WorldWideScience

Sample records for peak demand reduction

  1. Reduction of peak energy demand based on smart appliances energy consumption adjustment

    Science.gov (United States)

    Powroźnik, P.; Szulim, R.

    2017-08-01

    In the paper the concept of elastic model of energy management for smart grid and micro smart grid is presented. For the proposed model a method for reducing peak demand in micro smart grid has been defined. The idea of peak demand reduction in elastic model of energy management is to introduce a balance between demand and supply of current power for the given Micro Smart Grid in the given moment. The results of the simulations studies were presented. They were carried out on real household data available on UCI Machine Learning Repository. The results may have practical application in the smart grid networks, where there is a need for smart appliances energy consumption adjustment. The article presents a proposal to implement the elastic model of energy management as the cloud computing solution. This approach of peak demand reduction might have application particularly in a large smart grid.

  2. Modeling of GE Appliances in GridLAB-D: Peak Demand Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Jason C.; Vyakaranam, Bharat GNVSR; Prakash Kumar, Nirupama; Leistritz, Sean M.; Parker, Graham B.

    2012-04-29

    The widespread adoption of demand response enabled appliances and thermostats can result in significant reduction to peak electrical demand and provide potential grid stabilization benefits. GE has developed a line of appliances that will have the capability of offering several levels of demand reduction actions based on information from the utility grid, often in the form of price. However due to a number of factors, including the number of demand response enabled appliances available at any given time, the reduction of diversity factor due to the synchronizing control signal, and the percentage of consumers who may override the utility signal, it can be difficult to predict the aggregate response of a large number of residences. The effects of these behaviors can be modeled and simulated in open-source software, GridLAB-D, including evaluation of appliance controls, improvement to current algorithms, and development of aggregate control methodologies. This report is the first in a series of three reports describing the potential of GE's demand response enabled appliances to provide benefits to the utility grid. The first report will describe the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The second and third reports will explore the potential of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation and the effects on volt-var control schemes.

  3. Demand Side Management: An approach to peak load smoothing

    Science.gov (United States)

    Gupta, Prachi

    A preliminary national-level analysis was conducted to determine whether Demand Side Management (DSM) programs introduced by electric utilities since 1992 have made any progress towards their stated goal of reducing peak load demand. Estimates implied that DSM has a very small effect on peak load reduction and there is substantial regional and end-user variability. A limited scholarly literature on DSM also provides evidence in support of a positive effect of demand response programs. Yet, none of these studies examine the question of how DSM affects peak load at the micro-level by influencing end-users' response to prices. After nearly three decades of experience with DSM, controversy remains over how effective these programs have been. This dissertation considers regional analyses that explore both demand-side solutions and supply-side interventions. On the demand side, models are estimated to provide in-depth evidence of end-user consumption patterns for each North American Electric Reliability Corporation (NERC) region, helping to identify sectors in regions that have made a substantial contribution to peak load reduction. The empirical evidence supports the initial hypothesis that there is substantial regional and end-user variability of reductions in peak demand. These results are quite robust in rapidly-urbanizing regions, where air conditioning and lighting load is substantially higher, and regions where the summer peak is more pronounced than the winter peak. It is also evident from the regional experiences that active government involvement, as shaped by state regulations in the last few years, has been successful in promoting DSM programs, and perhaps for the same reason we witness an uptick in peak load reductions in the years 2008 and 2009. On the supply side, we estimate the effectiveness of DSM programs by analyzing the growth of capacity margin with the introduction of DSM programs. The results indicate that DSM has been successful in offsetting the

  4. Price, environment and security: Exploring multi-modal motivation in voluntary residential peak demand response

    International Nuclear Information System (INIS)

    Gyamfi, Samuel; Krumdieck, Susan

    2011-01-01

    Peak demand on electricity grids is a growing problem that increases costs and risks to supply security. Residential sector loads often contribute significantly to seasonal and daily peak demand. Demand response projects aim to manage peak demand by applying price signals and automated load shedding technologies. This research investigates voluntary load shedding in response to information about the security of supply, the emission profile and the cost of meeting critical peak demand in the customers' network. Customer willingness to change behaviour in response to this information was explored through mail-back survey. The diversified demand modelling method was used along with energy audit data to estimate the potential peak load reduction resulting from the voluntary demand response. A case study was conducted in a suburb of Christchurch, New Zealand, where electricity is the main source for water and space heating. On this network, all water heating cylinders have ripple-control technology and about 50% of the households subscribe to differential day/night pricing plan. The survey results show that the sensitivity to supply security is on par with price, with the emission sensitivity being slightly weaker. The modelling results show potential 10% reduction in critical peak load for aggregate voluntary demand response. - Highlights: → Multiple-factor behaviour intervention is necessarily for effective residential demand response. → Security signals can achieve result comparable to price. → The modelling results show potential 10% reduction in critical peak load for aggregate voluntary demand response. → New Zealand's energy policy should include innovation and development of VDR programmes and technologies.

  5. Residential demand response reduces air pollutant emissions on peak electricity demand days in New York City

    International Nuclear Information System (INIS)

    Gilbraith, Nathaniel; Powers, Susan E.

    2013-01-01

    Many urban areas in the United States have experienced difficulty meeting the National Ambient Air Quality Standards (NAAQS), partially due to pollution from electricity generating units. We evaluated the potential for residential demand response to reduce pollutant emissions on days with above average pollutant emissions and a high potential for poor air quality. The study focused on New York City (NYC) due to non-attainment with NAAQS standards, large exposed populations, and the existing goal of reducing pollutant emissions. The baseline demand response scenario simulated a 1.8% average reduction in NYC peak demand on 49 days throughout the summer. Nitrogen oxide and particulate matter less than 2.5 μm in diameter emission reductions were predicted to occur (−70, −1.1 metric tons (MT) annually), although, these were not likely to be sufficient for NYC to meet the NAAQS. Air pollution mediated damages were predicted to decrease by $100,000–$300,000 annually. A sensitivity analysis predicted that substantially larger pollutant emission reductions would occur if electricity demand was shifted from daytime hours to nighttime hours, or the total consumption decreased. Policies which incentivize shifting electricity consumption away from periods of high human and environmental impacts should be implemented, including policies directed toward residential consumers. - Highlights: • The impact of residential demand response on air emissions was modeled. • Residential demand response will decrease pollutant emissions in NYC. • Emissions reductions occur during periods with high potential for poor air quality. • Shifting demand to nighttime hours was more beneficial than to off-peak daytime hours

  6. Impact of roof integrated PV orientation on the residential electricity peak demand

    International Nuclear Information System (INIS)

    Sadineni, Suresh B.; Atallah, Fady; Boehm, Robert F.

    2012-01-01

    Highlights: ► A study to demonstrate peak load reductions at the substation. ► A new residential energy efficient community named Villa Trieste is being developed. ► The peak demand from the homes has decreased by 38% through energy efficiency. ► Orientation of roof integrated PV has less influence on the summer peak demand. ► Increasing thermostat temperature during peak by 1 °C can significantly reduce peaks. -- Abstract: Peak electricity demand has been an issue in the Desert Southwest region of the US, due to extreme summer temperatures. To address this issue, a consortium was formed between the University of Nevada, Las Vegas, Pulte Homes, and NV Energy. An energy efficient residential community was developed by the team in Las Vegas with approximately 200 homes to study substation-level peak reduction strategies. A summer peak reduction of more than 65%, between 1:00 PM and 7:00 PM, compared to code standard housing developments is the targeted goal of the project. Approximately 50 homes are already built and some are occupied. The energy performances of the homes have been monitored and are presented in this paper. Several peak electric load reduction strategies such as energy efficiency in buildings, roof integrated photovoltaics (PV) and direct load control have been applied. Though all the homes in the developed community are installed with 1.8 kW p PV systems, the orientation of the PV system depends on the building orientation. Focus of this paper is to find the impact of PV orientation on the peak load from a building. In addition, different time-of-use (TOU) energy pricing options are offered by the local electrical utility company. Hence it is important to find an optimal pricing option for each building. A computer model has been developed for one of the homes in the new development using building energy simulation code, ENERGY-10. Calculations on the PV orientations have shown that a south and 220° (i.e. 40° west of due south

  7. Implementing peak load reduction algorithms for household electrical appliances

    International Nuclear Information System (INIS)

    Dlamini, Ndumiso G.; Cromieres, Fabien

    2012-01-01

    Considering household appliance automation for reduction of household peak power demand, this study explored aspects of the interaction between household automation technology and human behaviour. Given a programmable household appliance switching system, and user-reported appliance use times, we simulated the load reduction effectiveness of three types of algorithms, which were applied at both the single household level and across all 30 households. All three algorithms effected significant load reductions, while the least-to-highest potential user inconvenience ranking was: coordinating the timing of frequent intermittent loads (algorithm 2); moving period-of-day time-flexible loads to off-peak times (algorithm 1); and applying short-term time delays to avoid high peaks (algorithm 3) (least accommodating). Peak reduction was facilitated by load interruptibility, time of use flexibility and the willingness of users to forgo impulsive appliance use. We conclude that a general factor determining the ability to shift the load due to a particular appliance is the time-buffering between the service delivered and the power demand of an appliance. Time-buffering can be ‘technologically inherent’, due to human habits, or realised by managing user expectations. There are implications for the design of appliances and home automation systems. - Highlights: ► We explored the interaction between appliance automation and human behaviour. ► There is potential for considerable load shifting of household appliances. ► Load shifting for load reduction is eased with increased time buffering. ► Design, human habits and user expectations all influence time buffering. ► Certain automation and appliance design features can facilitate load shifting.

  8. Climate change and peak demand for electricity: Evaluating policies for reducing peak demand under different climate change scenarios

    Science.gov (United States)

    Anthony, Abigail Walker

    This research focuses on the relative advantages and disadvantages of using price-based and quantity-based controls for electricity markets. It also presents a detailed analysis of one specific approach to quantity based controls: the SmartAC program implemented in Stockton, California. Finally, the research forecasts electricity demand under various climate scenarios, and estimates potential cost savings that could result from a direct quantity control program over the next 50 years in each scenario. The traditional approach to dealing with the problem of peak demand for electricity is to invest in a large stock of excess capital that is rarely used, thereby greatly increasing production costs. Because this approach has proved so expensive, there has been a focus on identifying alternative approaches for dealing with peak demand problems. This research focuses on two approaches: price based approaches, such as real time pricing, and quantity based approaches, whereby the utility directly controls at least some elements of electricity used by consumers. This research suggests that well-designed policies for reducing peak demand might include both price and quantity controls. In theory, sufficiently high peak prices occurring during periods of peak demand and/or low supply can cause the quantity of electricity demanded to decline until demand is in balance with system capacity, potentially reducing the total amount of generation capacity needed to meet demand and helping meet electricity demand at the lowest cost. However, consumers need to be well informed about real-time prices for the pricing strategy to work as well as theory suggests. While this might be an appropriate assumption for large industrial and commercial users who have potentially large economic incentives, there is not yet enough research on whether households will fully understand and respond to real-time prices. Thus, while real-time pricing can be an effective tool for addressing the peak load

  9. Scheduling Non-Preemptible Jobs to Minimize Peak Demand

    Directory of Open Access Journals (Sweden)

    Sean Yaw

    2017-10-01

    Full Text Available This paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown to be NP-hard. Our results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.

  10. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings.

    Science.gov (United States)

    Mahapatra, Chinmaya; Moharana, Akshaya Kumar; Leung, Victor C M

    2017-12-05

    Around the globe, innovation with integrating information and communication technologies (ICT) with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS) is proposed which is based on neural network based Q -learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q -learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.

  11. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings

    Directory of Open Access Journals (Sweden)

    Chinmaya Mahapatra

    2017-12-01

    Full Text Available Around the globe, innovation with integrating information and communication technologies (ICT with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS is proposed which is based on neural network based Q-learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q-learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.

  12. Measurements and simulations for peak electrical load reduction in cooling dominated climate

    International Nuclear Information System (INIS)

    Sadineni, Suresh B.; Boehm, Robert F.

    2012-01-01

    Peak electric demand due to cooling load in the Desert Southwest region of the US has been an issue for the electrical energy suppliers. To address this issue, a consortium has been formed between the University of Nevada Las Vegas, Pulte Homes (home builder) and NV Energy (local utility) in order to reduce the peak load by more than 65%. The implemented strategies that were used to accomplish that goal consist of energy efficiency in homes, onsite electricity generation through roof integrated PV, direct load control, and battery storage at the substation level. The simulation models developed using building energy analysis software were validated against measured data. The electrical energy demand for the upgraded home during peak period (1:00–7:00 PM) decreased by approximately 37% and 9% compared to a code standard home of the same size, due to energy efficiency and PV generation, respectively. The total decrease in electrical demand due to energy efficiency and PV generation during the peak period is 46%. Additionally, a 2.2 °C increase in thermostat temperature from 23.9 °C to 26.1 °C between 4:00 PM and 7:00 PM has further decreased the average demand during the peak period by 69% of demand from a standard home. -- Highlights: ► A study to demonstrate peak load reductions of 65% at the substation. ► A new residential energy efficient community named Villa Trieste is being developed. ► The peak demand from the homes has decreased by 37% through energy efficiency. ► A 1.8 kWp system along with energy efficiency measures decreased peak by 46%.

  13. Interdependent demands, regulatory constraint, and peak-load pricing. [Assessment of Bailey's model

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D T; Macgregor-Reid, G J

    1977-06-01

    A model of a regulated firm which includes an analysis of peak-load pricing has been formulated by E. E. Bailey in which three alternative modes of regulation on a profit-maximizing firm are considered. The main conclusion reached is that under a regulation limiting the rate of return on capital investment, price reductions are received solely by peak-users and that when regulation limiting the profit per unit of output or the return on costs is imposed, there are price reductions for all users. Bailey has expressly assumed that the demands in different periods are interdependent but has somehow failed to derive the correct price and welfare implications of this empirically highly relevant assumption. Her conclusions would have been perfectly correct for marginal revenues but are quite incorrect for prices, even if her assumption that price exceeds marginal revenues in every period holds. This present paper derives fully and rigorously the implications of regulation for prices, outputs, capacity, and social welfare for a profit-maximizing firm with interdependent demands. In section II, Bailey's model is reproduced and the optimal conditions are given. In section III, it is demonstrated that under the conditions of interdependent demands assumed by Bailey herself, her often-quoted conclusion concerning the effects of the return-on-investment regulation on the off-peak price is invalid. In section IV, the effects of the return-on-investment regulation on the optimal prices, outputs, capacity, and social welfare both for the case in which the demands in different periods are substitutes and for the case in which they are complements are examined. In section V, the pricing and welfare implications of the return-on-investment regulation are compared with the two other modes of regulation considered by Bailey. Section VI is a summary of all sections. (MCW)

  14. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  15. Energy Saving by Chopping off Peak Demand Using Day Light

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Maitra

    2011-08-01

    Full Text Available An artificial intelligent technique has been implemented in this research using real time datas to calculate how much energy can be chopped from peak load demand. The results are based on real time data that are taken from power delivering centers. These datas do reflect the present condition of power and a solution to those critical conditions during the peak period. These are done in such a way such that helps in judicious scheduling of load. The time based load scheduling has been done so as to understand the basic criteria for solving power crisis during morning peak and early evening peak. The sunray availability and percentage of load that will use day light saving (DLS technique has been taken into account in this work. The results shows that about 0.5% to 1% of load can be shedded off from the peak load period which otherwise is reduction of power. Thus it otherwise also means that an equivalent amount of energy is saved which amounts to a large saving of national money. This result is obtained on monthly and even daily basis. Thus this paper justifies DLS gives a new renewable technique to save energy.

  16. Reducing Electricity Demand Peaks by Scheduling Home Appliances Usage

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Kardaras, Georgios; Iversen, Villy Bæk

    2011-01-01

    Nowadays there is a tendency to consume electricity during the same period of the day leading to demand peaks. Regular energy consumption habits lead to demand peaks at specific temporal intervals, because users consume power at the same time. In order to avoid demand peaks, users’ appliances...... should consume electricity in a more temporarily distributed way. A new methodology to schedule the usage of home appliances is proposed and analyzed in this paper. The main concept behind this approach is the aggregation of home appliances into priority classes and the definition of a maximum power...... consumption limit, which is not allowed to be exceeded during peak hours. The scenario simulated describes a modern household, where the electrical devices are classified in low and high priority groups. The high priority devices are always granted power in order to operate without temporal restrictions...

  17. Extreme daily increases in peak electricity demand: Tail-quantile estimation

    International Nuclear Information System (INIS)

    Sigauke, Caston; Verster, Andréhette; Chikobvu, Delson

    2013-01-01

    A Generalized Pareto Distribution (GPD) is used to model extreme daily increases in peak electricity demand. The model is fitted to years 2000–2011 recorded data for South Africa to make a comparative analysis with the Generalized Pareto-type (GP-type) distribution. Peak electricity demand is influenced by the tails of probability distributions as well as by means or averages. At times there is a need to depart from the average thinking and exploit information provided by the extremes (tails). Empirical results show that both the GP-type and the GPD are a good fit to the data. One of the main advantages of the GP-type is the estimation of only one parameter. Modelling of extreme daily increases in peak electricity demand helps in quantifying the amount of electricity which can be shifted from the grid to off peak periods. One of the policy implications derived from this study is the need for day-time use of electricity billing system similar to the one used in the cellular telephone/and fixed line-billing technology. This will result in the shifting of electricity demand on the grid to off peak time slots as users try to avoid high peak hour charges. - Highlights: ► Policy makers should design demand response strategies to save electricity. ► Peak electricity demand is influenced by tails of probability distributions. ► Both the GSP and the GPD are a good fit to the data. ► Accurate assessment of level and frequency of extreme load forecasts is important.

  18. Reducing electricity demand peaks by scheduling home appliances usage

    Energy Technology Data Exchange (ETDEWEB)

    Rossello-Busquet, A.; Kardaras, G.; Baek Iversen, V.; Soler, J.; Dittmann, L.

    2011-05-15

    Nowadays there is a tendency to consume electricity during the same period of the day leading to demand peaks. Regular energy consumption habits lead to demand peaks at specific temporal intervals, because users consume power at the same time. In order to avoid demand peaks, users' appliances should consume electricity in a more temporarily distributed way. A new methodology to schedule the usage of home appliances is proposed and analyzed in this paper. The main concept behind this approach is the aggregation of home appliances into priority classes and the definition of a maximum power consumption limit, which is not allowed to be exceeded during peak hours. The scenario simulated describes a modern household, where the electrical devices are classified in low and high priority groups. The high priority devices are always granted power in order to operate without temporal restrictions. On the contrary, the low priority devices have to pause their operation, when the algorithm dictates it, and resume it in the future. This can become beneficial for both energy companies and users. The electricity suppliers companies will be capable of regulating power generation during demand peaks periods. Moreover, users can be granted lower electricity bill rates for accepting delaying the operation of some of their appliances. In order to analyze this scenario, teletraffic engineering theory, which is used in evaluating the performance of telecommunication networks, is used. A reversible fair scheduling (RFS) algorithm, which was originally developed for telecommunication networks, is applied. The purpose is to analyze how a power consumption limit and priorities for home appliances will affect the demand peak and the users' everyday life. Verification of the effectiveness of the RFS algorithm is done by means of simulation and by using real data for power consumption and operation hours. The defined maximum power limit of 750 and 1000 Watt was not exceeded during

  19. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    Science.gov (United States)

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  20. Dramatic Demand Reduction In The Desert Southwest

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert [Univ. of Nevada, Las Vegas, NV (United States); Hsieh, Sean [Univ. of Nevada, Las Vegas, NV (United States); Lee, Joon [Univ. of Nevada, Las Vegas, NV (United States); Baghzouz, Yahia [Univ. of Nevada, Las Vegas, NV (United States); Cross, Andrew [Univ. of Nevada, Las Vegas, NV (United States); Chatterjee, Sarah [NV Energy, Las Vegas, NV (United States)

    2015-07-06

    This report summarizes a project that was funded to the University of Nevada Las Vegas (UNLV), with subcontractors Pulte Homes and NV Energy. The project was motivated by the fact that locations in the Desert Southwest portion of the US demonstrate very high peak electrical demands, typically in the late afternoons in the summer. These high demands often require high priced power to supply the needs, and the large loads can cause grid supply problems. An approach was proposed through this contact that would reduce the peak electrical demands to an anticipated 65% of what code-built houses of the similar size would have. It was proposed to achieve energy reduction through four approaches applied to a development of 185 homes in northwest part of Las Vegas named Villa Trieste. First, the homes would all be highly energy efficient. Secondly, each house would have a PV array installed on it. Third, an advanced demand response technique would be developed to allow the resident to have some control over the energy used. Finally, some type of battery storage would be used in the project. Pulte Homes designed the houses. The company considered initial cost vs. long-term savings and chose options that had relatively short paybacks. HERS (Home Energy Rating Service) ratings for the homes are approximately 43 on this scale. On this scale, code-built homes rate at 100, zero energy homes rate a 0, and Energy Star homes are 85. In addition a 1.764 Wp (peak Watt) rated PV array was used on each house. This was made up of solar shakes that were in visual harmony with the roofing material used. A demand response tool was developed to control the amount of electricity used during times of peak demand. While demand response techniques have been used in the utility industry for some time, this particular approach is designed to allow the customer to decide the degree of participation in the response activity. The temperature change in the residence can be decided by the residents by

  1. Problems of peak demands in the gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlin, A

    1979-01-01

    After a brief explanation of the demands made on gas supply enterprises, a discussion of the possibilities of optimization for meeting the demand follows. There are in principle two possibilities for this: the interruption of deliveries which should be made legal in a contract and the use of peak supply plants, especially in the form of gas storages. The procedure is chosen according to the special situation of each gas supply enterprise.

  2. Assessment of end-use electricity consumption and peak demand by Townsville's housing stock

    International Nuclear Information System (INIS)

    Ren, Zhengen; Paevere, Phillip; Grozev, George; Egan, Stephen; Anticev, Julia

    2013-01-01

    We have developed a comprehensive model to estimate annual end-use electricity consumption and peak demand of housing stock, considering occupants' use of air conditioning systems and major appliances. The model was applied to analyse private dwellings in Townsville, Australia's largest tropical city. For the financial year (FY) 2010–11 the predicted results agreed with the actual electricity consumption with an error less than 10% for cooling thermostat settings at the standard setting temperature of 26.5 °C and at 1.0 °C higher than the standard setting. The greatest difference in monthly electricity consumption in the summer season between the model and the actual data decreased from 21% to 2% when the thermostat setting was changed from 26.5 °C to 27.5 °C. Our findings also showed that installation of solar panels in Townville houses could reduce electricity demand from the grid and would have a minor impact on the yearly peak demand. A key new feature of the model is that it can be used to predict probability distribution of energy demand considering (a) that appliances may be used randomly and (b) the way people use thermostats. The peak demand for the FY estimated from the probability distribution tracked the actual peak demand at 97% confidence level. - Highlights: • We developed a model to estimate housing stock energy consumption and peak demand. • Appliances used randomly and thermostat settings for space cooling were considered. • On-site installation of solar panels was also considered. • Its' results agree well with the actual electricity consumption and peak demand. • It shows the model could provide the probability distribution of electricity demand

  3. Forecasting monthly peak demand of electricity in India—A critique

    International Nuclear Information System (INIS)

    Rallapalli, Srinivasa Rao; Ghosh, Sajal

    2012-01-01

    The nature of electricity differs from that of other commodities since electricity is a non-storable good and there have been significant seasonal and diurnal variations of demand. Under such condition, precise forecasting of demand for electricity should be an integral part of the planning process as this enables the policy makers to provide directions on cost-effective investment and on scheduling the operation of the existing and new power plants so that the supply of electricity can be made adequate enough to meet the future demand and its variations. Official load forecasting in India done by Central Electricity Authority (CEA) is often criticized for being overestimated due to inferior techniques used for forecasting. This paper tries to evaluate monthly peak demand forecasting performance predicted by CEA using trend method and compare it with those predicted by Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA) model. It has been found that MSARIMA model outperforms CEA forecasts both in-sample static and out-of-sample dynamic forecast horizons in all five regional grids in India. For better load management and grid discipline, this study suggests employing sophisticated techniques like MSARIMA for peak load forecasting in India. - Highlights: ► This paper evaluates monthly peak demand forecasting performance by CEA. ► Compares CEA forecasts it with those predicted by MSARIMA model. ► MSARIMA model outperforms CEA forecasts in all five regional grids in India. ► Opportunity exists to improve the performance of CEA forecasts.

  4. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  5. Impact of peak electricity demand in distribution grids: a stress test

    NARCIS (Netherlands)

    Hoogsteen, Gerwin; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria; Schuring, Friso; Kootstra, Ben

    2015-01-01

    The number of (hybrid) electric vehicles is growing, leading to a higher demand for electricity in distribution grids. To investigate the effects of the expected peak demand on distribution grids, a stress test with 15 electric vehicles in a single street is conducted and described in this paper.

  6. The Risk of Residential Peak Electricity Demand: A Comparison of Five European Countries

    Directory of Open Access Journals (Sweden)

    Jacopo Torriti

    2017-03-01

    Full Text Available The creation of a Europe-wide electricity market combined with the increased intermittency of supply from renewable sources calls for an investigation into the risk of aggregate peak demand. This paper makes use of a risk model to assess differences in time-use data from residential end-users in five different European electricity markets. Drawing on the Multinational Time-Use Survey database, it assesses risk in relation to the probability of electrical appliance use within households for five European countries. Findings highlight in which countries and for which activities the risk of aggregate peak demand is higher and link smart home solutions (automated load control, dynamic pricing and smart appliances to different levels of peak demand risk.

  7. Using vehicle-to-grid technology for frequency regulation and peak-load reduction

    Science.gov (United States)

    White, Corey D.; Zhang, K. Max

    This paper explores the potential financial return for using plug-in hybrid electric vehicles as a grid resource. While there is little financial incentive for individuals when the vehicle-to-grid (V2G) service is used exclusively for peak reduction, there is a significant potential for financial return when the V2G service is used for frequency regulation. We propose that these two uses for V2G technology are not mutually exclusive, and that there could exist a "dual-use" program that utilizes V2G for multiple uses simultaneously. In our proposition, V2G could be used for regulation on a daily basis to ensure profits, and be used for peak reduction on days with high electricity demand and poor ambient air quality in order to reap the greatest environmental benefits. The profits for the individual in this type of dual-use program are close to or even higher than the profits experienced in either of the single-use programs. More importantly, we argue that the external benefits of this type of program are much greater as well. At higher V2G participation rates, our analysis shows that the market for regulation capacity could become saturated by V2G-based regulation providers. At the same time, there is plenty of potential for widespread use of V2G technology, especially if the demand for regulation, reserves, and storage grows as more intermittent renewable resources are being incorporated into the power systems.

  8. Households' hourly electricity consumption and peak demand in Denmark

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Baldini, Mattia; Hansen, Lars Gårn

    2017-01-01

    consumption, we analyse the contribution of appliances and new services, such as individual heat pumps and electric vehicles, to peak consumption and the need for demand response incentives to reduce the peak.Initially, the paper presents a new model that represents the hourly electricity consumption profile...... of households in Denmark. The model considers hourly consumption profiles for different household appliances and their contribution to annual household electricity consumption. When applying the model to an official scenario for annual electricity consumption, assuming non-flexible consumption due...... to a considerable introduction of electric vehicles and individual heat pumps, household consumption is expected to increase considerably, especially peak hour consumption is expected to increase.Next the paper presents results from a new experiment where household customers are given economic and/or environmental...

  9. Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-08-01

    An optimization method based on the evaluation of a broad range of different combinations of specific energy efficiency and renewable-energy options is used to determine the least-cost pathway to the development of new homes with zero peak cooling demand. The optimization approach conducts a sequential search of a large number of possible option combinations and uses the most cost-effective alternatives to generate a least-cost curve to achieve home-performance levels ranging from a Title 24-compliant home to a home that uses zero net source energy on an annual basis. By evaluating peak cooling load reductions on the least-cost curve, it is then possible to determine the most cost-effective combination of energy efficiency and renewable-energy options that both maximize annual energy savings and minimize peak-cooling demand.

  10. 'Peak oil' or 'peak demand'?

    International Nuclear Information System (INIS)

    Chevallier, Bruno; Moncomble, Jean-Eudes; Sigonney, Pierre; Vially, Rolland; Bosseboeuf, Didier; Chateau, Bertrand

    2012-01-01

    This article reports a workshop which addressed several energy issues like the objectives and constraints of energy mix scenarios, the differences between the approaches in different countries, the cost of new technologies implemented for this purposes, how these technologies will be developed and marketed, which will be the environmental and societal acceptability of these technical choices. Different aspects and issues have been more precisely presented and discussed: the peak oil, development of shale gases and their cost (will non conventional hydrocarbons modify the peak oil and be socially accepted?), energy efficiency (its benefits, its reality in France and other countries, its position in front of the challenge of energy transition), and strategies in the transport sector (challenges for mobility, evolution towards a model of sustainable mobility)

  11. Peak reduction for commercial buildings using energy storage

    Science.gov (United States)

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  12. Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers

    International Nuclear Information System (INIS)

    Jang, Dongsik; Eom, Jiyong; Jae Park, Min; Jeung Rho, Jae

    2016-01-01

    To the extent that demand response represents an intentional electricity usage adjustment to price changes or incentive payments, consumers who exhibit more-variable load patterns on normal days may be capable of altering their loads more significantly in response to dynamic pricing plans. This study investigates the variation in the pre-enrollment load patterns of Korean commercial and industrial electricity customers and their impact on event-day loads during a critical peak pricing experiment in the winter of 2013. Contrary to conventional approaches to profiling electricity loads, this study proposes a new clustering technique based on variability indices that collectively represent the potential demand–response resource that these customers would supply. Our analysis reveals that variability in pre-enrollment load patterns does indeed have great predictive power for estimating their impact on demand–response loads. Customers in relatively low-variability clusters provided limited or no response, whereas customers in relatively high-variability clusters consistently presented large load impacts, accounting for most of the program-level peak reductions. This study suggests that dynamic pricing programs themselves may not offer adequate motivation for meaningful adjustments in load patterns, particularly for customers in low-variability clusters. - Highlights: • A method of clustering customers by variability indices is developed. • Customers in high-variability clusters provide substantial peak reductions. • Low-variability clusters exhibit limited reductions. • For low-variability customers, alternative policy instruments is well advised. • A model of discerning customer's demand response potential is suggested.

  13. Price responsive load programs: U.S. experience in creating markets for peak demand reductions

    International Nuclear Information System (INIS)

    Goldberg, Miriam L.; Michelman, Thomas; Rosenberg, Mitchell

    2003-01-01

    Demand response programs use a variety of pricing mechanisms to induce end-use customers to reduce demand at specified periods. U.S. distribution utilities, regional market operators, and their regulators have implemented demand response programs with the objectives of improving electric system reliability, avoiding price spikes, and relieving local transmission congestion. This paper reviews the design and performance of market-linked demand response programs operated in 2001 and 2002, focusing on the relationship between program design and customer participation and the development of accurate and feasible methods to measure demand response at the facility level

  14. Regulating electricity demand peaks for home appliances using reversible fair scheduling

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Rossello Busquet, Ana; Iversen, Villy Bæk

    2010-01-01

    This paper describes a novel methodology for regulating electricity demand peaks for home appliances. To achieve this objective, we will make use of the reversible fair scheduling algorithm originally developed for telecommunication networks. The main concept behind this approach is the aggregati...

  15. Peak-to-average power ratio reduction in interleaved OFDMA systems

    KAUST Repository

    Al-Shuhail, Shamael; Ali, Anum; Al-Naffouri, Tareq Y.

    2015-01-01

    Orthogonal frequency division multiple access (OFDMA) systems suffer from several impairments, and communication system engineers use powerful signal processing tools to combat these impairments and to keep up with the capacity/rate demands. One of these impairments is high peak-to-average power ratio (PAPR) and clipping is the simplest peak reduction scheme. However, in general, when multiple users are subjected to clipping, frequency domain clipping distortions spread over the spectrum of all users. This results in compromised performance and hence clipping distortions need to be mitigated at the receiver. Mitigating these distortions in multiuser case is not simple and requires complex clipping mitigation procedures at the receiver. However, it was observed that interleaved OFDMA presents a special structure that results in only self-inflicted clipping distortions (i.e., the distortions of a particular user do not interfere with other users). In this work, we prove analytically that distortions do not spread over multiple users (while utilizing interleaved carrier assignment in OFDMA) and construct a compressed sensing system that utilizes the sparsity of the clipping distortions and recovers it on each user. We provide numerical results that validate our analysis and show promising performance for the proposed clipping recovery scheme.

  16. Peak-to-average power ratio reduction in interleaved OFDMA systems

    KAUST Repository

    Al-Shuhail, Shamael

    2015-12-07

    Orthogonal frequency division multiple access (OFDMA) systems suffer from several impairments, and communication system engineers use powerful signal processing tools to combat these impairments and to keep up with the capacity/rate demands. One of these impairments is high peak-to-average power ratio (PAPR) and clipping is the simplest peak reduction scheme. However, in general, when multiple users are subjected to clipping, frequency domain clipping distortions spread over the spectrum of all users. This results in compromised performance and hence clipping distortions need to be mitigated at the receiver. Mitigating these distortions in multiuser case is not simple and requires complex clipping mitigation procedures at the receiver. However, it was observed that interleaved OFDMA presents a special structure that results in only self-inflicted clipping distortions (i.e., the distortions of a particular user do not interfere with other users). In this work, we prove analytically that distortions do not spread over multiple users (while utilizing interleaved carrier assignment in OFDMA) and construct a compressed sensing system that utilizes the sparsity of the clipping distortions and recovers it on each user. We provide numerical results that validate our analysis and show promising performance for the proposed clipping recovery scheme.

  17. Using Hydrated Salt Phase Change Materials for Residential Air Conditioning Peak Demand Reduction and Energy Conservation in Coastal and Transitional Climates in the State of California

    Science.gov (United States)

    Lee, Kyoung Ok

    The recent rapid economic and population growth in the State of California have led to a significant increase in air conditioning use, especially in areas of the State with coastal and transitional climates. This fact makes that the electric peak demand be dominated by air conditioning use of residential buildings in the summer time. This extra peak demand caused by the use of air conditioning equipment lasts only a few days out of the year. As a result, unavoidable power outages have occurred when electric supply could not keep up with such electric demand. This thesis proposed a possible solution to this problem by using building thermal mass via phase change materials to reduce peak air conditioning demand loads. This proposed solution was tested via a new wall called Phase Change Frame Wall (PCFW). The PCFW is a typical residential frame wall in which Phase Change Materials (PCMs) were integrated to add thermal mass. The thermal performance of the PCFWs was first evaluated, experimentally, in two test houses, built for this purpose, located in Lawrence, KS and then via computer simulations of residential buildings located in coastal and transitional climates in California. In this thesis, a hydrated salt PCM was used, which was added in concentrations of 10% and 20% by weight of the interior sheathing of the walls. Based on the experimental results, under Lawrence, KS weather, the PCFWs at 10% and 20% of PCM concentrations reduced the peak heat transfer rates by 27.0% and 27.3%, on average, of all four walls, respectively. Simulated results using California climate data indicated that PCFWs would reduce peak heat transfer rates by 8% and 19% at 10% PCM concentration and 12.2% and 27% at 20% PCM concentration for the coastal and transitional climates, respectively. Furthermore, the PCFWs, at 10% PCM concentration, would reduce the space cooling load and the annual energy consumption by 10.4% and 7.2%, on average in both climates, respectively.

  18. Policy packages to achieve demand reduction

    International Nuclear Information System (INIS)

    Boardman, Brenda

    2005-01-01

    In many sectors and many countries, energy demand is still increasing, despite decades of policies to reduce demand. Controlling climate change is becoming more urgent, so there is a need to devise policies that will, virtually, guarantee demand reduction. This has to come from policy, at least in the UK, as the conditions do not exist, yet, when the consumers will 'pull' the market for energy efficiency or the manufacturers will use technological development to 'push' it. That virtuous circle has to be created by a mixture of consumer education and restrictions on manufacturers (for instance, permission to manufacture). The wider policy options include higher prices for energy and stronger product policies. An assessment of the effectiveness of different policy packages indicates some guiding principles, for instance that improved product policy must precede higher prices, otherwise consumers are unable to react effectively to price rises. The evidence will be assessed about the ways in which national and EU policies can either reinforce, duplicate or undermine each other. Another area of examination will be timescales: what is the time lag between the implementation of a policy (whether prices or product based) and the level of maximum reductions. In addition, the emphasis given to factors such as equity, raising investment funds and speed of delivery also influence policy design and the extent to which absolute carbon reductions can be expected

  19. BENEFITS OF WILDERNESS EXPANSION WITH EXCESS DEMAND FOR INDIAN PEAKS

    OpenAIRE

    Walsh, Richard G.; Gilliam, Lynde O.

    1982-01-01

    The contingent valuation approach was applied to the problem of estimating the recreation benefits from alleviating congestion at Indian Peaks wilderness area, Colorado. A random sample of 126 individuals were interviewed while hiking and backpacking at the study site in 1979. The results provide an empirical test and confirmation of the Cesario and Freeman proposals that under conditions of excess recreational demand for existing sites, enhanced opportunities to substitute newly designated s...

  20. A novel microgrid demand-side management system for manufacturing facilities

    Science.gov (United States)

    Harper, Terance J.

    Thirty-one percent of annual energy consumption in the United States occurs within the industrial sector, where manufacturing processes account for the largest amount of energy consumption and carbon emissions. For this reason, energy efficiency in manufacturing facilities is increasingly important for reducing operating costs and improving profits. Using microgrids to generate local sustainable power should reduce energy consumption from the main utility grid along with energy costs and carbon emissions. Also, microgrids have the potential to serve as reliable energy generators in international locations where the utility grid is often unstable. For this research, a manufacturing process that had approximately 20 kW of peak demand was matched with a solar photovoltaic array that had a peak output of approximately 3 KW. An innovative Demand-Side Management (DSM) strategy was developed to manage the process loads as part of this smart microgrid system. The DSM algorithm managed the intermittent nature of the microgrid and the instantaneous demand of the manufacturing process. The control algorithm required three input signals; one from the microgrid indicating the availability of renewable energy, another from the manufacturing process indicating energy use as a percent of peak production, and historical data for renewable sources and facility demand. Based on these inputs the algorithm had three modes of operation: normal (business as usual), curtailment (shutting off non-critical loads), and energy storage. The results show that a real-time management of a manufacturing process with a microgrid will reduce electrical consumption and peak demand. The renewable energy system for this research was rated to provide up to 13% of the total manufacturing capacity. With actively managing the process loads with the DSM program alone, electrical consumption from the utility grid was reduced by 17% on average. An additional 24% reduction was accomplished when the microgrid

  1. Achievable peak electrode voltage reduction by neurostimulators using descending staircase currents to deliver charge.

    Science.gov (United States)

    Halpern, Mark

    2011-01-01

    This paper considers the achievable reduction in peak voltage across two driving terminals of an RC circuit when delivering charge using a stepped current waveform, comprising a chosen number of steps of equal duration, compared with using a constant current over the total duration. This work has application to the design of neurostimulators giving reduced peak electrode voltage when delivering a given electric charge over a given time duration. Exact solutions for the greatest possible peak voltage reduction using two and three steps are given. Furthermore, it is shown that the achievable peak voltage reduction, for any given number of steps is identical for simple series RC circuits and parallel RC circuits, for appropriate different values of RC. It is conjectured that the maximum peak voltage reduction cannot be improved using a more complicated RC circuit.

  2. Demand reduction in the UK - with a focus on the non-domestic sector

    International Nuclear Information System (INIS)

    Toke, D.

    2007-01-01

    A demand reduction strategy is considered in the context of the UK and in the light of the UK Government's 2006 Energy Review. This paper discusses how a mechanism - a Demand Reduction Obligation (DRO) - can be established to achieve radical energy demand reduction targets in electricity and gas use in the industrial, commercial and public administration sectors. A DRO would require energy suppliers to invest in energy-saving measures so as to reduce energy demand in these sectors. The investment for this activity would be funded by energy suppliers who would increase prices in order to cover the cost of achieving the carbon reductions. Public opinion surveys suggest that a large proportion of the public would prefer to support demand reduction measures compared to other energy options. It may be practical to deliver carbon emission reductions equivalent to around 30% of emissions from the UK electricity sector over a 15-year period through a broad-based demand reduction strategy. Demand reduction is considered in the context of an assessment of costs and resources available from other low carbon options including renewable energy and nuclear power. [Author

  3. Peak electricity demand and social practice theories: Reframing the role of change agents in the energy sector

    International Nuclear Information System (INIS)

    Strengers, Yolande

    2012-01-01

    Demand managers currently draw on a limited range of psychology and economic theories in order to shift and shed peak electricity demand. These theories place individual consumers and their attitudes, behaviours and choices at the centre of the problem. This paper reframes the issue of peak electricity demand using theories of social practices, contending that the ‘problem’ is one of transforming, technologically-mediated social practices. It reflects on how this body of theory repositions and refocuses the roles and practices of professions charged with the responsibility and agency for affecting and managing energy demand. The paper identifies three areas where demand managers could refocus their attention: (i) enabling co-management relationships with consumers; (ii) working beyond their siloed roles with a broader range of human and non-human actors; and (iii) promoting new practice ‘needs’ and expectations. It concludes by critically reflecting on the limited agency attributed to ‘change agents’ such as demand managers in dominant understandings of change. Instead, the paper proposes the need to identify and establish a new group of change agents who are actively but often unwittingly involved in reconfiguring the elements of problematic peaky practices. - Highlights: ► I reframe peak electricity demand as a problem of changing social practices. ► Micro-grids, and dynamic pricing reorient household routines and enable co-management. ► Infrastructures inside and outside the home configure peaky practices. ► Demand managers are encouraged to promote and challenge consumer ‘needs’. ► I identify a new group of change agents implicated in peaky practices.

  4. An Auto Tuning Substation Peak Shaving Controller for Congestion Management Using Flexible Demand

    DEFF Research Database (Denmark)

    Sossan, Fabrizio; Marinelli, Mattia

    2013-01-01

    A closed loop substation peak shaving/congestion management controller for radial distribution networks is presented. The controller it uses an individual control signal in order to shift the consumption of a population of demand side resources, DSRs. The controller auto tunes its parameters on...

  5. Open Automated Demand Response for Small Commerical Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  6. The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use. A review

    International Nuclear Information System (INIS)

    Newsham, Guy R.; Bowker, Brent G.

    2010-01-01

    Peak demand for electricity in North America is expected to grow, challenging electrical utilities to supply this demand in a cost-effective, reliable manner. Therefore, there is growing interest in strategies to reduce peak demand by eliminating electricity use, or shifting it to non-peak times. This strategy is commonly called 'demand response'. In households, common strategies are time-varying pricing, which charge more for energy use on peak, or direct load control, which allows utilities to curtail certain loads during high demand periods. We reviewed recent North American studies of these strategies. The data suggest that the most effective strategy is a critical peak price (CPP) program with enabling technology to automatically curtail loads on event days. There is little evidence that this causes substantial hardship for occupants, particularly if they have input into which loads are controlled and how, and have an override option. In such cases, a peak load reduction of at least 30% is a reasonable expectation. It might be possible to attain such load reductions without enabling technology by focusing on household types more likely to respond, and providing them with excellent support. A simple time-of-use (TOU) program can only expect to realise on-peak reductions of 5%. (author)

  7. SUPERVISORY CONTROL FOR PEAK REDUCTION IN COMMERCIAL BUILDINGS WHILE MAINTAINING COMFORT

    Energy Technology Data Exchange (ETDEWEB)

    Nutaro, James J [ORNL; Olama, Mohammed M [ORNL; Kuruganti, Teja [ORNL

    2016-01-01

    This paper describes a supervisory control strategy for limiting peak power demand by small and medium commercial buildings while still meeting the business needs of the occupants. This control strategy has two features that make it relevant to new and existing buildings. First, it is designed to operate with building equipment, such as air conditioning and refrigeration systems, as they are presently installed in most small and medium commercial buildings. Because of this, the supervisory control could be realized as a software-only retrofit to existing building management systems. Second, the proposed control acts as a supervisory management layer over existing control systems, rather than replacing them outright. The primary idea of this approach is that the controls for individual building equipment request energy resources for a control action and the supervisory control examines the requests and decides which control actions to allow while satisfying a limit on peak power demand.

  8. Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals

    NARCIS (Netherlands)

    H. Geerlings; Robert Heij; dr. J.H.R. van Duin

    2018-01-01

    This paper presents the results of both a qualitative and a quantitative study on the possibilities for peak shaving the energy demand of ship-to-shore (STS) cranes at container terminals. The objective is to present an energy consumption model that visualizes the energy demand of STS cranes and to

  9. Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals

    NARCIS (Netherlands)

    Geerlings, Harry; van Duin, Ron

    2018-01-01

    This paper presents the results of both a qualitative and a quantitative study on
    the possibilities for peak shaving the energy demand of ship-to-shore (STS) cranes at container terminals. The objective is to present an energy consumption model that visualizes the energy demand of STS cranes and

  10. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    Science.gov (United States)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  11. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  12. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

    International Nuclear Information System (INIS)

    Fujimori, S.; Kainuma, M.; Masui, T.; Hasegawa, T.; Dai, H.

    2014-01-01

    A reduction of energy service demand is a climate mitigation option, but its effectiveness has never been quantified. We quantify the effectiveness of energy service demand reduction in the building, transport, and industry sectors using the Asia-Pacific Integrated Assessment/Computable General Equilibrium (AIM/CGE) model for the period 2015–2050 under various scenarios. There were two major findings. First, a 25% energy service demand reduction in the building, transport, and basic material industry sectors would reduce the GDP loss induced by climate mitigation from 4.0% to 3.0% and from 1.2% to 0.7% in 2050 under the 450 ppm and 550 ppm CO 2 equivalent concentration stabilization scenarios, respectively. Second, the effectiveness of a reduction in the building sector's energy service demand would be higher than those of the other sectors at the same rate of the energy service demand reduction. Furthermore, we also conducted a sensitivity analysis of different socioeconomic conditions, and the climate mitigation target was found to be a key determinant of the effectiveness of energy service demand reduction measures. Therefore, more certain climate mitigation targets would be useful for the decision makers who design energy service demand reduction measures. - Highlights: • The effectiveness of a reduction in energy service demand is quantified. • A 25% reduction in energy service demand would be equivalent to 1% of GDP in 2050. • Stringent mitigation increases the effectiveness of energy service demand reduction. • Effectiveness of a reduction in energy demand service is higher in the building sector

  13. Theoretical Investigation of Peak-Delay Force Reduction for Caissons Exposed to Non-breaking Short-Crested Waves

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.

    In nature coastal structures are exposed to oblique short-crested waves. The effect of wave incident angle on total wave force on a long caisson are twofold. The one is the force reduction due to the reduction of instantaneous point pressure on the caisson, named point-pressure force reduction....... The other is the force reduction due to the fact that the peak pressures do not occur simultaneously along the caisson, named peak-delay force reduction. These two reduction effects can also be expected with short-crested waves, as the short-crestedness of waves means the spreading of wave energy over...... a range of incident angles. The peak-delay force reduction, i.e. no simultaneous peak along caisson, is of particular interest because the equipment improvement in construction enables the building of considerably long caissons. In Japan length of caissons exceeds often 100m. This paper will concentrate...

  14. Early Detection of Peak Demand Days of Chronic Respiratory Diseases Emergency Department Visits Using Artificial Neural Networks.

    Science.gov (United States)

    Khatri, Krishan L; Tamil, Lakshman S

    2018-01-01

    Chronic respiratory diseases, mainly asthma and chronic obstructive pulmonary disease (COPD), affect the lives of people by limiting their activities in various aspects. Overcrowding of hospital emergency departments (EDs) due to respiratory diseases in certain weather and environmental pollution conditions results in the degradation of quality of medical care, and even limits its availability. A useful tool for ED managers would be to forecast peak demand days so that they can take steps to improve the availability of medical care. In this paper, we developed an artificial neural network based classifier using multilayer perceptron with back propagation algorithm that predicts peak event (peak demand days) of patients with respiratory diseases, mainly asthma and COPD visiting EDs in Dallas County of Texas in the United States. The precision and recall for peak event class were 77.1% and 78.0%, respectively, and those for nonpeak events were 83.9% and 83.2%, respectively. The overall accuracy of the system is 81.0%.

  15. A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-01-01

    on energy use in buildings; (2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; (3) the weather impact is greater for buildings in colder climates than warmer climates; (4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and (5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective

  16. A fuzzy-stochastic simulation-optimization model for planning electric power systems with considering peak-electricity demand: A case study of Qingdao, China

    International Nuclear Information System (INIS)

    Yu, L.; Li, Y.P.; Huang, G.H.

    2016-01-01

    In this study, a FSSOM (fuzzy-stochastic simulation-optimization model) is developed for planning EPS (electric power systems) with considering peak demand under uncertainty. FSSOM integrates techniques of SVR (support vector regression), Monte Carlo simulation, and FICMP (fractile interval chance-constrained mixed-integer programming). In FSSOM, uncertainties expressed as fuzzy boundary intervals and random variables can be effectively tackled. In addition, SVR coupled Monte Carlo technique is used for predicting the peak-electricity demand. The FSSOM is applied to planning EPS for the City of Qingdao, China. Solutions of electricity generation pattern to satisfy the city's peak demand under different probability levels and p-necessity levels have been generated. Results reveal that the city's electricity supply from renewable energies would be low (only occupying 8.3% of the total electricity generation). Compared with the energy model without considering peak demand, the FSSOM can better guarantee the city's power supply and thus reduce the system failure risk. The findings can help decision makers not only adjust the existing electricity generation/supply pattern but also coordinate the conflict interaction among system cost, energy supply security, pollutant mitigation, as well as constraint-violation risk. - Highlights: • FSSOM (Fuzzy-stochastic simulation-optimization model) is developed for planning EPS. • It can address uncertainties as fuzzy-boundary intervals and random variables. • FSSOM can satisfy peak-electricity demand and optimize power allocation. • Solutions under different probability levels and p-necessity levels are analyzed. • Results create tradeoff among system cost and peak-electricity demand violation risk.

  17. Characteristics of drug demand reduction structures in Britain and Iran

    Directory of Open Access Journals (Sweden)

    Hooman Narenjiha

    2015-03-01

    Full Text Available Administrative structure of drug demand reduction and the way in which involved organizations interact with each other has been neglected by researchers, policy makers, and administrators at the national level and even in international institutions in this field. Studying such structures in different countries can reveal their attributes and features. In this study, key experts from the addictive behavior department of St George’s University of London and a group of Iranian specialists in the field of drug demand reduction first wrote on a sheet the name of organizations that are in charge of drug demand reduction. Then, via teamwork, they drew the connections between the organizations and compared the two charts to assess the relations between the member organizations. In total, 17 features of efficient structure were obtained as follow: multi-institutional nature, collaborative inter-institutional activities, clear and relevant inter-institutional and intra-institutional job description, the ability to share the experiences, virtual institutions activity, community-based associations activity, mutual relationships, the existence of feedback sys-tems, evaluation, changeability, the ability to collect data rapidly, being rooted in community, flexibility at the local and regional levels, connection with research centers, updated policymaking, empowering the local level, and seeking the maximum benefit and the minimum resources. Recognizing the characteristics of substance related organizations in various countries could help policy makers to improve drug demand reduction structures and to manage the wide-spread use of psychoactive substances more effectively. 

  18. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.

  19. Are prices enough? The economics of material demand reduction

    Science.gov (United States)

    Aidt, Toke; Jia, Lili; Low, Hamish

    2017-05-01

    Recent policy proposals to achieve carbon targets have emphasized material demand reduction strategies aimed at achieving material efficiency. We provide a bridge between the way economists and engineers think about efficiency. We use the tools of economics to think about policies directed at material efficiency and to evaluate the role and rationale for such policies. The analysis highlights when prices (or taxes) can be used to induce changes in material use and when taxes may not work. We argue that the role of taxes is limited by concerns about their distributional consequences, by international trade and the lack of international agreement on carbon prices, and by investment failures. This article is part of the themed issue 'Material demand reduction'.

  20. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    Science.gov (United States)

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-02

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.

  1. Modelling and short-term forecasting of daily peak power demand in Victoria using two-dimensional wavelet based SDP models

    International Nuclear Information System (INIS)

    Truong, Nguyen-Vu; Wang, Liuping; Wong, Peter K.C.

    2008-01-01

    Power demand forecasting is of vital importance to the management and planning of power system operations which include generation, transmission, distribution, as well as system's security analysis and economic pricing processes. This paper concerns the modeling and short-term forecast of daily peak power demand in the state of Victoria, Australia. In this study, a two-dimensional wavelet based state dependent parameter (SDP) modelling approach is used to produce a compact mathematical model for this complex nonlinear dynamic system. In this approach, a nonlinear system is expressed by a set of linear regressive input and output terms (state variables) multiplied by the respective state dependent parameters that carry the nonlinearities in the form of 2-D wavelet series expansions. This model is identified based on historical data, descriptively representing the relationship and interaction between various components which affect the peak power demand of a certain day. The identified model has been used to forecast daily peak power demand in the state of Victoria, Australia in the time period from the 9th of August 2007 to the 24th of August 2007. With a MAPE (mean absolute prediction error) of 1.9%, it has clearly implied the effectiveness of the identified model. (author)

  2. Integrated Platform for Automated Sustainable Demand Response in Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Zois, Vassilis [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Computer Science; Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Prasanna, Viktor K. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Electrical Engineering

    2014-10-08

    Demand Response(DR) is a common practice used by utility providers to regulate energy demand. It is used at periods of high demand to minimize the peak to average consumption ratio. Several methods have been Demand Response(DR) is a common praon using information about the baseline consumption and the consumption during DR. Our goal is to provide a sustainable reduction to ensure the elimination of peaks in demand. The proposed system includes an adaptation mechanism for when the provided solution does not meet the DR requirements. We conducted a series of experiments using consumption data from a real life micro grid to evaluate the efficiency as well as the robustness of our solution.

  3. Mean and peak wind load reduction on heliostats

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, J.A.; Tan, L.; Bienkiewcz, B.; Cermak, J.E.

    1987-09-01

    This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated both mean and peak forces, and moments. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved. In addition, a preliminary review of wind loads on parabolic dish collectors was conducted, resulting in a recommended research program for these type collectors. 42 refs., 38 figs., 1 tab.

  4. Background Reduction around Prompt Gamma-ray Peaks from Korean White Ginseng

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. N.; Sun, G. M.; Moon, J. H.; Chung, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Y. E. [Chung-buk National University, Chungju (Korea, Republic of)

    2007-10-15

    Prompt gamma-ray activation analysis (PGAA) is recognized as a very powerful and unique nuclear method in terms of its non-destruction, high precision, and no time-consuming advantages. This method is used for the analysis of trace elements in various types of sample matrix such as metallurgical, environmental, biological samples, etc. When a spectrum is evaluated, background continuum is a major disturbing factor for a precise and accurate analysis. Furthermore, a prompt gamma spectrum is complicate with a wide range. To make the condition free from this limitation, a reduction of the background is important for the PGAA analysis. The background-reducing methods are divided into using the electronic equipment like a suppression mode and principal component analysis (PCA) based on a multivariate statistical method. In PGAA analysis, Lee et al. compared the background reduction methods like PCA and wavelet transform for the prompt gamma-ray spectra. Lim et al. have applied the multivariate statistical method to the identification of the peaks with low-statistics from the explosives. In this paper, effective reduction of background in the prompt gamma spectra using the PCA is applied to the prompt gammaray peaks from Korean Baeksam (Korean white ginseng)

  5. Demand side management for commercial buildings using an in line heat pump water heating methodology

    International Nuclear Information System (INIS)

    Rankin, Riaan; Rousseau, Pieter G.; Eldik, Martin van

    2004-01-01

    Most of the sanitary hot water used in South African buildings is heated by means of direct electrical resistance heaters. This is one of the major contributors to the undesirably high morning and afternoon peaks imposed on the national electricity supply grid. For this reason, water heating continues to be of concern to the electricity supplier, ESCOM. Previous studies, conducted by the Potchefstroom University for Christian Higher Education in South Africa, indicated that extensive application of the so called inline heat pump water heating methodology in commercial buildings could result in significant demand side management savings to ESKOM. Furthermore, impressive paybacks can be obtained by building owners who choose to implement the design methodology on existing or new systems. Currently, a few examples exist where the design methodology has been successfully implemented. These installations are monitored with a fully web centric monitoring system that allows 24 h access to data from each installation. Based on these preliminary results, a total peak demand reduction of 108 MW can be achieved, which represents 18% of the peak load reduction target set by ESKOM until the year 2015. This represents an avoided cost of approximately MR324 (ZAR) [Int J Energy Res 25(4) (1999) 2000]. Results based on actual data from the monitored installations shows a significant peak demand reduction for each installation. In one installation, a hotel with an occupancy of 220 people, the peak demand contribution of the hot water installation was reduced by 86%, realizing a 36% reduction in peak demand for the whole building. The savings incurred by the building owner also included significant energy consumption savings due to the superior energy efficiency of the heat pump water heater. The combined savings result in a conservatively calculated straight payback period of 12.5 months, with an internal rate of return of 98%. The actual cost of water heating is studied by

  6. Enhancement of building operations: A successful approach towards national electrical demand management

    International Nuclear Information System (INIS)

    Al-Mulla, A.; Maheshwari, G.P.; Al-Nakib, D.; ElSherbini, A.; Alghimlas, F.; Al-Taqi, H.; Al-Hadban, Y.

