological diaphyseal transverse sections, scanning electron microscopy to study the bone marrow area around the implant and an X-ray electron probe analyzer to study the content of calcium and phosphorus were used to investigate bioactivity and osteointegration after a four weeks period. Osteointegration was also assessed by measuring wires' pull-off strength with a sensor dynamometer. Bone formation was observed round the wires in the bone marrow canal in all the groups. Its intensity depended upon the features of wire surfaces and implant materials. Maximum percentage volume of trabecular bone was present in the bone marrow canals of group 4 dogs that corresponded to a mean of 27.1 ± 0.14%, while it was only 6.7% in group 1. The coating in groups 3 and 4 provided better bioactivity and osteointegration. Hydroxyapatite-coated titanium wires showed the highest degree of bone formation around them and greater pull-off strength. Nanostructured hydroxyapatite coating of metallic wires induces an expressed bone formation and provides osteointegration. Hydroxyapatite-coated wires could be used along with external fixation for bone repair enhancement in diaphyseal fractures, management of osteogenesis imperfecta and correction of bone deformities in phosphate diabetes.

  14. The control of stainless steel tubes and wires of small diameter by the Eddy current method

    International Nuclear Information System (INIS)

    Stossel, A.; Gallet, G.

    1978-01-01

    Stainless steel tubes and wires with an outer diameter greater than 1 mm were studied by Eddy currents. The sensor characteristics and the detection of defects in function of frequency are presented together with the results obtained in the detection of dimensional and metallurgical defects [fr

  15. Strain-tempering of low carbon martensite steel wire by rapid heating

    International Nuclear Information System (INIS)

    Torisaka, Yasunori; Kihara, Junji

    1978-01-01

    In the production of prestressed concrete steel wires, a series of the cold drawing-patenting process are performed to improve the strength. In order to reduce cyclic process, the low carbon martensite steel wire which can be produced only by the process of hot rolling and direct quench has been investigated as strain-tempering material. When strain-tempering is performed on the low carbon martensite steel wire, stress relaxation (Re%) increases and mechanical properties such as total elongation, reduction of area, ultimate tensile strength and proof stress decrease remarkably by annealing. In order to shorten the heating time, the authors performed on the steel wire the strain-tempering with a heating time of 1.0 s using direct electrical resistance heating and examined the effects of rapid heating on the stress relaxation and the mechanical properties. Stress relaxation decreases without impairment of the mechanical properties up to a strain-tempering temperature of 573 K. Re(%) after 10.8 ks is 0% at the testing temperature 301 K, 0.49% at 363 K and 1.39% at 433 K. (auth.)

  16. Flat ended steel wires, backscattering targets for calibrating over a large dynamic range

    NARCIS (Netherlands)

    Lubbers, Jaap; Graaff, Reindert

    2006-01-01

    A series of flat ended stainless steel wires was constructed and experimentally evaluated as point targets giving a calibrated backscattering over a large range (up to 72 dB) for ultrasound frequencies in the range 2 to 10 MHz. Over a range of 36 dB, theory was strictly followed (within 1 dB),

  17. Viscoelastic behavior and durability of steel wire - reinforced polyethylene pipes under a high internal pressure

    NARCIS (Netherlands)

    Ivanov, S.; Anoshkin, A.N.; Zuyko, V.Yu

    2011-01-01

    The strength tests of steel-wire-reinforced polyethylene pipe specimens showed that, under a constant internal pressure exceeding 80% of their short-term ultimate pressure, the fracture of the specimens occurred in less than 24 hours. At pressures slightly lower than this level, some specimens did

  18. Adhesive Properties of Bonded Orthodontic Retainers to Enamel : Stainless Steel Wire vs Fiber-reinforced Composites

    NARCIS (Netherlands)

    Foek, Dave Lie Sam; Krebs, Eliza; Sandham, John; Ozcan, Mutlu

    2009-01-01

    Purpose: The objectives of this study were to compare the bond strength of a stainless steel orthodontic wire vs various fiber-reinforced composites (FRC) used as orthodontic retainers on enamel, analyze the failure types after debonding, and investigate the influence of different application

  19. X-ray residual stress measurements on cold-drawn steel wire

    NARCIS (Netherlands)

    Willemse, P.F.; Naughton, B.P.; Verbraak, C.A.

    1982-01-01

    The interplanar spacing d{hkl} versus sin2 ψ distributions were measured for the 211, 310, 220 and 200 reflections from severely cold-drawn 0.7% C steel wire with a diameter of 0.25 mm. From the shape of the curves it was concluded that, as well as a 110 fibre texture and elastic anisotropy, plastic

  20. 77 FR 806 - Steel Wire Garment Hangers From Taiwan and Vietnam; Institution of Antidumping and Countervailing...

    Science.gov (United States)

    2012-01-06

    ... an industry in the United States is materially injured or threatened with material injury, or the establishment of an industry in the United States is materially retarded, by reason of imports from Taiwan and...)] Steel Wire Garment Hangers From Taiwan and Vietnam; Institution of Antidumping and Countervailing Duty...

  1. 77 FR 73424 - Steel Wire Garment Hangers From Taiwan: Antidumping Duty Order

    Science.gov (United States)

    2012-12-10

    ... materially injuring a U.S. industry, all unliquidated entries of such merchandise from Taiwan, entered or... From Taiwan: Antidumping Duty Order AGENCY: Import Administration, International Trade Administration... ``ITC''), the Department is issuing an antidumping duty order on steel wire garment hangers from Taiwan...

  2. 75 FR 32503 - Stainless Steel Wire Rod From Italy, Japan, Korea, Spain, and Taiwan

    Science.gov (United States)

    2010-06-08

    ... Taiwan would be likely to lead to continuation or recurrence of material injury to an industry in the...)] Stainless Steel Wire Rod From Italy, Japan, Korea, Spain, and Taiwan Determinations On the basis of the..., and Taiwan: Investigation Nos. 731-TA-770-773 and 775 (Second Review). By order of the Commission...

  3. Modeling the wire-EDM process parameters for EN-8 carbon steel ...

    African Journals Online (AJOL)

    Modeling the wire-EDM process parameters for EN-8 carbon steel using .... The neural networks has been developed with the help of MATLAB 8.1 (R13) package .... Now, Simulation and Prediction will be performed using the trained network.

  4. The influnece of the partial single reduction on mechanical properties wires made from trip steel with 0,43 % C

    Directory of Open Access Journals (Sweden)

    S. Wiewiórowska

    2015-01-01

    Full Text Available Large strain inhomogeneity is caused by the shape of deformation zone of die and by the friction between tool and deformed wire for multistage wire drawing processes. The influence on the value of the redundant strain by the use of different partial single reductions during all wire drawing process was observed. This problem is particularly important for TRIP steel wires drawing processes because the strain intensity influences on the speed of retained austenite transformation into martensite.

  5. TOWARDS THE CONCEPT OF GLOBULAR PEARLITE

    OpenAIRE

    A. G. Anisovich; M. K. Stepankova; A. A. Andrushevich

    2016-01-01

    Explanatory imprecisions of concept of globular pearlite and ferrite-carbide-mixture are considered. The need of concept binding of globular pearlite to specific grain with 0.8% carbon content is explained with the assistance of exemplary data obtained at the present metallographic equipment. The question of educational material presentation concerning the process of teaching of discipline «Materials and construction materials technology» is discussed in relation to the educational process of...

  6. 76 FR 47150 - Galvanized Steel Wire From the People's Republic of China and Mexico: Postponement of Preliminary...

    Science.gov (United States)

    2011-08-04

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975, A-201-840] Galvanized Steel... in the Federal Register the initiation of the antidumping duty investigations of galvanized steel... is January 1, 2010, through December 31, 2010. See Galvanized Steel Wire From the People's Republic...

  7. Electron beam freeforming of stainless steel using solid wire feed

    International Nuclear Information System (INIS)

    Wanjara, P.; Brochu, M.; Jahazi, M.

    2007-01-01

    The use of electron beam technology for freeforming build-ups on 321 stainless steel substrates was investigated in this work by using 347 stainless steel as a filler metal. The electron beam freeforming studies indicated that line build-ups could be deposited on the substrate material for optimized processing conditions and a slight linear thickening of the re-build occurred as a function of the deposited layer. The evolution in the formation of the Ti (C, N) (Nb, Ti) carbonitrides and Nb (C, N) precipitates was demonstrated to counteract the formation of detrimental Cr-carbides usually observed during welding stainless steels. The mechanical properties of the re-build were similar to the properties of the base metal, showing that homogeneous properties can be expected in the repaired components

  8. An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh

    Directory of Open Access Journals (Sweden)

    Al Saadi Hamza Salim Mohammed

    2017-01-01

    Full Text Available One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP. For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.

  9. AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution

    International Nuclear Information System (INIS)

    Sanchez, Javier; Fullea, Jose; Andrade, Carmen; Gaitero, Juan J.; Porro, Antonio

    2008-01-01

    The high strength steels employed as reinforcement in pre-stressed concrete structures are drawn wire steels of eutectoid composition with a pearlitic microstructure. This work is focused on the study, by atomic force microscopy, of the early stages of the corrosion of such steels as a consequence of their exposition to a sodium chloride solution. The obtained images show the pearlitic microstructure of the steel, with a preferential attack of the ferrite phase and the cementite acting as a cathode. The corrosion rate was determined by calculating the amount of material lost from a roughness analysis. The obtained results are in good agreement with the predictions of Galvelel's theory, according to which the corrosion rate slows down as the pit depth increases

  10. Regularities of ferritic-pearlitic structure formation during subcooled austenite decomposition

    International Nuclear Information System (INIS)

    Shkatov, V.V.; Frantsenyuk, L.I.; Bogomolov, I.V.

    1997-01-01

    Relationships of ferrite-pearlite structure parameters to austenite grain size and cooling conditions during γ -> α transformation are studied for steel 3 sp. A mathematical description has been proposed for grain evolution in carbon and low alloy steel cooling after hot rolling. It is shown that ferrite grain size can be controlled by changing temperature range of water spraying when the temperatures of rolling completion and strip coiling are the same

  11. 75 FR 1755 - Prestressed Concrete Steel Wire Strand From the People's Republic of China: Postponement of Final...

    Science.gov (United States)

    2010-01-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-945] Prestressed Concrete Steel Wire Strand From the People's Republic of China: Postponement of Final Determination AGENCY: Import Administration, International Trade Administration, Department of Commerce. DATES: Effective Date: January 13...

  12. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method

    International Nuclear Information System (INIS)

    Liu, Zaijian; Wang, Wei; Wang, Jia; Peng, Xin; Wang, Yanhua; Zhang, Penghui; Wang, Haijie; Gao, Congjie

    2014-01-01

    Corrosion behavior of carbon steel under seawater film with various thickness was investigated by the wire beam electrode (WBE) method. It was found that the corrosion rate of carbon steel increased significantly under thin seawater film than it was immersed in seawater. The current variation under seawater film indicated that the thickness of diffusion layer of oxygen was about 500 μm, and the maximal current appeared around 40 μm, at which corrosion rate transited from cathodic control to anodic control. The results suggest that WBE method is helpful to study the corrosion process under thin electrolyte film

  13. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing

    International Nuclear Information System (INIS)

    Hwang, Joong-Ki; Yi, Il-Cheol; Son, Il-Heon; Yoo, Jang-Yong; Kim, Byoungkoo; Zargaran, A.; Kim, Nack J.

    2015-01-01

    The effect of wire drawing on the microstructural evolution and deformation behavior of Fe–Mn–Al–C twinning-induced plasticity (TWIP) steel has been investigated. The inhomogeneities of the stress state, texture, microstructure, and mechanical properties were clarified over the cross section of drawn wire with the aid of numerical simulation, Schmid factor analysis, and electron backscatter diffraction (EBSD) techniques. The analysis of texture in drawn wire shows that a mixture of <111> and <100> fiber texture was developed with strain; however, the distribution of <111> and <100> fibers was inhomogeneous along the radial direction of wire due to uneven strain distribution and different stress state along the radial direction. It has also been shown that the morphology, volume fraction, and variant system of twins as well as twinning rate were dependent on the imposed stress state. The surface area was subjected to larger strain and more complex stress state involving compression, shear, and tension than the center area, resulting in a larger twin volume fraction and more twin variants in the former than in the latter at all the strain levels. While the surface area was saturated with twins at an early stage of drawing, the center area was not saturated with twins even at fracture, implying that the fracture of wire were initiated at the surface area because of the exhaustion of ductility due to twinning. Based on these results, it is suggested that imposing a uniform strain distribution along the radial direction of wire by the control of processing conditions such as die angle and amount of reduction per pass is necessary to increase the drawing limit of TWIP steel

  14. Phase transformation of 316L stainless steel from wire to fiber

    International Nuclear Information System (INIS)

    Shyr, Tien-Wei; Shie, Jing-Wen; Huang, Shih-Ju; Yang, Shun-Tung; Hwang, Weng-Sing

    2010-01-01

    In this work, quantitative crystalline phase analysis of 316L stainless steel from wire to fiber using a multi-pass cold drawing process was studied using the Rietveld whole XRD profile fitting technique. The different diameters of the fibers: 179, 112, 75, 50, 34, 20, and 8 μm, were produced from an as-received wire with a diameter of 190 μm. The crystalline phases were identified using MDI Jade 5.0 software. The volume fractions of crystalline phases were estimated using a Materials Analysis Using Diffraction software. XRD analysis revealed that the crystal structure of as-received wire is essentially a γ-austenite crystalline phase. The phase transformation occurred during the 316L stainless steel from wire to fiber. Three crystalline phases such as γ-austenite, α'-martensite, and sigma phase of the fine fiber were observed. A cold drawing accelerates the sigma phase precipitates, particularly during the heat treatment of the fiber.

  15. The Analysis of Force Parameters in Drawing Process of High Carbon Steel Wires in Conventional and Hydrodynamic Dies

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2017-12-01

    Full Text Available The paper analyzes force parameters in the process of multistage drawing of steel wires in conventional and hydrodynamic dies. The drawing process of the wire rod with a diameter of 5.5 mm for wires with a diameter of 1.70 mm was performed in 12 drafts with the usage of the multistage drawbench Koch KGT with the speed range of 5-25 m/s.

  16. 76 FR 28953 - Steel Wire Garment Hangers From the People's Republic of China: Extension of Time Limits for...

    Science.gov (United States)

    2011-05-19

    ... Wire Hangers from the People's Republic of China: Non-Market Economy Questionnaire (January 21, 2011... Administrative Review of Steel Garment Wire Hangers from the People's Republic of China: Non-Market Economy... Hangers from the People's Republic of China: Non-Market Economy Questionnaire (May 2, 2011); see also...

  17. 76 FR 23548 - Galvanized Steel Wire From the People's Republic of China and Mexico: Initiation of Antidumping...

    Science.gov (United States)

    2011-04-27

    ... Wire From the People's Republic of China and Mexico: Initiation of Antidumping Duty Investigations... Imports of Galvanized Steel Wire from the People's Republic of China (the PRC) and Mexico and... Initiation Checklist at 6-10 and Mexico Initiation Checklist at 6- 10. Export Price The PRC For the PRC...

  18. Self-protective powder wire for semiautomatic welding of corrosion resistant chromium-nickel type 18-10 steels

    International Nuclear Information System (INIS)

    Lipodaev, V.N.; Kakhovskij, N.I.; Fadeeva, G.V.

    1977-01-01

    Self-protecting NP-ANV1 powder wire has been developed for welding 18-10 type stainless steels. The use of the wire provides for the same running properties of the welds as the TsL-11 electrodes, the welding being 3-5 times more efficient

  19. Pelepasan ion nikel dan kromium kawat Australia dan stainless steel dalam saliva buatan (The release of nickel and chromium ions from Australian wire and stainless steel in artificial saliva)

    OpenAIRE

    Nolista Indah Rasyid; Pinandi Sri Pudyani; JCP Heryumani

    2014-01-01

    Background: Fixed orthodontic treatment needs several types of wire to produce biomechanical force to move teeth. The use orthodontic wire within the mouth interacts with saliva, causing the release of nickel and chromium ions. Purpose: The study was aimed to examine the effect of immersion time in artificial saliva between special type of Australian wire and stainless steel on the release of nickel and chromium ions. Methods: Thirty special type Australian wires and 30 stainless steel wires ...

  20. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    Science.gov (United States)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  1. Effect of surface treatment on mechanical properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    N, Karunagaran [S.K.P Engineering College, Tiruvannamalai (India); A, Rajadurai [Anna University, Chennai (India)

    2016-06-15

    This paper investigates the effect of surface treatment for glass fiber, stainless steel wire mesh on tensile, flexural, inter-laminar shear and impact properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites. The glass fiber fabric is surface treated either by 1 N solution of sulfuric acid or 1 N solution of sodium hydroxide. The stainless steel wire mesh is also surface treated by either electro dissolution or sand blasting. The hybrid composites are fabricated using epoxy resin reinforced with glass fiber and fine stainless steel wire mesh by hand lay-up technique at room temperature. The hybrid composite consisting of acid treated glass fiber and sand blasted stainless steel wire mesh exhibits a good combination of tensile, flexural, inter-laminar shear and impact behavior in comparison with the composites made without any surface treatment. The fine morphological modifications made on the surface of the glass fiber and stainless steel wire mesh enhances the bonding between the resin and reinforcement which inturn improved the tensile, flexural, inter-laminar shear and impact properties.

  2. Effects of nanostructured, diamondlike, carbon coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel wires.

    Science.gov (United States)

    Zhang, Hao; Guo, Shuyu; Wang, Dongyue; Zhou, Tingting; Wang, Lin; Ma, Junqing

    2016-09-01

    To evaluate and compare the effects of nanostructured, diamondlike, carbon (DLC) coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel archwires. Plasma-enhanced chemical vapor deposition technology was applied to coat DLC films onto the surface of austenitic stainless steel wires, and salt-bath nitrocarburizing technology was employed to achieve surface hardening of other wires. Surface and cross-sectional characteristics, microhardness, modulus of elasticity, friction resistance, corrosion resistance, and cell toxicity of the modified and control wires were analyzed. The surfaces of the DLC-coated and nitrocarburized wires were both smooth and even. Compared with the control, the DLC-coated wires were increased in surface hardness 1.46 times, decreased in elastic modulus, reduced in kinetic friction coefficient by 40.71%, and decreased in corrosion current density by two orders of magnitude. The nitrocarburized wire was increased in surface hardness 2.39 times, exhibited an unchanged elastic modulus, demonstrated a decrease in maximum static friction force of 22.2%, and rose in corrosion current density two orders of magnitude. Cytotoxicity tests revealed no significant toxicity associated with the modified wires. DLC coating and nitrocarburizing significantly improved the surface hardness of the wires, reduced friction, and exhibited good biocompatibility. The nanostructured DLC coating provided excellent corrosion resistance and good elasticity, and while the nitrocarburizing technique substantially improved frictional properties, it reduced the corrosion resistance of the stainless steel wires to a lesser extent.

  3. TOWARDS THE CONCEPT OF GLOBULAR PEARLITE

    Directory of Open Access Journals (Sweden)

    A. G. Anisovich

    2016-01-01

    Full Text Available Explanatory imprecisions of concept of globular pearlite and ferrite-carbide-mixture are considered. The need of concept binding of globular pearlite to specific grain with 0.8% carbon content is explained with the assistance of exemplary data obtained at the present metallographic equipment. The question of educational material presentation concerning the process of teaching of discipline «Materials and construction materials technology» is discussed in relation to the educational process of technical universities, in particular, the Belarusian State Agrarian Technical University.

  4. Study of the deoxidation of steel with aluminum wire injection in a gas-stirred ladle

    Science.gov (United States)

    Beskow, K.; Jonsson, L.; Sichen, Du; Viswanathan, N. N.

    2001-04-01

    In the present work, the deoxidation of liquid steel with aluminum wire injection in a gas-stirred ladle was studied by mathematical modeling using a computational fluid dynamics (CFD) approach. This was complemented by an industrial trial study conducted at Uddeholm Tooling AB (Hagfors, Sweden). The results of the industrial trials were found to be in accordance with the results of the model calculation. In order to study the aspect of nucleation of alumina, emphasis was given to the initial period of deoxidation, when aluminum wire was injected into the bath. The concentration distributions of aluminum and oxygen were calculated both by considering and not considering the chemical reaction. Both calculations revealed that the driving force for the nucleation fo Al2O3 was very high in the region near the upper surface of the bath and close to the wire injection. The estimated nucleation rate in the vicinity of the aluminum wire injection point was much higher than the recommended value for spontaneously homogeneous nucleation, 103 nuclei/(cm3/s). The results of the model calculation also showed that the alumina nuclei generated at the vicinity of the wire injection point are transported to other regions by the flow.

  5. Effect of tensile overloads on fatigue crack growth of high strength steel wires

    International Nuclear Information System (INIS)

    Haag, J.; Reguly, A.; Strohaecker, T.R.

    2013-01-01

    Highlights: • A proof load process may be an option to increase the fatigue life of flexible pipelines. • There is possibility to produce plastic deformation at crack tip of tensile armor wires. • Controlled overloads provide effective crack growth retardation. • Crack growth retardation is also evident at higher stress ratios. - Abstract: Fatigue of the tensile armor wires is the main failure mode of flexible risers. Techniques to increase the life of these components are required to improve the processes safety on oil exploration. This work evaluates the crack growth retardation of high strength steel wires used in flexible pipelines. Fracture toughness tests were performed to establish the level of stress intensity factor wherein the wires present significant plastic deformation at the crack tip. The effect of tensile overload on fatigue behavior was assessed by fatigue crack growth testing under constant ΔK control and different overload ratios with two different load ratios. The outcomes show that the application of controlled overloads provides crack retardation and increases the fatigue life of the wires more than 31%. This behavior is also evident at stress ratio of 0.5, in spite of the crack closure effect being minimized by increasing the applied mean stress

  6. Pearlitic ductile cast iron: damaging micromechanisms at crack tip

    Directory of Open Access Journals (Sweden)

    F. Iacoviello

    2013-07-01

    Full Text Available Ductile cast irons (DCIs are characterized by a wide range of mechanical properties, mainly depending on microstructural factors, as matrix microstructure (characterized by phases volume fraction, grains size and grain distribution, graphite nodules (characterized by size, shape, density and distribution and defects presence (e.g., porosity, inclusions, etc.. Versatility and higher performances at lower cost if compared to steels with analogous performances are the main DCIs advantages. In the last years, the role played by graphite nodules was deeply investigated by means of tensile and fatigue tests, performing scanning electron microscope (SEM observations of specimens lateral surfaces during the tests (“in situ” tests and identifying different damaging micromechanisms.In this work, a pearlitic DCIs fatigue resistance is investigated considering both fatigue crack propagation (by means of Compact Type specimens and according to ASTM E399 standard and overload effects, focusing the interaction between the crack and the investigated DCI microstructure (pearlitic matrix and graphite nodules. On the basis of experimental results, and considering loading conditions and damaging micromechanisms, the applicability of ASTM E399 standard on the characterization of fatigue crack propagation resistance in ferritic DCIs is critically analyzed, mainly focusing the stress intensity factor amplitude role.

  7. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    Science.gov (United States)

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  8. Analysis of Steel Wire Rope Diagnostic Data Applying Multi-Criteria Methods

    Directory of Open Access Journals (Sweden)

    Audrius Čereška

    2018-02-01

    Full Text Available Steel ropes are complex flexible structures used in many technical applications, such as elevators, cable cars, and funicular cabs. Due to the specific design and critical safety requirements, diagnostics of ropes remains an important issue. Broken wire number in the steel ropes is limited by safety standards when they are used in the human lifting and carrying installations. There are some practical issues on loose wires—firstly, it shows end of lifetime of the entire rope, independently of wear, lubrication or wrong winding on the drums or through pulleys; and, secondly, it can stick in the tight pulley—support gaps and cause deterioration of rope structure up to birdcage formations. Normal rope operation should not generate broken wires, so increasing of their number shows a need for rope installation maintenance. This paper presents a methodology of steel rope diagnostics and the results of analysis using multi-criteria analysis methods. The experimental part of the research was performed using an original test bench to detect broken wires on the rope surface by its vibrations. Diagnostics was performed in the range of frequencies from 60 to 560 Hz with a pitch of 50 Hz. The obtained amplitudes of the broken rope wire vibrations, different from the entire rope surface vibration parameters, was the significant outcome. Later analysis of the obtained experimental results revealed the most significant values of the diagnostic parameters. The evaluation of the power of the diagnostics was implemented by using multi-criteria decision-making (MCDM methods. Various decision-making methods are necessary due to unknown efficiencies with respect to the physical phenomena of the evaluated processes. The significance of the methods was evaluated using objective methods from the structure of the presented data. Some of these methods were proposed by authors of this paper. Implementation of MCDM in diagnostic data analysis and definition of the

  9. PECULIARITIES OF FORMATION OF STRUCTURE AND PROPERTIES AT THERMO-MECHANICAL PROCESSING OF ROLLED WIRE OF NICKEL-MOLYBDENUM STEEL WITH WELDING FUNCTION

    OpenAIRE

    V. A. Lutsenko

    2012-01-01

    There are results of researches of the mechanical properties and structure of the wire rod made of low-carbon nickel molybdenum steel after reduction to toughness thermomechanical treatment in the stream of high-speed wire mill.

  10. 原奥氏体晶粒尺寸对珠光体钢组织及韧性的影响%Effect of Prior Austenite Grain Size on Microstructure and Toughness of Pearlitic Steel

    Institute of Scientific and Technical Information of China (English)

    梁宇; 向嵩; 梁益龙; 杨明; 魏泽民; 熊虎; 李静

    2017-01-01

    The effect of prior austenite grain size on the pearlitic microstructure and toughness was investigated.Experimental results,showed that the interlarnellar spacing had no obvious change under the same isothermal transformation temperature.The proeutectoid ferrite percentage decreased and the pearlitic colony size increased with the increase of the prior austenite grain size.The fracture toughness was controlled by the microplasticity zone ((1-2)δc) at the crack tip,and the δc was opening displacement of critical crack.If prior austenite grain size was larger than (1-2)δc,the majority of crack propagation resistance came from necking and breaking of the pearlitic lamellar α and θ phase.If prior austenite grain size was close to or less than (1-2)δc,crack propagation mainly went through the grain boundaries,pearlitic colony boundaries and α+θ larnellar interface,which caused high crack tortuosity.The crack propagation resistance came from the crack deflection and branching.And the quasi-static fracture toughness J had small changes with the increase of prior austenite grain size,While the front microplasticity zone of the impact toughness notch was much larger than the prior austenite grain size.High angle grain boundary in the microplasticity zone would cause the crack deflection and branching,which increased the crack growth resistance.Improving high angle grain boundary density of the plastic zone was beneficial to improve the impact toughness,and the impact toughness decreased significantly with the increase of prior austenite grain size.%探索了奥氏体晶粒尺寸对珠光体等温转变组织特征以及对韧性性能的影响规律.研究表明,在相同等温转变温度下,珠光体片层间距无明显变化,随奥氏体晶粒尺寸的增加,先共析铁素体量减少而珠光体团尺寸增加.珠光体断裂韧性受控于裂纹前沿塑性影响区尺寸(1~2)δc,其中δc为临界裂纹张开位移,当原奥氏体晶粒大于(1~2)δc

  11. Investigation on grain refinement and precipitation strengthening applied in high speed wire rod containing vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Da-yong; Xiao, Fu-ren, E-mail: frxiao@ysu.edu.cn; Wang, Bin; Liu, Jia-ling; Liao, Bo, E-mail: cyddjyjs@263.net

    2014-01-13

    To obtain necessary information for the simulation of high speed wire production process, the effect of grain refinement and precipitation strengthening on two high speed wire rod steels with different vanadium and nitrogen contents was investigated by continuous cooling transformation (CCT) characteristics. CCT curves were constructed by the dilatometer test and microscopic observation. Results showed that the formation of intra-granular ferrite (IGF) could refine grain remarkably and accelerate the ferrite transformation. Schedules for high speed wire production process focused on the effect of cooling rate. Ferrite grain was refined by increasing cooling rate and the formation of IGF. The microhardness calculation revealed that the steels were strengthened mostly by a combined effect of grain refinement and precipitation hardening. Degenerated pearlite was observed at lower transformation temperature and the fracture morphology changed from cementite lamellar to nanoscale cementite particle with increasing cooling rate. Based on the analysis above, an optimal schedule was applied and the microstructure and microhardness were improved.

  12. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires.

    Science.gov (United States)

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-03-06

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  13. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    Directory of Open Access Journals (Sweden)

    Marcello Gelfi

    2017-03-01

    Full Text Available This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  14. Martensitic transformation of austenitic stainless steel orthodontic wires during intraoral exposure.

    Science.gov (United States)

    Izquierdo, Paula P; de Biasi, Ronaldo S; Elias, Carlos N; Nojima, Lincoln I

    2010-12-01

    Our purpose was to study the mechanical properties and phase transformations of orthodontic wires submitted to in-vivo exposure in the mouth for different periods of time. Stainless steel wires were tied to fixed orthodontic appliances of 30 patients from the orthodontics clinic of Universidade Federal do Rio de Janeiro School of Dentistry in Brazil. According to the duration of the clinical treatment, the patients were divided into 3 groups. After in-vivo exposure, the samples were studied by mechanical testing (torsion) and ferromagnetic resonance. Statistical analyses were carried out to evaluate the correlation between time of exposure, mechanical properties, and austenite-to-martensite transformation among the groups. The results were compared with as-received control samples. The torque values increased as time in the mouth increased. The increase in torque resistance showed high correlations with time of exposure (P = 0.005) and austenite-martensite phase transformation. The resistance of stainless steel orthodontic wires increases as the time in the mouth increases; this effect is attributed to the austenite-to-martensite transformation. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  15. The Analysis of the High Speed Wire Drawing Process of High Carbon Steel Wires Under Hydrodynamic Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2015-04-01

    Full Text Available In this work the analysis of the wire drawing process in hydrodynamic dies has been done. The drawing process of φ5.5 mm wire rod to the final wire of φ1.7 mm was conducted in 12 passes, in drawing speed range of 5-25 m/s. For final wires of φ1.7 mm the investigation of topography of wire surface, the amount of lubricant on the wire surface and the pressure of lubricant in hydrodynamic dies were determined. Additionally, in the work selected mechanical properties of the wires have been estimated.

  16. Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties

    Science.gov (United States)

    Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.

    2007-12-01

    Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.

  17. Evaluation of frictional resistance between monocrystalline (ICE brakcets and Stainless Steel, Beta TMA and NiTiarch wires

    Directory of Open Access Journals (Sweden)

    Meysam Mirzaie

    2013-09-01

    Full Text Available Introduction: When using sliding mechanics for space closure during orthodontic treatment, friction occurs at the bracket-wire interface. The aim of this study was to evaluate the frictional resistance between monocrystalline (ICE brackets and Stainless Steel, Beta TMA and NiTi wires. Methods: In this experimental study, we used 5 different types of orthodontic wires. Brackets and wires were divided in to 5 groups: 1-(monocrystalline+stainless steel 18 2–(monocrystalline+stainless steel 19×25 3-(monocrystalline+Beta-TMA 4–(monocrystalline+Beta TMA 19×25 5-(monocrystalline+NiTi 18. Instron Universal Testing Machine was used to investigate the static frictional resistance. The angulation between bracket and wire was 0 and the wires were pulled through the slots at a speed of 10 mm/min. Tests were performed 10 times for each group in artificial saliva. The average of 10 forces recorded was considered as static friction. One-way ANOVA and SPSS Version 18 and LSD post hoc test were used to evaluate the results of the study. Results: The mean static frictional force for each group was: group1: 0.82 ± 0.14, group 2: 1.09 ± 0.30, group 3: 0.87 ± 0.53, group 4: 1.9 ± 1.16, group 5: 1.42 ± 0.30. There was a significant difference when comparing the two groups of similar wires in terms of shape (round or rectangular cross-section as when comparing Beta TMA 18 and 19×25 arch wires with each other, the obtained p-value was 0.023, while the obtained p-value for the comparison of stainles steel arch wires was 0.034 . Conclusions: The result of this study shows that Stainless Steel 18 wires generate the least amount of friction and round wires produce less friction than the rectangular wires. Beta TMA wires generate the highest amount of friction.

  18. Evaluation of frictional resistance between monocrystalline (ICE brakcets and Stainless Steel, Beta TMA and NiTi arch wires

    Directory of Open Access Journals (Sweden)

    Meysam Mirzaie

    2013-09-01

    Full Text Available Introduction: When using sliding mechanics for space closure during orthodontic treatment, friction occurs at the bracket-wire interface. The aim of this study was to evaluate the frictional resistance between monocrystalline (ICE brackets and Stainless Steel, Beta TMA and NiTi wires. Methods: In this experimental study, we used 5 different types of orthodontic wires. Brackets and wires were divided in to 5 groups: 1-(monocrystalline+stainless steel 18 2–(monocrystalline+stainless steel 19×25 3-(monocrystalline+Beta-TMA 4–(monocrystalline+Beta TMA 19×25 5-(monocrystalline+NiTi 18. Instron Universal Testing Machine was used to investigate the static frictional resistance. The angulation between bracket and wire was 0 and the wires were pulled through the slots at a speed of 10 mm/min. Tests were performed 10 times for each group in artificial saliva. The average of 10 forces recorded was considered as static friction. One-way ANOVA and SPSS Version 18 and LSD post hoc test were used to evaluate the results of the study. Results: The mean static frictional force for each group was: group1: 0.82±0.14, group 2: 1.09±0.30, group 3: 0.87±0.53, group 4: 1.9±1.16, group 5: 1.42±0.30. There was a significant difference when comparing the two groups of similar wires in terms of shape (round or rectangular cross-section as when comparing Beta TMA 18 and 19×25 arch wires with each other, the obtained p-value was 0.023, while the obtained p-value for the comparison of stainles steel arch wires was 0.034. Conclusions: The result of this study shows that Stainless Steel 18 wires generate the least amount of friction and round wires produce less friction than the rectangular wires. Beta TMA wires generate the highest amount of friction.

  19. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)

    Science.gov (United States)

    Mathieu, Alexandre; Shabadi, Rajashekar; Deschamps, Alexis; Suery, Michel; Matteï, Simone; Grevey, Dominique; Cicala, Eugen

    2007-04-01

    Joining steel with aluminum involving the fusion of one or both materials is possible by laser beam welding technique. This paper describes a method, called laser braze welding, which is a suitable process to realize this structure. The main problem with thermal joining of steel/aluminum assembly with processes such as TIG or MIG is the formation of fragile intermetallic phases, which are detrimental to the mechanical performances of such joints. Braze welding permits a localized fusion of the materials resulting in a limitation on the growth of fragile phases. This article presents the results of a statistical approach for an overlap assembly configuration using a filler wire composed of 85% Zn and 15% Al. Tensile tests carried on these assemblies demonstrate a good performance of the joints. The fracture mechanisms of the joints are analyzed by a detailed characterization of the seams.

  20. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    Science.gov (United States)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  1. Fatigue crack growth and fracture behavior of bainitic rail steels.

    Science.gov (United States)

    2011-09-01

    "The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...

  2. Cladding nuclear steels - the application of plasma-arc hot wire surfacing

    International Nuclear Information System (INIS)

    Trarbach, K.O.

    1981-01-01

    The effect of one and two layer plasma-arc hot wire cladding on the HAZ microstructure of the fine grained structural steel 22 NiMoCr 3 7, which is similar to ASTM A 508, class 2, and steel 20 MnMoNi 5 5, similar to ASTM A 533, grade B, class 1 is determined. Attention is directed particularly to the behaviour of the susceptible region, and the consumables considered are cladding materials X 2 CrNiNb 19 9, similar to ER 347 Elc, and S-NiCr 20 Nb, similar to ER NiCr-3 (Inconel 82). Results of corrosion resistance tests show that this cladding technique can be recommended for manufacture of equipment for the chemical industry to avoid corrosion failure. Plasma-arc hot wire surfacing is also shown to be capable of depositing single or double clad layers to meet the highest safety requirements and could be applied to nuclear power plants for the special manufacture of wear resistant parts and for protection of equipment subject to a variety of corrosive environments. (U.K.)

