WorldWideScience

Sample records for pdau001 bimetallic surfaces

  1. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth.

    Science.gov (United States)

    Lim, Byungkwon; Kobayashi, Hirokazu; Yu, Taekyung; Wang, Jinguo; Kim, Moon J; Li, Zhi-Yuan; Rycenga, Matthew; Xia, Younan

    2010-03-03

    This paper describes the synthesis of Pd-Au bimetallic nanocrystals with controlled morphologies via a one-step seeded-growth method. Two different reducing agents, namely, L-ascorbic acid and citric acid, were utilized for the reduction of HAuCl(4) in an aqueous solution to control the overgrowth of Au on cubic Pd seeds. When L-ascorbic acid was used as the reducing agent, conformal overgrowth of Au on the Pd nanocubes led to the formation of Pd-Au nanocrystals with a core-shell structure. On the contrary, localized overgrowth of Au was observed when citric acid was used as the reducing agent, producing Pd-Au bimetallic dimers. Through this morphological control, we were able to tune the localized surface plasmon resonance peaks of Pd-Au bimetallic nanostructures in the visible region.

  2. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry. It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.

  3. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy.

    Science.gov (United States)

    Chen, Ching-Hsiang; Sarma, Loka Subramanyam; Chen, Jium-Ming; Shih, Shou-Chu; Wang, Guo-Rung; Liu, Din-Goa; Tang, Mau-Tsu; Lee, Jyh-Fu; Hwang, Bing-Joe

    2007-09-01

    In this study, we demonstrate the unique application of X-ray absorption spectroscopy (XAS) as a fundamental characterization tool to help in designing and controlling the architecture of Pd-Au bimetallic nanoparticles within a water-in-oil microemulsion system of water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane. Structural insights obtained from the in situ XAS measurements recorded at each step during the formation process revealed that Pd-Au bimetallic clusters with various Pd-Au atomic stackings are formed by properly performing hydrazine reduction and redox transmetalation reactions sequentially within water-in-oil microemulsions. A structural model is provided to explain reasonably each reaction step and to give detailed insight into the nucleation and growth mechanism of Pd-Au bimetallic clusters. The combination of in situ XAS analysis at both the Pd K-edge and the Au L(III)-edge and UV-vis absorption spectral features confirms that the formation of Pd-Au bimetallic clusters follows a (Pd(nuclei)-Au(stack))-Pd(surf) stacking. This result further implies that the thickness of Au(stack) and Pd(surf) layers may be modulated by varying the dosage of the Au precursor and hydrazine, respectively. In addition, a bimetallic (Pd-Au)(alloy) nanocluster with a (Pd(nuclei)-Au(stack))-(Pd-Au(alloy))(surf) stacking was also designed and synthesized in order to check the feasibility of Pd(surf) layer modification. The result reveals that the Pd(surf) layer of the stacked (Pd(nuclei)-Au)(stack) bimetallic clusters can be successfully modified to form a (Au-Pd alloy)(surf) layer by a co-reduction of Pd and Au ions by hydrazine. Further, we demonstrate the alloying extent or atomic distribution of Pd and Au in Pd-Au bimetallic nanoparticles from the derived XAS structural parameters. The complete XAS-based methodology, demonstrated here on the Pd-Au bimetallic system, can easily be extended to design and control the alloying extent or atomic distribution, atomic

  4. Hydrogen adsorption on bimetallic PdAu(111) surface alloys

    DEFF Research Database (Denmark)

    Takehiro, Naoki; Liu, Ping; Bergbreiter, Andreas

    2014-01-01

    The adsorption of hydrogen on structurally well defined PdAu-Pd(111) monolayer surface alloys was investigated in a combined experimental and theoretical study, aiming at a quantitative understanding of the adsorption and desorption properties of individual PdAu nanostructures. Combining...... the structural information obtained by high resolution scanning tunneling microscopy (STM), in particular on the abundance of specific adsorption ensembles at different Pd surface concentrations, with information on the adsorption properties derived from temperature programmed desorption (TPD) spectroscopy...... and high resolution electron energy loss spectroscopy (HREELS) provides conclusions on the minimum ensemble size for dissociative adsorption of hydrogen and on the adsorption energies on different sites active for adsorption. Density functional theory (DFT) based calculations give detailed insight...

  5. Bimetallic Au-decorated Pd catalyst for the liquid phase hydrodechlorination of 2,4-dichlorophenol

    International Nuclear Information System (INIS)

    Zhou, Juan; Chen, Huan; Chen, Quanyuan; Huang, Zhaolu

    2016-01-01

    Graphical abstract: 2,4-Dichlorophenol can be converted to phenol via the catalytic HDC method over Pd-Au/CNTs and the catalytic activity first increased and then decreased with Au content. - Highlights: • Bimetallic catalysts had smaller metal particles and larger number of exposed active site than the monometallic catalysts. • The cationization of Pd particles increased with Au content in the bimetallic catalysts. • The bimetallic catalysts exhibited higher catalytic activities for HDC of 2,4-DCP than the monometallic counterparts. • The concerted pathway for HDC of 2,4-DCP was more predominant with increasing Au content in the bimetallic catalyst. - Abstract: Monometallic and bimetallic Pd-Au catalysts supported on multi-walled carbon nanotubes (CNTs) with varied Au cooperation amounts were prepared using the complexing-reduction method in the presence of tetrahydrofuran (THF). The liquid phase catalytic hydrodechlorination (HDC) of 2,4-dichlorophenol (2,4-DCP) was investigated over these bimetallic catalysts. The catalysts were characterized by N 2 adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and H 2 chemisorption. Characterization results showed that the co-reduction of Pd and Au mainly formed alloy-like structure. The bimetallic catalysts had smaller metal particles and larger numbers of exposed active site than that of monometallic catalysts. In addition, compared with Pd(1.7)/CNTs and Au(0.4)/CNTs, the binding energies of Pd 3d 5/2 shifted to higher positions while that of Au 4f 7/2 had negative shifts in the Pd-Au bimetallic catalysts, which can be ascribed to the electrons transferred from metal Pd to Au and the cationization of Pd particles was enhanced. Accordingly, the bimetallic Pd-Au particles with different Au contents in the catalysts exhibited varied synergistic effects for the catalytic HDC of 2,4-DCP, with Pd(1.8)Au(0.4)/CNTs having the highest catalytic activity

  6. XPS/STM study of model bimetallic Pd–Au/HOPG catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Prosvirin, Igor P., E-mail: prosvirin@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva Ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2016-03-30

    Graphical abstract: - Highlights: • The model Pd–Au/HOPG catalysts preparation has been studied by XPS and STM. • Model “core–shell” type Pd–Au/HOPG catalysts with different Pd/Au ratios were prepared. • Heating of the “core–shell” Pd–Au/HOPG samples up to 400 °C leads to alloy formation. • Contribution of parameters controlling the properties of Pd–Au alloyed particles has been discussed. - Abstract: The preparation of model bimetallic Pd–Au/HOPG catalysts has been investigated using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) techniques. Initially, model “core–shell” type Pd–Au/HOPG catalysts with similar particle size distribution (5–8 nm), but with different densities of particle locations on the HOPG surface and Pd/Au atomic ratios are prepared. Further, their thermal stability is studied within a temperature range of 50–500 °C at UHV conditions. It has been shown that annealing the model catalysts at a temperature range of 300–400 °C leads to formation of Pd–Au alloyed particles. Enhancement of heating temperature up to 500 °C results in sintering of bimetallic nanoparticles. Contribution of different parameters controlling the properties of Pd–Au alloyed particles has been discussed.