    2013-01-01

    Highlights: • Enhanced building operations were applied for eight large government buildings in Kuwait. • The enhanced building operations led to demand savings of 8.90 MW during the national peak hour. • Nationwide guidelines were developed for implementing the enhanced operations in similar government buildings in Kuwait. • The peak electrical demand reduction is likely to be 488 MW by the year 2030. - Abstract: An approach for managing electrical demand through enhanced building operations in hot climates is evaluated and demonstrated in this paper. The approach focuses on implementing enhanced operations in government buildings, since they are easier to implement and administer. These enhanced operations included early reduction of cooling supply before the end of the occupancy period, improved time-of-day control after occupancy period and reduced lighting. A total of eight government buildings with different construction and system characteristics were selected for implementing these enhanced operations. These buildings have a total air-conditioning area of 4.39 × 10 5 m 2 and a combined peak electrical demand of 29.3 MW. The enhanced operations resulted in demand savings of 8.90 MW during the national peak hour. Temperatures build up inside the buildings were monitored and found to be within acceptable ranges. Guidelines for nationwide implementation in similar buildings were developed based on the results of this work. Implementation is estimated to reduce demand by 488 MW by the year 2030, which amounts to capital savings of $585 million. These projected values would be important to adopt energy efficient policies for the country. Additional reductions in energy and fuel consumption are added benefits, which would result in large financial and environmental savings to the country. Moreover, the enhanced building operations would be an important tool to avoid any blackouts by properly reducing the peak electrical demand as well as operating the

  7. Contribution to performing gas solutions and the complementarity of energies to address electric peak consumptions

    International Nuclear Information System (INIS)

    2015-01-01

    This article aims at outlining the contribution that gas-based solutions may have for the reduction of the seasonal electricity peak consumption. After having recalled the principles related to electricity peak consumption (daily peak in summer and in winter due to the use of various equipment which lasts few hours, seasonal peak in winter due to the use of electric heating which may last several weeks) and the associated evolution of electricity consumptions over the last years, this article describes the main challenges related to the electric peak consumption: how to maintain the balance in real time between production and consumption. In France, the network manager must use, beside nuclear power stations, thermal productions (gas or coal-based) which result in higher CO 2 emissions. Electricity imports from Germany also degrade the French carbon footprint. Thus, the management of daily and seasonal peaks can be based on three levers of action: to act on supply by developing capacities to face the residual peak, to act on demand by smoothing the load curve by controlling the load of electric equipment, or to act on demand by a global reduction of the thermo-sensitive consumption of electricity

  8. An analysis of a demand charge electricity grid tariff in the residential sector

    International Nuclear Information System (INIS)

    Stokke, A. V.; Doorman, G.L.; Ericson, T.

    2010-01-01

    This paper analyzes the demand response from residential electricity consumers to a demand charge grid tariff. The tariff charges the maximum hourly peak consumption in each of the winter months Dec, Jan, and Feb, thus giving incentives to reduce peak consumption. We use hourly electricity consumption data from 443 households, as well as data on their grid and power prices, the local temperature, wind speed, and hours of daylight. The panel data set is analyzed with a fixed effects regression model. The estimates indicate average demand reductions up to 0.37 kWh/h per household in response to the tariff. This is on average a 5% reduction, with a maximum reduction of 12% in hour 8 in Dec. The consumers did not receive any information on their continuous consumption or any reminders when the tariff was in effect. It is likely that the consumption reductions would have been even higher with more information to the consumers.

  9. Automated Critical Peak Pricing Field Tests: Program Descriptionand Results

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-04-06

    California utilities have been exploring the use of critical peak prices (CPP) to help reduce needle peaks in customer end-use loads. CPP is a form of price-responsive demand response (DR). Recent experience has shown that customers have limited knowledge of how to operate their facilities in order to reduce their electricity costs under CPP (Quantum 2004). While the lack of knowledge about how to develop and implement DR control strategies is a barrier to participation in DR programs like CPP, another barrier is the lack of automation of DR systems. During 2003 and 2004, the PIER Demand Response Research Center (DRRC) conducted a series of tests of fully automated electric demand response (Auto-DR) at 18 facilities. Overall, the average of the site-specific average coincident demand reductions was 8% from a variety of building types and facilities. Many electricity customers have suggested that automation will help them institutionalize their electric demand savings and improve their overall response and DR repeatability. This report focuses on and discusses the specific results of the Automated Critical Peak Pricing (Auto-CPP, a specific type of Auto-DR) tests that took place during 2005, which build on the automated demand response (Auto-DR) research conducted through PIER and the DRRC in 2003 and 2004. The long-term goal of this project is to understand the technical opportunities of automating demand response and to remove technical and market impediments to large-scale implementation of automated demand response (Auto-DR) in buildings and industry. A second goal of this research is to understand and identify best practices for DR strategies and opportunities. The specific objectives of the Automated Critical Peak Pricing test were as follows: (1) Demonstrate how an automated notification system for critical peak pricing can be used in large commercial facilities for demand response (DR). (2) Evaluate effectiveness of such a system. (3) Determine how customers

  10. Air-conditioning Australian households: The impact of dynamic peak pricing

    International Nuclear Information System (INIS)

    Strengers, Yolande

    2010-01-01

    International mandates for smart metering are enabling variable and real-time pricing regimes such as dynamic peak pricing (DPP), which charges 10-40 times the off-peak rate for electricity during short periods. This regime aims to reduce peak electricity demand (predominantly due to increase in residential air-conditioning usage) and curb greenhouse gas emissions. Although trials indicate that DPP can achieve significant demand reductions, particularly in summer, little is known about how or why households change their cooling practices in response to this strategy. This paper discusses the outcomes of a small qualitative study assessing the impact of a DPP trial on household cooling practices in the Australian state of New South Wales. The study challenges common assumptions about the necessity of air-conditioning and impact of price signals. It finds that DPP engages households as co-managers of their cooling practices through a series of notification signals (SMS, phone, in-home display, email, etc.). Further, by linking the price signal to air-conditioning, some householders consider this practice discretionary for short periods of time. The paper concludes by warning that policy makers and utilities may serve to legitimise air-conditioning usage and/or negate demand reductions by failing to acknowledge the non-rational dynamics of DPP and household cooling practices. - Research highlights: →Most householders consider air-conditioning discretionary during DPP events →DPP engages householders as co-managers of their demand →Notification of an upcoming DPP event is significant to the response →Householders feel obligated to respond to DPP for a range of non-financial reasons

  11. Demand management through centralized control system using power line communication for existing buildings

    International Nuclear Information System (INIS)

    Al-Mulla, A.; ElSherbini, A.

    2014-01-01

    Highlights: • A pilot system was developed for demand management of equipment in buildings. • The networking was based on LonWorks platform and power line communication. • Demand strategies led to load reductions up to 74% and energy savings up to 25%. • The peak load reduction is expected to reach 3.44 GW by the year 2030. - Abstract: Managing peak demand efficiently is vital for maintaining uninterrupted supply of electrical power by utility providers. In this work, a pilot system was developed for managing and controlling the demand of major power consuming equipment in buildings from a central server, while relying mostly on existing infrastructure and maintaining consumer comfort. The system was successfully demonstrated on a selected group of buildings using the LonWorks networking platform. At the building level, the system utilized power line and twisted pair communication to control the thermostats of air-conditioning (A/C) units. The higher level communication was executed through extensible markup language (XML) and simple object access protocol (SOAP). The system provided control capabilities based on A/C unit priority, thermostat temperature, building type and geographic location. The development and execution of demand management strategies for selected buildings led to peak load reductions up to 74%, in addition to energy savings up to 25%. Implementing such a system at a national level in Kuwait is estimated to reduce peak demand by 3.44 GW, amounting to capital savings of $4.13 billion. The use of existing infrastructure reduced the cost and installation time of the system. Based on the successful testing of this pilot system, a larger-scale system is being developed

  12. Demand side management program evaluation based on industrial and commercial field data

    International Nuclear Information System (INIS)

    Eissa, M.M.

    2011-01-01

    Demand Response is increasingly viewed as an important tool for use by the electric utility industry in meeting the growing demand for electricity. There are two basic categories of demand response options: time varying retail tariffs and incentive Demand Response Programs. is applying the time varying retail tariffs program, which is not suitable according to the studied load curves captured from the industrial and commercial sectors. Different statistical studies on daily load curves for consumers connected to 22 kV lines are classified. The load curve criteria used for classification is based on peak ratio and night ratio. The data considered here is a set of 120 annual load curves corresponding to the electric power consumption (the western area in the King Saudi Arabia (KSA)) of many clients in winter and some months in the summer (peak period). The study is based on real data from several Saudi customer sectors in many geographical areas with larger commercial and industrial customers. The study proved that the suitable Demand Response for the ESC is the incentive program. - Highlights: → Study helps in selecting the proper demand side program. → A credit will be given for the customers during summer months. → Reduction in the electric bill. → Monthly bill credit is decreased based on customers' peak load reduction. → Guide for applying the proper demand side program suitable for the utility and customers.

  13. The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis

    International Nuclear Information System (INIS)

    Kesicki, Fabian; Anandarajah, Gabrial

    2011-01-01

    In order to reduce energy-related CO 2 emissions different options have been considered: energy efficiency improvements, structural changes to low carbon or zero carbon fuel/technologies, carbon sequestration, and reduction in energy-service demands (useful energy). While efficiency and technology options have been extensively studied within the context of climate change mitigation, this paper addresses the possible role of price-related energy-service demand reduction. For this analysis, the elastic demand version of the TIAM-UCL global energy system model is used in combination with decomposition analysis. The results of the CO 2 emission decomposition indicate that a reduction in energy-service demand can play a limited role, contributing around 5% to global emission reduction in the 21st century. A look at the sectoral level reveals that the demand reduction can play a greater role in selected sectors like transport contributing around 16% at a global level. The societal welfare loss is found to be high when the price elasticity of demand is low. - Highlights: → A reduction in global energy-service demand can contribute around 5% to global emission reduction in the 21st century. → The role of demand is a lot higher in transport than in the residential sector. → Contribution of demand reduction is higher in early periods of the 21st century. → Societal welfare loss is found to be high when the price elasticity of demand is low. → Regional shares in residual emissions vary under different elasticity scenarios.

  14. The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kesicki, Fabian, E-mail: fabian.kesicki.09@ucl.ac.uk [UCL Energy Institute, University College London, 14 Upper Woburn Place, London, WC1H 0NN (United Kingdom); Anandarajah, Gabrial [UCL Energy Institute, University College London, 14 Upper Woburn Place, London, WC1H 0NN (United Kingdom)

    2011-11-15

    In order to reduce energy-related CO{sub 2} emissions different options have been considered: energy efficiency improvements, structural changes to low carbon or zero carbon fuel/technologies, carbon sequestration, and reduction in energy-service demands (useful energy). While efficiency and technology options have been extensively studied within the context of climate change mitigation, this paper addresses the possible role of price-related energy-service demand reduction. For this analysis, the elastic demand version of the TIAM-UCL global energy system model is used in combination with decomposition analysis. The results of the CO{sub 2} emission decomposition indicate that a reduction in energy-service demand can play a limited role, contributing around 5% to global emission reduction in the 21st century. A look at the sectoral level reveals that the demand reduction can play a greater role in selected sectors like transport contributing around 16% at a global level. The societal welfare loss is found to be high when the price elasticity of demand is low. - Highlights: > A reduction in global energy-service demand can contribute around 5% to global emission reduction in the 21st century. > The role of demand is a lot higher in transport than in the residential sector. > Contribution of demand reduction is higher in early periods of the 21st century. > Societal welfare loss is found to be high when the price elasticity of demand is low. > Regional shares in residual emissions vary under different elasticity scenarios.

  15. A bi-level integrated generation-transmission planning model incorporating the impacts of demand response by operation simulation

    International Nuclear Information System (INIS)

    Zhang, Ning; Hu, Zhaoguang; Springer, Cecilia; Li, Yanning; Shen, Bo

    2016-01-01

    Highlights: • We put forward a novel bi-level integrated power system planning model. • Generation expansion planning and transmission expansion planning are combined. • The effects of two sorts of demand response in reducing peak load are considered. • Operation simulation is conducted to reflect the actual effects of demand response. • The interactions between the two levels can guarantee a reasonably optimal result. - Abstract: If all the resources in power supply side, transmission part, and power demand side are considered together, the optimal expansion scheme from the perspective of the whole system can be achieved. In this paper, generation expansion planning and transmission expansion planning are combined into one model. Moreover, the effects of demand response in reducing peak load are taken into account in the planning model, which can cut back the generation expansion capacity and transmission expansion capacity. Existing approaches to considering demand response for planning tend to overestimate the impacts of demand response on peak load reduction. These approaches usually focus on power reduction at the moment of peak load without considering the situations in which load demand at another moment may unexpectedly become the new peak load due to demand response. These situations are analyzed in this paper. Accordingly, a novel approach to incorporating demand response in a planning model is proposed. A modified unit commitment model with demand response is utilized. The planning model is thereby a bi-level model with interactions between generation-transmission expansion planning and operation simulation to reflect the actual effects of demand response and find the reasonably optimal planning result.

  16. Reduction potentials of energy demand and GHG emissions in China's road transport sector

    International Nuclear Information System (INIS)

    Yan Xiaoyu; Crookes, Roy J.

    2009-01-01

    Rapid growth of road vehicles, private vehicles in particular, has resulted in continuing growth in China's oil demand and imports, which has been widely accepted as a major factor effecting future oil availability and prices, and a major contributor to China's GHG emission increase. This paper is intended to analyze the future trends of energy demand and GHG emissions in China's road transport sector and to assess the effectiveness of possible reduction measures. A detailed model has been developed to derive a reliable historical trend of energy demand and GHG emissions in China's road transport sector between 2000 and 2005 and to project future trends. Two scenarios have been designed to describe the future strategies relating to the development of China's road transport sector. The 'Business as Usual' scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of road transport energy demand. The 'Best Case' scenario is considered to be the most optimized case where a series of available reduction measures such as private vehicle control, fuel economy regulation, promoting diesel and gas vehicles, fuel tax and biofuel promotion, are assumed to be implemented. Energy demand and GHG emissions in China's road transport sector up to 2030 are estimated in these two scenarios. The total reduction potentials in the 'Best Case' scenario and the relative reduction potentials of each measure have been estimated

  17. Financial incentive approaches for reducing peak electricity demand, experience from pilot trials with a UK energy provider

    International Nuclear Information System (INIS)

    Bradley, Peter; Coke, Alexia; Leach, Matthew

    2016-01-01

    Whilst tariff-based approaches to load-shifting are common in the residential sector, incentive-based approaches are rare. This is so, even though providing customers incentives to shape their power consumption patterns has substantial potential. This paper presents findings from an exploratory UK pilot study that trials financial payments and detailed energy feedback to incentivise load-shifting of residential electricity consumption. An intervention study was implemented measuring actual energy use by individual households as well as conducting surveys and interviews. From the trials it was found that the approaches resulted in reductions in peak time energy use. Evidence from the study found that the incentives-based approaches were able to overcome some of the barriers to response experienced in Time-of-Use studies, though less good on others. Interestingly, the height of the barriers varied by the electricity-using practice and the incentivising approach applied. The height of the barriers also varied by participant. The study concludes by identifying that broad participation in demand response is likely to require a suite of incentivising approaches that appeal to different people, a key policy finding of interest to international agencies, government, public and private sector entities. - Highlights: • Novel study of financial incentive approaches for shifting residential energy. • First academic paper comprehensively identifying barriers to time of use tariffs. • First study reporting barriers to financial incentive approaches for demand response. • Incentive study design can be applied by government and energy companies.

  18. Numerical Model and Analysis of Peak Temperature Reduction in LiFePO4 Battery Packs Using Phase Change Materials

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials......Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials...

  19. Experimental determination of demand side management potential of wet appliances in the Netherlands

    NARCIS (Netherlands)

    Staats, M. R.; de Boer-Meulman, P. D M; van Sark, W. G J H M

    2017-01-01

    The potential of demand side management (DSM) of wet appliances (washing machine, dishwasher and tumble dryer) in households with photovoltaic (PV) systems is studied experimentally focusing on evening peak demand reduction and increase in PV self-consumption. In a sample of 100 Dutch households the

  20. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    Energy Technology Data Exchange (ETDEWEB)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to

  1. Stopping coal-fired electricity imports on smog days : a review of the OPA's proposed 250 MW demand response program

    International Nuclear Information System (INIS)

    Gibbons, J.

    2006-01-01

    This paper proposed an alternative to importing coal-fired electricity from the Ohio Valley on smog alert days in Ontario. It was suggested that the Ontario Power Authority (OPA) should pay large electricity consumers to shift some of their consumption from peak to off-peak hours. It was observed that demand response programs which pay consumers to shift demands to off-peak hours can provide multiple benefits to Ontario, including reduced air pollution on smog-alert days, a reduction in the spot price of electricity and reduced price volatility. In addition, demand response programs reduce the risk of blackouts and brownouts, as well as the need for new electricity generation and transmission infrastructure. It was noted that the Independent Electricity System Operator (IESO) and the OPA are planning to introduce demand response programs for the summer of 2006. However, the IESO's emergency load reduction program will be operated only during emergency situations to avoid the need for voltage reductions, while the OPA proposes to introduce a non-emergency demand response program which will be activated during most smog-alert days. Various amendments to the proposed program were suggested in this paper, including the establishment of price parity with coal-fired electricity imports; the provision of notification by 3 PM of the need for demand reductions the following day; no capping on the quantity of demand reductions that the OPA will purchase at a lower cost than electricity imports; and that the OPA's proposed Capacity Building Demand Response Program should proceed as quickly as possible without a pre-determined MW cap. 4 refs., 6 figs

  2. Reduction of chemical formulas from the isotopic peak distributions of high-resolution mass spectra.

    Science.gov (United States)

    Roussis, Stilianos G; Proulx, Richard

    2003-03-15

    A method has been developed for the reduction of the chemical formulas of compounds in complex mixtures from the isotopic peak distributions of high-resolution mass spectra. The method is based on the principle that the observed isotopic peak distribution of a mixture of compounds is a linear combination of the isotopic peak distributions of the individual compounds in the mixture. All possible chemical formulas that meet specific criteria (e.g., type and number of atoms in structure, limits of unsaturation, etc.) are enumerated, and theoretical isotopic peak distributions are generated for each formula. The relative amount of each formula is obtained from the accurately measured isotopic peak distribution and the calculated isotopic peak distributions of all candidate formulas. The formulas of compounds in simple spectra, where peak components are fully resolved, are rapidly determined by direct comparison of the calculated and experimental isotopic peak distributions. The singular value decomposition linear algebra method is used to determine the contributions of compounds in complex spectra containing unresolved peak components. The principles of the approach and typical application examples are presented. The method is most useful for the characterization of complex spectra containing partially resolved peaks and structures with multiisotopic elements.

  3. Transportation cost of nuclear off-peak power for hydrogen production based on water electrolysis

    International Nuclear Information System (INIS)

    Shimizu, Saburo; Ueno, Shuichi

    2004-01-01

    The paper describes transportation cost of the nuclear off-peak power for a hydrogen production based on water electrolysis in Japan. The power could be obtainable by substituting hydropower and/or fossil fueled power supplying peak and middle demands with nuclear power. The transportation cost of the off-peak power was evaluated to be 1.42 yen/kWh when an electrolyser receives the off-peak power from a 6kV distribution wire. Marked reduction of the cost was caused by the increase of the capacity factor. (author)

  4. Modelling the impact of retention-detention units on sewer surcharge and peak and annual runoff reduction.

    Science.gov (United States)

    Locatelli, Luca; Gabriel, Søren; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Taylor, Heidi; Bockhorn, Britta; Larsen, Hauge; Kjølby, Morten Just; Blicher, Anne Steensen; Binning, Philip John

    2015-01-01

    Stormwater management using water sensitive urban design is expected to be part of future drainage systems. This paper aims to model the combination of local retention units, such as soakaways, with subsurface detention units. Soakaways are employed to reduce (by storage and infiltration) peak and volume stormwater runoff; however, large retention volumes are required for a significant peak reduction. Peak runoff can therefore be handled by combining detention units with soakaways. This paper models the impact of retrofitting retention-detention units for an existing urbanized catchment in Denmark. The impact of retrofitting a retention-detention unit of 3.3 m³/100 m² (volume/impervious area) was simulated for a small catchment in Copenhagen using MIKE URBAN. The retention-detention unit was shown to prevent flooding from the sewer for a 10-year rainfall event. Statistical analysis of continuous simulations covering 22 years showed that annual stormwater runoff was reduced by 68-87%, and that the retention volume was on average 53% full at the beginning of rain events. The effect of different retention-detention volume combinations was simulated, and results showed that allocating 20-40% of a soakaway volume to detention would significantly increase peak runoff reduction with a small reduction in the annual runoff.

  5. Exploring demand reduction through design, durability and 'usership' of fashion clothes.

    Science.gov (United States)

    Fletcher, Kate

    2017-06-13

    Global planetary boundaries confer limits to production and consumption of material goods. They also confer an obligation to experiment, as individuals and collectively as society, with less-materially-intensive, but no less exuberant, ways of living. This paper takes up this mantle and explores materials demand reduction through a focus on design, fashion garments and the universal, everyday activity of wearing clothes. It takes as its starting point the design of longer-lasting products, a widely favoured strategy for increasing materials efficiency and reducing materials demand in many sectors, including fashion. Drawing on scholarship in the field of design for sustainability and ethnographic research conducted in 16 locations in nine countries about already-existing practices of intensive use and maintenance of clothing, this paper critiques the effectiveness of durability strategies to reduce the amount of materials used. It argues for an update in the familiar preference within sustainability debates for the 'techno-fix' to explore instead resourceful use of materials as emerging from human actions and relationships with material goods. It suggests that, while facilitated by design, technology and engineering, opportunities to reduce materials demand begin in individual and collective practices, which, in turn, have dynamic implications for use of materials.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).

  6. A grid-tied PV system for commercial load and peak load reduction: South African case study

    CSIR Research Space (South Africa)

    Senatla, Mamahloko

    2017-08-01

    Full Text Available -peak periods could be useful in reducing peak demand [1], battery life (if cycled every day), efficiency and cost may limit its usage. Also the TOU charges may not be high enough to justify the added expense of adding battery storage. Most of the research... work in various research communities analyse financial benefits for residential customers as opposed to commercial and industrial customers [2] [3]. For instance, the usage pattern of residential customers collected from a pilot project in India...

  7. Introducing a demand-based electricity distribution tariff in the residential sector: Demand response and customer perception

    International Nuclear Information System (INIS)

    Bartusch, Cajsa; Wallin, Fredrik; Odlare, Monica; Vassileva, Iana; Wester, Lars

    2011-01-01

    Increased demand response is essential to fully exploit the Swedish power system, which in turn is an absolute prerequisite for meeting political goals related to energy efficiency and climate change. Demand response programs are, nonetheless, still exceptional in the residential sector of the Swedish electricity market, one contributory factor being lack of knowledge about the extent of the potential gains. In light of these circumstances, this empirical study set out with the intention of estimating the scope of households' response to, and assessing customers' perception of, a demand-based time-of-use electricity distribution tariff. The results show that households as a whole have a fairly high opinion of the demand-based tariff and act on its intrinsic price signals by decreasing peak demand in peak periods and shifting electricity use from peak to off-peak periods. - Highlights: → Households are sympathetic to demand-based tariffs, seeing as they relate to environmental issues. → Households adjust their electricity use to the price signals of demand-based tariffs. → Demand-based tariffs lead to a shift in electricity use from peak to off-peak hours. → Demand-based tariffs lead to a decrease in maximum demand in peak periods. → Magnitude of these effects increases over time.

  8. Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies

    Directory of Open Access Journals (Sweden)

    Paula M. Esquivias

    2012-07-01

    Full Text Available This work evaluates the potential for the reduction of energy demand in residential buildings by acting on the exterior envelope, both in newly constructed buildings and in the retrofitting of existing stock. It focuses on analysing social housing buildings in Mediterranean areas and on quantifying the scope of that reduction in the application of different envelope design strategies, with the purpose of prioritizing their application based on their energy efficiency. The analyses and quantifications were made by means of the generation of energy models with the TRNSYS tool for simple or combined solutions, identifying possible potentials for reduction of the energy demand from 20% to 25%, basically by acting on the windows. The case study was a newly built social housing building of a closed block type located in Seville (Spain. Its constructive techniques and the insulation level of its envelope are standardized for current buildings widespread across Mediterranean Europe.

  9. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States.

    Science.gov (United States)

    Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H

    2017-02-21

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment ]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today's technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual.

  10. Including dynamic CO2 intensity with demand response

    International Nuclear Information System (INIS)

    Stoll, Pia; Brandt, Nils; Nordström, Lars

    2014-01-01

    Hourly demand response tariffs with the intention of reducing or shifting loads during peak demand hours are being intensively discussed among policy-makers, researchers and executives of future electricity systems. Demand response rates have still low customer acceptance, apparently because the consumption habits requires stronger incentive to change than any proposed financial incentive. An hourly CO 2 intensity signal could give customers an extra environmental motivation to shift or reduce loads during peak hours, as it would enable co-optimisation of electricity consumption costs and carbon emissions reductions. In this study, we calculated the hourly dynamic CO 2 signal and applied the calculation to hourly electricity market data in Great Britain, Ontario and Sweden. This provided a novel understanding of the relationships between hourly electricity generation mix composition, electricity price and electricity mix CO 2 intensity. Load shifts from high-price hours resulted in carbon emission reductions for electricity generation mixes where price and CO 2 intensity were positively correlated. The reduction can be further improved if the shift is optimised using both price and CO 2 intensity. The analysis also indicated that an hourly CO 2 intensity signal can help avoid carbon emissions increases for mixes with a negative correlation between electricity price and CO 2 intensity. - Highlights: • We present a formula for calculating hybrid dynamic CO 2 intensity of electricity generation mixes. • We apply the dynamic CO 2 Intensity on hourly electricity market prices and generation units for Great Britain, Ontario and Sweden. • We calculate the spearman correlation between hourly electricity market price and dynamic CO 2 intensity for Great Britain, Ontario and Sweden. • We calculate carbon footprint of shifting 1 kWh load daily from on-peak hours to off-peak hours using the dynamic CO 2 intensity. • We conclude that using dynamic CO 2 intensity for

  11. Peak loads and network investments in sustainable energy transitions

    Energy Technology Data Exchange (ETDEWEB)

    Blokhuis, Erik, E-mail: e.g.j.blokhuis@tue.nl [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands); Brouwers, Bart [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands); Putten, Eric van der [Endinet, Gas and Electricity Network Operations, P.O. Box 2005, 5600CA Eindhoven (Netherlands); Schaefer, Wim [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands)

    2011-10-15

    Current energy distribution networks are often not equipped for facilitating expected sustainable transitions. Major concerns for future electricity networks are the possibility of peak load increases and the expected growth of decentralized energy generation. In this article, we focus on peak load increases; the effects of possible future developments on peak loads are studied, together with the consequences for the network. The city of Eindhoven (the Netherlands) is used as reference city, for which a scenario is developed in which the assumed future developments adversely influence the maximum peak loads on the network. In this scenario, the total electricity peak load in Eindhoven is expected to increase from 198 MVA in 2009 to 591-633 MVA in 2040. The necessary investments for facilitating the expected increased peak loads are estimated at 305-375 million Euros. Based upon these projections, it is advocated that - contrary to current Dutch policy - choices regarding sustainable transitions should be made from the viewpoint of integral energy systems, evaluating economic implications of changes to generation, grid development, and consumption. Recently applied and finished policies on energy demand reduction showed to be effective; however, additional and connecting policies on energy generation and distribution should be considered on short term. - Highlights: > Sustainable energy transitions can result in major electricity peak load increases. > Introduction of heat pumps and electrical vehicles requires network expansion. > Under worst case assumptions, peak loads in Eindhoven increase with 200% until 2040. > The necessary investment for facilitating this 2040 peak demand is Euro 305-375 million. > Future policy choices should be made from the viewpoint of the integral energy system.

  12. Peak loads and network investments in sustainable energy transitions

    International Nuclear Information System (INIS)

    Blokhuis, Erik; Brouwers, Bart; Putten, Eric van der; Schaefer, Wim

    2011-01-01

    Current energy distribution networks are often not equipped for facilitating expected sustainable transitions. Major concerns for future electricity networks are the possibility of peak load increases and the expected growth of decentralized energy generation. In this article, we focus on peak load increases; the effects of possible future developments on peak loads are studied, together with the consequences for the network. The city of Eindhoven (the Netherlands) is used as reference city, for which a scenario is developed in which the assumed future developments adversely influence the maximum peak loads on the network. In this scenario, the total electricity peak load in Eindhoven is expected to increase from 198 MVA in 2009 to 591-633 MVA in 2040. The necessary investments for facilitating the expected increased peak loads are estimated at 305-375 million Euros. Based upon these projections, it is advocated that - contrary to current Dutch policy - choices regarding sustainable transitions should be made from the viewpoint of integral energy systems, evaluating economic implications of changes to generation, grid development, and consumption. Recently applied and finished policies on energy demand reduction showed to be effective; however, additional and connecting policies on energy generation and distribution should be considered on short term. - Highlights: → Sustainable energy transitions can result in major electricity peak load increases. → Introduction of heat pumps and electrical vehicles requires network expansion. → Under worst case assumptions, peak loads in Eindhoven increase with 200% until 2040. → The necessary investment for facilitating this 2040 peak demand is Euro 305-375 million. → Future policy choices should be made from the viewpoint of the integral energy system.

  13. Chapter 10: Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stern, Frank [Navigant, Boulder, CO (United States); Spencer, Justin [Navigant, Boulder, CO (United States)

    2017-10-03

    Savings from electric energy efficiency measures and programs are often expressed in terms of annual energy and presented as kilowatt-hours per year (kWh/year). However, for a full assessment of the value of these savings, it is usually necessary to consider the measure or program's impact on peak demand as well as time-differentiated energy savings. This cross-cutting protocol describes methods for estimating the peak demand and time-differentiated energy impacts of measures implemented through energy efficiency programs.

  14. Addressing Energy Demand through Demand Response. International Experiences and Practices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ni, Chun Chun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dudley, Junqiao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Martin, Phil [Enernoc, Inc., Boston, MA (United States); Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  15. US EPA's photovoltaic demand-side management project. Report for September 1992-July 1993

    International Nuclear Information System (INIS)

    Kern, E.C.; Spiegel, R.J.

    1993-01-01

    The paper discusses an investigation of how photovoltaics (PV) may be used as both a pollution-mitigating energy replacement for fossil fuels and a demand-side management (DSM) option to reduce peak electrical demands of commercial and residential buildings. Eleven electric utilities are partners in this first nationwide demonstration of PV DSM. The approach is to install and monitor standardized PV systems in diverse geographic areas with varying solar energy resource and electric power demand, production, and cost conditions. The systems are being monitored for a year to record direct and diffuse irradiance, ambient air temperature, PV power generation, and building loads. Utilities are providing the electric system operations data needed to determine the pollution mitigation and peak demand reduction that can result from the PV electrical power generation

  16. Impact of energy storage in buildings on electricity demand side management

    International Nuclear Information System (INIS)

    Qureshi, Waqar A.; Nair, Nirmal-Kumar C.; Farid, Mohammad M.

    2011-01-01

    Research highlights: → Phase change material (PCM) application for space heating has been implemented and assessed for built environment. → Real-Time Pricing (RTP) is assessed as tool to implement Demand Side Management programs effectively. → Two buildings, with and without PCM, have been compared for space heating using RTP in functional electricity market. → PCM found to offer peak load shifting, energy conservation, and reduction in price of electricity. -- Abstract: This paper assesses impact of using phase change materials (PCM) in buildings to leverage its thermal energy storage capability. The emphasis is from an electricity demand side perspective with case studies that incorporates wholesale electricity market data of New Zealand. The results presented in this paper show that for space heating application significant advantages could be obtained using PCM built structures. These positive impacts include peak load shifting, energy conservation and reduction in peak demand for network line companies and potential reduction in electricity consumption and savings for residential customers. This paper uses a testing facility that consists of two identically designed and shaped offices built at Tamaki Campus location of the University of Auckland, New Zealand. The walls and ceilings of one office are finished with ordinary gypsum boards while the interior of the other office is finished with PCM impregnated gypsum boards. Controlled heating facility is provided in both the offices for maintaining temperature within the range of human comfort. This facility is equipped with advanced data acquisition equipment for data monitoring and archiving both locally within the offices and also remotely. Through actual observations and analysis this paper demonstrates two major impacts of DSM. First, the application of phase change material (PCM) in building environment enabling efficient thermal storage to achieve some reduction in the overall electrical energy

  17. Reducing Demand Charges and Onsite Generation Variability Using Behind-the-Meter Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Bishnu P.; Myers, Kurt S.; Bush, Jason W.

    2017-04-01

    Electric utilities in the United States are increasingly employing demand charges and/or real-time pricing. This directive is bringing potential opportunities in deploying behindthe-meter energy storage (BMES) systems for various grid functionalities. This study quantifies techno-economic benefits of BMES in reducing demand charge and smoothing load/generation intermittencies, and determines how those benefits vary with onsite distributed photovoltaic. We proposed a two-stage control algorithm, whereby the first stage proactively determines costoptimal BMES configuration for reducing peak-demands and demand charges, and the second stage adaptively compensates intermittent generations and short load spikes that may otherwise increase the demand charges. The performance of the proposed algorithm is evaluated through a 24 hours time sweep simulation performed using data from smart microgrid testbed at Idaho National Laboratory (INL). The simulation results demonstrated that this research provides a simple but effective solution for peak shaving, demand charge reductions, and smoothing onsite PV variability.

  18. Predictors of the nicotine reinforcement threshold, compensation, and elasticity of demand in a rodent model of nicotine reduction policy.

    Science.gov (United States)

    Grebenstein, Patricia E; Burroughs, Danielle; Roiko, Samuel A; Pentel, Paul R; LeSage, Mark G

    2015-06-01

    The FDA is considering reducing the nicotine content in tobacco products as a population-based strategy to reduce tobacco addiction. Research is needed to determine the threshold level of nicotine needed to maintain smoking and the extent of compensatory smoking that could occur during nicotine reduction. Sources of variability in these measures across sub-populations also need to be identified so that policies can take into account the risks and benefits of nicotine reduction in vulnerable populations. The present study examined these issues in a rodent nicotine self-administration model of nicotine reduction policy to characterize individual differences in nicotine reinforcement thresholds, degree of compensation, and elasticity of demand during progressive reduction of the unit nicotine dose. The ability of individual differences in baseline nicotine intake and nicotine pharmacokinetics to predict responses to dose reduction was also examined. Considerable variability in the reinforcement threshold, compensation, and elasticity of demand was evident. High baseline nicotine intake was not correlated with the reinforcement threshold, but predicted less compensation and less elastic demand. Higher nicotine clearance predicted low reinforcement thresholds, greater compensation, and less elastic demand. Less elastic demand also predicted lower reinforcement thresholds. These findings suggest that baseline nicotine intake, nicotine clearance, and the essential value of nicotine (i.e. elasticity of demand) moderate the effects of progressive nicotine reduction in rats and warrant further study in humans. They also suggest that smokers with fast nicotine metabolism may be more vulnerable to the risks of nicotine reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Predictors of the nicotine reinforcement threshold, compensation, and elasticity of demand in a rodent model of nicotine reduction policy*

    Science.gov (United States)

    Grebenstein, Patricia E.; Burroughs, Danielle; Roiko, Samuel A.; Pentel, Paul R.; LeSage, Mark G.

    2015-01-01

    Background The FDA is considering reducing the nicotine content in tobacco products as a population-based strategy to reduce tobacco addiction. Research is needed to determine the threshold level of nicotine needed to maintain smoking and the extent of compensatory smoking that could occur during nicotine reduction. Sources of variability in these measures across sub-populations also need to be identified so that policies can take into account the risks and benefits of nicotine reduction in vulnerable populations. Methods The present study examined these issues in a rodent nicotine self- administration model of nicotine reduction policy to characterize individual differences in nicotine reinforcement thresholds, degree of compensation, and elasticity of demand during progressive reduction of the unit nicotine dose. The ability of individual differences in baseline nicotine intake and nicotine pharmacokinetics to predict responses to dose reduction was also examined. Results Considerable variability in the reinforcement threshold, compensation, and elasticity of demand was evident. High baseline nicotine intake was not correlated with the reinforcement threshold, but predicted less compensation and less elastic demand. Higher nicotine clearance predicted low reinforcement thresholds, greater compensation, and less elastic demand. Less elastic demand also predicted lower reinforcement thresholds. Conclusions These findings suggest that baseline nicotine intake, nicotine clearance, and the essential value of nicotine (i.e. elasticity of demand) moderate the effects of progressive nicotine reduction in rats and warrant further study in humans. They also suggest that smokers with fast nicotine metabolism may be more vulnerable to the risks of nicotine reduction. PMID:25891231

  20. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline.

    Science.gov (United States)

    Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M

    2013-07-16

    Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.

  1. Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast

    International Nuclear Information System (INIS)

    Shin, Jung Ho; Roh, Myung Sub

    2013-01-01

    The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3 rd through 5 th BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6 th BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3 th , 4 th , 5 th entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then compensating the shortage by

  2. Demand response in energy markets

    International Nuclear Information System (INIS)

    Skytte, K.; Birk Mortensen, J.

    2004-11-01

    Improving the ability of energy demand to respond to wholesale prices during critical periods of the spot market can reduce the total costs of reliably meeting demand, and the level and volatility of the prices. This fact has lead to a growing interest in the short-run demand response. There has especially been a growing interest in the electricity market where peak-load periods with high spot prices and occasional local blackouts have recently been seen. Market concentration at the supply side can result in even higher peak-load prices. Demand response by shifting demand from peak to base-load periods can counteract the market power in the peak-load. However, demand response has so far been modest since the current short-term price elasticity seems to be small. This is also the case for related markets, for example, green certificates where the demand is determined as a percentage of the power demand, or for heat and natural gas markets. This raises a number of interesting research issues: 1) Demand response in different energy markets, 2) Estimation of price elasticity and flexibility, 3) Stimulation of demand response, 4) Regulation, policy and modelling aspects, 5) Demand response and market power at the supply side, 6) Energy security of supply, 7) Demand response in forward, spot, ancillary service, balance and capacity markets, 8) Demand response in deviated markets, e.g., emission, futures, and green certificate markets, 9) Value of increased demand response, 10) Flexible households. (BA)

  3. Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3{sup rd} through 5{sup th} BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6{sup th} BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3{sup th}, 4{sup th}, 5{sup th} entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then

  4. Province gets serious about demand management

    International Nuclear Information System (INIS)

    Anon

    2003-01-01

    Directives from the Minister to the Ontario Energy Board to review options for demand-side management and demand reduction activities, and discussion papers describing the policy framework needed to implement demand management, are indications of renewed interest by the provincial government in demand-side management of Ontario's electric power supply. This renewed interest comes on the hills of a 5.5 per cent increase in electricity use, a 33 per cent increase in imports, and consumption records broken in 10 of the last 12 months. A 117-page study was released in April by Navigant Consulting, entitled 'Demand response blueprint for Ontario' which estimates that if the Ontario market had 250 MW of additional demand response, customers providing the demand response would have saved $20 million by reducing their demand when HOEP was greater than $120/MWh, while other customers would have saved $170 million due to lower HOEP, and would have enjoyed greater reliability as a result of the increase in reserve margins. Other than price signals to induce customers to save, the Navigant report suggest paying customers not to consume during peak periods. The report estimates that such a policy could generate a total demand response of 350 MW and a $235 million reduction in revenue to generators. The Navigan report also includes a large number of detailed analysis and recommendations. One among them is for the extensive use of interval meters for customers with loads over 200 kW. The report tends to be critical of the recent price freeze ordered by the Ontario government, claiming that the freeze could increase consumption, making prices more volatile and increasing the cost to the government even more. Successful demand response programs from California, New York and the New England states are cited as examples for Ontario to emulate

  5. Managing peak loads in energy grids: Comparative economic analysis

    International Nuclear Information System (INIS)

    Zhuk, A.; Zeigarnik, Yu.; Buzoverov, E.; Sheindlin, A.

    2016-01-01

    One of the key issues in modern energy technology is managing the imbalance between the generated power and the load, particularly during times of peak demand. The increasing use of renewable energy sources makes this problem even more acute. Various existing technologies, including stationary battery energy storage systems (BESS), can be employed to provide additional power during peak demand times. In the future, integration of on-board batteries of the growing fleet of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) into the grid can provide power during peak demand hours (vehicle-to-grid, or V2G technology). This work provides cost estimates of managing peak energy demands using traditional technologies, such as maneuverable power plants, conventional hydroelectric, pumped storage plants and peaker generators, as well as BESS and V2G technologies. The derived estimates provide both per kWh and kW year of energy supplied to the grid. The analysis demonstrates that the use of battery storage is economically justified for short peak demand periods of <1 h. For longer durations, the most suitable technology remains the use of maneuverable steam gas power plants, gas turbine,reciprocating gas engine peaker generators, conventional hydroelectric, pumped storage plants. - Highlights: • Cost of managing peak energy demand employing different technologies are estimated. • Traditional technologies, stationary battery storage and V2G are compared. • Battery storage is economically justified for peak demand periods of <1 h. • V2G appears to have better efficiency than stationary battery storage in low voltage power grids.

  6. Distributed Demand Side Management with Battery Storage for Smart Home Energy Scheduling

    Directory of Open Access Journals (Sweden)

    Omowunmi Mary Longe

    2017-01-01

    Full Text Available The role of Demand Side Management (DSM with Distributed Energy Storage (DES has been gaining attention in recent studies due to the impact of the latter on energy management in the smart grid. In this work, an Energy Scheduling and Distributed Storage (ESDS algorithm is proposed to be installed into the smart meters of Time-of-Use (TOU pricing consumers possessing in-home energy storage devices. Source of energy supply to the smart home appliances was optimized between the utility grid and the DES device depending on energy tariff and consumer demand satisfaction information. This is to minimize consumer energy expenditure and maximize demand satisfaction simultaneously. The ESDS algorithm was found to offer consumer-friendly and utility-friendly enhancements to the DSM program such as energy, financial, and investment savings, reduced/eliminated consumer dissatisfaction even at peak periods, Peak-to-Average-Ratio (PAR demand reduction, grid energy sustainability, socio-economic benefits, and other associated benefits such as environmental-friendliness.

  7. Demand oriented biogas production to cover peak load; Bedarfsorientierte Biogasproduktion zur Erzeugung von Spitzenlaststrom. Weiterentwicklung der Biogastechnologie von Grundlast- zur Regelenergieerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Wallmann, Rainer; Ganagin, Waldemar; Loewe, Kirsten; Loewen, Achim [HAWK - Hochschule fuer angewandte Wissenschaft und Kunst, Fachhochschule Hildesheim, Holzminden, Goettingen (Germany)

    2010-08-15

    In contrast to solar and wind energy, biogas production is independent from environmental influences. The better part of biogas plants provide almost constant power and, thus, cover base load. However, it is possible to match biogas production with changing demand in different ways. Besides installing sufficiently dimensioned storages, a flexible generation of gas is possible by adjusting the digestion processes and installing appropriate control technologies. This enables flexible biogas production oriented towards customer demand. Peak load energy can be produced and marketed even without the advantage of reimbursement guaranteed by the renewable energy law. The Department of Sustainable Energy and Environmental Technology NEUTec at the University of Applied Science and Arts HAWK in Goettingen has carried out a research project to prove this concept of flexible biogas production. Operating a two-stage digestion plant, the capability to cover peak load was investigated by digesting energyrich liquid substrate in fixed bed reactors that represented the methanogenesis stage. These reactors showed extreme stability and flexibility. The promising results let expect a great potential of fixed bed reactors for on-demand biogas production from liquid substrates. In addition, with up to 80 % very high methane contents could be achieved in the produced gas. (orig.)

  8. Evaluation of automated residential demand response with flat and dynamic pricing

    International Nuclear Information System (INIS)

    Swisher, Joel; Wang, Kitty; Stewart, Stewart

    2005-01-01

    This paper reviews the performance of two recent automated load management programs for residential customers of electric utilities in two American states. Both pilot programs have been run with about 200 participant houses each, and both programs have control populations of similar customers without the technology or program treatment. In both cases, the technology used in the pilot is GoodWatts, an advanced, two-way, real-time, comprehensive home energy management system. The purpose of each pilot is to determine the household kW reduction in coincident peak electric load from the energy management technology. Nevada Power has conducted a pilot program for Air-Conditioning Load Management (ACLM), in which customers are sent an electronic curtailment signal for three-hour intervals during times of maximum peak demand. The participating customers receive an annual incentive payment, but otherwise they are on a conventional utility tariff. In California, three major utilities are jointly conducting a pilot demonstration of an Automated Demand Response System (ADRS). Customers are on a time-of-use (ToU) tariff, which includes a critical peak pricing (CPP) element. During times of maximum peak demand, customers are sent an electronic price signal that is three times higher than the normal on-peak price. Houses with the automated GoodWatts technology reduced their demand in both the ACLM and the ADRS programs by about 50% consistently across the summer curtailment or super peak events, relative to homes without the technology or any load management program or tariff in place. The absolute savings were greater in the ACLM program, due to the higher baseline air conditioning loads in the hotter Las Vegas climate. The results suggest that either automated technology or dynamic pricing can deliver significant demand response in low-consumption houses. However, for high-consumption houses, automated technology can reduce load by a greater absolute kWh difference. Targeting

  9. Peak-locking reduction for particle image velocimetry

    International Nuclear Information System (INIS)

    Michaelis, Dirk; Wieneke, Bernhard; Neal, Douglas R

    2016-01-01

    A parametric study of the factors contributing to peak-locking, a known bias error source in particle image velocimetry (PIV), is conducted using synthetic data that are processed with a state-of-the-art PIV algorithm. The investigated parameters include: particle image diameter, image interpolation techniques, the effect of asymmetric versus symmetric window deformation, number of passes and the interrogation window size. Some of these parameters are found to have a profound effect on the magnitude of the peak-locking error. The effects for specific PIV cameras are also studied experimentally using a precision turntable to generate a known rotating velocity field. Image time series recorded using this experiment show a linear range of pixel and sub-pixel shifts ranging from 0 to  ±4 pixels. Deviations in the constant vorticity field (ω z ) reveal how peak-locking can be affected systematically both by varying parameters of the detection system such as the focal distance and f -number, and also by varying the settings of the PIV analysis. A new a priori technique for reducing the bias errors associated with peak-locking in PIV is introduced using an optical diffuser to avoid undersampled particle images during the recording of the raw images. This technique is evaluated against other a priori approaches using experimental data and is shown to perform favorably. Finally, a new a posteriori anti peak-locking filter (APLF) is developed and investigated, which shows promising results for both synthetic data and real measurements for very small particle image sizes. (paper)

  10. Ontario demand response scenarios

    International Nuclear Information System (INIS)

    Rowlands, I.H.

    2005-09-01

    Strategies for demand management in Ontario were examined via 2 scenarios for a commercial/institutional building with a normal summertime peak load of 300 kW between 14:00 and 18:00 during a period of high electricity demand and high electricity prices. The first scenario involved the deployment of a 150 kW on-site generator fuelled by either diesel or natural gas. The second scenario involved curtailing load by 60 kW during the same periods. Costs and benefits of both scenarios were evaluated for 3 groups: consumers, system operators and society. Benefits included electricity cost savings, deferred transmission capacity development, lower system prices for electricity, as well as environmental changes, economic development, and a greater sense of corporate social responsibility. It was noted that while significant benefits were observed for all 3 groups, they were not substantial enough to encourage action, as the savings arising from deferred generation capacity development do not accrue to individual players. The largest potential benefit was identified as lower prices, spread across all users of electricity in Ontario. It was recommended that representative bodies cooperate so that the system-wide benefits can be reaped. It was noted that if 10 municipal utilities were able to have 250 commercial or institutional customers engaged in distributed response, then a total peak demand reduction of 375 MW could be achieved, representing more than 25 per cent of Ontario's target for energy conservation. It was concluded that demand response often involves the investment of capital and new on-site procedures, which may affect reactions to various incentives. 78 refs., 10 tabs., 5 figs

  11. Practical load management - Peak shaving using photovoltaics

    International Nuclear Information System (INIS)

    Berger, W.

    2009-01-01

    This article takes a look at how photovoltaic (PV) power generation can be used in a practical way to meet peak demands for electricity. Advice is provided on how photovoltaics can provide peak load 'shaving' through the correlation between its production and the peak loads encountered during the day. The situation regarding feed-in tariffs in Italy is discussed, as are further examples of installations in Germany and Austria. Further, an initiative of the American Southern California Edison utility is discussed which foresees the installation of large PV plant on the roofs of commercial premises to provide local generation of peak energy and thus relieve demands on their power transportation network.

  12. Optimal stochastic short-term thermal and electrical operation of fuel cell/photovoltaic/battery/grid hybrid energy system in the presence of demand response program

    International Nuclear Information System (INIS)

    Majidi, Majid; Nojavan, Sayyad; Zare, Kazem

    2017-01-01

    Highlights: • On-grid photovoltaic/battery/fuel cell system is considered as hybrid system. • Thermal and electrical operation of hybrid energy system is studied. • Hybrid energy system is used to reduce dependency on upstream grid for load serving. • Demand response program is proposed to manage the electrical load. • Demand response program is proposed to reduce hybrid energy system’s operation cost. - Abstract: In this paper, cost-efficient operation problem of photovoltaic/battery/fuel cell hybrid energy system has been evaluated in the presence of demand response program. Each load curve has off-peak, mid and peak time periods in which the energy prices are different. Demand response program transfers some amount of load from peak periods to other periods to flatten the load curve and minimize total cost. So, the main goal is to meet the energy demand and propose a cost-efficient approach to minimize system’s total cost including system’s electrical cost and thermal cost and the revenue from exporting power to the upstream grid. A battery has been utilized as an electrical energy storage system and a heat storage tank is used as a thermal energy storage system to save energy in off-peak and mid-peak hours and then supply load in peak hours which leads to reduction of cost. The proposed cost-efficient operation problem of photovoltaic/battery/fuel cell hybrid energy system is modeled by a mixed-integer linear program and solved by General algebraic modeling system optimization software under CPLEX solver. Two case studies are investigated to show the effects of demand response program on reduction of total cost.

  13. Home Network Technologies and Automating Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    McParland, Charles

    2009-12-01

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively

  14. Optimal real time cost-benefit based demand response with intermittent resources

    International Nuclear Information System (INIS)

    Zareen, N.; Mustafa, M.W.; Sultana, U.; Nadia, R.; Khattak, M.A.

    2015-01-01

    Ever-increasing price of conventional energy resources and related environmental concern enforced to explore alternative energy sources. Inherent uncertainty of power generation and demand being strongly influenced by the electricity market has posed severe challenges for DRPs (Demand Response Programs). Definitely, the success of such uncertain energy systems under new market structures is critically decided by the advancement of innovative technical and financial tools. Recent exponential growth of DG (distributed generations) demanded both the grid reliability and financial cost–benefits analysis for deregulated electricity market stakeholders. Based on the SGT (signaling game theory), the paper presents a novel user-aware demand-management approach where the price are colligated with grid condition uncertainties to manage the peak residential loads. The degree of information disturbances are considered as a key factor for evaluating electricity bidding mechanisms in the presence of independent multi-generation resources and price-elastic demand. A correlation between the cost–benefit price and variable reliability of grid is established under uncertain generation and demand conditions. Impacts of the strategies on load shape, benefit of customers and the reduction of energy consumption are inspected and compared with Time-of-Used based DRPs. Simulation results show that the proposed DRP can significantly reduce or even eliminate peak-hour energy consumption, leading to a substantial raise of revenues with 18% increase in the load reduction and a considerable improvement in system reliability is evidenced. - Highlights: • Proposed an optimal real time cost-benefit based demand response model. • Used signaling game theory for the information disturbances in deregulated market. • Introduced a correlation between the cost–benefit price and variable grid reliability. • Derive robust bidding strategies for utility/customers successful participation.

  15. Pay for load demand - electricity pricing with load demand component

    International Nuclear Information System (INIS)

    Pyrko, Jurek; Sernhed, Kerstin; Abaravicius, Juozas

    2003-01-01

    This publication is part of a project called Direct and Indirect Load Control in Buildings. Peak load problems have attracted considerable attention in Sweden during last three winters, caused by a significant decrease in available reserve power, which is a consequence of political decisions and liberalisation of the electricity market. A possible way to lower peak loads, avoiding electricity shortages and reducing electricity costs both for users and utilities, is to make customers experience the price difference during peak load periods and, in this way, become more aware of their energy consumption pattern and load demand. As of January 1st 2001, one of the Swedish energy utilities - Sollentuna Energi - operating in the Stockholm area, introduced a new electricity tariff with differentiated grid fees based on a mean value of the peak load every month. This tariff was introduced for all residential customers in the service area. The objective of this study is to investigate the extent to which a Load Demand Component, included in electricity pricing, can influence energy use and load demand in residential buildings. What are the benefits and disadvantages for customers and utilities? This paper investigates the impact of the new tariff on the utility and different types of typical residential customers, making comparisons with previous tariff. Keywords Load demand, electricity pricing, tariff, residential customers, energy behaviour

  16. Participation through Automation: Fully Automated Critical PeakPricing in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Kiliccote,Sila; Linkugel, Eric

    2006-06-20

    California electric utilities have been exploring the use of dynamic critical peak prices (CPP) and other demand response programs to help reduce peaks in customer electric loads. CPP is a tariff design to promote demand response. Levels of automation in DR can be defined as follows: Manual Demand Response involves a potentially labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. They refer to this as Auto-DR. This paper describes the development, testing, and results from automated CPP (Auto-CPP) as part of a utility project in California. The paper presents the project description and test methodology. This is followed by a discussion of Auto-DR strategies used in the field test buildings. They present a sample Auto-CPP load shape case study, and a selection of the Auto-CPP response data from September 29, 2005. If all twelve sites reached their maximum saving simultaneously, a total of approximately 2 MW of DR is available from these twelve sites that represent about two million ft{sup 2}. The average DR was about half that value, at about 1 MW. These savings translate to about 0.5 to 1.0 W/ft{sup 2} of demand reduction. They are continuing field demonstrations and economic evaluations to pursue increasing penetrations of automated DR that has demonstrated ability to provide a valuable DR resource for California.

  17. Environmental impacts of public transport. Why peak-period travellers cause a greater environmental burden than off-peak travellers

    International Nuclear Information System (INIS)

    Rietveld, P.

    2002-01-01

    Given the difference between peak and off-peak occupancy rates in public transport, emissions per traveller kilometre are lower in the peak than in the off-peak period, whereas the opposite pattern is observed for cars. It is argued that it is much more fruitful to analyse environmental effects in marginal terms. This calls for a careful analysis of capacity management policies of public transport suppliers that are facing increased demand during both peak and off-peak periods. A detailed analysis of capacity management by the Netherlands Railways (NS) revealed that off-peak capacity supply is mainly dictated by the demand levels during the peak period. The analysis included the effects of increased frequency and increased vehicle size on environmental impacts, while environmental economies of vehicle size were also taken into account. The main conclusion is that the marginal environmental burden during the peak hours is much higher than is usually thought, whereas it is almost zero during the off-peak period. This implies a pattern that is the precise opposite of the average environmental burden. Thus, an analysis of environmental effects of public transport based on average performance would yield misleading conclusions [nl

  18. Data-Driven Optimization of Incentive-based Demand Response System with Uncertain Responses of Customers

    Directory of Open Access Journals (Sweden)

    Jimyung Kang

    2017-10-01

    Full Text Available Demand response is nowadays considered as another type of generator, beyond just a simple peak reduction mechanism. A demand response service provider (DRSP can, through its subcontracts with many energy customers, virtually generate electricity with actual load reduction. However, in this type of virtual generator, the amount of load reduction includes inevitable uncertainty, because it consists of a very large number of independent energy customers. While they may reduce energy today, they might not tomorrow. In this circumstance, a DSRP must choose a proper set of these uncertain customers to achieve the exact preferred amount of load curtailment. In this paper, the customer selection problem for a service provider that consists of uncertain responses of customers is defined and solved. The uncertainty of energy reduction is fully considered in the formulation with data-driven probability distribution modeling and stochastic programming technique. The proposed optimization method that utilizes only the observed load data provides a realistic and applicable solution to a demand response system. The performance of the proposed optimization is verified with real demand response event data in Korea, and the results show increased and stabilized performance from the service provider’s perspective.

  19. End-user comfort oriented day-ahead planning for responsive residential HVAC demand aggregation considering weather forecasts

    NARCIS (Netherlands)

    Erdinç, O.; Taşcikaraogυlu, A.; Paterakis, N.G.; Eren, Y.; Catalão, J.P.S.

    2017-01-01

    There is a remarkable potential for implementing demand response (DR) strategies for several purposes, such as peak load reduction, frequency regulation, etc., by using thermostatically controllable appliances. In this paper, an end-user comfort violation minimization oriented DR strategy for

  20. Refrigerated Warehouse Demand Response Strategy Guide

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Doug [VaCom Technologies, San Luis Obispo, CA (United States); Castillo, Rafael [VaCom Technologies, San Luis Obispo, CA (United States); Larson, Kyle [VaCom Technologies, San Luis Obispo, CA (United States); Dobbs, Brian [VaCom Technologies, San Luis Obispo, CA (United States); Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  1. Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving

    International Nuclear Information System (INIS)

    Zheng, Menglian; Meinrenken, Christoph J.; Lackner, Klaus S.

    2015-01-01

    Highlights: • Cost-effectiveness of building-based storage for peak shaving has hitherto not been well understood. • Several existing storage technologies are shown to provide cost-effective peak shaving. • Setting grid demand targets rather than hard demand limits improves economics. • Accounting for seasonal demand variations in storage dispatch strategy improves economics further. • Total-energy-throughput approach is used to determine storage lifetimes. - Abstract: Meeting time-varying peak demand poses a key challenge to the U.S. electricity system. Building-based electricity storage – to enable demand response (DR) without curtailing actual appliance usage – offers potential benefits of lower electricity production cost, higher grid reliability, and more flexibility to integrate renewables. DR tariffs are currently available in the U.S. but building-based storage is still underutilized due to insufficiently understood cost-effectiveness and dispatch strategies. Whether DR schemes can yield a profit for building operators (i.e., reduction in electricity bill that exceeds levelized storage cost) and which particular storage technology yields the highest profit is yet to be answered. This study aims to evaluate the economics of providing peak shaving DR under a realistic tariff (Con Edison, New York), using a range of storage technologies (conventional and advanced batteries, flywheel, magnetic storage, pumped hydro, compressed air, and capacitors). An agent-based stochastic model is used to randomly generate appliance-level demand profiles for an average U.S. household. We first introduce a levelized storage cost model which is based on a total-energy-throughput lifetime. We then develop a storage dispatch strategy which optimizes the storage capacity and the demand limit on the grid. We find that (i) several storage technologies provide profitable DR; (ii) annual profit from such DR can range from 1% to 39% of the household’s non-DR electricity

  2. Electric peak power forecasting by year 2025

    International Nuclear Information System (INIS)

    Alsayegh, O.A.; Al-Matar, O.A.; Fairouz, F.A.; Al-Mulla Ali, A.