  3. Strengthening of Masonry Columns with BFRCM or with Steel Wires: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Marinella Fossetti

    2016-05-01

    Full Text Available Nowadays, innovative materials are more frequently adopted for strengthening historical constructions and masonry structures. The target of these techniques is to improve the structural efficiency with retrofitting methods while having a reduced aesthetical impact. In particular, the use of basalt fiber together with a cementitious matrix emerges as a new technique. This kind of fiber is obtained by basalt rock without other components, and consequently it could be considered a natural material, compatible with masonry. Another innovative technique for strengthening masonry columns consists of applying steel wires in the correspondence of mortar joints. Both techniques have been recently proposed and some aspects of their structural performances are still open. This paper presents the results of an experimental study on the compressive behavior of clay brick masonry columns reinforced either with Basalt Fiber–Reinforced Cementitious Matrix (BFRCM or with steel wire collaring. Uniaxial compressive tests were performed on eight retrofitted columns and four control specimens until failure. Two masonry grades were considered by varying the mix used for the mortar. Results are presented and discussed in terms of axial stress-strain curves, failure modes and crack patterns of tested specimens. Comparisons with unreinforced columns show the capability of these techniques in increasing ductility with limited strength enhancements.

  4. Development of filler wires for welding of reduced activation ferritic martensitic steel for India's test blanket module of ITER

    International Nuclear Information System (INIS)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K.

    2010-01-01

    Indigenous development of reduced activation ferritic-martensitic (RAFM) steel has become necessary for India as a participant in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFM steel is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFM steel filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFM steel. The purpose of this study is to develop filler wires that can be directly used for both gas tungsten arc welding (GTAW) and for narrow-gap gas tungsten arc welding (NG-GTAW) that reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser-MIG welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using GTAW process at various heat inputs with a preheat temperature of 250 C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some amount of delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimized to qualify the filler wires without the presence of delta-ferrite in the weld metal and with optimized mechanical properties. Results showed that the weld metals are free from delta-ferrite. Tensile properties at ambient temperature and at 500 C are well above the specified values, and are much higher than the base metal values. Ductile Brittle Transition Temperature (DBTT) has been evaluated as -81 C based on the 68 J criteria. The present study highlights the basis and methodology

  5. 77 FR 28354 - Steel Wire Garment Hangers From the People's Republic of China: Extension of Time Limit for...

    Science.gov (United States)

    2012-05-14

    ... from the People's Republic of China: Non-market Economy Questionnaire (December 28, 2011). \\4\\ See id... China: Non-market Economy Questionnaire (February 6, 2012). On March 8, 2012, we selected Shaoxing... Administrative Review of Steel Wire Garment Hangers from the People's Republic of China: Non-market Economy...

  6. 77 FR 50160 - Steel Wire Garment Hangers From Taiwan and Vietnam; Scheduling of the Final Phase of...

    Science.gov (United States)

    2012-08-20

    ...)] Steel Wire Garment Hangers From Taiwan and Vietnam; Scheduling of the Final Phase of Countervailing Duty...(b) of the Act (19 U.S.C. 1673d(b)) to determine whether an industry in the United States is materially injured or threatened with material injury, or the establishment of an industry in the United...

  7. 77 FR 50713 - Steel Wire Garment Hangers From Taiwan and Vietnam; (Corrected Notice) Scheduling of the Final...

    Science.gov (United States)

    2012-08-22

    ...)] Steel Wire Garment Hangers From Taiwan and Vietnam; (Corrected Notice) Scheduling of the Final Phase of...) under section 735(b) of the Act (19 U.S.C. 1673d(b)) to determine whether an industry in the United States is materially injured or threatened with material injury, or the establishment of an industry in...

  8. Twin-Wire Pulsed Tandem Gas Metal Arc Welding of API X80 Steel Linepipe

    Directory of Open Access Journals (Sweden)

    Wenhao Wu

    2018-01-01

    Full Text Available Twin-Wire Pulsed Tandem Gas Metal Arc Welding process with high welding production efficiency was used to join the girth weld seam of API X80 steel linepipe of 18.4 mm wall thickness and 1422 mm diameter. The macrostructure, microstructure, hardness, and electrochemical corrosion behavior of welded joints were studied. Effects of temperature and Cl− concentration on the corrosion behavior of base metal and weld metal were investigated. Results show that the welded joint has good morphology, mechanical properties, and corrosion resistance. The corrosion resistance of both the base metal and the weld metal decreases with increasing temperature or Cl− concentration. In the solution with high Cl− concentration, the base metal and weld metal are more susceptible to pitting. The corrosion resistance of the weld metal is slightly lower than that of the base metal.

  9. Correlations between operating conditions, microstructure and mechanical properties of twin wire arc sprayed steel coatings

    International Nuclear Information System (INIS)

    Jandin, G.; Liao, H.; Feng, Z.Q.; Coddet, C.

    2003-01-01

    An experimental design matrix was set up in which carbon steel coatings were deposited with a twin wire arc spray gun (TAFA 9000 TM ), using either compressed air or nitrogen as spraying gas. The coating's mechanical properties were studied. Some correlations were made between these properties, spraying conditions and the microstructure of the deposits. Young's modulus was estimated by the single beam method using finite element modeling. Results show that direct relationships do exist between spray conditions, oxide content in the coating and microhardness. Young's modulus of the coatings depends on the lamella thickness and the oxide content. When increasing the compressed air flow rate, Young's modulus increases at first because smaller particles and finer lamellae were made and it decreases later because of a higher oxide content. The increase of nitrogen flow rate lowers the oxide content and increases Young's modulus

  10. Mechanical and microstructural integrity of nickel-titanium and stainless steel laser joined wires

    International Nuclear Information System (INIS)

    Vannod, J.; Bornert, M.; Bidaux, J.-E.; Bataillard, L.; Karimi, A.; Drezet, J.-M.; Rappaz, M.; Hessler-Wyser, A.

    2011-01-01

    The biomedical industry shows increasing interest in the joining of dissimilar metals, especially with the aim of developing devices that combine different mechanical and corrosive properties. As an example, nickel-titanium shape memory alloys joined to stainless steel are very promising for new invasive surgery devices, such as guidewires. A fracture mechanics study of such joined wires was carried out using in situ tensile testing and scanning electron microscopy imaging combined with chemical analysis, and revealed an unusual fracture behaviour at superelastic stress. Nanoindentation was performed to determine the mechanical properties of the welded area, which were used as an input for mechanical computation in order to understand this unexpected behaviour. Automated image correlation allowed verification of the mechanical modelling and a reduced stress-strain model is proposed to explain the special fracture mechanism. This study reveals the fact that tremendous property changes at the interface between the NiTi base wire and the weld area have more impact on the ultimate tensile strength than the chemical composition variation across the welded area.

  11. Development of filler wires for welding of reduced activation ferritic martenstic steel for India's test blanket module of ITER

    International Nuclear Information System (INIS)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K.

    2011-01-01

    Highlights: → Weld microstructure produced by RAFMS filler wires are free from delta ferrite. → Cooling rates of by weld thermal cycles influences the presence of delta ferrite. → Weld parameters modified with higher pre heat temperature and high heat input. → PWHT optimized based on correlation of hardness between base and weld metals. → Optimised mechanical properties achieved by proper tempering of the martensite. - Abstract: Indigenous development of reduced activation ferritic martensitic steel (RAFMS) has become mandatory to India to participate in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFMS is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFMS filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFMS. Purpose of this study is to develop filler wires that can be directly used for both tungsten inert gas welding (TIG) and narrow gap tungsten inert gas welding (NG-TIG), which reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, autogenous welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using TIG process at various heat inputs with a preheat temperature of 250 deg. C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimised to qualify the filler wires without the presence of delta-ferrite in

  12. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials.

    Science.gov (United States)

    Jongsma, Marije A; Pelser, Floris D H; van der Mei, Henny C; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J; Ren, Yijin

    2013-05-01

    Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on different wires used for bonded retainers and the susceptibility of in vitro biofilms to oral antimicrobials. Orthodontic wires were exposed to saliva, and in vitro biofilm formation was evaluated using plate counting and live/dead staining, together with effects of exposure to toothpaste slurry alone or followed by antimicrobial mouthrinse application. Wires were also placed intra-orally for 72 h in human volunteers and undisturbed biofilm formation was compared by plate counting and live/dead staining, as well as by denaturing gradient gel electrophoresis for compositional differences in biofilms. Single-strand wires attracted only slightly less biofilm in vitro than multi-strand wires. Biofilms on stainless steel single-strand wires however, were much more susceptible to antimicrobials from toothpaste slurries and mouthrinses than on single-strand gold wires and biofilms on multi-strand wires. Also, in vivo significantly less biofilm was found on single-strand than on multi-strand wires. Microbial composition of biofilms was more dependent on the volunteer involved than on wire type. Biofilms on single-strand stainless steel wires attract less biofilm in vitro and are more susceptible to antimicrobials than on multi-strand wires. Also in vivo, single-strand wires attract less biofilm than multi-strand ones. Use of single-strand wires is preferred over multi-strand wires, not because they attract less biofilm, but because biofilms on single-strand wires are not protected against antimicrobials as in crevices and niches as on multi-strand wires.

  13. A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire

    International Nuclear Information System (INIS)

    Cheng, F.T.; Lo, K.H.; Man, H.C.

    2004-01-01

    NiTi wire of diameter 1 mm was preplaced on AISI 316 stainless steel samples by using a binder. Melting of the NiTi wire to form a clad track on the steel substrate was achieved by means of a high-power CW Nd:YAG laser using different processing parameters. The geometry and microstructure of the clad deposit were studied by optical microscopy and scanning electron microscopy (SEM), respectively. The hardness and compositional profiles along the depth of the deposit were acquired by microhardness testing and energy-dispersive spectroscopy (EDS), respectively. The elastic behavior of the deposit was analyzed using nanoindentation, and compared with that of the NiTi wire. The dilution of the NiTi clad by the substrate material beneath was substantial in single clad tracks, but could be successively reduced in multiple clad layers. A strong fusion bonding with tough interface could be obtained as evidenced by the integrity of Vickers indentations in the interfacial region. In comparison with the NiTi cladding on AISI 316 using the tungsten inert gas (TIG) process, the laser process was capable of producing a much less defective cladding with a more homogeneous microstructure, which is an essential cladding quality with respect to cavitation erosion and corrosion resistance. Thus, the present preliminary study shows that laser cladding using preplaced wire is a feasible method to obtain a thick and homogeneous NiTi-based alloy layer on AISI 316 stainless steel substrate

  14. Swelling behaviors in a fuel assembly for the wrapping wire and duct made of modified 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Yamagata, Ichiro; Akasaka, Naoaki

    2010-01-01

    Swelling behaviors in the wrapping wire and duct made of modified type 316 austenitic stainless steel were investigated in a fuel assembly irradiated in a fast breeder reactor. The temperature dependence of volumetric swelling was measured in the wrapping wire and the duct, and the peak temperatures of swelling were evaluated. The void distribution in the material was measured by microstructure observation with electron microscopy, and it was found that the voids prefentially grew near the surface. This phenomenon seemed to be caused by a surface effect on the neutron-irradiated materials. (author)

  15. Plastohydrodynamic drawing and coating of stainless steel wire using a tapered bore die of no metal to metal contact

    Science.gov (United States)

    Hasan, S.; Basmage, O.; Stokes, J. T.; Hashmi, M. S. J.

    2018-05-01

    A review of wire coating studies using plasto-hydrodynamic pressure shows that most of the works were carried out by conducting experiments simultaneously with simulation analysis based upon Bernoulli's principle and Euler and Navier-Stokes (N-S) equations. These characteristics relate to the domain of Computational Fluid Dynamics (CFD) which is an interdisciplinary topic (Fluid Mechanics, Numerical Analysis of Fluid flow and Computer Science). This research investigates two aspects: (i) simulation work and (ii) experimentation. A mathematical model was developed to investigate the flow pattern of the molten polymer and pressure distribution within the wire-drawing dies, assessment of polymer coating thickness on the coated wires and speed of coating on the wires at the outlet of the drawing dies, without deploying any pressurizing pump. In addition to a physical model which was developed within ANSYS™ environment through the simulation design of ANSYS™ Workbench. The design was customized to simulate the process of wire-coating on the fine stainless-steel wires using drawing dies having different bore geometries such as: stepped parallel bore, tapered bore and combined parallel and tapered bore. The convergence of the designed CFD model and numerical and physical solution parameters for simulation were dynamically monitored for the viscous flow of the polypropylene (PP) polymer. Simulation results were validated against experimental results and used to predict the ideal bore shape to produce a thin coating on stainless wires with different diameter. Simulation studies confirmed that a specific speed should be attained by the stainless-steel wires while passing through the drawing dies. It has been observed that all the speed values within specific speed range did not produce a coating thickness having the desired coating characteristic features. Therefore, some optimization of the experimental set up through design of experiments (Stat-Ease) was applied to

  16. Decompression Device Using a Stainless Steel Tube and Wire for Treatment of Odontogenic Cystic Lesions: A Technical Report.

    Science.gov (United States)

    Jung, Eun-Joo; Baek, Jin-A; Leem, Dae-Ho

    2014-11-01

    Decompression is considered an effective treatment for odontogenic cystic lesions in the jaw. A variety of decompression devices are successfully used for the treatment of keratocystic odontogenic tumors, radicular cysts, dentigerous cysts, and ameloblastoma. The purpose of these devices is to keep an opening between the cystic lesion and the oral environment during treatment. The aim of this report is to describe an effective decompression tube using a stainless steel tube and wire for treatment of jaw cystic lesions.

  17. INFLUENCE OF MICRO-SEGREGATION IN PB-S-ALLOYED FREE MACHINING STEELS ON THE SURFACE QUALITY OF THE ROLLED WIRE-ROD

    OpenAIRE

    Leuschke, U.; Rajesh Puvvada, N.; Puvvada, Rajesh

    2008-01-01

    Free machining steel billets were manufactured at the continuous casting machine. The manufactured billets did not exhibit any kind of surface defects but surface cracks and slivers appeared when the billets were rolled into wires and rods at the wire-rod mill. The defects on rolled wire-rod have been detected by a hot eddy current system. Further investigations in these defects with the help of microprobe analysis system and scanning electron microscope equipped with image analysis system re...

  18. PECULIARITIES OF FORMATION OF STRUCTURE AND PROPERTIES AT THERMO-MECHANICAL PROCESSING OF ROLLED WIRE OF NICKEL-MOLYBDENUM STEEL WITH WELDING FUNCTION

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2012-01-01

    Full Text Available There are results of researches of the mechanical properties and structure of the wire rod made of low-carbon nickel molybdenum steel after reduction to toughness thermomechanical treatment in the stream of high-speed wire mill.

  19. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars

    Science.gov (United States)

    Iatcheva, Ilona; Darzhanova, Denitsa; Manilova, Marina

    2018-03-01

    The aim of this work is the modeling of coupled electric and heat processes in a system for spot resistance welding of cross-wire reinforced steel bars. The real system geometry, dependences of material properties on the temperature, and changes of contact resistance and released power during the welding process have been taken into account in the study. The 3D analysis of the coupled AC electric and transient thermal field distributions is carried out using the finite element method. The novel feature is that the processes are modeled for several successive time stages, corresponding to the change of contact area, related contact resistance, and reduction of the released power, occurring simultaneously with the creation of contact between the workpieces. The values of contact resistance and power changes have been determined on the basis of preliminary experimental and theoretical investigations. The obtained results present the electric and temperature field distributions in the system. Special attention has been paid to the temperature evolution at specified observation points and lines in the contact area. The obtained information could be useful for clarification of the complicated nature of interrelated electric, thermal, mechanical, and physicochemical welding processes. Adequate modeling is also an opportunity for proper control and improvement of the system.

  20. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    Science.gov (United States)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  1. Effect of Different Types of Toothpaste on the Frictional Resistance Between Orthodontic Stainless Steel Brackets and Wires.

    Science.gov (United States)

    Hosseinzadeh Nik, Tahereh; Hooshmand, Tabassom; Farhadifard, Homa

    2017-09-01

    The purpose of this study was to investigate the effect of different types of toothpaste on the frictional resistance between stainless steel brackets and archwires. Ninety stainless steel orthodontic brackets with stainless steel wires were bonded to bovine teeth and were divided into 6 groups for application of the following toothpastes: Colgate® Total® Advanced Whitening, Colgate® Total® Pro Gum Health, Colgate® Anticavity, Ortho.Kin®, and Sunstar GUM® Ortho toothpastes. No toothpaste was applied in the control group. Each group was brushed by a brushing machine with the use of the designated solution for 4.5 minutes. The frictional force was measured in a universal testing machine with a crosshead speed of 10 mm/minute over a 5-mm archwire. Data were analyzed using one-way analysis of variance (ANOVA) at the 0.05 significance level. The frictional resistance values of Ortho.Kin® and GUM® Ortho toothpastes and the control group were not significantly different (P>0.05). However, there were significant differences between the frictional resistance values of Colgate® Total® Pro Gum Health and Colgate® Anticavity toothpastes with that of the control group (Porthodontic toothpastes did not increase the frictional resistance between the orthodontic stainless steel brackets and wires.

  2. Pelepasan ion nikel dan kromium kawat Australia dan stainless steel dalam saliva buatan (The release of nickel and chromium ions from Australian wire and stainless steel in artificial saliva

    Directory of Open Access Journals (Sweden)

    Nolista Indah Rasyid

    2014-09-01

    Full Text Available Background: Fixed orthodontic treatment needs several types of wire to produce biomechanical force to move teeth. The use orthodontic wire within the mouth interacts with saliva, causing the release of nickel and chromium ions. Purpose: The study was aimed to examine the effect of immersion time in artificial saliva between special type of Australian wire and stainless steel on the release of nickel and chromium ions. Methods: Thirty special type Australian wires and 30 stainless steel wires were used in this study, each of which weighed 0.12 grams. The wires were immersed for 1, 7, 28, 35, 42, and 49 days in artificial saliva with a normal pH. The release of ions in saliva was examined using Atomic Absorption spectrophotometry. Results: The result indicated that the release of nickel ions on special type of Australian wire was larger than that on stainless steel wire (p<0.005, there were differences in the release of the amount of nickel ions on special type of Australia in different immersion time, and there was a correlation between the types of wire and immersion time. Nickel ions released from the special type of Australian wire detected on the 7th day of immersion and reached its peak on the 35th day, while from stainless steel wire were detected on the 49th day of immersion. The released of chromium ions from the special type of Australian wire and stainless steel wire were not detected until the 49th day of immersion. Conclusion: The release of nickel ions were highest on the 35th day of immersion in special type of Australian wire and they were detected on the 49th day in stainless steel wire. The release of chromium ions were not detected until 49th day of immersion in special type of Australian and stainless steel wire.Latar belakang: Perawatan ortodonti cekat memerlukan beberapa macam kawat untuk menghasilkan kekuatan biomekanika yang sesuai dalam menggerakkan gigi. Pemakaian kawat ortodonti di dalam mulut dapat bereaksi dengan

  3. Analysis of mechanical damage by drawing on spheroid ABNT 1080 steel wire; Analise do dano mecanico na trefilacao de arame de aco ABNT 1080 esferoidizado

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Ferreira, Sergio A. de; Cetlin, Paulo R.; Coutinho, Carlos A.B. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenheria Metalurgica

    1990-12-31

    Patented Brazilian 1080 carbon steel wires were isothermal annealed at 720 deg C for different times to produce spheroid carbides of varying average diameters. The heat treated wires were then drawn to rupture. Longitudinal sections of the drawn wires were prepared after each drawing pass for analysis of the mechanical damage caused by the process. It was found that the damage observed in the drawn wires showed a similar development to the damage caused by uniaxial tensile stresses in the same material. 8 figs., 1 tab., 4 refs.

  4. Advanced Process Possibilities in Friction Crush Welding of Aluminum, Steel, and Copper by Using an Additional Wire

    Science.gov (United States)

    Besler, Florian A.; Grant, Richard J.; Schindele, Paul; Stegmüller, Michael J. R.

    2017-12-01

    Joining sheet metal can be problematic using traditional friction welding techniques. Friction crush welding (FCW) offers a high speed process which requires a simple edge preparation and can be applied to out-of-plane geometries. In this work, an implementation of FCW was employed using an additional wire to weld sheets of EN AW5754 H22, DC01, and Cu-DHP. The joint is formed by bringing together two sheet metal parts, introducing a wire into the weld zone and employing a rotating disk which is subject to an external force. The requirements of the welding preparation and the fundamental process variables are shown. Thermal measurements were taken which give evidence about the maximum temperature in the welding center and the temperature in the periphery of the sheet metals being joined. The high welding speed along with a relatively low heat input results in a minimal distortion of the sheet metal and marginal metallurgical changes in the parent material. In the steel specimens, this FCW implementation produces a fine grain microstructure, enhancing mechanical properties in the region of the weld. Aluminum and copper produced mean bond strengths of 77 and 69 pct to that of the parent material, respectively, whilst the steel demonstrated a strength of 98 pct. Using a wire offers the opportunity to use a higher-alloyed additional material and to precisely adjust the additional material volume appropriate for a given material alignment and thickness.

  5. Comparative short-term in vitro analysis of mutans streptococci adhesion on esthetic, nickel-titanium, and stainless-steel arch wires.

    Science.gov (United States)

    Kim, In-Hye; Park, Hyo-Sang; Kim, Young Kyung; Kim, Kyo-Han; Kwon, Tae-Yub

    2014-07-01

    To test the hypothesis that there are no differences in mutans streptococci (MS) adhesion between esthetic and metallic orthodontic arch wires based on their surface characteristics. Surface roughness (Ra) and apparent surface free energy (SFE) were measured for six wires-four esthetic, one nickel-titanium (NiTi), and one stainless-steel (SS)-using profilometry and dynamic contact angle analysis, respectively. The amount of MS (Streptococcus mutans and Streptococcus sobrinus) adhering to the wires was quantified using the colony-counting method. The surfaces, coating layers, and MS adhesion were also observed by scanning electron microscopy. Statistical significance was set at P wires were significantly different from one another depending on the coating method (P wire showed the highest SFE, followed by the SS wire and then the four esthetic wires. The NiTi wires produced a significantly higher MS adhesion than did the SS wires (P wires showed significantly lower MS adhesions than did the NiTi wire (P < .05). Pearson correlation analyses found moderate significant positive correlations between the SFE and the S mutans and S sobrinus adhesions (r  =  .636/.427, P < .001/P  =  .001, respectively). The hypothesis is rejected. This study indicates that some esthetic coatings on NiTi alloy might reduce MS adhesion in vitro in the short term.

  6. EFFECT OF ALLOYING ON TEMPERATURE OF TRANSFORMATION «PEARLITE – AUSTENITE» IN COMPLEX-ALLOYED WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    T. V. Pastukhova

    2014-11-01

    Full Text Available Purpose. Pearlite is not accepted in the microstructure of wear resistant steels and cast irons. To prevent the pearlite by means of appropriate selection of mode of quenching requires the knowledge of the temperature of the critical points Ac1 and Ac3 for various steels and cast irons. Purpose of work is determine the effect of V (5-10% and Cr (up to 9% on the temperature range of the phase-structural transformation "pearlite®austenite in the complex-alloyed V-Cr-Mn-Ni white cast irons with spheroidal vanadium carbides. Methodology. Nine Mg-treated cast irons smelted in laboratory furnace were used for investigation. The metallographic and optical dilatometric analysis methods as well as energy-dispersive spectroscopy were used. Findings. It is shown that in irons studied the critical point Ac1 is in a temperature range from 710-780 °C (lower limit up to 730-850 °C (upper limit. The data on the concentrations of chromium and vanadium in a matrix of iron are presented, the regression equation describing the effect of vanadium and chromium on the temperature limits of the transformation «pearlite ® austenite» are obtained. Originality. It is shown that increase the chromium content leads to growth of lower and upper limits of the temperature interval of transformation "pearlite ® austenite"; vanadium increases only the upper limit of the range. It was found that the effect of chromium on the critical point Ac1 is attributed to its solubility in the metallic matrix (concentration of Cr in the austenite reaches 7%; vanadium, due to its slight dissolution in the matrix (vanadium content does not exceed 1.75%, affects the critical point indirectly by increasing of chromium concentration in the matrix due to enhanced carbon sequestration in VC carbides. Practical value. The temperature ranges of heating for quenching of V-Cr-Mn-Ni cast irons with spheroidal vanadium carbides, which provides the formation of austenitic-martensitic matrix without

  7. Microstructures and mechanical properties of welded joints of novel 3Cr pipeline steel using an inhouse and two commercial welding wires

    International Nuclear Information System (INIS)

    Zhu, Jinyang; Xu, Lining; Chang, Wei; Hu, Lihua; Lu, Minxu

    2014-01-01

    Highlights: • Weldability of novel 3Cr pipeline steel was investigated using two commercial and an inhouse welding wires. • Mechanical properties were measured and microstructure characteristics were observed. • Fracture positions of tensile test just corresponded to the minimum hardness region of the joints. • The inhouse wire R01 can provide the highest cost-performance ratio. - Abstract: The welded joints of the novel 3Cr pipeline steel were fabricated via the gas tungsten arc welding (GTAW) technique using an inhouse welding wire labeled as R01 and two kinds of commercial wires (H08Cr3MoMnA and TGS-2CML). Microhardness, impact toughness and tensile properties of the joints were measured, and microstructure characteristics were observed by scanning electron microscopy (SEM). The results show that under selected welding procedure, the joints of R01 can achieve quite good mechanical properties without preheating and post weld heat treatment (PWHT). After thermal refining, elongation (15.2%) doubled and met the DNV-OS-F101 standard. For low carbon or super low carbon pipeline steels such as 3Cr steel, the revised formula with the carbon applicable coefficient (A(c)) was quite good for predicting the maximum hardness in heat affected zone (HAZ). Compared with these two selected commercial wires, the inhouse welding wire R01 can provide the highest cost-performance ratio

  8. Synergistic effect of wire bending and salivary pH on surface properties and mechanical properties of orthodontic stainless steel archwires.

    Science.gov (United States)

    Hobbelink, Marieke G; He, Yan; Xu, Jia; Xie, Huixu; Stoll, Richard; Ye, Qingsong

    2015-01-01

    The aim of this study was to investigate the corrosive behaviour of stainless steel archwires in a more clinically relevant way by bending and exposing to various pH. One hundred and twenty pieces of rectangular stainless steel wires (0.43 × 0.64 mm) were randomly assigned into four groups. In each group, there were 15 pieces of bent wires and 15 straight ones. Prior to measurements of the wires, as individual experimental groups (group 1, 2, and 3), the wires were exposed to artificial saliva for 4 weeks at pH 5.6, 6.6, and 7.6, respectively. A control group of wires (group 4) remained in air for the same period of time before sent for measurements. Surface roughness (Ra-value) was measured by a profilometer. Young's modulus and maximum force were determined by a four-point flexural test apparatus. Scanning electron microscopy was used to observe the surface morphology of straight wire. Differences between groups were examined using a two-way analysis of variance (ANOVA). Mean surface roughness values, flexural Young's moduli, and maximum force values of bent wires are significantly different from those of the straight wires, which was the main effect of wire bending, ignoring the influence of pH. A significant effect was found between Ra-values regarding the main effect of pH, ignoring the influence of shape. There was a significant interaction effect of bending and pH on flexural Young's moduli of stainless steel archwires, while pH did not show much impact on the maximum force values of those stainless steel wires. Bigger surface irregularities were seen on SEM images of straight wires immersed in artificial saliva at pH 5.6 compared to artificial saliva at other pH values. Surface depth (Rz) was more sensitive than Ra in revealing surface roughness, both measured from 3D reconstructed SEM images. Ra showed a comparable result of surface roughness to Ra-value measured by the profilometer. Bending has a significant influence on surface roughness and mechanical

  9. A comparison of torque expression between stainless steel, titanium molybdenum alloy, and copper nickel titanium wires in metallic self-ligating brackets.

    Science.gov (United States)

    Archambault, Amy; Major, Thomas W; Carey, Jason P; Heo, Giseon; Badawi, Hisham; Major, Paul W

    2010-09-01

    The force moment providing rotation of the tooth around the x-axis (buccal-lingual) is referred to as torque expression in orthodontic literature. Many factors affect torque expression, including the wire material characteristics. This investigation aims to provide an experimental study into and comparison of the torque expression between wire types. With a worm-gear-driven torquing apparatus, wire was torqued while a bracket mounted on a six-axis load cell was engaged. Three 0.019 x 0.0195 inch wire (stainless steel, titanium molybdenum alloy [TMA], copper nickel titanium [CuNiTi]), and three 0.022 inch slot bracket combinations (Damon 3MX, In-Ovation-R, SPEED) were compared. At low twist angles (wires were not statistically significant. At twist angles over 24 degrees, stainless steel wire yielded 1.5 to 2 times the torque expression of TMA and 2.5 to 3 times that of nickel titanium (NiTi). At high angles of torsion (over 40 degrees) with a stiff wire material, loss of linear torque expression sometimes occurred. Stainless steel has the largest torque expression, followed by TMA and then NiTi.

  10. The influence of drawing speed on structure changes in high carbon steel wires

    Directory of Open Access Journals (Sweden)

    M. Suliga

    2015-01-01

    Full Text Available In the paper the influence of the drawing speed on structure changes has been assessed. The Scanning Electron Microscope investigation confirmed that for wires drawn with high total draft, exceeding 80 %, makes it impossible to clearly assess the impact of drawing technology on structural changes in the drawn wires. Thus, to assess the structural changes necessary to apply quantitative methods. On the basis of examination of the wire structure by measuring of electrical resistance, the structure changes in drawn wires has been determined. It has been shown that the increase of drawing speed, especially above 15 m/s, causes an increase in structure defect, with a decline in platelet orientation of cementite in drawn wires.

  11. Improvement of the bending fatigue resistance of the hyper-eutectoid steel wires used for tire cords by a post-processing annealing

    International Nuclear Information System (INIS)

    Yang, Y.S.; Bae, J.G.; Park, C.G.

    2008-01-01

    In this study, the effects of annealing at a low temperature on the bending fatigue resistance have been investigated in the hyper-eutectoid steel wires drawn to an extreme strain of 4.12. The annealing temperature was varied from 100 to 500 deg. C. The bending fatigue resistance of the steel wires was measured by a Hunter rotating beam tester specially designed for thin-sized steel wires. The results showed that fatigue resistance as well as tensile strength improved as the annealing temperature increased up to 200 deg. C (Region I) and gradually decreased after annealing above 200 deg. C (Region II). In order to elucidate this behavior, residual stress was measured by dual beam FIB, surface defects observed by an optical 3D profiler and the microstructure in terms of lamellar spacing (λ p ) and cementite thickness (t c ) was observed by TEM

  12. Measurement of residual stress by using focused ion beam and digital image correlation method in thin-sized wires used for steel cords

    International Nuclear Information System (INIS)

    Yang, Y S; Park, C G; Bae, J G

    2008-01-01

    Residual stress in the axial direction of the steel wires has been measured by using a method based on the combination of the focused ion beam (FIB) milling and digital image correlation software. That is, the residual stress was calculated from the measured displacement field before and after the introduction of a slot along the steel wires. The displacement was obtained by the digital correlation analysis of high-resolution scanning electron micrographs, while the slot was introduced by FIB milling with low energy beam. The fitting of the experimental results to an analytical model with the independent Young's modulus determined allows us to find the residual stress. The complete experimental procedures are described and its feasibilities are also evaluated for the thin-sized steel wires

  13. Effect of reactive O+ implantation on the pearlite evolution

    International Nuclear Information System (INIS)

    Li Shuchen; Chen Yuanru; Radjabov, T.D.; Muchadadiev, R.E.; Zhang Pingyu; Liu Hong

    1993-01-01

    In the experiment the Fe-0.45wt%C alloy was implanted by Ar+, N+, and by Ar+, N+, O+ ions separately. Beneath the surface implanted by Ar+ and N+ an Auger peak of nitrogen is apparent. After implanting O+, however, the oxygen profile along the depth takes the Gaussian distribution and the nitrogen level is very low. TEM observation shows that the cementite laminae of the pearlite are distorted severely and even broken into rods or spheroid particles. The pearlite evolutions may be interpreted by the thermal spike effect of ion-implantation and preferential combination of C and O

  14. The Nitrocarburising Response of Low Temperature Bainite Steel

    Directory of Open Access Journals (Sweden)

    Daniel Fabijanic

    2017-06-01

    Full Text Available The nitrocarburising response of low transformation temperature ultrafine and nanoscale bainitic steel was investigated and compared with martensite and pearlite from the same steel composition. It was found that the retained austenite content of the bainitic steel dictated the core hardness after nitrocarburising. The refined bainitic structure showed improvements in the nitriding depth and hardness of the nitrocarburised layer, compared to coarser grained martensitic and pearlitic structures, possibly due to the fine structure and the distribution of nitride forming elements.

  15. Effect of reduction of area on microstructure and mechanical properties of twinning-induced plasticity steel during wire drawing

    Science.gov (United States)

    Hwang, Joong-Ki; Son, Il-Heon; Yoo, Jang-Yong; Zargaran, A.; Kim, Nack J.

    2015-09-01

    The effect of reduction of area (RA), 10%, 20%, and 30%, during wire drawing on the inhomogeneities in microstructure and mechanical properties along the radial direction of Fe-Mn-Al-C twinning-induced plasticity steel has been investigated. After wire drawing, the deformation texture developed into the major and minor duplex fiber texture. However, the texture became more pronounced in both center and surface areas as the RA per pass increased. It also shows that a larger RA per pass resulted in a higher yield strength and smaller elongation than a smaller RA per pass at all strain levels. Although inhomogeneities in microstructure and mechanical properties along the radial direction decreased with increasing RA per pass, there existed an optimum RA per pass for maximum drawing limit. Insufficient penetration of strain from surface to center at small RA per pass (e.g., 10%) and high friction and unsound metal flow at large RA per pass (e.g., 30%) all resulted in heterogeneous microstructure and mechanical properties along the radial direction of drawn wire. On the other hand, 20% RA per pass improved the drawing limit by about 30% as compared to the 10% and 30% RAs per pass.

  16. Separation of Electrolytic Reduction Product from Stainless Steel Wire Mesh Cathode Basket via Salt Draining and Reuse of the Cathode Basket

    OpenAIRE

    Choi, Eun-Young; Lee, Jeong; Heo, Dong Hyun; Hur, Jin-Mok

    2017-01-01

    We demonstrated that the metallic product obtained after electrolytic reduction (also called oxide reduction (OR)) can be simply separated from a stainless steel wire mesh cathode basket only by using a salt drain. First, the OR run of a simulated oxide fuel (0.6 kg/batch) was conducted in a molten Li2O–LiCl salt electrolyte at 650°C. The simulated oxide fuel of the porous cylindrical pellets was used as a cathode by loading a stainless steel wire mesh cathode basket. Platinum was employed as...

  17. Mechanical properties of Fe -10Ni -7Mn martensitic steel subjected to severe plastic deformation via cold rolling and wire drawing

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Nanesa, H; Shirazi, H [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, P.O. Box 14395-731 (Iran, Islamic Republic of); Nili-Ahmadabadi, M, E-mail: sut.caster.81710018@gmail.co, E-mail: nili@ut.ac.i [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, P.O. Box 14395-731 (Iran, Islamic Republic of) and Center of Excellence for High Performance Materials, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of)

    2010-07-01

    Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was {epsilon} {approx}7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.

  18. Mechanical properties of Fe -10Ni -7Mn martensitic steel subjected to severe plastic deformation via cold rolling and wire drawing

    Science.gov (United States)

    Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Shirazi, H.

    2010-07-01

    Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was epsilon ~7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.

  19. 75 FR 28560 - Prestressed Concrete Steel Wire Strand From the People's Republic of China: Final Determination...