  7. Bimetallic Au-decorated Pd catalyst for the liquid phase hydrodechlorination of 2,4-dichlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Juan [School of the Environment, Donghua University, Shanghai 201620 (China); Chen, Huan, E-mail: hchen404@njust.edu.cn [Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chen, Quanyuan; Huang, Zhaolu [School of the Environment, Donghua University, Shanghai 201620 (China)

    2016-11-30

    Graphical abstract: 2,4-Dichlorophenol can be converted to phenol via the catalytic HDC method over Pd-Au/CNTs and the catalytic activity first increased and then decreased with Au content. - Highlights: • Bimetallic catalysts had smaller metal particles and larger number of exposed active site than the monometallic catalysts. • The cationization of Pd particles increased with Au content in the bimetallic catalysts. • The bimetallic catalysts exhibited higher catalytic activities for HDC of 2,4-DCP than the monometallic counterparts. • The concerted pathway for HDC of 2,4-DCP was more predominant with increasing Au content in the bimetallic catalyst. - Abstract: Monometallic and bimetallic Pd-Au catalysts supported on multi-walled carbon nanotubes (CNTs) with varied Au cooperation amounts were prepared using the complexing-reduction method in the presence of tetrahydrofuran (THF). The liquid phase catalytic hydrodechlorination (HDC) of 2,4-dichlorophenol (2,4-DCP) was investigated over these bimetallic catalysts. The catalysts were characterized by N{sub 2} adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and H{sub 2} chemisorption. Characterization results showed that the co-reduction of Pd and Au mainly formed alloy-like structure. The bimetallic catalysts had smaller metal particles and larger numbers of exposed active site than that of monometallic catalysts. In addition, compared with Pd(1.7)/CNTs and Au(0.4)/CNTs, the binding energies of Pd 3d{sub 5/2} shifted to higher positions while that of Au 4f{sub 7/2} had negative shifts in the Pd-Au bimetallic catalysts, which can be ascribed to the electrons transferred from metal Pd to Au and the cationization of Pd particles was enhanced. Accordingly, the bimetallic Pd-Au particles with different Au contents in the catalysts exhibited varied synergistic effects for the catalytic HDC of 2,4-DCP, with Pd(1.8)Au(0.4)/CNTs having the highest

  8. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles

    DEFF Research Database (Denmark)

    Hosseinkhani, Baharak; Søbjerg, Lina Sveidal; Rotaru, Amelia-Elena

    2012-01-01

    Transformation (FFT) analyses confirmed that the nanoparticles indeed were bimetallic. The bimetallic nanoparticles did not have a core-shell structure, but were superior to monometallic particles at reducing p-nitrophenol to p-aminophenol. Hence, formation of microbially supported nanoparticles may be a cheap......(II) to the bio-supported particles resulted in increased particle size. UV-Vis spectrophotometry and HR-TEM analyses indicated that the previously monometallic nanoparticles had become fully or partially covered by Au(0) or Pd(0), respectively. Furthermore, Energy Dispersive Spectrometry (EDS) and Fast Fourier...

  9. A density functional theory study on the conversion of ethylene to carbon monomer on PdAu(1 0 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minhua; Yang, Bing [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2015-11-30

    Graphical abstract: - Highlights: • The successive decomposition of ethylene on PdAu(1 0 0) was studied with DFT method. • The C−H, C−C bond scission and a hydrogen-shift process were investigated. • The alloying of Au with Pd affects the studied reactions on PdAu(1 0 0) greatly. - Abstract: Calculations based on the first-principles density functional theory (DFT) were performed to study the possible transformation pathways of ethylene on PdAu(1 0 0) surface to investigate the effect of Au atom alloying with Pd on the formation of CHx (x = 0–2), which may eventually form carbon monomer and lead to the deactivation of catalysts. The energetic properties of reactions including the scission of the C−H, C−C bond and a hydrogen-shift process were determined. The C−H bond scission is confirmed to be prone to happen on the studied surface, while it is difficult for the C−C bond scission to occur due to relatively high barriers, the values of which are as high as 2.72–4.62 eV. The activation barriers for all related reactions except for the dehydrogenation of vinyl, vinylidene and acetenyl demonstrate that it is harder for the conversion of ethylene to occur on PdAu(1 0 0) surface than on Pd(1 0 0) surface, especially for the C−C bond scission. All the results indicate that the alloying of Au atom with pure Pd catalyst can prevent the formation of carbon monomer, which may notably affect properties of catalysts.

  10. Electrocatalysis on bimetallic and alloy surfaces

    NARCIS (Netherlands)

    Koper, M.T.M.

    2004-01-01

    Bimetallic surfaces and alloys are well known to have unique catalytic properties for many important chemical transformations [1]. In electrocatalysis, bimetallic and alloy catalysts have been a particularly active area of research in relation to low-temperature fuel cells [2]. On the anode side,

  11. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  12. Surface alloy formation by adsorption of holmium on Ag/Mo(112) bimetallic surfaces

    Science.gov (United States)

    Kołaczkiewicz, Jan; Oleksy, Czesław

    2018-03-01

    Work function change measurements, low energy electron diffraction (LEED) and density functional theory (DFT) are used to determine the structures formed on Ag/Mo(112) bimetallic surfaces upon deposition of 0.5 monolayer (ML) of holmium. As the bimetallic surfaces, we have chosen the Mo(112) substrate covered with 1 or 2 ML of Ag. Such surfaces have the same symmetry as the Mo(112) face but different electronic properties. LEED experiment indicates that the c(2 × 2) structure is formed on (1 ML Ag)/Mo(112) bimetallic surface upon deposition of 0.5 ML of Ho. DFT calculations show that a type of Ag-Ho surface alloy is formed, with Ho atoms 0.6 Å below the distorted layer of Ag. This is neither a substitutional nor a subsurface alloy. It is found that the adsorption structure formed on the (2 ML Ag)/Mo(112) bimetallic surface depends on the annealing temperature. After deposition of 0.5 ML of Ho at 300 K, the LEED pattern of p(2 × 2) symmetry is observed. Annealing of the overlayer at 640 K irreversibly changes the p(2 × 2) pattern into a pattern of c(2 × 2) type. The results of DFT computations show that the c(2 × 2) structure of the Ag-Ho surface alloy is energetically most favorable. In this structure, 0.5 ML of Ho is between the two monolayers of Ag, and the symmetry of the topmost layer is changed. The work function change calculated for the c(2 × 2) structure is in a good agreement with the measured value (0.22 eV). The results show that adsorption of Ho on the Ag/Mo(112) bimetallic surfaces is substantially different than on the clean Mo(112).