    2005-01-01

    Peak power demand in Kuwait up to the year 2025 was predicted using an artificial neural network (ANN) model. The aim of the study was to investigate the effect of air conditioning (A/C) units on long-term power demand. Five socio-economic factors were selected as inputs for the simulation: (1) gross national product, (2) population, (3) number of buildings, (4) imports of A/C units, and (5) index of industrial production. The study used socio-economic data from 1978 to 2000. Historical data of the first 10 years of the studied time period were used to train the ANN. The electrical network was then simulated to forecast peak power for the following 11 years. The calculated error was then used for years in which power consumption data were not available. The study demonstrated that average peak power rates increased by 4100 MW every 5 years. Various scenarios related to changes in population, the number of buildings, and the quantity of A/C units were then modelled to estimate long-term peak power demand. Results of the study demonstrated that population had the strongest impact on future power demand, while the number of buildings had the smallest impact. It was concluded that peak power growth can be controlled through the use of different immigration policies, increased A/C efficiency, and the use of vertical housing. 7 refs., 2 tabs., 6 figs

  3. Electric peak power forecasting by year 2025

    Energy Technology Data Exchange (ETDEWEB)

    Alsayegh, O.A.; Al-Matar, O.A.; Fairouz, F.A.; Al-Mulla Ali, A. [Kuwait Inst. for Scientific Research, Kuwait City (Kuwait). Div. of Environment and Urban Development

    2005-07-01

    Peak power demand in Kuwait up to the year 2025 was predicted using an artificial neural network (ANN) model. The aim of the study was to investigate the effect of air conditioning (A/C) units on long-term power demand. Five socio-economic factors were selected as inputs for the simulation: (1) gross national product, (2) population, (3) number of buildings, (4) imports of A/C units, and (5) index of industrial production. The study used socio-economic data from 1978 to 2000. Historical data of the first 10 years of the studied time period were used to train the ANN. The electrical network was then simulated to forecast peak power for the following 11 years. The calculated error was then used for years in which power consumption data were not available. The study demonstrated that average peak power rates increased by 4100 MW every 5 years. Various scenarios related to changes in population, the number of buildings, and the quantity of A/C units were then modelled to estimate long-term peak power demand. Results of the study demonstrated that population had the strongest impact on future power demand, while the number of buildings had the smallest impact. It was concluded that peak power growth can be controlled through the use of different immigration policies, increased A/C efficiency, and the use of vertical housing. 7 refs., 2 tabs., 6 figs.

  4. Sensitivity analysis of energy demands on performance of CCHP system

    International Nuclear Information System (INIS)

    Li, C.Z.; Shi, Y.M.; Huang, X.H.

    2008-01-01

    Sensitivity analysis of energy demands is carried out in this paper to study their influence on performance of CCHP system. Energy demand is a very important and complex factor in the optimization model of CCHP system. Average, uncertainty and historical peaks are adopted to describe energy demands. The mix-integer nonlinear programming model (MINLP) which can reflect the three aspects of energy demands is established. Numerical studies are carried out based on energy demands of a hotel and a hospital. The influence of average, uncertainty and peaks of energy demands on optimal facility scheme and economic advantages of CCHP system are investigated. The optimization results show that the optimal GT's capacity and economy of CCHP system mainly lie on the average energy demands. Sum of capacities of GB and HE is equal to historical heating demand peaks, and sum of capacities of AR and ER are equal to historical cooling demand peaks. Maximum of PG is sensitive with historical peaks of energy demands and not influenced by uncertainty of energy demands, while the corresponding influence on DH is adverse

  5. System dynamics model of Hubbert Peak for China's oil

    International Nuclear Information System (INIS)

    Tao Zaipu; Li Mingyu

    2007-01-01

    American geophysicist M. King Hubbert in 1956 first introduced a logistic equation to estimate the peak and lifetime production for oil of USA. Since then, a fierce debate ensued on the so-called Hubbert Peak, including also its methodology. This paper proposes to use the generic STELLA model to simulate Hubbert Peak, particularly for the Chinese oil production. This model is demonstrated as being robust. We used three scenarios to estimate the Chinese oil peak: according to scenario 1 of this model, the Hubbert Peak for China's crude oil production appears to be in 2019 with a value of 199.5 million tonnes, which is about 1.1 times the 2005 output. Before the peak comes, Chinese oil output will grow by about 1-2% annually, after the peak, however, the output will fall. By 2040, the annual production of Chinese crude oil would be equivalent to the level of 1990. During the coming 20 years, the crude oil demand of China will probably grow at the rate of 2-3% annually, and the gap between domestic supply and total demand may be more than half of this demand

  6. An analysis of China's CO2 emission peaking target and pathways

    Directory of Open Access Journals (Sweden)

    Jian-Kun He

    2014-12-01

    Full Text Available China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for China's resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the developed countries. It is a necessity that the non-fossil energy supplies be able to meet all the increased energy demand for achieving CO2 emission peaking. Given that China's potential GDP annual increasing rate will be more than 4%, and China's total energy demand will continue to increase by approximately 1.0%–1.5% annually around 2030, new and renewable energies will need to increase by 6%–8% annually to meet the desired CO2 emission peak. The share of new and renewable energies in China's total primary energy supply will be approximately 20% by 2030. At that time, the energy consumption elasticity will decrease to around 0.3, and the annual decrease in the rate of CO2 intensity will also be higher than 4% to ensure the sustained growth of GDP. To achieve the CO2 emission peaking target and substantially promote the low-carbon development transformation, China needs to actively promote an energy production and consumption revolution, the innovation of advanced energy technologies, the reform of the energy regulatory system and pricing mechanism, and especially the construction of a national carbon emission cap and trade system.

  7. Communication technologies for demand side management

    Energy Technology Data Exchange (ETDEWEB)

    Uuspaeae, P [VTT Energy, Espoo (Finland)

    1998-08-01

    The scope of this research is data communications for electric utilities, specifically for the purposes of Demand Side Management (DSM). Demand Side Management has the objective to change the customer`s end use of energy in a manner that benefits both the customer and the utility. For example, peak demand may be reduced, and the peak demand may be relocated to off peak periods. Thus additional investments in generation and network may be avoided. A number of Demand Side Management functions can be implemented if a communication system is available between the Electric Utility and the Customer. The total communication capacity that is needed, will depend on several factors, such as the functions that are chosen for DSM, and on the number and type of customers. Some functions may be handled with one-way communications, while some other functions need to have two-way communication

  8. Dynamic-range reduction by peak clipping or compression and its effects on phoneme perception in hearing-impaired listeners

    NARCIS (Netherlands)

    Dreschler, W. A.

    1988-01-01

    In this study, differences between dynamic-range reduction by peak clipping and single-channel compression for phoneme perception through conventional hearing aids have been investigated. The results from 16 hearing-impaired listeners show that compression limiting yields significantly better

  9. U.S. electric utility demand-side management 1995

    International Nuclear Information System (INIS)

    1997-01-01

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ''Profile: US Electric Utility Demand-Side Management'', presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs

  10. Demand response scheme based on lottery-like rebates

    KAUST Repository

    Schwartz, Galina A.; Tembine, Hamidou; Amin, Saurabh; Sastry, S. Shankar

    2014-01-01

    In this paper, we develop a novel mechanism for reducing volatility of residential demand for electricity. We construct a reward-based (rebate) mechanism that provides consumers with incentives to shift their demand to off-peak time. In contrast to most other mechanisms proposed in the literature, the key feature of our mechanism is its modest requirements on user preferences, i.e., it does not require exact knowledge of user responsiveness to rewards for shifting their demand from the peak to the off-peak time. Specifically, our mechanism utilizes a probabilistic reward structure for users who shift their demand to the off-peak time, and is robust to incomplete information about user demand and/or risk preferences. We approach the problem from the public good perspective, and demonstrate that the mechanism can be implemented via lottery-like schemes. Our mechanism permits to reduce the distribution losses, and thus improve efficiency of electricity distribution. Finally, the mechanism can be readily incorporated into the emerging demand response schemes (e.g., the time-of-day pricing, and critical peak pricing schemes), and has security and privacy-preserving properties.

  11. Demand response scheme based on lottery-like rebates

    KAUST Repository

    Schwartz, Galina A.

    2014-08-24

    In this paper, we develop a novel mechanism for reducing volatility of residential demand for electricity. We construct a reward-based (rebate) mechanism that provides consumers with incentives to shift their demand to off-peak time. In contrast to most other mechanisms proposed in the literature, the key feature of our mechanism is its modest requirements on user preferences, i.e., it does not require exact knowledge of user responsiveness to rewards for shifting their demand from the peak to the off-peak time. Specifically, our mechanism utilizes a probabilistic reward structure for users who shift their demand to the off-peak time, and is robust to incomplete information about user demand and/or risk preferences. We approach the problem from the public good perspective, and demonstrate that the mechanism can be implemented via lottery-like schemes. Our mechanism permits to reduce the distribution losses, and thus improve efficiency of electricity distribution. Finally, the mechanism can be readily incorporated into the emerging demand response schemes (e.g., the time-of-day pricing, and critical peak pricing schemes), and has security and privacy-preserving properties.

  12. Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data

    Directory of Open Access Journals (Sweden)

    Soon-Ryul Nam

    2013-12-01

    Full Text Available In this paper we propose a new method to evaluate the effects of nationwide conservation voltage reduction (CVR on peak-load shaving, using substation operating results management system (SOMAS data. Its evaluation is based on a national CVR factor, which is defined as the weighted average of CVR factors associated with all transformer banks and weighting coefficients are determined by the reconstructed loads corresponding to each transformer bank. To make use of the data resulting from nationwide CVR without installing additional measuring devices, we adopt a linearized static-load model with a linearizing parameter. SOMAS data are used to evaluate the effects of nationwide CVR on peak-load shaving in the Korean power system. Evaluation results show that the national CVR factor of the Korean power system has small values in the summer season and large values in the winter season. This means that the effect of nationwide CVR on peak-load shaving in the Korean power system presents stronger benefits during winter months.

  13. Demand response modeling considering Interruptible/Curtailable loads and capacity market programs

    International Nuclear Information System (INIS)

    Aalami, H.A.; Moghaddam, M. Parsa; Yousefi, G.R.

    2010-01-01

    Recently, a massive focus has been made on demand response (DR) programs, aimed to electricity price reduction, transmission lines congestion resolving, security enhancement and improvement of market liquidity. Basically, demand response programs are divided into two main categories namely, incentive-based programs and time-based programs. The focus of this paper is on Interruptible/Curtailable service (I/C) and capacity market programs (CAP), which are incentive-based demand response programs including penalties for customers in case of no responding to load reduction. First, by using the concept of price elasticity of demand and customer benefit function, economic model of above mentioned programs is developed. The proposed model helps the independent system operator (ISO) to identify and employ relevant DR program which both improves the characteristics of the load curve and also be welcome by customers. To evaluate the performance of the model, simulation study has been conducted using the load curve of the peak day of the Iranian power system grid in 2007. In the numerical study section, the impact of these programs on load shape and load level, and benefit of customers as well as reduction of energy consumption are shown. In addition, by using strategy success indices the results of simulation studies for different scenarios are analyzed and investigated for determination of the scenarios priority. (author)

  14. Financial treatment of demand management expenditures at Ontario Hydro

    International Nuclear Information System (INIS)

    Ariss, D.G.

    1990-01-01

    Ontario Hydro's demand side management (DSM) plan comprises reduction of load, load shifting, and peak shaving. It includes an accounting policy applied only to measures which reduce demand by the increase in the efficiency of electricity of utilization or by the shifting of load from peak periods to off-peak periods. In order to choose the pertinent periods for which the DSM expenditures should be recovered, the utility has considered three accounting options: expensing all DSM expenditures as incurred; deferring all DSM expenditures; or deferring only those DSM expenditures that meet specified criteria. Ontario Hydro has chosen the last option, since it is in conformity with generally accepted accounting principles. This option is based on the matching principle, under which costs and revenues that are linked to each other in a cause-and-effect relationship should be recognized in the same accounting period. It has also been judged advantageous to amortize the deferred expenses corresponding to each measure over appropriate periods. It has also been established that the amortization period should begin immediately after each measure has been put into operation. This accounting policy ensures that expenses relating to DSM are accounted in a pertinent and uniform manner. 6 refs

  15. Substantial reductions of input energy and peak power requirements in targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Pan, Y.L.

    1986-01-01

    Two ways of reducing the requirements of the heavy ion driver for inertial confinement fusion (ICF) target implosion are described. Compared to estimates of target gain not using these methods, the target input energy and peak power may be reduced by about a factor of two with the use of the hybrid-implosion concept. Another factor of two reduction in input energy may be obtained with the use of spin-polarized DT fuel in the ICF target

  16. A critical review of IEA's oil demand forecast for China

    International Nuclear Information System (INIS)

    Nel, Willem P.; Cooper, Christopher J.

    2008-01-01

    China has a rapidly growing economy with a rapidly increasing demand for oil. The International Energy Agency (IEA) investigated possible future oil demand scenarios for China in the 2006 World Energy Outlook. The debate on whether oil supplies will be constrained in the near future, because of limited new discoveries, raises the concern that the oil industry may not be able to produce sufficient oil to meet this demand. This paper examines the historical relationship between economic growth and oil consumption in a number of countries. Logistic curve characteristics are observed in the relationship between per capita economic activity and oil consumption. This research has determined that the minimum statistical (lower-bound) annual oil consumption for developed countries is 11 barrels per capita. Despite the increase reported in total energy efficiency, no developed country has been able to reduce oil consumption below this lower limit. Indeed, the IEA projections to 2030 for the OECD countries show no reduction in oil demand on a per capita basis. If this lower limit is applied to China, it is clear that the IEA projections for China are under-estimating the growth in demand for oil. This research has determined that this under-estimation could be as high as 10 million barrels per day by 2025. If proponents of Peak Oil such as Laherrere, Campbell and Deffeyes are correct about the predicted peak in oil production before 2020 then the implications of this reassessment of China's oil demand will have profound implications for mankind

  17. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  18. Power Efficiency Improvements through Peak-to-Average Power Ratio Reduction and Power Amplifier Linearization

    Directory of Open Access Journals (Sweden)

    Zhou G Tong

    2007-01-01

    Full Text Available Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM and code-division multiple access (CDMA, have high peak-to-average power ratios (PARs. A signal with a high PAR not only is vulnerable in the presence of nonlinear components such as power amplifiers (PAs, but also leads to low transmission power efficiency. Selected mapping (SLM and clipping are well-known PAR reduction techniques. We propose to combine SLM with threshold clipping and digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the effectiveness of the proposed approach.

  19. Ontario demand forecast from January 2004 to December 2013

    International Nuclear Information System (INIS)

    2003-01-01

    This document examined the demand forecast for electricity on the Independent Market Operator (IMO)-controlled grid in Ontario for the period 2004-2013. It serves as an assessment tool to determine whether existing and proposed generation and transmission facilities in the province will be sufficient to meet future electricity needs. Changes in methodology have been made to allow for an hourly peak versus the previously reported 20-minute peak value. Actual data through to the end of October 2002 was used to re-estimate energy demand. Compared to other developed countries, the outlook for the Canadian economy is optimistic. In addition, the economic forecast is better than that which formed the basis of the last ten-year forecast. Energy demand in the median growth scenario is increasing at an annual rate of 1.1 per cent rather than 0.9 per cent for the forecasted period of 2003-2012. The combination of a higher growth rate and a higher starting point results in a 2010 forecast of 168 TWh. It is expected that peak demand will grow faster than in the previous forecast. Summer peak demand averaging an annual growth of 1.3 per cent is forecasted for the period 2003-2012, with winter peak demand averaging a growth of 0.8 per cent. Under normal weather conditions, the electricity system is expected to peak in the summer of 2005 due to the continued demand for cooling load. However, under an extreme weather scenario, the system is already summer peaking. The improved economic outlook and higher starting point resulted in a higher forecast for energy. The electricity system is expected to winter peak during the first years of the forecasted period. The heating load is not expected to experience rapid growth in the next few years. 15 tabs., 14 figs

  20. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  1. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  2. Electricity demand forecasting techniques

    International Nuclear Information System (INIS)

    Gnanalingam, K.

    1994-01-01

    Electricity demand forecasting plays an important role in power generation. The two areas of data that have to be forecasted in a power system are peak demand which determines the capacity (MW) of the plant required and annual energy demand (GWH). Methods used in electricity demand forecasting include time trend analysis and econometric methods. In forecasting, identification of manpower demand, identification of key planning factors, decision on planning horizon, differentiation between prediction and projection (i.e. development of different scenarios) and choosing from different forecasting techniques are important

  3. UK Nuclear Workforce Demand

    International Nuclear Information System (INIS)

    Roberts, John

    2017-01-01

    UK Nuclear Sites: DECOMMISSIONING - 26 Magnox Reactors, 2 Fast Reactors; OPERATIONAL - 14 AGRs, 1 PWR; 9.6 GWe Total Capacity. Nuclear Workforce Demand • Total workforce demand is expected to grow from ~88,000 in 2017 to ~101,000 in 2021 • Average “inflow” is ~7,000 FTEs per annum • 22% of the workforce is female (28% in civil, 12% in defence) • 81% generic skills, 18% nuclear skills, 1% subject matter experts • 3300 trainees total in SLCs and Defence Enterprise (16% graduate trainees) • At peak demand on Civils Construction, over 4,000 workers will be required on each nuclear new build site • Manufacturing workforce is expected to rise from around 4,000 in 2014 to 8,500 at the peak of onsite activity in 2025

  4. Research, Development and Demonstration of Peak Load Reduction on Distribution Feeders Using Distributed Energy Resources for the City of Fort Collins

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, Dennis [City of Fort Collins Utilities, CO (United States); Vosburg, Tom [City of Fort Collins Utilities, CO (United States); Brunner, Steve [Brendle Group, Fort Collins, CO (United States); Gates, Judy [Woodward, Inc., Fort Collins, CO (United States); Howard, Nathan [Spirae, Inc., Fort Collins, CO (United States); Merton, Andrew [Spirae, Inc., Fort Collins, CO (United States); Wright, Don [Spirae, Inc., Fort Collins, CO (United States); Birlingmair, Doug [Spirae, Inc., Fort Collins, CO (United States)

    2015-10-01

    This project titled “Research, Development and Demonstration of Peak Load Reduction on Distribution Feeders Using Distributed Energy Resources for the City of Fort Collins” evolved in response to the Department of Energy’s (DOE) Funding Opportunity Announcement (FOA) Number DE-PS26-07NT43119. Also referred to as the Fort Collins Renewable and Distributed System Integration (RDSI) Project, the effort was undertaken by a diverse group of local government, higher education and business organizations; and was driven by three overarching goals: I. Fulfill the requirements of the DOE FOA’s Area of Interest 2: Renewable and Distributed System Integration; most notably, to demonstrate the ability to reduce electric system distribution feeder peak load by 15% or more through the coordinated use of Distributed Energy Resources (DER). II. Advance the expertise, technologies and infrastructure necessary to support the long term vision of the Fort Collins Zero Energy District (FortZED) and move towards creating a zero energy district in the Fort Collins “Old Town” area. III. Further the goals of the City of Fort Collins Energy Policy, including the development of a Smart Grid-enabled distribution system in Fort Collins, expanded use of renewable energy, increased energy conservation, and peak load reduction. Through the collaborative efforts of the partner organizations, the Fort Collins RDSI project was successful in achieving all three of these goals. This report is organized into two distinct sections corresponding to the two phases of the project: • Part 1: Feeder Peak Load Reduction and the FortZED Initiative. • Part 2: Forming and Operating Utility Microgrids and Managing Load and Production Variability The original project scope addressed the Part 1 feeder peak load reduction. That work took place from 2009 through 2011 and was largely complete when the project scope was amended to include a demonstration of microgrid operations. While leveraging the

  5. The impact of small scale cogeneration on the gas demand at distribution level

    International Nuclear Information System (INIS)

    Vandewalle, J.; D’haeseleer, W.

    2014-01-01

    Highlights: • Impact on the gas network of a massive implementation of cogeneration. • Distributed energy resources in a smart grid environment. • Optimisation of cogeneration scheduling. - Abstract: Smart grids are often regarded as an important step towards the future energy system. Combined heat and power (CHP) or cogeneration has several advantages in the context of the smart grid, which include the efficient use of primary energy and the reduction of electrical losses through transmission. However, the role of the gas network is often overlooked in this context. Therefore, this work presents an analysis of the impact of a massive implementation of small scale (micro) cogeneration units on the gas demand at distribution level. This work shows that using generic information in the simulations overestimates the impact of CHP. Furthermore, the importance of the thermal storage tank capacity on the impact on the gas demand is shown. Larger storage tanks lead to lower gas demand peaks and hence a lower impact on the gas distribution network. It is also shown that the use of an economically led controller leads to similar results compared to classical heat led control. Finally, it results that a low sell back tariff for electricity increases the impact of cogeneration on the gas demand peak

  6. Demand-side management: The perspective of a combination utility

    International Nuclear Information System (INIS)

    Packard, C.P.

    1993-01-01

    During the 1980's, Baltimore Gas ampersand Electric (BG ampersand E) met part of the rapid growth in demand for electricity in its service territory by implementing cost-effective demand-side management (DSM) programs--specifically, peak shaving and load shifting strategies. BG ampersand E's focus in the 1990's has been expanded to include all DSM options with an increasing emphasis on those which promote overall 1 energy efficiency or strategic conservation. This change in focus is being driven by Federal legislation, state regulatory requirements and the perceived potential benefits for both the customer and the Company. Current activities related to DSM include involvement in a Collaborative Process to design cost-effective electric and gas conservation programs for all customer classes--low-income, residential, commercial and industrial. Program design consists of four steps: (1) data gathering and technology assessment; (2) development of program concepts; (3) detailed program design and (4) monitoring and evaluation. Significant reductions in the projected peaks as well as in sales in future years are the anticipated results of our efforts. As a combination utility, unique opportunities and challenges face BG ampersand E: fuel switching, eligibility of non-full requirements customers, and energy options for customers

  7. An exploratory analysis of California residential customer response to critical peak pricing of electricity

    International Nuclear Information System (INIS)

    Herter, Karen; McAuliffe, Patrick; Rosenfeld, Arthur

    2007-01-01

    This paper summarizes the results from an exploratory analysis of residential customer response to a critical peak pricing (CPP) experiment in California, in which 15 times per year participating customers received high price signals dispatched by a local electricity distribution company. The high prices were about three times the on-peak price for the otherwise applicable time-of-use rate. Using hourly load data collected during the 15-month experiment, we find statistically significant load reduction for participants both with and without automated end-use control technologies. During 5-h critical peak periods, participants without control technology used up to 13% less energy than they did during normal peak periods. Participants equipped with programmable communicating thermostats used 25% and 41% less for 5 and 2h critical events, respectively. Thus, this paper offers convincing evidence that the residential sector can provide substantial contributions to retail demand response, which is considered a potential tool for mitigating market power, stabilizing wholesale market prices, managing system reliability, and maintaining system resource adequacy. (author)

  8. A Novel Technique to Enhance Demand Responsiveness

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa; Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte

    2015-01-01

    In this study, a new pricing approach is proposed to increase demand responsiveness. The proposed approach considers two well-known demand side management techniques, namely peak shaving and valley filling. This is done by incentivising consumers by magnifying price difference between peak and off......-peak hours. The usefulness of the suggested method is then investigated by its combination with an electric vehicle optimal scheduling methodology which captures both economic valuation and grid technical constraints. This case is chosen in this study to address network congestion issues, namely under...

  9. Automated Demand Response Approaches to Household Energy Management in a Smart Grid Environment

    Science.gov (United States)

    Adika, Christopher Otieno

    The advancement of renewable energy technologies and the deregulation of the electricity market have seen the emergence of Demand response (DR) programs. Demand response is a cost-effective load management strategy which enables the electricity suppliers to maintain the integrity of the power grid during high peak periods, when the customers' electrical load is high. DR programs are designed to influence electricity users to alter their normal consumption patterns by offering them financial incentives. A well designed incentive-based DR scheme that offer competitive electricity pricing structure can result in numerous benefits to all the players in the electricity market. Lower power consumption during peak periods will significantly enhance the robustness of constrained networks by reducing the level of power of generation and transmission infrastructure needed to provide electric service. Therefore, this will ease the pressure of building new power networks as we avoiding costly energy procurements thereby translating into huge financial savings for the power suppliers. Peak load reduction will also reduce the inconveniences suffered by end users as a result of brownouts or blackouts. Demand response will also drastically lower the price peaks associated with wholesale markets. This will in turn reduce the electricity costs and risks for all the players in the energy market. Additionally, DR is environmentally friendly since it enhances the flexibility of the power grid through accommodation of renewable energy resources. Despite its many benefits, DR has not been embraced by most electricity networks. This can be attributed to the fact that the existing programs do not provide enough incentives to the end users and, therefore, most electricity users are not willing to participate in them. To overcome these challenges, most utilities are coming up with innovative strategies that will be more attractive to their customers. Thus, this dissertation presents various

  10. Efficient Customer Selection for Sustainable Demand Response in Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Zois, Vasileios; Frincu, Marc; Chelmis, Charalambos; Saeed, Muhammad Rizwan; Prasanna, Viktor K.

    2014-11-03

    Regulating the power consumption to avoid peaks in demand is a common practice. Demand Response(DR) is being used by utility providers to minimize costs or ensure system reliability. Although it has been used extensively there is a shortage of solutions dealing with dynamic DR. Past attempts focus on minimizing the load demand without considering the sustainability of the reduced energy. In this paper an efficient algorithm is presented which solves the problem of dynamic DR scheduling. Data from the USC campus micro grid were used to evaluate the efficiency as well as the robustness of the proposed solution. The targeted energy reduction is achieved with a maximum average approximation error of ≈ 0.7%. Sustainability of the reduced energy is achieved with respect to the optimal available solution providing a maximum average error less than 0.6%. It is also shown that a solution is provided with a low computational cost fulfilling the requirements of dynamic DR.

  11. Survey of Models on Demand, Customer Base-Line and Demand Response and Their Relationships in the Power Market

    OpenAIRE

    Heshmati, Almas

    2012-01-01

    The increasing use of demand-side management as a tool to reliably meet electricity demand at peak time has stimulated interest among researchers, consumers and producer organizations, managers, regulators and policymakers, This research reviews the growing literature on models used to study demand, consumer baseline (CBL) and demand response in the electricity market. After characterizing the general demand models, it reviews consumer baseline based on which further study the demand response...

  12. Higher balance task demands are associated with an increase in individual alpha peak frequency

    Directory of Open Access Journals (Sweden)

    Thorben eHülsdünker

    2016-01-01

    Full Text Available Balance control is fundamental for most daily motor activities, and its impairment is associated with an increased risk of falling. Growing evidence suggests the human cortex is essentially contributing to the control of standing balance. However, the exact mechanisms remain unclear and need further investigation. In a previous study we introduced a new protocol to identify electrocortical activity associated with performance of different continuous balance tasks with the eyes opened. The aim of this study was to extend our previous results by investigating the individual alpha peak frequency (iAPF, a neurophysiological marker of thalamo-cortical information transmission, which remained unconsidered so far in balance research. Thirty-seven subjects completed nine balance tasks varying in surface stability and base of support. Electroencephalography (EEG was recorded from 32 scalp locations throughout balancing with the eyes closed to ensure reliable identification of the iAPF. Balance performance was quantified as the sum of anterior-posterior and medio-lateral movements of the supporting platform. The iAPF, as well as power in the theta, lower alpha and upper alpha frequency bands were determined for each balance task after applying an ICA-based artifact rejection procedure. Higher demands on balance control were associated with a global increase in iAPF and a decrease in lower alpha power. These results may indicate increased thalamo-cortical information transfer and general cortical activation, respectively. In addition, a significant increase in upper alpha activity was observed in the fronto-central region whereas it decreased in the centro-parietal region. Furthermore, midline theta increased with higher task demands probably indicating activation of error detection/processing mechanisms. IAPF as well as theta and alpha power were correlated with platform movements. The results provide new insights into spectral and spatial characteristics

  13. Non-residential water demand model validated with extensive measurements and surveys

    NARCIS (Netherlands)

    Pieterse-Quirijns, I.; Blokker, E.J.M.; van der Blom, E.C.; Vreeburg, J.H.G.

    2013-01-01

    Existing Dutch guidelines for the design of the drinking water and hot water system of nonresidential buildings are based on outdated assumptions on peak water demand or on unfounded assumptions on hot water demand. They generally overestimate peak demand values required for the design of an

  14. Water demand management in Mediterranean regions

    OpenAIRE

    Giulio Querini; Salvo Creaco

    2005-01-01

    Water sustainability needs a balance between demand and availability: 1) Water demand management: demand may be managed by suppliers and regulations responsible persons, using measures like invoicing, consumptions measurement and users education in water conservation measures; 2) Augmentation of water supply: availibility may be augmented by infrastructural measures, waste water reuse, non-conventional resources and losses reduction. Water Demand Management is about achieving a reduction in t...

  15. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    Science.gov (United States)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  16. Liquid waste processing at Comanche Peak

    International Nuclear Information System (INIS)

    Hughes-Edwards, L.M.; Edwards, J.M.

    1996-01-01

    This article describes the radioactive waste processing at Comanche Peak Steam Electric Station. Topics covered are the following: Reduction of liquid radioactive discharges (system leakage, outage planning); reduction of waste resin generation (waste stream segregation, processing methodology); reduction of activity released and off-site dose. 8 figs., 2 tabs

  17. Cut Electric Bills by Controlling Demand

    Science.gov (United States)

    Grumman, David L.

    1974-01-01

    Electric bills can be reduced by lowering electric consumption and by controlling demand -- the amount of electricity used at a certain point in time. Gives tips to help reduce electric demand at peak power periods. (Author/DN)

  18. Demand response from the non-domestic sector: Early UK experiences and future opportunities

    International Nuclear Information System (INIS)

    Grünewald, Philipp; Torriti, Jacopo

    2013-01-01

    Demand response is believed by some to become a major contributor towards system balancing in future electricity networks. Shifting or reducing demand at critical moments can reduce the need for generation capacity, help with the integration of renewables, support more efficient system operation and thereby potentially lead to cost and carbon reductions for the entire energy system. In this paper we review the nature of the response resource of consumers from different non-domestic sectors in the UK, based on extensive half hourly demand profiles and observed demand responses. We further explore the potential to increase the demand response capacity through changes in the regulatory and market environment. The analysis suggests that present demand response measures tend to stimulate stand-by generation capacity in preference to load shifting and we propose that extended response times may favour load based demand response, especially in sectors with significant thermal loads. - Highlights: • Empirical demand response data from non-domestic sector evaluated. • Load profiles suggest strong sector dependence on availability response at system peak. • Majority of aggregated demand response still stems from stand-by generation, not from demand turn down. • Scope for substantial increase in demand response capacity if response times were extended

  19. Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response

    International Nuclear Information System (INIS)

    Zheng, Menglian; Meinrenken, Christoph J.; Lackner, Klaus S.

    2014-01-01

    Highlights: • Storage-based demand response (loadshifting) is underutilized in residential sector. • Economics (arbitrage savings versus equipment cost) are not well understood. • Stochastic demand models and real-life tariffs can illuminate economic viability. • A range of available storage options provide economically viable DR. • Daily/seasonal stochastic demand variations crucial to understanding optimum capacity. - Abstract: Demand response (DR) is one of many approaches to address temporal mismatches in demand and supply of grid electricity. More common in the commercial sector, DR usually refers to reducing consumption at certain hours or seasons, thus reducing peak demand from the grid. In the residential sector, where sophisticated appliance-level controls such as automatic dimming of lights or on-demand lowering of air conditioning are less common, building-based electricity storage to shift grid consumption from peak to off-peak times could provide DR without requiring consumers to operate their appliances on shifted or reduced schedules: Storage would be dispatched to appliances as needed while still shaving peaks on the grid. Technologically, storage and two-way-inverters are readily available to enable such residential DR. Economically, however, the situation is less clear. Specifically, are time-varying electricity tariffs available such that electricity cost reduction via arbitrage could offset manufacturing, financing, and installation costs of the required storage? To address this question we (i) devise an agent-based appliance-level stochastic model to simulate the electricity demand of an average U.S. household; (ii) loadshift the demand via simple dispatch strategies; and (iii) determine potential profits to the building owner, i.e. reduced electricity cost of the modified demand with realistic tariffs (Con Edison, NY) minus storage cost. We determine the economic viability for a range of traditional and advanced storage technologies

  20. Customers` response to residential peak-activated pricing. Evidence from a Japanese experiment; Peak taio ryokinka ni okeru kateiyo juyoka no fuka chosei kodo no bunseki. Kansetsu fuka seigyo jikken data wo mochiita kakaku koka no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Asano, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-10-01

    Demand side management through a pricing mechanism, that is the indirect load control was experimented to analyze the pricing effect. When power consumption in indirect load control groups is compared between peak time band in weekdays in summer and off-the-peak time band, the power is less consumed when price gap is set than in a uniform charge time. When more number of persons is in home in daytime, room cooling is used in daytime including the peak band to adjust the demand. The substitution elasticity in price between demands in the peak time band and the off-the-peak time band is from about 0.06 to 0.07, which cannot be ignored. If the peak price is increased by four times, the demand in the peak band can be reduced by about 0.15 kW (when average power demand per household is assumed 0.75 kW). For room cooling devices, the first device is often installed in a living room and the second and further units in individual rooms such as bed rooms. The more the number of device, the higher the possibility that the use time band is outside the peak time band. This indirect load control experiment is a field test related to the peak-activated pricing for small power users, by which the users` behavior against the pricing effect was identified quantitatively. 5 refs., 1 fig., 8 tabs.

  1. Scenario analysis on the goal of carbon emission peaking around 2030 of China proposed in the China-U.S. joint statement on climate change

    Science.gov (United States)

    Zheng, T.

    2015-12-01

    A goal of carbon (C) emission peaking around 2030 of China was declared in the China-U.S. joint statement on climate change, and emphasized in China's intended nationally determined contributions (INDC). Here, we predicted the carbon emission of China during the period 2011~2050 under seven scenarios, and analyzed the scientific and social implications of realizing the goal. Our results showed that: (1) C emissions of China will reach their peaks at 2022~2045 (with peak values 3.15~5.10 Pg C), and the predicted decay rates of C intensity were 2.1~4.2% in 2011~2050; (2) the precondition that the national C emission reaches the peak before 2030 is that the annual decay rates of C intensity must exceed 3.3% , as decay rates under different scenarios were predicted higher than that except for Past G8 scenario; (3) the national C emission would reach the peak before 2030, if the government of China should realize the C emissions reduction goals of China's 12th five-year plan, climate commitments of Copenhagen and INDC; (4) Chinese government could realize the goal of C emission peaking around 2030 from just controlling C emission intensity , but associated with relatively higher government's burden. In summary, China's C emission may well peak before 2030, meanwhile the combination of emissions reduction and economic macro-control would be demanded to avoid heavier social pressure of C emissions reduction occurred.

  2. Estimating demand for alternatives to cigarettes with online purchase tasks.

    Science.gov (United States)

    O'Connor, Richard J; June, Kristie M; Bansal-Travers, Maansi; Rousu, Matthew C; Thrasher, James F; Hyland, Andrew; Cummings, K Michael

    2014-01-01

    To explore how advertising affects demand for cigarettes and potential substitutes, including snus, dissolvable tobacco, and medicinal nicotine. A Web-based experiment randomized 1062 smokers to see advertisements for alternative nicotine products or soft drinks, then complete a series of purchase tasks, which were used to estimate demand elasticity, peak consumption, and cross-price elasticity (CPE) for tobacco products. Lower demand elasticity and greater peak consumption were seen for cigarettes compared to all alternative products (p demand. These findings suggest significantly lower demand for alternative nicotine sources among smokers than previously revealed.

  3. Forecasting Strategies for Predicting Peak Electric Load Days

    Science.gov (United States)

    Saxena, Harshit

    Academic institutions spend thousands of dollars every month on their electric power consumption. Some of these institutions follow a demand charges pricing structure; here the amount a customer pays to the utility is decided based on the total energy consumed during the month, with an additional charge based on the highest average power load required by the customer over a moving window of time as decided by the utility. Therefore, it is crucial for these institutions to minimize the time periods where a high amount of electric load is demanded over a short duration of time. In order to reduce the peak loads and have more uniform energy consumption, it is imperative to predict when these peaks occur, so that appropriate mitigation strategies can be developed. The research work presented in this thesis has been conducted for Rochester Institute of Technology (RIT), where the demand charges are decided based on a 15 minute sliding window panned over the entire month. This case study makes use of different statistical and machine learning algorithms to develop a forecasting strategy for predicting the peak electric load days of the month. The proposed strategy was tested for a whole year starting May 2015 to April 2016 during which a total of 57 peak days were observed. The model predicted a total of 74 peak days during this period, 40 of these cases were true positives, hence achieving an accuracy level of 70 percent. The results obtained with the proposed forecasting strategy are promising and demonstrate an annual savings potential worth about $80,000 for a single submeter of RIT.

  4. A comparison of four methods to evaluate the effect of a utility residential air-conditioner load control program on peak electricity use

    Energy Technology Data Exchange (ETDEWEB)

    Newsham, Guy R., E-mail: guy.newsham@nrc-cnrc.gc.ca [National Research Council Canada-Institute for Research in Construction, Building M24, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Birt, Benjamin J. [National Research Council Canada-Institute for Research in Construction, Building M24, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Rowlands, Ian H. [University of Waterloo, Ontario (Canada)

    2011-10-15

    We analyzed the peak load reductions due to a residential direct load control program for air-conditioners in southern Ontario in 2008. In this program, participant thermostats were increased by 2 deg. C for four hours on five event days. We used hourly, whole-house data for 195 participant households and 268 non-participant households, and four different methods of analysis ranging from simple spreadsheet-based comparisons of average loads on event days, to complex time-series regression. Average peak load reductions were 0.2-0.9 kWh/h per household, or 10-35%. However, there were large differences between event days and across event hours, and in results for the same event day/hour, with different analysis methods. There was also a wide range of load reductions between individual households, and only a minority of households contributed to any given event. Policy makers should be aware of how the choice of an analysis method may affect decisions regarding which demand-side management programs to support, and how they might be incentivized. We recommend greater use of time-series methods, although it might take time to become comfortable with their complexity. Further investigation of what type of households contribute most to aggregate load reductions would also help policy makers better target programs. - Highlights: > We analyzed peak load reductions due to residential a/c load control. > We used four methods, ranging from simple comparisons to time-series regression. > Average peak load reductions were 0.2-0.9 kW per household, varying by method. > We recommend a move towards time-series regression for future studies. > A minority of participant households contributed to a given load control event.

  5. Short- and long-run time-of-use price elasticities in Swiss residential electricity demand

    International Nuclear Information System (INIS)

    Filippini, Massimo

    2011-01-01

    This paper presents an empirical analysis on the residential demand for electricity by time-of-day. This analysis has been performed using aggregate data at the city level for 22 Swiss cities for the period 2000-2006. For this purpose, we estimated two log-log demand equations for peak and off-peak electricity consumption using static and dynamic partial adjustment approaches. These demand functions were estimated using several econometric approaches for panel data, for example LSDV and RE for static models, and LSDV and corrected LSDV estimators for dynamic models. The attempt of this empirical analysis has been to highlight some of the characteristics of the Swiss residential electricity demand. The estimated short-run own price elasticities are lower than 1, whereas in the long-run these values are higher than 1. The estimated short-run and long-run cross-price elasticities are positive. This result shows that peak and off-peak electricity are substitutes. In this context, time differentiated prices should provide an economic incentive to customers so that they can modify consumption patterns by reducing peak demand and shifting electricity consumption from peak to off-peak periods. - Highlights: → Empirical analysis on the residential demand for electricity by time-of-day. → Estimators for dynamic panel data. → Peak and off-peak residential electricity are substitutes.

  6. Coordination of Energy Efficiency and Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  7. Effects of dynamic-demand-control appliances on the power grid frequency

    Science.gov (United States)

    Tchuisseu, E. B. Tchawou; Gomila, D.; Brunner, D.; Colet, P.

    2017-08-01

    Power grid frequency control is a demanding task requiring expensive idle power plants to adapt the supply to the fluctuating demand. An alternative approach is controlling the demand side in such a way that certain appliances modify their operation to adapt to the power availability. This is especially important to achieve a high penetration of renewable energy sources. A number of methods to manage the demand side have been proposed. In this work we focus on dynamic demand control (DDC), where smart appliances can delay their switchings depending on the frequency of the system. We introduce a simple model to study the effects of DDC on the frequency of the power grid. The model includes the power plant equations, a stochastic model for the demand that reproduces, adjusting a single parameter, the statistical properties of frequency fluctuations measured experimentally, and a generic DDC protocol. We find that DDC can reduce small and medium-size fluctuations but it can also increase the probability of observing large frequency peaks due to the necessity of recovering pending task. We also conclude that a deployment of DDC around 30-40% already allows a significant reduction of the fluctuations while keeping the number of pending tasks low.

  8. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  9. Oil demand asymmetry in the OECD

    International Nuclear Information System (INIS)

    Shealy, M.T.

    1990-01-01

    Oil demand asymmetry exists, is significant, and can be captured with a simple demand equation using a Pmax term. The unstable parameters of the original symmetric equations suggest misspecification. Addition of a Pmax term to represent asymmetry yields stable parameters from 1982 through 1989 and so suggests proper specification. Asymmetry is significant because the short-run (and long-run) price elasticity is less than half as large when oil price falls as when price rises beyond the past peak. The lower elasticity applies both to price decreases and also to price increases for which price remains below the past peak. As long as the real oil price remains well below the 1981 peak, asymmetry implies that OECD oil demand should be less sensitive to oil price variations than in 1981. More specifically, the results shown suggest that today's oil demand elasticity should be less than half as large as the elasticity for a price increase in 1981. Forecasts from the asymmetric equations are significantly higher than the DOE base-case forecast. DOE's lower forecast is due to greater price asymmetry through 1995 and to higher long-run price elasticity beyond 1995. One reason for the higher long-run price elasticity might be greater assumed improvements in energy-efficiency than implied by the historical data

  10. Milton Hydro's Energy Drill Program : demand response based on behavioural responses to price signals

    International Nuclear Information System (INIS)

    Thorne, D.; Heeney, D.

    2006-01-01

    The Energy Drill Program is a demand response tool and economic instrument based on a fire drill protocol. The aim of the program is to reduce peak demand and emissions and improve system reliability and price volatility. This presentation provided details of an Energy Drill pilot program, conducted in Milton, Ontario. Customized approaches were used in the buildings partaking in the drill, which included the Milton Hydro Headquarters, the Robert Baldwin Public School, and a leisure centre. Building assessments inventoried building systems and equipment usage patterns. Pilot monitoring and evaluation was conducted through the use of checklists completed by marshals and building coordinators. Energy use data was tracked by Milton Hydro, and report cards were sent after each drill. A short-term drop in demand was observed in all the buildings, as well as overall reductions in peak period demand. Energy consumption data for all the buildings were provided. Results of the pilot program suggested that rotating the drills among participating buildings may prove to be a more effective strategy for the program to adopt in future. A greater emphasis on energy efficiency was also recommended. It was concluded that the eventual roll-out strategy should carefully consider the number and types of buildings involved in the program; internal commitment to the program; available resources; and timing for implementation. refs., tabs., figs

  11. Demand Side Management for the European Supergrid: Occupancy variances of European single-person households

    International Nuclear Information System (INIS)

    Torriti, Jacopo

    2012-01-01

    The prospect of a European Supergrid calls for research on aggregate electricity peak demand and Europe-wide Demand Side Management. No attempt has been made as yet to represent a time-related demand curve of residential electricity consumption at the European level. This article assesses how active occupancy levels of single-person households vary in single-person household in 15 European countries. It makes use of occupancy time-series data from the Harmonised European Time Use Survey database to build European occupancy curves; identify peak occupancy periods; construct time-related electricity demand curves for TV and video watching activities and assess occupancy variances of single-person households. - Highlights: ► Morning peak occupancies of European single households tale place between 7h30 and 7h40. ► Evening peaks take place between 20h10 and 20h20. ► TV and video activities during evening peaks make up about 3.1 GWh of European peak electricity load. ► Baseline and peak occupancy variances vary across countries. ► Baseline and peak occupancy variances can be used as input for Demand Side Management choices.

  12. PEAK-TO-AVERAGE POWER RATIO REDUCTION USING CODING AND HYBRID TECHNIQUES FOR OFDM SYSTEM

    Directory of Open Access Journals (Sweden)

    Bahubali K. Shiragapur

    2016-03-01

    Full Text Available In this article, the research work investigated is based on an error correction coding techniques are used to reduce the undesirable Peak-to-Average Power Ratio (PAPR quantity. The Golay Code (24, 12, Reed-Muller code (16, 11, Hamming code (7, 4 and Hybrid technique (Combination of Signal Scrambling and Signal Distortion proposed by us are used as proposed coding techniques, the simulation results shows that performance of Hybrid technique, reduces PAPR significantly as compared to Conventional and Modified Selective mapping techniques. The simulation results are validated through statistical properties, for proposed technique’s autocorrelation value is maximum shows reduction in PAPR. The symbol preference is the key idea to reduce PAPR based on Hamming distance. The simulation results are discussed in detail, in this article.

  13. Optimized phase mask to realize retro-reflection reduction for optical systems

    Science.gov (United States)

    He, Sifeng; Gong, Mali

    2017-10-01

    Aiming at the threats to the active laser detection systems of electro-optical devices due to the cat-eye effect, a novel solution is put forward to realize retro-reflection reduction in this paper. According to the demands of both cat-eye effect reduction and the image quality maintenance of electro-optical devices, a symmetric phase mask is achieved from a stationary phase method and a fast Fourier transform algorithm. Then, based on a comparison of peak normalized cross-correlation (PNCC) between the different defocus parameters, the optimal imaging position can be obtained. After modification with the designed phase mask, the cat-eye effect peak intensity can be reduced by two orders of magnitude while maintaining good image quality and high modulation transfer function (MTF). Furthermore, a practical design example is introduced to demonstrate the feasibility of our proposed approach.

  14. PAPR Reduction in OFDM-based Visible Light Communication Systems Using a Combination of Novel Peak-value Feedback Algorithm and Genetic Algorithm

    Science.gov (United States)

    Deng, Honggui; Liu, Yan; Ren, Shuang; He, Hailang; Tang, Chengying

    2017-10-01

    We propose an enhanced partial transmit sequence technique based on novel peak-value feedback algorithm and genetic algorithm (GAPFA-PTS) to reduce peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals in visible light communication (VLC) systems(VLC-OFDM). To demonstrate the advantages of our proposed algorithm, we analyze the flow of proposed technique and compare the performances with other techniques through MATLAB simulation. The results show that GAPFA-PTS technique achieves a significant improvement in PAPR reduction while maintaining low bit error rate (BER) and low complexity in VLC-OFDM systems.

  15. Evidence is growing on demand side of an oil peak

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    After years of continued growth, the number of miles driven by Americans started falling in December 2007. Not only are the number of miles driven falling, but as cars become more fuel efficient, they go further on fewer gallons - further reducing demand for gasoline. This trend is expected to accelerate. Drivers include, along with higher-efficiency cars, mass transit, reversal in urban sprawl, biofuels, and plug-in hybrid vehicles.

  16. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This three-volume report is responsive to the requirements of Contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program of computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. This section of the three volume report is a final report appendix with information on the National Energy Peak Leveling Program (NEPLP).

  17. Simulation of ridesourcing using agent-based demand and supply regional models : potential market demand for first-mile transit travel and reduction in vehicle miles traveled in the San Francisco Bay Area.

    Science.gov (United States)

    2016-01-01

    In this study, we use existing modeling tools and data from the San Francisco Bay Area : (California) to understand the potential market demand for a first mile transit access service : and possible reductions in vehicle miles traveled (VMT) (a...

  18. Renewable generation versus demand-side management. A comparison for the Spanish market

    International Nuclear Information System (INIS)

    Roldán Fernández, Juan Manuel; Burgos Payán, Manuel; Riquelme Santos, Jesús Manuel; Trigo García, Ángel Luis

    2016-01-01

    Conventionally the required instantaneous balance generation-load is achieved by adjusting production to fit variable consumer demand. Nowadays, a significant and increasing segment of generation is renewable. But renewable production cannot be scheduled on request since its generation is dependent on nature (wind, sun, …). In this context, demand-side management (DSM) would help since it would be advisable for part of the flexibility to be provided by the demand. The integration of renewable production and demand-side management (DSM), are compared in this work for Spain throughout 2008–2014. First a qualitative model, based on the linearization of the wholesale market, is employed to explore some hypotheses. A set of scenarios are then examined to quantify the main effects on the market. The results show that DSM exhibits the best performance in terms of economic efficiency and environmental sustainability, as well as for the reduction of load peaks and losses in the system, what suggests the convenience of promoting plans for the replacement of equipment with other more efficient as well as the implementation of real-time tariffs. - Highlights: •The impact of the integration of renewable production versus DSM has been compared. •Merit-order effect related to energy efficiency and to load-shifting is identified. •Large industries achieve energy efficiency with less CAPEX than renewable generation. •Load-shifting cycle yields a reduction of the traded energy and the economic volume.

  19. Study on reduction of consumption and peak demand of electric power used in residential houses with solar heating and PV systems; Solar house no fuka heijunka to energy sakugen koka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M.; Endo, T. [Kogakuin University, Tokyo (Japan)

    1994-12-08

    A model house was simulated to reduce the consumption and peak demand for the photovoltaic power generation system, and solar heat air heating and hot water supply system in the solar house. As a type of construction, both wooden construction and reinforced concrete (RC) construction were selected with a total floor area of 125m{sup 2}. All the rooms were equipped with an air conditioner by heat pump from the air thermal source. A solar heat floor heater was simultaneously installed on the first floor. The hot water supply load was 4.8MWh per year. A commercial grid-connected on-site system was applied to the photovoltaic power generation with a 20m{sup 2} wide monocrystalline Si solar cell panel. As for the fluctuation in power load, the peak at the time of rising is more reduced in the RC house than in the wooden house, because the former is smaller in temperature fluctuation than the latter during the intermittence of air conditioning (as per the specified operational schedule). Therefore, the power is more leveled off in the former than in the latter. Between both, difference was hardly made in energy consumption per year. The ratio of dependency was 47% upon the photovoltaic power generation system, while it was 50% and 77%, under the air heating power load and hot water supply power load, respectively, upon the solar heat air heating and hot water supply system, so that both systems were considerably effective in saving the energy. 5 refs., 7 figs., 1 tab.

  20. Peak Running Intensity of International Rugby: Implications for Training Prescription.

    Science.gov (United States)

    Delaney, Jace A; Thornton, Heidi R; Pryor, John F; Stewart, Andrew M; Dascombe, Ben J; Duthie, Grant M

    2017-09-01

    To quantify the duration and position-specific peak running intensities of international rugby union for the prescription and monitoring of specific training methodologies. Global positioning systems (GPS) were used to assess the activity profile of 67 elite-level rugby union players from 2 nations across 33 international matches. A moving-average approach was used to identify the peak relative distance (m/min), average acceleration/deceleration (AveAcc; m/s 2 ), and average metabolic power (P met ) for a range of durations (1-10 min). Differences between positions and durations were described using a magnitude-based network. Peak running intensity increased as the length of the moving average decreased. There were likely small to moderate increases in relative distance and AveAcc for outside backs, halfbacks, and loose forwards compared with the tight 5 group across all moving-average durations (effect size [ES] = 0.27-1.00). P met demands were at least likely greater for outside backs and halfbacks than for the tight 5 (ES = 0.86-0.99). Halfbacks demonstrated the greatest relative distance and P met outputs but were similar to outside backs and loose forwards in AveAcc demands. The current study has presented a framework to describe the peak running intensities achieved during international rugby competition by position, which are considerably higher than previously reported whole-period averages. These data provide further knowledge of the peak activity profiles of international rugby competition, and this information can be used to assist coaches and practitioners in adequately preparing athletes for the most demanding periods of play.

  1. Analysis of the electricity supply-demand balance for the winter period 2009-2010

    International Nuclear Information System (INIS)

    2009-10-01

    Every year, RTE conducts a prospective study of the balance between supply and demand for electricity for the coming winter period, covering the whole of mainland France. This period of the year is looked at closely, primarily due to the high levels of electricity demand seen during cold snaps. The study by RTE is used to identify periods where the supply-demand balance comes under strain; it explores the measures that can be taken by electricity market players and RTE to avoid any interruption in supply during peak demand periods in France. RTE is responsible for managing the balance between supply and demand for electricity in mainland France, in real time. To do this, it anticipates potential risks that may supply may come under strain - well in advance - and informs market players. If periods are identified where the supply-demand balance comes under strain, RTE works with the electricity generators to look at possible ways of altering the schedules for shutting down generating units, and takes account of the possibilities for demand response (load reduction) reported by suppliers. As a last resort, if these preemptive measures prove insufficient and the situation becomes critical, RTE alerts the government of the risk that supply will be interrupted, and takes action in real time to limit the impact on the power system. For temperatures close to seasonal norms, the forecast outlook for the electricity supply-demand balance appears significantly less favourable than last winter until the end of January. Imports could be required between mid-November 2009 and the end of January 2010, to cover electricity demand in France and satisfy the technical security margin stipulated by RTE. To do this, suppliers would have to look to the European markets, in addition to activating demand response (load reduction) possibilities with their customer portfolios. In the event of an intense and sustained spell of cold weather, the technical limit for imports into the French

  2. Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Krzysztof Gajowniczek

    2017-10-01

    Full Text Available Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution and deliver accurate forecasts, with mean absolute percentage error (MAPE of 3.10% and resistant mean absolute percentage error (r-MAPE of 2.70% for the 24 h forecasting horizon.

  3. Peaking of world oil production: Impacts, mitigation, & risk management

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, R.L. (SAIC); Bezdek, Roger (MISI); Wendling, Robert (MISI)

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  4. Automated Critical PeakPricing Field Tests: 2006 Pilot ProgramDescription and Results

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

    2007-06-19

    During 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology evaluation for the Pacific Gas and Electric Company (PG&E) Emerging Technologies Programs. This report summarizes the design, deployment, and results from the 2006 Automated Critical Peak Pricing Program (Auto-CPP). The program was designed to evaluate the feasibility of deploying automation systems that allow customers to participate in critical peak pricing (CPP) with a fully-automated response. The 2006 program was in operation during the entire six-month CPP period from May through October. The methodology for this field study included site recruitment, control strategy development, automation system deployment, and evaluation of sites' participation in actual CPP events through the summer of 2006. LBNL recruited sites in PG&E's territory in northern California through contacts from PG&E account managers, conferences, and industry meetings. Each site contact signed a memorandum of understanding with LBNL that outlined the activities needed to participate in the Auto-CPP program. Each facility worked with LBNL to select and implement control strategies for demand response and developed automation system designs based on existing Internet connectivity and building control systems. Once the automation systems were installed, LBNL conducted communications tests to ensure that the Demand Response Automation Server (DRAS) correctly provided and logged the continuous communications of the CPP signals with the energy management and control system (EMCS) for each site. LBNL also observed and evaluated Demand Response (DR) shed strategies to ensure proper commissioning of controls. The communication system allowed sites to receive day-ahead as well as day-of signals for pre-cooling, a DR strategy used at a few sites. Measurement of demand response was conducted using two different baseline models for estimating peak load savings. One

  5. Time-of-use based electricity demand response for sustainable manufacturing systems

    International Nuclear Information System (INIS)

    Wang, Yong; Li, Lin

    2013-01-01

    As required by the Energy Policy Act of 2005, utility companies across the U.S. are offering TOU (time-of-use) based electricity demand response programs. The TOU rate gives consumers opportunities to manage their electricity bill by shifting use from on-peak periods to mid-peak and off-peak periods. Reducing the amount of electricity needed during the peak load times makes it possible for the power grid to meet consumers' needs without building more costly backup infrastructures and help reduce GHG (greenhouse gas) emissions. Previous research on the applications of TOU and other electricity demand response programs has been mainly focused on residential and commercial buildings while largely neglected industrial manufacturing systems. This paper proposes a systems approach for TOU based electricity demand response for sustainable manufacturing systems under the production target constraint. Key features of this approach include: (i) the electricity related costs including both consumption and demand are integrated into production system modeling; (ii) energy-efficient and demand-responsive production scheduling problems are formulated and the solution technique is provided; and (iii) the effects of various factors on the near-optimal scheduling solutions are examined. The research outcome is expected to enhance the energy efficiency, electricity demand responsiveness, and cost effectiveness of modern manufacturing systems. - Highlights: • We propose a TOU based demand response approach for manufacturing systems. • Both electricity consumption and demand are integrated into the system modeling. • Energy-efficient and demand-responsive production scheduling problems are formulated. • The meta-heuristic solution technique is provided. • The effects of various factors on the scheduling solutions are examined

  6. Minimum load reduction for once-through boiler power plants

    International Nuclear Information System (INIS)

    Colombo, P.; Godina, G.; Manganelli, R.

    2001-01-01

    In Italy the liberalization process of energy market is giving particular importance to the optimization of power plants performances; especially for those that will be called to satisfy grid peak demands. On those plants some techniques have been experimented for the reduction of minimum load; these techniques, investigated and tested by an engineering dynamic simulator, have been sequentially tested on plant. The minimum load for up 320 MW of Tavazzano power plants has been diminished from 140 down to 80 MW without plant modification [it

  7. Peak-load management, the security of supply warranty

    International Nuclear Information System (INIS)

    2010-01-01

    Even if France owns an efficient power generation park, largely exporting and clean (90% with no CO 2 emission), it encounters some difficulties during peak-load periods. The successive peak power demand records which are recorded each year represent as many alerts about a possible collapse of the power system. In order to warrant the electricity supply, the present day regulatory framework must be changed to allow the industrial players to carry out the necessary investments

  8. Responses of Lower-Body Power and Match Running Demands Following Long-Haul Travel in International Rugby Sevens Players.