    Science.gov (United States)

    2010-05-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-945] Prestressed Concrete Steel... antidumping investigation of prestressed concrete steel strand (``PC strand'') from the People's Republic of... are shown in the ``Final Determination Margins'' section of this notice. \\1\\ See Prestressed Concrete...

  20. Development of filler wires for welding of reduced activation ferritic martensitic steel for India's test blanket module of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    Indigenous development of reduced activation ferritic-martensitic (RAFM) steel has become necessary for India as a participant in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFM steel is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFM steel filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFM steel. The purpose of this study is to develop filler wires that can be directly used for both gas tungsten arc welding (GTAW) and for narrow-gap gas tungsten arc welding (NG-GTAW) that reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser-MIG welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using GTAW process at various heat inputs with a preheat temperature of 250 C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some amount of delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimized to qualify the filler wires without the presence of delta-ferrite in the weld metal and with optimized mechanical properties. Results showed that the weld metals are free from delta-ferrite. Tensile properties at ambient temperature and at 500 C are well above the specified values, and are much higher than the base metal values. Ductile Brittle Transition Temperature (DBTT) has been evaluated as -81 C based on the 68 J criteria. The present study highlights the basis and methodology

  1. Signal Acquisition and Processing in the Magnetic Defectoscopy of Steel Wire Ropes

    Directory of Open Access Journals (Sweden)

    N. S. Jovičić

    2012-11-01

    Full Text Available The system that resolves the problem of wire rope defects using a magnetic method of inspection is presented in this paper. Implementation of the system should provide for full monitoring of wire rope condition, according to the prescribed international standards. The purpose of this system, in addition to identifying defects in the rope, is to determine to what extent damage has been done. The measurement procedure provides for a better understanding of the defects that occur, as well as the rejection criteria of used ropes, that way increasing their security. Hardware and software design of appliance for recording defects and test results are presented in this paper.

  2. Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires

    International Nuclear Information System (INIS)

    Villaret, V.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Chovet, C.; Petit, B.; Faivre, L.

    2013-01-01

    Highlights: • New metal cored filler wires for welding 444 grade stainless steel are manufactured. • The effect of Nb and Ti minor elements on the fusion zone properties is investigated. • The relation between composition of fusion zone and grain structure is investigated. • Oxidation rates of fusion zones and base metal are compared. • High temperature behavior of the welded samples are studied. - Abstract: Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel dedicated to automotive exhaust manifold applications. The patented grade is know under APERAM trade name K44X and has been developed to present improved high temperature fatigue properties. All filler wires investigated contained 19% Cr and 1.8% Mo, equivalent to the base metal K44X chemistry, but various titanium and niobium contents. Chemical analyses and microstructural observations of fusion zones revealed the need of a minimum Ti content of 0.15% to obtain a completely equiaxed grain structure. This structure conferred on the fusion zone a good ductility even in the as-welded state at room temperature. Unfortunately, titanium additions decreased the oxidation resistance at 950 °C if no significant Nb complementary alloying was made. The combined high Ti and Nb additions made it possible to obtain for the welded structure, after optimized heat treatment, high temperature tensile strengths and ductility for the fusion zones and assemblies, rather close to those of the base metal. 950 °C aging heat treatment was necessary to restore significantly the ductility of the as welded structure. Both fusion zone and base metal presented rather homogenized properties. Finally, with the optimized composition of the cored filler wire – 0.3 Ti minimum (i.e. 0.15% in the fusion zone) and high Nb complementary additions, the properties

  3. Fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro

    NARCIS (Netherlands)

    Foek, Dave Lie Sam; Yetkiner, Enver; Ozcan, Mutlu

    Objective: To analyze the fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro. Methods: Roots of human mandibular central incisors were covered with silicone, mimicking the

  4. Investigation into the effects of steel wire rope specimen length on breaking force

    CSIR Research Space (South Africa)

    O'Brien, TM

    2004-03-01

    Full Text Available (2000). The methodology employed was to test different length of triangular strand and non-spin rope to destruction, and to evaluate these results against SABS 0293:1996. For each rope construction, specimens were prepared both with and without cut wires...

  5. On the determining role of microstructure of niobium-microalloyed steels with differences in impact toughness

    International Nuclear Information System (INIS)

    Anumolu, R.; Kumar, B. Ravi; Misra, R.D.K.; Mannering, T.; Panda, D.; Jansto, S.G.

    2008-01-01

    The relationship between microstructure and impact toughness was investigated for niobium-microalloyed steels with similar yield strength. The nominal steel composition was similar and any variation in processing history was unintentional. The general microstructure of the investigated steel was similar and consisted of 85% polygonal ferrite and 15% pearlite. Despite these similarities, they exhibited variation in toughness and were classified as high- and low-toughness steels. Detailed microstructural investigation including stereological analysis and electron microscopy implied that toughness is strongly influenced by mean intercept length of polygonal ferrite and pearlite colony, and their distribution, interlamellar spacing, and degenerated pearlite

  6. On the determining role of microstructure of niobium-microalloyed steels with differences in impact toughness

    Energy Technology Data Exchange (ETDEWEB)

    Anumolu, R. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, LA 70504-4130 (United States); Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Kumar, B. Ravi [Center for Structural and Functional Materials, University of Louisiana at Lafayette, LA 70504-4130 (United States); Misra, R.D.K. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, LA 70504-4130 (United States); Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States)], E-mail: dmisra@louisiana.edu; Mannering, T.; Panda, D. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Jansto, S.G. [Reference Metals, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2008-09-15

    The relationship between microstructure and impact toughness was investigated for niobium-microalloyed steels with similar yield strength. The nominal steel composition was similar and any variation in processing history was unintentional. The general microstructure of the investigated steel was similar and consisted of 85% polygonal ferrite and 15% pearlite. Despite these similarities, they exhibited variation in toughness and were classified as high- and low-toughness steels. Detailed microstructural investigation including stereological analysis and electron microscopy implied that toughness is strongly influenced by mean intercept length of polygonal ferrite and pearlite colony, and their distribution, interlamellar spacing, and degenerated pearlite.

  7. Investigations on the wire saw process on steels of selected geometries in the encircling process

    International Nuclear Information System (INIS)

    Knecht, Daniel

    2015-01-01

    This thesis illustrates a new and innovative model for the usual looping method to describe cutting time and wear. Several test series have been carried out to determine and analyze the various influencing factors. This new model now allows for exact predictions for cutting times and the resulting wear. A special test stand was planned and built. With the help of this test stand various influencing parameters were determined in preliminary tests. Due to the high correlation between these parameters, a matrix was created to rate them. From these results and the findings of the preliminary tests, the boundary conditions such as work piece size were defined and an experimental design was created. Eleven test series were conducted and each one consists of up to ten work pieces. In each test series, only one parameter was changed, the other influencing parameters remained unchanged. The parameter of the following characteristics were varied: the speed of the diamond wire, the feed pressure, the cutting angle, the geometry with respective cutting area, the work piece material, as well as the twisting of the diamond wire. By varying these parameters, the influence could be shown on the performance of the cutting process and also on the wear behavior of the diamond wire. A model was created from the obtained data which enables a cutting time prediction for rectangular work pieces. In addition to the model, a new criterion has been developed, with which it is possible to quantify the progress of wear and to be able to determine a necessary wire replacement. The classification of particle sizes of the accumulated chips has shown that a lower average cutting performance results in a decrease of the average particle size. From this circumstance a termination criterion of <150 μm has been established. When the particle size drops below this value, the cutting process becomes ineffective and should not be continued, or the diamond wire should be replaced, respectively

  8. The Corrosion Resistance of Composite Arch Wire Laser-Welded By NiTi Shape Memory Alloy and Stainless Steel Wires with Cu Interlayer in Artificial Saliva with Protein

    Science.gov (United States)

    Zhang, Chao; Sun, Xinhua; Hou, Xu; Li, Hongmei; Sun, Daqian

    2013-01-01

    In this paper, the corrosion resistance of laser-welded composite arch wire (CoAW) with Cu interlayer between NiTi shape memory alloy and stainless steel wire in artificial saliva with different concentrations of protein was studied. It was found that protein addition had a significant influence on the corrosion behavior of CoAW. Low concentration of protein caused the corrosion resistance of CoAW decrease in electrochemical corrosion and immersion corrosion tests. High concentration of protein could reduce this effect. PMID:23801895

  9. The effect of spheroidizing by thermal cycling in low concentration Cr-Mo alloy steel

    International Nuclear Information System (INIS)

    Yun, H.S.; Kang, C.Y.

    1979-01-01

    An intensive study was carried out on spheroidizing of pearlite (Sph) and number of spherical carbide in proeutectoid ferrite (No/100) of low concentration Cr-Mo steel with thermal cycling. Physical and mechanical properties of steel containing 0.33 % C with thermal cycling were compared with those of low concentration Cr-Mo steel with thermal cycling. The effect of normal heat treatment and cooling rate on spheroidizing of pearlite and precipitation of fine spherical carbide in the steels were investigated. The results obtained were as follows: 1) Thermal cycling of low concentration Cr-Mo steel promoted the spheroidizing of pearlite compared with that of steel without Cr and Mo to steel had significant effect on spheroidizing of pearlite. 2) Number of fine spherical carbides of low concentration Cr-Mo steel with thermal cycling was over 5 times to that of fine spherical carbides of hypoeutectoid steel with thermal cycling. 3) Spheroidizing of pearlite and number of fine spherical carbide in proeutectoid ferrite of low concentration Cr-Mo steel with increasing thermal cycle and cooling rate. 4) Hardness of steel with thermal cycling was decreased. However, low concentration Cr-Mo steel had little decreasing rate in hardness with increasing thermal cycle on the basis of 100 times in thermal cycle. Therefore, toughness was considered to be increased with increasing spheroidizing of pearlite without changing mechanical properties. (author)

  10. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel

    Science.gov (United States)

    Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang

    2015-12-01

    Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.

  11. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization.

    Science.gov (United States)

    Li, Dongsheng; Yang, Wei; Zhang, Wenyao

    2017-05-01

    Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic parameter figure. A particle swarm optimization cluster method was developed to determine the relationship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types of clustering data, the mean value of each damage pattern's AE characteristic parameters was determined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE particle swarm optimization cluster analysis based on principal component analysis was also proposed. This method can completely distinguish the four types of damage sources and simplifies the determination of the evolution process of corrosion damage and broken wire signals. Copyright © 2017. Published by Elsevier B.V.

  12. Effect of Controlled Rolling and Cooling On Microstructure and Mechanical Properties of 30crmnti Wire Rod

    Science.gov (United States)

    Ruan, Shipeng; Dong, Qing; Zhang, Lei; Wang, Lijun

    2017-09-01

    The effect of controlled rolling and cooling on microstructure and mechanical properties of alloy structure steel 30CrMnTi wire rod with diameter 6.5mm was studied. The results show that the lower finish rolling temperature resulted in a decrease in tensile strength but an increase in elongation and reduction of area. When the finish rolling temperature decreases from 950°C to 850°C, the tensile strength value decreases from 750MPa to 660MPa, and the elongation increases from 21% to 30%, the reduction of area increases from 64% to 71%. The grain size also refines from 20μm to 9.9μm when the finish rolling temperature decreases from 950°C to 850°C. The decrease of tensile strength is due to the change of microstructure which evolved from more bainite to ferrite and pearlite.

  13. Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens

    Directory of Open Access Journals (Sweden)

    Ajit Mondal

    2016-12-01

    Full Text Available Gas metal arc welding cladding becomes a popular surfacing technique in many modern industries as it enhances effectively corrosion resistance property and wear resistance property of structural members. Quality of weld cladding may be enhanced by controlling process parameters. If bead formation is found acceptable, cladding is also expected to be good. Weld bead characteristics are often assessed by bead geometry, and it is mainly influenced by heat input. In this paper, duplex stainless steel E2209 T01 is deposited on E250 low alloy steel specimens with 100% CO2 gas as shielding medium with different heats. Weld bead width, height of reinforcement and depth of penetration are measured. Regression analysis is done on the basis of experimental data. Results reveal that within the range of bead-on-plate welding experiments done, parameters of welding geometry are on the whole linearly related with heat input. A condition corresponding to 0.744 kJ/mm heat input is recommended to be used for weld cladding in practice.

  14. Development of filler wires for welding of reduced activation ferritic martenstic steel for India's test blanket module of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G., E-mail: gsrini@igcar.gov.in [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2011-06-15

    Highlights: > Weld microstructure produced by RAFMS filler wires are free from delta ferrite. > Cooling rates of by weld thermal cycles influences the presence of delta ferrite. > Weld parameters modified with higher pre heat temperature and high heat input. > PWHT optimized based on correlation of hardness between base and weld metals. > Optimised mechanical properties achieved by proper tempering of the martensite. - Abstract: Indigenous development of reduced activation ferritic martensitic steel (RAFMS) has become mandatory to India to participate in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFMS is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFMS filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFMS. Purpose of this study is to develop filler wires that can be directly used for both tungsten inert gas welding (TIG) and narrow gap tungsten inert gas welding (NG-TIG), which reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, autogenous welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using TIG process at various heat inputs with a preheat temperature of 250 deg. C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimised to qualify the filler wires without the presence of delta-ferrite in the weld

  15. 77 FR 51514 - Steel Wire Garment Hangers From the Socialist Republic of Vietnam: Preliminary Affirmative...

    Science.gov (United States)

    2012-08-24

    .... The Department generally bases its decision with respect to knowledge on the margins calculated in the... importers' knowledge that material injury is likely by reason of such imports.\\8\\ Finally, as part of their... Welded Carbon Quality Steel Pipe from the People's Republic of China, 73 FR 31970, 31972-73 (June 5, 2008...

  16. Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands.

    Science.gov (United States)

    Kim, Jae-Min; Kim, Chul-Min; Choi, Song-Yi; Lee, Bang Yeon

    2017-07-18

    FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0%) of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands.

  17. Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire

    Science.gov (United States)

    2016-03-01

    microstructure 4. A low near ambient temperature is reached. • All four factor must be simultaneously present 3 Mitigating HIC and Improving Weld Fatigue...Performance Through Weld Residual Stress Control UNCLASIFIED:DISTRIBUTION A. Approved for public release: distribution unlimited. Click to edit Master...title style 4 • Welding of Armor Steels favors all these conditions for HIC • Hydrogen Present in Sufficient Degree – Derived from moisture in the

  18. Allergic reaction to stainless steel sternotomy wires requiring removal: A case report and literature review.

    Science.gov (United States)

    Lopez, J; Sachithanandan, A; Leow, M

    2016-06-01

    Hypersensitivity to stainless steel sternal sutures are an uncommon occurrence. We present a case of such a patient who developed chronic tissue overgranulation over a sternotomy wound eight weeks post-operatively. Primary suspicion was infection, a more common complication however radiological and laboratory investigation showed otherwise. Conservative management provided limited ephemeral success. After ensuring adequate sternal bone healing, the sutures and granulation tissue were eventually surgically removed without complication and the reoperated wound healed well.

  19. Stabilization of growth of a pearlite colony because of interaction between carbon and lattice dilatations

    Science.gov (United States)

    Razumov, I. K.

    2017-10-01

    The previously proposed model of pearlite transformation develops taking into account the possible interaction between carbon and lattice dilatations arising in austenite near the pearlite colony. The normal stresses caused by the colony stimulate autocatalysis of plates, and tangential stresses promote the stabilization of the transformation front. The mechanism of ferrite branching, which can play an important role in the kinetics of pearlite and bainite transformations, is discussed.

  20. Comparative Evaluation of Friction Resistance of Titanium, Stainless Steel, Ceramic and Ceramic with Metal Insert Brackets with Varying Dimensions of Stainless Steel Wire: An In vitro Multi-center Study.

    Science.gov (United States)

    Kumar, B Sunil; Miryala, Suresh; Kumar, K Kiran; Shameem, K; Regalla, Ravindra Reddy

    2014-09-01

    The orthodontist seeks an archwire-bracket combination that has both good biocompatibility and low friction. Hence, the aim of this multicenter in vitro study was to evaluate and compare the frictional resistance generated between titanium (Ti), stainless steel (SS), ceramic and ceramic with metal insert (CMI) brackets with SS wires of varying dimensions in a specially designed apparatus. The material used in this study were Ti, SS, Ceramic and CMI with 0.018″ slot manufactured with zero degree tip and -7° torque premolar brackets (3M, Unitek) and SS wires of varying dimensions (0.016″ round, 0.016 × 0.016″ square, 0.016 × 0.022″ rectangular and 0.017 × 0.025″ rectangular) used. The frictional resistance was measured using Instron Universal testing machine (Model no. 4301). The specimen population in each center composed each of 160 brackets and wires. Differences among the all bracket/wire combinations were tested using (one-way) ANOVA, followed by the student Newman Keuls multiple comparisons of means ranking (at P bracket in combination with 0.017 × 0.025″ SS rectangular wire produced significant force levels for an optimum orthodontic movement with least frictional resistance. Ti brackets have least resistance and rectangular wires produced significant force. These can be used to avoid hazards of Nickel. SS brackets revealed higher static frictional force values as the wire dimension increased and showed lower static friction than Ti brackets for all wires except the thicker wire. Our study recommends the preclusion of brackets with rough surface texture (Ti brackets) with SS ligature wire for ligating bracket and archwire are better to reduce friction.

  1. Comparison of nickel and chromium ions released from stainless steel and NiTi wires after immersion in Oral B®, Orthokin® and artificial saliva.

    Science.gov (United States)

    Jamilian, Abdolreza; Moghaddas, Omid; Toopchi, Shabnam; Perillo, Letizia

    2014-07-01

    Oral environment of the mouth is a suitable place for biodegradation of alloys used in orthodontic wires. The toxicity of these alloys namely nickel and chromium has concerned the researchers about the release of these ions from orthodontic wires and brackets. The aim of this study was to measure the levels of nickel and chromium ions released from 0.018" stainless steel (SS) and NiTi wires after immersion in three solutions. One hundred and forty-four round NiTi and 144 round SS archwires with the diameters of 0.018" were immersed in Oral B®, Orthokin® and artificial saliva. The amounts of nickel and chromium ions released were measured after 1, 6, 24 hours and 7 days. Two way repeated ANOVA showed that the amount of chromium and nickel significantly increased in all solutions during all time intervals (p nickel ions were released more in NiTi wire in all solutions compared with SS wire. The lowest increase rate was also seen in artificial saliva. There is general consensus in literature that even very little amounts of nickel and chromium are dangerous for human body specially when absorbed orally; therefore, knowing the precise amount of these ions released from different wires when immersed in different mouthwashes is of high priority.

  2. Nitrogen implantation into steel wire coated with zinc used as reinforcement in power transmission conductors

    Science.gov (United States)

    Castro-Maldonado, J. J.; Dulcé-Moreno, H. J.; V-Niño, E. D.

    2013-11-01

    In tropical environments, diversity of climatic factors such as temperature, relative humidity, deposition of environmental contaminants (such as sulfates and chlorides) affect a large proportion of materials exposed to the weather, and electrochemical corrosion is one of the phenomena that occur in the case of metals and alloys [1, 2]. It is therefore particularly important to study this behavior in the Zinc-coated steel, since this material is used for its economy in the industry specifically in the area of transport of electricity.

  3. The heterogeneous electrochemical characteristics of mild steel in the presence of local glucose oxidase-A study by the wire beam electrode method

    International Nuclear Information System (INIS)

    Wang Wei; Lu Yonghong; Zou Yan; Zhang Xia; Wang Jia

    2010-01-01

    The influence of glucose oxidase (GOD) activity on the heterogeneous electrochemistry at artificial biofilm/mild steel interface was first characterized by the wire beam electrode (WBE) method. Potential/current distribution maps show that a cathodic zone can be formed at the GOD capsule site. The cathodic zone is gradually weakened due to the gluconic acid production in seawater. When GOD capsule is confined on rusted WBE surfaces, the formerly formed anodic zone is gradually changed into cathodic zone, in the presence of glucose. The novel device developed in our laboratory demonstrates powerful applications in heterogeneous electrochemistry measurements at the biofilm/mild steel interfaces.

  4. Nickel cobaltite nanograss grown around porous carbon nanotube-wrapped stainless steel wire mesh as a flexible electrode for high-performance supercapacitor application

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Zheng, Zhi-Bin; Lai, Yu-Sheng; Jow, Jiin-Jiang

    2015-01-01

    Graphical abstract: Nickel cobaltite nanograss with bimodal pore size distribution is grown around the carbon nanotube-wrapped stainless steel wire mesh as a high capacitance and stable electrode for high-performance and flexible supercapacitors. - Highlights: • NiCo 2 O 4 nanograss with bimodal pore size distribution is hydrothermally prepared. • Carbon nanotubes (CNTs) wrap around stainless steel (SS) wire mesh as a scaffold. • NiCo 2 O 4 grown on CNT-wrapped SS mesh shows excellent capacitive performance. • Porous CNT layer allows for rapid transport of electron and electrolyte. - Abstract: Nickel cobaltite nanograss with bimodal pore size distribution (small and large mesopores) is grown on various electrode substrates by one-pot hydrothermal synthesis. The small pores (<5 nm) in the nanograss of individual nanorods contribute to large surface area, while the large pore channels (>20 nm) between nanorods offer fast transport paths for electrolyte. Carbon nanotubes (CNTs) with high electrical conductivity wrap around stainless steel (SS) wire mesh by electrophoresis as an electrode scaffold for supporting the nickel cobaltite nanograss. This unique electrode configuration turns out to have great benefits for the development of supercapacitors. The specific capacitance of nickel cobaltite grown around CNT-wrapped SS wire mesh reaches 1223 and 1070 F g −1 at current densities of 1 and 50 A g −1 , respectively. CNT-wrapped SS wire mesh affords porous and conductive networks underneath the nanograss for rapid transport of electron and electrolyte. Flexible CNTs connect the nanorods to mitigate the contact resistance and the volume expansion during cycling test. Thus, this tailored electrode can significantly reduce the ohmic resistance, charge-transfer resistance, and diffusive impedance, leading to high specific capacitance, prominent rate performance, and good cycle-life stability.

  5. Crack repair welding by CMT brazing using low melting point filler wire for long-term used steam turbine cases of Cr-Mo-V cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Murakami, Aoi; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Matsumura, Hideo [Chugoku Electric Power Co., 3-9-1 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2016-06-01

    Surface melting by gas tungsten arc (GTA) welding and overlaying by cold metal transfer (CMT) brazing using low melting point filler wire were investigated to develop a repair process for cracks in worn cast steel of steam turbine cases. Cr-Mo-V cast steel, operated for 188,500 h at 566 °C, was used as the base material. Silver and gold brazing filler wires were used as overlaying materials to decrease the heat input into the base metal and the peak temperature during the welding thermal cycle. Microstructural analysis revealed that the worn cast steel test samples contained ferrite phases with intragranular precipitates of Cr{sub 7}C{sub 3}, Mo{sub 2}C, and CrSi{sub 2} and grain boundary precipitates of Cr{sub 23}C{sub 6} and Mo{sub 2}C. CMT brazing using low melting point filler wire was found to decrease the heat input and peak temperature during the thermal cycle of the process compared with those during GTA surface melting. Thus, the process helped to inhibit the formation of hardened phases such as intermetallics and martensite in the heat affected zone (HAZ). Additionally, in the case of CMT brazing using BAg-8, the change in the hardness of the HAZ was negligible even though other processes such as GTA surface melting cause significant changes. The creep-fatigue properties of weldments produced by CMT brazing with BAg-8 were the highest, and nearly the same as those of the base metal owing to the prevention of hardened phase formation. The number of fracture cycles using GTA surface melting and CMT brazing with BAu-4 was also quite small. Therefore, CMT brazing using low melting point filler wire such as BAg-8 is a promising candidate method for repairing steam turbine cases. However, it is necessary to take alloy segregation during turbine operation into account to design a suitable filler wire for practical use.

  6. Solid-phase microextraction of Methylene Blue using carboxy graphene-modified steel wires, and its detection by electrochemiluminescence

    International Nuclear Information System (INIS)

    Wang, Sui; Lv, Shasha; Guo, Zhiyong; Jiang, Feng

    2014-01-01

    We report on a new solid phase for microextraction (SPME) of Methylene Blue (MB). It was obtained by immobilizing carboxy graphene (G-COOH) on a stainless steel wire. Scanning electron micrography showed the surface to be homogeneous, porous and wrinkled. The effects of sample solution pH, extraction time, stirring rate, desorption time and of desorption solvent on the efficiency of extraction of MB were optimized. The new SPME was coupled to electrochemiluminescence detection of MB and gave a linear analytical range from 2.7 nM to 1.3 μM, and the detection limit is 0.89 nM which is better than other methods. When considering the enrichment factor of ∼20, the resulting detection limit is estimated to be 45 pM. The new SPME fiber was successfully applied to the analysis of MB in spiked real water samples. Recoveries range from 95.7 % to 113.0 %, and relative standard deviations are <5.0 %, which showed the good reproducibility of the method. (author)

  7. Effects of thermal aging and neutron irradiation on the mechanical properties of three-wire stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.

    1997-05-01

    Thermal aging of three-wire series-arc stainless steel weld overlay cladding at 288 degrees C for 1605 h resulted in an appreciable decrease (16%) in the Charpy V-notch (CVN) upper-shelf energy (USE), but the effect on the 41-J transition temperature shift was very small (3 degrees C). The combined effect of aging and neutron irradiation at 288 degrees C to a fluence of 5 x 10 19 neutrons/cm 2 (> 1 MeV) was a 22% reduction in the USE and a 29 degrees C shift in the 41-J transition temperature. The effect of thermal aging on tensile properties was very small. However, the combined effect of irradiation and aging was an increase in the yield strength (6 to 34% at test temperatures from 288 to -125 degrees C) but no apparent change in ultimate tensile strength or total elongation. Neutron irradiation reduced the initiation fracture toughness (J Ic ) much more than did thermal aging alone. Irradiation slightly decreased the tearing modulus, but no reduction was caused by thermal aging alone. Other results from tensile, CVN, and fracture toughness specimens showed that the effects of thermal aging at 288 or 343 degrees C for 20,000 h each were very small and similar to those at 288 degrees C for 1605 h. The effects of long-term thermal exposure time (50,000 h and greater) at 288 degrees C will be investigated as the specimens become available in 1996 and beyond

  8. Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface

    Science.gov (United States)

    Shahrestani, S.; Ismail, M. C.; Kakooei, S.; Beheshti, M.; Zabihiazadboni, M.; Zavareh, M. A.

    2018-03-01

    A simple technique to fabricate the iridium oxide pH sensor is useful in several applications such as medical, food processing and engineering material where it is able to detect the changes of pH. Generally, the fabrication technique can be classified into three types: electro-deposition iridium oxide film (EIrOF), activated iridium oxide film (AIROF) and sputtering iridium oxide film (SIROF). This study focuses on fabricating electrode, calibration and test. Electro-deposition iridium oxide film is a simple and effective method of fabricating this kind of sensor via cyclic voltammetry process. The iridium oxide thick film was successfully electrodeposited on the surface of stainless steel wire with 500 cycles of sweep potential. A further analysis under FESEM shows detailed image of iridium oxide film which has cauliflower-liked microstructure. EDX analysis shows the highest element present are iridium and oxygen which concluded that the process is successful. The iridium oxide based pH sensor has shown a good performance in comparison to conventional glass pH sensor when it is being calibrated in buffer solutions with 2, 4, 7 and 9 pH values. The iridium oxide pH sensor is specifically designed to measure the pH on the surface of metal plate.

  9. Slot deformation of various stainless steel bracket due to the torque force of the beta-titanium wire

    Science.gov (United States)

    Huda, M. M.; Siregar, E.; Ismah, N.

    2017-08-01

    Stainless steel bracket slot deformation ffects the force applied to teeth and it can impede tooth movement and prolong orthodontic treatment time. The aim of this study is to determine the slot deformation due to torque of a 0.021 × 0.025 inch Beta Titanium wire with a torsional angle of 30° and 45° for five different bracket brands: y, 3M, Biom, Versadent, Ormco, and Shinye. The research also aims to compare the deformation and amount of torque among all five bracket brands at torsional angles of 30° and 45°. Fifty stainless steel edgewise brackets from the five bracket group brands (n=10) were attached to acrylic plates. The bracket slot measurements were carried out in two stages. In the first stage, the, deformation was measured by calculating the average bracket slot height using a stereoscopy microscope before and after application of torque. In the second stage, the torque was measured using a torque measurement apparatus. The statistical analysis shows that slot deformations were found on all five bracket brands with a clinical permanent deformation on the Biom (2.79 μm) and Shinye (2.29 μm) brackets. The most torque was observed on the 3M bracket, followed by the Ormco, Versadent, Shinye, and Biom brackets. When the brands were compared, a correlation between bracket slot deformation and the amount of torque was found, but the correlation was not statistically significant for the 3M and Ormco brackets and the Biom and Shinye brackets. There is a difference in the amount of torque between the five brands with a torsional angle of 30° (except the 3M and Ormco brackets) and those with a torsional angle of 45°. The composition of the metal and the manufacturing process are the factors that influence the occurrence of bracket slot deformation and the amount of torque. A manufacturing process using metal injection molding (MIM) and metal compositions of AISI 303 and 17-4 PH stainless steel reduce the risk of deformation.

  10. Estimation of changes in nickel and chromium content in nickel-titanium and stainless steel orthodontic wires used during orthodontic treatment: An analytical and scanning electron microscopic study

    Directory of Open Access Journals (Sweden)

    Vandana Kararia

    2015-01-01

    Full Text Available Introduction: The biocompatibility of orthodontic dental alloys has been investigated over the past 20 years, but the results have been inconclusive. The study compares standard 3 M Unitek nickel-titanium (NiTi and stainless steel archwires with locally available JJ orthodontics wires. Scanning electron microscope (SEM study of surface changes and complexometric titration to study compositional change was performed. Materials and Methods: Ten archwires each of group 1-3 M 0.016" NiTi, group 2-JJ 0.016" NiTi, group 3-3 M 0.019" FNx010.025" SS and group 4-JJ SS contributed a 10 mm piece of wire for analysis prior to insertion in the patient and 6 weeks post insertion. SEM images were recorded at Χ2000, Χ4000 and Χ6000 magnification. The same samples were subjected to complexiometric titration using ethylenediaminetetraacetic acid to gauge the actual change in the composition. Observations and Results: The SEM images of all the archwires showed marked changes with deep scratches and grooves and dark pitting corrosion areas post intraoral use. 3M wires showed an uniform criss-cross pattern in as received wires indicating a coating which was absent after intraoral use. There was a significant release of Nickel and Chromium from both group 3 and 4. Group 2 wires released ions significantly more than group 1 (P = 0.0. Conclusion: Extensive and stringent trials are required before certifying any product to be used in Orthodontics.

  11. Double Fillet Welding of Carbon Steel T-Joint by Double Channel Shielding Gas Metal Arc Welding Method Using Metal Cored Wire

    Directory of Open Access Journals (Sweden)

    Mert T.

    2017-06-01

    Full Text Available Low carbon steel material and T-joints are frequently used in ship building and steel constructions. Advantages such as high deposition rates, high quality and smooth weld metals and easy automation make cored wires preferable in these industries. In this study, low carbon steel materials with web and flange thicknesses of 6 mm, 8 mm and 10 mm were welded with conventional GMAW and double channel shielding gas metal arc welding (DMAG method to form double fillet T-joints using metal cored wire. The difference between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, weld bead and HAZ geometry of the joints and thermal camera temperature measurements. When weld bead and HAZ geometries are focused, it was seen filler metal molten area increased and base metal molten area decreased in DMAG of low carbon steel. When compared with traditional GMAW, finer and acicular structures in weld metal and more homogenous and smaller grains in HAZ are obtained with double channel shielding gas metal arc welding.

  12. Defects detection on the welded reinforcing steel with self-shielded wires by vibration tests

    Directory of Open Access Journals (Sweden)

    Crâştiu Ion

    2017-01-01

    Full Text Available The aim of this paper is the development and validation of a vibroacustic technique to welding defects detection, especially for welded reinforcing structures. In welded structures subjected to dynamic cyclic loads may appear and propagate fatigue cracks due to local structural damage. These cracks may initiate due to the technological parameters used in welding process, or due to environmental operating conditions. By the means of Finite Element Method (FEM, the natural frequencies and shape modes of more welded steel specimens are determined. The analysis is carried out in undamaged condition as well as damaged one, after artificially induced damages. The experimental measurement of the vibroacustic response is carried out by using a condenser microphone, which is suitable for high-fidelity acoustic measurements in the frequency range of 20 – 20.000 Hz. The vibration responses of the welded specimens, in free-free conditions, are carried out using algorithms based on Fast Fourier Transform (FFT, and Prony's series. The results are compared to modal parameters estimated using FE Analysis.

  13. Effect of free Cr content on corrosion behavior of 3Cr steels in a CO2 environment

    Science.gov (United States)

    Li, Wei; Xu, Lining; Qiao, Lijie; Li, Jinxu

    2017-12-01

    The corrosion behavior of 3Cr steels with three microstructures (martensite, bainite, combined ferrite and pearlite) in simulated oil field formation water with a CO2 partial pressure of 0.8 MPa was investigated. The relationships between Cr concentrations in corrosion scales and corrosion rates were studied. The precipitated phases that contained Cr were observed in steels of different microstructures, and free Cr content levels were compared. The results showed that steel with the martensite microstructure had the highest free Cr content, and thus had the highest corrosion resistance. The free Cr content of bainite steel was lower than that of martensite steel, and the corrosion rate of bainite steel was higher than that of martensite steel. Because large masses of Cr were combined in ferrite and pearlite steel, the corrosion rates of ferrite and pearlite steel were the highest. Free Cr content in steel affects its corrosion behavior greatly.

  14. Experimental Evaluation of a New Single Wire Stainless Steel Fishscale Coronary Stent (Freedomª).

    Science.gov (United States)

    Wang; Verbeken; Mukherjee; Zhou; De Scheerder IK

    1996-10-01

    Recent randomized clinical trials revealed a significant reduction in angiographic restenosis rates when adjunctive stenting was performed after conventional coronary balloon angioplasty. Current approved coronary stents are however hampered by their rigidity, limiting their trackability in tortuous vessels and furthermore, needing high pressure deployment for optimal vessel apposition. New coronary stents are currently under development, using more biocompatible metal alloys and/or designs which better align to the vessel wall at moderate deployment pressures. We evaluated the safety, efficacy, angiographic and histological effect of a new stainless steel fishscale designed stent (Freedomª, Global Therapeutics, Co., USA) in a porcine coronary and peripheral artery model. Implantation in the right coronary artery was successful in all 20 pigs. Control angiograms at 6 weeks follow-up demonstrated patent vessels and morphologic evaluation showed only a mild fibromuscular neointimal response resulting in an area stenosis of 28.7 +/- 0.18% and a mean neointimal hyperplasia of 0.18 +/- 0.25 mm. Comparison with the Palmaz-Schatzª coronary stent in a porcine peripheral artery model demonstrated similar quantitative angiographic and morphologic vessel analysis results. Also the morphometric data were comparable. Area stenosis: Palmaz-Schatz: 37 +/- 0.24%, Freedom: 21 +/- 0.14%, p = 0.07. Mean neointimal hyperplasia: Palmaz-Schatz: 0.33 +/- 0.24 mm, Freedom: 0.18 +/- 0.08 mm, p = 0.08. CONCLUSION: Freedom coronary stent implantation in a porcine model resulted in a high procedural success without subacute thrombotic occlusions, despite no further anticoagulation nor antiplatelet therapy. Six weeks histopathological and morphometric evaluation demonstrated only a mild fibromuscular neointimal hyperplasia.