  13. Biosupported Bimetallic Pd Au Nanocatalysts for Dechlorination of Environmental Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    De Corte, S.; Fitts, J.; Hennebel, T.; Sabbe, T.; Bliznuk, V.; Verschuere, S.; van der Lelie, D.; Verstraete, W.; Boon, N.

    2011-08-30

    Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichloroethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L{sup -1} and reduced simultaneously by Shewanella oneidensis in the presence of H{sub 2}, the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenac after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.

  14. Theoretical studies of the work functions of Pd-based bimetallic surfaces

    International Nuclear Information System (INIS)

    Ding, Zhao-Bin; Wu, Feng; Wang, Yue-Chao; Jiang, Hong

    2015-01-01

    Work functions of Pd-based bimetallic surfaces, including mainly M/Pd(111), Pd/M, and Pd/M/Pd(111) (M = 4d transition metals, Cu, Au, and Pt), are studied using density functional theory. We find that the work function of these bimetallic surfaces is significantly different from that of parent metals. Careful analysis based on Bader charges and electron density difference indicates that the variation of the work function in bimetallic surfaces can be mainly attributed to two factors: (1) charge transfer between the two different metals as a result of their different intrinsic electronegativity, and (2) the charge redistribution induced by chemical bonding between the top two layers. The first factor can be related to the contact potential, i.e., the work function difference between two metals in direct contact, and the second factor can be well characterized by the change in the charge spilling out into vacuum. We also find that the variation in the work functions of Pd/M/Pd(111) surfaces correlates very well with the variation of the d-band center of the surface Pd atom. The findings in this work can be used to provide general guidelines to design new bimetallic surfaces with desired electronic properties

  15. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    Science.gov (United States)

    Murillo, Luis E.

    Studies of bimetallic systems are of great interest in catalysis due to the novel properties that they often show in comparison with the parent metals. The goals of this dissertation are: (1) to expand the studies of self-hydrogenation and hydrogenation reactions on bimetallic surfaces under ultra high vacuum conditions (UHV) using different hydrocarbon as probe molecules; (2) to attempt to correlate the surface science findings with supported catalyst studies under more realistic conditions; and (3) to investigate the competitive hydrogenation of C=C versus C=O bonds on Pt(111) modified by different 3d transition metals. Hydrogenation studies using temperature programmed desorption (TPD) on Ni/Pt(111) bimetallic surfaces have demonstrated an enhancement in the low temperature hydrogenation activity relative to that of clean Pt(111). This novel hydrogenation pathway can be achieved under UHV conditions by controlling the structures of the bimetallic surfaces. A low temperature hydrogenation activity of 1-hexene and 1-butene has been observed on a Pt-Ni-Pt(111) subsurface structure, where Ni atoms are mainly present on the second layer of the Pt(111) single crystal. These results are in agreement with previous studies of self-hydrogenation and hydrogenation of cyclohexene. However, a much higher dehydrogenation activity is observed in the reaction of cyclohexene to produce benzene, demonstrating that the hydrocarbon structure has an effect on the reaction pathways. On the other hand, self-hydrogenation of 1-butene is not observed on the Pt-Ni-Pt(111) surface, indicating that the chain length (or molecular weight) has a significant effect on the selfhydrogenation activity. The gas phase reaction of cyclohexene on Ni/Pt supported on alumina catalysts has also shown a higher self-hydrogenation activity in comparison with the same reaction performed on supported monometallic catalysts. The effects of metal loading and impregnation sequence of the metal precursors are

  16. Pd@Au core-shell nanocrystals with concave cubic shapes: kinetically controlled synthesis and electrocatalytic properties.

    Science.gov (United States)

    Zhang, Ling; Niu, Wenxin; Zhao, Jianming; Zhu, Shuyun; Yuan, Yali; Hua, Lianzhe; Xu, Guobao

    2013-01-01

    A new type of concave cubic Pd@Au core-shell nanocrystals is synthesized through a kinetically controlled growth process. Pd nanocubes of 56 nm are used as the inner core, and CTAC and Br(-) are used as the capping agent and selective adsorbent, respectively. A suitable ratio of HAuCl4 and cubic Pd seeds and the presence of Br(-) anions are critical to the growth of the concave cubic Pd@Au core-shell nanocrystals. The fast deposition rate on the corners of the cubic Pd seeds promotes the overgrowth of the Au outer shell along the direction, leading to the formation of concave cubic nanostructures. The reduction process is monitored by the surface plasmon resonance spectra of the nanocrystals, and the extinction band became broader and red shifted as the nanocrystals became larger. The electrocatalytic properties of the concave cubic Pd@Au core-shell nanocrystals were investigated with the cathodic electrochemiluminescence reaction of luminol and H2O2. A possible electrocatalytic mechanism was proposed and analyzed.

  17. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    Science.gov (United States)

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  18. A comprehensive comparative DFT study on adsorption and reactions involved in vinyl acetate synthesis from acetoxylation of ethylene on pure Pd(100) and Pd-Au(100): Elucidating the role of Au

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanping [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Dong, Xiuqin [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University (China); Zhang, Minhua, E-mail: mhzhangtj@163.com [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2016-11-30

    Highlights: • Addition of Au into Pd increases the electron density of Pd d-band. • Addition of Au impairs adsorption of species in both Samanos and Moiseev mechanisms. • Addition of Au is kinetically unfavorable for Samonos mechanism. • Addition of Au hinders Moiseev mechanism without considering surface Os and OHs. • Addition of Au facilitates Moiseev mechanism with the effect of surface Os and OHs. - Abstract: Firstly, with DFT, electronic properties of Pd(100) and Pd-Au(100) were examined and it was found that addition of Au into Pd increases the electron density of Pd d-band. Besides, adsorption of relevant species involved in Samanos mechanism and Moiseev mechanism on Pd(100) and Pd-Au(100) was investigated and it was discovered that addition of Au impairs adsorption of species on metal surfaces. Finally, activation energies of all the reactions on Pd(100) and Pd-Au(100) were compared. Our calculations suggested that the rate-limiting step of the Samanos pathway on Pd(100) and Pd-Au(100) is the dehydrogenation of hydrogenated vinyl acetate. The rate-limiting step of the Moiseev pathway on Pd(100) is the coupling of vinyl with acetate, while that on Pd-Au(100) is the dehydrogenation of ethylene. The activation energies that are only involved in the Samanos mechanism become higher on Pd-Au(100) than on pure Pd(100), suggesting that alloying of Au is kinetically unfavorable for Samonos mechanism. Alloying of Au changes the rate-limiting step of Moiseev pathway, and Moiseev mechanism is preferred on Pd-Au(100).