    Science.gov (United States)

    Mitchell, John A; Pumpa, Kate L; Pyne, David B

    2017-03-01

    Mitchell, JA, Pumpa, KL, and Pyne, DB. Responses of lowerbody power and match running demands after long-haul travel in international rugby sevens players. J Strength Cond Res 31(3): 686-695, 2017-This study determined the effect of long-haul (>5 hours) travel on lower-body power and match running demands in international rugby sevens players. Lower-body power was assessed in 22 male international rugby sevens players (age 21.7 ± 2.7 years, mass 89.0 ± 6.7 kg, stature 180.5 ± 6.2 cm; mean ± SD) monitored over 17 rugby sevens tournaments. A countermovement jump was used to monitor lower-body power (peak and mean power) over repeated three week travel and competition periods (pretravel, posttravel, and posttournament). Small decreases were evident in peak power after both short and long-haul travel (-4.0%, ±3.2%; mean, ±90% confidence limits) with further reductions in peak and mean power posttournament (-4.5%, ±2.3% and -3.8%, ±1.5%) culminating in a moderate decrease in peak power overall (-7.4%, ±4.0%). A subset of 12 players (completing a minimum of 8 tournaments) had the effects of match running demands assessed with lower-body power. In this subset, long-haul travel elicited a large decrease in lower-body peak (-9.4%, ±3.5%) and mean power (-5.6%, ±2.9%) over the monitoring period, with a small decrease (-4.3%, ±3.0% and -2.2%, ±1.7%) posttravel and moderate decrease (-5.4%, ±2.5% and -3.5%, ±1.9%) posttournament, respectively. Match running demands were monitored through global positioning system. In long-haul tournaments, the 12 players covered ∼13%, ±13% greater total distance (meter) and ∼11%, ±10% higher average game meters >5 m·s when compared with short-haul (rugby sevens tournaments after long-haul travel.

  9. Analysis of output power and capacity reduction in electrical storage facilities by peak shift control of PV system with bifacial modules

    International Nuclear Information System (INIS)

    Obara, Shin’ya; Konno, Daisuke; Utsugi, Yuta; Morel, Jorge

    2014-01-01

    Highlights: • Characteristics of a large-scale power plant using bifacial solar cell is described. • Conversion efficiency of bifacial photovoltaics obtained using 3D-CAD modeling. • Power supply of bifacial PV can be matched with demand by adjusting the orientation. - Abstract: Bifacial photovoltaics are widely investigated with the aim of reducing the amount of silicon used and increasing conversion efficiencies. The output power of bifacial photovoltaics depends on the quantity of solar radiation incident on the reverse face. Furthermore, controlling the orientation can distribute the times of peak power output in the morning and afternoon to better match the demand. In this study, the demand patterns of individual houses or the whole Hokkaido region were analyzed assuming the substitution of a conventional large-scale electric power system with one using bifacial photovoltaics. The supply–demand balances and electrical storage capacities were investigated. When comparing a large scale solar power plant (mega-solar power plant) using monofacial photovoltaics or vertical bifacial photovoltaics (in which the orientation could be adjusted), the supply–demand could be better balanced for individual houses in the latter case, thereby allowing the storage capacity to be reduced. A bifacial solar module was modeled by 3D-CAD (three dimensional computer aided design) and thermal fluid analysis. The module temperature distribution of bifacial photovoltaics was calculated with respect to the environmental conditions (wind flow, direct and diffuse solar radiation, etc.) and internal heat generation, as well as the orientation of the solar panels. Furthermore, the output power of bifacial photovoltaics can be easily obtained from the analysis result of modular temperature distribution and the relation between temperature and output power

  10. Empirical analysis of the spot market implications of price-responsive demand

    International Nuclear Information System (INIS)

    Siddiqui, A.S.

    2006-01-01

    Although electricity is theoretically an inelastic good in the short term, the steep slope of the supply stack implies that even modest response by demand could translate into reduced capacity requirements and significant price decreases. This article examined the effect of price-responsive demand strategies in an actual deregulated electricity industry. Auction data from the New York Independent System Operator (NYISO) day-ahead electricity market were used to form supply stacks for various zones. A simple linear demand function was used to determine the effect of price responsiveness on equilibrium spot market price and consumption. The aim was to quantify the benefits from the pricing protocol and to determine whether modest levels of price elasticity can significantly lower prices and consumption. Market-clearing prices and quantities were estimated using various supply curves in order to quantify the responsiveness necessary to achieve given price reductions. Price response was induced in the demand curve by varying its slope. Estimates were then used to estimate the average level of slope needed to reduce the average market-clearing price during the year by a certain percentage. Results showed that an average slope of -50.04 was necessary for prices to be reduced by 25 per cent. Results also showed that necessary price responses can be ascertained for any desired reduction in the market-clearing price or quantity. Although price responsiveness unambiguously reduces the spot market price and quantity, its effect on the forward price is not yet clear. It was concluded that a separate analysis of peak hours may reveal the effectiveness of enhanced price response. 8 refs., 1 tab., 8 figs

  11. Retail Demand Response in Southwest Power Pool

    Energy Technology Data Exchange (ETDEWEB)

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30

    In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources

  12. Energy-Efficiency Analysis of Per-Subcarrier Antenna Selection with Peak-Power Reduction in MIMO-OFDM Wireless Systems

    Directory of Open Access Journals (Sweden)

    Ngoc Phuc Le

    2014-01-01

    Full Text Available The use of per-subcarrier antenna subset selection in OFDM wireless systems offers higher system capacity and/or improved link reliability. However, the implementation of the conventional per-subcarrier selection scheme may result in significant fluctuations of the average power and peak power across antennas, which affects the potential benefits of the system. In this paper, power efficiency of high-power amplifiers and energy efficiency in per-subcarrier antenna selection MIMO-OFDM systems are investigated. To deliver the maximum overall power efficiency, we propose a two-step strategy for data-subcarrier allocation. This strategy consists of an equal allocation of data subcarriers based on linear optimization and peak-power reduction via cross-antenna permutations. For analysis, we derive the CCDF (complementary cumulative distribution function of the power efficiency as well as the analytical expressions of the average power efficiency. It is proved from the power-efficiency perspective that the proposed allocation scheme outperforms the conventional scheme. We also show that the improvement in the power efficiency translates into an improved capacity and, in turn, increases energy efficiency of the proposed system. Simulation results are provided to validate our analyses.

  13. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  14. State Approaches to Demand Reduction Induced Price Effects: Examining How Energy Efficiency Can Lower Prices for All

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Colin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hedman, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goldberg, Amelie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effects (DRIPE) as a real, quantifiable benefit of energy efficiency and demand response programs. DRIPE is a measurement of the value of demand reductions in terms of the decrease in wholesale energy prices, resulting in lower total expenditures on electricity or natural gas across a given grid. Crucially for policymakers and consumer advocates, DRIPE savings accrue not only to the subset of customers who consume less, but to all consumers. Rate-paying customers realize DRIPE savings when price reductions across an electricity or natural gas system are passed on to all retail customers as lower rates (depending upon regulation and market structure, residual savings may be wholly or partially retained by utilities). DRIPE savings, though seemingly small in terms of percent price reductions or dollars per household, can amount to hundreds of millions of dollars per year across entire states or grids. Therefore, accurately assessing DRIPE benefits can help to ensure appropriate programs are designed and implemented for energy efficiency measures. This paper reviews the existing knowledge and experience from select U.S. states regarding DRIPE (including New York and Ohio), and the potential for expanded application of the concept of DRIPE by regulators. Policymakers and public utility commissions have a critical role to play in setting the methodology for determining DRIPE, encouraging its capture by utilities, and allocating DRIPE benefits among utilities, various groups of customers, and/or society at large. While the methodologies for estimating DRIPE benefits are still being perfected, policymakers can follow the examples of states such as Maryland and Vermont in including conservative DRIPE estimates in their resource planning.

  15. Sensitivity of district heating system operation to heat demand reductions and electricity price variations: A Swedish example

    International Nuclear Information System (INIS)

    Åberg, M.; Widén, J.; Henning, D.

    2012-01-01

    In the future, district heating companies in Sweden must adapt to energy efficiency measures in buildings and variable fuel and electricity prices. Swedish district heating demands are expected to decrease by 1–2% per year and electricity price variations seem to be more unpredictable in the future. A cost-optimisation model of a Swedish local district heating system is constructed using the optimisation modelling tool MODEST. A scenario for heat demand changes due to increased energy efficiency in buildings, combined with the addition of new buildings, is studied along with a sensitivity analysis for electricity price variations. Despite fears that heat demand reductions will decrease co-generation of clean electricity and cause increased global emissions, the results show that anticipated heat demand changes do not increase the studied system's primary energy use or global CO 2 emissions. The results further indicate that the heat production plants and the fuels used within the system have crucial importance for the environmental impact of district heat use. Results also show that low seasonal variations in electricity price levels with relatively low winter prices promote the use of electric heat pumps. High winter prices on the other hand promote co-generation of heat and electricity in CHP plants. -- Highlights: ► A MODEST optimisation model of the Uppsala district heating system is built. ► The impact of heat demand change on heat and electricity production is examined. ► An electricity price level sensitivity analysis for district heating is performed. ► Heat demand changes do not increase the primary energy use or global CO 2 emissions. ► Low winter prices promote use of electric heat pumps for district heating production.

  16. Experimental analysis of flexibility change with different levels of power reduction by demand response activation on thermostat controlled loads

    DEFF Research Database (Denmark)

    Lakshmanan, Venkatachalam; Marinelli, Mattia; Hu, Junjie

    2017-01-01

    This paper studies the flexibility available with thermostatically controlled loads (TCLs) to provide power system services by demand response (DR) activation. Although the DR activation on TCLs can provide power system ancillary services, it is important to know how long such services can...... be provided for when different levels of power reduction are imposed. The flexibility change with different levels of power reduction is tested experimentally with domestic fridges used by real customers with unknown user interaction. The investigation quantifies the flexibility of household fridges...... and the impact of DR activation in terms of deviation in the average temperature. The maximum possible power reduction with the cluster of refrigerators is 67% and the available flexibility with the cluster of refrigerators is 10%. The resulting deviation in the average temperature is 14%....

  17. Density prediction and dimensionality reduction of mid-term electricity demand in China: A new semiparametric-based additive model

    International Nuclear Information System (INIS)

    Shao, Zhen; Yang, Shan-Lin; Gao, Fei

    2014-01-01

    Highlights: • A new stationary time series smoothing-based semiparametric model is established. • A novel semiparametric additive model based on piecewise smooth is proposed. • We model the uncertainty of data distribution for mid-term electricity forecasting. • We provide efficient long horizon simulation and extraction for external variables. • We provide stable and accurate density predictions for mid-term electricity demand. - Abstract: Accurate mid-term electricity demand forecasting is critical for efficient electric planning, budgeting and operating decisions. Mid-term electricity demand forecasting is notoriously complicated, since the demand is subject to a range of external drivers, such as climate change, economic development, which will exhibit monthly, seasonal, and annual complex variations. Conventional models are based on the assumption that original data is stable and normally distributed, which is generally insignificant in explaining actual demand pattern. This paper proposes a new semiparametric additive model that, in addition to considering the uncertainty of the data distribution, includes practical discussions covering the applications of the external variables. To effectively detach the multi-dimensional volatility of mid-term demand, a novel piecewise smooth method which allows reduction of the data dimensionality is developed. Besides, a semi-parametric procedure that makes use of bootstrap algorithm for density forecast and model estimation is presented. Two typical cases in China are presented to verify the effectiveness of the proposed methodology. The results suggest that both meteorological and economic variables play a critical role in mid-term electricity consumption prediction in China, while the extracted economic factor is adequate to reveal the potentially complex relationship between electricity consumption and economic fluctuation. Overall, the proposed model can be easily applied to mid-term demand forecasting, and

  18. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This multisectioned three-Volume report is responsive to the requirements of Contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program of computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. This section of volume III contains appendixes of information on load shedding determination, analysis, socio-economic study, contractual cross references, and definitions.

  19. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This three-volume report is responsive to the requirements of contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program for computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. The report consists of the following three volumes: Volume I: management overview; Volume II: methodology and technology; and Volume III; appendices.

  20. Demand for power in Calcutta Electricity Supply Corporation area

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, N

    1980-07-01

    Since the early 1970's there has been a continuous crisis of power supply to the Calcutta industrial region. Historical records show that only the peak demand has grown and has a potential for growth, which, with an unchanging base demand, results in a low load factor and consequently inefficient power system operation. Attempts to shift industrial loads by operating industrial plants during non-peak hours are described. Adverse economic conditions eliminated the need for extra working shifts. It is concluded that the power system supplying the Calcutta region has an insufficient peak load generating capacity and an uneconomic load curve and that stricter hourly schedules for power use by industries should be adhered to in order to minimize these problems. (LCL)

  1. Economic effects of peak oil

    International Nuclear Information System (INIS)

    Lutz, Christian; Lehr, Ulrike; Wiebe, Kirsten S.

    2012-01-01

    Assuming that global oil production peaked, this paper uses scenario analysis to show the economic effects of a possible supply shortage and corresponding rise in oil prices in the next decade on different sectors in Germany and other major economies such as the US, Japan, China, the OPEC or Russia. Due to the price-inelasticity of oil demand the supply shortage leads to a sharp increase in oil prices in the second scenario, with high effects on GDP comparable to the magnitude of the global financial crises in 2008/09. Oil exporting countries benefit from high oil prices, whereas oil importing countries are negatively affected. Generally, the effects in the third scenario are significantly smaller than in the second, showing that energy efficiency measures and the switch to renewable energy sources decreases the countries' dependence on oil imports and hence reduces their vulnerability to oil price shocks on the world market. - Highlights: ► National and sectoral economic effects of peak oil until 2020 are modelled. ► The price elasticity of oil demand is low resulting in high price fluctuations. ► Oil shortage strongly affects transport and indirectly all other sectors. ► Global macroeconomic effects are comparable to the 2008/2009 crisis. ► Country effects depend on oil imports and productivity, and economic structures.

  2. An Enhanced System Architecture for Optimized Demand Side Management in Smart Grid

    Directory of Open Access Journals (Sweden)

    Anzar Mahmood

    2016-04-01

    Full Text Available Demand Side Management (DSM through optimization of home energy consumption in the smart grid environment is now one of the well-known research areas. Appliance scheduling has been done through many different algorithms to reduce peak load and, consequently, the Peak to Average Ratio (PAR. This paper presents a Comprehensive Home Energy Management Architecture (CHEMA with integration of multiple appliance scheduling options and enhanced load categorization in a smart grid environment. The CHEMA model consists of six layers and has been modeled in Simulink with an embedded MATLAB code. A single Knapsack optimization technique is used for scheduling and four different cases of cost reduction are modeled at the second layer of CHEMA. Fault identification and electricity theft control have also been added in CHEMA. Furthermore, carbon footprint calculations have been incorporated in order to make the users aware of environmental concerns. Simulation results prove the effectiveness of the proposed model.

  3. Climate change and energy demand

    International Nuclear Information System (INIS)

    Hengeveld, H.G.

    1991-01-01

    Climate and weather events affect energy demand in most economic sectors. Linear relationships exist between consumption and heating degree days, and peak electricity demand increases significantly during heat waves. The relative magnitudes of demand changes for a two times carbon dioxide concentration scenario are tabulated, illustrating heating degree days and cooling degree days for 5 Prairie locations. Irrigation, water management, crop seeding and harvesting and weed control are examples of climate-dependent agricultural activities involving significant energy use. The variability of summer season liquid fuel use in the agricultural sector in the Prairie provinces from 1984-1989 shows a relationship between agricultural energy use and regional climate fluctuations. 4 refs., 2 figs., 1 tab

  4. A Midwest utility's perspective of DSM [demand-side management]: Balancing the needs of customers, shareholders and the environment

    International Nuclear Information System (INIS)

    Collins, G.F.

    1990-01-01

    PSI Energy, a predominately coal-burning Indiana electric utility, is very concerned about the environment and is using demand-side management (DSM) as part of a strategy to balance the sometimes conflicting interests of the environment, the economy, customers and shareholders. Faced with slow growth within its service territory, an abundance of low-cost, high sulfur coal burning baseload capacity, massive future expenditures for acid rain mitigation and a weakened financial state due to a cancelled nuclear project, PSI Energy has taken a novel approach to preserving value for customers, shareholders, the economy and environment. To accomodate Indiana's goal of least cost utility planning, PSI initiated an all-source bidding program in which it solicited bids for peaking capacity or the equivalent. Four parallel but separate solicitations were pursued: combustion turbine manufacturers for PSI owned and operated capacity, other utilities and non-utility generators for purchased power and third parties for demand-side management. PSI's philosophy with respect to bidding can be expressed as: simplicity, flexibility, creativity, partnerships, expeditious and fairness. There is a minimum bid of 5 MW of summer peak demand reduction, and the minimum contract length is 10 years. The entire 550 MW capacity block available to be filled in the program is open to demand-side resources. The ten major evaluation criteria involved in the program are: price, sponsor qualifications, operational impact, marketing plan, technology, financing plan, verification and measurement, form of security, project management plan, and project cost estimates

  5. Strategies for Demand Response in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  6. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study.

    Science.gov (United States)

    Rankin, Jeffery W; Kwarciak, Andrew M; Richter, W Mark; Neptune, Richard R

    2012-11-01

    The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Multiscale peak detection in wavelet space.

    Science.gov (United States)

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-07

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  8. Roadway network productivity assessment : system-wide analysis under variant travel demand

    Science.gov (United States)

    2008-11-01

    The analysis documented in this report examines the hypothesis that the system-wide productivity of a metropolitan freeway system in peak periods is higher in moderate travel demand conditions than in excessive travel demand conditions. The approach ...

  9. Impacts of Demand-Side Resources on Electric Transmission Planning

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanstad, Alan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies were independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.

  10. Conceptual framework for load controlling : with demand reduction bidding & consumer retention

    NARCIS (Netherlands)

    Babar, M.; Ahamed, I.; Al-Ammar, E.A.

    2013-01-01

    Advancement in demand side management strategies enables smart grid to cope with the increasing energy demand and provide economic benefit to all of its stakeholders. Moreover, emerging concept of smart pricing and advances in load control and communication generate new business opportunities as a

  11. Measuring the financial impact of demand response for electricity retailers

    International Nuclear Information System (INIS)

    Feuerriegel, Stefan; Neumann, Dirk

    2014-01-01

    Due to the integration of intermittent resources of power generation such as wind and solar, the amount of supplied electricity will exhibit unprecedented fluctuations. Electricity retailers can partially meet the challenge of matching demand and volatile supply by shifting power demand according to the fluctuating supply side. The necessary technology infrastructure such as Advanced Metering Infrastructures for this so-called Demand Response (DR) has advanced. However, little is known about the economic dimension and further effort is strongly needed to realistically quantify the financial impact. To succeed in this goal, we derive an optimization problem that minimizes procurement costs of an electricity retailer in order to control Demand Response usage. The evaluation with historic data shows that cost volatility can be reduced by 7.74%; peak costs drop by 14.35%; and expenditures of retailers can be significantly decreased by 3.52%. - Highlights: • Ex post simulation to quantify financial impacts of demand response. • Effects of Demand Response are simulated based on real-world data. • Procurement costs of an average electricity retailer decrease by 3.4%. • Retailers can cut hourly peak expenditures by 12.1%. • Cost volatility is reduced by 12.2%

  12. Spatial peak-load pricing

    International Nuclear Information System (INIS)

    Arellano, M. Soledad; Serra, Pablo

    2007-01-01

    This article extends the traditional electricity peak-load pricing model to include transmission costs. In the context of a two-node, two-technology electric power system, where suppliers face inelastic demand, we show that when the marginal plant is located at the energy-importing center, generators located away from that center should pay the marginal capacity transmission cost; otherwise, consumers should bear this cost through capacity payments. Since electric power transmission is a natural monopoly, marginal-cost pricing does not fully cover costs. We propose distributing the revenue deficit among users in proportion to the surplus they derive from the service priced at marginal cost. (Author)

  13. Can parked cars and carbon taxes create a profit? The economics of vehicle-to-grid energy storage for peak reduction

    International Nuclear Information System (INIS)

    Freeman, Gerad M.; Drennen, Thomas E.; White, Andrew D.

    2017-01-01

    This article discusses a five-year, hourly economic model of vehicle-to-grid energy storage for peak reduction. Several scenarios are modeled for a participant using a 60 kW-h capacity battery electric vehicle, such as the Tesla Model S or Chevrolet Bolt, in the New York City area using pricing data for the years 2010 through 2014. Sensitivity analysis identifies that variables such as one-way power efficiency and battery lifetime are the major factors influencing the economics of selling electricity back to the grid. Although it is shown that vehicle-to-grid electricity sales can create positive economic benefits, the magnitudes are small due to the cost of added degradation to the vehicle's battery and are not likely to entice the average electric vehicle owner to participate. However, over the five-year period, the potential economic benefits of this technology have shown a promising trend. A carbon dioxide tax is examined as a potential policy measure to encourage vehicle-to-grid adoption. The implementation of a carbon dioxide tax is shown to create additional opportunities for economic gain but, these benefits are dependent on the grid's electricity generation portfolio. Added benefits from the tax are also small in magnitude considering current international carbon prices. - Highlights: • Three scenarios of vehicle-to-grid storage for peak reduction are proposed. • Average annual savings generated by vehicle-to-grid are small but positive. • Savings have remained positive or increased during 2010–2014. • Moderate carbon tax policies can generate extra savings, but they are small.

  14. Impact of Smart Grid Technologies on Peak Load to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The IEA's Smart Grids Technology Roadmap identified five global trends that could be effectively addressed by deploying smart grids. These are: increasing peak load (the maximum power that the grid delivers during peak hours), rising electricity consumption, electrification of transport, deployment of variable generation technologies (e.g. wind and solar PV) and ageing infrastructure. Along with this roadmap, a new working paper -- Impact of Smart Grid Technologies on Peak Load to 2050 -- develops a methodology to estimate the evolution of peak load until 2050. It also analyses the impact of smart grid technologies in reducing peak load for four key regions; OECD North America, OECD Europe, OECD Pacific and China. This working paper is a first IEA effort in an evolving modelling process of smart grids that is considering demand response in residential and commercial sectors as well as the integration of electric vehicles.

  15. Electricity demand savings from distributed solar photovoltaics

    International Nuclear Information System (INIS)

    Glassmire, John; Komor, Paul; Lilienthal, Peter

    2012-01-01

    Due largely to recent dramatic cost reductions, photovoltaics (PVs) are poised to make a significant contribution to electricity supply. In particular, distributed applications of PV on rooftops, brownfields, and other similar applications – hold great technical potential. In order for this potential to be realized, however, PV must be “cost-effective”—that is, it must be sufficiently financially appealing to attract large amounts of investment capital. Electricity costs for most commercial and industrial end-users come in two forms: consumption (kWh) and demand (kW). Although rates vary, for a typical larger commercial or industrial user, demand charges account for about ∼40% of total electricity costs. This paper uses a case study of PV on a large university campus to reveal that even very large PV installations will often provide very small demand reductions. As a result, it will be very difficult for PV to demonstrate cost-effectiveness for large commercial customers, even if PV costs continue to drop. If policymakers would like PV to play a significant role in electricity generation – for economic development, carbon reduction, or other reasons – then rate structures will need significant adjustment, or improved distributed storage technologies will be needed. - Highlights: ► Demand charges typically account for ∼40% of total electricity costs for larger electricity users. ► Distributed photovoltaic (PV) systems provide minimal demand charge reductions. ► As a result, PVs are not a financially viable alternative to centralized electricity. ► Electricity rate structures will need changes for PV to be a major electricity source.

  16. Robust peak-shaving for a neighborhood with electric vehicles

    NARCIS (Netherlands)

    Gerards, Marco Egbertus Theodorus; Hurink, Johann L.

    2016-01-01

    Demand Side Management (DSM) is a popular approach for grid-aware peak-shaving. The most commonly used DSM methods either have no look ahead feature and risk deploying flexibility too early, or they plan ahead using predictions, which are in general not very reliable. To counter this, a DSM approach

  17. The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Brendan J [ORNL

    2006-07-01

    Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second

  18. An analytical approach to activating demand elasticity with a demand response mechanism

    International Nuclear Information System (INIS)

    Clastres, Cedric; Khalfallah, Haikel

    2015-01-01

    The aim of this work is to demonstrate analytically the conditions under which activating the elasticity of consumer demand could benefit social welfare. We have developed an analytical equilibrium model to quantify the effect of deploying demand response on social welfare and energy trade. The novelty of this research is that it demonstrates the existence of an optimal area for the price signal in which demand response enhances social welfare. This optimal area is negatively correlated to the degree of competitiveness of generation technologies and the market size of the system. In particular, it should be noted that the value of un-served energy or energy reduction which the producers could lose from such a demand response scheme would limit its effectiveness. This constraint is even greater if energy trade between countries is limited. Finally, we have demonstrated scope for more aggressive demand response, when only considering the impact in terms of consumer surplus. (authors)

  19. Measurement of biological oxygen demand sandy beaches

    African Journals Online (AJOL)

    Measurements of biological oxygen demand in a sandy beach using conventional .... counting the cells present in a sample of aged seawater and comparing this with .... This activity peaked at 71 % above the undisturbed level after 16 hours.

  20. Exploring Demand Charge Savings from Commercial Solar

    Energy Technology Data Exchange (ETDEWEB)

    Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-07-31

    Commercial retail electricity rates commonly include a demand charge component, based on some measure of the customer’s peak demand. Customer-sited solar PV can potentially reduce demand charges, but the magnitude of these savings can be difficult to predict, given variations in demand charge designs, customer loads, and PV generation profiles. Moreover, depending on the circumstances, demand charges from solar may or may not align well with associated utility cost savings. Lawrence Berkeley National Laboratory (Berkeley Lab) and the National Renewable Energy Laboratory (NREL) are collaborating in a series of studies to understand how solar PV can reduce demand charge levels for a variety of customer types and demand charges designs. Previous work focused on residential customs with solar. This study, instead, focuses on commercial customers and seeks to understand the extent and conditions under which rooftop can solar reduce commercial demand charges. To answer these questions, we simulate demand charge savings for a broad range of commercial customer types, demand charge designs, locations, and PV system characteristics. This particular analysis does not include storage, but a subsequent analysis in this series will evaluate demand charge savings for commercial customers with solar and storage.

  1. Opportunities and Challenges of Demand Response in Active Distribution Grids

    DEFF Research Database (Denmark)

    Ponnaganti, Pavani; Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2018-01-01

    In power systems the installed generation capacity must exceed the annual peak demand, even though some capacity is kept idle most of the time. However, if it is uneconomical or not feasible to augment a sufficient capacity, the demand might exceed the available capacity. This mandates the system...

  2. Energy demand in the Norwegian building stock. Scenarios on potential reduction

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor; Hestnes, Anne Grete [Department of Architectural Design, History and Technology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Wachenfeldt, Bjoern Jensen [SINTEF Building and Infrastructure, 7465 Trondheim (Norway)

    2009-05-15

    A model has been developed for studying the effect of three hypothetical approaches in reducing electricity and energy demand in the Norwegian building stock: wide diffusion of thermal carriers, heat pumps and conservation measures, respectively. Combinations of these are also considered. The model has a demand side perspective, considers both residential and service sectors, and calculates energy flows from net to delivered energy. Energy demand is given by the product of activity and intensity matrices. The activity levels are defined for the stock and the new construction, renovation and demolition flows. The intensity properties are defined in archetypes, and are the result of different energy class and heating carriers share options. The scenarios are shaped by combining the activity flows with different archetypes. The results show that adopting conservation measures on a large scale does allow reducing both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlight the importance of making a clear distinction between the assumptions on intensity and activity levels. (author)

  3. Energy demand in the Norwegian building stock: Scenarios on potential reduction

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor [Department of Architectural Design, History and Technology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)], E-mail: igor.sartori@sintef.no; Wachenfeldt, Bjorn Jensen [SINTEF Building and Infrastructure, 7465 Trondheim (Norway); Hestnes, Anne Grete [Department of Architectural Design, History and Technology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)

    2009-05-15

    A model has been developed for studying the effect of three hypothetical approaches in reducing electricity and energy demand in the Norwegian building stock: wide diffusion of thermal carriers, heat pumps and conservation measures, respectively. Combinations of these are also considered. The model has a demand side perspective, considers both residential and service sectors, and calculates energy flows from net to delivered energy. Energy demand is given by the product of activity and intensity matrices. The activity levels are defined for the stock and the new construction, renovation and demolition flows. The intensity properties are defined in archetypes, and are the result of different energy class and heating carriers share options. The scenarios are shaped by combining the activity flows with different archetypes. The results show that adopting conservation measures on a large scale does allow reducing both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlight the importance of making a clear distinction between the assumptions on intensity and activity levels.

  4. Energy demand in the Norwegian building stock: Scenarios on potential reduction

    International Nuclear Information System (INIS)

    Sartori, Igor; Wachenfeldt, Bjorn Jensen; Hestnes, Anne Grete

    2009-01-01

    A model has been developed for studying the effect of three hypothetical approaches in reducing electricity and energy demand in the Norwegian building stock: wide diffusion of thermal carriers, heat pumps and conservation measures, respectively. Combinations of these are also considered. The model has a demand side perspective, considers both residential and service sectors, and calculates energy flows from net to delivered energy. Energy demand is given by the product of activity and intensity matrices. The activity levels are defined for the stock and the new construction, renovation and demolition flows. The intensity properties are defined in archetypes, and are the result of different energy class and heating carriers share options. The scenarios are shaped by combining the activity flows with different archetypes. The results show that adopting conservation measures on a large scale does allow reducing both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlight the importance of making a clear distinction between the assumptions on intensity and activity levels.

  5. Air pollution impacts from demand-side management

    International Nuclear Information System (INIS)

    Hall, D.C.; Sandii Win, M.; Hall, J.V.

    1995-01-01

    Air-polluting emission rates and energy-efficiency ratings vary widely among power plants, depending on location, age and whether the power plant is repowered. Traditional regulations require installation of specified emission control equipment that varies among power plants. These regulations do not specify that utilities first dispatch the cleanest power plants as demand varies from peak to off-peak periods. This empirical analysis shows, for 2 years out of 20, that demand-side management (DSM) programs increase air pollution. One reason for this result is that regulations require installation of specific emission-control technology but do not provide the incentive to take actual emissions or their air quality impacts into account when operating the system. For certain types of air pollutants and in some regions, regulatory programs now include markets for tradable emission credits. Such programs may alter this incentive. (author)

  6. Peak reduction and clipping mitigation in OFDM by augmented compressive sensing

    KAUST Repository

    Al-Safadi, Ebrahim B.

    2012-07-01

    This work establishes the design, analysis, and fine-tuning of a peak-to-average-power-ratio (PAPR) reducing system, based on compressed sensing (CS) at the receiver of a peak-reducing sparse clipper applied to an orthogonal frequency-division multiplexing (OFDM) signal at the transmitter. By exploiting the sparsity of clipping events in the time domain relative to a predefined clipping threshold, the method depends on partially observing the frequency content of the clipping distortion over reserved tones to estimate the remaining distortion. The approach has the advantage of eliminating the computational complexity at the transmitter and reducing the overall complexity of the system compared to previous methods which incorporate pilots to cancel nonlinear distortion. Data-based augmented CS methods are also proposed that draw upon available phase and support information from data tones for enhanced estimation and cancelation of clipping noise. This enables signal recovery under more severe clipping scenarios and hence lower PAPR can be achieved compared to conventional CS techniques. © 2012 IEEE.

  7. Peak reduction and clipping mitigation in OFDM by augmented compressive sensing

    KAUST Repository

    Al-Safadi, Ebrahim B.; Al-Naffouri, Tareq Y.

    2012-01-01

    This work establishes the design, analysis, and fine-tuning of a peak-to-average-power-ratio (PAPR) reducing system, based on compressed sensing (CS) at the receiver of a peak-reducing sparse clipper applied to an orthogonal frequency-division multiplexing (OFDM) signal at the transmitter. By exploiting the sparsity of clipping events in the time domain relative to a predefined clipping threshold, the method depends on partially observing the frequency content of the clipping distortion over reserved tones to estimate the remaining distortion. The approach has the advantage of eliminating the computational complexity at the transmitter and reducing the overall complexity of the system compared to previous methods which incorporate pilots to cancel nonlinear distortion. Data-based augmented CS methods are also proposed that draw upon available phase and support information from data tones for enhanced estimation and cancelation of clipping noise. This enables signal recovery under more severe clipping scenarios and hence lower PAPR can be achieved compared to conventional CS techniques. © 2012 IEEE.

  8. Utility Sector Impacts of Reduced Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  9. Gas inventory charges and peak-load reliability

    International Nuclear Information System (INIS)

    Lyon, T.P.; Hackett, S.C.

    1990-01-01

    The natural gas industry has historically been organized through a vertical sequence of long-term contracts, the first between wellhead producer and pipeline, and the second between pipeline and local distribution company (LDC). These long-term contracts contained provisions, variously called take-or-pay (TOP) clauses or minimum bills, that required buyers to pay for a minimum level of supply in all later time periods, regardless of the buyers' actual demand requirements. As a result, the pipeline's purchase obligation was typically offset by the distributor's purchase obligation, so that the pipeline essentially passed the minimum purchase requirement directly from producer to distributor. The authors focus on the role GICs (Gas Inventory Charges) can play in the provision of peak-load reliability, and the effects of GICs and their treatment by regulators on pipeline system design. In particular, they compare the various options available to local distribution companies (LDCs) for providing peak-load reliability, emphasizing the alternative downstream storage. They find that the ratemaking decisions of state regulators may distort LDC choices between different gas supply options, inducing what may be an inefficient demand for new storage facilities. GICs, when competitively prices, offer state regulators a means of circumventing these distortions

  10. Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Yun-A Jo

    2016-12-01

    Full Text Available An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs. We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV. We also found that peak luminosity is positively correlated with peak energy.

  11. Mechanical demands of kettlebell swing exercise.

    Science.gov (United States)

    Lake, Jason P; Lauder, Mike A

    2012-12-01

    The aims of this study were to establish mechanical demands of kettlebell swing exercise and provide context by comparing them to mechanical demands of back squat and jump squat exercise. Sixteen men performed 2 sets of 10 swings with 16, 24, and 32 kg, 2 back squats with 20, 40, 60, and 80% 1-repetition maximum (1RM), and 2 jump squats with 0, 20, 40, and 60% 1RM. Sagittal plane motion and ground reaction forces (GRFs) were recorded during swing performance, and GRFs were recorded during back and jump squat performances. Net impulse, and peak and mean propulsion phase force and power applied to the center of mass (CM) were obtained from GRF data and kettlebell displacement and velocity from motion data. The results of repeated measures analysis of variance showed that all swing CM measures were maximized during the 32-kg condition but that velocity of the kettlebell was maximized during the 16-kg condition; displacement was consistent across different loads. Peak and mean force tended to be greater during back and jump squat performances, but swing peak and mean power were greater than back squat power and largely comparable with jump squat power. However, the highest net impulse was recorded during swing exercise with 32 kg (276.1 ± 45.3 N·s vs. 60% 1RM back squat: 182.8 ± 43.1 N·s, and 40% jump squat: 231.3 ± 47.1 N·s). These findings indicate a large mechanical demand during swing exercise that could make swing exercise a useful addition to strength and conditioning programs that aim to develop the ability to rapidly apply force.

  12. Effects of demand elasticity and price variation on load profile

    NARCIS (Netherlands)

    Maqbool, S.D.; Babar, M.; Al-Ammar, E.A.

    2011-01-01

    Optimizing the operation of power generation systems is one of the core objectives of Smart Grid. The area of Smart Grid focuses on this issue is Demand Response (DR). DR is an essential tool to limit the demand to flatten spikes. This can reduce the need of peak power generation units which

  13. A future Demand Side Management (DSM) opportunity for utility as variable renewable penetrate scale up using agriculture.

    Science.gov (United States)

    Ines, A.; Bhattacharjee, A.; Modi, V.; Robertson, A. W.; Lall, U.; Kocaman Ayse, S.; Chaudhary, S.; Kumar, A.; Ganapathy, A.; Kumar, A.; Mishra, V.

    2015-12-01

    Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as smart metering, incentive based schemes, payments for turning off loads or rescheduling loads. Usually, the goal of demand side management is to encourage the consumer to use less power during periods of peak demand, or to move the time of energy use to off-peak times. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need for investments in networks and/or power plants for meeting peak demands. Electricity use can vary dramatically on short and medium time frames, and the pricing system may not reflect the instantaneous cost as additional higher-cost that are brought on-line. In addition, the capacity or willingness of electricity consumers to adjust to prices by altering elasticity of demand may be low, particularly over short time frames. In the scenario of Indian grid setup, the retail customers do not follow real-time pricing and it is difficult to incentivize the utility companies for continuing the peak demand supply. A question for the future is how deeper penetration of renewable will be handled? This is a challenging problem since one has to deal with high variability, while managing loss of load probabilities. In the case of managing the peak demand using agriculture, in the future as smart metering matures with automatic turn on/off for a pump, it will become possible to provide an ensured amount of water or energy to the farmer while keeping the grid energized for 24 hours. Supply scenarios will include the possibility of much larger penetration of solar and wind into the grid. While, in absolute terms these sources are small contributors, their role will inevitably grow but DSM using agriculture could help reduce the capital cost. The other option is of advancing or delaying pump operating cycle even by several hours, will still ensure

  14. Demand side resource operation on the Irish power system with high wind power penetration

    International Nuclear Information System (INIS)

    Keane, A.; Tuohy, A.; Meibom, P.; Denny, E.; Flynn, D.; Mullane, A.; O'Malley, M.

    2011-01-01

    The utilisation of demand side resources is set to increase over the coming years with the advent of advanced metering infrastructure, home area networks and the promotion of increased energy efficiency. Demand side resources are proposed as an energy resource that, through aggregation, can form part of the power system plant mix and contribute to the flexible operation of a power system. A model for demand side resources is proposed here that captures its key characteristics for commitment and dispatch calculations. The model is tested on the all island Irish power system, and the operation of the model is simulated over one year in both a stochastic and deterministic mode, to illustrate the impact of wind and load uncertainty. The results illustrate that demand side resources can contribute to the efficient, flexible operation of systems with high penetrations of wind by replacing some of the functions of conventional peaking plant. Demand side resources are also shown to be capable of improving the reliability of the system, with reserve capability identified as a key requirement in this respect. - Highlights: → Demand side resource model presented for use in unit commitment and dispatch calculations. → Benefits of demand side aggregation demonstrated specifically as a peaking unit and provider of reserve. → Potential to displace or defer construction of conventional peaking units.

  15. Demand response in U.S. electricity markets: Empirical evidence

    International Nuclear Information System (INIS)

    Cappers, Peter; Goldman, Charles; Kathan, David

    2010-01-01

    Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in existing wholesale and retail DR programs were capable of providing ∝38,000 MW of potential peak load reductions in the United States. Participants in organized wholesale market DR programs, though, have historically overestimated their likely performance during declared curtailments events, but appear to be getting better as they and their agents gain experience. In places with less developed organized wholesale market DR programs, utilities are learning how to create more flexible DR resources by adapting legacy load management programs to fit into existing wholesale market constructs. Overall, the development of open and organized wholesale markets coupled with direct policy support by the Federal Energy Regulatory Commission has facilitated new entry by curtailment service providers, which has likely expanded the demand response industry and led to product and service innovation. (author)

  16. What is the Impact of Utility Demand Charges on a DCFC host

    International Nuclear Information System (INIS)

    Francfort, James Edward

    2015-01-01

    The PEV Electric Vehicle Supply Equipment (EVSE) delivered by The EV Project included both AC Level 2 and DCFC units. Over 100 of these dual-port Blink DC fast chargers were deployed by The EV Project. These DCFCs were installed in workplaces and in publicly accessible locations near traffic hubs, retail centers, parking lots, restaurants, and similar locations. The Blink DCFC is capable of charging at power up to 60 kW. Its dual-port design sequences the charge from one port to the other, delivering power to only one of two vehicles connected at a time. The actual power delivered through a port is determined by the PEV's on-board battery management system (BMS). Both the power and the total energy used to recharge a PEV can represent a significant cost for the charging site host. Many electric utilities impose fees for power demand as part of their commercial rate structure. The demand charge incurred by a customer is related to the peak power used during a monthly billing cycle. This is in contrast to the cumulative total energy usage that is the more familiar utility charge seen for most residential services. A demand charge is typically assessed for the highest average power over any 15 minute interval during the monthly billing cycle. One objective of The EV Project was to identify and elucidate the motivations and barriers to potential DCFC site hosts. The application of electric utility demand charges is one such potential barrier. This subject was introduced in the paper: DC Fast Charge - Demand Charge Reduction1. It discussed demand charge impact in general terms in order to focus on potential mitigation actions. This paper identifies specific cases in order to quantify the impact of demand charges on EV Project DCFC hosts.

  17. What is the Impact of Utility Demand Charges on a DCFC host

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, James Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The PEV Electric Vehicle Supply Equipment (EVSE) delivered by The EV Project included both AC Level 2 and DCFC units. Over 100 of these dual-port Blink DC fast chargers were deployed by The EV Project. These DCFCs were installed in workplaces and in publicly accessible locations near traffic hubs, retail centers, parking lots, restaurants, and similar locations. The Blink DCFC is capable of charging at power up to 60 kW. Its dual-port design sequences the charge from one port to the other, delivering power to only one of two vehicles connected at a time. The actual power delivered through a port is determined by the PEV’s on-board battery management system (BMS). Both the power and the total energy used to recharge a PEV can represent a significant cost for the charging site host. Many electric utilities impose fees for power demand as part of their commercial rate structure. The demand charge incurred by a customer is related to the peak power used during a monthly billing cycle. This is in contrast to the cumulative total energy usage that is the more familiar utility charge seen for most residential services. A demand charge is typically assessed for the highest average power over any 15 minute interval during the monthly billing cycle. One objective of The EV Project was to identify and elucidate the motivations and barriers to potential DCFC site hosts. The application of electric utility demand charges is one such potential barrier. This subject was introduced in the paper: DC Fast Charge - Demand Charge Reduction1. It discussed demand charge impact in general terms in order to focus on potential mitigation actions. This paper identifies specific cases in order to quantify the impact of demand charges on EV Project DCFC hosts.

  18. Towards Efficient Energy Management of Smart Buildings Exploiting Heuristic Optimization with Real Time and Critical Peak Pricing Schemes

    Directory of Open Access Journals (Sweden)

    Sheraz Aslam

    2017-12-01

    Full Text Available The smart grid plays a vital role in decreasing electricity cost through Demand Side Management (DSM. Smart homes, a part of the smart grid, contribute greatly to minimizing electricity consumption cost via scheduling home appliances. However, user waiting time increases due to the scheduling of home appliances. This scheduling problem is the motivation to find an optimal solution that could minimize the electricity cost and Peak to Average Ratio (PAR with minimum user waiting time. There are many studies on Home Energy Management (HEM for cost minimization and peak load reduction. However, none of the systems gave sufficient attention to tackle multiple parameters (i.e., electricity cost and peak load reduction at the same time as user waiting time was minimum for residential consumers with multiple homes. Hence, in this work, we propose an efficient HEM scheme using the well-known meta-heuristic Genetic Algorithm (GA, the recently developed Cuckoo Search Optimization Algorithm (CSOA and the Crow Search Algorithm (CSA, which can be used for electricity cost and peak load alleviation with minimum user waiting time. The integration of a smart Electricity Storage System (ESS is also taken into account for more efficient operation of the Home Energy Management System (HEMS. Furthermore, we took the real-time electricity consumption pattern for every residence, i.e., every home has its own living pattern. The proposed scheme is implemented in a smart building; comprised of thirty smart homes (apartments, Real-Time Pricing (RTP and Critical Peak Pricing (CPP signals are examined in terms of electricity cost estimation for both a single smart home and a smart building. In addition, feasible regions are presented for single and multiple smart homes, which show the relationship among the electricity cost, electricity consumption and user waiting time. Experimental results demonstrate the effectiveness of our proposed scheme for single and multiple smart

  19. Stochastic–multiobjective market equilibrium analysis of a demand response program in energy market under uncertainty

    International Nuclear Information System (INIS)

    Hu, Ming-Che; Lu, Su-Ying; Chen, Yen-Haw

    2016-01-01

    Highlights: • Analyze the impact of a demand response program under uncertainty. • Stochastic Nash–Cournot competition model is formulated. • Case study of the Taiwanese electric power market is conducted. • Demand response decreases power price, generation, and emissions. • Demand uncertainty increases energy price and supply risk in the results. - Abstract: In the electricity market, demand response programs are designed to shift peak demand and enhance system reliability. A demand response program can reduce peak energy demand, power transmission congestion, or high energy-price conditions by changing consumption patterns. The purpose of this research is to analyze the impact of a demand response program in the energy market, under demand uncertainty. A stochastic–multiobjective Nash–Cournot competition model is formulated to simulate demand response in an uncertain energy market. Then, Karush–Kuhn–Tucker optimality conditions and a linear complementarity problem are derived for the stochastic Nash–Cournot model. Accordingly, the linear complementarity problem is solved and its stochastic market equilibrium solution is determined by using a general algebraic modeling system. Additionally, the case of the Taiwanese electric power market is taken up here, and the results show that a demand response program is capable of reducing peak energy consumption, energy price, and carbon dioxide emissions. The results show that demand response program decreases electricity price by 2–10%, total electricity generation by 0.5–2%, and carbon dioxide emissions by 0.5–2.5% in the Taiwanese power market. In the simulation, demand uncertainty leads to an 2–7% increase in energy price and supply risk in the market. Additionally, tradeoffs between cost and carbon dioxide emissions are presented.

  20. Demand side management in South Africa at industrial residence water heating systems using in line water heating methodology

    International Nuclear Information System (INIS)

    Rankin, R.; Rousseau, P.G.

    2008-01-01

    The South African electrical utility, ESKOM, currently focuses its demand side management (DSM) initiatives on controlling electrical load between 18:00 and 20:00 each day, which is the utility's peak demand period. Funding is provided to energy service companies (ESCo's) to implement projects that can achieve load shifting out of this period. This paper describes how an improved in line water heating concept developed in previous studies was implemented into several real life industrial sanitary water heating systems to obtain the DSM load shift required by ESKOM. Measurements from a selection of these plants are provided to illustrate the significant load reductions that are being achieved during 18:00-20:00. The measured results also show that the peak load reduction is achieved without adversely affecting the availability of sufficient hot water to the persons using the showering and washing facilities served by the water heating system. A very good correlation also exists between these measured results and simulations that were done beforehand to predict the DSM potential of the project. The in line water heater concept provides an improved solution for DSM at sanitary water heating systems due to the stratified manner in which hot water is supplied to the tanks. This provides an improved hot water supply to users when compared to conventional in tank heating systems, even with load shifting being done. It also improves the storage efficiency of a plant, thereby allowing the available storage capacity of a plant to be utilized to its full extent for load shifting purposes

  1. IDENTIFICATIONS PEAK HOURS ON INTERSECTIONS SET IN BIELSKO-BIAŁA CITY

    Directory of Open Access Journals (Sweden)

    Marcin KŁOS

    2016-03-01

    Full Text Available Traffic flow in cities is usually examined locally. This method is not effective for through traffic analysis. The paper discusses the problem of determining peak traffic hours taking into account vehicle distributions. Peak hours represent time periods of traffic flow which demand special treatment by traffic control systems. This is particularly important in the case of ITS. High values of traffic flow require relieving actions not only at the junctions but preferably along the transit routes. The north-south transit route in Bielsko-Biała was chosen for analysis. Instead of the usual two distinct peaks it is determined that the traffic flow is characterised by five peaks. This pattern is the result of specific location of the route, which links residential areas, industrial zones and shopping centres besides carrying through traffic. This multi peak graph more accurately models the traffic flow.

  2. The Potential for Energy Storage to Provide Peaking Capacity in California under Increased Penetration of Solar Photovoltaics: Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-12

    Opportunities to provide peaking capacity with low-cost energy storage are emerging. But adding storage changes the ability of subsequent storage additions to meet peak demand. Increasing photovoltaic (PV) deployment also affects storage's ability to provide peak capacity. This study examines storage's potential to replace conventional peak capacity in California.

  3. Application of direct peak analysis to energy dispersive x-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Nielson, K.K.

    1977-07-01

    A modified Covell method for direct peak analysis has been applied to energy dispersive x-ray fluorescence spectra. The method is background independent and is well-suited to computerized data reduction. It provides acceptable precision, minimizes errors from instrumental gain shift, and permits peak overlap correction. Peak overlap errors exhibit both positive and negative nodes as a function of peak separation distance, and are corrected using concentration ratios determined from thin, single-element standards. Peak precisions and overlaps are evaluated as a function of window width to aid in width selection. Least-square polynomial smoothing prior to peak analysis significantly improves peak area precisions without significantly affecting their accuracies

  4. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

    2010-05-14

    California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

  5. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.

    Science.gov (United States)

    Foley, Joe P; Blackney, Donna M; Ennis, Erin J

    2017-11-10

    The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum

  6. Electrolytic hydrogen production at off-peak consumption and his utilization as energy vector at peak consumption through use of fuel cells; Producao de hidrogenio eletrolitico nos horarios fora de ponta e sua utilizacao como vetor energetico nos horarios de ponta atraves do uso de celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Gambetta, Francielle [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: fgambetta@fem.unicamp.br; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica. Lab. de Hidrogenio

    2008-07-01

    Due the fact that consumers have different demand, depending on the pace of economic activities and their daily habits of consumption, there is a different electrical demand throughout the day. Demand, in general, is minimal during the morning and it grows with the move for hours to reach peak consumption between 18:00 and 22:00, then turning to fall. It is old the idea of storing electricity produced in off-peak for its consumption in peak hours. To store large amounts of electrical power is required its conversion into some other form of energy, since it is impossible to store electrical energy as such in large quantities. One way of storing electricity is in the form of hydrogen produced by electrolysis of water which then can be stored, purified and converted into electricity through fuel cells. When there is an increase in demand for electricity, there is a need to expand the supply of energy, which means investments in generation, transmission and distribution. This work was performed a preliminary analysis of the production of electrolytic hydrogen in hours of low demand and its use in the generation of electricity in peak hours, making use of the fuel cells, so that to a certain limit value of increased electricity demand, there is no need for expansion of supply of Foz do Iguacu/PR. Moreover, at this work, the ability to harness the heat generated in fuel cells for heating water in homes was considered. (author)

  7. An On-Demand Retrieval Method Based on Hybrid NoSQL for Multi-Layer Image Tiles in Disaster Reduction Visualization

    Directory of Open Access Journals (Sweden)

    Linyao Qiu

    2017-01-01

    Full Text Available Monitoring, response, mitigation and damage assessment of disasters places a wide variety of demands on the spatial and temporal resolutions of remote sensing images. Images are divided into tile pyramids by data sources or resolutions and published as independent image services for visualization. A disaster-affected area is commonly covered by multiple image layers to express hierarchical surface information, which generates a large amount of namesake tiles from different layers that overlay the same location. The traditional tile retrieval method for visualization cannot distinguish between distinct layers and traverses all image datasets for each tile query. This process produces redundant queries and invalid access that can seriously affect the visualization performance of clients, servers and network transmission. This paper proposes an on-demand retrieval method for multi-layer images and defines semantic annotations to enrich the description of each dataset. By matching visualization demands with the semantic information of datasets, this method automatically filters inappropriate layers and finds the most suitable layer for the final tile query. The design and implementation are based on a two-layer NoSQL database architecture that provides scheduling optimization and concurrent processing capability. The experimental results reflect the effectiveness and stability of the approach for multi-layer retrieval in disaster reduction visualization.

  8. Improvement in supply chain management for oil and gas sector using drag reduction theory

    International Nuclear Information System (INIS)

    Anjum, A.A.; Chughtai, A.; Shafeeq, A.; Muhammad, A.

    2010-01-01

    Supply chain management is an integrative philosophy about managing the flow of distribution channels from supplier to the consumer. PARCO, an oil and gas company in Pakistan has three existing pipelines. Out of three, two pipelines are running parallel from Karachi to Mehmood kot. One pipeline is of crude oil and meeting the demand of PARCO refinery while second pipeline is of High Speed Diesel (HSD) and third pipeline is of (HSD and Kerosene) running from Mehmood Kot to Machhike (Sheikhupura). PARCO supply petroleum products from Shikarpur, Mehmood Kot, Faisalabad and Machhike to oil marketing companies (OMCs) as per their share, standard and demand. The purpose of these pipelines is to meet the country demand for petroleum products at various locations all over Pakistan. In the peak season when OMCs have high demand and receipt of product from PARCO pipelines are less, there is a need to enhance the flow rate of oil inside the PARCO pipelines to fulfill the demand of OMCs. This could be done economically by the application of drag reduction theory. So by injecting drag reducer, dragging of the oil inside the pipeline could appreciably be reduced thereby improving the pumping of oil. (author)

  9. Evaluation of a fast power demand response strategy using active and passive building cold storages for smart grid applications

    International Nuclear Information System (INIS)

    Cui, Borui; Wang, Shengwei; Yan, Chengchu; Xue, Xue

    2015-01-01

    Highlights: • A fast power demand response strategy is developed for smart grid applications. • The developed strategy can provide immediate and stepped power demand reduction. • The demand reduction and building indoor temperature can be predicted accurately. • The demand reduction during the DR event is stable. - Abstract: Smart grid is considered as a promising solution in improving the power reliability and sustainability where demand response is one important ingredient. Demand response (DR) is a set of demand-side activities to reduce or shift electricity use to improve the electric grid efficiency and reliability. This paper presents the investigations on the power demand alternation potential for buildings involving both active and passive cold storages to support the demand response of buildings connected to smart grids. A control strategy is developed to provide immediate and stepped power demand reduction through shutting chiller(s) down when requested. The primary control objective of the developed control strategy is to restrain the building indoor temperature rise as to maintain indoor thermal comfort within certain level during the DR event. The chiller power reduction is also controlled under certain power reduction set-point. The results show that stepped and significant power reduction can be achieved through shutting chiller(s) down when requested. The power demand reduction and indoor temperature during the DR event can be also predicted accurately. The power demand reduction is stable which is predictable for the system operators

  10. Decentralized planning of energy demand for the management of robustness and discomfort

    NARCIS (Netherlands)

    Pournaras, E.; Vasirani, M.; Kooij, R.E.; Aberer, K.

    2014-01-01

    The robustness of smart grids is challenged by unpredictable power peaks or temporal demand oscillations that can cause blackouts and increase supply costs. Planning of demand can mitigate these effects and increase robustness. However, the impact on consumers in regards to the discomfort they

  11. Water use demand in the Crans-Montana-Sierre region (Switzerland)

    Science.gov (United States)

    Bonriposi, M.; Reynard, E.

    2012-04-01

    Crans-Montana-Sierre is an Alpine touristic region located in the driest area of Switzerland (Rhone River Valley, Canton of Valais), with both winter (ski) and summer (e.g. golf) tourist activities. Climate change as well as societal and economic development will in future significantly modify the supply and consumption of water and, consequently, may fuel conflicts of interest. Within the framework of the MontanAqua project (www.montanaqua.ch), we are researching more sustainable water management options based on the co-ordination and adaptation of water demand to water availability under changing biophysical and socioeconomic conditions. This work intends to quantify current water uses in the area and consider future scenarios (around 2050). We have focused upon the temporal and spatial characteristics of resource demand, in order to estimate the spatial footprint of water use (drinking water, hydropower production, irrigation and artificial snowmaking), in terms of system, infrastructure, and organisation of supply. We have then quantified these as precisely as possible (at the monthly temporal scale and at the municipality spatial scale). When the quantity of water was not measurable for practical reasons or for lack of data, as for the case for irrigation or snowmaking, an alternative approach was applied. Instead of quantifying how much water was used, the stress was put on the water needs for irrigating agricultural land or on the optimal meteorological conditions necessary to produce artificial snow. A huge summer peak and a smaller winter peak characterize the current regional water consumption estimation. The summer peak is mainly caused by irrigation and secondly by drinking water demand. The winter peak is essentially due to drinking water and snowmaking. Other consumption peaks exist at the municipality scale but they cannot be observed at the regional scale. The results show a major variation in water demand between the 11 concerned municipalities and

  12. Opportunities for Automated Demand Response in California Agricultural Irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  13. Enabling technologies for demand management: Transport

    International Nuclear Information System (INIS)

    Smith, Roderick A.

    2008-01-01

    Rising transport demand is likely to be the biggest hurdle to reducing our greenhouse gas emissions. Globally and nationally, transport is consuming an ever increasing share of our total energy use. Furthermore, the bulk of energy used in transport comes from the burning of petroleum products. This brief paper summarises options arising from the two routes to reduce energy demand in transport: improved and more efficient use of existing and possible new transport modes, and the reduction of transport demand. In both areas, the prospects in the immediate and longer-term future are hedged with difficulties. Automobiles and aircraft have improved considerably in recent decades, but future improvements are likely to be incremental. The introduction of hydrogen as a fuel is appealing, but there are technical problems to be solved. Active reduction of demand for transport will require a decoupling of the link between demand and growth in gross domestic product. Globally, this will be very difficult to achieve. Various modes of public transport exist that are efficient in terms of their energy use per passenger kilometre. But they need large investments to make them more attractive than the automobile. However, population concentration in mega-cities, allied with congestion, will make such innovation essential. Policy measures can be assisted in their implementation by new technology, but will remain politically problematic

  14. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    NARCIS (Netherlands)

    Pham, T.H.; Rosea, B.; Wilkins, S.

    2016-01-01

    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  15. An electricity generation planning model incorporating demand response

    International Nuclear Information System (INIS)

    Choi, Dong Gu; Thomas, Valerie M.

    2012-01-01

    Energy policies that aim to reduce carbon emissions and change the mix of electricity generation sources, such as carbon cap-and-trade systems and renewable electricity standards, can affect not only the source of electricity generation, but also the price of electricity and, consequently, demand. We develop an optimization model to determine the lowest cost investment and operation plan for the generating capacity of an electric power system. The model incorporates demand response to price change. In a case study for a U.S. state, we show the price, demand, and generation mix implications of a renewable electricity standard, and of a carbon cap-and-trade policy with and without initial free allocation of carbon allowances. This study shows that both the demand moderating effects and the generation mix changing effects of the policies can be the sources of carbon emissions reductions, and also shows that the share of the sources could differ with different policy designs. The case study provides different results when demand elasticity is excluded, underscoring the importance of incorporating demand response in the evaluation of electricity generation policies. - Highlights: ► We develop an electric power system optimization model including demand elasticity. ► Both renewable electricity and carbon cap-and-trade policies can moderate demand. ► Both policies affect the generation mix, price, and demand for electricity. ► Moderated demand can be a significant source of carbon emission reduction. ► For cap-and-trade policies, initial free allowances change outcomes significantly.