  15. Effects of filler wire on residual stress in electron beam welded QCr0.8 copper alloy to 304 stainless steel joints

    International Nuclear Information System (INIS)

    Zhang, Bing-Gang; Zhao, Jian; Li, Xiao-Peng; Chen, Guo-Qing

    2015-01-01

    The electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with or without copper filler wire was studied in detail. The temperature fields and magnitude and distribution of stress fields in the joints during the welding process were numerically simulated using finite element method. The temperature cycles and residual stresses were also experimentally measured by thermometric and hole-drilling methods, respectively. The accuracy of the modeling procedure was verified by the good agreement between the calculated results and experimental data. The temperature distribution in the joint was found to be asymmetric along the center of weld. In particular, the temperature in the copper alloy plate is much higher than that in the 304 SS plate owing to the great difference in thermal conductivity between the two materials. The peak three-dimensional residual stresses all appeared at the interface between the copper and steel in the two different joints. Furthermore, the weld was subjected to tensile stress. The longitudinal residual stress, generally the most harmful to the integrity of the structure among the stress components in EBW with filler wire (EBFW), was 53 MPa lower than that of autogenous EBW (AEBW), and the through-thickness residual stress was 12 MPa lower. The transverse residual stress of EBFW was 44 MPa higher than that of AEBW. However, analysis of the von Mises stress showed that the EBFW process effectively reduced the extent of the high residual stress region in the weld location and the magnitude of the residual stresses in the copper side compared with those of the AEBW joint. - Highlights: • Copper and steel was welded by electron beam welding with copper filler wire. • The copper wire fed into gap can reduce the peak value of residual stress. • The peak value of longitudinal stress can be reduced 53 MPa by the filler wire. • The range of nov Mises stress in the weld could be reduced by the wire

  16. Comparing the Knotless Tension Band and the Traditional Stainless Steel Wire Tension Band Fixation for Medial Malleolus Fractures: A Retrospective Clinical Study

    Directory of Open Access Journals (Sweden)

    Michael W. Downey

    2016-01-01

    Full Text Available The traditional stainless steel wire tension band (WTB has been popularized for small avulsion fractures at the medial malleolus. Despite the tension band principle creating a stable construct, complications continue to arise utilizing the traditional stainless steel WTB with patients experiencing hardware irritation at the tension band site and subsequent hardware removal. Coupled with hardware irritation is fatigue failure with the wire. The goal of this investigation was to retrospectively compare this traditional wire technique to an innovative knotless tension band (KTB technique in order to decrease costly complications. A total of 107 patients were reviewed with a minimum follow-up of 1 year. Outcome measures include descriptive data, fracture classification, results through economic costs, and fixation results (including hardware status, healing status, pain status, and time to healing. The KTB group had a 13% lower true cost as compared to the WTB group while the fixation results were equivocal for the measured outcomes. Our results demonstrate that the innovative KTB is comparable to the traditional WTB while offering a lower true cost, an irritation free reduction all without the frustration of returning to the operating room for additional hardware removal, which averages approximately to $8,288.

  17. Investigation of the fabrication process of hot-worked stainless-steel and Mo sheathed PbMo6 S8 wires

    International Nuclear Information System (INIS)

    Yamasaki, H.; Kimura, Y.

    1988-01-01

    Stainless-steel and Mo sheathed PbMo 6 S 8 wires have been fabricated by hot working from modified PbS, Mo, and MoS 2 mixed powders which were prepared by reacting Pb, Mo, and S at 530 0 C. Critical current densities were investigated for different preparation conditions, and it is revealed that obtaining continuous current path between PbMo 6 S 8 grains is the most important factor to achieve high critical current density. The J/sub c/ value of 2.8 x 10 4 Acm 2 (8 T), 7.8 x 10 3 Acm 2 (15 T), and 1.3 x 10 3 Acm 2 (23 T) was observed for the PbMo 6 S/sub 7.0/ wire heat treated at 700 0 C.copic

  18. Right wire in orthodontics: a review

    OpenAIRE

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  19. INFLUENCE OF DRAWING SPEED ON THE TEMPERATURE AND DEFLECTED MODE IN WIRE OF HIGH-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    M. N. Vereshchagin

    2008-01-01

    Full Text Available The calculation of deflected mode and temperature fields with the help of the method of finite elements for zones of wire deformation in dies for current and new technology of drawing of wire with diameter 0,41 mm is carried out.

  20. Effects of Rolling and Cooling Conditions on Microstructure of Umbrella-Bone Steel

    Science.gov (United States)

    Wu, Yan-Xin; Fu, Jian-Xun; Zhang, Hua; Xu, Jie; Zhai, Qi-Jie

    2017-10-01

    The effects of deformation temperature and cooling rate on the micro-structure evolution of umbrella-bone steel was investigated using a Gleeble thermal-mechanical testing machine and dynamic continuous cooling transformation (CCT) curves. The results show that fast cooling which lowers the starting temperature of ferrite transformation leads to finer ferrite grains and more pearlite. Low temperature deformation enhances the hardening effect of austenite and reduces hardenability, allowing a wider range of cooling rates and thus avoiding martensite transformation after deformation. According to the phase transformation rules, the ultimate tensile strength and reduction in area of the wire rod formed in the optimized industrial trial are 636 MPa and 73.6 %, respectively, showing excellent strength and plasticity.

  1. Microstructure and Microsegregation of an Inconel 625 Weld Overlay Produced on Steel Pipes by the Cold Metal Transfer Technique

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2014-10-01

    Full Text Available The aim of this work was to investigate the development of microstructure and variations in chemical composition in commercial Inconel 625 coatings on a ferritic-pearlitic steel overlaid by the CMT method.

  2. Methods of making bainitic steel materials

    Science.gov (United States)

    Bakas, Michael Paul; Chu, Henry Shiu-Hung; Zagula, Thomas Andrew; Langhorst, Benjamin Robert

    2018-01-16

    Methods of making bainitic steels may involve austenitizing a quantity of steel by exposing the quantity of steel to a first temperature. A composition of the quantity of steel may be configured to impede formation of non-bainite ferrite, pearlite, and Widmanstatten ferrite. The quantity of steel may be heat-treated to form bainite by exposing the quantity of steel to a second, lower temperature. The second, lower temperature may be stabilized by exposing the quantity of steel to the second, lower temperature in the presence of a thermal ballast.

  3. Poly(ionic liquids)-coated stainless-steel wires packed into a polyether ether ketone tube for in-tube solid-phase microextraction.

    Science.gov (United States)

    Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Luo, Chuannan; Sun, Min

    2017-12-01

    An in-tube solid-phase microextraction device was developed by packing poly(ionic liquids)-coated stainless-steel wires into a polyether ether ketone tube. An anion-exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)-coated stainless-steel wires were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. The extraction device was connected to high-performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03-20 μg/L, detection limits of 0.010-0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1-118.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Separation of Electrolytic Reduction Product from Stainless Steel Wire Mesh Cathode Basket via Salt Draining and Reuse of the Cathode Basket

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2017-01-01

    Full Text Available We demonstrated that the metallic product obtained after electrolytic reduction (also called oxide reduction (OR can be simply separated from a stainless steel wire mesh cathode basket only by using a salt drain. First, the OR run of a simulated oxide fuel (0.6 kg/batch was conducted in a molten Li2O–LiCl salt electrolyte at 650°C. The simulated oxide fuel of the porous cylindrical pellets was used as a cathode by loading a stainless steel wire mesh cathode basket. Platinum was employed as an anode. After the electrolysis, the residual salt of the cathode basket containing the reduction product was drained by placing it at gas phase above the molten salt using a holder. Then, at a room temperature, the complete separation of the reduction product from the cathode basket was achieved by inverting it without damaging or deforming the basket. Finally, the emptied cathode basket obtained after the separation was reused for the second OR run by loading a fresh simulated oxide fuel. We also succeeded in the separation of the metallic product from the reused cathode basket for the second OR run.

  5. All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Youngjin [Department of Clothing and Textiles, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Jung Tae; Koh, Jong Kwan [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Eunae, E-mail: eakim@yonsei.ac.kr [Department of Clothing and Textiles, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2013-10-01

    Highlights: • All-solid, flexible solar textile fabricated with DSSCs is demonstrated. • DSSCs woven into a satin structure and transparent PET film are used. • Solar textile showed a high efficiency of 2.57%. -- Abstract: An all-solid, flexible solar textile fabricated with dye-sensitized solar cells (DSSCs) woven into a satin structure and transparent poly(ethylene terephthalate) (PET) film was demonstrated. A ZnO nanorod (NR) vertically grown from fiber-type conductive stainless steel (SS) wire was utilized as a photoelectrode, and a Pt-coated SS wire was used as a counter electrode. A graft copolymer, i.e. poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a solid electrolyte. The conditions for the growth of ZnO NR and sufficient dye loading were investigated to improve cell performance. The adhesion of PET films to DSSCs resulted in physical stability improvements without cell performance loss. The solar textile with 10 × 10 wires exhibited an energy conversion efficiency of 2.57% with a short circuit current density of 20.2 mA/cm{sup 2} at 100 mW/cm{sup 2} illumination, which is the greatest account of an all-solid, ZnO-based flexible solar textile. DSSC textiles with woven structures are applicable to large-area, roll-to-roll processes.

  6. Determinación del límite de rotura de un cable por Método de los Elementos Finitos. // Determination of resistance load on steel wire rope by Finite Elements Method.

    Directory of Open Access Journals (Sweden)

    F. Aguilar Parés

    2008-09-01

    Full Text Available En ocasiones, se desconocen las características originales de un cable de acero. En estos casos, generalmente se estima ellímite de rotura de un cable a partir del límite de rotura de un alambre del cable. En el presente trabajo, se propone emplearun método para estimar el límite de rotura del cable en base al modelado del cordón mediante elementos finitos. En elcontenido se explica detalladamente el procedimiento y es ejemplificado. El procedimiento es iniciado con el dibujo delcable en un programa de diseño gráfico parámetrico y posteriormente se describen las características generales delmodelado con un programa especializado en el Método de Elementos Finitos. En el análisis se incluye la influencia delcontacto entre los alambres que forman el cordón. Por último, se comparan los resultados obtenidos para el límite de roturadel cable con los datos declarados por el fabricante. Con este procedimiento fueron obtenidos valores mediante modeladodel cable con diferencias entre el 11% al 2,5% en relación al límite de rotura declarado por los fabricantes. Las diferenciasfueron evidenciadas en dependencia de la calidad del mallado empleado.Palabras claves: Cables de acero, elementos finitos, carga límite de rotura._________________________________________________________________________Abstract:In occasions, the original characteristics of steel wire rope are unknown. In these cases, could be estimated the resistanceof the wire rope knowing the wire resistance. In this proposal method for estimating the resistance load of steel wire thecord of the wire rope is modelling using finite elements. Procedure is explained and a sample with a selected wire rope ispresented. It is started with the drawing of the wire rope by professional software. General characteristics of themodelling are described with FEM software. In the analysis, the contact influence in the wires of the cord is included.Lastly, the obtained results of the resistance

  7. Impact toughness and microstructure relationship in niobium- and vanadium-microalloyed steels processed with varied cooling rates to similar yield strength

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, S. [Center for Structural and Functional Materials and Department of Chemical Engineering, University of Louisiana at Lafayette, LA 70504-4130 (United States); Misra, R.D.K. [Center for Structural and Functional Materials and Department of Chemical Engineering, University of Louisiana at Lafayette, LA 70504-4130 (United States)]. E-mail: dmisra@louisiana.edu; Mannering, T. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Panda, D. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Jansto, S.G. [Reference Metals, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2006-11-15

    We describe here the relationship between microstructure and impact toughness behavior as a function of cooling rate for industrially processed Nb- and V-microalloyed steels of almost similar yield strength ({approx}60 ksi). Both Nb- and V-microalloyed steels exhibited increase in toughness with increase in cooling rates during processing. However, Nb-microalloyed steels were characterized by relatively higher toughness than the V-microalloyed steels under identical processing conditions. The microstructure of Nb- and V-microalloyed steels processed at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while Nb-microalloyed steels besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite. The microstructure of Nb- and V-microalloyed steels processed at relatively higher cooling rate contained degenerated pearlite and lath-type (acicular) ferrite in addition to the primary ferrite-pearlite constituents. The fraction of degenerated pearlite was higher in Nb-microalloyed steels than in the V-microalloyed steels. In both Nb- and V-microalloyed steels the precipitation characteristics were similar with precipitation occurring at grain boundaries, dislocations, and in the ferrite matrix. Fine-scale ({approx}5-10 nm) precipitation was observed in the ferrite matrix of both the steels. The selected area diffraction (SAD) pattern analysis revealed that these fine precipitates were MC type of niobium and vanadium carbides in the respective steels and followed Baker-Nutting orientation relationship with the ferrite matrix. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels is attributed to higher fraction of degenerated pearlite in the steel.

  8. Impact toughness and microstructure relationship in niobium- and vanadium-microalloyed steels processed with varied cooling rates to similar yield strength

    International Nuclear Information System (INIS)

    Shanmugam, S.; Misra, R.D.K.; Mannering, T.; Panda, D.; Jansto, S.G.

    2006-01-01

    We describe here the relationship between microstructure and impact toughness behavior as a function of cooling rate for industrially processed Nb- and V-microalloyed steels of almost similar yield strength (∼60 ksi). Both Nb- and V-microalloyed steels exhibited increase in toughness with increase in cooling rates during processing. However, Nb-microalloyed steels were characterized by relatively higher toughness than the V-microalloyed steels under identical processing conditions. The microstructure of Nb- and V-microalloyed steels processed at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while Nb-microalloyed steels besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite. The microstructure of Nb- and V-microalloyed steels processed at relatively higher cooling rate contained degenerated pearlite and lath-type (acicular) ferrite in addition to the primary ferrite-pearlite constituents. The fraction of degenerated pearlite was higher in Nb-microalloyed steels than in the V-microalloyed steels. In both Nb- and V-microalloyed steels the precipitation characteristics were similar with precipitation occurring at grain boundaries, dislocations, and in the ferrite matrix. Fine-scale (∼5-10 nm) precipitation was observed in the ferrite matrix of both the steels. The selected area diffraction (SAD) pattern analysis revealed that these fine precipitates were MC type of niobium and vanadium carbides in the respective steels and followed Baker-Nutting orientation relationship with the ferrite matrix. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels is attributed to higher fraction of degenerated pearlite in the steel

  9. Effect of substrates on microstructure and mechanical properties of nano-eutectic 1080 steel produced by aluminothermic reaction

    International Nuclear Information System (INIS)

    La, Peiqing; Li, Zhengning; Li, Cuiling; Hu, Sulei; Lu, Xuefeng; Wei, Yupeng; Wei, Fuan

    2014-01-01

    Nano-eutectic bulk 1080 carbon steel was prepared on glass and copper substrates by an aluminothermic reaction casting. The microstructure of the steel was analyzed by an optical microscope, transmission electron microscopy, an electron probe micro-analyzer, a scanning electron microscope and X-ray diffraction. Results show that the microstructure of the steel consisted of a little cementite and lamellar eutectic pearlite. Average lamellar spacing of the pearlite prepared on copper and glass substrates was about 230 nm and 219 nm, respectively. Volume fraction of the pearlite of the two steels was about 95%. Hardness of the steel was about 229 and 270 HV. Tensile strength was about 610 and 641 MPa and tensile elongation was about 15% and 8%. Compressive strength was about 1043 and 1144 MPa. Compared with the steel prepared on copper substrate, the steel prepared on glass substrate had smaller lamellar spacing of the pearlite phase and higher strength, and low ductility due to the smaller spacing. - Highlights: • 1080-carbon steels were successfully prepared by an aluminothermic reaction casting. • Lamellar spacing of the nanoeutetic pearlite is less than 250 nm. • The compressive strength of the steel is about 1144 MPa. • The tensile ductility of the steel is about 15%

  10. Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

    Directory of Open Access Journals (Sweden)

    Liu Xiucheng

    2016-01-01

    Full Text Available Tunnel magnetoresistive (TMR devices have superior performances in weak magnetic field detection. In this study, TMR devices were first employed to form a circular magnetic flux leakage (MFL sensor for slight wire rope flaw detection. Two versions of this tailor-made circular TMR-based sensor array were presented for the inspection of wire ropes with the diameters of 14 mm and 40 mm, respectively. Helmholtz-like coils or a ferrite magnet-based magnetizer was selected to provide the proper magnetic field, in order to meet the technical requirements of the TMR devices. The coefficient of variance in the flaw detection performance of the sensor array elements was experimentally estimated at 4.05%. Both versions of the MFL sensor array were able to detect multiple single-broken wire flaws in the wire ropes. The accurate axial and circumferential positions of these broken wire flaws were estimated from the MFL scanning image results. In addition, the proposed TMR-based sensor array was applied to detect the MFL signal induced by slight surface wear defects. A mutual correlation analysis method was used to distinguish the signals caused by the lift-off fluctuation from the MFL scanning image results. The MFL sensor arrays presented in this study provide inspiration for the designing of tailor-made TMR-based circular sensor arrays for cylindrical ferromagnetic structural inspections.

  11. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao, 266100 (China)], E-mail: wwei@ouc.edu.cn; Zhang Xia [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao, 266100 (China); Wang Jia [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao, 266100 (China); State Key Laboratory for Corrosion and Protection, Shenyang, 110016 (China)

    2009-09-30

    The wire beam electrode (WBE) method was first used to study the activity of local glucose oxidase (GOD) on stainless steel surface in seawater. Glucose oxidase was immobilized in calcium alginate gel capsules, which were embedded in a layer of artificial biofilm (calcium alginate gel) on the WBE surface. The potential/current distributions on the WBE surface were mapped using a newly developed device for the WBE method in our lab. The results demonstrated that the catalysis of H{sub 2}O{sub 2} formation by GOD can produce local noble potential peaks and cathodic current zones on the stainless steel surface. An interesting fluctuant current distribution around cathodic zones was observed the first time. The potential and current maps showed that the enzyme heterogeneity of the artificial biofilm caused a corresponding electrochemical heterogeneity at the biofilm/metal interface. The application of the WBE method to ennoblement study enables us to observe the heterogeneous electrochemistry at biofilm/stainless steel interface directly, providing us with a powerful tool to investigate other biofilm-related processes such as microbially influenced corrosion (MIC)

  12. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method

    International Nuclear Information System (INIS)

    Wang Wei; Zhang Xia; Wang Jia

    2009-01-01

    The wire beam electrode (WBE) method was first used to study the activity of local glucose oxidase (GOD) on stainless steel surface in seawater. Glucose oxidase was immobilized in calcium alginate gel capsules, which were embedded in a layer of artificial biofilm (calcium alginate gel) on the WBE surface. The potential/current distributions on the WBE surface were mapped using a newly developed device for the WBE method in our lab. The results demonstrated that the catalysis of H 2 O 2 formation by GOD can produce local noble potential peaks and cathodic current zones on the stainless steel surface. An interesting fluctuant current distribution around cathodic zones was observed the first time. The potential and current maps showed that the enzyme heterogeneity of the artificial biofilm caused a corresponding electrochemical heterogeneity at the biofilm/metal interface. The application of the WBE method to ennoblement study enables us to observe the heterogeneous electrochemistry at biofilm/stainless steel interface directly, providing us with a powerful tool to investigate other biofilm-related processes such as microbially influenced corrosion (MIC).

  13. Causes of Cracking in Quenching of the Parts Made of Steels and Cast Iron and Recommendations for Their Removal: A Review

    Science.gov (United States)

    Kuznetsov, A. A.; Rudnev, V. I.

    2017-12-01

    The domestic and foreign experience on revealing the causes of quenching cracking and its prevention is generalized. We consider the works performed on the machine parts made of carbon and alloyed pearlitic steel and quenchable cast irons.

  14. 76 FR 16607 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Partial Rescission of Antidumping...

    Science.gov (United States)

    2011-03-24

    ... accordance with 19 CFR 351.213(b), the Department received a timely request from Nucor Corporation (Nucor... the review pursuant to 19 CFR 351.213(d)(1). On February 24, 2011, Nucor and Cascade Steel withdrew...

  15. 76 FR 33218 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Initiation of Anti-Circumvention Inquiry of...

    Science.gov (United States)

    2011-06-08

    ... ArcelorMittal USA, et al.) and Nucor Corporation and Cascade Steel Rolling Mills, Inc. (collectively, Nucor/Cascade) requested that the Department of Commerce (the Department) initiate a scope inquiry...

  16. Life Cycle Assessment of Wire + Arc Additive Manufacturing compared to green sand casting and CNC milling in stainless steel

    NARCIS (Netherlands)

    Bekker, A.C.M.; Verlinden, J.C.

    2018-01-01

    Wire and Arc Additive Manufacturing (WAAM) is a metal 3D printing technique based on robotic welding. This technique yields potential in decreasing material consumption due to its high material efficiency and freedom of shape. Empirical measurements of WAAM, using a deposition rate of 1 kg/h, were

  17. Three-dimensional chemical analysis of laser-welded NiTi–stainless steel wires using a dual-beam FIB

    International Nuclear Information System (INIS)

    Burdet, P.; Vannod, J.; Hessler-Wyser, A.; Rappaz, M.; Cantoni, M.

    2013-01-01

    The biomedical industry has an increasing demand for processes to join dissimilar metals, such as laser welding of NiTi and stainless steel wires. A region of the weld close to the NiTi interface, which previously was shown to be prone to cracking, was further analyzed by energy dispersive spectrometry (EDS) extended in the third dimension using a focused ion beam. As the spatial resolution of EDS analysis is not precise enough to resolve the finest parts of the microstructure, a new segmentation method that uses in addition secondary-electron images of higher spatial resolution was developed. Applying these tools, it is shown that this region of the weld close to the NiTi interface does not comprise a homogeneous intermetallic layer, but is rather constituted by a succession of different intermetallics, the composition of which can be directly correlated with the solidification path in the ternary Fe–Ni–Ti Gibbs simplex

  18. Visualization of hydrogen in steels by secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Takai, Kenichi

    2000-01-01

    Secondary ion mass spectrometry (SIMS) enables us to visualize hydrogen trapping sites in steels. Information about the hydrogen trapping sites in high-strength steels by SIMS is very important to discuss environmental embrittlement mechanism for developing steels with a high resistance to the environmental embrittlement. Secondary ion image analysis by SIMS has made possible to visualize the hydrogen and deuterium trapping sites in the steels. Hydrogen in tempered martensite steels containing Ca tends to accumulate on inclusions, at grain boundaries, and in segregation bands. Visualization of hydrogen desorption process by secondary ion image analysis confirms that the bonding between the inclusions and the hydrogen is strong. Cold-drawn pearlite steels trap hydrogen along cold-drawing direction. Pearlite phase absorbs the hydrogen more than ferrite phase does. This article introduces the principle of SIMS, its feature, analysis method, and results of hydrogen visualization in steels. (author)

  19. Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire

    Science.gov (United States)

    Huang, Bo; Zhang, Junyu; Wu, Qingsheng

    2017-07-01

    Tungsten Inner Gas (TIG) welding is employed for joining of China low activation martensitic (CLAM) steel. A new filler wire was proposed, and the investigation on welding with various heat input and welding passes were conducted to lower the tendency towards the residual of δ ferrite in the joint. With the optimized welding parameters, a butt joint by multi-pass welding with the new filler wire was prepared to investigate the microstructure and mechanical properties. The microstructure of the joint was observed by optical microscope (OM) and scanning electron microscope (SEM). The hardness, Charpy impact and tensile tests of the joint were implemented at room temperature (25 °C). The results revealed that almost full martensite free from ferrite in the joints were obtained by multipass welding with the heat input of 2.26 kJ/mm. A certain degree of softening occurred at the heat affected zone of the joint according to the results of tensile and hardness tests. The as welded joints showed brittle fracture in the impact tests. However, the joints showed toughness fracture after tempering and relatively better comprehensive performance were achieved when the joints were tempered at 740 °C for 2 h.

  20. In situ measurement of corrosion of type 316L stainless steel in 553 K pure water via the electrical resistance of a thin wire

    International Nuclear Information System (INIS)

    Ishida, Kazushige; Lister, Derek

    2012-01-01

    A system for the in situ monitoring of corrosion depth via electrical resistance measurements was applied to study the corrosion rate of type 316L stainless steel at 553 K in pure water. Corrosion depth was measured using a 50 μm diameter wire probe mounted axially in the tube. Measurements were in good agreement with literature data for both the hydrogen water chemistry (HWC) condition and the normal water chemistry (NWC) condition. Oxide film analyses by scanning electron microscopy and laser Raman spectroscopy on the wire probe and the tube showed no effects from shape of the test specimens or the application of electric current. Corrosion kinetics was evaluated by fitting equations to the measurements. Data for the HWC condition could be fitted by a two-step logarithmic-parabolic law. A single-step logarithmic law fitted data for the NWC condition. Changes in corrosion rate by the water chemistry changes were readily detected with the technique. Corrosion depth change could be observed for the water chemistry change from the NWC condition to the HWC condition with electrochemical corrosion potential (ECP) of -0.56 V vs. standard hydrogen electrode, which is lower than the ECP that the phase of iron oxide changes from α-Fe 2 O 3 to Fe 3 O 4 . (author)

  1. Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bo [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Zhang, Junyu [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Wu, Qingsheng, E-mail: qingsheng.wu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-07-15

    Tungsten Inner Gas (TIG) welding is employed for joining of China low activation martensitic (CLAM) steel. A new filler wire was proposed, and the investigation on welding with various heat input and welding passes were conducted to lower the tendency towards the residual of δ ferrite in the joint. With the optimized welding parameters, a butt joint by multi-pass welding with the new filler wire was prepared to investigate the microstructure and mechanical properties. The microstructure of the joint was observed by optical microscope (OM) and scanning electron microscope (SEM). The hardness, Charpy impact and tensile tests of the joint were implemented at room temperature (25 °C). The results revealed that almost full martensite free from ferrite in the joints were obtained by multipass welding with the heat input of 2.26 kJ/mm. A certain degree of softening occurred at the heat affected zone of the joint according to the results of tensile and hardness tests. The as welded joints showed brittle fracture in the impact tests. However, the joints showed toughness fracture after tempering and relatively better comprehensive performance were achieved when the joints were tempered at 740 °C for 2 h. - Highlights: •A new filler material was proposed to control ferrite content in CLAM weld metal. •Heat input affected ferrite content through influencing cooling rate during welding. •Multipass welding was a promising way to eliminate the ferrite in the weld.

  2. Statistical Analysis of Compressive and Flexural Test Results on the Sustainable Adobe Reinforced with Steel Wire Mesh

    Science.gov (United States)

    Jokhio, Gul A.; Syed Mohsin, Sharifah M.; Gul, Yasmeen

    2018-04-01

    It has been established that Adobe provides, in addition to being sustainable and economic, a better indoor air quality without spending extensive amounts of energy as opposed to the modern synthetic materials. The material, however, suffers from weak structural behaviour when subjected to adverse loading conditions. A wide range of mechanical properties has been reported in literature owing to lack of research and standardization. The present paper presents the statistical analysis of the results that were obtained through compressive and flexural tests on Adobe samples. Adobe specimens with and without wire mesh reinforcement were tested and the results were reported. The statistical analysis of these results presents an interesting read. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. This increase is statistically significant. The flexural response of Adobe has also shown improvement with the addition of wire mesh reinforcement, however, the statistical significance of the same cannot be established.

  3. SYSTEM ANALYSIS OF INTERRELATIONS BETWEEN SPECTRAL CHARACTERISTICS OF THE STEEL MICROSTRUCTURE PICTURE AND ITS MECHANICAL CHARACTERISTICS IN METALLURGICAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2009-01-01

    Full Text Available It is shown that spectral characteristics of functions of closeness of the pearlite inter-plate distances, determined by image of the rolled wire samples microstructures, correlate with its mechanical characteristics and also with characteristics of wire, produced of it.

  4. Multi-Response Optimization and Regression Analysis of Process Parameters for Wire-EDMed HCHCr Steel Using Taguchi’s Technique

    Directory of Open Access Journals (Sweden)

    K. Srujay Varma

    2017-04-01

    Full Text Available In this study, effect of machining process parameters viz. pulse-on time, pulse-off time, current and servo-voltage for machining High Carbon High Chromium Steel (HCHCr using copper electrode in wire EDM was investigated. High Carbon High Chromium Steel is a difficult to machine alloy, which has many applications in low temperature manufacturing, and copper is chosen as electrode as it has good electrical conductivity and most frequently used electrode all over the world. Tool making culture of copper has made many shops in Europe and Japan to used copper electrode. Experiments were conducted according to Taguchi’s technique by varying the machining process parameters at three levels. Taguchi’s method based on L9 orthogonal array was followed and number of experiments was limited to 9. Experimental cost and time consumption was reduced by following this statistical technique. Targeted output parameters are Material Removal Rate (MRR, Vickers Hardness (HV and Surface Roughness (SR. Analysis of Variance (ANOVA and Regression Analysis was performed using Minitab 17 software to optimize the parameters and draw relationship between input and output process parameters. Regression models were developed relating input and output parameters. It was observed that most influential factor for MRR, Hardness and SR are Ton, Toff and SV.

  5. 77 FR 13545 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Final Results of Antidumping Duty...

    Science.gov (United States)

    2012-03-07

    ... Results. On December 1, 2011, the Department received case briefs from AMLT and petitioners, Nucor Corporation (Nucor) and Cascade Steel Rolling Mills, Inc. (Cascade Mills). On December 6, 2011, the Department received rebuttal briefs from Nucor and Cascade Mills, and ArcelorMittal USA Inc., (ArcelorMittal USA...

  6. INVESTIGATION OF MICROSTRUCTURE OF STEEL WIRE FOR METAL CORD AND RVD AFTER PATENTING IN CONDITIONS OF RUP «BMZ»

    Directory of Open Access Journals (Sweden)

    T. P. Kurenkova

    2009-01-01

    Full Text Available The change of microstructure, quantity, character of bainite allocation at lowering of the lead melt temperature is revealed as a result of investigations of microstructure of the samples of steel 80K after isothermal breakdown of austenite in temperature range 610–400 °C.

  7. 77 FR 19191 - Steel Wire Garment Hangers From the People's Republic of China: Amended Final Results of the...

    Science.gov (United States)

    2012-03-30

    ... made a ministerial error in the calculation of the surrogate financial ratios of Nasco Steel Pvt., Ltd... calculation of Sterling Tools Limited's (``Sterling'') surrogate financial ratio calculations. Specifically... goods inventories in Sterling's SG&A and profit ratios. Additionally, when reviewing the financial ratio...

  8. Enhancing Ductility of 1045 Nanoeutectic Steel Prepared by Aluminothermic Reaction through Annealing at 873 K

    Directory of Open Access Journals (Sweden)

    Zhengning Li

    2017-01-01

    Full Text Available The 1045 steel with lamellar spacing of pearlite in nanometer was prepared by aluminothermic reaction casting and annealed at 873 K (600°C with different time. Microstructures of steels were investigated by X-ray diffraction (XRD, scanning electron microscope (SEM, and transmission electron microscope (TEM. Tensile properties of the steels were measured. The results showed that the lamellar spacing of the pearlite increased with the annealing time. It was found that the microstructure of steels consisted of nanocrystalline-ferrite matrix and laminar pearlite phase. The average grain sizes of the ferrite were 26.9, 27.0, 26.1, and 34.9 nm for the cast steel and samples annealed for 2, 4, and 6 h, respectively. As the annealing time increased, the volume fraction of the pearlite almost remained constant, while the laminar spacing of pearlite increased from 146 to 300 nm. The tensile and yield strength varied slightly; the elongation obviously improved. After annealing for 4 h, the elongation increased to be 33%, which was the reported highest value for the steel up to now and about twice of the conventional 1045 steel.

  9. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  10. Arc-Sprayed Fe-Based Coatings from Cored Wires for Wear and Corrosion Protection in Power Engineering

    Directory of Open Access Journals (Sweden)

    Korobov Yury

    2018-02-01

    Full Text Available High wear and corrosion of parts lead to an increase in operating costs at thermal power plants. The present paper shows a possible solution to this problem through the arc spraying of protective coatings. Cored wires of the base alloying system Fe-Cr-C were used as a feedstock. Rise of wear- and heat-resistance of the coatings was achieved by additional alloying with Al, B, Ti, and Y. The wear and heat resistance of the coatings were tested via a two-body wear test accompanied by microhardness measurement and the gravimetric method, respectively. A high-temperature corrosion test was performed at 550 °C under KCl salt deposition. The porosity and adhesion strengths of the coatings were also evaluated. The microstructure was investigated with a scanning electron microscope (SEM unit equipped with an energy dispersive X-ray (EDX microanalyzer, and the phase composition was assessed by X-ray diffractometry. The test results showed the positive influence of additional alloying with Y on the coating properties. A comparison with commercial boiler materials showed that the coatings have the same level of heat resistance as austenite steels and are an order of magnitude higher than that of pearlite and martensite-ferrite steels. The coatings can be applied to wear- and heat-resistant applications at 20–700 °C.

  11. Ultra-Low Carbon Bainitic Steels for Heavy Plate Applications

    Science.gov (United States)

    1990-12-01

    these steels. The CCT diagrams 7 of steels typical of the HY grades indicate that the nose of the proeutectoid ferrite/pearlite reactions is located...austenite, carbides, and martensite. An example of the type of CCT diagram for one of the steels used in this investigation is presented in Figure 12...introduce a "bay" of unstable austenite which acts to separate the ferrite "nose" from the bainite/martensite regions on TTT or CCT diagrams , see Figure

  12. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Jun, H.J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kang, J.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Seo, D.H. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Kang, K.B. [Technical Research Laboratories, POSCO, Pohang 545-090 (Korea, Republic of); Park, C.G. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)]. E-mail: cgpark@postech.ac.kr

    2006-04-25

    The continuous-cooling-transformation (CCT) diagram and continuous cooled microstructure were investigated for low carbon (0.05 wt.% C) high strength low alloy steels with/without boron. Microstructures observed in continuous cooled specimens were composed of pearlite, quasi-polygonal ferrite, granular bainite, acicular ferrite, bainitic ferrite, lower bainite, and martensite depending on cooling rate and transformation temperature. A rapid cooling rate depressed the formation of pearlite and quasi-polygonal ferrite, which resulted in higher hardness. However, hot deformation slightly increased transformation start temperature, and promoted the formation of pearlite and quasi-polygonal ferrite. Hot deformation also strongly promoted the acicular ferrite formation which did not form under non-deformation conditions. Small boron addition effectively reduced the formation of pearlite and quasi-polygonal ferrite and broadened the cooling rate region for bainitic ferrite and martensite.

  13. Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Hatscher, A; Meinders, Vincent T.; van den Boogaard, Antonius H.

    2014-01-01

    In this article, a constitutive model for quench-hardenable boron steel is presented. Three sets of boron steel blanks are heat treated such that their as-treated microstructures are close to fully martensitic, bainitic and ferritic/pearlitic, respectively. Hardness measurements show that the

  14. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel

    International Nuclear Information System (INIS)

    Tewary, N.K.; Kundu, A.; Nandi, R.; Saha, J.K.; Ghosh, S.K.

    2016-01-01

    Highlights: • Microstructure and corrosion performance are compared for two structural steels. • Microstructure evolution shows primarily ferrite-pearlite in both the steels. • Steels show higher corrosion rate in 1% HCl solution than in 3.5% NaCl solution. • The corrosion products show the presence of oxide, hydroxide and oxy-hydroxides. • The corroded surface reveals morphologies like flowery, cotton balls and rosette. - Abstract: A comparison on microstructure and corrosion performance has been made between the two structural steels used in old railway girder bridge (Sample A) and modern grades of weathering structural steel (Sample B). The microstructures, viewed under optical microscope and scanning electron microscope (SEM), show mainly ferrite-pearlite phase constituents in both the steels, A and B. The phase fraction analysis shows higher amount of pearlite in steel A compared to that of steel B. The grain size of steel A is larger than that of steel B under identical processing condition. The immersion corrosion test in 3.5% NaCl shows that the corrosion rate of steel A increases with time, while the same for steel B decreases with time. On the other hand, corrosion test in 1% HCl shows that the corrosion rate of both steel A and B is higher as compared to that of NaCl which always decreases with time. The XRD analysis of corrosion products show the presence of many oxides, hydroxide and oxy-hydroxide like Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH), Akaganeite (β-FeOOH), Magnetite (Fe_3O_4) and Maghemite (γ-Fe_2O_3) in both the steels. The SEM images of corroded surfaces reveal different morphologies like flowery, cotton balls and rosette etc. which indicate that the corrosion products primarily contain Lepidocrocite (γ-FeOOH), Goethite (α-FeOOH) and Akaganeite (β-FeOOH).