  19. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; Anjum, Dalaver; Kanoun, Mohammed; Scaranto, Jessica; Hedhili, Mohamed Nejib; Khalid, Syed; Laveille, Paco; D'Souza, Lawrence; Clo, Alain M.; Basset, Jean-Marie

    2015-01-01

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  20. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  1. Carbon monoxide oxidation on bimetallic Ru/Au(111 surfaces

    Directory of Open Access Journals (Sweden)

    ROLF-JÜRGEN BEHM

    2001-02-01

    Full Text Available The electrochemical deposition of Ru on Au(111 was performed in 0.5 M H2SO4+10-4 M RuCl3 . The obtained bimetallic Ru/Au(111 surfaces were character-ised by cyclic voltammetry and in situ STM in 0.5 MH2SO4. The Ru deposit consists of nanoscale islands, which merge with increasing coverage. Two different types of bimetallic Ru/Au(111 surfaces with respect to the distribution of Ru islands over the Au(111 substrate surface were obtained. When the deposition was performed at potentials more positive than the range of Au(111 reconstruction, homogeneous nucleation occured resulting in a random distribution of Ru islands. When the deposition was performed on reconstructed Au(111 at low overpotentials, selective nucleation occured resulting in the replication of the Au(111 reconstruction. Only at higher deposition overpotentials, can multilayer deposits be formed, which exhibit a very rough surface morphology. The electrocatalytic activity of such structurally well defined Ru/Au(111 bimetallic surfaces was studied towards CO oxidation with the Ru coverage ranging from submonolayer to several monolayer. COstripping commences at about 0.2 Vand occurs over a broad potential range. The observed influence of the Ru structure on the CO stripping voltammetry is explained by local variations in the COadsorption energy, caused by differences in the local Ru structure and by effects induced by the Au(111 substrate.

  2. Ionic liquid assisted synthesis of nano Pd-Au particles and application for the detection of epinephrine, dopamine and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Tsung-Hsuan; Thiagarajan, Soundappan; Chen Shenming, E-mail: smchen78@ms15.hinet.net; Cheng Chingyi

    2012-01-31

    Nano Pd-Au particles have been electrochemically fabricated utilizing ionic liquid as green electrolyte (1-Butyl-3-methylimidazolium tetrafluoroborate). Nano Pd-Au particles modified glassy carbon electrode (GCE) and indium tin oxide coated glass electrodes were examined using atomic force microscopy, field emission scanning electron microscope and X-ray diffraction studies. Electrodeposited nano Pd-Au particles' average diameter was found as 33 nm. Nano Pd-Au particle modified GCE was electrochemically active and stable in various pH solutions. The proposed nano particle modified GCE reduces the over potential and shows the well defined oxidation peaks for the detection of epinephrine and simultaneous determination of dopamine and uric acid (in pH 7.0 phosphate buffer solution) using cyclic voltammetry and differential pulse voltammetry.

  3. Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers

    Science.gov (United States)

    Shanmugam Ranjith, Kugalur; Celebioglu, Asli; Uyar, Tamer

    2018-06-01

    Here, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min‑1 for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH4 as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.

  4. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity.

    Science.gov (United States)

    Ma, Teng; Fu, Qiang; Su, Hai-Yan; Liu, Hong-Yang; Cui, Yi; Wang, Zhen; Mu, Ren-Tao; Li, Wei-Xue; Bao, Xin-He

    2009-05-11

    Tunable surface: The surface structure of the Fe-Pt bimetallic catalyst can be reversibly modulated between the iron-oxide-rich Pt surface and the Pt-skin structure with subsurface Fe via alternating reduction and oxidation treatments (see figure). The regenerated active Pt-skin structure is active in reactions involving CO and/or O.

  5. Catalysis on singly dispersed bimetallic sites

    Science.gov (United States)

    Zhang, Shiran; Nguyen, Luan; Liang, Jin-Xia; Shan, Junjun; Liu, Jingyue; Frenkel, Anatoly I.; Patlolla, Anitha; Huang, Weixin; Li, Jun; Tao, Franklin

    2015-08-01

    A catalytic site typically consists of one or more atoms of a catalyst surface that arrange into a configuration offering a specific electronic structure for adsorbing or dissociating reactant molecules. The catalytic activity of adjacent bimetallic sites of metallic nanoparticles has been studied previously. An isolated bimetallic site supported on a non-metallic surface could exhibit a distinctly different catalytic performance owing to the cationic state of the singly dispersed bimetallic site and the minimized choices of binding configurations of a reactant molecule compared with continuously packed bimetallic sites. Here we report that isolated Rh1Co3 bimetallic sites exhibit a distinctly different catalytic performance in reduction of nitric oxide with carbon monoxide at low temperature, resulting from strong adsorption of two nitric oxide molecules and a nitrous oxide intermediate on Rh1Co3 sites and following a low-barrier pathway dissociation to dinitrogen and an oxygen atom. This observation suggests a method to develop catalysts with high selectivity.

  6. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts

    International Nuclear Information System (INIS)

    Patton, Steven T; Hu Jianjun; Slocik, Joseph M; Campbell, Angela; Naik, Rajesh R; Voevodin, Andrey A

    2008-01-01

    Reliability continues to be a critical issue in microelectromechanical systems (MEMS) switches. Failure mechanisms include high contact resistance (R), high adhesion, melting/shorting, and contact erosion. Little previous work has addressed the lubrication of MEMS switches. In this study, bimetallic nanoparticles (NPs) are synthesized using a biotemplated approach and deposited on Au MEMS switch contacts as a nanoparticle-based lubricant. Bimetallic nanoparticles are comprised of a metallic core (∼10 nm diameter gold nanoparticle) with smaller metallic nanoparticles (∼2-3 nm diameter Pd nanoparticles) populating the core surface. Adhesion and resistance (R) were measured during hot switching experiments at low (10 μA) and high (1 mA) current. The Au/Pd NP coated contacts led to reduced adhesion as compared to pure Au contacts with a compromise of slightly higher R. For switches held in the closed position at low current, R gradually decreased over tens of seconds due to increased van der Waals force and growth of the real area of contact with temporal effects being dominant over load effects. Contact behavior transitioned from 'Pd-like' to 'Au-like' during low current cycling experiments. Melting at high current resulted in rapid formation of large real contact area, low and stable R, and minimal effect of load on R. Durability at high current was excellent with no failure through 10 6 hot switching cycles. Improvement at high current is due to controlled nanoscale surface roughness that spreads current through multiple nanocontacts, which restricts the size of melting regions and causes termination of nanowire growth (prevents shorting) during contact opening. Based on these results, bimetallic NPs show excellent potential as surface modifiers/lubricants for MEMS switch contacts

  7. Facile preparation of dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil for application as a SERS-substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yi Zao [College of Physics and Electronics, Central South University, Changsha 410083 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Tan Xiulan; Niu Gao [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Xu Xibin [College of Physics and Electronics, Central South University, Changsha 410083 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li Xibo; Ye Xin; Luo Jiangshan; Luo Binchi; Wu Weidong; Tang Yongjian [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yi Yougen, E-mail: yougenyi@mail.csu.edu.cn [College of Physics and Electronics, Central South University, Changsha 410083 (China)

    2012-05-01

    Dendritic Ag-Pd bimetallic nanostructures have been synthesized on the surface of Cu foil via a multi-stage galvanic replacement reaction (MGRR) of Ag dendrites in a Na{sub 2}PdCl{sub 4} solution. After five stages of replacement reaction, one obtained structures with protruding Ag-Pd flakes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The dendritic Ag-Pd bimetallic nanostructures were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). The morphology of the products strongly depended on the stage of galvanic replacement reaction and reaction temperature. The morphology and composition-dependent surface-enhanced Raman scattering (SERS) of the as-synthesized Ag-Pd bimetallic nanostructures were investigated. The effectiveness of these dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil as substrates toward SERS detection was evaluated by using rhodamine 6G (R6G) as a probe molecule. The results indicate that as-synthesized dendritic Ag-Pd bimetallic nanostructures are good candidates for SERS spectroscopy.