  16. Impact of Demand Side Management in Active Distribution Networks

    DEFF Research Database (Denmark)

    Ponnaganti, Pavani; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2017-01-01

    Demand Side Management (DSM) is an efficient flexible program which helps distribution network operators to meet the future critical peak demand. It is executed in cases of not only technical issues like voltage sag or swell, transformer burdening, cable congestions, but also to increase the degree...... of visibility in the electricity markets. The aim of this paper is to find the optimal flexible demands that can be shifted to another time in order to operate the active distribution system within secure operating limits. A simple mechanism is proposed for finding the flexibility of the loads where electric...

  17. The end of Peak Oil? Why this topic is still relevant despite recent denials

    International Nuclear Information System (INIS)

    Chapman, Ian

    2014-01-01

    Up until recently Peak Oil was a major discussion point crossing from academic research into mainstream journalism, yet it now attracts far less interest. This paper evaluates the reasons for this and on-going relevance of Peak Oil, considering variations in predictive dates for the phenomenon supported by technological, economic and political issues. Using data from agencies, the validity of each position is assessed looking at reserves, industrial developments and alternative fuels. The complicating issue of demand is also considered. The conclusions are that, supported by commercial interests, an unsubstantiated belief in market and technical solutions, and a narrow paradigmatic focus, critics of Peak Oil theory have used unreliable reserve data, optimistic assumptions about utilisation of unconventional supplies and unrealistic predictions for alternative energy production to discredit the evidence that the resource-limited peak in the world's production of conventional oil has arrived, diverting discussion from what should be a serious topic for energy policy: how we respond to decreasing supplies of one of our most important energy sources. - Highlights: • Key advocates/opponents of Peak Oil reveal their biases. • Reserve calculation methods are considered, showing flaws. • Non-conventional oils’ viability is critiqued and found wanting. • Alternative fuels are found to be unsuitable substitutes for oil. • Demand increases add to the potential for fuel shortages

  18. Peak heart rate decreases with increasing severity of acute hypoxia

    DEFF Research Database (Denmark)

    Lundby, C; Araoz, M; Van Hall, Gerrit

    2001-01-01

    , 459, and 404 mmHg) in a hypobaric chamber and while breathing 9% O(2) in N(2). These conditions were equivalent to altitudes of 3300, 4300, 5300, and 6300 m above sea level, respectively. At 4300 m, maximal exercise was also repeated after 4 and 8 h. Peak heart rate (HR) decreased from 191 (182......-202) (mean and range) at sea level to 189 (179-200), 182 (172-189), 175 (166-183), and 165 (162-169) in the acute hypoxic conditions. Peak HR did not decrease further after 4 and 8 h at 4300 m compared to the acute exposure at this altitude. Between barometric pressures of 518 and 355 mmHg (approximately...... 3300 and 6300 m), peak HR decreased linearly: peak HR(hypobaria) = peak HR(sea level) - 0.135 x [hypobaria(3100) - hypobaria (mmHg)]; or peak HR(altitude) = peak HR(sea level) - 0.15 x (altitude - 3100 m). This corresponds to approximately 1-beat x min(-1) reduction in peak HR for every 7-mmHg decrease...

  19. Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study

    Directory of Open Access Journals (Sweden)

    Chi-Chun Lo

    2016-02-01

    Full Text Available This paper presents an optimal dispatch model of an ice storage air-conditioning system for participants to quickly and accurately perform energy saving and demand response, and to avoid the over contact with electricity price peak. The schedule planning for an ice storage air-conditioning system of demand response is mainly to transfer energy consumption from the peak load to the partial-peak or off-peak load. Least Squares Regression (LSR is used to obtain the polynomial function for the cooling capacity and the cost of power consumption with a real ice storage air-conditioning system. Based on the dynamic electricity pricing, the requirements of cooling loads, and all technical constraints, the dispatch model of the ice-storage air-conditioning system is formulated to minimize the operation cost. The Improved Ripple Bee Swarm Optimization (IRBSO algorithm is proposed to solve the dispatch model of the ice storage air-conditioning system in a daily schedule on summer. Simulation results indicate that reasonable solutions provide a practical and flexible framework allowing the demand response of ice storage air-conditioning systems to demonstrate the optimization of its energy savings and operational efficiency and offering greater energy efficiency.

  20. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Walker, Iain; Sherman, Max

    2011-01-01

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as "dose") as the metric to evaluate the effectiveness and air quality...... implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant...... when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we...

  1. CO2 emissions: a peak level in 2010

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    After a reduction of CO 2 emissions in 2009 due to the financial crisis, these emissions have again reached a peak in 2010: 30.6 Gt, it means an increase by 5% compared to the previous peak. According to IEA (International Energy Agency): 44% of the emissions come from coal, 36% from oil and 20% from natural gas, and OECD countries are responsible of 40% of the CO 2 global emissions but only of 25% of their increase since 2009. For China and India the emissions of CO 2 have increased sharply due to their strong economic growth. (A.C.)

  2. An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid

    Directory of Open Access Journals (Sweden)

    Hafiz Majid Hussain

    2018-01-01

    Full Text Available The traditional power grid is inadequate to overcome modern day challenges. As the modern era demands the traditional power grid to be more reliable, resilient, and cost-effective, the concept of smart grid evolves and various methods have been developed to overcome these demands which make the smart grid superior over the traditional power grid. One of the essential components of the smart grid, home energy management system (HEMS enhances the energy efficiency of electricity infrastructure in a residential area. In this aspect, we propose an efficient home energy management controller (EHEMC based on genetic harmony search algorithm (GHSA to reduce electricity expense, peak to average ratio (PAR, and maximize user comfort. We consider EHEMC for a single home and multiple homes with real-time electricity pricing (RTEP and critical peak pricing (CPP tariffs. In particular, for multiple homes, we classify modes of operation for the appliances according to their energy consumption with varying operation time slots. The constrained optimization problem is solved using heuristic algorithms: wind-driven optimization (WDO, harmony search algorithm (HSA, genetic algorithm (GA, and proposed algorithm GHSA. The proposed algorithm GHSA shows higher search efficiency and dynamic capability to attain optimal solutions as compared to existing algorithms. Simulation results also show that the proposed algorithm GHSA outperforms the existing algorithms in terms of reduction in electricity cost, PAR, and maximize user comfort.

  3. A new approach for modeling the peak utility impacts from a proposed CUAC standard

    Energy Technology Data Exchange (ETDEWEB)

    LaCommare, Kristina Hamachi; Gumerman, Etan; Marnay, Chris; Chan, Peter; Coughlin, Katie

    2004-08-01

    This report describes a new Berkeley Lab approach for modeling the likely peak electricity load reductions from proposed energy efficiency programs in the National Energy Modeling System (NEMS). This method is presented in the context of the commercial unitary air conditioning (CUAC) energy efficiency standards. A previous report investigating the residential central air conditioning (RCAC) load shapes in NEMS revealed that the peak reduction results were lower than expected. This effect was believed to be due in part to the presence of the squelch, a program algorithm designed to ensure changes in the system load over time are consistent with the input historic trend. The squelch applies a system load-scaling factor that scales any differences between the end-use bottom-up and system loads to maintain consistency with historic trends. To obtain more accurate peak reduction estimates, a new approach for modeling the impact of peaky end uses in NEMS-BT has been developed. The new approach decrements the system load directly, reducing the impact of the squelch on the final results. This report also discusses a number of additional factors, in particular non-coincidence between end-use loads and system loads as represented within NEMS, and their impacts on the peak reductions calculated by NEMS. Using Berkeley Lab's new double-decrement approach reduces the conservation load factor (CLF) on an input load decrement from 25% down to 19% for a SEER 13 CUAC trial standard level, as seen in NEMS-BT output. About 4 GW more in peak capacity reduction results from this new approach as compared to Berkeley Lab's traditional end-use decrement approach, which relied solely on lowering end use energy consumption. The new method has been fully implemented and tested in the Annual Energy Outlook 2003 (AEO2003) version of NEMS and will routinely be applied to future versions. This capability is now available for use in future end-use efficiency or other policy analysis

  4. Novel five-state latch using double-peak negative differential resistance and standard ternary inverter

    Science.gov (United States)

    Shin, Sunhae; Rok Kim, Kyung

    2016-04-01

    We propose complement double-peak negative differential resistance (NDR) devices with ultrahigh peak-to-valley current ratio (PVCR) over 106 by combining tunnel diode with conventional CMOS and its compact five-state latch circuit by introducing standard ternary inverter (STI). At the “high”-state of STI, n-type NDR device (tunnel diode with nMOS) has 1st NDR characteristics with 1st peak and valley by band-to-band tunneling (BTBT) and trap-assisted tunneling (TAT), whereas p-type NDR device (tunnel diode with pMOS) has second NDR characteristics from the suppression of diode current by off-state MOSFET. The “intermediate”-state of STI permits double-peak NDR device to operate five-state latch with only four transistors, which has 33% area reduction compared with that of binary inverter and 57% bit-density reduction compared with binary latch.

  5. In-treatment cigarette demand among treatment-seeking smokers with depressive symptoms.

    Science.gov (United States)

    Weidberg, S; Vallejo-Seco, G; González-Roz, A; García-Pérez, Á; Secades-Villa, R

    2018-07-01

    Despite previous evidence supporting the use of the Cigarette Purchase Task (CPT) as a valid tool for assessing smoking reinforcement, research assessing how environmental changes affect CPT performance is scarce. This study addressed for the first time the differential effect of treatment condition [Cognitive Behavioral Treatment (CBT) + Behavioral Activation (BA) versus CBT + BA + Contingency Management (CM)] on cigarette demand among treatment seeking smokers with depressive symptoms. It also sought to assess whether reductions in smoking consumption arranged over the course of an intervention for smoking cessation impact on in-treatment cigarette demand. Participants were 92 smokers with depressive symptoms from a randomized clinical trial that received eight weeks of either CBT + BA or CBT + BA + CM. Individuals completed the CPT 8 times; the first during the intake visit and the remaining 7 scheduled once a week in midweek sessions. Cotinine samples were collected in each session. Participants receiving CBT + BA + CM showed higher reduction in cigarette demand across sessions than participants receiving CBT + BA, although this comparison was only significant for the intensity index (p = .004). Cotinine was positively related to cigarette demand (all p values demand reductions (all p values demand. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Energy Savings Calculations for Heat Island Reduction Strategies in Baton Rouge, Sacramento and Salt Lake City

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Akbari, H.

    2000-03-01

    In 1997, the US Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'', to quantify the potential benefits of Heat Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective to investigate the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, Sacramento and Salt Lake City. This paper summarizes our efforts to calculate the annual energy savings, peak power avoidance and annual C02 reduction of HIR strategies in the three initial cities. In this analysis, we focused on three building types that offer most savings potential: single-family residence, office and retail store. Each building type was characterized in detail by old or new construction and with a gas furnace or an electric heat pump. We defined prototypical building characteristics for each building type and simulated the impact of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.IE model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on building [direct effect], (3) combined strategies I and 2 [direct effect], (4) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (5) combined strategies 1, 2 and 4 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show, that in Baton Rouge, potential annual energy savings of $15M could be realized by

  7. Climate change and electricity demand in Brazil: A stochastic approach

    International Nuclear Information System (INIS)

    Trotter, Ian M.; Bolkesjø, Torjus Folsland; Féres, José Gustavo; Hollanda, Lavinia

    2016-01-01

    We present a framework for incorporating weather uncertainty into electricity demand forecasting when weather patterns cannot be assumed to be stable, such as in climate change scenarios. This is done by first calibrating an econometric model for electricity demand on historical data, and subsequently applying the model to a large number of simulated weather paths, together with projections for the remaining determinants. Simulated weather paths are generated based on output from a global circulation model, using a method that preserves the trend and annual seasonality of the first and second moments, as well as the spatial and serial correlations. The application of the framework is demonstrated by creating long-term, probabilistic electricity demand forecasts for Brazil for the period 2016–2100 that incorporates weather uncertainty for three climate change scenarios. All three scenarios indicate steady growth in annual average electricity demand until reaching a peak of approximately 1071–1200 TWh in 2060, then subsequently a decline, largely reflecting the trajectory of the population projections. The weather uncertainty in all scenarios is significant, with up to 400 TWh separating the 10th and the 90th percentiles, or approximately ±17% relative to the mean. - Highlights: • Large number of realistic weather paths generated based on output from a single GCM. • Simulated weather paths used to include weather uncertainty in demand forecasting. • We present a probabilistic electricity demand forecast for Brazil 2016–2100. • Annual Brazilian electricity demand will peak around 2060 at about 1071–1200 TWh. • Significant weather uncertainty, ∼400 TWh separating the 10th and 90th percentiles.

  8. Real-Time Demand Side Management Algorithm Using Stochastic Optimization

    Directory of Open Access Journals (Sweden)

    Moses Amoasi Acquah

    2018-05-01

    Full Text Available A demand side management technique is deployed along with battery energy-storage systems (BESS to lower the electricity cost by mitigating the peak load of a building. Most of the existing methods rely on manual operation of the BESS, or even an elaborate building energy-management system resorting to a deterministic method that is susceptible to unforeseen growth in demand. In this study, we propose a real-time optimal operating strategy for BESS based on density demand forecast and stochastic optimization. This method takes into consideration uncertainties in demand when accounting for an optimal BESS schedule, making it robust compared to the deterministic case. The proposed method is verified and tested against existing algorithms. Data obtained from a real site in South Korea is used for verification and testing. The results show that the proposed method is effective, even for the cases where the forecasted demand deviates from the observed demand.

  9. Nodal price volatility reduction and reliability enhancement of restructured power systems considering demand-price elasticity

    International Nuclear Information System (INIS)

    Goel, L.; Wu, Qiuwei; Wang, Peng

    2008-01-01

    With the development of restructured power systems, the conventional 'same for all customers' electricity price is getting replaced by nodal prices. Electricity prices will fluctuate with time and nodes. In restructured power systems, electricity demands will interact mutually with prices. Customers may shift some of their electricity consumption from time slots of high electricity prices to those of low electricity prices if there is a commensurate price incentive. The demand side load shift will influence nodal prices in return. This interaction between demand and price can be depicted using demand-price elasticity. This paper proposes an evaluation technique incorporating the impact of the demand-price elasticity on nodal prices, system reliability and nodal reliabilities of restructured power systems. In this technique, demand and price correlations are represented using the demand-price elasticity matrix which consists of self/cross-elasticity coefficients. Nodal prices are determined using optimal power flow (OPF). The OPF and customer damage functions (CDFs) are combined in the proposed reliability evaluation technique to assess the reliability enhancement of restructured power systems considering demand-price elasticity. The IEEE reliability test system (RTS) is simulated to illustrate the developed techniques. The simulation results show that demand-price elasticity reduces the nodal price volatility and improves both the system reliability and nodal reliabilities of restructured power systems. Demand-price elasticity can therefore be utilized as a possible efficient tool to reduce price volatility and to enhance the reliability of restructured power systems. (author)

  10. Decreasing fuel cost weight in electric utility business. ; Urged peak measures and management constitution improvement. Denki jigyo no nenryohi weight wa gensho. ; Isogareru peak taisaku to keiei taishitsu kaizen

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The electric power industry has made stable and economic power supply possible by advancing diversification in power sources and shifting the petroleum supply sources to southern countries and China. The cost constitution of the electric utility business in the fiscal year 1992 was such that the ratio of fuel cost is 15.9% against the total cost amount of 13 trillion 399.3 billion yen. As opposed, the fuel cost percent in the fiscal 1980 was 37.7%. This means that the effect of the fuel cost on the total cost has become smaller even if the fuel cost varies as a result of external factors including fluctuation in foreign exchange rates. Peaks in the power demand have been recorded in day time in high summer when air conditioning demand increases, which have been growing year after year. Expenses to maintain facilities and functions to deal with this demand increase have been increasing. The owned capital ratio in the electric power business was 15.7% in the fiscal 1992, which is by far lower than the average of whole industry of 28%. Execution of measures against the power peaks and improvement of the management constitution are the problems posed on the electric power industry. 4 figs., 1 tab.

  11. Chemical oxygen demand reduction in a whey fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Moresi, M; Colicchio, A; Sansovini, F; Sebastiani, E

    1980-01-01

    The efficiency of COD reduction in the fermentation of whey by Kluyveromyces fragilis IMAT 1872 was studied at various temperatures, lactose concentrations, air dilution ratios, and stirring speeds. Two different optimal sets of these variables were found according to whether the objective was the production of cell mass or the reduction of COD. The 2 sets were then compared to establish a strategy for the industrial development of this fermentation process. The experimental efficiencies of COD removal were submitted to analysis in a composite design. Only the O2 transfer coefficient factor and the stripping factor were significant. Therefore, the observations were fitted with a quadratic expression by using only these factors: the mean std. error was <6%. The yield of cells varied in this fermentation, but this parameter may be particularly useful for analyzing and optimizing any fermentation process when the culture medium is a mixture of carbohydrates or the main substrate is fully utilized during the initial stages of fermentation.

  12. Demand-controlling marketing of electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Raffee, H; Fritz, W

    1980-01-01

    In situations like the shortage of energy resources the particular autonomy of the users concerning energy demand raises more and more aggravating problems for the electric utilities (EU) and, last not least, for society (i.e. the peak-load problem, threatening bottlenecks in the supply situation). Thus the requirement for a demand-controlling marketing strategy of the EU with the help of which the individual demand should be influenced in the following manner is legitimate. The article discusses the targets, strategies, and instruments of marketing performed by the EU under the aspect of their efficiency concerning demand control. The discussion leads to e.g. the following results: that a marketing strategy for the sensible, responsible, and efficent use of energy, in the long-term, serves both the interests of the users and the interests of the EU; that such a marketing programme can have the required controlling effects especially with the help of strategies like market segmentation and cooperation. The discussion makes also clear that a demand-controlling marketing strategy of the EU can hardly be realized without a considerable change within the organization of the EU on one hand and, on the other, without expanding the marketing programme toward a marketing strategy of balance.

  13. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    Science.gov (United States)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  14. Climate change and water supply and demand in western Canada

    International Nuclear Information System (INIS)

    Lawford, R.G.

    1990-01-01

    There is reason to be concerned that water resources on the Canadian Prairies could be at considerable risk due to climatic change. The Canadian Prairies frequently experience variations in the climate, which can reduce crop production by 25-50% and annual volumetric river flows by 70-90%. The potential impacts of climatic change on the Prairies are discussed. Consumptive water uses on the Prairies are dominated by irrigation and the water demands arising from thermal power generation. The overall effect of climatic change on water supplies will depend on the ways in which the various components of the hydrological cycle are affected. At the present time it is unsure whether complementary equations are more realistic in estimating evaporation than mass balance techniques. There is a need to obtain good baseline data which will allow the unequivocal resolution of the most accurate technique for estimating evaporation on the Prairies. Climate change could lead to a decrease in spring runoff, and would also lead to earlier snowmelt and peak flows. This could lead to a longer period of low flows during the summer and fall and a further drawdown of moisture reserves. Some appropriate strategies for adapting to climate change would be: encouraging water conservation; reductions in agricultural water use by developing/utilizing strains of plants with lower water demand; controlling new water developments; and enhancing on-farm retention. 10 refs

  15. Electric energy demand and supply prospects for California

    Science.gov (United States)

    Jones, H. G. M.

    1978-01-01

    A recent history of electricity forecasting in California is given. Dealing with forecasts and regulatory uncertainty is discussed. Graphs are presented for: (1) Los Angeles Department of Water and Power and Pacific Gas and Electric present and projected reserve margins; (2) California electricity peak demand forecast; and (3) California electricity production.

  16. Impacts of demand response and renewable generation in electricity power market

    Science.gov (United States)

    Zhao, Zhechong

    This thesis presents the objective of the research which is to analyze the impacts of uncertain wind power and demand response on power systems operation and power market clearing. First, in order to effectively utilize available wind generation, it is usually given the highest priority by assigning zero or negative energy bidding prices when clearing the day-ahead electric power market. However, when congestion occurs, negative wind bidding prices would aggravate locational marginal prices (LMPs) to be negative in certain locations. A load shifting model is explored to alleviate possible congestions and enhance the utilization of wind generation, by shifting proper amount of load from peak hours to off peaks. The problem is to determine proper amount of load to be shifted, for enhancing the utilization of wind generation, alleviating transmission congestions, and making LMPs to be non-negative values. The second piece of work considered the price-based demand response (DR) program which is a mechanism for electricity consumers to dynamically manage their energy consumption in response to time-varying electricity prices. It encourages consumers to reduce their energy consumption when electricity prices are high, and thereby reduce the peak electricity demand and alleviate the pressure to power systems. However, it brings additional dynamics and new challenges on the real-time supply and demand balance. Specifically, price-sensitive DR load levels are constantly changing in response to dynamic real-time electricity prices, which will impact the economic dispatch (ED) schedule and in turn affect electricity market clearing prices. This thesis adopts two methods for examining the impacts of different DR price elasticity characteristics on the stability performance: a closed-loop iterative simulation method and a non-iterative method based on the contraction mapping theorem. This thesis also analyzes the financial stability of DR load consumers, by incorporating

  17. Analysis of the same day of the week increases in peak electricity ...

    African Journals Online (AJOL)

    Modelling of the same day of the week increases in peak electricity demand improves the reliability of a power network if an accurate assessment of the level and frequency of future extreme load forecasts is carried out. Key words: Gibbs sampling, generalized single pareto, generalized pareto distribution, pareto quantile ...

  18. Reducing electricity consumption peaks with parametrised dynamic pricing strategies given maximal unit prices

    NARCIS (Netherlands)

    N.F. Höning (Nicolas); J.A. La Poutré (Han); F. Lopes; Z. Vale; J. Sousa; H. Coelho

    2013-01-01

    htmlabstractDemand response is a crucial mechanism for flattening of peak loads. For its implementation, we not only require consumers who react to price changes, but also intelligent strategies to select prices. We propose a parametrised meta-strategy for dynamic pricing and identify suitable

  19. Electricity demand profile with high penetration of heat pumps in Nordic area

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Nielsen, Arne Hejde

    2013-01-01

    This paper presents the heat pump (HP) demand profile with high HP penetration in the Nordic area in order to achieve the carbon neutrality power system. The calculation method in the European Standard EN14825 was used to estimate the HP electricity demand profile. The study results show...... there will be high power demand from HPs and the selection of supplemental heating for heat pumps has a big impact on the peak electrical power load of heating. The study in this paper gives an estimate of the scale of the electricity demand with high penetration of heat pumps in the Nordic area....

  20. Peak Operation of Cascaded Hydropower Plants Serving Multiple Provinces

    Directory of Open Access Journals (Sweden)

    Jianjian Shen

    2015-10-01

    Full Text Available The bulk hydropower transmission via trans-provincial and trans-regional power networks in China provides great operational flexibility to dispatch power resources between multiple power grids. This is very beneficial to alleviate the tremendous peak load pressure of most provincial power grids. This study places the focus on peak operations of cascaded hydropower plants serving multiple provinces under a regional connected AC/DC network. The objective is to respond to peak loads of multiple provincial power grids simultaneously. A two-stage search method is developed for this problem. In the first stage, a load reconstruction strategy is proposed to combine multiple load curves of power grids into a total load curve. The purpose is to deal with different load features in load magnitudes, peaks and valleys. A mutative-scale optimization method is then used to determine the generation schedules of hydropower plants. In the second stage, an exterior point search method is established to allocate the generation among multiple receiving power grids. This method produces an initial solution using the load shedding algorithm, and further improves it by iteratively coordinating the generation among different power grids. The proposed method was implemented to the operations of cascaded hydropower plants on Xin-Fu River and another on Hongshui River. The optimization results in two cases satisfied the peak demands of receiving provincial power grids. Moreover, the maximum load difference between peak and valley decreased 12.67% and 11.32% in Shanghai Power Grid (SHPG and Zhejiang Power Grid (ZJPG, exceeding by 4.85% and 6.72% those of the current operational method, respectively. The advantage of the proposed method in alleviating peak-shaving pressure is demonstrated.

  1. Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Starke, Michael R [ORNL; Kirby, Brendan J [ORNL; Kueck, John D [ORNL; Todd, Duane [Alcoa; Caulfield, Michael [Alcoa; Helms, Brian [Alcoa

    2009-02-01

    Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter

  2. Modelling transport energy demand: A socio-technical approach

    International Nuclear Information System (INIS)

    Anable, Jillian; Brand, Christian; Tran, Martino; Eyre, Nick

    2012-01-01

    Despite an emerging consensus that societal energy consumption and related emissions are not only influenced by technical efficiency but also by lifestyles and socio-cultural factors, few attempts have been made to operationalise these insights in models of energy demand. This paper addresses that gap by presenting a scenario exercise using an integrated suite of sectoral and whole systems models to explore potential energy pathways in the UK transport sector. Techno-economic driven scenarios are contrasted with one in which social change is strongly influenced by concerns about energy use, the environment and well-being. The ‘what if’ Lifestyle scenario reveals a future in which distance travelled by car is reduced by 74% by 2050 and final energy demand from transport is halved compared to the reference case. Despite the more rapid uptake of electric vehicles and the larger share of electricity in final energy demand, it shows a future where electricity decarbonisation could be delayed. The paper illustrates the key trade-off between the more aggressive pursuit of purely technological fixes and demand reduction in the transport sector and concludes there are strong arguments for pursuing both demand and supply side solutions in the pursuit of emissions reduction and energy security.

  3. Process energy reduction

    International Nuclear Information System (INIS)

    Lowthian, W.E.

    1993-01-01

    Process Energy Reduction (PER) is a demand-side energy reduction approach which complements and often supplants other traditional energy reduction methods such as conservation and heat recovery. Because the application of PER is less obvious than the traditional methods, it takes some time to learn the steps as well as practice to become proficient in its use. However, the benefit is significant, often far outweighing the traditional energy reduction approaches. Furthermore, the method usually results in a better process having less waste and pollution along with improved yields, increased capacity, and lower operating costs

  4. Maximizing utilization of sport halls during peak hours

    DEFF Research Database (Denmark)

    Iversen, Evald Bundgård; Forsberg, Peter

    the number of participants 7.5 persons higher pr. activity compared to club activities. This implies that clubs during peak hours could include more participants. Another possibility to increase utilization is if the management of sport facilities forced sport clubs and other organisers to adapt...... their activities to a smaller amount of floor space, which would make it possible to have more than one activity on the floor at the same time. Hence, to achieve better utilization during prime time, further analysis and research could focus on how activities in sport halls can be adapted to include more......BACKGROUNDDuring peak hours (4.30pm-8pm) demand for timeslots in sport halls in Denmark are high and there are few timeslots available. Further, focus on how public resources are spent most efficient is increasing (Iversen, 2013). This makes it interesting to analyse how utilization could...

  5. An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia

    International Nuclear Information System (INIS)

    Ouda, Omar K.M.; Cekirge, Huseyin M.; Raza, Syed A.R.

    2013-01-01

    Highlights: • This research evaluates the potential contribution of WTE to Saudi power demand. • Two scenarios were developed: Mass Burn and Mass Burn with recycling to year 2032. • Mass Burn will generate 2073 Megawatts (MW) about 1.73% of 2032 peak power demand. • Mass Burn with recycling will generate 166 MW about 0.14% of 2032 peak power demand. - Abstract: The Kingdom of Saudi Arabia (KSA) is the largest crude oil producer in the world and possesses the largest oil reserves. The crude oil revenue has resulted in a massive socio-economic development over the last four decades. This situation has resulted in rapid growth of the country’s electricity demand and municipal solid waste (MSW) generation. The KSA is proposing an impressive plan towards renewable energy utilization that includes waste-to-energy (WTE) facilities. This research assesses the potential contribution of WTE facilities to total Saudi peak power demand up to the year 2032 based on two scenarios: Mass Burn and Mass Burn with recycling for the entire country and for six major cities in the KSA. The analysis shows a potential to produce about 2073 Megawatts (MW) based on a Mass Burn scenario and about 166 MW based on Mass Burn with recycling scenario. These values amount to about 1.73% and 0.14% of the projected 2032 peak electricity demand of 120 Gigawatt. The forecasted results of each city from the two scenarios can be used to design future WTE facilities in the main cities of Saudi Arabia. Further investigations are recommended to evaluate the two scenarios based on financial, social, technical, and environmental criteria

  6. An economic welfare analysis of demand response in the PJM electricity market

    International Nuclear Information System (INIS)

    Walawalkar, Rahul; Blumsack, Seth; Apt, Jay; Fernands, Stephen

    2008-01-01

    We analyze the economic properties of the economic demand-response (DR) program in the PJM electricity market in the United States using DR market data. PJM's program provided subsidies to customers who reduced load in response to price signals. The program incorporated a 'trigger point', at a locational marginal price of $75/MWh, at or beyond which payments for load reduction included a subsidy payment. Particularly during peak hours, such a program saves money for the system, but the subsidies involved introduce distortions into the market. We simulate demand-side bidding into the PJM market, and compare the social welfare gains with the subsidies paid to price-responsive load using load and price data for year 2006. The largest economic effect is wealth transfers from generators to non price-responsive loads. Based on the incentive payment structure that was in effect through the end of 2007, we estimate that the social welfare gains exceed the distortions introduced by the subsidies. Lowering the trigger point increases the transfer from generators to consumers, but may result in the subsidy outweighing the social welfare gains due to load curtailment. We estimate that the socially optimal range for the incentive trigger point would be $66-77/MWh

  7. Electric demand and the antinuclear movement

    International Nuclear Information System (INIS)

    Studness, C.M.

    1984-01-01

    The author feels that, with electric demand growth of 4.5 to 5% per year expected, it will be only a matter of time before stepping-up the stream of utility capacity additions becomes an important issue. If demand grows 4.5% per year instead of 2.8% as projected by NERC, demand will be 10% higher and peak reserve margins about 12 percentage points lower than envisioned by the NERC projections after five years. By 1988 or 1989, little or no excess capacity will remain, and the utilities will be faced with adding twice as much capacity annually as now planned to avoid service deterioration. As questions about the adequacy of current utility capacity plans and concerns about service quality move toward center stage, the antinuclear movement should find it increasingly difficult to garner the broad support it now enjoys. Capacity represented by any uncompleted nuclear plants will appear increasingly beneficial, and those who do not have strong antinuclear sentiments should become increasingly hesitant about lending support to the movement. Accordingly, electric demand growth in due course can be expected to drain marginal supporters from the antinuclear movement and thereby erode the movement's vitality

  8. Effects of peatland drainage management on peak flows

    Directory of Open Access Journals (Sweden)

    C. E. Ballard

    2012-07-01

    Full Text Available Open ditch drainage has historically been a common land management practice in upland blanket peats, particularly in the UK. However, peatland drainage is now generally considered to have adverse effects on the upland environment, including increased peak flows. As a result, drain blocking has become a common management strategy in the UK over recent years, although there is only anecdotal evidence to suggest that this might decrease peak flows. The change in the hydrological regime associated with the drainage of blanket peat and the subsequent blocking of drains is poorly understood, therefore a new physics-based model has been developed that allows the exploration of the associated hydrological processes. A series of simulations is used to explore the response of intact, drained and blocked drain sites at field scales. While drainage is generally found to increase peak flows, the effect of drain blocking appears to be dependent on local conditions, sometimes decreasing and sometimes increasing peak flows. Based on insights from these simulations we identify steep smooth drains as those that would experience the greatest reduction in field-scale peak flows if blocked and recommend that future targeted field studies should be focused on examining surface runoff characteristics.

  9. Day Ahead Real Time Pricing and Critical Peak Pricing Based Power Scheduling for Smart Homes with Different Duty Cycles

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2018-06-01

    Full Text Available In this paper, we propose a demand side management (DSM scheme in the residential area for electricity cost and peak to average ratio (PAR alleviation with maximum users’ satisfaction. For this purpose, we implement state-of-the-art algorithms: enhanced differential evolution (EDE and teacher learning-based optimization (TLBO. Furthermore, we propose a hybrid technique (HT having the best features of both aforementioned algorithms. We consider a system model for single smart home as well as for a community (multiple homes and each home consists of multiple appliances with different priorities. The priority is assigned (to each appliance by electricity consumers and then the proposed scheme finds an optimal solution according to the assigned priorities. Day-ahead real time pricing (DA-RTP and critical peak pricing (CPP are used for electricity cost calculation. To validate our proposed scheme, simulations are carried out and results show that our proposed scheme efficiently achieves the aforementioned objectives. However, when we perform a comparison with existing schemes, HT outperforms other state-of-the-art schemes (TLBO and EDE in terms of electricity cost and PAR reduction while minimizing the average waiting time.

  10. Estimating Reduced Consumption for Dynamic Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Chelmis, Charalampos [Univ. of Southern California, Los Angeles, CA (United States); Aman, Saima [Univ. of Southern California, Los Angeles, CA (United States); Saeed, Muhammad Rizwan [Univ. of Southern California, Los Angeles, CA (United States); Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States); Prasanna, Viktor K. [Univ. of Southern California, Los Angeles, CA (United States)

    2015-01-30

    Growing demand is straining our existing electricity generation facilities and requires active participation of the utility and the consumers to achieve energy sustainability. One of the most effective and widely used ways to achieve this goal in the smart grid is demand response (DR), whereby consumers reduce their electricity consumption in response to a request sent from the utility whenever it anticipates a peak in demand. To successfully plan and implement demand response, the utility requires reliable estimate of reduced consumption during DR. This also helps in optimal selection of consumers and curtailment strategies during DR. While much work has been done on predicting normal consumption, reduced consumption prediction is an open problem that is under-studied. In this paper, we introduce and formalize the problem of reduced consumption prediction, and discuss the challenges associated with it. We also describe computational methods that use historical DR data as well as pre-DR conditions to make such predictions. Our experiments are conducted in the real-world setting of a university campus microgrid, and our preliminary results set the foundation for more detailed modeling.

  11. Error Reduction in an Operating Environment - Comanche Peak Steam Electric Station

    International Nuclear Information System (INIS)

    Blevins, Mike; Gallman, Jim

    1998-01-01

    After having outlined that a program to manage human performance and to reduce human performance errors has reached an 88% error reduction rate and a 99% significant error reduction rate, the authors present this program. It takes three cornerstones of human performance management into account: training, leadership and procedures. Other aspects are introduced: communication, corrective action programs, a root cause analysis, seven steps of self checking, trending, and a human performance enhancement program. These other aspects and their relationships are discussed. Program strengths and downsides are outlined, as well as actions needed for success. Another approach is then proposed which comprises proactive interventions and indicators for human performance. These indicators are identified and introduced by analyzing the anatomy of an event. The limitations of this model are discussed

  12. Efficient Power Scheduling in Smart Homes Using Hybrid Grey Wolf Differential Evolution Optimization Technique with Real Time and Critical Peak Pricing Schemes

    Directory of Open Access Journals (Sweden)

    Muqaddas Naz

    2018-02-01

    Full Text Available With the emergence of automated environments, energy demand by consumers is increasing rapidly. More than 80% of total electricity is being consumed in the residential sector. This brings a challenging task of maintaining the balance between demand and generation of electric power. In order to meet such challenges, a traditional grid is renovated by integrating two-way communication between the consumer and generation unit. To reduce electricity cost and peak load demand, demand side management (DSM is modeled as an optimization problem, and the solution is obtained by applying meta-heuristic techniques with different pricing schemes. In this paper, an optimization technique, the hybrid gray wolf differential evolution (HGWDE, is proposed by merging enhanced differential evolution (EDE and gray wolf optimization (GWO scheme using real-time pricing (RTP and critical peak pricing (CPP. Load shifting is performed from on-peak hours to off-peak hours depending on the electricity cost defined by the utility. However, there is a trade-off between user comfort and cost. To validate the performance of the proposed algorithm, simulations have been carried out in MATLAB. Results illustrate that using RTP, the peak to average ratio (PAR is reduced to 53.02%, 29.02% and 26.55%, while the electricity bill is reduced to 12.81%, 12.012% and 12.95%, respectively, for the 15-, 30- and 60-min operational time interval (OTI. On the other hand, the PAR and electricity bill are reduced to 47.27%, 22.91%, 22% and 13.04%, 12%, 11.11% using the CPP tariff.

  13. Control for large scale demand response of thermostatic loads

    DEFF Research Database (Denmark)

    Totu, Luminita Cristiana; Leth, John; Wisniewski, Rafal

    2013-01-01

    appliances with on/off operation. The objective is to reduce the consumption peak of a group of loads composed of both flexible and inflexible units. The power flexible units are the thermostat-based appliances. We discuss a centralized, model predictive approach and a distributed structure with a randomized......Demand response is an important Smart Grid concept that aims at facilitating the integration of volatile energy resources into the electricity grid. This paper considers a residential demand response scenario and specifically looks into the problem of managing a large number thermostatbased...

  14. Analysis of Cool Roof Coatings for Residential Demand Side Management in Tropical Australia

    Directory of Open Access Journals (Sweden)

    Wendy Miller

    2015-06-01

    Full Text Available Cool roof coatings have a beneficial impact on reducing the heat load of a range of building types, resulting in reduced cooling energy loads. This study seeks to understand the extent to which cool roof coatings could be used as a residential demand side management (DSM strategy for retrofitting existing housing in a constrained network area in tropical Australia where peak electrical demand is heavily influenced by residential cooling loads. In particular this study seeks to determine whether simulation software used for building regulation purposes can provide networks with the ‘impact certainty’ required by their DSM principles. The building simulation method is supported by a field experiment. Both numerical and experimental data confirm reductions in total consumption (kWh and energy demand (kW. The nature of the regulated simulation software, combined with the diverse nature of residential buildings and their patterns of occupancy, however, mean that simulated results cannot be extrapolated to quantify benefits to a broader distribution network. The study suggests that building data gained from regulatory simulations could be a useful guide for potential impacts of widespread application of cool roof coatings in this region. The practical realization of these positive impacts, however, would require changes to the current business model for the evaluation of DSM strategies. The study provides seven key recommendations that encourage distribution networks to think beyond their infrastructure boundaries, recognising that the broader energy system also includes buildings, appliances and people.

  15. Electrochemical Reduction of Isatin-monohydrazone on Mercury Electrode

    Directory of Open Access Journals (Sweden)

    Ender Biçer

    2015-07-01

    Full Text Available Electrochemical behaviour of isatin monohydrazone (IM on a hanging mercury drop electrode in the Britton-Robinson (B-R buffer solution of pH = 2.00–9.00 has been investigated using square-wave voltammetry (SWV and cyclic voltammetry (CV techniques. In the pH range of 2.00–5.00, the voltammogram of IM exhibited a single cathodic irreversible peak. When the pH value exceeds 5.00, a new cathodic irreversible peak was also seen. According to the voltammetric data, a plausible electrode reaction mechanism of IM was proposed. The first reduction peak of IM is resulted from the reduction of =N–NH– group with consumption of 2e–/2H+. Also, its second cathodic peak is formed by the participation of 2e–/2H+ for the reduction of –N=N– group on its tautomeric form.

  16. Electrochemical Reduction Process for Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young; Hong, Sun-Seok; Park, Wooshin; Im, Hun Suk; Oh, Seung-Chul; Won, Chan Yeon; Cha, Ju-Sun; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    Nuclear energy is expected to meet the growing energy demand while avoiding CO{sub 2} emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-Li{sub 2}O electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

  17. Solar + Storage Synergies for Managing Commercial-Customer Demand Charges

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Pieter J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Govindarajan, Anand [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bird, Lori A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-24

    We study the synergies between behind-the-meter solar and storage in reducing commercial-customer demand charges. This follows two previous studies that examined demand charge savings for stand-alone solar in both the residential and commercial sectors. In this study we show that solar and storage show consistent synergies for demand charge management, that the magnitude of reductions are highly customer-specific, and that the magnitude of savings is influenced by the design of the electricity tariff.

  18. Dispatchable Hydrogen Production at the Forecourt for Electricity Demand Shaping

    Directory of Open Access Journals (Sweden)

    Abdulla Rahil

    2017-10-01

    Full Text Available Environmental issues and concerns about depletion of fossil fuels have driven rapid growth in the generation of renewable energy (RE and its use in electricity grids. Similarly, the need for an alternative to hydrocarbon fuels means that the number of fuel cell vehicles is also expected to increase. The ability of electricity networks to balance supply and demand is greatly affected by the variable, intermittent output of RE generators; however, this could be relieved using energy storage and demand-side response (DSR techniques. One option would be production of hydrogen by electrolysis powered from wind and solar sources. The use of tariff structures would provide an incentive to operate electrolysers as dispatchable loads. The aim of this paper is to compare the cost of hydrogen production by electrolysis at garage forecourts in Libya, for both dispatchable and continuous operation, without interruption of fuel supply to vehicles. The coastal city of Derna was chosen as a case study, with the renewable energy being produced via a wind turbine farm. Wind speed was analysed in order to determine a suitable turbine, then the capacity was calculated to estimate how many turbines would be needed to meet demand. Finally, the excess power was calculated, based on the discrepancy between supply and demand. The study looked at a hydrogen refueling station in both dispatchable and continuous operation, using an optimisation algorithm. The following three scenarios were considered to determine whether the cost of electrolytic hydrogen could be reduced by a lower off-peak electricity price. These scenarios are: Standard Continuous, in which the electrolyser operates continuously on a standard tariff of 12 p/kWh; Off-peak Only, in which the electrolyser operates only during off-peak periods at the lower price of 5 p/kWh; and 2-Tier Continuous, in which the electrolyser operates continuously on a low tariff at off-peak times and a high tariff at other

  19. Peak load arrangements : Assessment of Nordel guidelines

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Two Nordic countries, Sweden and Finland, have legislation that empowers the TSO to acquire designated peak load resources to mitigate the risk for shortage situations during the winter. In Denmark, the system operator procures resources to maintain a satisfactory level of security of supply. In Norway the TSO has set up a Regulation Power Option Market (RKOM) to secure a satisfactory level of operational reserves at all times, also in winter with high load demand. Only the arrangements in Finland and Sweden fall under the heading of Peak Load Arrangements defined in Nordel Guidelines. NordREG has been invited by the Electricity Market Group (EMG) to evaluate Nordel's proposal for 'Guidelines for transitional Peak Load Arrangements'. The EMG has also financed a study made by EC Group to support NordREG in the evaluation of the proposal. The study has been taken into account in NordREG's evaluation. In parallel to the EMG task, the Swedish regulator, the Energy Markets Inspectorate, has been given the task by the Swedish government to investigate a long term solution of the peak load issue. The Swedish and Finnish TSOs have together with Nord Pool Spot worked on finding a harmonized solution for activation of the peak load reserves in the market. An agreement accepted by the relevant authorities was reached in early January 2009, and the arrangement has been implemented since 19th January 2009. NordREG views that the proposed Nordel guidelines have served as a starting point for the presently agreed procedure. However, NordREG does not see any need to further develop the Nordel guidelines for peak load arrangements. NordREG agrees with Nordel that the market should be designed to solve peak load problems through proper incentives to market players. NordREG presumes that the relevant authorities in each country will take decisions on the need for any peak load arrangement to ensure security of supply. NordREG proposes that such decisions should be

  20. Air-conditioning and antibiotics: Demand management insights from problematic health and household cooling practices

    International Nuclear Information System (INIS)

    Nicholls, Larissa; Strengers, Yolande

    2014-01-01

    Air-conditioners and antibiotics are two technologies that have both been traditionally framed around individual health and comfort needs, despite aspects of their use contributing to social health problems. The imprudent use of antibiotics is threatening the capacity of the healthcare system internationally. Similarly, in Australia the increasing reliance on air-conditioning to maintain thermal comfort is contributing to rising peak demand and electricity prices, and is placing an inequitable health and financial burden on vulnerable heat-stressed households. This paper analyses policy responses to these problems through the lens of social practice theory. In the health sector, campaigns are attempting to emphasise the social health implications of antibiotic use. In considering this approach in relation to the problem of air-conditioned cooling and how to change the ways in which people keep cool during peak times, our analysis draws on interviews with 80 Australian households. We find that the problem of peak electricity demand may be reduced through attention to the social health implications of air-conditioned cooling on very hot days. We conclude that social practice theory offers a fruitful analytical route for identifying new avenues for research and informing policy responses to emerging health and environmental problems. - Highlights: • Over-use of antibiotics and air-conditioning has social health implications. • Focusing on financial incentives limits the potential of demand management programs. • Explaining peak demand to households shifts the meanings of cooling practices. • Emphasising the social health implications of antibiotics and air-conditioning may resurrect alternative practices. • Analysing policy with social practice theory offers insights into policy approaches

  1. Electricity demand in France: what's at stake for the energy transition?

    International Nuclear Information System (INIS)

    Berghmans, Nicolas

    2017-02-01

    This study identifies five key issues linked to electricity consumption to be taken into consideration in the management of the French power system transition: articulating the building stock renovation strategy and electricity consumption; integrating demand for electricity stemming from the development of electric vehicles; addressing winter 'peak' demand with specific demand-side policies; establishing energy demand management economic models as a flexible solution for the power system; identifying the impact of the emergence of a power system that is decentralised, balanced locally and connected with other energy carriers on the nature of demand for power from the grid. In the context of weak economic and demographic growth, the recent stabilization of electricity demand in France can be attributed to 'structural' factors, i.e. the continued expansion of the tertiary sector in the economy and the acceleration in energy efficiency gains. This evolution was poorly anticipated by stakeholders in the sector, which contributed to an imbalance between electricity demand and supply in Europe. In the absence of a major disruption, planning for transition in the electrical system should be made assuming relatively stable demand. However, major transformations will change the nature of the requirements placed on the electricity system: the times at which energy is consumed, the ability to manage the demand side of the system, and the geographical location of electricity demand within the network. Five key challenges are identified to anticipate the development of electricity consumption patterns: the role of electricity in satisfying building sector heating requirements, the integration of electric vehicle charging, the evolution of the winter demand peak, the development of demand-side management, and the emergence of an electric system based on local-level balancing. Too often considered an exogenous factor, the development in electricity consumption is in fact central

  2. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    Science.gov (United States)

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-05-31

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  3. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    Directory of Open Access Journals (Sweden)

    Chong Shen

    2016-05-01

    Full Text Available The different noise components in a dual-mass micro-electromechanical system (MEMS gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN, electronic-thermal noise (ETN, flicker noise (FN and Coriolis signal in-phase noise (IPN. The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD and time-frequency peak filtering (TFPF. There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  4. Factors influencing peak expiratory flow in teenage boys | van ...

    African Journals Online (AJOL)

    Background. Peak expiratory flow (PEF) is a useful measure of pulmonary health status and is frequently utilised in asthm, management. Reduction in PEF is usually indicative of onset (of asthma symptoms. However, use can be made of PEF values only if normal values are known. The definition of normal range is always ...

  5. Can Evolution Supply What Ecology Demands?

    Science.gov (United States)

    Kokko, Hanna; Chaturvedi, Anurag; Croll, Daniel; Fischer, Martin C; Guillaume, Frédéric; Karrenberg, Sophie; Kerr, Ben; Rolshausen, Gregor; Stapley, Jessica

    2017-03-01

    A simplistic view of the adaptive process pictures a hillside along which a population can climb: when ecological 'demands' change, evolution 'supplies' the variation needed for the population to climb to a new peak. Evolutionary ecologists point out that this simplistic view can be incomplete because the fitness landscape changes dynamically as the population evolves. Geneticists meanwhile have identified complexities relating to the nature of genetic variation and its architecture, and the importance of epigenetic variation is under debate. In this review, we highlight how complexity in both ecological 'demands' and the evolutionary 'supply' influences organisms' ability to climb fitness landscapes that themselves change dynamically as evolution proceeds, and encourage new synthetic effort across research disciplines towards ecologically realistic studies of adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Climate protection by reducing cooling demands in buildings; Klimaschutz durch Reduzierung des Energiebedarfs fuer Gebaeudekuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Bettgenhaeuser, Kjell; Boermans, Thomas; Offermann, Markus; Krechting, Anja; Becker, Daniel [Ecofys Germany GmbH, Koeln (Germany)

    2011-06-15

    The aim of this study is to conduct estimation on the potential reduction in electricity demand from cooling appliances in buildings in Germany. Current electricity demand and greenhouse-gas emissions will be investigated through desk research for residential and non-residential buildings. Based on building simulations, conventional, alternative and renewable technologies will be compared for different reference buildings. An economic and environmental assessment will evaluate the technologies per reference building in further detail. The main result will be an estimation of the potential energy demand reduction for the alternative/ regenerative technologies in the building stock. This will be based on the conditioned floor area and retrofit rates per system. Furthermore, the influence of cooling in buildings on energy demand will be annotated. Barriers in the reduction of energy demand will be described possible actions will be discussed along with types of policy instruments and consumer information. (orig.)

  7. Cognitive Demands Influence Lower Extremity Mechanics During a Drop Vertical Jump Task in Female Athletes.

    Science.gov (United States)

    Almonroeder, Thomas Gus; Kernozek, Thomas; Cobb, Stephen; Slavens, Brooke; Wang, Jinsung; Huddleston, Wendy

    2018-05-01

    Study Design Cross-sectional study. Background The drop vertical jump task is commonly used to screen for anterior cruciate ligament injury risk; however, its predictive validity is limited. The limited predictive validity of the drop vertical jump task may be due to not imposing the cognitive demands that reflect sports participation. Objectives To investigate the influence of additional cognitive demands on lower extremity mechanics during execution of the drop vertical jump task. Methods Twenty uninjured women (age range, 18-25 years) were required to perform the standard drop vertical jump task, as well as drop vertical jumps that included additional cognitive demands. The additional cognitive demands were related to attending to an overhead goal (ball suspended overhead) and/or temporal constraints on movement selection (decision making). Three-dimensional ground reaction forces and lower extremity mechanics were compared between conditions. Results The inclusion of the overhead goal resulted in higher peak vertical ground reaction forces and lower peak knee flexion angles in comparison to the standard drop vertical jump task. In addition, participants demonstrated greater peak knee abduction angles when trials incorporated temporal constraints on decision making and/or required participants to attend to an overhead goal, in comparison to the standard drop vertical jump task. Conclusion Imposing additional cognitive demands during execution of the drop vertical jump task influenced lower extremity mechanics in a manner that suggested increased loading of the anterior cruciate ligament. Tasks utilized in anterior cruciate ligament injury risk screening may benefit from more closely reflecting the cognitive demands of the sports environment. J Orthop Sports Phys Ther 2018;48(5):381-387. Epub 10 Jan 2018. doi:10.2519/jospt.2018.7739.

  8. A Relook at the National Drug Control Strategy: Supply versus Demand

    National Research Council Canada - National Science Library

    Cook, Virgil

    1998-01-01

    .... By reviewing the ends, ways, and means of past drug control strategies, this paper suggests that it is time for the federal government to shift existing resources from supply reduction to demand reduction programs...

  9. An analysis of Chinas CO2 emission peaking target and pathways

    OpenAIRE

    He, Jian-Kun

    2017-01-01

    China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for Chinas resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the ...

  10. Peak Oil, Peak Coal and Climate Change

    Science.gov (United States)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  11. Peak MSC—Are We There Yet?

    Directory of Open Access Journals (Sweden)

    Timothy R. Olsen

    2018-06-01

    Full Text Available Human mesenchymal stem cells (hMSCs are a critical raw material for many regenerative medicine products, including cell-based therapies, engineered tissues, or combination products, and are on the brink of radically changing how the world of medicine operates. Their unique characteristics, potential to treat many indications, and established safety profile in more than 800 clinical trials have contributed to their current consumption and will only fuel future demand. Given the large target patient populations with typical dose sizes of 10's to 100's of millions of cells per patient, and engineered tissues being constructed with 100's of millions to billions of cells, an unprecedented demand has been created for hMSCs. The fulfillment of this demand faces an uphill challenge in the limited availability of large quantities of pharmaceutical grade hMSCs for the industry—fueling the need for parallel rapid advancements in the biomanufacturing of this living critical raw material. Simply put, hMSCs are no different than technologies like transistors, as they are a highly technical and modular product that requires stringent control over manufacturing that can allow for high quality and consistent performance. As hMSC manufacturing processes are optimized, it predicts a future time of abundance for hMSCs, where scientists and researchers around the world will have access to a consistent and readily available supply of high quality, standardized, and economical pharmaceutical grade product to buy off the shelf for their applications and drive product development—this is “Peak MSC.”

  12. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    Science.gov (United States)

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  13. Moving from Outsider to Insider: Peer Status and Partnerships between Electricity Utilities and Residential Consumers

    Science.gov (United States)

    Morris, Peter; Buys, Laurie; Vine, Desley

    2014-01-01

    An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008. By 2011, both the peak demand and grid supplied electricity consumption had decreased to below pre-intervention levels. This case study research explored the relationship developed between the utility, community and individual consumer from the residential customer perspective through qualitative research of 22 residential households. It is proposed that an energy utility can be highly successful at peak demand reduction by becoming a community member and a peer to residential consumers and developing the necessary trust, access, influence and partnership required to create the responsive environment to change. A peer-community approach could provide policymakers with a pathway for implementing pro-environmental behaviour for low carbon communities, as well as peak demand reduction, thereby addressing government emission targets while limiting the cost of living increases from infrastructure expenditure. PMID:24979234

  14. Modeling storage and demand management in power distribution grids

    International Nuclear Information System (INIS)

    Schroeder, Andreas

    2011-01-01

    Grahical abstract: The model informs an optimal investment sizing decision as regards specific 'smart grid' applications such as storage facilities and meters enabling load control. Results indicate that central storage facilities are a more promising option for generation cost reductions as compared to demand management. Highlights: → Stochastic versus deterministic model increases investment efficiency up to 5%. → Deterministic model under-estimates value of load control and storage. → Battery storage is beneficial at investment cost below 850 EUR/MW h. → Demand management equipment is not beneficial at cost beyond 200 EUR. → The stylized 10 kV grid constitutes no shortage factor. -- Abstract: Storage devices and demand control may constitute beneficial tools to optimize electricity generation with a large share of intermittent resources through inter-temporal substitution of load. This paper quantifies the related cost reductions in a simulation model of a simplified stylized medium-voltage grid (10 kV) under uncertain demand and wind output. Benders Decomposition Method is applied to create a two-stage stochastic optimization program. The model informs an optimal investment sizing decision as regards specific 'smart' applications such as storage facilities and meters enabling load control. Model results indicate that central storage facilities are a more promising option for generation cost reductions as compared to demand management. Grid extensions are not appropriate in any of the scenarios. A sensitivity analysis is applied with respect to the market penetration of uncoordinated Plug-In Electric Vehicles which are found to strongly encourage investment into load control equipment for 'smart' charging and slightly improve the case for central storage devices.

  15. Demand for electrical energy

    International Nuclear Information System (INIS)

    Bergougnoux, J.; Fouquet, D.

    1983-01-01

    The different utilizations of electric energy are reviewed in the residential and tertiary sectors, in the industry. The competitive position of electricity in regard to other fuels has been strengthned by the sudden rise in the price of oil in 1973-1974 and 1979-1980. The evolution of electricity prices depended on the steps taken to adjust the electricity generation system. The substitution of electricity applications for hydro-carbons is an essential point of energy policy. The adjustment at all times, at least cost and most reliability, of the supply of electricity to the demand for it is a major problem in the design and operation of electric systems. National demand for power at a given moment is extremely diversified. Electricity consumption presents daily and seasonal variations, and variations according to the different sectors. Forecasting power requirements is for any decision on operation or investment relating to an electrical system. Load management is desirable (prices according to the customers, optional tariffs for ''peak-day withdrawal''). To conclude, prospects for increased electricity consumption are discussed [fr

  16. Reduction of energy consumption peaks in a greenhouse by computer control

    Energy Technology Data Exchange (ETDEWEB)

    Amsen, M.G.; Froesig Nielsen, O.; Jacobsen, L.H. (Danish Research Service for Plant and Soil Science, Research Centre for Horticulture, Department of Horticultural Engineering, Aarslev (DK))

    1990-01-01

    The results of using a computer for environmental control in one greenhouse is in this paper compared with using modified analogue control equipment in another one. Energy consumption peaks can be almost prevented by properly applying the computer control and strategy. Both treatments were based upon negative DIF, i.e. low day and high night minimum set points (14 deg. C/ 22 deg. C) for room temperature. No difference in production time and quality was observed in six different pot plant species. Only Kalanchoe showed significant increase in fresh weight and dry weight. By applying computer control, the lack of flexibility of analogue control can be avoided by applying computer control and a more accurate room temperature control can be obtained. (author).

  17. Influencing Factors and Development Trend Analysis of China Electric Grid Investment Demand Based on a Panel Co-Integration Model

    OpenAIRE

    Jinchao Li; Lin Chen; Yuwei Xiang; Jinying Li; Dong Peng

    2018-01-01

    Electric grid investment demand analysis is significant to reasonably arranging construction funds for the electric grid and reduce costs. This paper used the panel data of electric grid investment from 23 provinces of China between 2004 and 2016 as samples to analyze the influence between electric grid investment demand and GDP, population scale, social electricity consumption, installed electrical capacity, and peak load based on co-integration tests. We find that GDP and peak load have pos...