  15. Microstructural engineering applied to the controlled cooling of steel wire rod: Part I. Experimental design and heat transfer

    Science.gov (United States)

    Campbell, P. C.; Hawbolt, E. B.; Brimacombe, J. K.

    1991-11-01

    The goal of this study was to develop a mathematical model which incorporates heat flow, phase transformation kinetics, and property-structure-composition relationships to predict the mechanical properties of steel rod being control cooled under industrial conditions. Thus, the principles of microstructural engineering have been brought to bear on this interdisciplinary problem by combining computer modeling with laboratory measurements of heat flow, austenite decomposition kinetics, microstructure and mechanical properties, and industrial trials to determine heat transfer and obtain rod samples under known conditions. Owing to the length and diversity of the study, it is reported in three parts,[8191]the first of which is concerned with the heat flow measurements. A relatively simple and reliable technique, involving a preheated steel rod instrumented with a thermocouple secured at its centerline, has been devised to determine the cooling rate in different regions of the moving bed of rod loops on an operating Stelmor line. The measured thermal response of the rod has been analyzed by two transient conduction models (lumped and distributed parameter, respectively) to yield overall heat-transfer coefficients for radiation and convection. The adequacy of the technique has been checked by cooling instrumented rods under well-defined, air crossflow conditions in the laboratory and comparing measured heat-transfer coefficients to values predicted from well-established equations. The industrial thermal measurements have permitted the characterization of a coefficient to account for radiative interaction among adjacent rod loops near the edge and at the center of the bed.

  16. Effect of Isothermal Bainitic Quenching on Rail Steel Impact Strength and Wear Resistance

    Science.gov (United States)

    Çakir, Fatih Hayati; Çelik, Osman Nuri

    2017-09-01

    The effect of heat treatment regimes on hardness, impact strength, and wear resistance of rail steel for high-speed tracks (rail quality category R350HT) is studied. Analysis of steel properties with a different structure is compared: pearlitic, and upper and lower bainite. It is shown that the steel with bainitic structure has the best impact strength, but wear resistance is better for steel with a lower bainite structure.

  17. Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316 L stainless steel wire

    Science.gov (United States)

    Xu, Xiang; Mi, Gaoyang; Luo, Yuanqing; Jiang, Ping; Shao, Xinyu; Wang, Chunming

    2017-07-01

    Laser metal deposition (LMD) with a filler has been demonstrated to be an effective method for additive manufacturing because of its high material deposition efficiency, improved surface quality, reduced material wastage, and cleaner process environment without metal dust pollution. In this study, single beads and samples with ten layers were successfully deposited on a 316 L stainless steel surface under optimized conditions using a 4000 W continuous wave fibre laser and an arc welding machine. The results showed that satisfactory layered samples with a large deposition height and smooth side surface could be achieved under appropriate parameters. The uniform structures had fine cellular and network austenite grains with good metallurgical bonding between layers, showing an austenite solidification mode. Precipitated ferrite at the grain boundaries showed a subgrain structure with fine uniform grain size. A higher microhardness (205-226 HV) was detected in the middle of the deposition area, while the tensile strength of the 50 layer sample reached 669 MPa. In addition, ductile fracturing was proven by the emergence of obvious dimples at the fracture surface.

  18. Fatigue crack tip damaging micromechanisms in a ferritic-pearlitic ductile cast iron

    Directory of Open Access Journals (Sweden)

    Francesco Iacoviello

    2015-07-01

    Full Text Available Due to the peculiar graphite elements shape, obtained by means of a chemical composition control (mainly small addition of elements like Mg, Ca or Ce, Ductile Cast Irons (DCIs are able to offer the good castability of gray irons with the high mechanical properties of irons (first of all, toughness. This interesting properties combination can be improved both by means of the chemical composition control and by means of different heat treatments(e.g. annealing, normalizing, quenching, austempering etc. In this work, fatigue crack tip damaging micromechanisms in a ferritic-pearlitic DCI were investigated by means of scanning electron microscope observations performed on a lateral surface of Compact Type (CT specimens during the fatigue crack propagation test (step by step procedure, performed according to the “load shedding procedure”. On the basis of the experimental results, different fatigue damaging micromechanisms were identified, both in the graphite nodules and in the ferritic – pearlitic matrix.

  19. Anodic Dissolution of Spheroidal Graphite Cast Iron with Different Pearlite Areas in Sulfuric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Yoshikazu Miyata

    2013-01-01

    Full Text Available The rate equation of anodic dissolution reaction of spheroidal graphite cast iron in sulfuric acid solutions at 298 K has been studied. The cast irons have different areas of pearlite. The anodic Tafel slope of 0.043 V decade−1 and the reaction order with respect to the hydroxyl ion activity of 1 are obtained by the linear potential sweep technique. The anodic current density does not depend on the area of pearlite. There is no difference in the anodic dissolution reaction mechanisms between pure iron and spheroidal graphite cast iron. The anodic current density of the cast iron is higher than that of the pure iron.

  20. Effects of niobium addition on the structure and properties of medium and high carbon steels. v. 1,2

    International Nuclear Information System (INIS)

    Mei, P.R.

    1983-01-01

    An evaluation about the use of niobium in medium and high carbon steels, with ferritic-pearlitic structure, through the understanding of niobium actuaction mechanism in the structure, and consequently in the mechanical properties of those steels is done. (E.G.) [pt

  1. Monitoring of chromium and nickel in biological fluids of stainless steel welders using the flux-cored-wire (FCW) welding method.

    Science.gov (United States)

    Stridsklev, Inger Cecilie; Schaller, Karl-Heinz; Langård, Sverre

    2004-11-01

    This study was undertaken to investigate the exposure to chromium (Cr) and nickel (Ni) in flux-cored wire (FCW) welders welding on stainless steel (SS). Seven FCW welders were monitored for 3 days to 1 workweek, measuring Cr and Ni in air, blood, and urine. The welders were questioned about exposure to Cr and Ni during their whole working careers, with emphasis on the week of monitoring, about the use of personal protective equipment and their smoking habits. The air concentrations were mean 200 microg/m(3) (range 2.4-2,744) for total Cr, 11.3 microg/m(3) (416.7) for Ni during the workdays for the five welders who were monitored with air measurements. The levels of Cr and Ni in biological fluids varied between different workplaces. For Cr in whole blood, plasma, and erythrocytes, the mean levels after work were 1.25 (<0.4-8.3) and 1.68 (<0.2-8.0) and 0.9 (<0.4-7.2) microg/l, respectively. For Ni most of the measurements in whole blood and plasma were below the detection limits, the mean levels after work being 0.84 (<0.8-3.3) and 0.57 microg/l (<0.4-1.7), respectively. Mean levels for Cr and Ni in the urine after work were 3.96 (0.34-40.7) and 2.50 (0.56-5.0) microg/g creatinine, respectively. Correlations between the Cr(VI) levels measured in air and the levels of total Cr in the measured biological fluids were found. The results seem to support the view that monitoring of Cr in the urine may be versatile for indirect monitoring of the Cr(VI) air level in FCW welders. The results seem to suggest that external and internal exposure to Cr and Ni in FCW welders welding SS is low in general.

  2. ANALISA KEKUATAN KONSTRUKSI SIDE RAMP DOOR SISTEM STEEL WIRE ROPE PADA KM. DHARMA KENCANA II AKIBAT BEBAN STATIS DENGAN METODE ELEMEN HINGGA

    Directory of Open Access Journals (Sweden)

    Imam Pujo Mulyatno

    2012-04-01

    Full Text Available KM. DHARMA KENCANA II adalah kapal tipe Ro - Ro (Passanger Ship yang memiliki rute pelayaran Surabaya - Kumai - Semarang yang mampu mengangkut penumpang dan kendaraan dalam jumlah yang relatif banyak. Untuk memudahkan akses keluar masuk kendaraan yang akan diangkut, maka kapal ini dilengkapi dengan empat buah ramp door sistem steel wire rope, salah satunya adalah ramp door yang terletak dibagian kiri lambung kapal (side ramp door. Side ramp door akan menerima beban statis secara berulang - ulang sehingga dapat mengakibatkan deformasi, keretakan, kerusakan, dll. Penelitian tentang kekuatan konstruksi side ramp door perlu diperhatikan dan dilakukan dimana tegangan yang diakibatkan oleh beban yang mengenainya tidak boleh melebihi batas maksimum σyield bahan dan σijin berdasarkan rules dari klas, adapun acuan rules yang dipakai dalam penelitian ini adalah berdasarkan rules Biro Klasifikasi Indonesia. Analisa kekuatan konstruksi side ramp door dilakukan dengan menggunakan program berbasis FEM sedangkan untuk pemodelan dilakukan dengan menggunakan program berbasis CAD. Analisa yang digunakan adalah analisa beban statis untuk mengetahui karakteristik dan letak tegangan terbesar pada konstruksi side ramp door berdasarkan empat variasi pembebanan. Hasil analisa menggunakan program berbasis FEM didapatkan hasil maximum stress terbesar terjadi pada kondisi side ramp door dengan beban kendaraan truck yaitu sebesar 93,91 N/mm2 dimana daerah paling kritis terjadi pada node 22097 yang terletak pada gading nomor 8 bagian memanjang dan gading nomor 1 bagian melintang. Tegangan ini masih dalam kondisi aman karena setelah dibandingan dengan σyield bahan sebesar 400 N/mm2 dan σijin berdasarkan rules BKI sebesar 225,24 N/mm2 menghasilkan nilai safety factor sebesar 3,87 dan 2,18.

  3. Ultrafine grained steels processed by equal channel angular pressing

    International Nuclear Information System (INIS)

    Shin, Dong Hyuk; Park, Kyung-Tae

    2005-01-01

    Recent development of ultrafine grained (UFG) low carbon steels by using equal channel angular pressing (ECAP) and their room temperature tensile properties are reviewed, focusing on the strategies overcoming their inherent mechanical drawbacks. In addition to ferrite grain refinement, when proper post heat treatments are imposed, carbon atom dissolution from pearlitic cementite during ECAP can be utilized for microstructural modification such as uniform distribution of nano-sized cementite particles or microalloying element carbides inside UFG ferrite grains and fabrication of UFG ferrite/martensite dual phase steel. The utilization of nano-sized particles is effective on improving thermal stability of UFG low carbon ferrite/pearlite steel but less effective on improving its tensile properties. By contrast, UFG ferrite/martensite dual phase steel exhibits an excellent combination of ultrahigh strength, large uniform elongation and extensive strain hardenability

  4. Peculiar features of metallurgical processes at plasma-arc spraying of coatings, made of steel wire with powder fillers B4C and B4C+ZrO2

    Directory of Open Access Journals (Sweden)

    Георгій Михайлович Григоренко

    2016-11-01

    Full Text Available The interaction of metallurgical processes occurring in plasma-arc spraying between the steel shell and the carbide fillers of B4C and B4C cored wires with the addition of nanocrystalline ZrO2 powder has been analyzed. Iron-boron compounds alloyed with carbon are formed in ingots as a result of ferritiс coating of wire interacrion with fillers while the ferritic matrix contains boride and carboboride eutectics. Average microhardness of the carboboride compounds and the matrix is high – 17,78; 16,40 and 8,69; 9,95 GPa for the ingots with с B4C and B4C+ZrO2 respectively. The best quality coatings with low porosity (~1%, lamellar structure consisting of ferrite matrix reinforced with dispersed Fe borides, were obtained at a higher heat input (plasmatron current 240-250 A. The average amount of oxides in the coatings makes 15%. 0,5% addition of nanopowder ZrO2 accelerates dispersed iron-boron compounds forming, promotes their uniform distribution in the structure and improves coating microhardness up to 7,0 GPa. Application of the differential thermal analysis method to simulate the interaction processes between the steel shell and the filler during the heating of wire in the shielding gas makes it possible to promote formation of new phases (borides and carboborides of iron and to predict the phase composition of the coatings

  5. Improvement of Structure and Properties of Cast Ferrite-Pearlite Steels for Freight Railway Cars

    Directory of Open Access Journals (Sweden)

    A. Rabinovich

    2008-03-01

    Full Text Available As it i s known For increasing of propcnics (YTS 2 380 MPa of cast stcds i t is c f k ~ i v tco incrcasc conlcnt o f alhsti~uiionaal lloyingclcrncnts, (Si, Mn, Cr, Ni. 1 lowevcr it lcads to rising in pricc olstccl ton. lncrcasing of Si and Mn conrcnl only is limitcd hy decreasing o lductility and weld nhility. As a rule silicon contcnt at ~hcsca ccls is not highcr than 0.4-0.67'0 and Si:Mn ratio is not highcr khan 1:2. Nowfor grain rcfincmcnt ~wc sin oculation of stcct by nitrogcn and clcincnrs with high chcmical affinity to nltmgcn. Mostly vanadium i s usd.howcvcr niobium sornctime is uscd. Dissldvantagcs of this arc high cost of alloying clcmcnrs and low thcrrnodynamic stability OFvanadium and niobium nitridcs. Parlicles of V(C,N and Nh(C.N dissolvc during hcating fnr licnt trcatmcnt or during wclding. It [cads lodccrcasing of grain refinement elfcc!.Adaptat ion or this microalloying stratcgy Tor casts producing For rrcight mil way cars let cstirnatc possibility of application thcsc casts in ancw gcnerazion freight railway cars.

  6. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  7. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  8. STRUCTURE AND CHARACTERISTICS OF PATENTED HIGH-CARBON WIRE

    Directory of Open Access Journals (Sweden)

    A. Ju. Borisenko

    2011-01-01

    Full Text Available The influence of bainite structure on mechanical characteristics of wire of steel 80 after patenting is studied. The quantity and structure state of bainite, providing high complex of mechanical characteristics of high-carbon wire, is determined.

  9. Reaustenitisation of steels with different initial microstructures

    International Nuclear Information System (INIS)

    Garcia-Caballero, F.; Capdevila, C.; San Martin, D.; Garcia-de Andre, C.

    2004-01-01

    During the last years, physical mathematical models concerning continuous cooling and isothermal phase transformations valid for a wide range of steel have been attained. However, the modelling of continuous heating transformations has not undergone the same development than in cooling. This investigation concerns with the study and Modelization of continuous heating phase transformations to study the process which is generally referred to as austenitisation of the steel. Therefore, our main aim is to describe those processes which control the non-isothermal formation of austenite in steel with initial microstructures of ferrite and/or pearlite. (Author) 10 refs

  10. Welding of heterogeneous 12Kh2MFSR steels with the Mn-Cr-Si-Ni system

    International Nuclear Information System (INIS)

    Smirnov, A.N.; Belogolov, E.I.

    1978-01-01

    The process of welding pipes of the 12Kh2MFSR pearlitic steels and austenitic steels of the Mn-Cr-Si-Ni system was studied. The filler materials were selected, and the working capacity of welded joints was examined in ageing and cyclic heatings. The microhardness of steels was measured, and the ultimate strength of welded joints was determined. The following has been established: the composite joints of steels of the Mn-Cr-Si-Ni system and 12Kh2MFSR steel are advisable to be welded on a coating layer welded by the EhA395/9 electrodes on the surface of a pipe of the 12Kh2MFSR pearlitic steel; this guarantees the sufficient working capacity of welded joints

  11. Um novo fio de aço inoxidável para aplicações ortodônticas A new stainless steel wire for orthodontic purposes

    Directory of Open Access Journals (Sweden)

    André Itman Filho

    2011-08-01

    Full Text Available OBJETIVO: desenvolver uma metodologia para fabricação de fios ortodônticos de aço inoxidável austeno-ferrítico SEW 410 Nr. 14517 por meio dos processos convencionais de laminação e trefilação. MÉTODOS: o aço austeno-ferrítico foi elaborado em um forno elétrico de indução. A qualidade dos fios foi avaliada por ensaios de tração e medidas de microdureza. A ductilidade e a manuseabilidade foram analisadas por meio da confecção de componentes ortodônticos. RESULTADOS E CONCLUSÕES: os valores encontrados mostraram que os fios de aço inoxidável austeno-ferrítico atenderam às normas BS 3507:1976 e ISO 5832-1, e apresentaram ótima ductilidade para confecção de componentes ortodônticos com dobras complexas.OBJECTIVE: To develop a method to manufacture austenitic-ferritic stainless steel orthodontic wires (SEW 410 Nr. 14517 using conventional rolling and wiredrawing processes. METHODS: Austenitic-ferritic steel was produced in an induction furnace. Traction trials and microhardness measurements were used to evaluate wire quality. Orthodontic parts were fabricated to assess ductility and malleability. RESULTS AND CONCLUSIONS: Austenitic-ferritic stainless steel wires meet the BS 3507:1976 and ISO 5832-1 norms and have excellent ductility for the fabrication of orthodontic parts with complex folds.

  12. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  13. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  14. Fricção em braquetes gerada por fios de aço inoxidável, superelásticos com IonGuard e sem IonGuard Friction force on brackets generated by stainless steel wire and superelastic wires with and without IonGuard

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Campos Braga

    2011-08-01

    Full Text Available OBJETIVO: o objetivo deste estudo foi verificar a fricção no braquete (Roth, Composite, 10.17.005, 3,2mm, largura 0,022" x 0,030", Torque -2° e angulação +13°, Morelli®, Brasil, utilizando fios ortodônticos retangulares de 0,019" x 0,025" de aço inoxidável (Morelli®, Brasil e de níquel-titânio superelásticos Bioforce com IonGuard e sem IonGuard (Bioforce, GAC®, EUA. MÉTODOS: foram utilizados 24 conjuntos braquetes/segmento de fio, divididos em 3 grupos de acordo com o fio. Cada conjunto braquete/segmento de fio foi testado 3 vezes e obtida uma média. Os ensaios foram realizados em máquina universal de ensaios EMIC DL2000®. Os dados foram submetidos à Análise de Variância com significância de 95%. RESULTADOS: o fio retangular Bioforce com IonGuard apresentou fricção significativamente menor que o Bioforce sem IonGuard, porém sem diferença do fio de aço inoxidável. Entretanto, o coeficiente de variação dos fios Bioforce com e sem IonGuard foi menor que o do fio de aço inoxidável. CONCLUSÃO: os fios retangulares de 0,019" x 0,025" Bioforce com IonGuard apresentam menor fricção que o fio Bioforce sem IonGuard, sem diferença para o fio de aço inoxidável.OBJECTIVE: The aim of this study was to evaluate the friction forces on brackets (Roth, Composite, 10.17.005, 3.2 mm, width 0.022" x 0.030 ", Torque -2° and angulation +13°, Morelli®, Brazil, with stainless steel orthodontic rectangular wire (Morelli®, Brazil and nickel titanium superelastic Bioforce wires with and without IonGuard (Bioforce, GAC®, USA. MATERIAL AND METHODS: Twenty-four brackets/wire segment combinations were used, distributed into three groups according to the orthodontic wire. Each bracket/wire segment combination was tested three times. The tests were performed in a universal testing machine Emic DL2000®. The data was submitted to ANOVA one way followed by Tukey's post hoc test (p<0.05. RESULTS: The rectangular orthodontic Bioforce wire

  15. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  16. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  17. Deformation behavior of two continuously cooled vanadium microalloyed steels at liquid nitrogen temperature

    Directory of Open Access Journals (Sweden)

    Glišić Dragomir M.

    2013-01-01

    Full Text Available The aim of this work was to establish deformation behaviour of two vanadium microalloyed medium carbon steels with different contents of carbon and titanium by tensile testing at 77 K. Samples were reheated at 1250°C/30 min and continuously cooled at still air. Beside acicular ferrite as dominant morphology in both microstructures, the steel with lower content of carbon and negligible amount of titanium contains considerable fraction of grain boundary ferrite and pearlite. It was found that Ti-free steel exhibits higher strain hardening rate and significantly lower elongation at 77 K than the fully acicular ferrite steel. The difference in tensile behavior at 77 K of the two steels has been associated with the influence of the pearlite, together with higher dislocation density of acicular ferrite. [Projekat Ministarstva nauke Republike Srbije, br. OI174004

  18. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  19. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  20. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  1. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  2. Fatigue limit prediction of ferritic-pearlitic ductile cast iron considering stress ratio and notch size

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.

    2017-05-01

    The mechanical behavior of ductile cast iron is governed by graphite particles and casting defects in the microstructures, which can significantly decrease the fatigue strength. In our previous study, the fatigue limit of ferritic-pearlitic ductile cast iron specimens with small defects ((\\sqrt{{area}}=80˜ 1500{{μ }}{{m}})) could successfully be predicted based on the \\sqrt{{area}} parameter model by using \\sqrt{{area}} as a geometrical parameter of defect as well as the tensile strength as a material parameter. In addition, the fatigue limit for larger defects could be predicted based on the conventional fracture mechanics approach. In this study, rotating bending and tension-compression fatigue tests with ferritic-pearlitic ductile cast iron containing circumferential sharp notches as well as smooth specimens were performed to investigate quantitatively the effects of defect. The notch depths ranged 10 ˜ 2500 μm and the notch root radii were 5 and 50 μm. The stress ratios were R = -1 and 0.1. The microscopic observation of crack propagation near fatigue limit revealed that the fatigue limit was determined by the threshold condition for propagation of a small crack emanating from graphite particles. The fatigue limit could be successfully predicted as a function of R using a method proposed in this study.

  3. Structure of three Zlatoust bulats (Damascus-steel blades)

    Science.gov (United States)

    Schastlivtsev, V. M.; Gerasimov, V. Yu.; Rodionov, D. P.

    2008-08-01

    Chemical composition, structure, and hardness of samples of three Zlatoust bulats (Damascus steels), namely, an Anosov bulat blade (1841), Obukhov bulat blade (1859), and a Shvetsov forged bulat-steel blank (crucible steel) have been investigated. The Anosov bulat possesses all signs of the classical Damascus steel; this is a hypereutectoid carbon steel with a structure formed from chains of carbides against the background of fine pearlite (troostite). A banded pattern is revealed on the surface of the blade. The Obukhov blade cannot be referred to classical Damascus steel. The pattern on the surface of the blade is absent, despite the fact that the initial steel is hypereutectoid. The structure of the blade does not correspond to the structure of classical Damascus steel; this is bainite with numerous cementite particles. The Shvetsov sample cannot be regarded as Damascus steel since it is made from a hypereutectoid steel alloyed by managanese and tungsten. The pattern on the surface of the metal is a consequence of the dendritic structure of the ingot which is developed during forging. The structure of this pattern differs from classical damascene pattern, since the latter is formed due to a specific arrangement of a variety of carbide particles against the pearlitic or some other background obtained during heat treatment.

  4. Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, D. G., E-mail: kopanitsa@mail.ru; Ustinov, A. M., E-mail: artemustinov@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Potekaev, A. I., E-mail: potekaev@spti.tsu.ru [National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Kopanitsa, G. D., E-mail: georgy.kopanitsa@mail.com [National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%.

  5. Kirschner Wires : insertion techniques and bone related consequences

    NARCIS (Netherlands)

    Franssen, B.B.G.M.

    2010-01-01

    The Kirschner (K-) wire was first introduced in 1909 by Martin Kirschner. This is a thin unthreaded wire of surgical steel with a diameter of up to three millimeters and a selection of different tips. The use of K-wires is often promoted as a simple technique because of its easy placement,

  6. Effect of microstructure on the impact toughness of high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, I.

    2014-07-01

    One of the major challenges in the development of new steel grades is to get increasingly high strength combined with a low ductile brittle transition temperature and a high upper shelf energy. This requires the appropriate microstructural design. Toughness in steels is controlled by different microstructural constituents. Some of them, like inclusions, are intrinsic while others happening at different microstructural scales relate to processing conditions. A series of empirical equations express the transition temperature as a sum of contributions from substitutional solutes, free nitrogen, carbides, pearlite, grain size and eventually precipitation strengthening. Aimed at developing a methodology that could be applied to high strength steels, microstructures with a selected degree of complexity were produced at laboratory in a Nb-microalloyed steel. As a result a model has been developed that consistently predicts the Charpy curves for ferrite-pearlite, bainitic and quenched and tempered microstructures using as input data microstructural parameters. This model becomes a good tool for microstructural design. (Author)

  7. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels

    International Nuclear Information System (INIS)

    Shanmugam, S.; Ramisetti, N.K.; Misra, R.D.K.; Mannering, T.; Panda, D.; Jansto, S.

    2007-01-01

    We describe here the effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels that were processed as structural beams at three different cooling rates. Nb-microalloyed steels exhibited increase in yield strength with increase in cooling rate during processing. However, the increase in the yield strength was not accompanied by loss in toughness. The microstructure at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while at intermediate cooling rate besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite and lath-type ferrite. At higher cooling rate, predominantly, lath-type (acicular) or bainitic ferrite was obtained. The precipitation characteristics were similar at the three cooling rates investigated with precipitation occurring at grain boundaries, on dislocations, and in the ferrite matrix. The fine scale (∼8-12 nm) precipitates in the ferrite matrix were MC type of niobium carbides. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels with increase in cooling rate is related to the change in the microstructure from predominantly ferrite-pearlite to predominantly bainitic ferrite

  8. Effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, S. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Ramisetti, N.K. [Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Misra, R.D.K. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States); Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504-4130 (United States)], E-mail: dmisra@louisiana.edu; Mannering, T. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Panda, D. [Nucor-Yamato Steel, P.O. Box 1228, 5929 East State Highway 18, Blytheville, AR 72316 (United States); Jansto, S. [Reference Metals, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2007-07-15

    We describe here the effect of cooling rate on the microstructure and mechanical properties of Nb-microalloyed steels that were processed as structural beams at three different cooling rates. Nb-microalloyed steels exhibited increase in yield strength with increase in cooling rate during processing. However, the increase in the yield strength was not accompanied by loss in toughness. The microstructure at conventional cooling rate, primarily consisted of polygonal ferrite-pearlite microconstituents, while at intermediate cooling rate besides polygonal ferrite and pearlite contained significant fraction of degenerated pearlite and lath-type ferrite. At higher cooling rate, predominantly, lath-type (acicular) or bainitic ferrite was obtained. The precipitation characteristics were similar at the three cooling rates investigated with precipitation occurring at grain boundaries, on dislocations, and in the ferrite matrix. The fine scale ({approx}8-12 nm) precipitates in the ferrite matrix were MC type of niobium carbides. The microstructural studies suggest that the increase in toughness of Nb-microalloyed steels with increase in cooling rate is related to the change in the microstructure from predominantly ferrite-pearlite to predominantly bainitic ferrite.

  9. The Effect Of Carbon Concentration On The Retained Austenite Content And The Mechanical Properties Of TRIP Steel Wire Rod Obtained From The Stelmor Controlled Cooling Line

    Directory of Open Access Journals (Sweden)

    Muskalski Z.

    2015-09-01

    Full Text Available The austenite content of the multiphase TRIP-structure steels depends, inter alia, on the carbon concentration and the properly selected parameters of the two-stage heat treatment.

  10. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials

    NARCIS (Netherlands)

    Jongsma, Marije A.; Pelser, Floris D. H.; van der Mei, Henny C.; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J.; Ren, Yijin

    OBJECTIVE: Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on

  11. SPECIFIC FEATURES OF TECHNOLOGY OF MANUFACTURING A ZINC-COATED TUB WIRE FOR MUZZLE (BOTTLE’ HOOD WIRE

    Directory of Open Access Journals (Sweden)

    D. B. Zuev

    2016-01-01

    Full Text Available The paper presents the main technical specifications of galvanized low carbon wire for muzzles (bottle’hood wire, consistent with the exploitation requirements to the wire in the manufacture and use of muzzles. The main criteria when selecting the steel grade and upon selection of the technological processes are given. 

  12. Investigations on the wire saw process on steels of selected geometries in the encircling process; Untersuchungen zum Seilsaegeprozess an Staehlen ausgewaehlter Geometrien im umschlingenden Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Daniel

    2015-01-26

    This thesis illustrates a new and innovative model for the usual looping method to describe cutting time and wear. Several test series have been carried out to determine and analyze the various influencing factors. This new model now allows for exact predictions for cutting times and the resulting wear. A special test stand was planned and built. With the help of this test stand various influencing parameters were determined in preliminary tests. Due to the high correlation between these parameters, a matrix was created to rate them. From these results and the findings of the preliminary tests, the boundary conditions such as work piece size were defined and an experimental design was created. Eleven test series were conducted and each one consists of up to ten work pieces. In each test series, only one parameter was changed, the other influencing parameters remained unchanged. The parameter of the following characteristics were varied: the speed of the diamond wire, the feed pressure, the cutting angle, the geometry with respective cutting area, the work piece material, as well as the twisting of the diamond wire. By varying these parameters, the influence could be shown on the performance of the cutting process and also on the wear behavior of the diamond wire. A model was created from the obtained data which enables a cutting time prediction for rectangular work pieces. In addition to the model, a new criterion has been developed, with which it is possible to quantify the progress of wear and to be able to determine a necessary wire replacement. The classification of particle sizes of the accumulated chips has shown that a lower average cutting performance results in a decrease of the average particle size. From this circumstance a termination criterion of <150 μm has been established. When the particle size drops below this value, the cutting process becomes ineffective and should not be continued, or the diamond wire should be replaced, respectively

  13. Mixed structures in continuously cooled low-carbon automotive steels

    International Nuclear Information System (INIS)

    Khalid, F.A.; Edmonds, D.V.

    1993-01-01

    Mixed microstructures have been studied in low- carbon microalloyed steels suitable for automotive applications, after continuous cooling from the hot-rolled condition. Microstructural features such as polygonal ferrite, bainitic and acicular ferrite and microphase constituent are identified using transmission electron microscopy. The influence of these mixed structures on the tensile strength, impact toughness and fracture behaviour is examined. It is found that improvements in impact toughness as compared with microalloyed medium- carbon ferrite/pearlite steels can be achieved from these predominantly acicular structures developed by controlling alloy composition and continuous cooling of these lower carbon steels. (orig.)

  14. Influence of microstructure on the low and high cycle fatigue behaviour of a medium carbon microalloyed steel

    International Nuclear Information System (INIS)

    Srivastava, V.; Padmanabhan, K.A.

    2001-01-01

    This paper reports the room temperature monotonic and cyclic stress-strain (CSS) response, the low and high cycle fatigue behaviour of a medium carbon microalloyed (MA) steel in different microstructural conditions obtained by isothermal transformation at 973, 773 and 573 K following austenitizing at 1123 K. The isothermal transformations resulted in coarse pearlite (CP), fine pearlite (FP), and acicular ferrite/bainite (AF/B) microstructures, respectively. In low cycle fatigue, the CP and FP microstructures exhibited cyclic softening at low total strain amplitudes ( cys ) of the material and was approximately equal to 0.7σ cys . (orig.)

  15. Pacemaker wires

    International Nuclear Information System (INIS)

    Fransson, S.G.

    1993-01-01

    Evaluation of pacemaker wires were performed by comparing Advanced Multiple Beam Equalization Radiography (AMBER) with conventional chest radiography. The scanning equalization technique of the AMBER unit makes it superior to conventional technique in the depiction of different structures in the mediastinum or in the pleural sinuses. So far motion artifacts have not been considered clinically important. The longer exposure time, however, may impair the assessment of pacemaker wires. The motion artifact described may not only make adequate evaluation impossible but may even give a false impression of a lead fracture. The difference between the two systems was significant. (orig.)

  16. Residual stress relief in MAG welded joints of dissimilar steels

    International Nuclear Information System (INIS)

    Seodek, P.; Brozda, J.; Wang, L.; Withers, P.J.

    2003-01-01

    This paper addresses the relief of residual stress in welded joints between austenitic and non-alloyed ferritic-pearlitic steels. A series of similar and dissimilar steel joints based on the 18G2A (ferritic-pearlitic) and 1H18N10T (austenitic) steels were produced, some of which were stress relieved by annealing and some by mechanical prestressing. For the as-welded and stress relieved test joints the residual stresses were measured by trepanning. To aid the interpretation of these results, 2D plane stress finite element analysis has been performed to simulate the residual stress relieving methods. Analysis of the results has shown that thermal stress relieving of welded joints between dissimilar steels is not effective and may even increase residual stresses, due to the considerable difference in thermal expansion of the joined steels. It was found that, for the loads imposed, the effectiveness of the mechanical stress relieving of dissimilar steel welded joints was much lower than that of similar steel joints

  17. The liquid metal embrittlement of iron and ferritic steels in sodium

    International Nuclear Information System (INIS)

    Hilditch, J.P.; Hurley, J.R.; Tice, D.R.; Skeldon, P.

    1995-01-01

    The liquid metal embrittlement of iron and A508 III, 21/4Cr-1Mo and 15Mo3 steels in sodium at 200-400 o C has been studied, using dynamic straining at 10 -6 s -1 , in order to investigate the roles of microstructure and composition. The steels comprised bainitic, martensitic, tempered martensitic and ferritic/pearlitic microstructures. All materials were embrittled by sodium, the embrittlement being associated generally with quasicleavage on fracture surfaces. Intergranular cracking was also found with martensitic and ferritic/pearlitic microstructures. The susceptibility to embrittlement was greater in higher strength materials and at higher temperatures. The embrittlement was similar to that encountered previously in 9Cr steel, which depends upon the presence of non-metallic impurities in the sodium. (author)

  18. Evaluation of the fit of preformed nickel titanium arch wires on normal occlusion dental arches

    Directory of Open Access Journals (Sweden)

    Rakhn G. Al-Barakati

    2016-01-01

    Conclusions: Using an archwire form with the best fit to the dental arch should produce minimal changes in the dental arch form when NiTi wires are used and require less customization when stainless-steel wires are used.

  19. COMPUTER MODELING OF THE ROLLING TECHNOLOGICAL REGIMES INFLUENCE ON MICROSTRUCTURE OF EUTECTOID COLONIES OF ROD PEARLITE

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2010-01-01

    Full Text Available Interconnection between the parameters of the rolled wire production technology and characteristics of its microstructure is shown. The correlation interconnections between the characteristics of the rolled wire microstructure, calculated by method of image processing, and technology of its receipt in conditions of RUP «BMZ» are determined. 

  20. Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel

    Energy Technology Data Exchange (ETDEWEB)

    Inam, A., E-mail: aqil.ceet@pu.edu.pk; Brydson, R., E-mail: mtlrmdb@leeds.ac.uk; Edmonds, D.V., E-mail: d.v.edmonds@leeds.ac.uk

    2015-08-15

    The potential for using graphite particles as an internal lubricant during machining is considered. Graphite particles were found to form during graphitisation of experimental medium-carbon steel alloyed with Si and Al. The graphite nucleation sites were strongly influenced by the starting microstructure, whether ferrite–pearlite, bainite or martensite, as revealed by light and electron microscopy. Favourable nucleation sites in the ferrite–pearlite starting microstructure were, not unexpectedly, found to be located within pearlite colonies, no doubt due to the presence of abundant cementite as a source of carbon. In consequence, the final distribution of graphite nodules in ferrite–pearlite microstructures was less uniform than for the bainite microstructure studied. In the case of martensite, this study found a predominance of nucleation at grain boundaries, again leading to less uniform graphite dispersions. - Highlights: • Metallography of formation of graphite particles in experimental carbon steel. • Potential for using graphite in steel as an internal lubricant during machining. • Microstructure features expected to influence improved machinability studied. • Influence of pre-anneal starting microstructure on graphite nucleation sites. • Influence of pre-anneal starting microstructure on graphite distribution. • Potential benefit is new free-cutting steel compositions without e.g. Pb alloying.