  8. Platinum(iv) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy

    Science.gov (United States)

    Shi, Saige; Chen, Xiaolan; Wei, Jingping; Huang, Yizhuan; Weng, Jian; Zheng, Nanfeng

    2016-03-01

    Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The prepared Pd@Au-PEG-Pt nanocomposite showed excellent stability in physiological solutions and efficient Pt(iv) prodrug loading. Once injected into biological tissue, the Pt(iv) prodrug was easily reduced by physiological reductants (e.g. ascorbic acid or glutathione) into its cytotoxic and hydrophilic Pt(ii) form and released from the original nanocomposite, and the NIR laser irradiation could accelerate the release of Pt(ii) species. More importantly, Pd@Au-PEG-Pt has high tumor accumulation (29%ID per g), which makes excellent therapeutic efficiency at relatively low power density possible. The in vivo results suggested that, compared with single therapy the combined thermo-chemotherapy treatment with Pd@Au-PEG-Pt resulted in complete destruction of the tumor tissue without recurrence, while chemotherapy using Pd@Au-PEG-Pt without irradiation or photothermal treatment using Pd@Au-PEG alone did not. Our work highlights the prospects of a feasible drug delivery strategy of the Pt prodrug by using 2D Pd@Au nanoplates as drug delivery carriers for multimode cancer treatment.Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The

  9. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Steven T; Hu Jianjun [University of Dayton Research Institute, Dayton, OH 45469-0168 (United States); Slocik, Joseph M; Campbell, Angela; Naik, Rajesh R; Voevodin, Andrey A [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433-7750 (United States)], E-mail: steve.patton@wpafb.af.mil, E-mail: rajesh.naik@wpafb.af.mil

    2008-10-08

    Reliability continues to be a critical issue in microelectromechanical systems (MEMS) switches. Failure mechanisms include high contact resistance (R), high adhesion, melting/shorting, and contact erosion. Little previous work has addressed the lubrication of MEMS switches. In this study, bimetallic nanoparticles (NPs) are synthesized using a biotemplated approach and deposited on Au MEMS switch contacts as a nanoparticle-based lubricant. Bimetallic nanoparticles are comprised of a metallic core ({approx}10 nm diameter gold nanoparticle) with smaller metallic nanoparticles ({approx}2-3 nm diameter Pd nanoparticles) populating the core surface. Adhesion and resistance (R) were measured during hot switching experiments at low (10 {mu}A) and high (1 mA) current. The Au/Pd NP coated contacts led to reduced adhesion as compared to pure Au contacts with a compromise of slightly higher R. For switches held in the closed position at low current, R gradually decreased over tens of seconds due to increased van der Waals force and growth of the real area of contact with temporal effects being dominant over load effects. Contact behavior transitioned from 'Pd-like' to 'Au-like' during low current cycling experiments. Melting at high current resulted in rapid formation of large real contact area, low and stable R, and minimal effect of load on R. Durability at high current was excellent with no failure through 10{sup 6} hot switching cycles. Improvement at high current is due to controlled nanoscale surface roughness that spreads current through multiple nanocontacts, which restricts the size of melting regions and causes termination of nanowire growth (prevents shorting) during contact opening. Based on these results, bimetallic NPs show excellent potential as surface modifiers/lubricants for MEMS switch contacts.

  10. Production of mono- and bimetallic nanoparticles of noble metals by pyrolysis of organic extracts on silicon dioxide

    International Nuclear Information System (INIS)

    Serga, V; Kulikova, L; Cvetkov, A; Krumina, A; Kodols, M; Chornaja, S; Dubencovs, K; Sproge, E

    2013-01-01

    In the present work the influence of the tri-n-octylammonium (Oct 3 NH + ) salt anion (PtCl 6 2- , PdCl 4 2- , AuCl 4 − ) nature on the phase composition and mean size of crystallites of the extract pyrolysis products on the SiO 2 nanopowder has been studied. The XRD phase analysis of the composites (metal loading 2.4 wt.%) made under the same conditions, at the pyrolysis of Pt- and Au-containing extracts has shown the formation of nanoparticles of Pt (d Pt = 15 nm) and Au (d Au = 33 nm), respectively. The end-product of the pyrolysis of the Pd-containing extract has an admixture phase of PdO along with the main metal phase (d Pd = 21 nm). At the preparation of bimetallic particles (Pt-Pd, Pt-Au, Pd-Au) on the SiO 2 nanopowder it has been found that the nanoparticles of the PtPd alloy, Pt and Au or Pd and Au nanoparticles are the products of the thermal decomposition of two-component mixtures of extracts. The investigation of catalytic properties of the produced composites in the reaction of glycerol oxidation by molecular oxygen in alkaline aqueous solutions has shown that all bimetallic composites exhibit catalytic activity in contrast to monometallic ones

  11. Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence.

    Science.gov (United States)

    Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian

    2018-01-12

    We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu_{50}Au_{50}, and Cu_{25}Au_{75} nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N-body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.