  18. Impacts of Using Distributed Energy Resources to Reduce Peak Loads in Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lunacek, Monte S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, Birk [Univ. of New Mexico, Albuquerque, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-28

    To help the United States develop a modern electricity grid that provides reliable power from multiple resources as well as resiliency under extreme conditions, the U.S. Department of Energy (DOE) is leading the Grid Modernization Initiative (GMI) to help shape the future of the nation's grid. Under the GMI, DOE funded the Vermont Regional Initiative project to provide the technical support and analysis to utilities that need to mitigate possible impacts of increasing renewable generation required by statewide goals. Advanced control of distributed energy resources (DER) can both support higher penetrations of renewable energy by balancing controllable loads to wind and photovoltaic (PV) solar generation and reduce peak demand by shedding noncritical loads. This work focuses on the latter. This document reports on an experiment that evaluated and quantified the potential benefits and impacts of reducing the peak load through demand response (DR) using centrally controllable electric water heaters (EWHs) and batteries on two Green Mountain Power (GMP) feeders. The experiment simulated various hypothetical scenarios that varied the number of controllable EWHs, the amount of distributed PV systems, and the number of distributed residential batteries. The control schemes were designed with several objectives. For the first objective, the primary simulations focused on reducing the load during the independent system operator (ISO) peak when capacity charges were the primary concern. The second objective was to mitigate DR rebound to avoid new peak loads and high ramp rates. The final objective was to minimize customers' discomfort, which is defined by the lack of hot water when it is needed. We performed the simulations using the National Renewable Energy Laboratory's (NREL's) Integrated Energy System Model (IESM) because it can simulate both electric power distribution feeder and appliance end use performance and it includes the ability to simulate

  19. Benefits and challenges of electrical demand response: A critical review

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Pinson, Pierre; Madsen, Henrik

    2014-01-01

    and challenges of demand response. These benefits include the ability to balance fluctuations in renewable generation and consequently facilitate higher penetrations of renewable resources on the power system, an increase in economic efficiency through the implementation of real-time pricing, and a reduction...... in generation capacity requirements. Nevertheless, demand response is not without its challenges. The key challenges for demand response centre around establishing reliable control strategies and market frameworks so that the demand response resource can be used optimally. One of the greatest challenges...... for demand response is the lack of experience, and the consequent need to employ extensive assumptions when modelling and evaluating this resource. This paper concludes with an examination of these assumptions, which range from assuming a fixed linear price–demand relationship for price responsive demand...

  20. Peak Oil profiles through the lens of a general equilibrium assessment

    International Nuclear Information System (INIS)

    Waisman, Henri; Rozenberg, Julie; Sassi, Olivier; Hourcade, Jean-Charles

    2012-01-01

    This paper disentangles the interactions between oil production profiles, the dynamics of oil prices and growth trends. We do so through a general equilibrium model in which Peak Oil endogenously emerges from the interplay between the geological, technical, macroeconomic and geopolitical determinants of supply and demand under non-perfect expectations. We analyze the macroeconomic effects of oil production profiles and demonstrate that Peak Oil dates that differ only slightly may lead to very different time profiles of oil prices, exportation flows and economic activity. We investigate Middle-East's trade-off between different pricing trajectories in function of two alternative objectives (maximisation of oil revenues or households’ welfare) and assess its impact on OECD growth trajectories. A sensitivity analysis highlights the respective roles of the amount of resources, inertia on the deployment of non conventional oil and short-term oil price dynamics on Peak Oil dates and long-term oil prices. It also examines the effects of these assumptions on OECD growth and Middle-East strategic tradeoffs. - Highlights: ► Geological determinants behind Hubbert curves in a general equilibrium framework. ► We endogenize the interactions between Peak Oil dates, oil prices and growth trends. ► Close Peak Oil dates lead to different trends of oil prices, exportation and growth. ► Low short-term prices benefit to the long-term macroeconomy of oil exporters. ► High short-term prices hedge oil importers against economic tensions after Peak Oil.

  1. Aerobic capacity and peak power output of elite quadriplegic games players

    Science.gov (United States)

    Goosey‐Tolfrey, V; Castle, P; Webborn, N

    2006-01-01

    Background Participation in wheelchair sports such as tennis and rugby enables people with quadriplegia to compete both individually and as a team at the highest level. Both sports are dominated by frequent, intermittent, short term power demands superimposed on a background of aerobic activity. Objective To gain physiological profiles of highly trained British quadriplegic athletes, and to examine the relation between aerobic and sprint capacity. Methods Eight male quadriplegic athletes performed an arm crank exercise using an ergometer fitted with a Schoberer Rad Messtechnik (SRM) powermeter. The sprint test consisted of three maximum‐effort sprints of five seconds duration against a resistance of 2%, 3%, and 4% of body mass. The highest power output obtained was recorded (PPO). Peak oxygen consumption (V̇o2peak), peak heart rate (HRpeak), and maximal power output (POaer) were determined. Results Mean POaer was 67.7 (16.2) W, mean V̇o2peak was 0.96 (0.17) litres/min, and HRpeak was 134 (19) beats/min for the group. There was high variability among subjects. Peak power over the five second sprint for the group was 220 (62) W. There was a significant correlation between V̇o2peak (litres/min) and POaer (W) (r  =  0.74, p<0.05). Conclusions These British quadriplegic athletes have relatively high aerobic fitness when compared with the available literature. Moreover, the anaerobic capacity of these athletes appeared to be relatively high compared with paraplegic participants. PMID:16611721

  2. Performance Evaluation of a Thermal Load Reduction System in a Hyundai Sonata PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Titov, Eugene V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gallagher, James [Gentherm, Inc.; Scott, Matthew [Hyundai America Technical Center, Inc.

    2017-11-28

    Increased adoption of electric-drive vehicles (EDVs) requires overcoming hurdles including limited vehicle range. Vehicle cabin heating and cooling demand for occupant climate control requires energy from the main battery and has been shown to significantly degrade vehicle range. During peak cooling and heating conditions, climate control can require as much or more energy as propulsion. As part of an ongoing project, NREL and project partners Hyundai America Technical Center, Inc. (HATCI), Gentherm , Pittsburgh Glass Works (PGW), PPG Industries, Sekisui, 3M, and Hanon Systems developed a thermal load reduction system in order to reduce the range penalty associated with electric vehicle climate control. Solar reflective paint, solar control glass, heated and cooled/ventilated seats, heated surfaces, and heated windshield with door demisters were integrated into a Hyundai Sonata plug-in hybrid electric vehicle (PHEV). Cold weather field-testing was conducted in Fairbanks, Alaska while warm weather testing was conducted in Death Valley, California to assess the system performance in comparison to the baseline production vehicle. In addition, environmental chamber testing at peak heating and cooling conditions was performed to assess the performance of the system in standardized conditions compared to the baseline. Experimental results are presented in this paper providing quantitative data to automobile manufacturers on the impact of climate control thermal load reduction technologies to increase the advanced thermal technology adoption and market penetration of electric drive vehicles.

  3. Analysis of ice cool thermal storage for a clinic building in Kuwait

    International Nuclear Information System (INIS)

    Sebzali, M.J.; Rubini, P.A.

    2006-01-01

    In Kuwait, air conditioning (AC) systems consume 61% and 40% of the peak electrical load and total electrical energy, respectively. This is due to a very high ambient temperature for the long summer period extended from April to October and the low energy cost. This paper gives an overview of the electrical peak and energy consumption in Kuwait, and it has been found that the average increase in the annual peak electrical demand and energy consumption for the year 1998-2002 was 6.2% and 6.4%, respectively. One method of reducing the peak electrical demand of AC systems during the day period is by incorporating an ice cool thermal storage (ICTS) with the AC system. A clinic building has been selected to study the effects of using an ICTS with different operation strategies such as partial (load levelling), partial (demand limiting) and full storage operations on chiller and storage sizes, reduction of peak electrical demand and energy consumption of the chiller for selected charging and discharging hours. It has been found that the full storage operation has the largest chiller and storage capacities, energy consumption and peak electrical reduction. However, partial storage (load levelling) has the smallest chiller and storage capacities and peak electrical reduction. This paper also provides a detailed comparison of using ICTS operating strategies with AC and AC systems without ICTS

  4. Household food demand analysis: a survey of semiurban and rural ...

    African Journals Online (AJOL)

    In like manner, increased supply of the highly price-elastic commodities would benefit both the consumer and the producer in that an accompanying reduction in prices with increased supply would lead to a higher margin of demand than the fall in price. Finally, it is suggested that food demand problems in the study area ...

  5. Future demand in electrical power and meeting this demand, in particular with the aid of nuclear energy

    International Nuclear Information System (INIS)

    1976-07-01

    As a part of the research program in question, the study deals with meeting the electrical power demand in the FRG until the year 2000 in the best possible way with regard to costs, and evaluating the long-term technical, ecological, and economical effects resulting thereof. With the aid of a model, the construction of additional plants and the use of the FRG's power plant network, always applying economical criteria, are investigated while allowing for adequate assurance of supply. It becomes obvious that the power plants and fuels available influence a 25-year planning period. In the year 2000, nuclear energy will play a dominating role in meeting the demand, the conventional thermal power plants will be used more for coping with the above-average medium laods, while peak loads will be met, above all, by pump storage stations. (UA) [de

  6. Demand response concepts in the German industry; Konzepte zur Lastreaktion in der deutschen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Roon, Serafin von; Gobmaier, Thomas [Forschungsstelle fuer Energiewirtschaft (FfE) e.V., Muenchen (Germany)

    2011-07-01

    In the German industry the concept of load management for peak shaving is well established. Pooling these reserve power enables reliable power supply at short notice. In the U.S. this business concept - called Demand Response - is already quite successful. The article summarizes findings on the status quo and the technical and economic potential of implementing Demand Response in the German industry. (orig.)

  7. Resolution of issues with renewable energy penetration in a long-range power system demand-supply planning

    International Nuclear Information System (INIS)

    Ogimoto, Kazuhiko; Ikeda, Yuichi; Kataoka, Kazuto; Ikegami, Takashi; Nonaka, Shunsuke; Azuma, Hitoshi

    2012-01-01

    Under the anticipated high penetration of variable renewable energy generation such as photovoltaic, the issue of supply demand balance should be evaluated and fixed. Technologies such as demand activation, and energy storage are expected to solve the issue. Under the situation, a long-range power system supply demand analysis should have the capability for the evaluation in its analysis steps of demand preparation, maintenance scheduling, and economic dispatch analysis. This paper presents results of a parametric analysis of the reduction of PV and Wind generation curtailment reduction by deployment of batteries. Based on a set of scenarios of the prospects of Japan's 10 power system demand-supply condition in 2030, the demand-supply balance capability are analyzed assuming PV and wind generation variation, demand activation and dispatchable batteries. (author)

  8. Peak Electric Load Relief in Northern Manhattan

    Directory of Open Access Journals (Sweden)

    Hildegaard D. Link

    2014-08-01

    Full Text Available The aphorism “Think globally, act locally,” attributed to René Dubos, reflects the vision that the solution to global environmental problems must begin with efforts within our communities. PlaNYC 2030, the New York City sustainability plan, is the starting point for this study. Results include (a a case study based on the City College of New York (CCNY energy audit, in which we model the impacts of green roofs on campus energy demand and (b a case study of energy use at the neighborhood scale. We find that reducing the urban heat island effect can reduce building cooling requirements, peak electricity loads stress on the local electricity grid and improve urban livability.

  9. Responsive demand to mitigate slow recovery voltage sags

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; da Silva, Luiz Carlos Pereira; Xu, Zhao

    2012-01-01

    , and reactive power reserve for peak load management through price responsive methods and also as energy providers through embedded generation technologies. This article introduces a new technology, called demand as voltagecontrolled reserve, which can help mitigation of momentary voltage sags. The technology...... faults. This article presents detailed models, discussion, and simulation tests to demonstrate the technical viability and effectiveness of the demand as voltage-controlled reserve technology for mitigating voltage sags....... can be provided by thermostatically controlled loads as well as other types of load. This technology has proven to be effective in distribution systems with a large composition of induction motors, when voltage sags present slow recovery characteristics because of the deceleration of the motors during...

  10. A Novel Prosumer-Based Energy Sharing and Management (PESM) Approach for Cooperative Demand Side Management (DSM) in Smart Grid

    OpenAIRE

    Sohail Razzaq; Rehman Zafar; Naveed Ahmed Khan; Asif Raza Butt; Anzar Mahmood

    2016-01-01

    Increasing population and modern lifestyle have raised energy demands globally. Demand Side Management (DSM) is one important tool used to manage energy demands. It employs an advanced power infrastructure along with bi-directional information flow among utilities and users in order to achieve a balanced load curve and minimize demand-supply mismatch. Traditionally, this involves shifting the electricity demand from peak hours to other times of the day in an optimized manner. Multiple users e...

  11. Energy cost reduction in oil pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Limeira, Fabio Machado; Correa, Joao Luiz Lavoura; Costa, Luciano Macedo Josino da; Silva, Jose Luiz da; Henriques, Fausto Metzger Pessanha [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    One of the key questions of modern society consists on the rational use of the planet's natural resources and energy. Due to the lack of energy, many companies are forced to reduce their workload, especially during peak hours, because residential demand reaches its top and there is not enough energy to fulfill the needs of all users, which affects major industries. Therefore, using energy more wisely has become a strategic issue for any company, due to the limited supply and also for the excessive cost it represents. With the objective of saving energy and reducing costs for oil pipelines, it has been identified that the increase in energy consumption is primordially related to pumping stations and also by the way many facilities are operated, that is, differently from what was originally designed. Realizing this opportunity, in order to optimize the process, this article intends to examine the possibility of gains evaluating alternatives regarding changes in the pump scheme configuration and non-use of pump stations at peak hours. Initially, an oil pipeline with potential to reduce energy costs was chosen being followed by a history analysis, in order to confirm if there was sufficient room to change the operation mode. After confirming the pipeline choice, the system is briefly described and the literature is reviewed, explaining how the energy cost is calculated and also the main characteristics of a pumping system in series and in parallel. In that sequence, technically feasible alternatives are studied in order to operate and also to negotiate the energy demand contract. Finally, costs are calculated to identify the most economical alternative, that is, for a scenario with no increase in the actual transported volume of the pipeline and for another scenario that considers an increase of about 20%. The conclusion of this study indicates that the chosen pipeline can achieve a reduction on energy costs of up to 25% without the need for investments in new

  12. Peak energy consumption and CO2 emissions in China

    International Nuclear Information System (INIS)

    Yuan, Jiahai; Xu, Yan; Hu, Zheng; Zhao, Changhong; Xiong, Minpeng; Guo, Jingsheng

    2014-01-01

    China is in the processes of rapid industrialization and urbanization. Based on the Kaya identity, this paper proposes an analytical framework for various energy scenarios that explicitly simulates China's economic development, with a prospective consideration on the impacts of urbanization and income distribution. With the framework, China's 2050 energy consumption and associated CO 2 reduction scenarios are constructed. Main findings are: (1) energy consumption will peak at 5200–5400 million tons coal equivalent (Mtce) in 2035–2040; (2) CO 2 emissions will peak at 9200–9400 million tons (Mt) in 2030–2035, whilst it can be potentially reduced by 200–300 Mt; (3) China's per capita energy consumption and per capita CO 2 emission are projected to peak at 4 tce and 6.8 t respectively in 2020–2030, soon after China steps into the high income group. - Highlights: • A framework for modeling China's energy and CO 2 emissions is proposed. • Scenarios are constructed based on various assumptions on the driving forces. • Energy consumption will peak in 2035–2040 at 5200–5400 Mtce. • CO 2 emissions will peak in 2030–2035 at about 9300 Mt and be cut by 300 Mt in a cleaner energy path. • Energy consumption and CO 2 emissions per capita will peak soon after China steps into the high income group

  13. Application of cold thermal energy storage (CTES) for building demand management in hot climates

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Nagarajan, Balamurugan; Romagnoli, Alessandro

    2016-01-01

    Highlights: • A new index, Savings per energy unit, is defined to assess the effectiveness of CTES. • CTES systems were used to perform demand management strategies, removing partial load operations and shaving peak loads. • CTES was used to perform price arbitrage, exploiting the difference between peak and off peak electricity rates in Singapore. • Results showed that it is possible to enhance the efficiency of the whole system, achieving both energy and economic savings. • Depending on the sizing scenario, the pay back periods ranged from a minimum of 8.9 years to a maximum of 16 years. - Abstract: This paper investigates the feasibility of Cold Thermal Energy Storage (CTES) for building demand management applications in hot climate characterized by a cooling season lasting all year long. An existing office building, located in Singapore, serves as case study. The CTES is coupled to the existing cooling systems in order to address the opportunity of improving overall energy efficiency and to perform price arbitrage, exploiting the spread between peak and off-peak energy tariffs. Six different sizes for the CTES are analyzed, addressing different percentage of the daily cooling energy demand. A new index, Savings per energy unit, is defined to assess the effectiveness of CTES. Results indicate that it is possible to enhance the efficiency of the whole cooling system, achieving both energy and economic savings. The payback periods of the different solutions range from a minimum of 8.9 years to a maximum of 16 years. All these aspects make CTES applications a viable option. However, a large amount of space in direct proximity to the building is necessary and, especially in largely urban environment, this is not always available.

  14. Demand response evaluation and forecasting — Methods and results from the EcoGrid EU experiment

    DEFF Research Database (Denmark)

    Larsen, Emil Mahler; Pinson, Pierre; Leimgruber, Fabian

    2017-01-01

    Understanding electricity consumers participating in new demand response schemes is important for investment decisions and the design and operation of electricity markets. Important metrics include peak response, time to peak response, energy delivered, ramping, and how the response changes...... with respect to external conditions. Such characteristics dictate the services DR is capable of offering, like primary frequency reserves, peak load shaving, and system balancing. In this paper, we develop methods to characterise price-responsive demand from the EcoGrid EU demonstration in a way that was bid...... into a real-time market. EcoGrid EU is a smart grid experiment with 1900 residential customers who are equipped with smart meters and automated devices reacting to five-minute electricity pricing. Customers are grouped and analysed according to the manufacturer that controlled devices. A number of advanced...

  15. Solar + Storage Synergies for Managing Commercial-Customer Demand Charges

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Govindarajan, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barbose, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, N. R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, A. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-18

    Demand charges, which are based on a customer’s maximum demand in kilowatts (kW), are a common element of electricity rate structures for commercial customers. Customer-sited solar photovoltaic (PV) systems can potentially reduce demand charges, but the level of savings is difficult to predict, given variations in demand charge designs, customer loads, and PV generation profiles. Lawrence Berkeley National Laboratory (Berkeley Lab) and the National Renewable Energy Laboratory (NREL) are collaborating on a series of studies to understand how solar PV can impact demand charges. Prior studies in the series examined demand charge reductions from solar on a stand-alone basis for residential and commercial customers. Those earlier analyses found that solar, alone, has limited ability to reduce demand charges depending on the specific design of the demand charge and on the shape of the customer’s load profile. This latest analysis estimates demand charge savings from solar in commercial buildings when co-deployed with behind-the-meter storage, highlighting the complementary roles of the two technologies. The analysis is based on simulated loads, solar generation, and storage dispatch across a wide variety of building types, locations, system configurations, and demand charge designs.

  16. Guide to calculating transportation demand management benefits

    Energy Technology Data Exchange (ETDEWEB)

    Litman, T. [Victoria Transport Policy Institute, Victoria, BC (Canada)

    1997-02-14

    The full benefits of transportation demand management (TDM) programs were discussed. TDM includes several policies, programs and measures designed to change travel patterns. TDM programs include commute trip reductions, pricing policies, land use management strategies, and programs to support alternative modes of transportation such as public transit, carpooling, bicycling, walking and telecommuting. In addition to reduction in traffic congestion and reduction in air pollution, other impacts of TDM programs were also evaluated. The value of these impacts based on external cost savings was estimated. A list of documents, software and organizations which could be helpful for TDM planning and evaluation was provided. 34 refs., 14 tabs., 1 fig.

  17. Demand response in Indian electricity market

    International Nuclear Information System (INIS)

    Siddiqui, Md Zakaria; Maere d'Aertrycke, Gauthier de; Smeers, Yves

    2012-01-01

    This paper outlines a methodology for implementing cost of service regulation in retail market for electricity in India when wholesale market is liberalised and operates through an hourly spot market. As in a developing country context political considerations make tariff levels more important than supply security, satisfying the earmarked level of demand takes a back seat. Retail market regulators are often forced by politicians to keep the retail tariff at suboptimal level. This imposes budget constraint on distribution companies to procure electricity that it requires to meet the earmarked level of demand. This is the way demand response is introduced in the system and has its impact on spot market prices. We model such a situation of not being able to serve the earmarked demand as disutility to the regulator which has to be minimised and we compute associated equilibrium. This results in systematic mechanism for cutting loads. We find that even a small cut in ability of the distribution companies to procure electricity from the spot market has profound impact on the prices in the spot market. - Highlights: ► Modelling the impact of retail tariff in different states on spot prices of electricity in India. ► Retail tariffs are usually fixed below appropriate levels by states due to political reasons. ► Due to revenue constraint distribution utility withdraws demand from spot market in peak hours. ► This adversely affects the scarcity rent of generators and subsequently future investment. ► We show possibility of strategic behaviour among state level regulators in setting retail tariff.

  18. Climate Change Impacts on Peak Electricity Consumption: US vs. Europe.

    Science.gov (United States)

    Auffhammer, M.

    2016-12-01

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond. This finding is at odds with the relatively modest increase in climate driven impacts on consumption. Comprehensive high frequency load balancing authority level data have not been used previously to parameterize the relationship between electric demand and temperature for any major economy. Using statistical models we analyze multi-year data from load balancing authorities in the United States of America and the European Union, which are responsible for more than 90% of the electricity delivered to residential, industrial, commercial and agricultural customers. We couple the estimated response functions between total daily consumption and daily peak load with an ensemble of downscaled GCMs from the CMIP5 archive to simulate climate change driven impacts on both outcomes. We show moderate and highly spatially heterogeneous changes in consumption. The results of our peak load simulations, however, suggest significant changes in the intensity and frequency of peak events throughout the United States and Europe. As the electricity grid is built to endure maximum load, which usually occurs on the hottest day of the year, our findings have significant implications for the construction of costly peak generating and transmission capacity.

  19. Smart Demand Response Based on Smart Homes

    Directory of Open Access Journals (Sweden)

    Jingang Lai

    2015-01-01

    Full Text Available Smart homes (SHs are crucial parts for demand response management (DRM of smart grid (SG. The aim of SHs based demand response (DR is to provide a flexible two-way energy feedback whilst (or shortly after the consumption occurs. It can potentially persuade end-users to achieve energy saving and cooperate with the electricity producer or supplier to maintain balance between the electricity supply and demand through the method of peak shaving and valley filling. However, existing solutions are challenged by the lack of consideration between the wide application of fiber power cable to the home (FPCTTH and related users’ behaviors. Based on the new network infrastructure, the design and development of smart DR systems based on SHs are related with not only functionalities as security, convenience, and comfort, but also energy savings. A new multirouting protocol based on Kruskal’s algorithm is designed for the reliability and safety of the SHs distribution network. The benefits of FPCTTH-based SHs are summarized at the end of the paper.

  20. Global Energy Trends - 2016 report. Towards a Peak in Energy Demand and CO2 Emissions?

    International Nuclear Information System (INIS)

    2016-06-01

    Celebrating the 20. anniversary of this yearly publication, Enerdata has newly released its annual Global Energy Trends publication for 2016. The full report presents in-depth information on the energy markets as well as upcoming trends for all energies in the G20. With over 400 premium sources, Enerdata analysts highlight major developments in 2015 concerning global demand, supply and key indicators across the globe. The main trends outlined in the report are: - Economic slowdown: the lowest growth since 2002; - Almost no growth in energy consumption; - New decrease of energy intensity; - Stabilization of CO 2 -energy emissions; - INDC targets achievement requires a double breakthrough. The Global Energy Trends Analysis also provides additional graphs about trends by energy: - Coal: most consumed energy source in G20 countries; - Oil: fall in prices to around 40-50 US$/bbl; - Oil production: USA overtake Russia and catch up with Saudi Arabia; - Gas: Stabilisation of gas demand for the 2. consecutive year; - Electricity: Stagnation of electricity consumption; - Wind Power and Solar PV: Asia engine of development. Growth in energy consumption (%/year) for G20 countries: - Second consecutive year of decline: low growth and decrease in energy intensity; - India drives the energy consumption growth; - Near stagnation in China (after a first sharp slowdown in 2014); - Economic recession in Brazil and Russia; - USA: decrease primarily linked to the industrial sector (energy efficiency + less energy-intensive industry); - Rebound in Europe: economic growth + climate effect 2015/2014

  1. Energy demand for materials in an international context.

    Science.gov (United States)

    Worrell, Ernst; Carreon, Jesus Rosales

    2017-06-13

    Materials are everywhere and have determined society. The rapid increase in consumption of materials has led to an increase in the use of energy and release of greenhouse gas (GHG) emissions. Reducing emissions in material-producing industries is a key challenge. If all of industry switched to current best practices, the energy-efficiency improvement potential would be between 20% and 35% for most sectors. While these are considerable potentials, especially for sectors that have historically paid a lot of attention to energy-efficiency improvement, realization of these potentials under current 'business as usual' conditions is slow due to a large variety of barriers and limited efforts by industry and governments around the world. Importantly, the potentials are not sufficient to achieve the deep reductions in carbon emissions that will be necessary to stay within the climate boundaries as agreed in the 2015 Paris Conference of Parties. Other opportunities need to be included in the menu of options to mitigate GHG emissions. It is essential to develop integrated policies combining energy efficiency, renewable energy and material efficiency and material demand reduction, offering the most economically attractive way to realize deep reductions in carbon emissions.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).

  2. Northwest Open Automated Demand Response Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann

    2009-08-01

    Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology demonstration and evaluation for Bonneville Power Administration (BPA) in Seattle City Light's (SCL) service territory. This report summarizes the process and results of deploying open automated demand response (OpenADR) in Seattle area with winter morning peaking commercial buildings. The field tests were designed to evaluate the feasibility of deploying fully automated demand response (DR) in four to six sites in the winter and the savings from various building systems. The project started in November of 2008 and lasted 6 months. The methodology for the study included site recruitment, control strategy development, automation system deployment and enhancements, and evaluation of sites participation in DR test events. LBNL subcontracted McKinstry and Akuacom for this project. McKinstry assisted with recruitment, site survey collection, strategy development and overall participant and control vendor management. Akuacom established a new server and enhanced its operations to allow for scheduling winter morning day-of and day-ahead events. Each site signed a Memorandum of Agreement with SCL. SCL offered each site $3,000 for agreeing to participate in the study and an additional $1,000 for each event they participated. Each facility and their control vendor worked with LBNL and McKinstry to select and implement control strategies for DR and developed their automation based on the existing Internet connectivity and building control system. Once the DR strategies were programmed, McKinstry commissioned them before actual test events. McKinstry worked with LBNL to identify control points that can be archived at each facility. For each site LBNL collected meter data and trend logs from the energy management and control system. The communication system allowed the sites to receive day-ahead as well as day-of DR test event signals. Measurement of DR was

  3. RFG in tight supply at introduction, then opt outs reduced demand

    International Nuclear Information System (INIS)

    Bohn, A.; Dale, C.; Lidderdale, T.; Zyren, J.; Hackworth, J.; Shore, J.; Burdette, M.

    1995-01-01

    The first reformulated gasoline (RFG) season went smoothly, meaning the industry was able to deliver product where it was needed. The absence of major refinery outages, along with unexpected reductions in demand resulting from several areas leaving the program at the last minute, contributed to this smooth transition. But the RFG market remains in a state of transition related to unexpected events that have affected supply and demand. An analysis of the RFG supply/demand scenario highlights the effects these events have had on gasoline markets. The paper discusses prior experiences with environmental programs, the complexity of the RFG program, RFG demand, production, imports, inventories, price volatility, and demand outlook

  4. Market Design Project. Demand Response Resources in Sweden - a summary

    International Nuclear Information System (INIS)

    Fritz, Peter

    2006-06-01

    /kWh (about 0.4-1.4 USD/kWh) interval for an average of 40 hours per year. Judging from the work presented in this report, it appears probable that there is a significant ability and interest among customers to reduce their consumption as long as the economic incentives are large enough. With price peaks we have estimated it should be possible to achieve demand response of around 2,000 MW, probably more. It must be made clear that this is not a persistent capacity reduction. What we have mainly focused on are the consequences of a price peak over three hours in the morning. A large part of this untapped potential lies in the many electrically heated family homes. In order to extract this capability, a large obstacle must be overcome. With the metering equipment we have today, and even the minimum required equipment after 2009, this group is of no interest. In our report we have highlighted five different business models that can contribute to realizing the existing potential. They are clear concepts and relatively simple to carry out, as well as having the potential to provide economic benefits to all involved: customers, electricity suppliers and grid owners. Perhaps the most interesting business model aimed at smaller customers is one we have called 'Fixed price with the right to return' after a model by Trondheim Energi in Norway. If this model were to be launched widely to smaller customers instead of today's 'Take and Pay contract' it would open up for many new possibilities

  5. A Methodology for Estimating Large-Customer Demand Response MarketPotential

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers,Peter

    2007-08-01

    Demand response (DR) is increasingly recognized as an essential ingredient to well-functioning electricity markets. DR market potential studies can answer questions about the amount of DR available in a given area and from which market segments. Several recent DR market potential studies have been conducted, most adapting techniques used to estimate energy-efficiency (EE) potential. In this scoping study, we: reviewed and categorized seven recent DR market potential studies; recommended a methodology for estimating DR market potential for large, non-residential utility customers that uses price elasticities to account for behavior and prices; compiled participation rates and elasticity values from six DR options offered to large customers in recent years, and demonstrated our recommended methodology with large customer market potential scenarios at an illustrative Northeastern utility. We observe that EE and DR have several important differences that argue for an elasticity approach for large-customer DR options that rely on customer-initiated response to prices, rather than the engineering approaches typical of EE potential studies. Base-case estimates suggest that offering DR options to large, non-residential customers results in 1-3% reductions in their class peak demand in response to prices or incentive payments of $500/MWh. Participation rates (i.e., enrollment in voluntary DR programs or acceptance of default hourly pricing) have the greatest influence on DR impacts of all factors studied, yet are the least well understood. Elasticity refinements to reflect the impact of enabling technologies and response at high prices provide more accurate market potential estimates, particularly when arc elasticities (rather than substitution elasticities) are estimated.

  6. A field study using an adaptive in-house pricing model for commercial and industrial customers in Korea

    International Nuclear Information System (INIS)

    Kim, Min-Jeong

    2017-01-01

    Demand response programs provide customers with economic incentives for load reductions at times of high market prices and system reliability constraints. One type of demand response programs, price-based program, induces customers to respond to changes in product rates. However, some large-scale customers find it difficult to change their electricity consumption patterns, even with rate changes, because their electricity demands are commercial and industrial. This study proposes an adaptive in-house pricing model for large-scale customers, particularly those with multiple business facilities, for self-regulating price-based program. The adaptive in-house pricing model charges higher rates to customers with lower load factors by employing a peak-to-off-peak usage ratio in order to reduce usage at times of high prices at each facility. This study analyzes the daily electricity consumption patterns of large-scale customers through a field trial of the proposed pricing model at a telecom company with 447 offices and worksites for one month. The results show that the pricing model corresponds to average reductions of 3.54–28.69% during peak-demand times for four different types of workplaces. However, reductions in electricity consumption during off-peak periods did not show a significant difference. The results of this study prove that this proposed pricing model can be successfully applied to large-scale operations. - Highlights: • The pricing model induces reductions in energy consumption during peak-demand times. • The greatest decrease occurs in commercial buildings with higher POR. • Data centers with flat loads for necessities can do little to reduce usage.

  7. PEAK SHIFTS PRODUCED BY CORRELATED RESPONSE TO SELECTION.

    Science.gov (United States)

    Price, Trevor; Turelli, Michael; Slatkin, Montgomery

    1993-02-01

    Traits may evolve both as a consequence of direct selection and also as a correlated response to selection on other traits. While correlated response may be important for both the production of evolutionary novelty and in the build-up of complex characters, its potential role in peak shifts has been neglected empirically and theoretically. We use a quantitative genetic model to investigate the conditions under which a character, Y, which has two alternative optima, can be dragged from one optimum to the other as a correlated response to selection on a second character, X. High genetic correlations between the two characters make the transition, or peak shift, easier, as does weak selection tending to restore Y to the optimum from which it is being dragged. When selection on Y is very weak, the conditions for a peak shift depend only on the location of the new optimum for X and are independent of the strength of selection moving it there. Thus, if the "adaptive valley" for Y is very shallow, little reduction in mean fitness is needed to produce a shift. If the selection acts strongly to keep Y at its current optimum, very intense directional selection on X, associated with a dramatic drop in mean fitness, is required for a peak shift. When strong selection is required, the conditions for peak shifts driven by correlated response might occur rarely, but still with sufficient frequency on a geological timescale to be evolutionarily important. © 1993 The Society for the Study of Evolution.

  8. A channel-by-channel method of reducing the errors associated with peak area integration

    International Nuclear Information System (INIS)

    Luedeke, T.P.; Tripard, G.E.

    1996-01-01

    A new method of reducing the errors associated with peak area integration has been developed. This method utilizes the signal content of each channel as an estimate of the overall peak area. These individual estimates can then be weighted according to the precision with which each estimate is known, producing an overall area estimate. Experimental measurements were performed on a small peak sitting on a large background, and the results compared to those obtained from a commercial software program. Results showed a marked decrease in the spread of results around the true value (obtained by counting for a long period of time), and a reduction in the statistical uncertainty associated with the peak area. (orig.)

  9. Opportunities for Automated Demand Response in California’s Dairy Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Gregory K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception that the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  10. Long-term outlook of energy demand and supply in Japan. Estimation of energy demand and supply for 'Nuclear Energy Vision 2100' of JAEA

    International Nuclear Information System (INIS)

    Tatematsu, Kenji; Kawasaki, Hirotsugu; Nemoto, Masahiro; Murakami, Masakazu

    2009-06-01

    In this study, we showed an energy demand and supply scenario toward the year 2100 in Japan, which underlies JAEA's 'Nuclear Energy Vision 2100' published in October 2008. This energy demand and supply scenario aimed at the coexistence of the reduction of the carbon dioxide emission and the energy security through reduction of the fossil fuel usage, positive electrification and the nuclear energy usage. We reduced the ratio of the fossil fuel in the primary energy supply to about 1/3 and extend the share of renewable and nuclear energy to 70% from current 15%. As a result, the carbon dioxide emission was reduced to current 10%, and it developed that the half was the contribution of the nuclear energy. (author)

  11. What is demand response? Contributing to secure security-of-supply at the electricity markets

    International Nuclear Information System (INIS)

    Grenaa Jensen, Stine; Skytte, Klaus; Togeby, Mikael

    2004-01-01

    There is a common understanding that demand response can reduce the total costs of electricity reliability. There has especially been a growing interest in the electricity market where high spot prices in peak periods and blackouts have recently been seen. It is not easy from the existing literature to find a common definition of demands response. Often the term demand response is used broadly without looking at the time dimension. However, it does not make sense to talk about demand response without talking about when, for how long the energy is used or saved, and at which costs. This paper surveys these subjects and set up a systematic grouping of the different characteristics of demand response. It especially looks at the time dimension. (au)

  12. A Young Woman Asking for Labia Reduction Surgery: A Plea for “Vulvar Literacy”.

    NARCIS (Netherlands)

    Paarlberg, K.M.; van de Wiel, Henricus; Paarlberg, KM; van de Wiel, HBM

    2017-01-01

    In the last decades, the demand for genital cosmetic surgery and, more specifically, labia reduction surgery has increased. Labia reduction surgery means that parts of the labia minora are surgically removed. Several reasons for this increased demand for labia reduction surgery have been suggested,

  13. Supply- and demand-side effects of power sector planning with demand-side management options and SO2 emission constraints

    International Nuclear Information System (INIS)

    Shrestha, R.M.; Marpaung, C.O.P.

    2005-01-01

    This paper examines the implications of SO 2 emission mitigation constraints in the power sector planning in Indonesia--a developing country--during 2003-2017 from a long term integrated resource planning perspective. A decomposition model is developed to assess the contributions of supply- and demand-side effects to the total changes in CO 2 , SO 2 and NO x emissions from the power sector due to constraints on SO 2 emissions. The results of the study show that both the supply- and demand-side effects would act towards the reduction of CO 2 , SO 2 and NO x emissions. However, the supply-side effect would play the dominant role in emission mitigations from the power sector in Indonesia. The average incremental SO 2 abatement cost would increase from US$ 970 to US$ 1271 per ton of SO 2 , while electricity price would increase by 2-18% if the annual SO 2 emission reduction target is increased from 10% to 25%

  14. Assessment of demand for natural gas from the electricity sector in India

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash; Victor, David G.

    2009-01-01

    Electricity sector is among the key users of natural gas. The sustained electricity deficit and environment policies have added to an already rising demand for gas. This paper tries to understand gas demand in future from electricity sector. This paper models the future demand for gas in India from...... the electricity sector under alternative scenarios for the period 2005–2025, using bottom-up ANSWER MARKAL model. The scenarios are differentiated by alternate economic growth projections and policies related to coal reforms, infrastructure choices and local environment. The results across scenarios show that gas...... competes with coal as a base-load option if price difference is below US $ 4 per MBtu. At higher price difference gas penetrates only the peak power market. Gas demand is lower in the high economic growth scenario, since electricity sector is more flexible in substitution of primary energy. Gas demand...

  15. Peak-interviewet

    DEFF Research Database (Denmark)

    Raalskov, Jesper; Warming-Rasmussen, Bent

    Peak-interviewet er en særlig effektiv metode til at gøre ubevidste menneskelige ressourcer bevidste. Fokuspersonen (den interviewede) interviewes om en selvvalgt, personlig succesoplevelse. Terapeuten/coachen (intervieweren) spørger ind til processen, som ledte hen til denne succes. Herved afdæk...... fokuspersonen ønsker at tage op (nye mål eller nye processer). Nærværende workingpaper beskriver, hvad der menes med et peak-interview, peakinterviwets teoretiske fundament samt metodikken til at foretage et tillidsfuldt og effektiv peak-interview....

  16. World energy demand down for the first time in 30 years. Key findings of the world energy demand in 2009 by Enerdata based its global energy database - 8 June 2010

    International Nuclear Information System (INIS)

    2010-01-01

    Key findings of the world energy demand in 2009 by Enerdata based its global energy database: World energy demand down for the first time in 30 years. The first 2009 world energy industry data, now available in the Enerdata Yearbook, confirms trends identified in May 2010 by Enerdata analysts. The economic and financial crisis resulted in a reduction of world energy demand in 2009 by 1% or 130 Mtoe. It is the first demand decrease in 30 years, and the first decrease in electricity demand since World War II. (authors)

  17. Demand-side management pricing options in electric utilities

    International Nuclear Information System (INIS)

    Sardana, P.; Herman, P.

    1990-01-01

    In 1989 Ontario Hydro implemented optional time-of-use (TOU) rates at the wholesale level for all municipal utilities in the province. At the same time, mandatory TOU rates were implemented for large users (customers with loads in excess of 5 MW) served by municipal utilities and Ontario Hydro's direct customers. To fully explore the potential of rate structures as demand-side management (DSM) tools, Ontario Hydro retained a consulting firm to carry out a survey of innovative rate structures in other jurisdications. The survey was intended to identify: the status quo of rate structures in other jurisdictions that were designed specifically to encourage DSM; a profile of the cost basis of the rate structures, for example whether traditional embedded cost of service analyses or contentious methods such as marginal cost pricing were used; whether innovative rates have been successful, and customer reactions and attitudes; and how innovative rates fit into the overall strategy of the utilities. It was found that TOU, interruptible and end-use targeted rates are the rate structures of choice for many utilities. Most are concerned with deferring capacity, reducing peak demand, and shifting load out of peak periods. Most utilities report success with their programs and satisfaction with the present form of the programs. 5 tabs

  18. Automated Peak Picking and Peak Integration in Macromolecular NMR Spectra Using AUTOPSY

    Science.gov (United States)

    Koradi, Reto; Billeter, Martin; Engeli, Max; Güntert, Peter; Wüthrich, Kurt

    1998-12-01

    A new approach for automated peak picking of multidimensional protein NMR spectra with strong overlap is introduced, which makes use of the program AUTOPSY (automatedpeak picking for NMRspectroscopy). The main elements of this program are a novel function for local noise level calculation, the use of symmetry considerations, and the use of lineshapes extracted from well-separated peaks for resolving groups of strongly overlapping peaks. The algorithm generates peak lists with precise chemical shift and integral intensities, and a reliability measure for the recognition of each peak. The results of automated peak picking of NOESY spectra with AUTOPSY were tested in combination with the combined automated NOESY cross peak assignment and structure calculation routine NOAH implemented in the program DYANA. The quality of the resulting structures was found to be comparable with those from corresponding data obtained with manual peak picking.

  19. Automated Dynamic Demand Response Implementation on a Micro-grid

    Energy Technology Data Exchange (ETDEWEB)

    Kuppannagari, Sanmukh R.; Kannan, Rajgopal; Chelmis, Charalampos; Prasanna, Viktor K.

    2016-11-16

    In this paper, we describe a system for real-time automated Dynamic and Sustainable Demand Response with sparse data consumption prediction implemented on the University of Southern California campus microgrid. Supply side approaches to resolving energy supply-load imbalance do not work at high levels of renewable energy penetration. Dynamic Demand Response (D2R) is a widely used demand-side technique to dynamically adjust electricity consumption during peak load periods. Our D2R system consists of accurate machine learning based energy consumption forecasting models that work with sparse data coupled with fast and sustainable load curtailment optimization algorithms that provide the ability to dynamically adapt to changing supply-load imbalances in near real-time. Our Sustainable DR (SDR) algorithms attempt to distribute customer curtailment evenly across sub-intervals during a DR event and avoid expensive demand peaks during a few sub-intervals. It also ensures that each customer is penalized fairly in order to achieve the targeted curtailment. We develop near linear-time constant-factor approximation algorithms along with Polynomial Time Approximation Schemes (PTAS) for SDR curtailment that minimizes the curtailment error defined as the difference between the target and achieved curtailment values. Our SDR curtailment problem is formulated as an Integer Linear Program that optimally matches customers to curtailment strategies during a DR event while also explicitly accounting for customer strategy switching overhead as a constraint. We demonstrate the results of our D2R system using real data from experiments performed on the USC smartgrid and show that 1) our prediction algorithms can very accurately predict energy consumption even with noisy or missing data and 2) our curtailment algorithms deliver DR with extremely low curtailment errors in the 0.01-0.05 kWh range.

  20. The management of the household demand for electricity: a review of 30 years of experiments around the world

    International Nuclear Information System (INIS)

    Lesgards, V.; Frachet, L.

    2012-01-01

    Since the end of 1970's, experiments to test the impact of providing information, then of variable pricing, on the demand for electricity by households have developed considerably around the world. Initially undertaken in the USA and in the UK, where they analysed the impact of consumer information on overall demand, after the year 2000 these pilot efforts have been extended to most OECD member countries and aim too to reduce peak demand with appropriate price incentives. In recent years methodological improvements have been made in establishing the cause and effect relationship between these stimuli and the induced modification in consumption (internal validity). On top of methodological gains, the analysis of these experiments reveals some salient characteristics of the residential consumers' behaviour: the absence of any tangible and durable impact of solely using information on demand, the lasting incentive effect of variable pricing on reducing consumption at peak times, often creating a trend, as well as a strong heterogeneity of household reactions to these different stimuli. (authors)

  1. Technical Potential for Peak Load Management Programs in New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, B.J.

    2002-12-13

    Restructuring is attempting to bring the economic efficiency of competitive markets to the electric power industry. To at least some extent it is succeeding. New generation is being built in most areas of the country reversing the decades-long trend of declining reserve margins. Competition among generators is typically robust, holding down wholesale energy prices. Generators have shown that they are very responsive to price signals in both the short and long term. But a market that is responsive only on the supply side is only half a market. Demand response (elasticity) is necessary to gain the full economic advantages that restructuring can offer. Electricity is a form of energy that is difficult to store economically in large quantities. However, loads often have some ability to (1) conveniently store thermal energy and (2) defer electricity consumption. These inherent storage and control capabilities can be exploited to help reduce peak electric system consumption. In some cases they can also be used to provide system reliability reserves. Fortunately too, technology is helping. Advances in communications and control technologies are making it possible for loads ranging from residential through commercial and industrial to respond to economic signals. When we buy bananas, we don't simply take a dozen and wait a month to find out what the price was. We always ask about the price before we decide how many bananas we want. Technology is beginning to allow at least some customers to think about their electricity consumption the same way they think about most of their other purchases. And power system operators and regulators are beginning to understand that customers need to remain in control of their own destinies. Many customers (residential through industrial) are willing to respond to price signals. Most customers are not able to commit to specific responses months or years in advance. Electricity is a fluid market commodity with a volatile value to both

  2. Impact of Scheduling Flexibility on Demand Profile Flatness and User Inconvenience in Residential Smart Grid System

    Directory of Open Access Journals (Sweden)

    Naveed Ul Hassan

    2013-12-01

    Full Text Available The objective of this paper is to study the impact of scheduling flexibility on both demand profile flatness and user inconvenience in residential smart grid systems. Temporal variations in energy consumption by end users result in peaks and troughs in the aggregated demand profile. In a residential smart grid, some of these peaks and troughs can be eliminated through appropriate load balancing algorithms. However, load balancing requires user participation by allowing the grid to re-schedule some of their loads. In general, more scheduling flexibility can result in more demand profile flatness, however the resulting inconvenience to users would also increase. In this paper, our objective is to help the grid determine an appropriate amount of scheduling flexibility that it should demand from users, based on which, proper incentives can be designed. We consider three different types of scheduling flexibility (delay, advance scheduling and flexible re-scheduling in flexible loads and develop both optimal and sub-optimal scheduling algorithms. We discuss their implementation in centralized and distributed manners. We also identify the existence of a saturation point. Beyond this saturation point, any increase in scheduling flexibility does not significantly affect the flatness of the demand profile while user inconvenience continues to increase. Moreover, full participation of all the households is not required since increasing user participation only marginally increases demand profile flatness.

  3. Maximizing the peak production rate in off-line comprehensive two-dimensional liquid chromatography with mass spectrometry detection

    NARCIS (Netherlands)

    Eeltink, S.; Dolman, S.; Ursem, M.; Swart, R.; McLeod, F.; Schoenmakers, P.J.

    2009-01-01

    This article describes an optimization strategy to obtain the best possible performance in the shortest analysis time—called the peak production rate—for comprehensive off-line two-dimensional liquid chromatography. The demands on column technology (particle size and column length) and LC conditions

  4. On the relation between the mean and variance of delay in dynamic queues with random capacity and demand

    DEFF Research Database (Denmark)

    Fosgerau, Mogens

    2010-01-01

    This paper investigates the distribution of delays during a repeatedly occurring demand peak in a congested facility with random capacity and demand, such as an airport or an urban road. Congestion is described in the form of a dynamic queue using the Vickrey bottleneck model and assuming Nash...

  5. Assessing the suitability of input-output analysis for enhancing our understanding of potential economic effects of Peak Oil

    International Nuclear Information System (INIS)

    Kerschner, Christian; Hubacek, Klaus

    2009-01-01

    Given recent developments on energy markets and skyrocketing oil prices, we argue for an urgent need to study the potential effects of world oil production reaching a maximum (Peak Oil) in order to facilitate the development of adaptation policies. We consider input-output (IO) modelling as a powerful tool for this purpose. However, the standard Leontief type model implicitly assumes that all necessary inputs to satisfy a given demand can and will be supplied. This is problematic if the availability of certain key inputs becomes restricted and it is therefore only of limited usefulness for the study of the phenomenon of Peak Oil. Hence this paper firstly reviews two alternative modelling tools within the IO framework: supply-driven and mixed models. The former has been severely criticised for its problematic assumption of perfect factor substitution and perfect elasticity of demand as revealed by Oosterhaven [Oosterhaven J. On the plausibility of the supply-driven IO model. J Reg Sci 1988; 28:203-17. ]. The supply-constrained model on the other hand proved well suited to analyse the quantity dimension of Peak Oil and is therefore applied empirically in the second part of the paper, using data for the UK, Japanese and Chilean economy. Results show how differences in net-oil exporting and net-oil importing countries are clearly visible in terms of final demand. Industries, most affected in all countries, include transportation, electricity production and financial and trade services. (author)

  6. Predicting the Effects of Sugar-Sweetened Beverage Taxes on Food and Beverage Demand in a Large Demand System

    Science.gov (United States)

    Zhen, Chen; Finkelstein, Eric A.; Nonnemaker, James; Karns, Shawn; Todd, Jessica E.

    2013-01-01

    A censored Exact Affine Stone Index incomplete demand system is estimated for 23 packaged foods and beverages and a numéraire good. Instrumental variables are used to control for endogenous prices. A half-cent per ounce increase in sugar-sweetened beverage prices is predicted to reduce total calories from the 23 foods and beverages but increase sodium and fat intakes as a result of product substitution. The predicted decline in calories is larger for low-income households than for high-income households, although welfare loss is also higher for low-income households. Neglecting price endogeneity or estimating a conditional demand model significantly overestimates the calorie reduction. PMID:24839299

  7. Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts -- final report

    Energy Technology Data Exchange (ETDEWEB)

    Eto, J.H.; Moezzi, M.M.

    1993-12-01

    This report summarizes findings from a unique project to improve the end-use electricity load shape and peak demand forecasts made by the Pacific Gas and Electric Company (PG&E) and the California Energy Commission (CEC). First, the direct incorporation of end-use metered data into electricity demand forecasting models is a new approach that has only been made possible by recent end-use metering projects. Second, and perhaps more importantly, the joint-sponsorship of this analysis has led to the development of consistent sets of forecasting model inputs. That is, the ability to use a common data base and similar data treatment conventions for some of the forecasting inputs frees forecasters to concentrate on those differences (between their competing forecasts) that stem from real differences of opinion, rather than differences that can be readily resolved with better data. The focus of the analysis is residential space cooling, which represents a large and growing demand in the PG&E service territory. Using five years of end-use metered, central air conditioner data collected by PG&E from over 300 residences, we developed consistent sets of new inputs for both PG&E`s and CEC`s end-use load shape forecasting models. We compared the performance of the new inputs both to the inputs previously used by PG&E and CEC, and to a second set of new inputs developed to take advantage of a recently added modeling option to the forecasting model. The testing criteria included ability to forecast total daily energy use, daily peak demand, and demand at 4 P.M. (the most frequent hour of PG&E`s system peak demand). We also tested the new inputs with the weather data used by PG&E and CEC in preparing their forecasts.

  8. Impacts of the 2011 Tohoku earthquake on electricity demand in Japan. State space approach

    International Nuclear Information System (INIS)

    Honjo, Keita; Ashina, Shuichi

    2017-01-01

    Some papers report that consumers' electricity saving behavior (Setsuden) after the 2011 Tohoku Earthquake resulted in the reduction of the domestic electricity demand. However, time variation of the electricity saving effect (ESE) has not yet been sufficiently investigated. In this study, we develop a state space model of monthly electricity demand using long-term data, and estimate time variation of the ESE. We also estimate time variation of CO_2 emissions caused by Setsuden. Our result clearly indicates that Setsuden after the earthquake was not temporary but became established as a habit. Between March 2011 and October 2015, the ESE on power demand ranged from 2.9% to 6.9%, and the ESE on light demand ranged from 2.6% to 9.0%. The ESE on the total electricity demand was 3.2%-7.5%. Setsuden also contributed to the reduction of CO_2 emissions, but it could not offset the emissions increase caused by the shutdown of nuclear power plants. (author)

  9. An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm.

    Science.gov (United States)

    Qin, Qin; Li, Jianqing; Yue, Yinggao; Liu, Chengyu

    2017-01-01

    R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method.

  10. Psychopathology and tobacco demand.

    Science.gov (United States)

    Farris, Samantha G; Aston, Elizabeth R; Zvolensky, Michael J; Abrantes, Ana M; Metrik, Jane

    2017-08-01

    Behavioral economic measurement of the relative value of tobacco (Cigarette Purchase Task; CPT) is used to examine individual differences in motivation for tobacco under certain contexts. Smokers with psychopathology, relative to those without, may demonstrate stronger demand for tobacco following a period of smoking deprivation, which could account for disparate rates of smoking and cessation among this subgroup. Participants (n=111) were community-recruited adult daily smokers who completed the CPT after a deprivation period of approximately 60min. Presence of psychopathology was assessed via clinical interview; 40.5% (n=45) of the sample met criteria for past-year psychological diagnosis. Specifically, 31.5% (n=35) had an emotional disorder (anxiety/depressive disorder), 17.1% (n=19) had a substance use disorder, and 19.1% of the sample had more than one disorder. Smokers with any psychopathology showed significantly higher intensity (demand at unrestricted cost; $0) and O max (peak expenditure for a drug) relative to smokers with no psychopathology. Intensity was significantly higher among smokers with an emotional disorder compared to those without. Smokers with a substance use disorder showed significantly higher intensity and O max , and lower elasticity, reflecting greater insensitivity to price increases. Having≥2 disorders was associated with higher intensity relative to having 1 or no disorders. Findings suggest that presence of psychopathology may be associated with greater and more persistent motivation to smoke. Future work is needed to explore the mechanism linking psychopathology to tobacco demand. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Impact of Uncoordinated Plug-in Electric Vehicle Charging on Residential Power Demand

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-22

    Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand, with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.

  12. Impact of uncoordinated plug-in electric vehicle charging on residential power demand

    Science.gov (United States)

    Muratori, Matteo

    2018-03-01

    Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand, with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.

  13. How does economic theory explain the Hubbert peak oil model?

    International Nuclear Information System (INIS)

    Reynes, F.; Okullo, S.; Hofkes, M.

    2010-01-01

    The aim of this paper is to provide an economic foundation for bell shaped oil extraction trajectories, consistent with Hubbert's peak oil model. There are several reasons why it is important to get insight into the economic foundations of peak oil. As production decisions are expected to depend on economic factors, a better comprehension of the economic foundations of oil extraction behaviour is fundamental to predict production and price over the coming years. The investigation made in this paper helps us to get a better understanding of the different mechanisms that may be at work in the case of OPEC and non-OPEC producers. We show that profitability is the main driver behind production plans. Changes in profitability due to divergent trajectories between costs and oil price may give rise to a Hubbert production curve. For this result we do not need to introduce a demand or an exploration effect as is generally assumed in the literature.

  14. Changes in Peak Oxygen Uptake and Plasma Volume in Fit and Unfit Subjects Following Exposure to a Simulation of Microgravity

    National Research Council Canada - National Science Library

    Convertino, Victor

    1997-01-01

    To test the hypothesis that the magnitude of reduction in plasma volume and work capacity following exposure to simulated microgravity is dependent on the initial level of aerobic fitness, peak oxygen uptake (VO2peak...

  15. Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips

    International Nuclear Information System (INIS)

    Robinson, A.P.; Blythe, P.T.; Bell, M.C.; Hübner, Y.; Hill, G.A.

    2013-01-01

    This paper quantifies the recharging behaviour of a sample of electric vehicle (EV) drivers and evaluates the impact of current policy in the north east of England on EV driver recharging demand profiles. An analysis of 31,765 EV trips and 7704 EV recharging events, constituting 23,805 h of recharging, were recorded from in-vehicle loggers as part of the Switch EV trials is presented. Altogether 12 private users, 21 organisation individuals and 32 organisation pool vehicles were tracked over two successive six month trial periods. It was found that recharging profiles varied between the different user types and locations. Private users peak demand was in the evening at home recharging points. Organisation individual vehicles were recharged primarily upon arrival at work. Organisation pool users recharged at work and public recharging points throughout the working day. It is recommended that pay-as-you-go recharging be implemented at all public recharging locations, and smart meters be used to delay recharging at home and work locations until after 23:00 h to reduce peak demand on local power grids and reduce carbon emissions associated with EV recharging. - Highlights: • Study of EV driver recharging habits in the north east of England. • 7704 electric vehicle recharging events, comprising 23,805 h were collected. • There was minimal recharging during off- peak hours. • Free parking and electricity at point of use encouraged daytime recharging. • Need for financial incentives and smart solutions to better manage recharging demand peaks

  16. Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving

    Energy Technology Data Exchange (ETDEWEB)

    Castello, Charles C [ORNL

    2013-01-01

    This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoid function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.

  17. Cyclic voltammetry and reduction mechanistic studies of styrylpyrylium perchlorates

    Directory of Open Access Journals (Sweden)

    Y. L. Bonzi-Coulibaly

    2013-04-01

    Full Text Available The reduction and oxidation potentials of methylated 4-styrylpyrylium and 6-styrylpyrylium perchlorates have been evaluated using cyclic voltammetry, in comparison to their non-methylated derivatives values. The reduction peak of all studied compounds remained chemically irreversible. The presence of the electron-donating methyl group on pyrylium ring leads to a shift of the styrylpyrylium perchlorates reduction potential towards cathodic values. Kinetic studies on platinum electrodes based on the variation of the peak potential at different scan rates and upon substrate concentrations confirm, in another way, the mechanism of electron transfer.DOI: http://dx.doi.org/10.4314/bcse.v27i1.12

  18. EIA sees US gas grid meeting demand in 2000

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that interstate natural gas pipelines should be able to meet record US natural gas demand by 2000, Energy Information Administration predicts in a new study. The EIA study examined the capacity of 42 long lines, average utilization of the pipeline grid, and recently completed or planned capacity expansions. EIA the significant additional volumes could be transported into some major consuming areas during off-peak periods

  19. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  20. The Demand Side Response to Multi-zone Tariffs. Consumer Test Results

    Directory of Open Access Journals (Sweden)

    Adam Olszewski

    2015-12-01

    Full Text Available Advanced Metering Infrastructure (AMI is a technologically advanced solution currently implemented by the most innovative distribution system operators. ENERGA-OPERATOR SA set about preparing for smart metering implementation in 2010. So far the company has installed over 400,000 meters in its area, and plans to install a further 450,000 in 2015. Kalisz, the first fully AMI-covered city in Poland, was chosen for an in-depth analysis of the system. In particular, a consumer test was conducted there with the intention of answering the question about the strength of the demand side response to multi-zone tariffs and power reduction. Conclusions from the year-long test show the demand side response to multi-zone tariffs – i.e. the maximum temporary percentage reduction of energy consumption in the time zone with the tariff raised by a min. of 80% – stays within the 5–15% range. In the case of power reduction (the maximum temporary reduction of energy consumption in the time zone when the power available to a household is limited to 1 kW – the demand side response stays within the 10–30% range. An additional effect of tariff diversification and smart metering is a reduction in electricity consumption by 1–4% on working days (i.e. this is the effect of either the consumption reduction or shifting it to weekends. During the test energy consumers were subjected to both price incentives and education. Due to the fact that it is difficult to separate the effects of education and tariff structures, the company plans to continue the research related to verifying the effectiveness of individual activation tools in reducing electricity consumption by households.