  1. THE HEAT TREATMENT ANALYSIS OF E110 CASE HARDENING STEEL

    Directory of Open Access Journals (Sweden)

    MAJID TOLOUEI-RAD

    2016-03-01

    Full Text Available This paper investigates mechanical and microstructural behaviour of E110 case hardening steel when subjected to different heat treatment processes including quenching, normalizing and tempering. After heat treatment samples were subjected to mechanical and metallographic analysis and the properties obtained from applying different processes were analysed. The heat treatment process had certain effects on the resultant properties and microstructures obtained for E110 steel which are described in details. Quenching produced a martensitic microstructure characterized by significant increase in material’s hardness and a significant decreased in its impact energy. Annealed specimens produced a coarse pearlitic microstructure with minimal variation in hardness and impact energy. For normalized samples, fine pearlitic microstructure was identified with a moderate increase in hardness and significant reduction in impact energy. Tempering had a significant effect on quenched specimens, with a substantial rise in material ductility and reduction of hardness with increasing tempering temperature. Furthermore, Results provide additional substantiation of temper embrittlement theory for low-carbon alloys, and indicate potential occurrence of temper embrittlement for fine pearlitic microstructures.

  2. Inelastic properties evolution of alloy steels in martensitic and cold-worked states subjected to heat treatments up to 600/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Isore, A; Miyada, L T

    1975-05-01

    Two internal friction peaks were observed in a ball-bearing steel in the martensitic and cold-worked states, near 220 and 280/sup 0/C for a frequency of about 1,3 Hz. From peaks evolution by annealing up to 600/sup 0/C, it is possible to follow the decomposition stages of martensitic and recrystallization of cold-worked pearlite. Annealed martensite and cold worked pearlite have the same anelastic behaviour. From existing atomistic models, it is possible to interpret these peaks by dislocations-interstitial carbon and dislocations-carbides interactions.

  3. Inelastic properties evolution of alloy steels in martensitic and cold-worked states subjected to heat treatments up to 6000C

    International Nuclear Information System (INIS)

    Isore, A.; Miyada, L.T.

    1975-01-01

    Two internal friction peaks were observed in a ball-bearing steel in the martensitic and cold-worked states, near 220 and 280 0 C for a frequency of about 1,3 Hz. From peaks evolution by annealing up to 600 0 C, it is possible to follow the decomposition stages of martensitic and recrystallization of cold-worked pearlite. Annealed martensite and cold worked pearlite have the same anelastic behaviour. From existing atomistic models, it is possible to interpret these peaks by dislocations-interstitial carbon and dislocations-carbides interactions

  4. Evaluation of Effects of Sterilization on Mechanical Properties of Orthodontic Wires

    Directory of Open Access Journals (Sweden)

    Sridhar Kannan

    2012-01-01

    Results: Dry heat sterilization, autoclave, 2% glutaraldehyde solution had no effect on ultimate tensile strength, 0.1% yield strength, modulus of elasticity and percentage elongation of stainless steel and elgiloy wires. Tensile strength and yield strength of Nitinol and b-titanium wires together with percentage elongation of b-titanium wires significantly increased following dry heat sterilization and autoclave. No detrimental effects on properties of wires were observed. These sterilization procedures could be safely recommended for sterilization of orthodontic wires.

  5. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  6. Laparoscopic extraction of fractured Kirschner wire from the pelvis

    Directory of Open Access Journals (Sweden)

    Vinaykumar N Thati

    2014-01-01

    Full Text Available Kirschner wire is a sharp stainless steel guide wire commonly used in fixation of fractured bone segments. There are case reports of migrated K wire from the upper limb into the spine and chest, and from the lower limb in to the abdomen and pelvis. Here, we present a case report of accidental intra-operative fracture of K wire during percutaneous femoral nailing for sub-trochanteric fracture of right femur, which migrated in to the pelvis when the orthopaedician tried to retrieve the broken segment of the K wire. This case highlights the use of laparoscopy as minimally invasive surgical option.

  7. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    You Na Oh

    2015-08-01

    Full Text Available Background: Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Methods: Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Results: Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578, major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99, minor wound complications (3.6% vs. 2.0%, p=0.279, or mediastinitis (0.8% vs. 1.0%, p=1.00. Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068. Conclusion: The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  8. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery.

    Science.gov (United States)

    Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won

    2015-08-01

    Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  9. Researching on Control Device of Prestressing Wire Reinforcement

    Science.gov (United States)

    Si, Jianhui; Guo, Yangbo; Liu, Maoshe

    2017-06-01

    This paper mainly introduces a device for controlling prestress and its related research methods, the advantage of this method is that the reinforcement process is easy to operate and control the prestress of wire rope accurately. The relationship between the stress and strain of the steel wire rope is monitored during the experiment, and the one - to - one relationship between the controllable position and the pretightening force of the steel wire rope is confirmed by the 5mm steel wire rope, and the results are analyzed theoretically by the measured elastic modulus. The results show that the method can effectively control the prestressing force, and the result provides a reference method for strengthening the concrete column with prestressed steel strand.

  10. Influence of deformation on structural-phase state of weld material in St3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander, E-mail: galvas.kem@gmail.ru; Ababkov, Nicolay, E-mail: n.ababkov@rambler.ru; Ozhiganov, Yevgeniy, E-mail: zhigan84@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); LLC “Kuzbass Center of Welding and Control”, 33/2, Lenin Str., 650055, Kemerovo (Russian Federation); Kozlov, Eduard, E-mail: kozlov@tsuab.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Zboykova, Nadezhda, E-mail: tezaurusn@gmail.com; Koneva, Nina, E-mail: koneva@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn’t lead to the internal stresses that can destroy the sample.

  11. Properties of structural steels melted out of high-purity charge

    International Nuclear Information System (INIS)

    Marchenko, V.N.; Sergeeva, T.K.; Kondakova, N.K.; Morozov, V.P.; Madorskij, L.L.

    1993-01-01

    A comparative evaluation has been made of impurities, mechanical properties and hydrogen embirittlement parameters for steels type 40Kh and 40KhS produced by electrometallurgical method with the use of direct reduced charge (DR-steels) and melted in an open-hearth furnace. Investigation results have shown that 40Kh and 40KhS Dr-steels have more coarse austenitic grains and experience more complete transformation of martensite into ferritic-pearlitic mixture on tempering. Threshold stresses increase 2.5 times due to purity enhancement at the expense of application of direct reduced charge

  12. Liquid Metal Machine Triggered Violin-Like Wire Oscillator.

    Science.gov (United States)

    Yuan, Bin; Wang, Lei; Yang, Xiaohu; Ding, Yujie; Tan, Sicong; Yi, Liting; He, Zhizhu; Liu, Jing

    2016-10-01

    The first ever oscillation phenomenon of a copper wire embraced inside a self-powered liquid metal machine is discovered. When contacting a copper wire to liquid metal machine, it would be swallowed inside and then reciprocally moves back and forth, just like a violin bow. Such oscillation could be easily regulated by touching a steel needle on the liquid metal surface.

  13. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  14. PECULIARITIES OF FORMATION OF STRUCTURE AND PROPERTIES AT THERMO-MECHANICAL PROCESSING OF ROLLED WIRE OF NICKEL

    OpenAIRE

    V. A. Lutsenko

    2012-01-01

    There are results of researches of the mechanical properties and structure of the wire rod made of low-carbon nickel molybdenum steel after reduction to toughness thermomechanical treatment in the stream of high-speed wire mill.

  15. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  16. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  17. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J. [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Department of Materials Science and Engineering, The Ohio State University — OSU, Columbus, OH 43221 (United States)

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showed a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.

  18. SIMULACIÓN EXPERIMENTAL Y NUMÉRICA DE UN PROCESO DE TREFILADO HÚMEDO DE UN ALAMBRE DE ACERO AL CARBONO EXPERIMENTAL AND NUMERICAL SIMULATION OF THE DAMP WIRE DRAWING PROCESS OF A CARBON STEEL

    Directory of Open Access Journals (Sweden)

    Ennio L Rojas

    2008-06-01

    Full Text Available En este trabajo se presenta un análisis experimental y numérico para la descripción del comportamiento mecánico de un alambre de acero al carbono durante un proceso industrial de trefilado húmedo. En primer lugar, se hizo una campaña experimental de mediciones de fuerza de trefilado de las doce reducciones presentes en el proceso. En segundo lugar, se llevaron a cabo ensayos de tracción con objeto de caracterizar el comportamiento mecánico del material en cada etapa de reducción. En estos ensayos se obtuvieron curvas de tensión-deformación que, en conjunto a las respuestas calculadas a partir de la simulación de los ensayos, permitieron derivar la evolución de los parámetros elásticos y plásticos característicos del material a medida que se reduce su diámetro. De dicha evolución se constató el gran endurecimiento que experimenta el material durante el proceso el que, a su vez, condiciona fuertemente su trefilabilidad. Las simulaciones se realizaron por medio de un modelo elastoplástico de grandes deformaciones implementado en un programa de cálculo preexistente, basado en el método de elementos finitos, denominado VULCAN. Luego, los parámetros del material obtenidos en los ensayos de tracción fueron considerados en la simulación del proceso de deformación que ocurre durante el paso del alambre a través de los dados. Los resultados de la simulación se consideran aceptables y representativos del comportamiento del alambre en el proceso.This paper presents an experimental and numerical analysis for the description of the mechanical behaviour of a carbon steel wire during an industrial process of damp drawing. Firstly, an experimental procedure aimed at measuring wire drawing forces in the twelve reductions present in the process was performed. Secondly, tensile tests were carried out in order to characterize the mechanical behavior of the material for each reduction step. The resulting stress-strain curves together with

  19. Electrodeposition of self-assembled poly(3,4-ethylenedioxythiophene) @gold nanoparticles on stainless steel wires for the headspace solid-phase microextraction and gas chromatographic determination of several polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Yang, Liu; Zhang, Jie; Zhao, Faqiong; Zeng, Baizhao

    2016-11-04

    In this work, a novel poly(3,4-ethylenedioxythiophene)@Au nanoparticles (PEDOT@AuNPs) hybrid coating was prepared and characterized. Firstly, the monomer 3,4-ethylenedioxythiophene was self-assembled on AuNPs, and then electropolymerization was performed on a stainless steel wire by cyclic voltammetry. The obtained PEDOT@AuNPs coating was rough and showed cauliflower-like micro-structure with thickness of ∼40μm. It displayed high thermal stability (up to 330°C) and mechanical stability and could be used for at least 160 times of solid phase microextraction (SPME) without decrease of extraction performance. The coating exhibited high extraction capacity for some environmental pollutants (e.g. naphthalene, 2-methylnaphthalene, acenaphthene, fluorene and phenathrene) due to the hydrophobic interaction between the analytes and PEDOT and the additional physicochemical affinity between polycyclic aromatic hydrocarbons and AuNPs. Through coupling with GC detection, good linearity (correlation coefficients higher than 0.9894), wide linear range (0.01-100μgL -1 ), low limits of detection (2.5-25ngL -1 ) were achieved for these analytes. The reproducibility (defined as RSD) was 1.1-4.0% and 5.8-9.9% for single fiber (n=5) and fiber-to-fiber (n=5), respectively. The SPME-GC method was successfully applied for the determination of three real samples, and the recoveries for standards added were 89.9-106% for lake water, 95.7-112% for rain water and 93.2-109% for soil saturated water, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Power supply in a wire mill; Energiefuehrungen sind schwer auf Draht

    Energy Technology Data Exchange (ETDEWEB)

    Roth-Stahl, Ingelore [Kabelschlepp GmbH, Wenden-Gerlingen (Germany). International Fairs and Public Relation

    2009-09-15

    Near Rotterdam, steel producer Ovako operates a wire mill including a coating and pickling unit. The pickling unit has a capacity of 450,000 tpa of wire and is one of the biggest of its kind. The cranes and lifting gear for transporting wire coils and operating the dipping tanks have plastic power tracks for uninterrupted operation. (orig.)

  1. Structural and phase studies of stainless wire after electroplastic drawing

    International Nuclear Information System (INIS)

    Troitskij, O.A.; Baldokhin, Yu.V.; Kir'yanchev, N.E.; Ryzhkov, V.G.; Kalugin, V.D.; Sokolov, N.V.; Klekovkin, A.A.; Klevtsur, S.A.

    1983-01-01

    Structural and phase properties of the 12Kh18N10T steel wire are studied after usual and electroplastic drawing from 0.40 up to 0.11 mm with 18-22% reduction per pass with passing 250 A/mm 2 electric current. The earlier made observation on a sharp decrease in content of deformation-induced martensite of α-phase takes place in the wire from stainless metastable austenitic steel as a result of electroplastic drawing. Distribution of the remained α-phase by the wire cross section is established

  2. Plasticity induced by phase transformation in steel: experiment vs modeling

    International Nuclear Information System (INIS)

    Tahimi, Abdeladhim

    2011-01-01

    The objectives of this work are: (i) understand the mechanisms and phenomena involved in the plasticity of steels in the presence of a diffusive or martensitic phase transformation. (ii) develop tools for predicting TRIP, which are able to correctly reproduce the macroscopic deformation for cases of complex loading and could also provide information about local elasto-visco-plastic interactions between product and parent phases. To this purpose, new experimental tests are conducted on 35NCD16 steel for austenite to martensite transformation and on 100C6 steel for austenite to pearlite transformation. The elasto viscoplastic properties of austenite and pearlite of the 100C6 steel are characterized through tension compression and relaxation tests. The parameters of macro-homogeneous and crystal-based constitutive laws could then be identified such as to analyse different models with respect to the experimental TRIP: the analytical models of Leblond (1989) and Taleb and Sidoroff (2003) but also, above all, different numerical models which can be distinguished by the prevailing assumptions concerning the local kinetics and the constitutive laws. An extension of the single-grain model dedicated to martensitic transformations developed during the thesis of S. Meftah (2007) is proposed. It consists in introducing the polycrystalline character of the austenite through a process of homogenization based on a self-consistent scheme by calculating the properties of an Equivalent Homogeneous Medium environment (EHM). (author)

  3. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  4. Effect of austenitization conditions on kinetics of isothermal transformation of austenite of structural steels

    International Nuclear Information System (INIS)

    Konopleva, E.V.; Bayazitov, V.M.; Abramov, O.V.; Kozlova, A.G.

    1987-01-01

    Effect of austenization of kinetics of pearlite and bainite transformations for steels with different carbon content differing by alloying character and degree has been investigated. Austenization temperature increase is shown to leads to retardation of ferrite-pearlite transformation in low- and medium-carbon alloyed steels. Step-like holding in the region of austenite stable state (850, 950 deg) after high-temperature heating (1100 deg C) increases the rate of transformation partially recovering its kinetics and decomposition velocity after low-temperature heating in steels alloyed advantageously with carbide-forming elements (08Kh2G2F, 30Kh3) and does not affect kinetics in the 35Kh, 30KhGSN2A, 45N5 steels. Increase of heating temperature and growth of an austenite grain cause considerable acceleration of bainite transformation, increase of the temperaure of bainite transformation beginning and increase of the transformation amplitude in the 08Kh2G2F, 30Kh3 steels and affect weakly kinetics in steels with mixed alloying (30KhGSN2A) or low-alloy one (35Kh). The bainite transformation rate in the 45N5 steelite does not depend on austenization. The effect of additional acceleration of bainite transformation as a result holding after high-temperature heating in those steels, where activation of transformation occurs with increase of heating temperature

  5. Contributions of Rare Earth Element (La,Ce) Addition to the Impact Toughness of Low Carbon Cast Niobium Microalloyed Steels

    Science.gov (United States)

    Torkamani, Hadi; Raygan, Shahram; Garcia Mateo, Carlos; Rassizadehghani, Jafar; Palizdar, Yahya; San-Martin, David

    2018-03-01

    In this research Rare Earth elements (RE), La and Ce (200 ppm), were added to a low carbon cast microalloyed steel to disclose their influence on the microstructure and impact toughness. It is suggested that RE are able to change the interaction between the inclusions and matrix during the solidification process (comprising peritectic transformation), which could affect the microstructural features and consequently the impact property; compared to the base steel a clear evolution was observed in nature and morphology of the inclusions present in the RE-added steel i.e. (1) they changed from MnS-based to (RE,Al)(S,O) and RE(S)-based; (2) they obtained an aspect ratio closer to 1 with a lower area fraction as well as a smaller average size. Besides, the microstructural examination of the matrix phases showed that a bimodal type of ferrite grain size distribution exists in both base and RE-added steels, while the mean ferrite grain size was reduced from 12 to 7 μm and the bimodality was redressed in the RE-added steel. It was found that pearlite nodule size decreases from 9 to 6 μm in the RE-added steel; however, microalloying with RE caused only a slight decrease in pearlite volume fraction. After detailed fractography analyses, it was found that, compared to the based steel, the significant enhancement of the impact toughness in RE-added steel (from 63 to 100 J) can be mainly attributed to the differences observed in the nature of the inclusions, the ferrite grain size distribution, and the pearlite nodule size. The presence of carbides (cementite) at ferrite grain boundaries and probable change in distribution of Nb-nanoprecipitation (promoted by RE addition) can be considered as other reasons affecting the impact toughness of steels under investigation.

  6. Test plan for Enraf Series 854 level gauge wire testing

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1994-01-01

    An Enraf Series 854 level gauge was installed on tank 241-S-106 during the first week of June 1994. On August 11, 1994, the gauge's stainless steel measuring wire broke. After examination and laboratory analysis, it was determined that the wire broke due to severe chloride ion corrosion. It is suspected that the chloride ion contamination came from the radiation induced breakdown of the polyvinyl chloride (PVC) riser liner. It is well documented that the breakdown of PVC due to radiation produces chloride containing compounds. This document provides a qualification test plan to remove and have analyzed the wire in all of the Enraf Series 854 that have been installed to date. These tests will confirm the presence or absence of chloride ions in the PVC liners and/or on the Enraf measuring wires installed in the tanks. This test will involve removing the 316 stainless steel wire drums from all of the existing Enraf Series 854 level gauges that have been installed. New 316 stainless steel wire drums shall be installed into the gauges and the gauges will be placed back into service. The wire that is removed from the gauges shall be sent to the 222-S Lab or the Pacific Northwest Laboratory (PNL) for analysis. Additional wire replacements will occur at intervals as determined necessary by the results of the laboratory analyses

  7. Comparison of fracture properties for two types of low alloy steels

    International Nuclear Information System (INIS)

    Nasreldin, A.M.

    2004-01-01

    The fracture properties of two types of low alloy steels used in the pressure vessel and boilers industry were determined. The first type was the steel A533-B which comprised a fully bainitic microstructure. The second one was the C-Mn steel which consisted of ferritic-pearlitic microstructure. The following fracture properties were determined using instrumented impact testing: the total fracture energy, the crack initiation and propagation energies, the brittleness transition temperature and the local fracture stress. The steel A533-B showed better fracture properties at high testing temperatures, while the C-Mn steel displayed higher resistance to brittle fracture at low testing temperatures. The results were discussed in relation to the difference in microstructure and fracture surface morphology for both steels

  8. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  9. DT fusion neutron irradiation of BPNL niobium nickel and 316 stainless steel at 1750C

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation at 175 0 C of 17 niobium wires, one niobium foil, 14 316 stainless steel wires, one 316 stainless steel foil, nine nickel wires, and two nickel foils from BPNL is described. The sample position, beam-on time, neutron dose record, and neutron fluence are given

  10. Lattice defect inheritance during γ-α-γ transformation in steel having no ''reverse'' (martensite) transition during austenization

    International Nuclear Information System (INIS)

    Bernshtejn, M.L.; Zajmovskij, V.A.; Kozlova, A.G.; Kolupaeva, T.L.

    1979-01-01

    An investigation was carried out, using an electron microscope technique, of the substructure of austenite in the 120Kh3G steel. It was shown that the austenite substructure, resulting from high-temperature mechanical working, is inherited on deep cooling by the low-temperature phase (martensite), and in subsequent heating is again inherited by austenite. If the disintegration of the hot-deformed austenite takes place in the pearlite phase, reheating gives rise to an austenite free from the substructure

  11. Monitoring and evaluation of wire mesh forming life

    Science.gov (United States)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  12. Micro Wire-Drawing: Experiments And Modelling

    International Nuclear Information System (INIS)

    Berti, G. A.; Monti, M.; Bietresato, M.; D'Angelo, L.

    2007-01-01

    In the paper, the authors propose to adopt the micro wire-drawing as a key for investigating models of micro forming processes. The reasons of this choice arose in the fact that this process can be considered a quasi-stationary process where tribological conditions at the interface between the material and the die can be assumed to be constant during the whole deformation. Two different materials have been investigated: i) a low-carbon steel and, ii) a nonferrous metal (copper). The micro hardness and tensile tests performed on each drawn wire show a thin hardened layer (more evident then in macro wires) on the external surface of the wire and hardening decreases rapidly from the surface layer to the center. For the copper wire this effect is reduced and traditional material constitutive model seems to be adequate to predict experimentation. For the low-carbon steel a modified constitutive material model has been proposed and implemented in a FE code giving a better agreement with the experiments

  13. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  14. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    International Nuclear Information System (INIS)

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-01-01

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: ► FSW produced sound welds between st37 low carbon steel and 304 stainless steel. ► The SZ of the st37 steel contained some products of allotropic transformation. ► The material in the SZ of the 304 steel showed features of dynamic recrystallization. ► The finer microstructure in the SZ increased the hardness and tensile strength.

  15. FATIGUE BEHAVIOR OF HOT-ROLLED STEEL INTENDED FOR COLD FORMING

    Directory of Open Access Journals (Sweden)

    Gejza Rosenberg

    2011-07-01

    Full Text Available In the work, there are presented measured tension and fatigue properties of eight low-carbon steels moulded in form of 20 kg ingots that were processed by controlled regime of rolling /cooling and then exposed to simulated effect of two coiling temperatures. The experimental results presented in the work show, that steels with ferrite-martensite or ferrite-bainitic microstructure have in comparison to ferrite-pearlitic or ferrite-carbidic microstructure better strength-plastic properties, but worse resistance to cyclic loading.

  16. Hot working effect on austenite transformations in structural steel in continuous cooling

    International Nuclear Information System (INIS)

    Zajmovskij, V.A.; Kisteh, N.V.; Samedov, O.V.

    1979-01-01

    Austenite transformations in 40, 40Kh, 40KhN and 40KhNMA steels under hot working at 900 deg C with 20% reduction degree and continuous cooling with 1,7-16 0 /s are investigated. Changing of cooling rate in various ways affects the temperature range of austenite transformation in pearlite and bainite regions. Regulating the cooling rate after hot working one can essentially change the impact strength and steel ductility as a result of high temperature thermomechanical treatment effect

  17. Strong tough low-carbon bainite structural steels exposed to heat treatment and mechanical working

    International Nuclear Information System (INIS)

    Lauprecht, W.; Imgrund, H.; Coldren, P.

    1975-01-01

    A review of results of studying the mechanical properties and structure of extremely strong construction low-pearlite and pearlite-free steels subjected to thermomechanical processing (TMP) is presented. The development of TMP of low-pearlite and pearlite-free steels has led to creation of steel of the following composition: 0.06% of C; 1.8% of Mn; 0.3% of Mo; 0.05-0.09% of Nb. Depending on the kind of TMP the most important parameters of which are the temperature of the termination of rolling and the total deformation below 900 deg C, transformation in these steels occurs partially or completely in the intermediate domain. The increased density of dislocations of beinite structure affects substantially the increase in the yield limit. High degrees of squeezing at temperatures below 870 deg C promote formation of ferrite nuclei. The laboratory rolling demonstrates that by selecting the conditions of TMP one can control the mechanical properties of a steel. The sheets of 13 mm thick allow to obtain the guaranteed values of the yield limit of 70 kgf/mm 2 the transition temperature T 50 = -25 deg C, whereas after rolling under different conditions the low-temperature limit of cold shortness is - 125 deg C, and the yield limit - 45 kgf/mm 2 . As followed from the estimate of numerous industrial experiments, with sheets 20 mm thick in hot-rolled state one can obtain the yield limit no less than 50 kgf/mm 2 . On rolling mills that make possible to produce large deformation at low temperature these values can be increased. For instance, with sheets 30 mm thick one can obtain the yield limit of 56 kgf/mm 2 and the transition temperature of - 60 deg C. The dependence of the yield limit on the holding time in steel tempering is given. The steel possesses a considerable reserve of the increase of strength due to dispersion hardening, which after tempering at 600-625 deg C constitutes 8-12 kgf/mm 2 . Because of low carbon content, this steel is characterized by good

  18. Testing methods of steel wi re ropes at the anchor

    Directory of Open Access Journals (Sweden)

    Stanislav Kropuch

    2012-12-01

    Full Text Available The present paper introduces an application of the acoustic andthermographic method in the defectoscopic testing of immobilesteel wire ropes at the most critical point, the anchor. Firstmeasurements and their results by these new defectoscopic methodsare shown. In defectoscopic tests at the anchor, the widelyused magnetic method gives unreliable results, and therefore presentsa problem for steel wire defectoscopy. Application of the two new methods in the steel wire defectoscopy at the anchor point will enableincreased safety measures at the anchor of steel wire ropes in bridge, roof, tower and aerial cable lift constructions.

  19. The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel

    Science.gov (United States)

    Sourmail, T.; Garcia-Mateo, C.; Caballero, F. G.; Cazottes, S.; Epicier, T.; Danoix, F.; Milbourn, D.

    2017-09-01

    The influence of vanadium additions on transformation kinetics has been investigated in a medium carbon forging steel. Using dilatometry to track transformation during continuous cooling or isothermal transformation, the impact of vanadium on both ferrite-pearlite and bainite has been quantified. Transmission electron microscopy and atom probe tomography have been used to establish whether vanadium was present in solid solution, or as clusters and precipitates. The results show that vanadium in solid solution has a pronounced retarding influence on ferrite-pearlite formation and that, unlike in the case of niobium, this effect can be exploited even during relatively slow cooling. The influence on bainite transformation was found to depend on temperature; an explanation in terms of the effect of vanadium on heterogeneous nucleation is tentatively proposed.

  20. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  1. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  2. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  3. Comparison of the Load Deflection Characteristics of Esthetic and Metal Orthodontic Wires on Ceramic Brackets using Three Point Bending Test

    Directory of Open Access Journals (Sweden)

    Umal Hiralal Doshi

    2013-01-01

    Conclusion: Steel wires showed highest strength values, requiring the incorporation of loops and folds to reduce the load/deflection. NiTi and GFRPC wires produced more deflection at low levels of force, however the esthetic wire was shown to fracture and break.

  4. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  6. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  7. Microstructure and susceptibility to HIBC of 10H2M steel exposed to service conditions of boilers in fossil power plants

    International Nuclear Information System (INIS)

    Lunarska, E.; Nikiforow, K.; Zielinski, W.; Kurzydlowski, K.J.

    2004-01-01

    Mechanical properties, microstructure and hydrogen permeation through 10H2M ferrite pearlite steel from boilers of power station being in-service for up to 100000 hours have been systematically analysed in order to correlate the change in susceptibility to HIBC with microstructure features. The change of the pearlite volume fraction, the carbide morphology and the ferrite dislocation structure as a function of in-service time has been evaluated by SEM and TEM analysis. Susceptibility to HIBC has been estimated in the especially elaborated electrochemical measurements of hydrogen permeation. The correlation has been found between the microstructure features and the hydrogen permeation parameters describing the susceptibility to hydrogen induced cracking of steel exploited in water-steam environment. (author)

  8. Effects of a diamond-like carbon coating on the frictional properties of orthodontic wires.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Mizoguchi, Itaru

    2011-01-01

    To test the hypothesis that a diamond-like carbon coating does not affect the frictional properties of orthodontic wires. Two types of wires (nickel-titanium and stainless steel) were used, and diamond-like carbon (DLC) films were deposited on the wires. Three types of brackets, a conventional stainless steel bracket and two self-ligating brackets, were used for measuring static friction. DLC layers were observed by three-dimensional scanning electron microscopy (3D-SEM), and the surface roughness was measured. Hardness and elastic modulus were obtained by nanoindentation testing. Frictional forces and surface roughness were compared by the Kruskal-Wallis and Mann-Whitney U-tests. The hardness and elastic modulus of the wires were compared using Student's t-test. When angulation was increased, the DLC-coated wires showed significantly less frictional force than the as-received wires, except for some wire/bracket combinations. Thin DLC layers were observed on the wire surfaces by SEM. As-received and DLC-coated wires had similar surface morphologies, and the DLC-coating process did not affect the surface roughness. The hardness of the surface layer of the DLC-coated wires was much higher than for the as-received wires. The elastic modulus of the surface layer of the DLC-coated stainless steel wire was less than that of the as-received stainless steel wire, whereas similar values were found for the nickel-titanium wires. The hypothesis is rejected. A DLC-coating process does reduce the frictional force.

  9. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.

  10. A Critical Analysis of Grain-Size and Yield-Strength Dependence of Near-Threshold Fatigue-Crack Growth in Steels.

    Science.gov (United States)

    1981-07-15

    of high-strength steel ), and a host of microstructural types (ferritic, martensitic, pearlitic, bainitic , austenitic). Accession For NTIS GRA&l DTIC...IN STEELS , : RPRNGO.RPRTNMR 1~A Tw.R CONTRACT OA4A&XMUt8~ G/~ ! R./koderl L.A./Cooleyad T.W./Crooker 2 .{I 9PERFORMING ORGANIZATION NAME AND A10R4SI...growth Steels Microstructure Ferrous alloys Structure-sensitive crack growth 20 ABSTRACT (Con~tinue an r*,er.. side it necesar and Identity by black

  11. Improvement of cold wire drawing process by electropulsing

    OpenAIRE

    Sánchez Egea, Antonio José; González Rojas, Hernan Alberto; Jorba Peiró, Jordi

    2015-01-01

    The electroplastic effects on wire drawing process assisted with different short time current pulses configurations are investigated experimentally. The current pulses were induced to a specimen during the drawing process. The studied material is the 308L stainless steel. Current densities of 185 A/mm2, frequencies range from 140 to 350 Hz and pulse duration range from 100 to 250 μs were used in the electrically‐assisted wire drawing process. Frequency and pulse duration are...

  12. Hot wire TIG temper bead welding for nuclear repairs

    International Nuclear Information System (INIS)

    Lambert, J.A.; Gilston, P.F.

    1989-08-01

    A preliminary assessment has been carried out to determine the suitability of the hot wire tungsten inert gas (TIG) welding process for the repair of thick section, ferritic steel nuclear pressure vessels. The objective has been to identify a hot wire TIG temper bead procedure, suitable for repairs without post weld heat treatment. This procedure involves depositing two weld layers with carefully selected welding parameters such that overlapping thermal cycles produce a refined and tempered heat affected zone, HAZ, microstructure. (author)

  13. Electroplastic drawing of stainless steels

    International Nuclear Information System (INIS)

    Troitskij, O.A.; Spitsyn, V.I.; Sokolov, N.V.; Ryzhkov, V.G.

    1977-01-01

    Effect of electroplastic drawing on mechanical, magnetic and electrical properties of wire of 12Kh18N10T and Kh13N13M2 steels was studied. Pulse, direct and alternating currents were used. Direct and alternating current densities were 400 A/mm 2 , mean density of pulse current was 200 A/mm 2 . The investigations have shown that the current density increase results in decreasing the wire strengthening intensity though in increasing plastic properties. As a result of electroplastic drawing the growth of magnetic characteristics of wire occurs

  14. Quantitative analysis of inclusions in high-strength steels by x-ray computed tomography using ultra-bright synchrotron radiation

    International Nuclear Information System (INIS)

    Shiozawa, Daiki; Nakai, Yoshikazu; Morikage, Yasushi; Tanaka, Hiroshi; Okado, Hideki; Miyashita, Takuya

    2006-01-01

    The observation of internal microstructures in materials is important to elucidate the mechanisms of ultra-long life fatigue of high-strength steels, and to ensure the integrity of structures. By conventional techniques, such as laboratory X-ray and ultrasonic imaging, the size and shape of subsurface non-metallic inclusions and cracks, those are smaller than 100 μm, cannot be measured. Then, in the present study, the ultra-bright synchrotron radiation X-ray was applied to the imaging of subsurface inclusion. To obtain basic data for the measurement, the penetration depth of synchrotron radiation wave in a free-cutting steel was examined. It was found that the depths where the transmitted wave cannot be observed are 100 μm for 15 keV, 200 μm for 20 keV, 600 μm for 25 keV, and 800 μm for 30 keV. For the measurement of size and shape of inclusion, synchrotron radiation computed tomography method (SR-CT) was employed. Metallographic structures can be observed in a free-cutting steel, and the diameter of these structures is about 7 - 10 μm. They are considered to be inclusions, which mainly contain manganese sulfide (MnS) or pearlitic phase. To investigate the possibility of detection of pearlitic phase, SR-CT was applied to observe the metallographic structures in carbon steel (S35C), which contains a lot of pearlitic phase and a little inclusion. In this case, no metallographic structure was observed inside specimen. These results indicate that the microstructures those were observed by SR-CT method was inclusions, not pearlitic phase. (author)

  15. THE PRODUCTION OF STEEL CORD IN BELARUS IS 15 YEARS OLD

    Directory of Open Access Journals (Sweden)

    A. N. Savenok

    2004-01-01

    Full Text Available In this article there is briefly narrated about the history of the steel wire cord production, the development of its production at Belorussian metallurgical works, perspectives of the further increase of the Belorussian steel wire cord production volume. The information on the dynamics of the production of wire RVD, wire of bead rings of tires and steel wire cord at RUP “BMZ” for the last 15 years is given. The tendencies of the development of the tires reinforcing materials for the nearest future are considered.

  16. Hot drawn Fe–6.5 wt.%Si wires with good ductility

    International Nuclear Information System (INIS)

    Yang, W.; Li, H.; Yang, K.; Liang, Y.F.; Yang, J.; Ye, F.

    2014-01-01

    Highlights: • Fe–6.5wt%Si steel wire with diameter of 1.6 mm can be successfully obtained by hot drawing process. • The ductility of Fe–6.5wt%Si alloy can be improved significantly when it is fabricated in the form of wire. • The Dc magnetic property of Fe–6.5wt%Si steel wire 1.6 mm in diameter is excellent, which is close to that of 0.3 mm thick cold-rolling sheet. - Abstract: Fe–6.5 wt.%Si high silicon steel wires with a diameter of 1.6 mm are fabricated successfully by hot drawing. The high silicon steel wires show much better ductility than sheets. The tensile strength and elongation of the wires at the room temperature can reach 1.31 GPa and 1.4%, respectively. The tensile strength and elongation of the rolling sheet at the room temperature are 0.8 GPa and 0, respectively. The microstructure analyses show that the elongated grains after drawing and reduced ordering phases by deformation in the wires might contribute to its good ductility. Bs value of 1.437 T and Hc value of 16.96 A/m are obtained for the wire after proper heat treatment for the wires

  17. Avaliação do coeficiente de atrito de braquetes metálicos e estéticos com fios de aço inoxidável e beta-titânio Evaluation of the friction coefficient of metal and esthetic brackets with stainless steel and beta-titanium wires

    Directory of Open Access Journals (Sweden)

    Cristine Pritsch Braga

    2004-12-01

    Full Text Available Um fator importante que define a eficácia dos aparelhos ortodônticos fixos é o atrito existente entre as superfícies de fios e braquetes. Assim, este estudo teve como objetivo investigar o coeficiente de atrito estático entre fios de aço inoxidável e beta-titânio (TP Orthodontics e braquetes de aço inoxidável (Dynalock® - Unitek, braquetes estéticos com slot de aço inoxidável (Clarity® - Unitek e estéticos convencionais (Allure® - GAC. Para tanto, construiu-se um equipamento no Departamento de Engenharia Mecânica e Mecatrônica da PUCRS. Antes de serem iniciados os testes, foi quantificado o erro de método e constatou-se que não houve interferência significante (p>0,05 do fator operador nas medições. Então, pôde-se calcular o valor do coeficiente de atrito, obtido pela divisão da força de atrito pela carga normal. O método estatístico utilizado neste estudo foi Análise de Variância (ANOVA e teste de Comparações Múltiplas (Tukey. Constatou-se que: 1 a combinação com menor coeficiente de atrito foi composta pelo fio de aço inoxidável e braquete Dynalock® e a que apresentou maior coeficiente foi a do braquete Allure® com o fio de beta-titânio; 2 o fio de beta-titânio apresentou coeficiente de atrito significativamente maior do que o fio de aço inoxidável; 3 o braquete Dynalock® não apresentou diferenças significativas em relação ao coeficiente de atrito do braquete Clarity® quando o fio utilizado foi de beta-titânio. No entanto, quando o fio testado foi de aço inoxidável, apresentou coeficiente de atrito significativamente menor. O braquete Clarity® apresentou coeficiente de atrito significativamente menor do que o braquete Allure®.An important factor that defines the effectiveness of the appliances is the friction between the surfaces of wires and brackets. Thus, that study was developed in order to investigate the static friction coefficient between stainless steel and beta-titanium wires (TP

  18. Gamma spectrometry on MANITU 271-01 gamma scan wires

    International Nuclear Information System (INIS)

    Dassel, G.; Buurveld, H.A.; Minkema, J.