  12. Another way of looking at bonding on bimetallic surfaces: the role of spin polarization of surface metal d states

    International Nuclear Information System (INIS)

    Escano, M C; Nguyen, T Q; Nakanishi, H; Kasai, H

    2009-01-01

    The nature of electronic and chemical properties of an unstrained Pt monolayer on a 3d transition metal substrate, M (M = Cr, Mn, Fe), is studied using spin-polarized density functional theory calculations. High spin polarization of Pt d states is noted, verifying the magnetization induced on Pt, which is observed to be responsible for redirecting the analysis of bond formation on a metal surface towards a different perspective. While the shift in the Pt d band center (the average energy of the Pt d band, commonly used to predict the reactivity of surfaces) does give the expected trend in adsorbate (oxygen) chemisorption energy across the bimetallic surfaces in this work, our results show that for spin-polarized Pt d states, the variation in strength of adsorption with respect to the Fermi level density of states is more predictive of Pt chemisorption properties. Hence, this study introduces a scheme for analyzing trends in reactivity of bimetallic surfaces where adsorption energies are used as reactivity parameters and where spin polarization effects cannot be neglected. (fast track communication)

  13. Properties of two-dimensional insulators: A DFT study of bimetallic oxide CrW{sub 2}O{sub 9} clusters adsorption on MgO ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia, E-mail: jia_zhu@jxnu.edu.cn [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022 (China); Zhang, Hui; Zhao, Ling; Xiong, Wei [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022 (China); Huang, Xin; Wang, Bin [Department of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (China); Zhang, Yongfan, E-mail: zhangyf@fzu.edu.cn [Department of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (China); State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou, Fujian, 350002 (China)

    2016-08-30

    Highlights: • Completely different properties of CrW{sub 2}O{sub 9} on films compared with that on surface. • The first example of CT by electron tunneling from film to bimetallic oxide cluster. • A progressive Lewis acid site, better catalytic activities for adsorbed CrW{sub 2}O{sub 9}. - Abstract: Periodic density functional theory calculations have been performed to study the electronic properties of bimetallic oxide CrW{sub 2}O{sub 9} clusters adsorbed on MgO/Ag(001) ultrathin films (<1 nm). Our results show that after deposition completely different structures, electronic properties and chemical reactivity of dispersed CrW{sub 2}O{sub 9} clusters on ultrathin films are observed compared with that on the thick MgO surface. On the thick MgO(001) surface, adsorbed CrW{sub 2}O{sub 9} clusters are distorted significantly and just a little electron transfer occurs from oxide surface to clusters, which originates from the formation of adsorption dative bonds at interface. Whereas on the MgO/Ag(001) ultrathin films, the resulting CrW{sub 2}O{sub 9} clusters keep the cyclic structures and the geometries are similar to that of gas-phase [CrW{sub 2}O{sub 9}]{sup −}. Interestingly, we predicted the occurrence of a net transfer of one electron by direct electron tunneling from the MgO/Ag(001) films to CrW{sub 2}O{sub 9} clusters through the thin MgO dielectric barrier. Furthermore, our work reveals a progressive Lewis acid site where spin density preferentially localizes around the Cr atom not the W atoms for CrW{sub 2}O{sub 9}/MgO/Ag(001) system, indicating a potentially good bimetallic oxide for better catalytic activities with respect to that of pure W{sub 3}O{sub 9} clusters. As a consequence, present results reveal that the adsorption of bimetallic oxide CrW{sub 2}O{sub 9} clusters on the MgO/Ag(001) ultrathin films provide a new perspective to tune and modify the properties and chemical reactivity of bimetallic oxide adsorbates as a function of the thickness

  14. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  15. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou; Rodionov, Valentin

    2016-01-01

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  16. Alloy formation and chemisorption at Zn/Pt(111) bimetallic surfaces using alkali ISS, XPD, and TPD.

    Science.gov (United States)

    Ho, Chih-Sung; Martono, Eddie; Banerjee, Santanu; Roszell, John; Vohs, John; Koel, Bruce E

    2013-11-21

    Alloy formation and chemisorption at bimetallic surfaces formed by vapor-depositing Zn on a Pt(111) single crystal were investigated primarily by using X-ray photoelectron diffraction (XPD), X-ray photoelectron spectroscopy (XPS), low-energy alkali ion scattering spectroscopy (ALISS), low electron energy diffraction (LEED), and temperature programmed desorption (TPD). A wide range of conditions were investigated to explore whether deposition and annealing of Zn films could produce well-defined, ordered alloy surfaces, similar to those encountered for Sn/Pt(111) surface alloys. These attempts were unsuccessful, although weak, diffuse (2 × 2) spots were observed under special conditions. The particular PtZn bimetallic alloy created by annealing one monolayer of Zn on Pt(111) at 600 K, which has a Zn composition in the surface layer of about 5 at. %, was investigated in detail by using XPD and ALISS. Only a diffuse (1 × 1) pattern was observed from this surface by LEED, suggesting that no long-range, ordered alloy structure was formed. Zn atoms were substitutionally incorporated into the Pt(111) crystal to form a near-surface alloy in which Zn atoms were found to reside primarily in the topmost and second layers. The alloyed Zn atoms in the topmost layer are coplanar with the Pt atoms in the surface layer, without any "buckling" of Zn, that is, displacement in the vertical direction. This result is expected because of the similar size of Pt and Zn, based on previous studies of bimetallic Pt alloys. Zn atoms desorb upon heating rather than diffusing deep into the bulk of the Pt crystal. Temperature programmed desorption (TPD) measurements show that both CO and NO have lower desorption energies on the PtZn alloy surface compared to that on the clean Pt(111) surface.

  17. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie

    2017-01-19

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  18. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie; Samantaray, Manoja K.; Dey, Raju; Abou-Hamad, Edy; Kavitake, Santosh

    2017-01-01

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  19. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing.

    Science.gov (United States)

    Qu, Lu-Lu; Song, Qi-Xia; Li, Yuan-Ting; Peng, Mao-Pan; Li, Da-Wei; Chen, Li-Xia; Fossey, John S; Long, Yi-Tao

    2013-08-20

    Au-Ag bimetallic microfluidic, dumbbell-shaped, surface enhanced Raman scattering (SERS) sensors were fabricated on cellulose paper by screen printing. These printed sensors rely on a sample droplet injection zone, and a SERS detection zone at either end of the dumbbell motif, fabricated by printing silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) successively with microscale precision. The microfluidic channel was patterned using an insulating ink to connect these two zones and form a hydrophobic circuit. Owing to capillary action of paper in the millimeter-sized channels, the sensor could enable self-filtering of fluids to remove suspended particles within wastewater without pumping. This sensor also allows sensitive SERS detection, due to advantageous combination of the strong surface enhancement of Ag NPs and excellent chemical stability of Au NPs. The SERS performance of the sensors was investigated by employing the probe rhodamine 6G, a limit of detection (LOD) of 1.1×10(-13)M and an enhancement factor of 8.6×10(6) could be achieved. Moreover, the dumbbell-shaped bimetallic sensors exhibited good stability with SERS performance being maintained over 14 weeks in air, and high reproducibility with less than 15% variation in spot-to-spot SERS intensity. Using these dumbbell-shaped bimetallic sensors, substituted aromatic pollutants in wastewater samples could be quantitatively analyzed, which demonstrated their excellent capability for rapid trace pollutant detection in wastewater samples in the field without pre-separation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  1. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo; Anjum, Dalaver H.; Wang, Qingxiao; Abou-Hamad, Edy; Emsley, Lyndon; Dong, Hailin; Laveille, Paco; Li, Lidong; Samal, Akshaya Kumar; Basset, Jean-Marie

    2014-01-01

    Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as

  2. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  3. Synthesis and characterization of cobalt/gold bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Cheng, Guangjun; Hight Walker, Angela R.