  1. Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas E.P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-30

    Commercial buildings in the United States use about 18 Quadrillion British thermal units (Quads) of primary energy annually . Studies have shown that as much as 30% of building energy consumption can be avoided by using more accurate sensing, using existing controls better, and deploying advanced controls; hence, the motivation for the work described in this report. Studies also have shown that 10% to 20% of the commercial building peak load can be temporarily managed/curtailed to provide grid services. Although many studies have indicated significant potential for reducing the energy consumption in commercial buildings, very few have documented the actual savings. The studies that did so only provided savings at the whole building level, which makes it difficult to assess the savings potential of each individual measure deployed.

  2. Wind Farm Dispatch Control for Demand Tracking and Minimized Fatigue

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Schiøler, Henrik; Leth, John-Josef

    2012-01-01

    This work presents a strategy for dispatching production references to the individual turbines in a wind farm, such that an overall production demand for the farm is obeyed, while the fatigue experienced by the turbines is minimized. Using a turbine fatigue model for simulating the aging across...... the farm, we show that a 17 % reduction of the turbine aging can be obtained compared to a commonly employed industrial dispatcher, without degrading the power demand tracking....

  3. Demand response in Germany: Technical potential, benefits and regulatory challenges

    OpenAIRE

    Stede, Jan

    2016-01-01

    An increased flexibility of the electricity demand side through demand response (DR) is an opportunity to support the integration of renewable energies. By optimising the use of the generation, transmission and distribution infrastructure, DR reduces the need for costly investments and contributes to system security. There is a significant technical DR potential for load reduction from industrial production processes in Germany, as well as from cross-cutting technologies in industry and the t...

  4. A stochastic method for battery sizing with uninterruptible-power and demand shift capabilities in PV (photovoltaic) systems

    International Nuclear Information System (INIS)

    Tan, Chee Wei; Green, Tim C.; Hernandez-Aramburo, Carlos A.

    2010-01-01

    This paper presents a stochastic simulation using Monte Carlo technique to size a battery to meet dual objectives of demand shift at peak electricity cost times and outage protection in BIPV (building integrated photovoltaic) systems. Both functions require battery storage and the sizing of battery using numerical optimization is popularly used. However, the weather conditions, outage events and demand peaks are not deterministic in nature. Therefore, the sizing of battery storage capacity should also be based on a probabilistic approach. The Monte Carlo simulation is a rigorous method to sizing BIPV system as it takes into account a real building load profiles, the weather information and the local historical outage distribution. The simulation is split into seasonal basis for the analysis of demand shifting and outage events in order to match the seasonal weather conditions and load profiles. Five configurations of PV (photovoltaic) are assessed that cover different areas and orientations. The simulation output includes the predicted PV energy yield, the amount of energy required for demand management and outage event. Therefore, consumers can base sizing decisions on the historical data and local risk of outage statistics and the success rate of meeting the demand shift required. Finally, the economic evaluations together with the sensitivity analysis and the assessment of customers' outage cost are discussed.

  5. A robust flexible-probabilistic programming method for planning municipal energy system with considering peak-electricity price and electric vehicle

    International Nuclear Information System (INIS)

    Yu, L.; Li, Y.P.; Huang, G.H.; An, C.J.

    2017-01-01

    Highlights: • A robust flexible probabilistic programming method is developed for planning MES. • Multiple uncertainties with various violations and satisfaction levels are examined. • Solutions of considering peak electricity prices and electric vehicles are analyzed. • RFPP-MES can better improve energy system reliability and abate pollutant emission. - Abstract: Effective electric power systems (EPS) planning with considering electricity price of 24-h time is indispensable in terms of load shifting, pollutant mitigation and energy demand-supply reliability as well as reducing electricity expense of end-users. In this study, a robust flexible probabilistic programming (RFPP) method is developed for planning municipal energy system (MES) with considering peak electricity prices (PEPs) and electric vehicles (EVs), where multiple uncertainties regarded as intervals, probability distributions and flexibilities as well as their combinations can be effectively reflected. The RFPP-MES model is then applied to planning Qingdao’s MES, where electrical load of 24-h time is simulated based on Monte Carlo. Results reveal that: (a) different time intervals lead to changes of energy supply patterns, the energy supply patterns would tend to the transition from self-supporting dominated (i.e. in valley hours) to outsourcing-dominated (i.e. in peak hours); (b) 15.9% of total imported electricity expense would be reduced compared to that without considering PEPs; (c) with considering EVs, the CO_2 emissions of Qingdao’s transportation could be reduced directly and the reduction rate would be 2.5%. Results can help decision makers improve energy supply patterns, reduce energy system costs and abate pollutant emissions as well as adjust end-users’ consumptions.

  6. Prediction on the Peak of the CO2 Emissions in China Using the STIRPAT Model

    Directory of Open Access Journals (Sweden)

    Li Li

    2016-01-01

    Full Text Available Climate change has threatened our economic, environmental, and social sustainability seriously. The world has taken active measures in dealing with climate change to mitigate carbon emissions. Predicting the carbon emissions peak has become a global focus, as well as a leading target for China’s low carbon development. China has promised its carbon emissions will have peaked by around 2030, with the intention of peaking earlier. Scholars generally have studied the influencing factors of carbon emissions. However, research on carbon emissions peaks is not extensive. Therefore, by setting a low scenario, a middle scenario, and a high scenario, this paper predicts China’s carbon emissions peak from 2015 to 2035 based on the data from 1998 to 2014 using the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT model. The results show that in the low, middle, and high scenarios China will reach its carbon emissions peak in 2024, 2027, and 2030, respectively. Thus, this paper puts forward the large-scale application of technology innovation to improve energy efficiency and optimize energy structure and supply and demand. China should use industrial policy and human capital investment to stimulate the rapid development of low carbon industries and modern agriculture and service industries to help China to reach its carbon emissions peak by around 2030 or earlier.

  7. THE COMPETITIVE DEMANDS OF ELITE MALE RINK HOCKEY

    Directory of Open Access Journals (Sweden)

    Aladino Fernández

    2013-06-01

    Full Text Available The aim of this study was to simulate the activity pattern of rink hockey by designing a specific skate test (ST to study the energy expenditure and metabolic responses to this intermittent high-intensity exercise and extrapolate the results from the test to competition. Six rink hockey players performed, in three phases, the 20-metre multi-stage shuttle roller skate test, a tournament match and the ST. Heart rate was monitored in all three phases. Blood lactate, oxygen consumption, ventilation and respiratory exchange ratio were also recorded during the ST. Peak HR was 190.7±7.2 beats · min-1. There were no differences in peak HR between the three tests. Mean HR was similar between the ST and the match (86% and 87% of HRmax, respectively. Peak and mean ventilation averaged 111.0±8.8 L · min-1 and 70.3±14.0 L · min-1 (60% of VEmax, respectively. VO2max was 56.3±8.4 mL · kg-1 · min-1, and mean oxygen consumption was 40.9±7.9 mL · kg-1 · min-1 (70% of VO2max. Maximum blood lactate concentration was 7.2±1.3 mmol · L-1. ST yielded an energy expenditure of 899.1±232.9 kJ, and energy power was 59.9±15.5 kJ · min-1. These findings suggest that the ST is suitable for estimating the physiological demands of competitive rink hockey, which places a heavy demand on the aerobic and anaerobic systems, and requires high energy consumption.

  8. Storage coordination and peak-shaving operation in urban areas with high renewable penetration

    OpenAIRE

    Voulis, N.; Warnier, Martijn; Brazier, F.M.

    2017-01-01

    As renewable power generation gains importance, balancing of power demand and supply becomes more and more challenging. This paper addresses this challenge by exploring the potential of individually-owned storage units in decentralised power systems with a high share of renewables. The focus is on the influence of coordination and peak-shaving operation of these individual units in realistic urban areas. Currently extensive amount of research exits on specific applications related to storage ...

  9. Demand Response in Europe's Electricity Sector: Market barriers and outstanding issues

    International Nuclear Information System (INIS)

    Eid, Cherrelle

    2015-01-01

    In October 2014, Europe's drive for sustainability has been further continued with the set objectives for 2030, aiming for 40% emission reduction compared to 1990 levels and at least a 27% share of renewable energy sources. For the longer term, the European Commission (EC) targets a zero CO_2 emitting electricity sector in 2050. Those objectives for the electricity sector have a large impact on the expected development of electricity generation, but also on the evolution of demand. To meet those objectives, a larger share of electricity supply will come from intermittent sources like wind turbines and solar panels. In an electric system that is largely based on renewable electricity sources, it is desired to have higher electricity consumption in moments when more renewable electricity is being produced, and a lower consumption in times of lower renewable production. Demand response is related to the adaptability of the electricity demand to the availability of supply. The development of demand response is rooted in the need for carbon emission reductions and for efficient use of installed generation capacities with the growth of power consumption. In addition to providing flexibility to the electric system, demand response could be a direct source of revenue to households and businesses. In 2013, in the United States, businesses and homeowners earned over $2.2 billion in revenues from demand response together with other avoided investment in grid infrastructure and power plants. This source of direct revenue could also be made available in Europe and would release financial benefits to local economies (SEDC, 2014). The reliability improvements as well as the economic and sustainability potential coming from a more responsive electricity demand are fully acknowledged. However, demand response is still immaturely developed in Europe. If Europe wants to make a step forward to a more sustainable electricity sector, the development of demand response is an inevitable

  10. Sound-Intensity Feedback During Running Reduces Loading Rates and Impact Peak.

    Science.gov (United States)

    Tate, Jeremiah J; Milner, Clare E

    2017-08-01

    Study Design Controlled laboratory study, within-session design. Background Gait retraining has been proposed as an effective intervention to reduce impact loading in runners at risk of stress fractures. Interventions that can be easily implemented in the clinic are needed. Objective To assess the immediate effects of sound-intensity feedback related to impact during running on vertical impact peak, peak vertical instantaneous loading rate, and vertical average loading rate. Methods Fourteen healthy, college-aged runners who ran at least 9.7 km/wk participated (4 male, 10 female; mean ± SD age, 23.7 ± 2.0 years; height, 1.67 ± 0.08 m; mass, 60.9 ± 8.7 kg). A decibel meter provided real-time sound-intensity feedback of treadmill running via an iPad application. Participants were asked to reduce the sound intensity of running while receiving continuous feedback for 15 minutes, while running at their self-selected preferred speed. Baseline and follow-up ground reaction force data were collected during overground running at participants' self-selected preferred running speed. Results Dependent t tests indicated a statistically significant reduction in vertical impact peak (1.56 BW to 1.13 BW, P≤.001), vertical instantaneous loading rate (95.48 BW/s to 62.79 BW/s, P = .001), and vertical average loading rate (69.09 BW/s to 43.91 BW/s, P≤.001) after gait retraining, compared to baseline. Conclusion The results of the current study support the use of sound-intensity feedback during treadmill running to immediately reduce loading rate and impact force. The transfer of within-session reductions in impact peak and loading rates to overground running was demonstrated. Decreases in loading were of comparable magnitude to those observed in other gait retraining methods. J Orthop Sports Phys Ther 2017;47(8):565-569. Epub 6 Jul 2017. doi:10.2519/jospt.2017.7275.

  11. Cut down the peak daytime demand for electricity at the residence; Jutaku ni okeru denryoku fuka heijunka

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, O. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering

    1996-09-05

    For leveling of power load in small-scale buildings and houses, a test house with actual size was constructed in order to examine soil heat storage system using photovoltaic power generation system and nighttime power. A hundred of polycrystal silicone solar cells with about 5 kW and twenty of amorphous ones were fixed on the roof, to connect with commercial power source by the system interconnection having inverse power flow. For leveling of power load in the periods of heating and cooling, soil heat storage system was applied using nighttime power. Pipes for circulating cooling and heating water were embedded. Heat pump was operated only in the time zone of nighttime power, to obtain cooling and heating source for fan coil unit in the daytime. The sold power was larger than purchased power under continuous cooling condition for twelve hours in summer. Since cooling load was supplied from nighttime power with lower price, there was a large peak cut effect in the daytime. As a result of the tests using a house with actual size, the system was found to be applied practically both in summer and in winter. Effectiveness of peak cut of power load in summer was also provided. 7 refs., 10 figs., 2 tabs.

  12. Designing a Profit-Maximizing Critical Peak Pricing Scheme Considering the Payback Phenomenon

    Directory of Open Access Journals (Sweden)

    Sung Chan Park

    2015-10-01

    Full Text Available Critical peak pricing (CPP is a demand response program that can be used to maximize profits for a load serving entity in a deregulated market environment. Like other such programs, however, CPP is not free from the payback phenomenon: a rise in consumption after a critical event. This payback has a negative effect on profits and thus must be appropriately considered when designing a CPP scheme. However, few studies have examined CPP scheme design considering payback. This study thus characterizes payback using three parameters (duration, amount, and pattern and examines payback effects on the optimal schedule of critical events and on the optimal peak rate for two specific payback patterns. This analysis is verified through numerical simulations. The results demonstrate the need to properly consider payback parameters when designing a profit-maximizing CPP scheme.

  13. PEAK-TO-AVERAGE POWER RATIO REDUCTION USING CODING AND HYBRID TECHNIQUES FOR OFDM SYSTEM

    OpenAIRE

    Bahubali K. Shiragapur; Uday Wali

    2016-01-01

    In this article, the research work investigated is based on an error correction coding techniques are used to reduce the undesirable Peak-to-Average Power Ratio (PAPR) quantity. The Golay Code (24, 12), Reed-Muller code (16, 11), Hamming code (7, 4) and Hybrid technique (Combination of Signal Scrambling and Signal Distortion) proposed by us are used as proposed coding techniques, the simulation results shows that performance of Hybrid technique, reduces PAPR significantly as compared to Conve...

  14. Analysis of impact of daylight time savings on energy use of buildings in Kuwait

    Energy Technology Data Exchange (ETDEWEB)

    Krarti, Moncef, E-mail: moncef.krarti@colorado.ed [CEAE Department, CB 428, University of Colorado, Boulder, CO 80309 (United States); Hajiah, Ali [Kuwait Institute for Scientific Research, Safat (Kuwait)

    2011-05-15

    In this paper, a detailed simulation-based analysis is conducted to assess the impact of adopting Daylight Saving Time (DST) on the electrical energy use and peak demand in Kuwait. The analysis focused on the impact of DST in the building sector since it represents 90% of electrical energy usage of Kuwait. The simulation results indicate that the adoption of DST has mixed impacts for Kuwait. While the commercial and the governmental sectors may benefit from the DST, the private residences and apartment buildings can see both their annual energy use and peak demand increase slightly by adopting DST. The overall impact of the DST implementation is rather minimal with a slight increase energy use of about 0.07% and a slight reduction in peak demand of 0.14% or about 12 MW based on 2005 electrical peak demand for Kuwait. - Research highlights: {yields} A detailed simulation-based analysis is conducted to assess the impact of adopting Daylight Saving Time (DST) on the electrical energy use and peak demand in Kuwait. {yields} The analysis focused on the impact of DST in the building sector since it represents 90% of electrical energy usage of Kuwait. {yields} It is found that while the commercial and the governmental building sectors may benefit from DST, the private residences and apartment buildings can see both their annual energy use and peak demand increase slightly by adopting DST. {yields} Since the residential sector represents the majority of the electrical load in Kuwait, DST adoption was found to cause slight increase in annual electrical energy use by about 0.07% and a slight reduction in electrical peak electrical demand by about 0.14%.

  15. Analysis of impact of daylight time savings on energy use of buildings in Kuwait

    International Nuclear Information System (INIS)

    Krarti, Moncef; Hajiah, Ali

    2011-01-01

    In this paper, a detailed simulation-based analysis is conducted to assess the impact of adopting Daylight Saving Time (DST) on the electrical energy use and peak demand in Kuwait. The analysis focused on the impact of DST in the building sector since it represents 90% of electrical energy usage of Kuwait. The simulation results indicate that the adoption of DST has mixed impacts for Kuwait. While the commercial and the governmental sectors may benefit from the DST, the private residences and apartment buildings can see both their annual energy use and peak demand increase slightly by adopting DST. The overall impact of the DST implementation is rather minimal with a slight increase energy use of about 0.07% and a slight reduction in peak demand of 0.14% or about 12 MW based on 2005 electrical peak demand for Kuwait. - Research highlights: → A detailed simulation-based analysis is conducted to assess the impact of adopting Daylight Saving Time (DST) on the electrical energy use and peak demand in Kuwait. → The analysis focused on the impact of DST in the building sector since it represents 90% of electrical energy usage of Kuwait. → It is found that while the commercial and the governmental building sectors may benefit from DST, the private residences and apartment buildings can see both their annual energy use and peak demand increase slightly by adopting DST. → Since the residential sector represents the majority of the electrical load in Kuwait, DST adoption was found to cause slight increase in annual electrical energy use by about 0.07% and a slight reduction in electrical peak electrical demand by about 0.14%.

  16. California DREAMing: The design of residential demand responsive technology with people in mind

    Science.gov (United States)

    Peffer, Therese Evelyn

    Electrical utilities worldwide are exploring "demand response" programs to reduce electricity consumption during peak periods. Californian electrical utilities would like to pass the higher cost of peak demand to customers to offset costs, increase reliability, and reduce peak consumption. Variable pricing strategies require technology to communicate a dynamic price to customers and respond to that price. However, evidence from thermostat and energy display studies as well as research regarding energy-saving behaviors suggests that devices cannot effect residential demand response without the sanction and participation of people. This study developed several technologies to promote or enable residential demand response. First, along with a team of students and professors, I designed and tested the Demand Response Electrical Appliance Manager (DREAM). This wireless network of sensors, actuators, and controller with a user interface provides information to intelligently control a residential heating and cooling system and to inform people of their energy usage. We tested the system with computer simulation and in the laboratory and field. Secondly, as part of my contribution to the team, I evaluated machine-learning to predict a person's seasonal temperature preferences by analyzing existing data from office workers. The third part of the research involved developing an algorithm that generated temperature setpoints based on outdoor temperature. My study compared the simulated energy use using these setpoints to that using the setpoints of a programmable thermostat. Finally, I developed and tested a user interface for a thermostat and in-home energy display. This research tested the effects of both energy versus price information and the context of sponsorship on the behavior of subjects. I also surveyed subjects on the usefulness of various displays. The wireless network succeeded in providing detailed data to enable an intelligent controller and provide feedback to

  17. Expanding Regional Airport Usage to Accommodate Increased Air Traffic Demand

    Science.gov (United States)

    Russell, Carl R.

    2009-01-01

    Small regional airports present an underutilized source of capacity in the national air transportation system. This study sought to determine whether a 50 percent increase in national operations could be achieved by limiting demand growth at large hub airports and instead growing traffic levels at the surrounding regional airports. This demand scenario for future air traffic in the United States was generated and used as input to a 24-hour simulation of the national airspace system. Results of the demand generation process and metrics predicting the simulation results are presented, in addition to the actual simulation results. The demand generation process showed that sufficient runway capacity exists at regional airports to offload a significant portion of traffic from hub airports. Predictive metrics forecast a large reduction of delays at most major airports when demand is shifted. The simulation results then show that offloading hub traffic can significantly reduce nationwide delays.

  18. Design and Implementation of a Thermal Load Reduction System for a Hyundai Sonata PHEV for Improved Range

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scott, Matthew [Hyundai America Technical Center Inc.; Gallagher, James [Gentherm Incoporated

    2018-04-03

    Increased adoption of electric-drive vehicles requires overcoming hurdles including limited vehicle range. Vehicle cabin heating and cooling demand for occupant climate control requires energy from the main battery and has been shown to significantly degrade vehicle range. During peak cooling and heating conditions, climate control can require as much as or more energy than propulsion. As part of an ongoing project, the National Renewable Energy Laboratory and project partners Hyundai America Technical Center, Inc., Gentherm, Pittsburgh Glass Works, PPG Industries, Sekisui, 3 M, and Hanon Systems developed a thermal load reduction system to reduce the range penalty associated with electric vehicle climate control. Solar reflective paint, solar control glass, heated and cooled/ventilated seats, heated surfaces, and a heated windshield with door demisters were integrated into a Hyundai Sonata plug-in hybrid electric vehicle. Cold weather field-testing was conducted in Fairbanks, Alaska, and warm weather testing was conducted in Death Valley, California, to assess the system performance in comparison to the baseline production vehicle. In addition, environmental chamber testing at peak heating and cooling conditions was performed to assess the performance of the system in standardized conditions compared to the baseline. Experimental results are presented in this paper, providing quantitative data to automobile manufacturers on the impact of climate control thermal load reduction technologies to increase the advanced thermal technology adoption and market penetration of electric drive vehicles.

  19. World uranium production and demand: A review

    International Nuclear Information System (INIS)

    Tauchid, M.; Mueller Kahle, E.

    1993-01-01

    Despite the growing public concern on the use of nuclear energy, nuclear power generation capacity in the world is expected to follow a modest, but positive growth at least during the next two decades. Uranium production needed to fuel these reactors has been below demand since 1985. The WOCA production figure for 1991 is in the order of 27,000 tonnes U which is 39% below the peak production of 1980. With the exception of Australia, all other countries produced less uranium than in the previous year. It is expected that the production figure for 1992 will shrink even further to about 23,000 tonnes U. In-situ leaching uranium production contributed about 16% to the 1991 world production figure, most of which came from Eastern Europe and Central Asia. With the closing of a number of production facilities the relative contribution of in-situ leaching to the world uranium production is expected to grow. Only about 60% of WOCA's reactor related uranium demand for 1991 was supplied from its own production. The remaining 40% was filled from existing inventories and imports from the Russian Federation and China. The estimated gap between the world uranium production and reactor related demand for 1991 is in the order 10,900 tones U or 19.7%. The cumulative requirement for the world reactor related demand to the year 2010 has been estimated to be about 1,270,000 tonnes U. (author). 6 refs, 10 figs

  20. Electricity Portfolio Management: Optimal Peak / Off-Peak Allocations

    OpenAIRE

    Huisman, Ronald; Mahieu, Ronald; Schlichter, Felix

    2007-01-01

    textabstractElectricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to address the concept of structuring the portfolio and focuses on how to allocate optimal positions in peak and off-peak forward contracts. It is shown that the optimal allocations are based on the difference in risk premiums per unit of day-ahead risk as a measure of relati...

  1. Peak regulation right

    International Nuclear Information System (INIS)

    Gao, Z. |; Ren, Z.; Li, Z.; Zhu, R.

    2005-01-01

    A peak regulation right concept and corresponding transaction mechanism for an electricity market was presented. The market was based on a power pool and independent system operator (ISO) model. Peak regulation right (PRR) was defined as a downward regulation capacity purchase option which allowed PRR owners to buy certain quantities of peak regulation capacity (PRC) at a specific price during a specified period from suppliers. The PRR owner also had the right to decide whether or not they would buy PRC from suppliers. It was the power pool's responsibility to provide competitive and fair peak regulation trading markets to participants. The introduction of PRR allowed for unit capacity regulation. The PRR and PRC were rated by the supplier, and transactions proceeded through a bidding process. PRR suppliers obtained profits by selling PRR and PRC, and obtained downward regulation fees regardless of whether purchases are made. It was concluded that the peak regulation mechanism reduced the total cost of the generating system and increased the social surplus. 6 refs., 1 tab., 3 figs

  2. Energy demand on dairy farms in Ireland.

    Science.gov (United States)

    Upton, J; Humphreys, J; Groot Koerkamp, P W G; French, P; Dillon, P; De Boer, I J M

    2013-10-01

    Reducing electricity consumption in Irish milk production is a topical issue for 2 reasons. First, the introduction of a dynamic electricity pricing system, with peak and off-peak prices, will be a reality for 80% of electricity consumers by 2020. The proposed pricing schedule intends to discourage energy consumption during peak periods (i.e., when electricity demand on the national grid is high) and to incentivize energy consumption during off-peak periods. If farmers, for example, carry out their evening milking during the peak period, energy costs may increase, which would affect farm profitability. Second, electricity consumption is identified in contributing to about 25% of energy use along the life cycle of pasture-based milk. The objectives of this study, therefore, were to document electricity use per kilogram of milk sold and to identify strategies that reduce its overall use while maximizing its use in off-peak periods (currently from 0000 to 0900 h). We assessed, therefore, average daily and seasonal trends in electricity consumption on 22 Irish dairy farms, through detailed auditing of electricity-consuming processes. To determine the potential of identified strategies to save energy, we also assessed total energy use of Irish milk, which is the sum of the direct (i.e., energy use on farm) and indirect energy use (i.e., energy needed to produce farm inputs). On average, a total of 31.73 MJ was required to produce 1 kg of milk solids, of which 20% was direct and 80% was indirect energy use. Electricity accounted for 60% of the direct energy use, and mainly resulted from milk cooling (31%), water heating (23%), and milking (20%). Analysis of trends in electricity consumption revealed that 62% of daily electricity was used at peak periods. Electricity use on Irish dairy farms, therefore, is substantial and centered around milk harvesting. To improve the competitiveness of milk production in a dynamic electricity pricing environment, therefore, management

  3. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish; Koch, Ed; Hennage, Dan; Hernandez, John; Chiu, Albert; Sezgen, Osman; Goodin, John

    2009-11-06

    The Pacific Gas and Electric Company (PG&E) is conducting a pilot program to investigate the technical feasibility of bidding certain demand response (DR) resources into the California Independent System Operator's (CAISO) day-ahead market for ancillary services nonspinning reserve. Three facilities, a retail store, a local government office building, and a bakery, are recruited into the pilot program. For each facility, hourly demand, and load curtailment potential are forecasted two days ahead and submitted to the CAISO the day before the operation as an available resource. These DR resources are optimized against all other generation resources in the CAISO ancillary service. Each facility is equipped with four-second real time telemetry equipment to ensure resource accountability and visibility to CAISO operators. When CAISO requests DR resources, PG&E's OpenADR (Open Automated DR) communications infrastructure is utilized to deliver DR signals to the facilities energy management and control systems (EMCS). The pre-programmed DR strategies are triggered without a human in the loop. This paper describes the automated system architecture and the flow of information to trigger and monitor the performance of the DR events. We outline the DR strategies at each of the participating facilities. At one site a real time electric measurement feedback loop is implemented to assure the delivery of CAISO dispatched demand reductions. Finally, we present results from each of the facilities and discuss findings.

  4. Engineering economics applied to supply and demand strategy in the gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, G H

    1978-10-01

    A discussion covers some general aspects of long-term strategy in the gas industry, including the requirement of at least six years to develop storage facilities and gas plant; planning to meet all demands except those in the most severe winter occurring once in 50 yr; forecasting six years ahead (the 50 yr winter, the severe one-day demand, regional demands); development of a plant investment program to meet demands; the Cost Polygon method of determining the best plant mix; the mathematical model approach with which to examine every possible combination of plants available in any one year; the example of construction restraints for LNG storage; orientation of this model toward correct balance in peak shaving for say LNG, SNG, and salt cavities; a second, more powerful model for evaluating a least-cost investment program among the longer term plant options including LNG, SNG from oil or coal, and storage in salt cavities, disused coal mines, aquifers, or spent gas fields.

  5. A Price-Based Demand Response Scheme for Discrete Manufacturing in Smart Grids

    Directory of Open Access Journals (Sweden)

    Zhe Luo

    2016-08-01

    Full Text Available Demand response (DR is a key technique in smart grid (SG technologies for reducing energy costs and maintaining the stability of electrical grids. Since manufacturing is one of the major consumers of electrical energy, implementing DR in factory energy management systems (FEMSs provides an effective way to manage energy in manufacturing processes. Although previous studies have investigated DR applications in process manufacturing, they were not conducted for discrete manufacturing. In this study, the state-task network (STN model is implemented to represent a discrete manufacturing system. On this basis, a DR scheme with a specific DR algorithm is applied to a typical discrete manufacturing—automobile manufacturing—and operational scenarios are established for the stamping process of the automobile production line. The DR scheme determines the optimal operating points for the stamping process using mixed integer linear programming (MILP. The results show that parts of the electricity demand can be shifted from peak to off-peak periods, reducing a significant overall energy costs without degrading production processes.

  6. A potentiodynamic study of the reduction of oxygen on copper

    International Nuclear Information System (INIS)

    King, F.; Litke, C.D.

    1994-07-01

    The reduction of oxygen on copper has been studied in 0.1 mol·dm -3 NaCl solutions using potentiodynamic techniques. Experiments were carried out in unbuffered and phosphate-buffered solutions at pH 7. Additional experiments in NaCl solution were performed at pH 10, with the bulk pH adjusted by adding NaOH. Some voltammetric studies in deaerated electrolytes were carried out to examine the nature of the surface films formed on the electrode. The reduction of oxygen on copper is dominated by the 4-electron reduction to OH - . Limited quantities of peroxide were detected by the ring electrode at disc potentials in the joint- and kinetic-control regions. No peroxide was detected in the transport-limiting region. The rate of reduction of oxygen is influenced by the nature of the surface film on the electrode. At interfacial pH values of ∼10, a catalytic surface film forms, thought to be submonolayer Cu(OH) ads or submonolayer Cu 2 O. simultaneously, a peak is observed on the current-potential curve. This peak is observed in neutral solutions with atmospheres of 50% O 2 /N 2 and 100% O 2 and in pH 10 solution with atmospheres >∼10% O 2 /N 2 . The peak is not observed in phosphate-buffered solution because of the buffering action on the interfacial pH. At potentials positive of the peak potential, a thin Cu 2 O layer forms in unbuffered solutions on which the rate of oxygen reduction is partially inhibited. (author). 44 refs., 17 figs

  7. The Potential for Energy Storage to Provide Peaking Capacity in California Under Increased Penetration of Solar Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-14

    In this report, we examine the potential for replacing conventional peaking capacity in California with energy storage, including analysis of the changing technical potential with increased storage deployment and the effect of PV deployment. We examine nine years of historic load data, a range of storage durations (2-8 hours), and a range of PV penetration levels (0%-30%). We demonstrate how PV increases the ability of storage to reduce peak net demand. In the scenarios analyzed, the expected penetration of PV in California in 2020 could more than double the potential for 4-hour energy storage to provide capacity services.

  8. Meeting India's growing energy demand with nuclear power

    International Nuclear Information System (INIS)

    Matzie, R.

    2009-01-01

    Full text: With world energy demand expected to nearly double by 2030, the need for safe, reliable and clean energy is imperative. In India, energy demand has outpaced the increase in energy production, with the country experiencing as much as a 12 percent gap between peak demand and availability. To meet demand, nuclear power is the ideal solution for providing baseload electricity, and as much as 40-60 GWe of nuclear capacity will need to be added throughout the county over the next 20 years. This presentation will describe the benefits of nuclear power compared to other energy sources, provide an overview of new nuclear power plant construction projects worldwide, and explain the benefits and advantages of the Westinghouse AP1000 nuclear power plant. The presentation will also outline the steps that Westinghouse is taking to help facilitate new nuclear construction in India, and how the company's 'Buy Where We Build' approach to supply chain management will positively impact the Indian economy through continued in-country supplier agreements, job creation, and the exporting of materials and components to support AP1000 projects outside of India. Finally, the presentation will show that the experience Westinghouse is gaining in constructing AP1000 plants in both China and the United States will help ensure the success of projects in India

  9. Optimal household appliances scheduling under day-ahead pricing and load-shaping demand response strategies

    NARCIS (Netherlands)

    Paterakis, N.G.; Erdinç, O.; Bakirtzis, A.G.; Catalao, J.P.S.

    2015-01-01

    In this paper, a detailed home energy management system structure is developed to determine the optimal dayahead appliance scheduling of a smart household under hourly pricing and peak power-limiting (hard and soft power limitation)-based demand response strategies. All types of controllable assets

  10. Who will feed China in the 21st century ? income growth and food demand and supply in China

    OpenAIRE

    Fukase, Emiko; Martin, Will

    2014-01-01

    This paper uses resource-based cereal equivalent measures to explore the evolution of China's demand and supply for food. Although demand for food calories is probably close to its peak level in China, the ongoing dietary shift to animal-based foods, induced by income growth, is likely to impose considerable pressure on agricultural resources. Estimating the relationship between income gro...

  11. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors

    Directory of Open Access Journals (Sweden)

    Minho Choi

    2016-05-01

    Full Text Available Non-intrusive electrocardiogram (ECG monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements.

  12. A demand response modeling for residential consumers in smart grid environment using game theory based energy scheduling algorithm

    Directory of Open Access Journals (Sweden)

    S. Sofana Reka

    2016-06-01

    Full Text Available In this paper, demand response modeling scheme is proposed for residential consumers using game theory algorithm as Generalized Tit for Tat (GTFT Dominant Game based Energy Scheduler. The methodology is established as a work flow domain model between the utility and the user considering the smart grid framework. It exhibits an algorithm which schedules load usage by creating several possible tariffs for consumers such that demand is never raised. This can be done both individually and among multiple users of a community. The uniqueness behind the demand response proposed is that, the tariff is calculated for all hours and the load during the peak hours which can be rescheduled is shifted based on the Peak Average Ratio. To enable the vitality of the work simulation results of a general case of three domestic consumers are modeled extended to a comparative performance and evaluation with other algorithms and inference is analyzed.

  13. Study of tensions on network- and grid-based energies during the winter consumption peak

    International Nuclear Information System (INIS)

    Lemaignan, Benoit; Wilmotte, Jean-Yves; Gault, Nicolas

    2014-01-01

    This document first proposes an analysis of an historical example of a consumption peak (8 February 2012) and of its impacts. It indicates temperatures and consumptions, discusses the level of supply safety on that day (shares of different available energy sources), outlines some peculiarities of a grid-based (electricity) or network-based (gas) energy system and issues related to supply safety, and describes how energy demand varies during the day and with respect to the season. The second part addresses the issue of thermal sensitivity, i.e. an analysis of the relationship between the energy system and the temperature: usages depend on the outdoor temperature; as far as heating is concerned, this sensitivity depends on thermal characteristics of heated buildings; housing heating with fixed equipment represents less than a half of this electrical thermal-sensitivity; electricity demand peak increased of several GW while the share of thermal sensitivity of housing heating decreased; thermal sensitivity of gas increased during the last four years. The third part addresses heating modes, outlines the challenges in terms of CO_2 emissions, notices the benefits of the present energy mix in terms of hydrocarbon use, trade balance and emissions, outlines that households using electric heating do not pay more and are less represented in households suffering of energy poverty

  14. The replacement principle in networked economies with single-peaked preferences

    DEFF Research Database (Denmark)

    Szwagrzak, Karol

    2016-01-01

    disequilibrium prices, etc. In these contexts suppliers and demanders naturally have single-peaked preferences. We evaluate transfer rules on the basis of the “replacement principle” (Thomson, J Econ Theory 76(1):145–168 1997; Moulin, Q J Econ 102:769–783 1987), the requirement that a change in an agent......’s preferences affects all other agents in the same direction in terms of welfare. We find that the only Pareto-efficient, participation-compatible, replication-invariant, and envy-free rule satisfying an appropriate formulation of the replacement principle is the “egalitarian rule” introduced by Bochet et al....... (Theor Econ 7:395–423 2012)....

  15. Spatial Heat Planning and Heat Demand Reductions in Buildings

    DEFF Research Database (Denmark)

    Nielsen, Steffen

    2013-01-01

    to an energy system based 100% on renewable energy is not just a fi-ne-tuning of the existing system, but is a fundamental change of the entire energy system. However, similar to the use of fossil fuels, biomass re-sources, which account of a large share of the renewable energy sources, are limited in relation...... long-term savings in investments in production capacity and fuel costs. Through a case study, the amount of these long-term sav-ings is compared to the costs of implementing heat savings. The case study shows that heat reductions of roughly 50% are feasible if the long-term costs are included. Savings...

  16. Limitation of peak fitting and peak shape methods for determination of activation energy of thermoluminescence glow peaks

    CERN Document Server

    Sunta, C M; Piters, T M; Watanabe, S

    1999-01-01

    This paper shows the limitation of general order peak fitting and peak shape methods for determining the activation energy of the thermoluminescence glow peaks in the cases in which retrapping probability is much higher than the recombination probability and the traps are filled up to near saturation level. Right values can be obtained when the trap occupancy is reduced by using small doses or by post-irradiation partial bleaching. This limitation in the application of these methods has not been indicated earlier. In view of the unknown nature of kinetics in the experimental samples, it is recommended that these methods of activation energy determination should be applied only at doses well below the saturation dose.

  17. Make peak flow a habit

    Science.gov (United States)

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  18. High resolution heat atlases for demand and supply mapping

    DEFF Research Database (Denmark)

    Möller, Bernd; Nielsen, Steffen

    2014-01-01

    Significant reductions of heat demand, low-carbon and renewable energy sources, and district heating are key elements in 100% renewable energy systems. Appraisal of district heating along with energy efficient buildings and individual heat supply requires a geographical representation of heat...... demand, energy efficiency and energy supply. The present paper describes a Heat Atlas built around a spatial database using geographical information systems (GIS). The present atlas allows for per-building calculations of potentials and costs of energy savings, connectivity to existing district heat......, and current heat supply and demand. For the entire building mass a conclusive link is established between the built environment and its heat supply. The expansion of district heating; the interconnection of distributed district heating systems; or the question whether to invest in ultra-efficient buildings...

  19. Experimental Evaluation of Simple Thermal Storage Control Strategies in Low-Energy Solar Houses to Reduce Electricity Consumption during Grid On-Peak Periods

    Directory of Open Access Journals (Sweden)

    Kyoung-Ho Lee

    2015-08-01

    Full Text Available There is growing interest in zero-energy and low-energy buildings, which have a net energy consumption (on an annual basis of almost zero. Because they can generate both electricity and thermal energy through the use of solar photovoltaic (PV and solar thermal collectors, and with the help of reduced building thermal demand, low-energy buildings can not only make a significant contribution to energy conservation on an annual basis, but also reduce energy consumption and peak demand. This study focused on electricity consumption during the on-peak period in a low-energy residential solar building and considers the use of a building’s thermal mass and thermal storage to reduce electricity consumption in summer and winter by modulation of temperature setpoints for heat pump and indoor thermostats in summer and additional use of a solar heating loop in winter. Experiments were performed at a low-energy solar demonstration house that has solar collectors, hot water storage, a ground-coupled heat pump, and a thermal storage tank. It was assumed that the on-peak periods were from 2 pm to 5 pm on hot summer days and from 5 pm to 8 pm on cold winter days. To evaluate the potential for utilizing the building’s thermal storage capacity in space cooling and heating, the use of simple control strategies on three test days in summer and two test days in the early spring were compared in terms of net electricity consumption and peak demand, which also considered the electricity generation from solar PV modules on the roof of the house.

  20. On-column reduction of catecholamine quinones in stainless steel columns during liquid chromatography.

    Science.gov (United States)

    Xu, R; Huang, X; Kramer, K J; Hawley, M D

    1995-10-10

    The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.

  1. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    Science.gov (United States)

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  2. Development and evaluation of fully automated demand response in large facilities

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Sezgen, Osman; Watson, David S.; Motegi, Naoya; Shockman, Christine; ten Hope, Laurie

    2004-03-30

    This report describes the results of a research project to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve electric grid reliability, manage electricity costs, and ensure that customers receive signals that encourage load reduction during times when the electric grid is near its capacity. The two main drivers for widespread demand responsiveness are the prevention of future electricity crises and the reduction of electricity prices. Additional goals for price responsiveness include equity through cost of service pricing, and customer control of electricity usage and bills. The technology developed and evaluated in this report could be used to support numerous forms of DR programs and tariffs. For the purpose of this report, we have defined three levels of Demand Response automation. Manual Demand Response involves manually turning off lights or equipment; this can be a labor-intensive approach. Semi-Automated Response involves the use of building energy management control systems for load shedding, where a preprogrammed load shedding strategy is initiated by facilities staff. Fully-Automated Demand Response is initiated at a building or facility through receipt of an external communications signal--facility staff set up a pre-programmed load shedding strategy which is automatically initiated by the system without the need for human intervention. We have defined this approach to be Auto-DR. An important concept in Auto-DR is that a facility manager is able to ''opt out'' or ''override'' an individual DR event if it occurs at a time when the reduction in end-use services is not desirable. This project sought to improve the feasibility and nature of Auto-DR strategies in large facilities. The research focused on technology development, testing

  3. Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Diakov, Victor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Batteries with several hours of capacity provide an alternative to combustion turbines for meeting peak capacity requirements. Even when compared to state-of-the-art highly flexible combustion turbines, batteries can provide a greater operational value, which is reflected in a lower system-wide production cost. By shifting load and providing operating reserves, batteries can reduce the cost of operating the power system to a traditional electric utility. This added value means that, depending on battery life, batteries can have a higher cost than a combustion turbine of equal capacity and still produce a system with equal or lower overall life-cycle cost. For a utility considering investing in new capacity, the cost premium for batteries is highly sensitive to a variety of factors, including lifetime, natural gas costs, PV penetration, and grid generation mix. In addition, as PV penetration increases, the net electricity demand profile changes, which may reduce the amount of battery energy capacity needed to reliably meet peak demand.

  4. Managing the growing energy demand - The case of Egypt

    Energy Technology Data Exchange (ETDEWEB)

    El-Kholy, Hosni; Faried, Ragy

    2010-09-15

    The electric energy consumption rate in Egypt has an average increase of 7% per year through the last three decades. In order to satisfy the ever increasing energy demand, several actions were, and have to be taken. These actions have to be carried out in parallel. The one having the greatest effect is the measures carried out for energy conservation and loss reduction. Diversifying the energy source such as utilization of Renewable Energy technologies can contribute to satisfying the demand and extending the hydro-carbon reserves life. Regional integration of electrical networks will save expenditures used to build additional power plants.

  5. Forecasted electric power demands for the Baltimore Gas and Electric Company. Volume 1 and Volume 2. Documentation manual

    International Nuclear Information System (INIS)

    Estomin, S.L.; Beach, J.E.; Goldsmith, J.V.

    1991-05-01

    The two-volume report presents the results of an econometric forecast of peak load and electric power demand for the Baltimore Gas and Electric Company (BG ampersand E) through the year 2009. Separate energy sales models were estimated for residential sales in Baltimore City, residential sales in the BG ampersand E service area excluding Baltimore City, commercial sales, industrial sales, streetlighting sales, and Company use plus losses. Econometric equations were also estimated for electric space heating and air conditioning saturation in Baltimore City and in the remainder of the BG ampersand E service territory. In addition to the energy sales models and the electric space conditioning saturation models, econometric models of summer and winter peak demand on the BG ampersand E system were estimated

  6. Theoretical Explanations of Environmental Motivations and Expectations of Clients on Green Building Demand and Investment

    International Nuclear Information System (INIS)

    Joachim, Onuoha Iheanyichukwu; Kamarudin, Norhaya; Aliagha, Godwin Uche; Ufere, Kalu Joseph

    2015-01-01

    In building industry, green demand and investment creates a positive footprint on the environment. However, these environmental opportunities have not been adequately harnessed and explored by Clients of green building apparently because of poor understanding of the motivating drivers and benefits accruing from green building demand and investment. The decision to demand for or invest in green building is influenced by certain environmental motivating drivers and expectations which have not been fully examined by researchers and not well understood by stakeholders. Based on the Theory of Planned Behaviour (TPB) and Theory of Value Belief Norm (VBN) explanations, this study focused on the Clients, purchasers and users' motivations and intentions to go for green building. Based on the reviewed theories, we hypothesized that environmental motivations and expectations for green building demand and investment are embedded in the environmental quest for protection of eco-system and bio-diversity, improvement of water and air quality, reduction of solid waste, conservation of natural resources, reduction of societal costs of landfill creation and maintenance, minimization of site impact and reduction emission to air and enhanced energy efficiency. However, the predictive validity of these propositions depends on the client's beliefs, values, social pressure, and perceived behavioural control

  7. Cyclic voltammetry and reduction mechanistic studies of ...

    African Journals Online (AJOL)

    styrylpyrylium perchlorates have been evaluated using cyclic voltammetry, in comparison to their non-methylated derivatives values. The reduction peak of all studied compounds remained chemically irreversible. The presence of the ...

  8. How to introduce demand side resources in the design of low-carbon power systems in China

    Science.gov (United States)

    Zhou, Pengcheng; Liu, Yiqun; Zeng, Ming; Sun, Chenjun

    2018-04-01

    Nowadays, China's energy demand sustained rapid growth, and the coal-based energy structure has adverse effects on the environment. The flexibility of demand side resource (DSR) will be greatly improved, and DSR can reduce electricity consumption actively and temporarily, and realize energy saving and emission reduction. But there are still some problems to introduce DSR in China. This paper proposes three practices for introducing demand side resources to improve the flexibility of power systems through demand resources.

  9. The economic impact of emission peaking control policies and China's sustainable development

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2014-12-01

    Full Text Available To achieve the goals of national sustainable development, the peaking control of CO2 emissions is pivotal, as well as other pollutants. In this paper, we build a Chinese inter-regional CGE model and simulate 13 policies and their combinations. By analyzing the energy consumptions, coal consumptions, relating emissions and their impacts on GDP, we found that with the structure adjustment policy, the proportion of coal in primary fossil fuels in 2030 will decrease from 53% to 48% and CO2 emissions will decrease by 11.3%–22.8% compared to the baseline scenario. With the energy intensity reduction policy, CO2 emissions will decrease by 33.3% in 2030 and 47.8% in 2050 than baseline scenario. Other pollutants will also be controlled as synergetic effects. In this study we also find that although the earlier the peaking time the better for emission amounts control, the economic costs can not be ignored. The GDP will decrease by 2.96%–8.23% under different scenarios. Therefore, integrated policy solutions are needed for realizing the peaks package and more targeted measures are required to achieve the peaks of other pollutants earlier.

  10. Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City); FINAL

    International Nuclear Information System (INIS)

    Konopacki, S.; Akbari, H.

    2002-01-01

    In 1997, the U.S. Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'' to quantify the potential benefits of Heat-Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling-energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective of investigating the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, LA; Sacramento, CA; and Salt Lake City, UT. Later two other cities, Chicago, IL and Houston, TX were added to the UHIPP. In an earlier report we summarized our efforts to calculate the annual energy savings, peak power avoidance, and annual CO2 reduction obtainable from the introduction of HIR strategies in the initial three cities. This report summarizes the results of our study for Chicago and Houston. In this analysis, we focused on three building types that offer the highest potential savings: single-family residence, office and retail store. Each building type was characterized in detail by vintage and system type (i.e., old and new building constructions, and gas and electric heat). We used the prototypical building characteristics developed earlier for each building type and simulated the impact of HIR strategies on building cooling- and heating-energy use and peak power demand using the DOE-2.1E model. Our simulations included the impact of (1) strategically-placed shade trees near buildings[direct effect], (2) use of high-albedo roofing material on the building[direct effect], (3) urban reforestation with high-albedo pavements and building surfaces[indirect effect] and (4) combined strategies 1, 2, and 3[direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each

  11. Hydrogen or Fossil Combustion Nuclear Combined Cycle Systems for Baseload and Peak Load Electricity Production. Annex X

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    A combined cycle power plant is described that uses: (i) heat from a high temperature nuclear reactor to meet baseload electrical demands; and (ii) heat from the same high temperature reactor and burning natural gas, jet fuel or hydrogen to meet peak load electrical demands. For baseload electricity production, fresh air is compressed, then flows through a heat exchanger, where it is heated to between 700 and 900{sup o}C by using heat provided by a high temperature nuclear reactor via an intermediate heat transport loop, and finally exits through a high temperature gas turbine to produce electricity. The hot exhaust from the Brayton cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high temperature reactor. Natural gas, jet fuel or hydrogen is then injected into the hot air in a combustion chamber, combusts and heats the air to 1300{sup o}C - the operating conditions for a standard natural gas fired combined cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until required. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electrical grid can vary from zero (i.e. when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. As nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil fired turbines) to meet spinning reserve requirements and stabilize the electrical grid. This combined

  12. Peak Experience Project

    Science.gov (United States)

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  13. Demand side management—A simulation of household behavior under variable prices

    International Nuclear Information System (INIS)

    Gottwalt, Sebastian; Ketter, Wolfgang; Block, Carsten; Collins, John; Weinhardt, Christof

    2011-01-01

    Within the next years, consumer households will be increasingly equipped with smart metering and intelligent appliances. These technologies are the basis for households to better monitor electricity consumption and to actively control loads in private homes. Demand side management (DSM) can be adopted to private households. We present a simulation model that generates household load profiles under flat tariffs and simulates changes in these profiles when households are equipped with smart appliances and face time-based electricity prices. We investigate the impact of smart appliances and variable prices on electricity bills of a household. We show that for households the savings from equipping them with smart appliances are moderate compared to the required investment. This finding is quite robust with respect to variation of tariff price spreads and to different types of appliance utilization patterns. Finally, our results indicate that electric utilities may face new demand peaks when day-ahead hourly prices are applied. However, a considerable amount of residential load is available for shifting, which is interesting for the utilities to balance demand and supply. - Highlights: ► Our model generates residential load profiles that are based on real world data. ► We simulate changes in load profiles when smart appliances and time-of-use tariffs are applied. ► The economic incentive for households to invest in smart appliances is low. ► Time-of-use tariffs create new, even higher peaks. ► Electric utilities have a large amount of the hourly load available for shifting.

  14. A Dynamic Market Mechanism for Markets with Shiftable Demand Response

    DEFF Research Database (Denmark)

    Hansen, Jacob; Knudsen, Jesper Viese; Kiani, Arman

    2014-01-01

    renewables, this mechanism accommodates both consumers with a shiftable Demand Response and an adjustable Demand Response. The overall market mechanism is evaluated in a Day Ahead Market and is shown in a numerical example to result in a reduction of the cost of electricity for the consumer, as well......In this paper, we propose a dynamic market mechanism that converges to the desired market equilibrium. Both locational marginal prices and the schedules for generation and consumption are determined through a negotiation process between the key market players. In addition to incorporating...

  15. Peak torque and rate of torque development influence on repeated maximal exercise performance: contractile and neural contributions.

    Science.gov (United States)

    Morel, Baptiste; Rouffet, David M; Saboul, Damien; Rota, Samuel; Clémençon, Michel; Hautier, Christophe A

    2015-01-01

    Rapid force production is critical to improve performance and prevent injuries. However, changes in rate of force/torque development caused by the repetition of maximal contractions have received little attention. The aim of this study was to determine the relative influence of rate of torque development (RTD) and peak torque (T(peak)) on the overall performance (i.e. mean torque, T(mean)) decrease during repeated maximal contractions and to investigate the contribution of contractile and neural mechanisms to the alteration of the various mechanical variables. Eleven well-trained men performed 20 sets of 6-s isokinetic maximal knee extensions at 240° · s(-1), beginning every 30 seconds. RTD, T(peak) and T(mean) as well as the Rate of EMG Rise (RER), peak EMG (EMG(peak)) and mean EMG (EMG(mean)) of the vastus lateralis were monitored for each contraction. A wavelet transform was also performed on raw EMG signal for instant mean frequency (if(mean)) calculation. A neuromuscular testing procedure was carried out before and immediately after the fatiguing protocol including evoked RTD (eRTD) and maximal evoked torque (eT(peak)) induced by high frequency doublet (100 Hz). T(mean) decrease was correlated to RTD and T(peak) decrease (R(²) = 0.62; p<0.001; respectively β=0.62 and β=0.19). RER, eRTD and initial if(mean) (0-225 ms) decreased after 20 sets (respectively -21.1 ± 14.1, -25 ± 13%, and ~20%). RTD decrease was correlated to RER decrease (R(²) = 0.36; p<0.05). The eT(peak) decreased significantly after 20 sets (24 ± 5%; p<0.05) contrary to EMG(peak) (-3.2 ± 19.5 %; p=0.71). Our results show that reductions of RTD explained part of the alterations of the overall performance during repeated moderate velocity maximal exercise. The reductions of RTD were associated to an impairment of the ability of the central nervous system to maximally activate the muscle in the first milliseconds of the contraction.

  16. Automatic demand response referred to electricity spot price. Demo description

    International Nuclear Information System (INIS)

    Grande, Ove S.; Livik, Klaus; Hals, Arne

    2006-05-01

    This report presents background, technical solution and results from a test project (Demo I) developed in the DRR Norway) project. Software and technology from two different vendors, APAS and Powel ASA, are used to demonstrate a scheme for Automatic Demand Response (ADR) referred to spot price level and a system for documentation of demand response and cost savings. Periods with shortage of energy supply and hardly any investments in new production capacity have turned focus towards the need for increased price elasticity on the demand side in the Nordic power market. The new technology for Automatic Meter Reading (AMR) and Remote Load Control (RLC) provides an opportunity to improve the direct market participation from the demand side by introducing automatic schemes that reduce the need for customer attention to hourly market prices. The low prioritized appliances, and not the total load, are in this report defined as the Demand Response Objects, based on the assumption that there is a limit for what the customers are willing to pay for different uses of electricity. Only disconnection of residential water heaters is included in the demo, due to practical limitations. The test was performed for a group of single family houses over a period of 2 months. All the houses were equipped with a radio controlled 'Ebox' unit attached to the water heater socket. The settlement and invoicing were based on hourly metered values (kWh/h), which means that the customer benefit is equivalent to the accumulated changes in the electricity cost per hour. The actual load reduction is documented by comparison between the real meter values for the period and a reference curve. The curves show significant response to the activated control in the morning hours. In the afternoon it is more difficult to register the response, probably due to 'disturbing' activities like cooking etc. Demo I shows that load reduction referred to spot price level can be done in a smooth way. The experiences

  17. Demand analysis of tobacco consumption in Malaysia.

    Science.gov (United States)

    Ross, Hana; Al-Sadat, Nabilla A M

    2007-11-01

    We estimated the price and income elasticity of cigarette demand and the impact of cigarette taxes on cigarette demand and cigarette tax revenue in Malaysia. The data on cigarette consumption, cigarette prices, and public policies between 1990 and 2004 were subjected to a time-series regression analysis applying the error-correction model. The preferred cigarette demand model specification resulted in long-run and short-run price elasticities estimates of -0.57 and -0.08, respectively. Income was positively related to cigarette consumption: A 1% increase in real income increased cigarette consumption by 1.46%. The model predicted that an increase in cigarette excise tax from Malaysian ringgit (RM) 1.60 to RM2.00 per pack would reduce cigarette consumption in Malaysia by 3.37%, or by 806,468,873 cigarettes. This reduction would translate to almost 165 fewer tobacco-related lung cancer deaths per year and a 20.8% increase in the government excise tax revenue. We conclude that taxation is an effective method of reducing cigarette consumption and tobacco-related deaths while increasing revenue for the government of Malaysia.

  18. Automated multispectra alpha spectrometer and data reduction system

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1975-12-01

    A complete hardware and software package for the accumulation and rapid analysis of multiple alpha pulse height spectra has been developed. The system utilizes a 4096-channel analyzer capable of accepting up to sixteen inputs from solid-state surface barrier detectors via mixer-router modules. The analyzer is interfaced to a desk-top programmable calculator and thermal line printer. A chained software package including spectrum printout, peak analysis, plutonium-238 and plutonium-239 data reduction, and automatic energy calibration routines was written. With the chained program a complete printout, peak analysis, and plutonium data reduction of a 512-channel alpha spectrum are obtained in about three minutes with an accuracy within five percent of hand analyses

  19. Research on Double Price Regulations and Peak Shaving Reserve Mechanism in Coal-Electricity Supply Chain

    Directory of Open Access Journals (Sweden)

    Hongjun Peng

    2013-01-01

    Full Text Available The game models were used to study the mechanism of coal-electricity price conflict under conditions of double price regulations of coal and electricity. Based on this, the peak shaving reserve mechanism was designed to probe into the countermeasures against the coal-electricity price conflicts. The study revealed that in the boom seasons of coal demand, the initiatives of the coal enterprises to supply thermal coal and the electricity enterprises to order thermal coal are reduced under conditions of double price regulations. However, under the circumstances of coal price marketization, in the boom seasons of coal demand the thermal coal price may go up obviously, the initiatives of the coal enterprises to supply thermal coal are increased, and meanwhile the initiatives of the power enterprises to order thermal coal are decreased dramatically. The transportation capacity constraint of coal supply leads to the evident decrease of the initiatives of coal enterprises for the thermal coal supply. The mechanism of peak shaving reserve of thermal coal may not only reduce the price of coal market but also increase the enthusiasm of the power enterprises to order more thermal coal and the initiatives of the coal enterprises to supply more thermal coal.

  20. The world energy demand in 2007: How high oil prices impact the global energy demand? June 9, 2008

    International Nuclear Information System (INIS)

    2008-01-01

    How high oil prices impact the global energy demand? The growth of energy demand continued to accelerate in 2007 despite soaring prices, to reach 2,8 % (+ 0,3 point compared to 2006). This evolution results from two diverging trends: a shrink in energy consumption in most of OECD countries, except North America, and a strong increase in emerging countries. Within the OECD, two contrasting trends can be reported, that compensate each other partially: the reduction of energy consumption in Japan (-0.8%) and in Europe (-1.2%), particularly significant in the EU-15 (-1.9%); the increase of energy consumption in North America (+2%). Globally, the OECD overall consumption continued to increase slightly (+0.5%), while electricity increased faster (2,1%) and fuels remained stable. Elsewhere, the strong energy demand growth remained very dynamic (+5% for the total demand, 8% for electricity only), driven by China (+7.3%). The world oil demand increased by 1% only, but the demand has focused even more on captive end usages, transports and petrochemistry. The world gasoline and diesel demand increased by around 5,7% in 2007, and represents 53% of the total oil products demand in 2007 (51% in 2006). If gasoline and diesel consumption remained quasi-stable within OECD countries, the growth has been extremely strong in the emerging countries, despite booming oil prices. There are mainly two factors explaining this evolution where both oil demand and oil prices increased: Weak elasticity-prices to the demand in transport and petrochemistry sectors Disconnection of domestic fuel prices in major emerging countries (China, India, Latin America) compared to world oil market prices Another striking point is that world crude oil and condensate production remained almost stable in 2007, hence the entire demand growth was supported by destocking. During the same period, the OPEC production decreased by 1%, mainly due to the production decrease in Saudi Arabia, that is probably more

  1. Future land-use related water demand in California

    Science.gov (United States)

    Wilson, Tamara; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-01-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters(+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  2. The optimization of demand response programs in smart grids

    International Nuclear Information System (INIS)

    Derakhshan, Ghasem; Shayanfar, Heidar Ali; Kazemi, Ahad

    2016-01-01

    The potential to schedule portion of the electricity demand in smart energy systems is clear as a significant opportunity to enhance the efficiency of the grids. Demand response is one of the new developments in the field of electricity which is meant to engage consumers in improving the energy consumption pattern. We used Teaching & Learning based Optimization (TLBO) and Shuffled Frog Leaping (SFL) algorithms to propose an optimization model for consumption scheduling in smart grid when payment costs of different periods are reduced. This study conducted on four types residential consumers obtained in the summer for some residential houses located in the centre of Tehran city in Iran: first with time of use pricing, second with real-time pricing, third one with critical peak pricing, and the last consumer had no tariff for pricing. The results demonstrate that the adoption of demand response programs can reduce total payment costs and determine a more efficient use of optimization techniques. - Highlights: •An optimization model for the demand response program is made. •TLBO and SFL algorithms are applied to reduce payment costs in smart grid. •The optimal condition is provided for the maximization of the social welfare problem. •An application to some residential houses located in the centre of Tehran city in Iran is demonstrated.