    1994-08-01

    A series of irradiation experiments (271-series) is being performed of the sustain programme for material development and characterization of the NET (Next European Torus). In the framework of the first irradiation experiment 271-01, with irradiation up to 0.2 dpa, four gamma scan wires have been examined by gamma scanning. The purpose of the gamma scan wires (GSW) is to get information about the neutron fluence distribution in the capsules during irradiation. In the stainless steel wires the nuclides Co-58, Mu-54, Fe-59 and Co-60 are produced, are characteristic for fast and thermal neutron reactions. (orig./HP)

  19. Imperfection analysis of flexible pipe armor wires in compression and bending

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    The work presented in this paper is motivated by a specific failure mode known as lateral wire buckling occurring in the tensile armor layers of flexible pipes. The tensile armor is usually constituted by two layers of initially helically wound steel wires with opposite lay directions. During pipe...... ability of the wires. This may cause the wires to buckle in the circumferential pipe direction, when these are restrained against radial deformations by adjacent layers. In the present paper, a single armoring wire modeled as a long and slender curved beam embedded in a frictionless cylinder bent...

  20. Breakdown dynamics of electrically exploding thin metal wires in vacuum

    Science.gov (United States)

    Sarkisov, G. S.; Caplinger, J.; Parada, F.; Sotnikov, V. I.

    2016-10-01

    Using a two-frame intensified charge coupled device (iCCD) imaging system with a 2 ns exposure time, we observed the dynamics of voltage breakdown and corona generation in experiments of fast ns-time exploding fine Ni and stainless-steel (SS) wires in a vacuum. These experiments show that corona generation along the wire surface is subjected to temporal-spatial inhomogeneity. For both metal wires, we observed an initial generation of a bright cathode spot before the ionization of the entire wire length. This cathode spot does not expand with time. For 25.4 μm diameter Ni and SS wire explosions with positive polarity, breakdown starts from the ground anode and propagates to the high voltage cathode with speeds approaching 3500 km/s or approximately one percent of light speed.

  1. Influence of mean stress on fatigue strength of ferritic-pearlite ductile cast iron with small defects

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.

    2017-05-01

    Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.

  2. Surface state of the wire electrode and its influence on the application characteristics in MAG welding

    International Nuclear Information System (INIS)

    Piffer, W.; Marques, P.V.; Modenesi, P.J.

    1997-01-01

    This work presents an evaluation of the effect of the surface condition of the wire on GMA welding performance. Three wires samples were produced from the same steel heat with different surface conditions. Short circuit transfer welding trials were performed for two wire feed rates and different voltage levels. These tests indicated that stability tended to be worse and spatter level higher for the lowest and the highest welding voltage operation and the wire with no copper coating. No major difference was observed for intermediate voltage operation. Scanning electron microscopy of contact tips suggested that cooper coated wires produced less erosion on the tips. Electrical resistance of wires and friction forces between wires and contact tip were also evaluated and used to analyze differences in influence of wire surface condition on welding results. (Author) 14 refs

  3. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  4. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  5. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. Gamma spectrometry of 285-04 ILAS gamma scan wires

    International Nuclear Information System (INIS)

    Dassel, G.; Buurveld, H.A.; Plakman, J.C.

    1996-12-01

    In the frame work of their on-going sustain programme for the material development and characterization of fusion reactors, ECN is investigating the irradiation behaviour of ferritic/martensitic steels. In the fourth irradiation experiment 285-04, 55 steel tensile samples have been irradiated up to 2.5 dpa. Four gamma scan wires from this experiment have been examined by gamma scanning. The results of the measurements have been described in this report. (orig.)

  7. Controlling DC permeability in cast steels

    International Nuclear Information System (INIS)

    Sumner, Aaran; Gerada, Chris; Brown, Neil; Clare, Adam

    2017-01-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  8. Controlling DC permeability in cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, Aaran, E-mail: aaran.sumner@nottingham.ac.uk [University of Nottingham, Nottingham University Park Campus, Nottingham NG7 2RD, England (United Kingdom); Gerada, Chris, E-mail: chris.gerada@nottingham.ac.uk [Electrical Machines, University of Nottingham, Tower Building, Nottingham NG7 2RD, England (United Kingdom); Brown, Neil, E-mail: neil.brown@cummins.com [Advanced Electrical Machines Research and Technology at Cummins Power Generation, Peterborough PE2 6FZ, England (United Kingdom); Clare, Adam, E-mail: adam.clare@nottingham.ac.uk [Advanced Manufacturing, University of Nottingham, University Park Campus, Nottingham NG7 2RD, England (United Kingdom)

    2017-05-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  9. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  10. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  11. INFLUENCE OF MICROSTRUCTURAL ANISOTROPY ON THE SPALLATION OF 1080 EUTECTOID STEEL

    International Nuclear Information System (INIS)

    GRAY, G.T.; LOPEZ, M.F.

    2001-01-01

    While the influence of crystallographic texture on elastic and plastic constitutive response has seen extensive investigation in recent years, the influence of texture on the dynamic fracture of engineering materials remains less extensively explored. In particular, the influence of anisotropy, both textural and morphological, on the spallation behavior of materials remains poorly quantified. In this study, the spallation response of 1080-steel has been studied as a function of microstructural morphological anisotropy. In this study the influence of elongated MnS stringers, resident within a crystallographically isotropic eutectoid steel, on the spallation response of 1080 steel was investigated. That of a fully-pearlitic 1080 steel loaded to 5 GPa was found to be dominated by the heterogeneous nucleation of damage normal and orthogonal to the MnS stringers. Delamination between the matrix pearlitic microstructure and the MnS stringers was seen to correlate to a significantly lower pull-back signal during transverse loading than to that parallel to the stringer axis. The ''pull-back'' signals and post-spallation metallographic observations are discussed with reference to the influence of microstructural anisotropy on void nucleation and growth

  12. Effect of the isothermal transformation temperature on the fine structure of steel-12Kh1MF

    International Nuclear Information System (INIS)

    Mints, I.I.; Berezina, T.G.; Lanskaya, K.A.

    1976-01-01

    For detailed analysis of bainite and pearlite in steel 12Kh1MF, homogeneous structures were obtained by isothermal annealing at 350, 450, 500, and 650 0 for 1 h. Isothermal transformation of austenite leads to the formation of bainite at 350-500 0 and pearlite at 650 0 . The austenitizing temperature was 980 0 for both types of samples, with holding for 20 min. For comparison, the plates were quenched from 980 0 and 1050 0 in ice-cold brine. The investigation was conducted with use of light and electron microscopes and x-ray analysis. The long-term strength was also determined. Isothermal treatment of steel 12Kh1MF at 350-500 0 C leads to the formation of a structure consisting of upper and lower bainite. At 500 0 the structure consists primarily of upper bainite, and at 350 0 of lower bainite. With tempering of the steel with a structure of upper and lower bainite at 730 0 for 3 h the dislocations undergo redistribution of the polygonization type within ferrite needles, with development of a cellular substructure. The acicular structure of the matrix is retained in this case. The density and evenness of the distribution of carbides is higher in upper bainite than in lower bainite. Steel 12Kh1MF with a structure of upper bainite is more susceptible to recrystallization as compared with a structure of lower bainite, which is responsible for the higher heat resistance of the latter

  13. Influence of quantity of non-martensite products of transformation on resistance to fracture of improving structural steel

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Golovanenko, Yu.S.; Zikeev, V.N.

    1978-01-01

    18KhNMFA, low-carbon, alloyed steel and 42KhMFA medium-carbon, alloyed steel have been examined. For the purpose of obtaining different structures in hardening the steel, different cooling rates, different temperatures and isothermal holding times are applied. The following has been shown: on tempering to the same hardness (HV 300), the presence of non-martensite structures in hardened state does not practically influence the standard mechanical properties of steel (sigmasub(B), sigmasub(0.2), delta, PSI). The resistance of steel to the brittle failure is enhanced by the uniform, fine-disperse distribution of the carbide phase in the structure of lower bainite (up to 80 % bainite in martensite for 42KhMF steel to be improved), as well as strongly fragmented packages of rack martensite-bainite (up to 50 % lower bainite in martensite of 18KhNMFA steel). The formation of the upper bainite in the structure of the hardened steels 18KhNMFA and 42KhMF results on tempering in the formation of coarse, non-uniform, branched carbide inclusions, and this, in its turn, leads to raising the cold-shortness threshold and to lowering the amount of work as required for propagation of a crack. The presence of ferritic-pearlitic structures in the structural steels hardened to martensite and bainite results in reducing the resistance of steel to the brittle failure; the presence of every 10 % ferritic-pearlitic component in martensite of the structural steels 18KhNMFA and 42KhMFA to be thermally improved, raises T 50 by 8 deg and 20 deg C, respectively

  14. Mechanical properties of low alloy high phosphorus weathering steel

    Directory of Open Access Journals (Sweden)

    Jena B.K.

    2015-01-01

    Full Text Available Mechanical behaviour of two low alloy steels (G11 and G12 was studied with respect to different phosphorus contents. Tensile strength and yield strength increased while percentage elongation at fracture decreased on increasing phosphorus content. The SEM and light optical photomicrograph of low phosphorus steel (G11 revealed ferrite and pearlite microstructure. On increasing phosphorus content from 0.25 wt.% to 0.42 wt.%, the morphology of grain changed from equiaxed shape to pan-cake shape and grain size also increased. The Charpy V notch (CVN impact energy of G11 and G12 steel at room temperature was 32 J and 4 J respectively and their fractographs revealed brittle rupture with cleavage facets for both the steels. However, the fractograph of G11 steel after tensile test exhibited ductile mode of fracture with conical equiaxed dimple while that of G12 steel containing 0.42 wt. % P exhibited transgranular cleavage fracture. Based on this study, G11 steel containing 0.25 wt. % P could be explored as a candidate material for weathering application purpose where the 20°C toughness requirement is 27 J as per CSN EN10025-2:2004 specification.

  15. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  16. Influence of austenitisation temperature on the structure and properties of weather resistant steels

    International Nuclear Information System (INIS)

    Prasad, S.N.; Mediratta, S.R.; Sarma, D.S.

    2003-01-01

    The influence of austenitisation temperature on the structure and properties of three experimental weather resistant steels has been studied. All these steels contain 1% Mn, 0.3% Ni, 0.47% Cr and 0.47% Cu. In addition, steel no. 1 has 0.1% C, 0.1% P, steel no. 2 has 0.1% C, 0.05% P and 0.024% Nb while steel 3 has 0.2% C, 0.054% Nb and 0.046% V. It has been found that the hardness, yield strength and tensile strength do not change significantly with austenitisation temperature over the range 900-1200 deg. C for steel no. 1 but they increase considerably when austenitised above 1000 deg. C for steels 2 and 3. Similarly, the ductility decreases with increasing temperature of austenitisation. All the steels austenitised up to 1000 deg. C exhibit sharp yield points. None of these steels shows sharp yield point after 1200 deg. C. At 1100 deg. C, however, sharp yield points were observed in steels 1 and 2. There has been a noticeable change in optical microstructure. In steels 2 and 3 the pearlite is gradually replaced by granular bainite when austenitised above 1000 deg. C. The transmission electron microscopy study reveals that the granular bainite consists of acicular ferrite and martensite/austenite constituent

  17. Hybrid Composite Tensile Armour Wires in Flexible Risers: A Multi-scale Model

    OpenAIRE

    Gautam, Mayank; Katnam, Kali-Babu; Potluri, Venkata; Jha, Vivekanand; Latto, J.; Dodds, NI

    2017-01-01

    Traditional carbon-steel armour wires pose limitations (e.g. long spans, weight reduction, corrosion and fatigue) for flexible risers to operate in demanding and deeper water environments. In this context, an alternative to carbon-steel tensile armour wires is proposed recently by the authors (Gautam et al. [1]), comprising of hexagonally packed polymer composite rods with uni-directional fibres and an over-braided (i.e. bi-axial braid with high performance fibres) sleeve. These hybrid compos...

  18. Hydrogen attack of steel. Progress report, April 1, 1978--March 31, 1979

    International Nuclear Information System (INIS)

    Shewmon, P.G.

    1978-01-01

    Four normalized carbon steels made in different ways (Si-killed, Al-killed, REM-treated, and electroslag refined) were studied to determine the role of differing fine inclusions on the early stages of hydrogen attack (HA). Hydrogen exposures were made at 450 0 C (6.5 MPa) and 375 0 C (7.6 MPa). The first stage of HA is shown to be the development of a closely spaced (1-2 μm) array of small bubbles over the ferrite/pearlite, or occasionally the ferrite/ferrite boundaries. These grew together to form tears, primarily in the rolling plane, leading to more rapid expansion normal to this plane. The planes of separation followed high solute layers in banded steel but only rarely did the fracture surfaces follow inclusions. At 450 0 C REM-treated steel was attacked the fastest and the Al-killed steel took two to four times as long for attack

  19. Mechanical and metallurgical changes on 308L wires drawn by electropulses

    OpenAIRE

    Sánchez Egea, Antonio José; González Rojas, Hernan Alberto; Celentano, Diego Javier; Jorba Peiró, Jordi

    2015-01-01

    The electroplastic effects resulting from different electropulses configurations on a wire drawing process are investigated experimentally and numerically. Electropulses are induced into 308L stainless steel while it is simultaneously wire drawn. A current density of 185 A/mm2, a frequency range from 140 to 355 Hz and a pulse duration range from 100 to 250 µs are combined to electrically assist the wire drawing process. The electropulsing influence is studied in several mechanical parameters,...

  20. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    Science.gov (United States)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  1. Commercial and Industrial Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  2. The Effect of Heat Treatment on Microstructure and Mechanical Properties of Cast Bainitic Steel Used for Frogs in Railway Crossovers

    Directory of Open Access Journals (Sweden)

    Parzych S.

    2017-12-01

    Full Text Available This work deals with the effect of heat treatment on a microstructure and mechanical properties of a selected cast steel assigned as a material used for frogs in railway crossovers. Materials used nowadays in the railway industry for frogs e.g. Hadfield cast steel (GX120Mn13 or wrougth pearlitic steel (eg. R260 do not fulfil all exploitation requirements indicated in the UIC (International Union of Railways Decision No. 1692/96 in terms of train speed that should be reached on railways. One of the possible solution is using a cast steel with bainitic or bainitic-martensitic microstructure that allows to gain high strength properties the ultimate tensile strength (UTS of 1400 MPa, the tensile yield strength (TYS of 900 MPa and the hardness of up to 400 BHN. The tested material is considered as an alternative to Hadfield cast steel that is currently used for railway frogs.

  3. Effect of magnesium ions on the initial oxidation stages of carbon steel

    International Nuclear Information System (INIS)

    Subramanian, H.; Subramanian, Veena; Rangarajan, S.; Narasimhan, S.V.; Velmurugan, S.

    2012-09-01

    Metal Ion Passivation (MIP) is a technique in which passivating ions get into the oxide of structural materials and modifies the oxide in such a way as to reduce the corrosion and corrosion release rates. Magnesium ions are found to be efficient in passivating carbon steel. This study is an attempt to understand the role of magnesium ions during the early stage of film growth on carbon steel. The study reveals that in the presence of Mg, the initial oxide film formed by the application of potential had a different electrochemical property. The microstructure of the parent alloy of steel also interacted differently with Mg during the film formation. The ferrite film was grown on carbon steel by applying 0.1 V (vs SCE) in borate buffer (pH=9, 85 deg. C). The formation and coverage of film on the surface was ascertained by measuring the steady state current density as a function of time. The steady state current density was achieved faster when Mg was present in the solution. The thin film formed was characterized by both by electrochemical impedance spectroscopy and atomic force microscopy. The formation of a passive film (at 0.1 V vs SCE) was evident in both with and without Mg cases, with total impedance of the system increasing by an order of magnitude compared to the film formed at OCP (∼ - 0.825 V vs SCE). The data was fitted to an equivalent circuit representing a metal covered with a porous film. The fit parameters were significantly different for Mg containing system and the charge transfer resistance at oxide/solution interface was observed to be two times higher. The capacitance of the film was also higher in presence of Mg indicating a thinner film. The thin films on carbon steel were characterized by AFM in semi contact mode. The surfaces were found to be covered with fine oxide. Two morphologically different regions could be identified on the surface and they were assigned as pearlite and ferrite regions. One of the most notable observations was the

  4. Effect of boron control of environment on corrosion and resistance to low-cycle corrosion fatigue in structural steels

    International Nuclear Information System (INIS)

    Babej, Yu.I.; Zhitkov, V.V.; Zvezdin, Yu.I.; Liskevich, I.Yu.; Nazarov, A.A.

    1982-01-01

    Tests of the specimens on total, contact and crevice corrosion, corrosion cracking and low-cycle fatigue are conducted for determination of corrosion and corrosion-fatigue characteristics in the 15Kh3NMFA, 10N3MFA, 10Kh16N4B, 05Kh13N6M2 structural steels, used in energetics. The environment is subjected to boron control and contacting with atmosphere for simulation of stop and operation modes of the facility. The experiments are carried out in the distilled water with 12g/l H 3 BO 3 and 10 mg/l Cl' at 25, 60, 100 deg C under contacting with atmosphere. It is established, that the pearlitic steels 15Kh3NMFA, 10N3MFA, as well as transition and martensitic 05Kh13N6M2 and 10Kh16N4B steels are highly stable to total, crevice and contact corrosion at the high parameters of aqueous boron-containing medium. Steel resistance to low-cycle fracture decreases slightly under the conditions similar to the operation ones, in the water with 12 g/l H 3 BO 3 . Durability of the pearlitic steels at the simulation of stop conditions decreases more noticeably, crack formation as a rule, initiating from corrosion spots

  5. Finite element simulation of impact response of wire mesh screens

    Directory of Open Access Journals (Sweden)

    Wang Caizheng

    2015-01-01

    Full Text Available In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg and a large mass (40 kg providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

  6. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  8. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    OpenAIRE

    Tušek, Janez

    2001-01-01

    The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and highalloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-off depends mainly on the type of shielding gas used and the arc length, i.e., from the arc voltage. The manganese burn-off ...

  9. Experimental study on manufacturing of grits-spiral- distribution electroplated wire saw

    Directory of Open Access Journals (Sweden)

    Yufei GAO

    2016-12-01

    Full Text Available In order to obtain high performance electroplating diamond wire saw, experimental studies are conducted for development of grits-spiral-distribution electroplated diamond wire saw using sand-suspend electroplating method. The influences of pre-plating cathode current density, grits electro-embedding cathode current density and time on composite deposite coating appearance and grits distribution of wire saw are analyzed, and the sawing experiment is carried out by using the trial wire saw. The results show that good bonding strength between the coating and the steel wire can be obtained when the adopted cathode current density is 5.0 A/dm2 at pre-plating stage; good coating and girts distribution can be obtained when the adopted cathode current density is 5.0 A/dm2 and the electroplating time is 7~8 min at grits electro-embedding stage. By winding insulation wire on the surface of steel wire and reasonably selecting technological parameters before pre-plating can make the diamond wire saw with grits-spiral-distribution on surface, and the new type of wire saw has a better crumbs-clearing effect in wire sawing process.

  10. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  11. Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the Liquid Phase

    Science.gov (United States)

    Dorin, Thomas; Stanford, Nicole; Taylor, Adam; Hodgson, Peter

    2015-12-01

    The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.

  12. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  13. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  14. Hot ductility of medium carbon steel with vanadium

    International Nuclear Information System (INIS)

    Lee, Chang-Hoon; Park, Jun-Young; Chung, JunHo; Park, Dae-Bum; Jang, Jin-Young; Huh, Sungyul; Ju Kim, Sung; Kang, Jun-Yun; Moon, Joonoh; Lee, Tae-Ho

    2016-01-01

    Hot ductility of medium carbon steel containing 0.52 wt% of carbon and 0.11 wt% of vanadium was investigated using a hot tensile test performed up to fracture. The hot ductility was evaluated by measuring the reduction of area of the fractured specimens, which were strained at a variety of test temperatures in a range of 600–1100 °C at a strain rate of 2×10"−"3/s. The hot ductility was excellent in a temperature range of 950–1100 °C, followed by a decrease of the hot ductility below 950 °C. The hot ductility continued to drop as the temperature was lowered to 600 °C. The loss of hot ductility in a temperature range of 800–950 °C, which is above the Ae_3 temperature, was due to V(C,N) precipitation at austenite grain boundaries. The further decline of hot ductility between 700 °C and 750 °C resulted from the transformation of ferrite films decorating austenite grain boundaries. The hot ductility continued to decrease at 650 °C or less, owing to ferrite films and the pearlite matrix, which is harder than ferrite. The pearlite was transformed from austenite due to relatively high carbon content.

  15. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  16. Low cycle fatigue behaviors of low alloy steels in 310 .deg. C deoxygenated water

    International Nuclear Information System (INIS)

    Jang, Hun

    2008-02-01

    steel - heat A showed ductile striations in ferrite phase. Also, secondary and surface crack of SA508 Gr.1a low alloy steel - heat A grew into ferrite phase and ferrite - pearlite phase boundaries. The increase in stress intensity at the pearlite crack tip by restricted strain may contribute to fatigue crack propagation along ferrite - pearlite phase boundaries. On the other hand, the fatigue surfaces of SA508 Gr.1a - heat B and SA508 Gr.3 low alloy steels showed relatively less striations due to their homogeneous carbides. And the secondary and surface cracks of SA508 Gr.1a low alloy steel - heat B and SA508 Gr.3 low alloy steel grew into ferrite phase between carbides. The homogeneous carbides could more effectively decrease the crack growth rate. Therefore, the fatigue crack growth rate in SA508 Gr.1a low alloy steel - heat A could be higher than those in SA508 Gr.1a low alloy steel - heat B and SA508 Gr.3 low alloy steel. Also, the fatigue crack growth rate of SA508 Gr.3 low alloy steel may be shorter than that SA508 Gr.1a low alloy steel - heat B due to its low ductility and high yield strength

  17. Engineering task plan and status of 241-S-106 Enraf level gauge wire break

    International Nuclear Information System (INIS)

    Moore, T.L.

    1994-09-01

    This report discusses the findings of a task team which was formed which identified the need for short-term actions to re-establish tank waste level monitoring and to permanently address wire failure. The failed wire was removed and sent to Pacific Northwest Laboratory (PNL) for analysis. It was determined that the cause of the wire failure was due to chloride ion stress corrosion cracking (SCC) of the 316 stainless steel (SS) wire. Radiation induced breakdown of the polyvinyl chloride (PVC) riser liners is suspected to be the source of the chloride ions

  18. Strain sensing systems tailored for tensile measurement of fragile wires

    Science.gov (United States)

    Nyilas, Arman

    2005-12-01

    Fundamental stress versus strain measurements were completed on superconducting Nb3Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb3Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb3Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb3Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb3Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system.

  19. Strain sensing systems tailored for tensile measurement of fragile wires

    International Nuclear Information System (INIS)

    Nyilas, Arman

    2005-01-01

    Fundamental stress versus strain measurements were completed on superconducting Nb 3 Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb 3 Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb 3 Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb 3 Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb 3 Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system

  20. Effect of steel structure and defects on reliability of parts of impact mechanisms

    Science.gov (United States)

    Popelyukh, AI; Repin, AA; Alekseev, SE

    2018-03-01

    The paper discusses selection of materials suitable for manufacturing critical parts of impact mechanisms. It is shown that in order to extend life of parts exposed to high dynamic loading, it is expedient to use medium- and high-carbon alloy-treated steels featuring low impurity with nonmetallic inclusions and high hardening characteristics. Application of thermally untreated parts is undesirable as steel having ferrite–pearlite structure possesses low fatigue strength. Aimed to ensure high reliability of parts with a hardness of 42–55 HRC, steel should be reinforced by thermal treatement with the formation of multicomponent martensite–bainite structure. High-quality production should include defectoscopy and incoming material control.

  1. Numerical model to predict microstructure of the heat treated of steel elements

    Directory of Open Access Journals (Sweden)

    T. Domański

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account thermal phenomena and phase transformations. Numerical algorithm of thermal phenomena was based on the Finite Elements Methods of the heat transfer equations. In the model of phase transformations, in simulations heating process continuous heating (CHT was applied, whereas in cooling process continuous cooling (CCT of the steel at issue. The phase fraction transformed (austenite during heating and fractions during cooling of ferrite, pearlite or bainite are determined by Johnson-Mehl-Avrami formulas. The nescent fraction of martensite is determined by Koistinen and Marburger formula or modified Koistinen and Marburger formula. In the simulations of hardening was subject the fang lathe of cone (axisymmetrical object made of tool steel.

  2. Welding with coated electrodes E 6010 and E 7018 in AISI 1025 steel

    Directory of Open Access Journals (Sweden)

    Dennis Reyes-Carcasés

    2018-01-01

    Full Text Available The welding of steel of low carbon content is a common practice in the nickel industry, where components with steels of these characteristics are manufactured. The objective of the paper was to establish the microstructural behavior of the AISI 1025 steel when it was welded with two types of electrodes (E 6010 and E 7018, the first one deposited as a mattress, and the second one to guarantee mechanical resistance; they were made in a 240 x 240 x 10 mm plate with simple bevel preparation. The microstructures obtained with the electrode E 6010 are of the ferrite type Widmanstátten, columnar ferrite and intergranular pearlite, with a hardness of 345 HV, while with the electrode E 7018 the microstructures are ferrite Widmanstátten, austenite and martensite, with hardness of 332 HV . The decrease in hardness in the latter case is associated with the thermal treatment of multipass annealing.

  3. Degradation of mechanical properties of CrMo creep resistant steel operating under conditions of creep

    Directory of Open Access Journals (Sweden)

    J. Michel

    2012-01-01

    Full Text Available Mechanical properties of a steam tube made of CrMo creep resistant steel are analysed in this contribution after up to 2,6•105 hours service life in creep conditions at temperature 530 °C and calculated stress level in the tube wall 46,5 MPa. During service life there were in the steel gradual micro structure changes, fi rst pearlite spheroidization, precipitation, coaugulation and precipitate coarsening. Nevertheless the strength and deformation properties of the steel (Re, Rm, A5, Z, and the resistance to brittle fracture and the creep strength limit, were near to unchanged after 2,1•105 hours in service. The steam tube is now in service more than 2,6•105 h.

  4. Mechanical properties of orthodontic wires on ceramic brackets associated with low friction ligatures

    Directory of Open Access Journals (Sweden)

    Fernando KOIKE

    2017-03-01

    Full Text Available Abstract Introduction Few studies investigated the mechanical properties of orthodontic wires on ceramic brackets associated the ligatures. Objective This study aimed to compare the load-deflection of orthodontic wires with round section of 0.016” made of stainless steel (SS, nickel-titanium (NiTi and glass fiber-reinforced polymer composite (GFRPC. Material and method Sixty specimens obtained from 10 sectioned pre-contoured arches (TP Orthodontics, were divided into 3 groups of 20 according to each type of material (1 esthetic-type wire and 2 not esthetic and length of 50 mm. The methodology consisted of a 3-point bending test using esthetic ceramic brackets (INVU, TP Orthodontics, Edgewise, 0.022”x 0.025” as points of support. The tensile tests were performed on a mechanical test machine, at a speed of 10 mm/min, deflection of 1 mm, 2 mm and 3 mm. Friedman’s Non Parametric Multiple comparisons test was used (P<0.05. Result The nickel-titanium wire presented smaller load/ deflection compared with stainless steel. GFRPC wires had lower strength values among all groups evaluated (P<.05. The steel wire showed permanent deformation after 3 mm deflection, NiTi wire demonstrated memory effect and the esthetic type had fractures with loss of strength. Conclusion It can be concluded that steel wires have high strength values, requiring the incorporation of loops and folds to reduce the load / deflection. NiTi and GFRPC wires produced low levels of force, however the esthetic wire was shown to fracture and break.

  5. Effects of Nb on microstructure and continuous cooling transformation of coarse grain heat-affected zone in 610 MPa class high-strength low-alloy structural steels

    International Nuclear Information System (INIS)

    Zhang, Y.Q.; Zhang, H.Q.; Liu, W.M.; Hou, H.

    2009-01-01

    Continuous cooling transformation diagrams of the coarse grain heat-affected zone and microstructure after continuous cooling were investigated for 610 MPa class high-strength low-alloy (HSLA) structural steels with and without niobium. For the steel without Nb, grain boundary ferrite, degenerate pearlite and acicular ferrite are produced at slower cooling rates. Bainite phase is formed at faster cooling rates. However, for the steel with Nb, granular bainite is dominant at a large range of cooling rates. At cooling rates 32 K/s, Nb addition has no obvious influence on transformation start temperature, but it influences microstructure transformation significantly. Martensite is observed in steel with Nb at faster cooling rates, but not produced in steel without Nb

  6. Carburizing treatment of low alloy steels: Effect of technological parameters

    Science.gov (United States)

    Benarioua, Younes

    2018-05-01

    The surface areas of the parts subjected to mechanical loads influence to a great extent the resistance to wear and fatigue. In majority of cases, producing of a hard superficial layer on a tough substrate is conducive to an increased resistance to mechanical wear and fatigue. Cementation treatment of low alloy steels which bonds superficial martensitic layer of high hardness and lateral compressive to a core of lower hardness and greater toughness is an example of a good solution of the problem. The high hardness of the martensitic layer is due to an increased concentration of interstitial carbon atoms in the austenite before quenching. The lower hardness of the core after quenching is due to the presence of ferrite and pearlite components which appear if the cooling rate after austenitization becomes lower than the critical on. The objective of the present study was to obtain a cemented surface layer on low alloy steel by means of pack carburizing treatment. Different steel grades, austenitization temperatures as well as different soaking times were used as parameters of the pack carburizing treatment. During this treatment, carbon atoms from the pack powder diffuse toward the steels surface and form compounds of iron carbides. The effect of carburizing parameters on the transformation rate of low carbon surface layer of the low alloy steel to the cemented one was investigated by several analytical techniques.

  7. The effects of sterilization on the tensile strength of orthodontic wires.

    Science.gov (United States)

    Staggers, J A; Margeson, D

    1993-01-01

    The purpose of this study was to evaluate the effect of sterilization on the tensile strength of 0.016" beta-titanium, nickel titanium and stainless steel wires. Three common methods of sterilization--autoclaving, dry heat and ethylene oxide--were evaluated in three test trials involving zero, one and five sterilization cycles. For each of the test trials, five pieces each of 0.016" TMA, 0.016" Sentalloy and 0.016" Tru-chrome stainless steel wires were sterilized using a standard autoclave. Five other pieces of each of the same wires were sterilized in a dryclave, while an additional five pieces of each of the three wire types were sterilized using ethylene oxide. The ultimate tensile strengths of the wires were then determined using an Instron Universal Testing Machine. The data were compared for statistical differences using analysis of variance. The results showed that dry heat sterilization significantly increased the tensile strength of TMA wires after one cycle, but not after five cycles. Autoclaving and ethylene oxide sterilization did not significantly alter the tensile strength of TMA wires. Dry heat and autoclave sterilization also significantly increased the tensile strength of Sentalloy wires, but the mean strength after five sterilization cycles was not significantly different than after one cycle. Ethylene oxide sterilization of Sentalloy wires did not significantly alter the tensile strengths of that wire. There were no significant differences in the tensile strengths of the stainless steel wires following zero, one or five cycles for any of the sterilization methods.

  8. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  9. Wire sawing for the application for dismantling of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Toenshoff, H.K.; Hillmann-Apmann, H. [Hannover Univ. (Germany). Inst. for Production Engineering and Machine Tools

    2001-07-01

    In recent years diamond wire sawing process has been established as a technique for machining of hard and brittle materials in the quarrying and dimensioning of natural stone, i.e. marble and granite /Bor94/, or in machining of concrete and reinforced concrete /NN89, NN90, Rus93, Zil89/. It is more and more applied in different industrial sectors, namely the building and road-building industry, for purposes of reconstruction and decommissioning/. For the application of cutting austenitic steel most of the current wire sawing tools can not be used. First the diamond get in chemical reaction with the steel (graphitisation) and also the plastic flow of the workpiece material (''smearing'') while processing this material, the chip spaces between the diamonds are filled with the steel chips and thus the effective processing is reduced. Only the very tips of the diamonds are in contact with the workpiece, which leads in most cases to rapid wear of the grains. The tool loses its ability to grind in short terms of time. All these problems exclude the wire sawing technique from wide areas of application of cutting ductile steel materials. (orig.)

  10. Wire sawing for the application for dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Toenshoff, H.K.; Hillmann-Apmann, H.

    2001-01-01

    In recent years diamond wire sawing process has been established as a technique for machining of hard and brittle materials in the quarrying and dimensioning of natural stone, i.e. marble and granite /Bor94/, or in machining of concrete and reinforced concrete /NN89, NN90, Rus93, Zil89/. It is more and more applied in different industrial sectors, namely the building and road-building industry, for purposes of reconstruction and decommissioning/. For the application of cutting austenitic steel most of the current wire sawing tools can not be used. First the diamond get in chemical reaction with the steel (graphitisation) and also the plastic flow of the workpiece material (''smearing'') while processing this material, the chip spaces between the diamonds are filled with the steel chips and thus the effective processing is reduced. Only the very tips of the diamonds are in contact with the workpiece, which leads in most cases to rapid wear of the grains. The tool loses its ability to grind in short terms of time. All these problems exclude the wire sawing technique from wide areas of application of cutting ductile steel materials. (orig.)

  11. Shape memory alloy wire-based smart natural rubber bearing

    International Nuclear Information System (INIS)

    Hedayati Dezfuli, F; Shahria Alam, M

    2013-01-01

    In this study, two types of smart elastomeric bearings are presented using shape memory alloy (SMA) wires. Due to the unique characteristics of SMAs, such as the superelastic effect and the recentering capability, the residual deformation in SMA-based natural rubber bearings (SMA-NRBs) is significantly reduced whereas the energy dissipation capacity is increased. Two different configurations of SMA wires incorporated in elastomeric bearings are considered. The effect of several parameters, including the shear strain amplitude, the type of SMA, the aspect ratio of the base isolator, the thickness of SMA wire, and the amount of pre-strain in the wires on the performance of SMA-NRBs is investigated. Rubber bearings are composed of natural rubber layers bonded to steel shims as reinforcement. Results show that ferrous SMA wire, FeNiCuAlTaB, with 13.5% superelastic strain and a very low austenite finish temperature (−62 °C), is the best candidate to be used in SMA-NRBs subjected to high shear strain amplitudes. In terms of the lateral flexibility and wire strain level, the smart rubber bearing with a cross configuration of SMA wires is more efficient. Moreover, the cross configuration can be implemented in high-aspect-ratio elastomeric bearings since the strain induced in the wire does not exceed the superelastic range. When cross SMA wires with 2% pre-strain are used in a smart NRB, the dissipated energy is increased by 74% and the residual deformation is decreased by 15%. (paper)

  12. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  13. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  14. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  15. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    Science.gov (United States)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  16. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  17. PECULIARITIES OF FORMATION OF STRUCTURE AND PROPERTIES AT THERMO-MECHANICAL PROCESSING OF ROLLED WIRE OF NICKEL

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2012-01-01

    Full Text Available There are results of researches of the mechanical properties and structure of the wire rod made of low-carbon nickel molybdenum steel after reduction to toughness thermomechanical treatment in the stream of high-speed wire mill.