    2007-01-01

    Cobalt/gold (Co/Au) bimetallic nanoparticles are prepared by chemically reducing gold (III) chloride to gold in the presence of pre-synthesized Co nanoparticles. Transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectrometry, and a superconducting quantum interference device (SQUID) magnetometer have been used to characterize as-prepared bimetallic nanoparticles. Our findings demonstrate Au not only grows onto Co nanoparticles, forming a surface coating, but also diffuses into Co nanoparticles. The introduction of Au alters the crystalline structure of Co nanoparticles and changes their magnetic properties. Dodecanethiols induce a reorganization of as-prepared Co/Au bimetallic nanoparticles

  4. One-step synthesis of gold bimetallic nanoparticles with various metal-compositions

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoaneta; Takai, Osamu; Saito, Nagahiro

    2013-01-01

    Highlights: ► Synthesis of bimetallic nanoparticles in an aqueous solution discharge. ► Alloying gold with divalent sp metals, trivalent sp metals, 3d or 4d metals. ► Formation mechanism of bimetallic nanoparticles by metal reduction and gold erosion. ► Blue and red shift of surface plasmon resonance. -- Abstract: A rapid, one-step process for the synthesis of bimetallic nanoparticles by simultaneous metal reduction and gold erosion in an aqueous solution discharge was investigated. Gold bimetallic nanoparticles were obtained by alloying gold with various types of metals belonging to one of the following categories: divalent sp metals, trivalent sp metals, 3d or 4d metals. The composition of the various gold bimetallic nanoparticles obtained depends on electrochemical factors, charge transfer between gold and other metal, and initial concentration of metal in solution. Transmission electron microscopy and energy dispersive spectroscopy show that the gold bimetallic nanoparticles were of mixed pattern, with sizes of between 5 and 20 nm. A red-shift of the surface plasmon resonance band in the case of the bimetallic nanoparticles Au–Fe, Au–Ga, and Au–In, and a blue-shift of the plasmon band of the Au–Ag nanoparticles was observed. In addition, the interaction of gold bimetallic nanoparticles with unpaired electrons, provided by a stable free radical molecule, was highest for those NPs obtained by alloying gold with a 3d metal

  5. Design of supported bi-metallic nanoparticles based on Platinum and Palladium using Surface Organometallic Chemistry (SOMC)

    KAUST Repository

    Al-Shareef, Reem A.

    2017-01-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx (where x is the molar ratio of Pd) are prepared by Surface Organometallic Chemistry (SOMC) via controlled decomposition of Pd2(allyl)2Cl2 on Pt/SiO2. For comparison purposes, Pt100-x Pdx

  6. Magneto-optical response in bimetallic metamaterials

    Science.gov (United States)

    Atmatzakis, Evangelos; Papasimakis, Nikitas; Fedotov, Vassili; Vienne, Guillaume; Zheludev, Nikolay I.

    2018-01-01

    We demonstrate resonant Faraday polarization rotation in plasmonic arrays of bimetallic nano-ring resonators consisting of Au and Ni sections. This metamaterial design allows the optimization of the trade-off between the enhancement of magneto-optical effects and plasmonic dissipation. Nickel sections corresponding to as little as 6% of the total surface of the metamaterial result in magneto-optically induced polarization rotation equal to that of a continuous nickel film. Such bimetallic metamaterials can be used in compact magnetic sensors, active plasmonic components, and integrated photonic circuits.

  7. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor

    International Nuclear Information System (INIS)

    Lugo-Lugo, Violeta; Barrera-Diaz, Carlos; Bilyeu, Bryan; Balderas-Hernandez, Patricia; Urena-Nunez, Fernando; Sanchez-Mendieta, Victor

    2010-01-01

    The electrochemical reduction of Cr(VI)-Cr(III) in wastewater by iron and copper-iron bimetallic plates was evaluated and optimized. Iron has been used as a reducing agent, but in this work a copper-iron galvanic system in the form of bimetallic plates is applied to reducing hexavalent chromium. The optimal pH (2) and ratio of copper to iron surface areas (3.5:1) were determined in batch studies, achieving a 100% reduction in about 25 min. The Cr(VI) reduction kinetics for the bimetallic system fit a first order mechanism with a correlation of 0.9935. Thermodynamic analysis shows that the Cr(VI) reduction is possible at any pH value. However, at pH values above 3.0 for iron and 5.5 for chromium insoluble species appear, indicating that the reaction will be hindered. Continuous column studies indicate that the bimetallic copper-iron galvanic system has a reduction capacity of 9.5890 mg Cr(VI) cm -2 iron, whereas iron alone only has a capacity of 0.1269 mg Cr(VI) cm -2 . The bimetallic copper-iron galvanic system is much more effective in reducing hexavalent chromium than iron alone. The exhausted plates were analyzed by SEM, EDS, and XRD to determine the mechanism and the surface effects, especially surface fouling.

  8. Mixtures of functionalized aromatic groups generated from diazonium chemistry as templates towards bimetallic species supported on carbon electrode surfaces

    International Nuclear Information System (INIS)

    Vilà, Neus; Bélanger, Daniel

    2012-01-01

    Mixtures of 4-sulfophenyl and 4-aminophenyl groups were grafted onto carbon electrodes by electrochemical reduction of their corresponding diazonium cations. Two experimental methodologies were tested in order to control primarily the composition of the binary organic films and subsequently the composition of the bimetallic Cu/Pt layers. The composition of the organic layers was controlled either by changing the ratio of the two components in solution and applying a cathodic potential at which both diazonium cations are electrochemically reduced. The organic layers were characterized by cyclic voltammetry, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. These binary organic films were subsequently used as templates to load bimetallic species to the carbon surface based on electrostatic interactions of 4-sulfophenyl and 4-aminophenyl groups with Cu 2+ and PtCl 6 2− ionic species dissolved in solution, respectively. The metal complexes, electrostatically bounded to the ionic sites of the grafted groups, were reduced by using NaBH 4 as reducing agent. The amount of Cu was estimated by stripping voltammetry in a sulfuric acid aqueous solution whereas adsorption/desorption of hydrogen was used to quantify the platinum present on the carbon surface. XPS analysis of the metallic surfaces was also performed to confirm the presence of the metals on the electrode surface. The results indicate that the composition of the bimetallic layers is controlled by the ratio of the 4-sulfophenyl and 4-aminophenyl grafted groups.

  9. Design of supported bi-metallic nanoparticles based on Platinum and Palladium using Surface Organometallic Chemistry (SOMC)

    KAUST Repository

    Al-Shareef, Reem A.