  3. Power Peaking Effect of OTTO Fuel Scheme Pebble Bed Reactor

    Science.gov (United States)

    Setiadipura, T.; Suwoto; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    Pebble Bed Reactor (PBR) type of Hight Temperature Gas-cooled Reactor (HTGR) is a very interesting nuclear reactor design to fulfill the growing electricity and heat demand with a superior passive safety features. Effort to introduce the PBR design to the market can be strengthen by simplifying its system with the Once-through-then-out (OTTO) cycle PBR in which the pebble fuel only pass the core once. Important challenge in the OTTO fuel scheme is the power peaking effect which limit the maximum nominal power or burnup of the design. Parametric survey is perform in this study to investigate the contribution of different design parameters to power peaking effect of OTTO cycle PBR. PEBBED code is utilized in this study to perform the equilibrium PBR core analysis for different design parameter and fuel scheme. The parameters include its core diameter, height-per-diameter (H/D), power density, and core nominal power. Results of this study show that diameter and H/D effectsare stronger compare to the power density and nominal core power. Results of this study might become an importance guidance for design optimization of OTTO fuel scheme PBR.

  4. Analysis on long-term change of energy system structure in Japan considering CO2 emission and domestic demand

    International Nuclear Information System (INIS)

    Kurokawa, Shingo; Tabe, Yutaka; Chikahisa, Takemi

    2011-01-01

    Long-term change of energy system structure in Japan was analyzed to investigate the effect of the CO 2 emission reduction level on the reduction cost using MARKAL model. The MARKAL is composed of energy resources, energy supply technologies, energy ultimate demand technologies and energy service demands with them connected by energy carriers. This paper presents analyses investigating the CO 2 reduction cost and the energy structure change until 2050. Here, we focused on the domestic investment to reduce CO 2 emission. It was shown that the CO 2 reduction until 40% level promotes the energy conversion from coal to natural gas and it causes the increase in total cost of the imported fuel. The higher CO 2 reduction, however, increases the domestic investment for low-emission vehicles, photovoltaic power generation and so on, and decreases the overseas investment, although the total CO 2 reduction cost is increased. This contributes to the revitalization of Japanese economy, together with the reduction of overseas investment. (author)

  5. Peak Oil and other threatening peaks-Chimeras without substance

    International Nuclear Information System (INIS)

    Radetzki, Marian

    2010-01-01

    The Peak Oil movement has widely spread its message about an impending peak in global oil production, caused by an inadequate resource base. On closer scrutiny, the underlying analysis is inconsistent, void of a theoretical foundation and without support in empirical observations. Global oil resources are huge and expanding, and pose no threat to continuing output growth within an extended time horizon. In contrast, temporary or prolonged supply crunches are indeed plausible, even likely, on account of growing resource nationalism denying access to efficient exploitation of the existing resource wealth.

  6. High Concentration of Heat Pumps in Suburban Areas and Reduction of Their Impact on the Electricity Network

    NARCIS (Netherlands)

    Pruissen, O.P. van; Kamphuis, I.G.

    2011-01-01

    One of the challenges of the near future for a more renewable Dutch electricity infrastructure is the embedding of high concentrations of heat pumps in currently built domestic residences. In the Dutch situation demand of electricity occurs simultaneously with demand of heat, high electricity peak

  7. Important Factors for Early Market Microgrids: Demand Response and Plug-in Electric Vehicle Charging

    Science.gov (United States)

    White, David Masaki

    Microgrids are evolving concepts that are growing in interest due to their potential reliability, economic and environmental benefits. As with any new concept, there are many unresolved issues with regards to planning and operation. In particular, demand response (DR) and plug-in electric vehicle (PEV) charging are viewed as two key components of the future grid and both will likely be active technologies in the microgrid market. However, a better understanding of the economics associated with DR, the impact DR can have on the sizing of distributed energy resource (DER) systems and how to accommodate and price PEV charging is necessary to advance microgrid technologies. This work characterizes building based DR for a model microgrid, calculates the DER systems for a model microgrid under DR through a minimization of total cost, and determines pricing methods for a PEV charging station integrated with an individual building on the model microgrid. It is shown that DR systems which consist only of HVAC fan reductions provide potential economic benefits to the microgrid through participation in utility DR programs. Additionally, peak shaving DR reduces the size of power generators, however increasing DR capacity does not necessarily lead to further reductions in size. As it currently stands for a microgrid that is an early adopter of PEV charging, current installation costs of PEV charging equipment lead to a system that is not competitive with established commercial charging networks or to gasoline prices for plug-in hybrid electric vehicles (PHEV).

  8. Welfare Effects of Tariff Reduction Formulas

    DEFF Research Database (Denmark)

    Guldager, Jan G.; Schröder, Philipp J.H.

    WTO negotiations rely on tariff reduction formulas. It has been argued that formula approaches are of increasing importance in trade talks, because of the large number of countries involved, the wider dispersion in initial tariffs (e.g. tariff peaks) and gaps between bound and applied tariff rate....... No single formula dominates for all conditions. The ranking of the three tools depends on the degree of product differentiation in the industry, and the achieved reduction in the average tariff....

  9. Hotspots of human nutrition: Micronutrient supply, demand, and pollinator dependence

    Science.gov (United States)

    Dombeck, E.; Chaplin-Kramer, R.; Mueller, M.; Mueller, N. D.; Foley, J. A.

    2012-12-01

    While our caloric needs can mostly be met by wind-pollinated crops such as cereals, a recent analysis of USDA data shows that animal-pollinated crops contain the vast majority of many essential nutrients, including vitamins A and C, calcium, fluoride, and folic acid. In this work we combined global crop yield data with data on nutritional content in each crop to map nutrient production around the world, and to illustrate the value of pollination services to human nutrition. Spatially explicit crop yields (at 5 min resolution) were multiplied by crop nutrient content and by crop dependence on pollination to map where reductions in total nutrient production would occur if pollination services were removed. Nutrient demand maps (human nutrient requirements multiplied by population density) were generated to identify regions where local reduction in pollination services could threaten nutritional security. Nutrient deficiency maps (nutrient supply minus nutrient demand) were also created to identify hotspots where local crop production is not adequate to meet local nutritional needs.

  10. Interim report by a Committee on Demands and Supplies of Electric Enterprise Council

    International Nuclear Information System (INIS)

    1984-01-01

    An interim report by a committee on demands and supplies, Electric Enterprise Council, was given for the period up to the year 2000. The demands of electric power in Japan were set as 658,000 million kWh for 1990 and 768,000 million kWh for 1995. The electric power enterprises appear to be at a major turning point at present, that is, the growth in the demands tended to slow down. The features of the situation are then the stabilized supply, supply cost reduction, reasonable power source constitution, etc. The following things are described. Background and policy; power demand outlook and supply measures; power supply and supply efficiency (the composition of power sources, respective power sources with supply targets and problems, etc.); power demand/supply outlook for 2000. (Mori, K.)

  11. Forward-looking report of the electricity supply-demand balance in France. 2011

    International Nuclear Information System (INIS)

    2011-01-01

    After an introduction presenting the objective of this report and the method used for its predictions, this document proposes an analysis of energy consumption: past trends, context of predictions, building up of predictions, global predictions, impact of demand control, comparison with a previous forward-looking assessment, comparison with other scenarios and other European countries. It analyses and discusses power consumption predictions (electricity consumption time variations, load curve evolution perspectives, peak power), production supply (current stock, thermal nuclear, thermal fossil, thermal decentralized, hydroelectric, wind energy, and photovoltaic production), the evolution of the supply-demand balance on a medium term for France and for two French regions. It finally proposes a long term prospective vision regarding energy

  12. Testing and estimating time-varying elasticities of Swiss gasoline demand

    International Nuclear Information System (INIS)

    Neto, David

    2012-01-01

    This paper is intended to test and estimate time-varying elasticities for gasoline demand in Switzerland. For this purpose, a smooth time-varying cointegrating parameters model is investigated in order to describe smooth mutations of the Swiss gasoline demand. The methodology, based on Chebyshev polynomials, is rigorously outlined. Our empirical finding states that the time-invariance assumption does not hold for long-run price and income elasticities. Furthermore they highlight that gasoline demand passed through some periods of sensitivity and non sensitivity with respect to the price. Our empirical statements are of great importance to assess the performance of a gasoline tax as an instrument for CO 2 reduction policy. Indeed, such an instrument can contribute to reduce emissions of greenhouse gases only if the demand is not fully inelastic with respect to the price. Our results suggest that such a carbon-tax would not be always suitable since the price elasticity is found not stable over time and not always significant.

  13. U.S. Demand for Tobacco Products in a System Framework.

    Science.gov (United States)

    Zheng, Yuqing; Zhen, Chen; Dench, Daniel; Nonnemaker, James M

    2017-08-01

    This study estimated a system of demand for cigarettes, little cigars/cigarillos, large cigars, e-cigarettes, smokeless tobacco, and loose smoking tobacco using market-level scanner data for convenience stores. We found that the unconditional own-price elasticities for the six categories are -1.188, -1.428, -1.501, -2.054, -0.532, and -1.678, respectively. Several price substitute (e.g., cigarettes and e-cigarettes) and complement (e.g., cigarettes and smokeless tobacco) relationships were identified. Magazine and television advertising increased demand for e-cigarettes, and magazine advertising increased demand for smokeless tobacco and had spillover effects on demand for other tobacco products. We also reported the elasticities by U.S. census regions and market size. These results may have important policy implications, especially viewed in the context of the rise of electronic cigarettes and the potential for harm reduction if combustible tobacco users switch to non-combustible tobacco products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Quantitative assessment of angiographic perfusion reduction using color-coded digital subtraction angiography during transarterial chemoembolization.

    Science.gov (United States)

    Wang, Ji; Cheng, Jie-Jun; Huang, Kai-Yi; Zhuang, Zhi-Guo; Zhang, Xue-Bin; Chi, Jia-Chang; Hua, Xiao-Lan; Xu, Jian-Rong

    2016-03-01

    The aim of this study was to develop a quantitative measurement of perfusion reduction using color-coded digital subtraction angiography (ccDSA) to monitor intra-procedural arterial stasis during TACE. A total number of 35 patients with hepatocellular carcinoma who had undergone TACE were enrolled into the study. Pre- and post-two-dimensional digital subtraction angiography scans were conducted with same protocol and post-processed with ccDSA prototype software. Time-contrast-intensity (CI[t]) curve was obtained by region-of-interest (ROI) measurement on the generated ccDSA image. Quantitative 2D perfusion parameters time to peak, area under the curve (AUC), maximum upslope, and contrast intensity peak (CI-Peak) derived from the ROI-based CI[t] curve for pre- and post-TACE were evaluated to assess the reduction of antegrade blood flow and tumor blush. Relationships between 2D perfusion parameters, subjective angiographic chemoembolization endpoint (SACE) scale, and clinical outcomes were analyzed. Area normalized AUC and CI-Peak revealed significant reduction after the TACE (P SACE level III and a reduction ranging from 60% to 70% was equivalent to SACE level IV. For intermediate reduction (SACE level III), better tumor response was found after TACE rather than a higher reduction (SACE level IV). ccDSA application provides an objective approach to quantify the perfusion reduction and subjectively evaluate the arterial stasis of antegrade blood flow and tumor blush caused by TACE.

  15. Residential implementation of critical-peak pricing ofelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Herter, Karen

    2006-06-29

    This paper investigates how critical-peak pricing (CPP)affects households with different usage and income levels, with the goalof informing policy makers who are considering the implementation of CPPtariffs in the residential sector. Using a subset of data from theCalifornia Statewide Pricing Pilot of 2003-2004, average load changeduring summer events, annual percent bill change, and post-experimentsatisfaction ratings are calculated across six customer segments,categorized by historical usage and income levels. Findings show thathigh-use customers respond significantly more in kW reduction than dolow-use customers, while low-use customers save significantly more inpercentage reduction of annual electricity bills than do high-usecustomers results that challenge the strategy of targeting only high-usecustomers for CPP tariffs. Across income levels, average load and billchanges were statistically indistinguishable, as were satisfaction ratesresults that are compatible with a strategy of full-scale implementationof CPP rates in the residential sector. Finally, the high-use customersearning less than $50,000 annually were the most likely of the groups tosee bill increases about 5 percent saw bill increases of 10 percent ormore suggesting that any residential CPP implementation might considertargeting this customer group for increased energy efficiencyefforts.

  16. Are vehicle travel reduction targets justified? Evaluating mobility management policy objectives such as targets to reduce VMT and increase use of alternative modes

    Energy Technology Data Exchange (ETDEWEB)

    Litman, T.

    2009-09-17

    This article presented several reasons for reforming current transportation policies to include targets to reduce vehicle miles of travel (VMT) and encourage use of alternative modes such as walking, cycling or public transit. Demographic and economic trends are increasing the demand for alternative modes, and economic competitiveness will require increased efficiency. As such, a variety of integrated transportation and land use policy reforms are needed to prepare for the future. Mobility management strategies that reduce vehicle travel include efficient road and parking pricing; more flexible zoning codes; and ridesharing incentives. Most mobility management strategies help solve a variety of problems and provide many benefits, including congestion reduction, road and parking cost savings, consumer savings, traffic safety, improved mobility for non-drivers, energy conservation, emission reductions, efficient land development, and improved public fitness and health. Improvements to public transit, road and parking pricing, and commute trip reduction programs also tend to reduce urban-peak traffic. The article suggested that VMT reduction targets are the first step in implementing mobility management policies. Although automobile travel will not disappear, it will decrease compared with current planning practices. 55 refs., 8 tabs., 6 figs.

  17. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings

    International Nuclear Information System (INIS)

    Åberg, M.; Henning, D.

    2011-01-01

    The development towards more energy efficient buildings, as well as the expansion of district heating (DH) networks, is generally considered to reduce environmental impact. But the combined effect of these two progressions is more controversial. A reduced heat demand (HD) due to higher energy efficiency in buildings might hamper co-production of electricity and DH. In Sweden, co-produced electricity is normally considered to displace electricity from less efficient European condensing power plants. In this study, a potential HD reduction due to energy efficiency measures in the existing building stock in the Swedish city Linköping is calculated. The impact of HD reduction on heat and electricity production in the Linköping DH system is investigated by using the energy system optimisation model MODEST. Energy efficiency measures in buildings reduce seasonal HD variations. Model results show that HD reductions primarily decrease heat-only production. The electricity-to-heat output ratio for the system is increased for HD reductions up to 30%. Local and global CO 2 emissions are reduced. If co-produced electricity replaces electricity from coal-fired condensing power plants, a 20% HD reduction is optimal for decreasing global CO 2 emissions in the analysed DH system. - Highlights: ► A MODEST optimisation model of the Linköping district heating system is used. ► The impact of heat demand reduction on heat and electricity production is examined. ► Model results show that heat demand reductions decrease heat-only production. ► Local and global CO 2 emissions are reduced. ► The system electricity-to-heat output increases for reduced heat demand up to 30%.

  18. Combined desalination, water reuse, and aquifer storage and recovery to meet water supply demands in the GCC/MENA region

    KAUST Repository

    Ghaffour, Noreddine

    2013-01-01

    Desalination is no longer considered as a nonconventional resource to supply potable water in several countries, especially in the Gulf Corporation Countries (GCC) and Middle East and North Africa (MENA) region as most of the big cities rely almost 100% on desalinated water for their supply. Due to the continuous increase in water demand, more large-scale plants are expected to be constructed in the region. However, most of the large cities in these countries have very limited water storage capacity, ranging from hours to a few days only and their groundwater capacity is very limited. The growing need for fresh water has led to significant cost reduction, because of technological improvements of desalination technologies which makes it an attractive option for water supply even in countries where desalination was unthinkable in the past. In the GCC/MENA region, operating records show that water demand is relatively constant during the year, while power demand varies considerably with a high peak in the summer season. However, desalination and power plants are economically and technically efficient only if they are fully operated at close to full capacity. In addition, desalination plants are exposed to external constraints leading to unexpected shutdowns (e.g. red tides). Hybridization of different technologies, including reverse osmosis and thermal-based plants, is used to balance the power to water mismatch in the demand by using the idle power from co-generation systems during low power demand periods. This has led to consideration of storage of additional desalinated water to allow for maximum production and stability in operation. Aquifer storage and recovery (ASR) would then be a good option to store the surplus of desalinated water which could be used when water demand is high or during unexpected shutdowns of desalination plants. In addition, increased reuse of treated wastewater could bring an integrated approach to water resources management. In this

  19. Public Demand and Climate Change Policy Making in OECD Countries – From Dynamics of the Demand to Policy Responsiveness

    OpenAIRE

    Bianca Oehl

    2015-01-01

    Climate change is one of today’s major political challenges. The Kyoto Protocol assigned national emission reduction goals for the developed countries however national governments in these countries have implemented policies varying widely in range and ambition over time and across countries to meet their goals. Can this variation in policy making be explained by dierences in the typically taken for granted – but empirically often neglected – influence of public demand for climate protection?...

  20. Increased demand-side flexibility: market effects and impacts on variable renewable energy integration

    Directory of Open Access Journals (Sweden)

    Åsa Grytli Tveten

    2016-12-01

    Full Text Available This paper investigates the effect of increased demand-side flexibility (DSF on integration and market value of variable renewable energy sources (VRE. Using assumed potentials, system-optimal within-day shifts in demand are investigated for the Northern European power markets in 2030, applying a comprehensive partial equilibrium model with high temporal and spatial resolution. Increased DSF is found to cause only a minor (less than 3% reduction in consumers’ cost of electricity. VRE revenues are found to increase (up to 5% and 2% for wind and solar power, respectively, and total VRE curtailment decreases by up to 7.2 TWh. Increased DSF causes only limited reductions in GHG emissions. The emission reduction is, however, sensitive to underlying assumptions. We conclude that increased DSF is a promising measure for improving VRE integration. However, low consumers’ savings imply that policies stimulating DFS will be needed to fully use the potential benefits of DSF for VRE integration

  1. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  2. Demand Uncertainty

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen

    This paper presents a model of trade that explains why firms wait to export and why many exporters fail. Firms face uncertain demands that are only realized after the firm enters the destination. The model retools the timing of uncertainty resolution found in productivity heterogeneity models....... This retooling addresses several shortcomings. First, the imperfect correlation of demands reconciles the sales variation observed in and across destinations. Second, since demands for the firm's output are correlated across destinations, a firm can use previously realized demands to forecast unknown demands...... in untested destinations. The option to forecast demands causes firms to delay exporting in order to gather more information about foreign demand. Third, since uncertainty is resolved after entry, many firms enter a destination and then exit after learning that they cannot profit. This prediction reconciles...

  3. Demand side resource operation on the Irish power system with high wind power penetration

    DEFF Research Database (Denmark)

    Keane, A.; Tuohy, A.; Meibom, Peter

    2011-01-01

    part of the power system plant mix and contribute to the flexible operation of a power system. A model for demand side resources is proposed here that captures its key characteristics for commitment and dispatch calculations. The model is tested on the all island Irish power system, and the operation...... of the functions of conventional peaking plant. Demand side resources are also shown to be capable of improving the reliability of the system, with reserve capability identified as a key requirement in this respect....... of the model is simulated over one year in both a stochastic and deterministic mode, to illustrate the impact of wind and load uncertainty. The results illustrate that demand side resources can contribute to the efficient, flexible operation of systems with high penetrations of wind by replacing some...

  4. Efficient energy consumption and operation management in a smart building with microgrid

    International Nuclear Information System (INIS)

    Zhang, Di; Shah, Nilay; Papageorgiou, Lazaros G.

    2013-01-01

    Highlights: • An MILP model is formulated for energy consumption scheduling in a smart building. • Domestic appliances from multiple smart homes are considered. • Equipment operation and power consumption tasks starting time are scheduled. • Results from two examples indicate cost savings and power peak reduction. • Peak demand charge scheme is adopted to reduce the peak demand from grid. - Abstract: Microgrid works as a local energy provider for domestic buildings to reduce energy expenses and gas emissions by utilising distributed energy resources (DERs). The rapid advances in computing and communication capabilities enable the concept smart buildings become possible. Most energy-consuming household tasks do not need to be performed at specific times but rather within a preferred time. If these types of tasks can be coordinated among multiple homes so that they do not all occur at the same time yet still satisfy customers’ requirement, the energy cost and power peak demand could be reduced. In this paper, the optimal scheduling of smart homes’ energy consumption is studied using a mixed integer linear programming (MILP) approach. In order to minimise a 1-day forecasted energy consumption cost, DER operation and electricity-consumption household tasks are scheduled based on real-time electricity pricing, electricity task time window and forecasted renewable energy output. Peak demand charge scheme is also adopted to reduce the peak demand from grid. Two numerical examples on smart buildings of 30 homes and 90 homes with their own microgrid indicate the possibility of cost savings and electricity consumption scheduling peak reduction through the energy consumption and better management of DER operation

  5. Evaporative demand, transpiration, and photosynthesis: How are they changing?

    Science.gov (United States)

    Farquhar, G. D.; Roderick, M. L.

    2009-04-01

    Carbon dioxide concentration is increasing. This affects photosynthesis via increases in substrate availability (Farquhar et al. 1980). It reduces the amount of water transpired by plants to fix a given amount of carbon into an organic form; i.e it increases transpiration efficiency (Wong et al. 1979). It also warms the earth's surface. It is commonly supposed that this warming causes an increase in evaporative demand - the rate of water loss from a wet surface. This supposition has then been extended to effects on plant water availability, with the idea that there would be offsets to the gains in productivity associated with increased transpiration efficiency. The assumption that increased temperature means increased evaporative demand has also been applied to global maps of changes in soil water content. However, observations of pan evaporation rate show that this measure of evaporative demand has been decreasing in most areas examined over the last few decades. We reconcile these observations with theory by noting that, on long time scales, warming also involves water bodies, so that the vapour pressure at the earth's surface also increases. Using the physics of pan evaporation (Rotstayn et al. 2006) we show that the reduction in evaporative demand has been associated with two main effects, (1) "dimming", a reduction in sunlight received at the earth's surface because of aerosols and clouds, being the first phenomenon identified (Roderick and Farquhar 2002), and (2) "stilling", a reduction in wind speed, being the second (Roderick et al. 2007). We show that better accounting for changes in evaporative demand is important for estimating soil water changes, particularly in regions where precipitation exceeds evaporative demand (i.e where there are rivers) (Hobbins et al. 2008). We synthesise some of these results with others on vegetation change. References: Farquhar, GD, von Caemmerer, S, and Berry, JA, 1980: A biochemical model of photosynthetic CO2 assimilation

  6. The estimate of world demand for Pangasius catfish (Pangasiusianodon hypopthalmus)

    DEFF Research Database (Denmark)

    Tien Thong, Nguyen; Nielsen, Max; Roth, Eva

    2017-01-01

    in all markets except Latin America evaluate Pangasius as a necessary good, indicating that the Pangasius industry is relatively little affected by recessions and booms in the world economy. The major markets are substitutes for each other; therefore, if demand at one market region is reduced......-linear Inverse Almost Ideal Demand System of the seven market regions. Prices in all markets are found very inflexible, with own-price flexibilities on −0.200 to −0.917, or −0.419 on average, revealing the option of expanding global production and export without inducing a substantial price reduction. Consumers...

  7. Peak power ratio generator

    Science.gov (United States)

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  8. Multi-model comparison of CO2 emissions peaking in China: Lessons from CEMF01 study

    Directory of Open Access Journals (Sweden)

    Oleg Lugovoy

    2018-03-01

    Full Text Available The paper summarizes results of the China Energy Modeling Forum's (CEMF first study. Carbon emissions peaking scenarios, consistent with China's Paris commitment, have been simulated with seven national and industry-level energy models and compared. The CO2 emission trends in the considered scenarios peak from 2015 to 2030 at the level of 9–11 Gt. Sector-level analysis suggests that total emissions pathways before 2030 will be determined mainly by dynamics of emissions in the electric power industry and transportation sector. Both sectors will experience significant increase in demand, but have low-carbon alternative options for development. Based on a side-by-side comparison of modeling input and results, conclusions have been drawn regarding the sources of emissions projections differences, which include data, views on economic perspectives, or models' structure and theoretical framework. Some suggestions have been made regarding energy models' development priorities for further research. Keywords: Carbon emissions projections, Climate change, CO2 emissions peak, China's Paris commitment, Top-Down energy models, Bottom-Up energy models, Multi model comparative study, China Energy Modeling Forum (CEMF

  9. Modeling of demand response in electricity markets : effects of price elasticity

    International Nuclear Information System (INIS)

    Banda, E.C.; Tuan, L.A.

    2007-01-01

    A design mechanism for the optimal participation of customer load in electricity markets was presented. In particular, this paper presented a modified market model for the optimal procurement of interruptible loads participating in day-ahead electricity markets. The proposed model considers the effect of price elasticity and demand-response functions. The objective was to determine the role that price elasticity plays in electricity markets. The simulation model can help the Independent System Operator (ISO) identify customers offering the lowest price of interruptible loads and load flow patterns that avoid problems associated with transmission congestion and transmission losses. Various issues associated with procurement of demand-response offerings such as advance notification, locational aspect of load, and power factor of the loads, were considered. It was shown that demand response can mitigate price volatility by allowing the ISO to maintain operating reserves during peak load periods. It was noted that the potential benefits of the demand response program would be reduced when price elasticity of demand is taken into account. This would most likely occur in actual developed open electricity markets, such as Nordpool. This study was based on the CIGRE 32-bus system, which represents the Swedish high voltage power system. It was modified for this study to include a broad range of customer characteristics. 18 refs., 2 tabs., 14 figs

  10. Power-to-heat in adiabatic compressed air energy storage power plants for cost reduction and increased flexibility

    Science.gov (United States)

    Dreißigacker, Volker

    2018-04-01

    The development of new technologies for large-scale electricity storage is a key element in future flexible electricity transmission systems. Electricity storage in adiabatic compressed air energy storage (A-CAES) power plants offers the prospect of making a substantial contribution to reach this goal. This concept allows efficient, local zero-emission electricity storage on the basis of compressed air in underground caverns. The compression and expansion of air in turbomachinery help to balance power generation peaks that are not demand-driven on the one hand and consumption-induced load peaks on the other. For further improvements in cost efficiencies and flexibility, system modifications are necessary. Therefore, a novel concept regarding the integration of an electrical heating component is investigated. This modification allows increased power plant flexibilities and decreasing component sizes due to the generated high temperature heat with simultaneously decreasing total round trip efficiencies. For an exemplarily A-CAES case simulation studies regarding the electrical heating power and thermal energy storage sizes were conducted to identify the potentials in cost reduction of the central power plant components and the loss in round trip efficiency.

  11. Using Experimental Auctions to Examine Demand for E-Cigarettes.

    Science.gov (United States)

    O'Connor, Richard; Rousu, Matthew C; Bansal-Travers, Maansi; Vogl, Lisa; Corrigan, Jay R

    2017-06-01

    E-cigarettes are the latest in a line of potentially reduced exposure products that have garnered interest among smokers. In this paper, we use experimental auctions to estimate smokers' demand for e-cigarettes and to assess the impact of advertisements on willingness to pay. These are actual auctions, with winners and losers, which means hypothetical biases often seen in surveys are minimized. We find smokers have positive demand for e-cigarettes, and that the print advertisements used in our study had greater effectiveness than video ads (b = 2.00, p e-cigarettes. Demand was greater for reusable versus disposable e-cigarettes. In multivariate models, demand for e-cigarettes was higher among non-white participants and among smokers willing to pay more for cigarettes. Our findings suggest that cigarette smokers are interested in e-cigarettes as alternatives to traditional products, particularly for reusable forms, and that this demand can be influenced by messaging/advertising. Given these reduced harm products are appealing, if smokers are able to switch completely to e-cigarettes, there is a good chance for accrual of significant harm reduction. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Physical and Physiological Demands of Recreational Team Handball for Adult Untrained Men.

    Science.gov (United States)

    Póvoas, Susana C A; Castagna, Carlo; Resende, Carlos; Coelho, Eduardo Filipe; Silva, Pedro; Santos, Rute; Seabra, André; Tamames, Juan; Lopes, Mariana; Randers, Morten Bredsgaard; Krustrup, Peter

    2017-01-01

    Lack of motivation to exercise was reported as a major cause of sedentary behavior in adulthood. This descriptive study examines the acute physical and physiological demands of recreational team handball and evaluates whether it could be suggested as an exercise mode for fitness and health enhancement in 33-55-year-old untrained men. Time-motion, heart rate (HR), and blood lactate analyses were obtained from 4 recreational matches. Mean distance covered during the 60 min matches was 6012 ± 428 m. The players changed match activity 386 ± 70 times, of which high-intensity runs and unorthodox movements amounted to 59 ± 18 and 26 ± 26 per match, respectively. The most frequent highly demanding playing actions were jumps and throws. Match average and peak HR were 82 ± 6% and 93 ± 5%  HR max , respectively. Players exercised at intensities between 81 and 90%  HR max for 47% (28 ± 14 min) and >90%  HR max for 24% (14 ± 15 min) of total match time. Match average and peak blood lactate values were 3.6 ± 1.3 and 4.2 ± 1.2 mM, respectively. Recreational team handball is an intermittent high-intensity exercise mode with physical and physiological demands in the range of those found to have a positive effect on aerobic, anaerobic, and musculoskeletal fitness in adult individuals. Training studies considering recreational team handball as a health enhancing intervention are warranted.

  13. Physical and Physiological Demands of Recreational Team Handball for Adult Untrained Men

    Directory of Open Access Journals (Sweden)

    Susana C. A. Póvoas

    2017-01-01

    Full Text Available Lack of motivation to exercise was reported as a major cause of sedentary behavior in adulthood. This descriptive study examines the acute physical and physiological demands of recreational team handball and evaluates whether it could be suggested as an exercise mode for fitness and health enhancement in 33–55-year-old untrained men. Time-motion, heart rate (HR, and blood lactate analyses were obtained from 4 recreational matches. Mean distance covered during the 60 min matches was 6012±428 m. The players changed match activity 386±70 times, of which high-intensity runs and unorthodox movements amounted to 59±18 and 26±26 per match, respectively. The most frequent highly demanding playing actions were jumps and throws. Match average and peak HR were 82±6% and 93±5%  HRmax, respectively. Players exercised at intensities between 81 and 90%  HRmax for 47% (28±14 min and >90%  HRmax for 24% (14±15 min of total match time. Match average and peak blood lactate values were 3.6±1.3 and 4.2±1.2 mM, respectively. Recreational team handball is an intermittent high-intensity exercise mode with physical and physiological demands in the range of those found to have a positive effect on aerobic, anaerobic, and musculoskeletal fitness in adult individuals. Training studies considering recreational team handball as a health enhancing intervention are warranted.

  14. Size-corrected BMD decreases during peak linear growth: implications for fracture incidence during adolescence.

    Science.gov (United States)

    Faulkner, Robert A; Davison, K Shawn; Bailey, Donald A; Mirwald, Robert L; Baxter-Jones, Adam D G

    2006-12-01

    Peak adolescent fracture incidence at the distal end of the radius coincides with a decline in size-corrected BMD in both boys and girls. Peak gains in bone area preceded peak gains in BMC in a longitudinal sample of boys and girls, supporting the theory that the dissociation between skeletal expansion and skeletal mineralization results in a period of relative bone weakness. The high incidence of fracture in adolescence may be related to a period of relative skeletal fragility resulting from dissociation between bone expansion and bone mineralization during the growing years. The aim of this study was to examine the relationship between changes in size-corrected BMD (BMDsc) and peak distal radius fracture incidence in boys and girls. Subjects were 41 boys and 46 girls measured annually (DXA; Hologic 2000) over the adolescent growth period and again in young adulthood. Ages of peak height velocity (PHV), peak BMC velocity (PBMCV), and peak bone area (BA) velocity (PBAV) were determined for each child. To control for maturational differences, subjects were aligned on PHV. BMDsc was calculated by first regressing the natural logarithms of BMC and BA. The power coefficient (pc) values from this analysis were used as follows: BMDsc = BMC/BA(pc). BMDsc decreased significantly before the age of PHV and then increased until 4 years after PHV. The peak rates in radial fractures (reported from previous work) in both boys and girls coincided with the age of negative velocity in BMDsc; the age of peak BA velocity (PBAV) preceded the age of peak BMC velocity (PBMCV) by 0.5 years in both boys and girls. There is a clear dissociation between PBMCV and PBAV in boys and girls. BMDsc declines before age of PHV before rebounding after PHV. The timing of these events coincides directly with reported fracture rates of the distal end of the radius. Thus, the results support the theory that there is a period of relative skeletal weakness during the adolescent growth period caused, in

  15. Analysis of the need for intermediate and peaking technologies in the year 2000. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barrager, S.M.; Campbell, G.L.

    1980-04-01

    This analysis was conducted to assess the impact of load management on the future need for intermediate- and peak-generating technologies (IPTs) such as combustion turbines, pumped storage, and cycling coal plants. There would be a reduced need for IPTs if load-management activities such as time-of-use pricing, together with customer-owned energy-storage devices, hot-water-heater controls, and interruptible service can economically remove most of the variation from electric power demands. The objective of this analysis is to assess the need for IPTs in an uncertain future, which will probably include load management and time-differentiated electricity prices. The analysis is exploratory in nature and broad in scope. It does not attempt to predict the future or to model precisely the technical characteristics or economic desirability of load management. Rather, its purpose is to provide research and development planners with some basic insights into the order of magnitude of possible hourly demand shifts on a regional basis and to determine the impact of load management on daily and seasonal variations in electricity demand.

  16. The electric energy demand-side planning: necessity and possibilities of execution

    International Nuclear Information System (INIS)

    Sposito, E.S.

    1991-05-01

    Aiming at reducing the level of investments, is presented a demand-side planning approach, divided into two parts. The first part is an analysis on the actual need of our demand-side approaching. In view of this, is showed a set of data and comments both on economic and technological aspects concerning the electric network and sector, as well as evaluation of the social, ecological and financial aspects which could act against the full expansion of the electric system. In the second part, a demand-side planning methodology is introduced, as well as its main concepts, its variables and its instruments of affecting the demand: energy conservation, replacement of sources, reduction of losses and electric power decentralized generation. Each of them is fully detailed in a set of planning policies and actions. Concluding is presented the basic elements of a National Electric Energy Substitution and Conservation Plan - PLANSCON. (author)

  17. The impact of peak oil on tourism in Spain: An input-output analysis of price, demand and economy-wide effects

    NARCIS (Netherlands)

    Logar, I.; van den Bergh, J.C.J.M.

    2013-01-01

    This article examines the potential effects of peak oil on Spanish tourism and indirectly on the rest of the economy. We construct several scenarios of price increases in oil, related fossil fuels and their inflationary effects. These scenarios provide the context for an input-output (I/O) analysis

  18. Predicting rheological behavior and baking quality of wheat flour using a GlutoPeak test.

    Science.gov (United States)

    Rakita, Slađana; Dokić, Ljubica; Dapčević Hadnađev, Tamara; Hadnađev, Miroslav; Torbica, Aleksandra

    2018-06-01

    The purpose of this research was to gain an insight into the ability of the GlutoPeak instrument to predict flour functionality for bread making, as well as to determine which of the GlutoPeak parameters show the best potential in predicting dough rheological behavior and baking performance. Obtained results showed that GlutoPeak parameters correlated better with the indices of extensional rheological tests which consider constant dough hydration than with those which were performed at constant dough consistency. The GlutoPeak test showed that it is suitable for discriminating wheat varieties of good quality from those of poor quality, while the most discriminating index was maximum torque (MT). Moreover, MT value of 50 BU and aggregation energy value of 1,300 GPU were set as limits of wheat flour quality. The backward stepwise regression analysis revealed that a high-level prediction of indices which are highly affected by protein content (gluten content, flour water absorption, and dough tenacity) was achieved by using the GlutoPeak indices. Concerning bread quality, a moderate prediction of specific loaf volume and an intense level prediction of breadcrumb textural properties were accomplished by using the GlutoPeak parameters. The presented results indicated that the application of this quick test in wheat transformation chain for the assessment of baking quality would be useful. Baking test is considered as the most reliable method for assessing wheat-baking quality. However, baking test requires trained stuff, time, and large sample amount. These disadvantages have led to a growing demand to develop new rapid tests which would enable prediction of baked product quality with a limited flour size. Therefore, we tested the possibility of using a GlutoPeak tester to predict loaf volume and breadcrumb textural properties. Discrimination of wheat varieties according to quality with a restricted flour amount was also examined. Furthermore, we proposed the limit

  19. Modelling seasonal farm labour demand: What can we learn from rural Kakamega district, western Kenya?

    Directory of Open Access Journals (Sweden)

    Vincent Canwat

    2012-09-01

    Full Text Available Seasonality of agricultural activities causes fluctuation in the quantity of labour consumed by these activities, and yet many rural labour studies in developing countries still treat labour demand in agriculture as if it is the same across different farm operations. To unearth the amount of information hidden by this aggregated analysis, labour demand for specific farm operations was estimated based on data collected from Kakamega District. This analysis shows that increasing household size increases labour demand for planting, weeding and harvesting. Increasing the share of elderly household members has a negligible effect on labour demand for farm activities except for land preparation, with which it is positively related. Participation of primary school-going children in farm activities is the highest in planting and harvesting. Participation in off-farm employment seems to increase labour demand only during peak seasons. The area planted appears to have an insignificant effect on labour demand for land preparation. Planting sugar cane appears to reduce labour demand for weeding and primary processing, but planting tea increases labour demand for planting. Mechanising land preparation only reduces labour demand for land preparation, but it seems to be offset by other labour-intensive farm operations. The distance from water source is positively related to labour demand for land preparation, but the distance to the market is negatively related to labour demand for weeding and harvesting. These observations point to the need for supporting and investing in technological and organisational innovations in agriculture.

  20. Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts.

    Science.gov (United States)

    Wang, Yuhang; Liu, Junlang; Wang, Yifei; Al-Enizi, Abdullah M; Zheng, Gengfeng

    2017-11-01

    Climate change, caused by heavy CO 2 emissions, is driving new demands to alleviate the rising concentration of atmospheric CO 2 levels. Enlightened by the photosynthesis of green plants, photo(electro)chemical catalysis of CO 2 reduction, also known as artificial photosynthesis, is emerged as a promising candidate to address these demands and is widely investigated during the past decade. Among various artificial photosynthetic systems, solar-driven electrochemical CO 2 reduction is widely recognized to possess high efficiencies and potentials for practical application. The efficient and selective electroreduction of CO 2 is the key to the overall solar-to-chemical efficiency of artificial photosynthesis. Recent studies show that various metallic materials possess the capability to play as electrocatalysts for CO 2 reduction. In order to achieve high selectivity for CO 2 reduction products, various efforts are made including studies on electrolytes, crystal facets, oxide-derived catalysts, electronic and geometric structures, nanostructures, and mesoscale phenomena. In this Review, these methods for tuning the selectivity of CO 2 electrochemical reduction of metallic catalysts are summarized. The challenges and perspectives in this field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Forecasted electric power demands for the Delmarva Power and Light Company. Volume 1 and Volume 2. Documentation manual

    International Nuclear Information System (INIS)

    Estomin, S.L.; Beach, J.E.

    1990-10-01

    The two-volume report presents the results of an econometric forecast of peak load and electric power demands for the Delmarva Power and Light Company (DP ampersand L) through the year 2008. Separate sets of models were estimated for the three jurisdictions served by DP ampersand L: Delaware, Maryland and Virginia. For both Delaware and Maryland, econometric equations were estimated for residential, commercial, industrial, and streetlighting sales. For Virginia, equations were estimated for residential, commercial plus industrial, and streetlighting sales; separate industrial and commercial equations were not estimated for Virginia due to the relatively small size of DP ampersand L's Virginia Industrial load. Wholesale sales were econometrically estimated for the DP ampersand L system as a whole. In addition to the energy sales models, an econometric model of annual (summer) peak demand was estimated for the Company

  2. Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City)

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Akbari, H.

    2002-02-28

    In 1997, the U.S. Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'' to quantify the potential benefits of Heat-Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling-energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective of investigating the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, LA; Sacramento, CA; and Salt Lake City, UT. Later two other cities, Chicago, IL and Houston, TX were added to the UHIPP. In an earlier report we summarized our efforts to calculate the annual energy savings, peak power avoidance, and annual CO2 reduction obtainable from the introduction of HIR strategies in the initial three cities. This report summarizes the results of our study for Chicago and Houston. In this analysis, we focused on three building types that offer the highest potential savings: single-family residence, office and retail store. Each building type was characterized in detail by vintage and system type (i.e., old and new building constructions, and gas and electric heat). We used the prototypical building characteristics developed earlier for each building type and simulated the impact of HIR strategies on building cooling- and heating-energy use and peak power demand using the DOE-2.1E model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on the building [direct effect], (3) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (4) combined strategies 1, 2, and 3 [direct and indirect effects]. We then estimated the total roof area of air

  3. DSM [demand-side management] opportunities in Alberta: An economist's perspective

    International Nuclear Information System (INIS)

    Woodward, R.S.

    1990-01-01

    In Alberta, utility companies are placing increasing attention on demand-side management (DSM) as one option for meeting future demand. Some basic economic principles are provided to yield a guideline on how much a utility should be spending on DSM initiatives. For the case of financial incentives to customers, it is shown that subsidies based on sound economic principles will enable the utility to charge lower overall rates to customers receiving the subsidy without raising other customers' rates. Moving outside of a well-understood market-based system and into a fully centralized planning approach to DSM eliminates a critical link between utilities and their customers. In Alberta, DSM measures appropriate in other regions will not be appropriate due to the province's unique supply and demand characteristics. Most of Alberta's electricity supply comes from low-cost coal-fired plants. On the demand-side, there is a significant concentration of large industrial and commercial consumers, notably in the oil and gas industry, and there is essentially no demand for electric heating in homes since natural gas is very abundant. The Alberta integrated power system currently operates at a load factor of ca 77%, reflecting the large industrial demand and the absence of a winter peaking effect associated with electrical heating requirements. A relatively small difference in embedded and incremental electricity supply costs means that utilities have little to spend on DSM programs. The identification of cost-effective DSM opportunities, most of which are likely to be found in the industrial sector, requires a considerable amount of detailed information on consumer behavior and close collaboration between utility and customer

  4. Comparison of Simulated PEC Probe Performance for Detecting Wall Thickness Reduction

    International Nuclear Information System (INIS)

    Shin, Young Kil; Choi, Dong Myung; Jung, Hee Sung

    2009-01-01

    In this paper, four different types of pulsed eddy current(PEC) probe are designed and their performance of detecting wall thickness reduction is compared. By using the backward difference method in time and the finite element method in space, PEC signals from various thickness and materials are numerically calculated and three features of the signal are selected. Since PEC signals and features are obtained by various types and sizes of probe, the comparison is made through the normalized features which reflect the sensitivity of the feature to thickness reduction. The normalized features indicate that the shielded reflection probe provides the best sensitivity to wall thickness reduction for all three signal features. Results show that the best sensitivity to thickness reduction can be achieved by the peak value, but also suggest that the time to peak can be a good candidate because of its linear relationship with the thickness variation.

  5. An energy service company's perspective on demand-side management

    International Nuclear Information System (INIS)

    Bullock, C.G.

    1993-01-01

    In 1985, Massachusetts Electric Company held a bid for demand reduction to be supplied by energy service companies (ESCOs). It was one of the first demand-side management (DSM) bidding programs held in the United States. Since then, several DSM auctions have been held. Many people expected DSM bidding to be a key component in integrated resource planning. Many observed similarities with supply side bidding, and expected DSM bidding to grow according. Today, more than $2 billion annually is being spent by utilities on DSM programs. Less than $100 million is spent with ESCOs. This chapter explores some of the reasons for the current situation and suggests some alternatives, which could benefit all of the players

  6. 3-D Effects Force Reduction of Short-Crested Non-Breaking Waves on Caissons

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.

    1998-01-01

    The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...

  7. The supply and demand for pollution control: Evidence from wastewater treatment

    Science.gov (United States)

    McConnell, V.D.; Schwarz, G.E.

    1992-01-01

    This paper analyzes the determination of pollution control from wastewater treatment plants as an economic decision facing local or regional regulators. Pollution control is measured by plant design effluent concentration levels and is fully endogenous in a supply- and-demand model of treatment choice. On the supply side, plant costs are a function of the design treatment level of the plant, and on the demand side, treatment level is a function of both the costs of control and the regional or regulatory preferences for control. We find evidence that the economic model of effluent choice by local regulators has a good deal of explanatory power. We find evidence that wastewater treatment plant removal of biological oxygen demand (BOD) is sensitive to many local factors including the size of the treatment plant, the flow rate of the receiving water, the population density of the surrounding area, regional growth, state sensitivity to environmental issues, state income, and the extent to which the damages from pollution fall on other states. We find strong evidence that regulators are sensitive to capital costs in determining the design level of BOD effluent reduction at a plant. Thus, proposed reductions in federal subsidies for wastewater treatment plant construction are likely to have significant adverse effects on water quality. ?? 1992.

  8. Deconstructing Demand: The Anthropogenic and Climatic Drivers of Urban Water Consumption.

    Science.gov (United States)

    Hemati, Azadeh; Rippy, Megan A; Grant, Stanley B; Davis, Kristen; Feldman, David

    2016-12-06

    Cities in drought prone regions of the world such as South East Australia are faced with escalating water scarcity and security challenges. Here we use 72 years of urban water consumption data from Melbourne, Australia, a city that recently overcame a 12 year "Millennium Drought", to evaluate (1) the relative importance of climatic and anthropogenic drivers of urban water demand (using wavelet-based approaches) and (2) the relative contribution of various water saving strategies to demand reduction during the Millennium Drought. Our analysis points to conservation as a dominant driver of urban water savings (69%), followed by nonrevenue water reduction (e.g., reduced meter error and leaks in the potable distribution system; 29%), and potable substitution with alternative sources like rain or recycled water (3%). Per-capita consumption exhibited both climatic and anthropogenic signatures, with rainfall and temperature explaining approximately 55% of the variance. Anthropogenic controls were also strong (up to 45% variance explained). These controls were nonstationary and frequency-specific, with conservation measures like outdoor water restrictions impacting seasonal water use and technological innovation/changing social norms impacting lower frequency (baseline) use. The above-noted nonstationarity implies that wavelets, which do not assume stationarity, show promise for use in future predictive models of demand.

  9. Peaks, plateaus, numerical instabilities, and achievable accuracy in Galerkin and norm minimizing procedures for solving Ax=b

    Energy Technology Data Exchange (ETDEWEB)

    Cullum, J. [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States)

    1994-12-31

    Plots of the residual norms generated by Galerkin procedures for solving Ax = b often exhibit strings of irregular peaks. At seemingly erratic stages in the iterations, peaks appear in the residual norm plot, intervals of iterations over which the norms initially increase and then decrease. Plots of the residual norms generated by related norm minimizing procedures often exhibit long plateaus, sequences of iterations over which reductions in the size of the residual norm are unacceptably small. In an earlier paper the author discussed and derived relationships between such peaks and plateaus within corresponding Galerkin/Norm Minimizing pairs of such methods. In this paper, through a set of numerical experiments, the author examines connections between peaks, plateaus, numerical instabilities, and the achievable accuracy for such pairs of iterative methods. Three pairs of methods, GMRES/Arnoldi, QMR/BCG, and two bidiagonalization methods are studied.

  10. Linking Agricultural Trade, Land Demand and Environmental Externalities: Case of Oil Palm in South East Asia

    OpenAIRE

    Othman, Jamal

    2003-01-01

    Reduction of support measures affecting soybean oil in the major soybean producing countries, as a consequence of WTO rules, coupled with rising demand for palm oil in non-traditional palm oil importing countries may lead to pronounced increases in agricultural land demand for oil palm expansion in Malaysia and Indonesia – two main palm oil producing and exporting countries. However, it is expected that the effects on agricultural land demand and consequently impact upon the environment will ...

  11. High resolution heat atlases for demand and supply mapping

    Directory of Open Access Journals (Sweden)

    Bernd Möller

    2014-02-01

    Full Text Available Significant reductions of heat demand, low-carbon and renewable energy sources, and district heating are key elements in 100% renewable energy systems. Appraisal of district heating along with energy efficient buildings and individual heat supply requires a geographical representation of heat demand, energy efficiency and energy supply. The present paper describes a Heat Atlas built around a spatial database using geographical information systems (GIS. The present atlas allows for per-building calculations of potentials and costs of energy savings, connectivity to existing district heat, and current heat supply and demand. For the entire building mass a conclusive link is established between the built environment and its heat supply. The expansion of district heating; the interconnection of distributed district heating systems; or the question whether to invest in ultra-efficient buildings with individual supply, or in collective heating using renewable energy for heating the current building stock, can be based on improved data.

  12. SAMPO, A Fortran IV Program for Computer Analysis of Gamma Spectrafrom Ge(Li) Detectors, and for Other Spectra with Peaks

    Energy Technology Data Exchange (ETDEWEB)

    Routti, Jorma T.

    1969-10-20

    SAMPO is a Fortran IV program written to perform the data- reduction analysis described by J. T. Routti and S. G. Prussin in Photopeak Method for the Computer Analysis of Gamma-Ray Spectra from Semiconductor Detectors, Nuclear Instruments and Methods 72, 125-142 (1969). The code has also been used to analyze other spectra with peaks and continua. Program SAMPO can be used for an automatic off-line or an interactive on-line analysis. It includes algorithms for line-shape, energy, and efficiency calibrations, and peak-search and peak-fitting routines. Different options are available to make the code applicable to accurate nuclear spectroscopic work as well as to routine data reduction. The mathematical methods and their coding are briefly described. Instructions for using the program and for preparing input data are given and the optimal strategies for running the code are discussed. Instructions are given for using the LRL program library version of SAMPO and for obtaining source decks.

  13. Modeling Ontario regional electricity system demand using a mixed fixed and random coefficients approach

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, C.; Mountain, D.C.; Chan, M.W.L.; Tsui, K.Y. (University of Southern California, Los Angeles (USA) McMaster Univ., Hamilton, ON (Canada) Chinese Univ. of Hong Kong, Shatin)

    1989-12-01

    In examining the municipal peak and kilowatt-hour demand for electricity in Ontario, the issue of homogeneity across geographic regions is explored. A common model across municipalities and geographic regions cannot be supported by the data. Considered are various procedures which deal with this heterogeneity and yet reduce the multicollinearity problems associated with regional specific demand formulations. The recommended model controls for regional differences assuming that the coefficients of regional-seasonal specific factors are fixed and different while the coefficients of economic and weather variables are random draws from a common population for any one municipality by combining the information on all municipalities through a Bayes procedure. 8 tabs., 41 refs.

  14. Considering supply and demand of electric energy in life cycle assessments - a review of current methodologies

    International Nuclear Information System (INIS)

    Rehberger, M.; Hiete, M.

    2015-01-01

    A stable power grid requires a balance between electricity supply and demand. To compensate for changes in the demand the network operator puts on or takes off power plants from the net. Peak load plants operate only at times of high electricity demand. As levels for air pollutants emissions are typically lower for peak load plants for reasons of cost-effectiveness, one could argue that a unit of electric energy consumed during peak load has always been associated with a higher environmental impact than at other times. Furthermore, renewable energy technologies, smart approaches for improving the matching between electricity consumption and supply and new products such as electric vehicles or net zero emission buildings gain in importance. In life cycle assessment (LCA) environmental impacts associated with the production and possibly transmission of electricity are most often assessed based on temporally averaged national electricity mixes as electricity flows cannot be traced back to their origin. Neither fluctuations in the supply structure nor the composition of energy supply at a certain moment or regional differences are accounted for. A literature review of approaches for handling electricity in LCA is carried out to compare strengths and weaknesses of the approaches. A better understanding and knowledge about the source of electricity at a given time and place might be valuable information for further reducing environmental impacts, e.g. by shifting electricity consumption to times with ample supply of renewables. Integrating such information into LCA will allow a fairer assessment of a variety of new products which accept a lower energy efficiency to achieve a better integration of renewables into the grid. (authors)

  15. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    Science.gov (United States)

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  16. Simulation of demand side participation in Spanish short term electricity markets

    International Nuclear Information System (INIS)

    Valencia-Salazar, I.; Alvarez, C.; Escriva-Escriva, G.; Alcazar-Ortega, M.

    2011-01-01

    Highlights: → Benefits from customer active participation can be obtained with a proper generation of bids and offers. → Simulation of Spanish customers' participation is shown in daily, intra-daily and balancing markets. → Market efficiency and economics profits arise in balancing markets by using customer load reductions. → Real market prices and real customers' consumptions profiles are used in the simulations. -- Abstract: Demand response resources management is one of the most investigated solutions oriented to improve the efficiency in electricity markets. In this paper, the capability of customers to participate in short term markets is analyzed. An available methodology to analyze the daily and monthly energy consumptions of large customers is used to create energy offers and bids. This allows customers to participate in energy markets in order to buy, as first step, the usual electricity consumption and, additionally, to offer demand reductions in the short term electricity markets. Additionally, this paper shows the customer potential to participate in the Spanish electricity markets.

  17. Evaluating demand side measures in simulation models for the power market

    International Nuclear Information System (INIS)

    Wolfgang, Ove; Doorman, Gerard

    2011-01-01

    Increased energy efficiency is one of the pillars for reducing CO 2 emissions. However, in models for the electricity market like unit commitment and dispatch models, increased efficiency of demand results in a paradoxical apparent reduction of the total economic surplus. The reason is that these are partial models for the electricity market, which do not take into account the effect of the changes in other markets. This paper shows how the calculation of the consumer surplus in the electricity market should be corrected to take into account the effect in other markets. In different cases we study shifts in the demand curve that are caused by increased energy efficiency, reduced cost for substitutes to electricity and real-time monitoring of demand, and we derive the necessary correction. The correction can easily be included in existing simulation models, and makes it possible to assess the effect of changes in demand on economic surplus. (author)

  18. Demand response offered by households with direct electric heating

    International Nuclear Information System (INIS)

    Kofod, C.; Togeby, M.

    2004-01-01

    The peak power balance in the Nordic power system is gradually turning to be very tight, especially in the electric area of southern Sweden and eastern Denmark. Power stations are closed and hardly any investments in new production are carried out. Demand response is considered essential when the formation of spot prices shall send the signal of needed investments in new capacity. Demand response which are based on individual preferences, and carried out automatically, can be one way to increase the volume of price elastic demand. Demand response need hourly metering for calculation and documentation of the decrease in demand, and controllability in order to meet the timing requirements. Within the EU SAVE project EFFLOCOM (2002 - 2004), a Danish demand response pilot project was established in 2003 including 25 single family homes with direct electrical heating. The system has been tested during the winter 2003/2004. The tested technologies include hourly metering, communication by GRPS as well as the Internet. GPRS is used for daily remote meter reading and automatic control of the electric heating including individual control of up to five zones. The system is designed for automatic activation when the Nord Pool hourly Elspot prices exceed preset levels. The system can also be used as regulating power. The EFFLOCOM Web Bite includes an interactive demonstrator of the system. The developed customer Web Bite is including the services: 1) Access to setting the limits for the maximum duration of interruption for up to five different control zones for two periods of the day and for three price levels. 2) Access to stop an actual interruption. 3) A report on the hourly, daily, weekly and monthly use of electricity and the saved bonus by demand response control. The report is updated daily. The goals of up to 5 kW controlled per house were fulfilled. Besides the demand response bonus the customers have also saved electricity. A customer survey did show that the

  19. Can reserve additions in mature crude oil provinces attenuate supply-side peak oil?

    Energy Technology Data Exchange (ETDEWEB)

    Okullo, Samuel; Reynes, Frederic

    2010-09-15

    More often, oil supply has been modeled on the basis of resource availability and demand. The impact of strategy between oil producers has largely been ignored or overly simplified. In this paper, we formulate a model that embodies a weak and strong OPEC for varied rates of reserve additions. With this economic equilibrium model which has the capability to generate a supply side peak in oil production, we show that although reserves of conventional crude oil may seem abundant. OPEC has the ability to lead to substantial crude oil reserve depletion in non-OPEC countries by 2050 given likely depletion rates.

  20. Modelling Per Capita Water Demand Change to Support System Planning

    Science.gov (United States)

    Garcia, M. E.; Islam, S.

    2016-12-01

    Water utilities have a number of levers to influence customer water usage. These include levers to proactively slow demand growth over time such as building and landscape codes as well as levers to decrease demands quickly in response to water stress including price increases, education campaigns, water restrictions, and incentive programs. Even actions aimed at short term reductions can result in long term water usage declines when substantial changes are made in water efficiency, as in incentives for fixture replacement or turf removal, or usage patterns such as permanent lawn watering restrictions. Demand change is therefore linked to hydrological conditions and to the effects of past management decisions - both typically included in water supply planning models. Yet, demand is typically incorporated exogenously using scenarios or endogenously using only price, though utilities also use rules and incentives issued in response to water stress and codes specifying standards for new construction to influence water usage. Explicitly including these policy levers in planning models enables concurrent testing of infrastructure and policy strategies and illuminates interactions between the two. The City of Las Vegas is used as a case study to develop and demonstrate this modeling approach. First, a statistical analysis of system data was employed to rule out alternate hypotheses of per capita demand decrease such as changes in population density and economic structure. Next, four demand sub-models were developed including one baseline model in which demand is a function of only price. The sub-models were then calibrated and tested using monthly data from 1997 to 2012. Finally, the best performing sub-model was integrated with a full supply and demand model. The results highlight the importance of both modeling water demand dynamics endogenously and taking a broader view of the variables influencing demand change.