  18. Demonstrating diamond wire cutting of the TFTR

    International Nuclear Information System (INIS)

    Rule, K.; Perry, E.; Larson, S.; Viola, M.

    2000-01-01

    The Tokamak Fusion Test Reactor (TFTR) ceased operation in April 1997 and decommissioning commenced in October 1999. The deuterium-tritium fusion experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak (100 cubic meters) present a unique and challenging task for dismantling. Plasma arc cutting is the current baseline technology for the dismantlement of fission reactors. This technology is typically used because of its faster cutting times. Alternatively, an innovative approach for dismantlement of the TFTR is the use of diamond wire cutting technology. Recent improvements in diamond wire technology have allowed the cutting of carbon steel components such as pipe, plate, and tube bundles in heat exchangers. Some expected benefits of this technology include: significantly reduction in airborne contaminates, reduced personnel exposure, a reduced risk of spread of tritium contamination, and reduced overall costs as compared to using plasma arc cutting. This paper will provide detailed results of the diamond wire cutting demonstration that was completed in September of 1999, on a mock-up of this complex reactor. The results will identify cost, safety, industrial and engineering parameters, and the related performance of each situation

  19. Demonstrating diamond wire cutting of the TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Rule, K.; Perry, E.; Larson, S.; Viola, M. [and others

    2000-02-24

    The Tokamak Fusion Test Reactor (TFTR) ceased operation in April 1997 and decommissioning commenced in October 1999. The deuterium-tritium fusion experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak (100 cubic meters) present a unique and challenging task for dismantling. Plasma arc cutting is the current baseline technology for the dismantlement of fission reactors. This technology is typically used because of its faster cutting times. Alternatively, an innovative approach for dismantlement of the TFTR is the use of diamond wire cutting technology. Recent improvements in diamond wire technology have allowed the cutting of carbon steel components such as pipe, plate, and tube bundles in heat exchangers. Some expected benefits of this technology include: significantly reduction in airborne contaminates, reduced personnel exposure, a reduced risk of spread of tritium contamination, and reduced overall costs as compared to using plasma arc cutting. This paper will provide detailed results of the diamond wire cutting demonstration that was completed in September of 1999, on a mock-up of this complex reactor. The results will identify cost, safety, industrial and engineering parameters, and the related performance of each situation.

  20. Numerical Investigation of Corrugated Wire Mesh Laminate

    Directory of Open Access Journals (Sweden)

    Jeongho Choi

    2013-01-01

    Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

  1. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  2. Application of wire sawing method to decommissioning of high level activated concrete

    International Nuclear Information System (INIS)

    Hasegawa, Hideki; Nishimura, Youichi; Watanabe, Morishige; Yamashita Yoshitaka

    1999-01-01

    Wire sawing method is proposed as an effective cutting method for the dismantling of high level activated concrete of a nuclear power plant. The cutting test with wire sawing method discussed in this paper was carried out to obtain the data such as the cutting rate, the volume of concrete dust and the time of cutting and related work. The cutting test consisted of two parts; 'Fundamental test' and 'mock-up test.' In the fundamental test, we carried out the cutting test with small concrete blocks simulating the high level activated concrete of Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR). Through the test, the following data were obtained: the cutting rate of wire sawing, the volume of generated concrete dust and the grading distribution of suspended particulate. We also studied the life of wire and the relations between the wire tension, the wire rotating speed, the steel ratio and the cutting rate. In the mock-up test, we carried out the test with large concrete blocks simulating the part of the reactor shield wall of BWR and the biological shield wall of PWR. Through the mock-up test, we made clear that it is possible that the large test blocks with high re-bar ratio and a steel plate (steel plates) were cut smoothly by the wire sawing method. In the test, the following data were obtained; the cutting rate, the time of the cutting and related work and the remote controllability of cutting machines. (author)

  3. Thermodynamic and kinetic characteristics of the austenite-to-ferrite transformation under high magnetic field in medium carbon steel

    International Nuclear Information System (INIS)

    Zhang Yudong; He Changshu; Zhao Xiang; Zuo Liang; Esling, Claude

    2005-01-01

    The thermodynamic and kinetic characteristics of austenite-to-ferrite phase transformation in medium carbon steel in the high magnetic fields were investigated. Results showed that the magnetic field could obviously change the γ/α+γ phase equilibrium-by increasing the amount of ferrite obtained during cooling-and greatly accelerate the transformation. Thus the microstructure obtained under fast cooling with high magnetic field was still ferritic and pearlitic, while that obtained without the magnetic field under the same cooling conditions was bainitic. Exploration in this area contributes both to enriching the new theory on electromagnetic processing of materials (EPM) and in establishing new techniques for materials processing

  4. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    International Nuclear Information System (INIS)

    Tusek, J.

    2001-01-01

    The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and high-alloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-of-depends mainly on the type of shielding gas used and the arc length,i. e., from the arc voltage. The manganese burn-off increases with an increase of the content of active gases, i.e., CO 2 and O 2 in the neutral gas i. e., argon. It also increases with an increase in arc voltage. The longer the welding arc, the longer exposition of the filler materials to the welding arc and the wider the penetration, Which allows manganese vapours to evaporate from the weld pool. The most important finding is that manganese burn-off from the 18/8/6 wire during welding of austenitic stainless steel with low-alloy ferritic steel is considerably strong, i.e., from 20% to 30%; nevertheless the wire concerned is perfectly suitable for welding of different types of steel. (Author) 23 refs

  5. Wired vs. Wireless.

    Science.gov (United States)

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  6. A World without Wires

    Science.gov (United States)

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  7. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  8. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  9. Behavior of prestressing steels after fire

    OpenAIRE

    Atienza Riera, José Miguel; Elices Calafat, Manuel

    2008-01-01

    Even if a fire does not give rise to apparent damage in a prestressed structure, mechanical properties of materials as well as load distribution can be affected. A verification of residual load bearing capacity after fire is necessary to determine if the structure can be maintained in use. Mechanical properties of structural steels at high temperatures have been extensively studied. However, no attention has been paid to the behavior of steel wires after fire. This paper seeks to give a simpl...

  10. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  11. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  12. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  13. Initial arch wires for alignment of crooked teeth with fixed orthodontic braces.

    Science.gov (United States)

    Wang, Yan; Jian, Fan; Lai, Wenli; Zhao, Zhihe; Yang, Zhi; Liao, Zhengyu; Shi, Zongdao; Wu, Taixiang; Millett, Declan T; McIntyre, Grant T; Hickman, Joy

    2010-04-14

    The initial arch wire is the first arch wire to be inserted into the fixed appliance at the beginning of orthodontic treatment and is used mainly for correcting crowding and rotations of teeth. With a number of orthodontic arch wires available for initial tooth alignment, it is important to understand which wire is most efficient, as well as which wires cause the least amount of root resorption and pain during the initial aligning stage of treatment. To identify and assess the evidence for the effects of initial arch wires for alignment of teeth with fixed orthodontic braces in relation to alignment speed, root resorption and pain intensity. We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (30th November 2009), CENTRAL (The Cochrane Library 2009, Issue 4), MEDLINE (1950 to 30th November 2009) and EMBASE (1980 to 30th November 2009). Reference lists of articles were also searched. There was no restriction with regard to publication status or language of publication. We contacted all authors of included studies to identify additional studies. Randomised controlled trials (RCTs) of initial arch wires to align crooked teeth with fixed orthodontic braces were selected. Only studies involving patients with upper and/or lower full arch fixed orthodontic appliances were included. Two review authors were responsible for study selection, validity assessment and data extraction. All disagreements were resolved by discussion amongst the review team. Corresponding authors of included studies were contacted to obtain missing information. Seven RCTs, with 517 participants, provided data for this review. Among them, five trials investigated the speed of initial tooth alignment comparing: 0.016 inch ion-implanted A-NiTi wire versus 0.016 inch A-NiTi versus 0.0175 multistrand stainless steel wire; 0.016x0.022 inch medium force active M-NiTi wire versus 0.016x0.022 inch graded force active M-NiTi wire versus 0.0155 inch multistrand

  14. Some special problems of steel reinforcement in nuclear structural engineering

    International Nuclear Information System (INIS)

    Bazant, B.; Smejkal, P.; Vetchy, J.

    1986-01-01

    A comparison is made of the mechanical and design characteristics of reinforcing steels for reinforced concrete structures of classes A-0 to A-IV under Czechoslovak State Standard CSN 73 1201 and Soviet standard SNiP II-21-75. Tests were performed to study changes in the values of the yield point, breaking strength, the tensile strength limit and the module of elasticity in selected Czechoslovak steels. The comparison showed that the steels behave in the same manner at high temperatures as Soviet steels of corresponding strength characteristics. Dynamic design strength of Czechoslovak materials also corresponds to values given in the Soviet standard. The technology and evaluation of welded joints equal for both Czechoslovak and Soviet steels. The manufacture was started of tempered wires with a high strength limit for prestressed wire reinforcement. All tests and comparisons showed that Czechoslovak reinforcing steels meet Soviet prescriptions, in some instances Czechoslovak standards are even more strict. (J.B.)

  15. Otimização dos parâmetros de tecimento para confecção de amanteigamento em chapas de aço ao carbono pelo processo TIG com arame AWS ER309L Weaving parameter optimization for buttering on carbon steel plates by TIG process with an AWS ER309L wire

    Directory of Open Access Journals (Sweden)

    Rômulo Queiroz Fratari

    2010-09-01

    Full Text Available O objetivo do presente trabalho foi avaliar os efeitos dos parâmetros de tecimento e da velocidade de alimentação sobre a formação da primeira camada de amanteigamento com aço inoxidável austenítico, visando a otimização da operação no sentido de maximizar a relação entre espessura da camada e diluição. Os experimentos foram realizados pelo processo TIG com alimentação de arame, variando-se sistematicamente, e garantindo-se a ortogonalidade do planejamento experimental, a amplitude, o tempo de parada lateral e a velocidade de alimentação, permitindo se encontrar equações estocásticas de predições da geometria resultante do depósito. Através de um programa de otimização, procurou-se os parâmetros de regulagem que levassem a maior relação da área depositada pela área fundida. Escolheu-se como restritor a relação reforço por largura, evitando-se revestimentos com alta convexidade e possibilidade de formação de sobreposição lateral de cordão. Soldagens de validação mostraram a robustez e confirmaram a adequabilidade do método de otimização. Com a metodologia empregada foi possível demonstrar a necessidade, para a otimização do cordão de amanteigamento, de se usar a máxima velocidade de alimentação e o mínimo de tempo na parada lateral. A amplitude ideal é um balanço entre os efeitos sobre a área fundida e convexidade, mostrando uma tendência de adquirir um valor maior do que a faixa central.The objective of the present work was to evaluate the effects of the weaving parameters and of the wire feed speed on the formation of a stainless steel buttering layer, aiming the process optimization by the layer height and dilution maximization. The experiments were carried out by the TIG process with wire feeding. Weaving amplitude, lateral dwell time and wire feed speed were systematically varied, through an orthogonal experimental planning, allowing finding stochastic predictive equations of the

  16. Gamma spectrometry of 285-03 ILAS gamma scan wires

    International Nuclear Information System (INIS)

    Dassel, G.; Buurveld, H.A.; Plakman, J.C.

    1996-12-01

    In the frame work of their on-going sustain programme for the material development and characterization of fusion reactors, ECN is investigating the irradiation behaviour of ferritic/martensitic steels. In the third irradiation experiment 285-03, 55 vanadium (V-4Cr-4Ti) tensile samples have been irradiated up to 6 dpa. Four gamma scan wires from this experiment have been examined by gamma scanning. The results of the measurements have been described in this report. (orig.)

  17. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  18. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  19. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  20. Twisting wire scanner

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-15

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  1. Twisting wire scanner

    International Nuclear Information System (INIS)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-01

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  2. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  3. Electron beam additive manufacturing with wire - Analysis of the process

    Science.gov (United States)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  4. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  5. On abnormal decomposition of supercooled austenite in carbon and alloy steels

    International Nuclear Information System (INIS)

    Parusov, V.V.; Dolzhenkov, I.I.; Podobedov, L.V.; Vakulenko, I.A.

    1980-01-01

    Residual stresses which appear as a result of thermal cycling in the temperature range of 300-700 deg C are investigated in an austenitic class steel (03Kh18N11) to ground the assumption on the effect of plastic deformation, appearing due to thermal stresses, on the mechanism of supercooled austenite decomposition. The determination of residual stresses is carried out with the help of X-ray diffraction analysis. It is established that the deformation brings about an increase in density of dislocation the interaction of which leads to the formation of a typical austenite substructure which conditions the proceeding of the eutectoid transformation according to an abnormal mechanism. It is noted, that the grain pearlite formation due to plastic and microplastic deformation of supercooled austenite induced by thermal stresses should be taken into account when developing steel heat treatment shedules [ru

  6. Numerical modelling of tools steel hardening. A thermal phenomena and phase transformations

    Directory of Open Access Journals (Sweden)

    T. Domański

    2010-01-01

    Full Text Available This paper the model hardening of tool steel takes into considerations of thermal phenomena and phase transformations in the solid state are presented. In the modelling of thermal phenomena the heat equations transfer has been solved by Finite Elements Method. The graph of continuous heating (CHT and continuous cooling (CCT considered steel are used in the model of phase transformations. Phase altered fractions during the continuous heating austenite and continuous cooling pearlite or bainite are marked in the model by formula Johnson-Mehl and Avrami. For rate of heating >100 K/s the modified equation Koistinen and Marburger is used. Modified equation Koistinen and Marburger identify the forming fraction of martensite.

  7. Electrochemical behaviour of a stainless steel coating after thermal fatigue and thermal shocks

    International Nuclear Information System (INIS)

    Boudebane, A.; Darsouni, A.; Chadli, H.; Boudebane, S.

    2012-01-01

    This work aims to study of the influence of thermal fatigue and thermal shock on the corrosion behaviour of coated steel AISI 304L. The coating was welded by TIG welding on specimens in ferritic-pearlitic steel grade AISI 4140. The study concerns three different states of deposit: sensitized, sensitized and strain hardened in surface and no sensitized. We realized electrochemical corrosion in an aqueous solution of NaCl 34 g/l. The corrosion of the specimens were evaluated by comparing the potentiodynamic curves for different states of the coating. Firstly, electrochemical characterization of deposits has shown a localized intergranular corrosion. Furthermore, the increase in the number of cycles of thermal fatigue accelerates the dissolution of deposit. Thermal shocks tend to improve resistance to corrosion. Against, the mechanical treatment of surfaces by burnishing decreases the dissolution rate of deposit cycles in thermal fatigue. (authors)

  8. ADVANTAGES OF RAPID METHOD FOR DETERMINING SCALE MASS AND DECARBURIZED LAYER OF ROLLED COIL STEEL

    Directory of Open Access Journals (Sweden)

    E. V. Parusov

    2016-08-01

    Full Text Available Purpose. To determine the universal empirical relationships that allow for operational calculation of scale mass and decarbonized layer depth based on the parameters of the technological process for rolled coil steel production. Methodology. The research is carried out on the industrial batches of the rolled steel of SAE 1006 and SAE 1065 grades. Scale removability was determined in accordance with the procedure of «Bekaert» company by the specifi-cations: GA-03-16, GA-03-18, GS-03-02, GS-06-01. The depth of decarbonized layer was identified in accordance with GOST 1763-68 (M method. Findings. Analysis of experimental data allowed us to determine the rational temperature of coil formation of the investigated steel grades, which provide the best possible removal of scale from the metal surface, a minimal amount of scale, as well as compliance of the metal surface color with the require-ments of European consumers. Originality. The work allowed establishing correlation of the basic quality indicators of the rolled coil high carbon steel (scale mass, depth of decarbonized layer and inter-laminar distance in pearlite with one of the main parameters (coil formation temperature of the deformation and heat treatment mode. The re-sulting regression equations, without metallographic analysis, can be used to determine, with a minimum error, the quantitative values of the total scale mass, depth of decarbonized layer and the average inter-lamellar distance in pearlite of the rolled coil high carbon steel. Practical value. Based on the specifications of «Bekaert» company (GA-03-16, GA-03-18, GS-03-02 and GS-06-01 the method of testing descaling by mechanical means from the surface of the rolled coil steel of low- and high-carbon steel grades was developed and approved in the environment of PJSC «ArcelorMittal Kryvyi Rih». The work resulted in development of the rapid method for determination of total and remaining scale mass on the rolled coil steel

  9. Preparation, characterization, and applications of a novel solid-phase microextraction fiber by sol-gel technology on the surface of stainless steel wire for determination of poly cyclic aromatic hydrocarbons in aquatic environmental samples

    International Nuclear Information System (INIS)

    Es-haghi, Ali; Hosseininasab, Valiallah; Bagheri, Habib

    2014-01-01

    Graphical abstract: - Highlights: • A novel solid-phase microextraction (SPME) fiber was prepared using sol–gel technology. • Sol–gel coating was performed on stainless steel substrate. • The new fibers are robust and unbreakable with temperature stability. • The fibers were used for extraction of PAHs from aqueous samples. - Abstract: A novel solid-phase microextraction(SPME) fiber was prepared using sol–gel technology with ethoxylated nonylphenol as a fiber coating material. The fiber was employed to develop a headspace SPME–GC–MS method suitable for quantification of 13 polycyclic aromatic hydrocarbons (PAHs) in water samples. Surface characteristics of the fibers were inspected by energy dispersive X-ray (EDX) spectroscopy as well as by scanning electron microscopy (SEM). The SEM measurements showed the presence of highly porous nano-sized particles in the coating. Important parameters affecting the extraction efficiency such as extraction temperature and time, desorption conditions as well as ionic strength have been evaluated and optimized. In the next step, the validation of the new method have been performed, finding it to be specific in the trace analysis of PAHs, with the limit of detection (LOD) ranging from 0.01 to 0.5 μg L −1 and the linear range from the respective LOD to 200 μg L −1 with RSD amounting to less than 8%. The thermal stability of the fibers was investigated as well and they were found to be durable at 280 °C for 345 min. Furthermore, the proposed method was successfully applied for quantification of PAHs in real water samples

  10. Preparation, characterization, and applications of a novel solid-phase microextraction fiber by sol-gel technology on the surface of stainless steel wire for determination of poly cyclic aromatic hydrocarbons in aquatic environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Es-haghi, Ali, E-mail: a.eshaghi@rvsri.ac.ir [Department of Physico Chemistry, Razi Vaccine and Serum Research Institute, PO Box 31975/148, Karaj (Iran, Islamic Republic of); Hosseininasab, Valiallah; Bagheri, Habib [Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, PO Box 11365-9516, Tehran (Iran, Islamic Republic of)

    2014-02-01

    Highlights: • A novel solid-phase microextraction (SPME) fiber was prepared using sol–gel technology. • Sol–gel coating was performed on stainless steel substrate. • The new fibers are robust and unbreakable with temperature stability. • The fibers were used for extraction of PAHs from aqueous samples. Abstract: A novel solid-phase microextraction(SPME) fiber was prepared using sol–gel technology with ethoxylated nonylphenol as a fiber coating material. The fiber was employed to develop a headspace SPME–GC–MS method suitable for quantification of 13 polycyclic aromatic hydrocarbons (PAHs) in water samples. Surface characteristics of the fibers were inspected by energy dispersive X-ray (EDX) spectroscopy as well as by scanning electron microscopy (SEM). The SEM measurements showed the presence of highly porous nano-sized particles in the coating. Important parameters affecting the extraction efficiency such as extraction temperature and time, desorption conditions as well as ionic strength have been evaluated and optimized. In the next step, the validation of the new method have been performed, finding it to be specific in the trace analysis of PAHs, with the limit of detection (LOD) ranging from 0.01 to 0.5 μg L⁻¹ and the linear range from the respective LOD to 200 μg L⁻¹with RSD amounting to less than 8%. The thermal stability of the fibers was investigated as well and they were found to be durable at 280 °C for 345 min. Furthermore, the proposed method was successfully applied for quantification of PAHs in real water samples.

  11. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  12. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    International Nuclear Information System (INIS)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M.

    2003-01-01

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant

  13. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M

    2003-07-25

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant.

  14. The role of oxide structure on copper wire to the rubber adhesion

    Science.gov (United States)

    Su, Yea-Yang; Shemenski, Robert M.

    2000-07-01

    Most metals have an oxide layer on the surface. However, the structure of the oxide varies with the matrix composition, and depends upon the environmental conditions. A bronze coating, nominal composition of 98.5% Cu and balance of Sn, is applied to steel wire for reinforcing pneumatic tire beads and to provide adhesion to rubber. This work studied the influence of copper oxides on the bronze coating on adhesion during vulcanization. To emphasize the oxide structures, electrolytic tough pitch (ETP) copper wire was used instead of the traditional bronze-coated tire bead wire. Experimental results confirmed the hypothesis that cuprous oxide (Cu 2O) could significantly improve bonding between copper wire and rubber, and demonstrated that the interaction between rubber and oxide layer on wire is an electrochemical reaction.

  15. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  16. A força de atrito em braquetes plásticos e de aço inoxidável com a utilização de quatro diferentes tipos de amarração Frictional forces in stainless steel and plastic brackets using four types of wire ligation

    Directory of Open Access Journals (Sweden)

    Vanessa Nínia Correia Lima

    2010-04-01

    Full Text Available OBJETIVO: a finalidade deste estudo in vitro foi avaliar e comparar a resistência friccional em braquetes de aço inoxidável e de policarbonato compósito amarrados com fio metálico e elastômeros. MÉTODOS: foram utilizados quatro braquetes de aço inoxidável e quatro de policarbonato compósito (PC para pré-molares levados à máquina universal de ensaio mecânico para a tração de um segmento de fio de aço inoxidável 0,019" x 0,025" na velocidade de 0,5mm/min, com 8mm de deslocamento total. A forma de amarração variou entre as seguintes possibilidades: amarração metálica com pinça de Steiner, metálica com pinça Mathieu, elastômero da marca Morelli e elastômero da marca TP Orthodontics. RESULTADOS E CONCLUSÕES: os módulos elastoméricos geraram mais atrito do que os metálicos e a amarração com pinça Mathieu provocou menor atrito quando comparada a todas as situações avaliadas. Os braquetes de PC geraram menor atrito do que os metálicos, porém, na escolha do material a ser utilizado na clínica, outras variáveis - tais como a resistência ao cisalhamento e à fratura, a estabilidade de cor e a aderência por microrganismos - devem ser consideradas.OBJECTIVE: This in vitro study evaluated and compared the frictional resistance of stainless steel and polycarbonate (PC composite brackets tied with metal wire and elastomeric ligation. METHODS: Four stainless steel and four polycarbonate composite brackets for premolars were placed in a universal testing machine for the traction of a piece of 0.019 x 0.025-in wire at 0.5 mm/min and total displacement of 8 mm. Ligations were performed according to the following alternatives: metal ligation with Steiner tying pliers; metal ligation using Mathieu tying pliers; Morelli™ elastomeric ligation; and TP Orthodontics™ elastomeric ligation. RESULTS AND CONCLUSIONS: Elastomeric modules generated more friction than the metal ligations, and the ligation with the Mathieu tying

  17. Parameters of Models of Structural Transformations in Alloy Steel Under Welding Thermal Cycle

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-05-01

    A mathematical model of structural transformations in an alloy steel under the thermal cycle of multipass welding is suggested for computer implementation. The minimum necessary set of parameters for describing the transformations under heating and cooling is determined. Ferritic-pearlitic, bainitic and martensitic transformations under cooling of a steel are considered. A method for deriving the necessary temperature and time parameters of the model from the chemical composition of the steel is described. Published data are used to derive regression models of the temperature ranges and parameters of transformation kinetics in alloy steels. It is shown that the disadvantages of the active visual methods of analysis of the final phase composition of steels are responsible for inaccuracy and mismatch of published data. The hardness of a specimen, which correlates with some other mechanical properties of the material, is chosen as the most objective and reproducible criterion of the final phase composition. The models developed are checked by a comparative analysis of computational results and experimental data on the hardness of 140 alloy steels after cooling at various rates.

  18. Optimization of Micro-Alloying Elements for Mechanical Properties in Normalized Cast Steel Using Taguchi Technique

    Directory of Open Access Journals (Sweden)

    Chokkalingam B.

    2017-06-01

    Full Text Available In this study, Taguchi method is used to find out the effect of micro alloying elements like vanadium, niobium and titanium on the hardness and tensile strength of the normalized cast steel. Based on this method, plan of experiments were made by using orthogonal arrays to acquire the data on hardness and tensile strength. The signal to noise ratio and analysis of variance (ANOVA are used to investigate the effect of these micro alloying elements on these two mechanical properties of the micro alloyed normalized cast steel. The results indicated that in the micro alloyed normalized cast steel both these properties increases when compared to non-micro-alloyed normalized cast steel. The effect of niobium addition was found to be significantly higher to obtain higher hardness and tensile strength when compared to other micro alloying elements. The maximum hardness of 200HV and the maximum tensile strength of 780 N/mm2 were obtained in 0.05%Nb addition micro alloyed normalized cast steel. Micro-alloyed with niobium normalized cast steel have the finest and uniform microstructure and fine pearlite colonies distributed uniformly in the ferrite. The optimum condition to obtain higher hardness and tensile strength were determined. The results were verified with experiments.

  19. Study of the distribution of alloying elements between the phases of a heat treated steel

    International Nuclear Information System (INIS)

    Lambert, N.; Greday, T.

    1977-01-01

    The behavior of some low-alloy steels during industrial heat treatments is systematically studied. Firstly, the influence of the chemical analysis of the steel, the shape and size of carbides on the kinetics of the dissolution of these carbides at high temperature is pointed out in the case of steels with a relatively simple chemical analysis. Secondly, the effect of tempering treatments on the mechanical properties and characteristic parameters of the microstructure is studied in the case of three low-alloy steels. Bainitic microstructure appears to be the less disturbed one after a tempering treatment. Against, martensitic microstructures undergo an important softening and the mechanical properties of the pearlite lie as a very low level whatever their heat treatment. Peculiar conditions of tempering promotes a fine precipitation and its combined secondary hardening. These conditions are related to both chemical analysis and initial microstructure of the steel. Besides, some chemical identifications were performed in the scanning electron microscope on alloyed carbides precipitated in the steel during very long time tempering treatments

  20. Wire communication engineering

    International Nuclear Information System (INIS)

    Son, Byeong Tae

    1997-02-01

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  1. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  2. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  3. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  4. AC application of second generation HTS wire

    Science.gov (United States)

    Thieme, C. L. H.; Gagnon, K.; Voccio, J.; Aized, D.; Claassen, J.

    2008-02-01

    For the production of Second Generation (2G) YBCO High Temperature Superconductor wire American Superconductor uses a wide-strip MOD-YBCO/RABiTSTM process, a low-cost approach for commercial manufacturing. It can be engineered with a high degree of flexibility to manufacture practical 2G conductors with architectures and properties tailored for specific applications and operating conditions. For ac applications conductor and coil design can be geared towards low hysteretic losses. For applications which experience high frequency ac fields, the stabilizer needs to be adjusted for low eddy current losses. For these applications a stainless-steel laminate is used. An example is a Low Pass Filter Inductor which was developed and built in this work.

  5. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  6. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  7. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  8. Structural characterization and magnetic properties of steels subjected to fatigue

    International Nuclear Information System (INIS)

    Lo, C.C.H.; Tang, F.; Biner, S.B.; Jiles, D.C.

    2000-01-01

    Studies have been made on the effects of residual stress and microstructure on the variations of magnetic properties of steels during fatigue. Strain-controlled fatigue tests have been conducted on 0.2wt% C steel samples which were (1) cold-worked (2) cold-worked and annealed at 500 deg. C to relieve residual stress, and (3) annealed at 905 deg. C to produce a ferrite/pearlite structure. The changes of surface microstructure were studied by SEM replica technique. The dislocation structures of samples fatigued for different numbers of cycle were studied by TEM. In the initial stage of fatigue coercivity was found to behave differently for samples which have different residual stress levels. In the intermediate stage the magnetic hysteresis parameters became stable as the dislocation cell structure developed in the samples. In the final stage the magnetic parameters decreased dramatically. The decrease rate is related to the propagation rate of fatigue cracks observed in the SEM study, which was found to be dependent on the sample microstructure. The present results indicate that the magnetic inspection technique is able to differentiate the residual stress effects from the fatigue damage induced by cyclic loading, and therefore it is possible to detect the onset of fatigue failure in steel components via measurements of the changes in magnetic properties.--This work was sponsored by the National Science Foundation, under grant number CMS-9532056

  9. Surface martensitization of Carbon steel using Arc Plasma Sintering

    Science.gov (United States)

    Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin

    2018-03-01

    In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.

  10. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.

    Science.gov (United States)

    Wichelhaus, Andrea; Geserick, Marc; Hibst, Raimund; Sander, Franz G

    2005-10-01

    Since the low friction of NiTi wires allows a rapid and efficient orthodontic tooth movement, the aim of this research was to investigate the friction and surface roughness of different commercially available superelastic NiTi wires before and after clinical use. The surface of all of the wires had been pre-treated by the manufacturer. Forty superelastic wires (Titanol Low Force, Titanol Low Force River Finish Gold, Neo Sentalloy, Neo Sentalloy Ionguard) of diameter 0.016 x 0.022 in. were tested. The friction for each type of NiTi archwire ligated into a commercial stainless steel bracket was determined with a universal testing machine. Having ligated the wire into the bracket, it could then be moved forward and backwards along a fixed archwire whilst a torquing moment was applied. The surface roughness was investigated using a profilometric measuring device on defined areas of the wire. Statistical data analysis was conducted by means of the Wilcoxon test. The results showed that initially, the surface treated wires demonstrated significantly (p < 0.01) less friction than the non-treated wires. The surface roughness showed no significant difference between the treated and the non-treated surfaces of the wires. All 40 wires however showed a significant increase in friction and surface roughness during clinical use. Whilst the Titanol Low Force River Finish Gold (Forestadent, Pforzheim, Germany) wires showed the least friction of all the samples and consequently should be more conservative on anchorage, the increase in friction of all the surface treated wires during orthodontic treatment almost cancels out this initial effect on friction. It is therefore recommended that surface treated NiTi orthodontic archwires should only be used once.

  11. Vibration of signal wires in wire detectors under irradiation

    International Nuclear Information System (INIS)

    Bojko, I.R.; Shelkov, G.A.; Dodonov, V.I.; Ignatenko, M.A.; Nikolenko, M.Yu.

    1995-01-01

    Radiation-induced vibration of signal wires in wire detectors is found and explained. The phenomenon is based on repulsion of a signal wire with a positive potential and a cloud of positive ions that remains after neutralization of the electron part of the avalanche formed in the course of gas amplification. Vibration with a noticeable amplitude may arise from fluctuations of repulsive forces, which act on the wire and whose sources are numerous ion clusters. A formula is obtained which allows wire oscillations to be estimated for all types of wire detectors. Calculation shows that oscillations of signal wires can be substantial for the coordinate accuracy of a detector working in the limited streamer mode at fluxes over 10 5 particles per second per wire. In the proportional mode an average oscillation amplitude can be as large as 20-30 μm at some detector parameters and external radiation fluxes over 10 5 . The experimental investigations show that the proposed model well describes the main features of the phenomenon. 6 refs., 8 figs

  12. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  13. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  14. Effects of irradiation on the fracture properties of stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Corwin, W.R.; Nanstad, R.K.

    1989-01-01

    Stainless steel weld overlay cladding was fabricated using the submerged arc, single-wire, oscillating-electrode, and the three-wire, series-arc methods. Three layers of cladding were applied to a pressure vessel plate to provide adequate thickness for fabrication of test specimens, and irradiations were conducted at temperatures and to fluences relevant to power reactor operation. For the first single-wire method, the first layer was type 309, and the upper two layers were type 308 stainless steel. The type 309 was diluted considerably by excessive melting of the base plate. The three-wire method used various combinations of types 308, 309, and 304 stainless steel weld wires, and produced a highly controlled weld chemistry, microstructure, and fracture properties in all three layers of the weld. 14 refs., 15 figs., 4 tabs

  15. Simulated HAZ continuous cooling transformation diagram of a bogie steel of high-speed railway

    Science.gov (United States)

    Liu, Yue; Chen, Hui; Liu, Yan; Hang, Zongqiu

    2017-07-01

    Simulated HAZ continuous cooling transformation (SH-CCT) diagram presents the start and end points of phase transformation and the relationships of the microstructures of HAZ, temperature and cooling rates. It is often used to assess the weldability of materials. In this paper, a weathering steel Q345C which is widely used in the bogies manufacturing was studied. The cooling times from 800∘C to 500∘C (t8/5) were from 3 s to 6000 s, aiming to study the microstructures under different cooling rates. Different methods such as color metallography were used to obtain the metallography images. The results show that ferrite nucleates preferentially at the prior austenite grain boundaries and grows along the grain boundaries with a lath-like distribution when t8/5 is 300 s. Austenite transforms into ferrite, pearlite and bainite with decreasing t8/5. Pearlite disappears completely when t8/5 = 150 s. Martensite gradually appears when t8/5 decreases to 30 s. The hardness increases with decreasing t8/5. The SH-CCT diagram indicates that the welding input and t8/5 should be taken into consideration when welding. This work provides the relationships of welding parameters and microstructures.

  16. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  17. Further application of the cleavage fracture stress model for estimating the T{sub 0} of highly embrittled ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasan, P.R.

    2016-02-15

    The semi-empirical cleavage fracture stress model (CFS), based on the microscopic cleavage fracture stress, s{sub f}, for estimating the ASTM E1921 reference temperature (T{sub 0}) of ferritic steels from instrumented impact testing of unprecracked Charpy V-notch specimens is further confirmed by test results for additional steels, including steels highly embrittled by thermal aging or irradiation. In addition to the ferrite-pearlite, bainitic or tempered martensitic steels (which was examined earlier), acicular or polygonal ferrite, precipitation-strengthened or additional simulated heat affected zone steels are also evaluated. The upper limit for the applicability of the present CFS model seems to be T{sub 41J} ∝160 to 170 C or T{sub 0} or T{sub Qcfs} (T{sub 0} estimate from the present CFS model) ∝100 to 120 C. This is not a clear-cut boundary, but indicative of an area of caution where generation and evaluation of further data are required. However, the present work demonstrates the applicability of the present CFS model even to substantially embrittled steels. The earlier doubts expressed about T{sub Qcfs} becoming unduly non-conservative for highly embrittled steels has not been fully substantiated and partly arises from the necessity of modifications in the T{sub 0} evaluation itself at high degrees of embrittlement suggested in the literature.

  18. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  19. Control wiring diagrams

    International Nuclear Information System (INIS)

    McCauley, T.M.; Eskinazi, M.; Henson, L.L.

    1989-01-01

    This paper discusses the changes in electrical document requirements that occur when construction is complete and a generating station starts commercial operation. The needs of operations and maintenance (O and M) personnel are analyzed and contrasted with those of construction to illustrate areas in which the construction documents (drawings, diagrams, and databases) are difficult to use for work at an operating station. The paper discusses the O and M electrical documents that the Arizona Nuclear Power Project (ANPP) believes are most beneficial for the three operating units at Palo Verde; these are control wiring diagrams and an associated document cross-reference list. The benefits offered by these new, station O and M-oriented documents are weighted against the cost of their creation and their impact on drawing maintenance

  20. Effect of smelt aluminium on mechanical properties of steels

    International Nuclear Information System (INIS)

    Ryabov, V.R.; Dykhno, I.S.; Deev, G.F.; Karikh, V.V.

    1987-01-01

    Effect of smelt aluminium on mechanical properties of armco-iron and 12 Kh18N10T steel is studied. It is stated that in smelt aluminium and aluminium alloy contact with armco-iron the sample ductility is decreased. Corrosion effect of smelt alluminium on (18Kh15N5AM3) steel in the form of reinforced wire in aluminium-steel KAS-1A composite material is investigted. It is stated in experiment that during smelt alluminium-steel contact interaction of heterogeneous phases takes place