    2017-11-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx (where x is the molar ratio of Pd) are prepared by Surface Organometallic Chemistry (SOMC) via controlled decomposition of Pd2(allyl)2Cl2 on Pt/SiO2. For comparison purposes, Pt100-x Pdx bimetallic catalysts is also prepared by ion-exchange (IE). According to the results of STEM, XAS and H2 chemisorption, all bimetallic nanoparticles, prepared using neither SOMC nor IE, produce discrete formation of monometallic species (either Pt or Pd). Most catalysts exhibit a narrow particle size distribution with an average diameter ranging from 1 to 3 nm for samples prepared by IE and from 2 to 5 nm for the ones synthesized by SOMC. For all catalysts investigated in the present work, iso-butane reaction with hydrogen under differential conditions (conversions below 5%) leads to the formation of methane and propane (hydrogenolysis), n-butane (isomerization), and traces of iso-butylene (dehydrogenation). The total rate of reaction decreases with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate (expressed as moles converted per total surface metal per second) of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the results suggest a selective coverage of Pt (100) surface by a Pd layer, followed by a buildup of Pd overcoat onto a Pd layer assuming that each metal keeps its intrinsic catalytic properties. There is no mutual electronic charge transfer between the two metals (DFT). For the PtPd catalysts prepared by IE, the catalytic behavior cannot simply be explained by a surface coverage of highly active Pt metal by less active Pd (not observed), suggesting there is formation of a surface alloy between Pt and Pd collaborated by EXAFS and DFT. The catalytic results are explained by a simple structure activity relationship based on the previously proposed mechanism of C-H bond and C-C Bond activation and cleavage for iso-butane hydrogenolysis

  10. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces

    Science.gov (United States)

    Xiong, Ke; Wan, Weiming; Chen, Jingguang G.

    2016-10-01

    Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111) through an η2(C,O) configuration, which led to the HDO of furfural on Ni/Cu(111). The ability to dissociate H2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).

  11. Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yi Zao; Chen Shanjun; Chen Yan; Luo Jiangshan; Wu Weidong; Yi Yougen; Tang Yongjian

    2012-01-01

    Dendritic Ag/Au bimetallic nanostructures have been synthesized via a multi-stage galvanic replacement reaction of Ag dendrites in a chlorauric acid (HAuCl 4 ) solution at room temperature. After five stages of replacement reaction, one obtains structures with protruding nanocubes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The morphological and compositional changes which evolved with reaction stages were analyzed by using scanning electron microscopy, transmission electron microscopy, UV–visible spectroscopy, selected area electron diffraction and energy-dispersive X-ray spectrometry. The replacement of Ag with Au was confirmed. A formation mechanism involving the original development of Ag dendrites into porous structures with the growth of Au nanocubes on this underlying structure as the number of reaction stages is proposed. This was confirmed by surface-enhanced Raman scattering (SERS). The dendritic Ag/Au bimetallic nanostructures could be used as efficient SERS active substrates. It was found that the SERS enhancement ability was dependent on the stage of galvanic replacement reaction. - Highlights: ► Dendritic Ag/Au bimetallic nanostructures have been synthesized. ► Protruding cubic nanostructures obtained after 5 stages mature into porous structures. ► SERS results allow confirm the proposed formation mechanism. ► The nanostructures could be used as efficient SERS active substrates.

  12. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent cir......-based VOCs detection platform for point-of-care breath analysis, homeland security, chemical sensing and environmental monitoring....

  13. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer

    Science.gov (United States)

    Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang

    2018-05-01

    In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.

  14. Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst

    KAUST Repository

    Vu, Khanh B.

    2015-04-03

    "Naked" metal nanoparticles (NPs) are thermodynamically and kinetically unstable in solution. Ligands, surfactants, or polymers, which adsorb at a particle\\'s surface, can be used to stabilize NPs; however, such a mode of stabilization is undesirable for catalytic applications because the adsorbates block the surface active sites. The catalytic activity and the stability of NPs are usually inversely correlated. Here, we describe an example of a bimetallic (PtFe) NP catalyst stabilized by carboxylate surface ligands that bind preferentially to one of the metals (Fe). NPs stabilized by fluorous ligands were found to be remarkably competent in catalyzing the hydrogenation of cinnamaldehyde; NPs stabilized by hydrocarbon ligands were significantly less active. The chain length of the fluorous ligands played a key role in determining the chemoselectivity of the FePt NP catalysts. (Chemical Presented). © 2015 American Chemical Society.

  15. Effect of the nanostructure and the surface composition of bimetallic Ni-Ru nanoparticles on the performance of CO methanation

    Science.gov (United States)

    Wang, Jing; Yuan, Changkun; Yao, Nan; Li, Xiaonian

    2018-05-01

    The Ni/SiO2 catalysts with trace Ru promoter were prepared by either polyethylene glycol (PEG)-assisted or PEG-free impregnation method and were used in CO methanation reaction. The presence of PEG molecules was beneficial to form bimetallic Ni-Ru particles with smaller size, better anti-sintering property and low-temperature reducibility on SiO2 support than the conventional PEG-free derived NiRu/SiO2 catalyst. Moreover, it was found that the low-temperature reduction at 573 K was favorable to form bimetallic Ni-Ru particles with more surface Ru atoms. This nanostructure not only allowed the electron transfer happening from Ru0 to Ni0 which led to its higher electron cloud density, but also could reduce the deposition of less reactive carbon on the catalyst. Therefore, the low-temperature reduction enhanced the reaction stability of NiRu/SiO2 catalyst. The increase of reduction temperature from 573 K to 693 K did not change the size of metallic particles, but decreased the amount of surface Ru atoms. It deactivated the catalyst due to the deposition of more less reactive carbon. Although the higher reduction temperature (e.g. 693 and 793 K) was unfavorable to the reaction stability, it created more surface defects. The amount of defects showed a volcano-shaped correlation with the reduction temperature which was consistent with the variation tendency of turnover frequency of CO conversion. Consequently, it evidenced that the amount of surface Ru atoms and defects on the bimetallic Ni-Ru particle played the critical roles on the stability and the intrinsic activity of methanation, respectively.

  16. Study on the effect of nanoparticle bimetallic coreshell Au-Ag for sensitivity enhancement of biosensor based on surface plasmon resonance

    International Nuclear Information System (INIS)

    Widayanti; Abraha, K

    2016-01-01

    Bimetallic Au-Ag core-shell, a type of composite spherical nanoparticle consisting of a spherical Au core covered by Ag shell, have been used as active material for biomolecular analyte detection based on surface plasmon resonance (SPR) spectroscopy. SPR technology evolved into a key technology for characterization of biomolecular interaction. In this paper, we want to show the influence of nanoparticle bimettalic Au-Ag coreshell for optic respon of LSPR biosensor through attenuated total reflection (ATR) spectrum. The method consist of several steps begin from make a model LSPR system with Kretschmann configuration, dielectric function determination of composite bimetallic coreshell nanoparticle using effective medium theory approximation and the last is reflectivity calculation for size variation of core and shell bimetallic nanoparticle. Our result show that, by varying the radius of core and shell thickness, the peak of the reflectivity (ATR spectrum) shifted to the different angle of incident light and the addition of coreshell in SPR biosensor leads to enhancement the sensitivity. (paper)

  17. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  18. Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films

    NARCIS (Netherlands)

    Ma, M.; Hansen, H.A.; Valenti, M.; Wang, Z.; Cao, A.; Dong, M.; Smith, W.A.

    2017-01-01

    The electrocatalytic reduction of CO2 on Au-Pt bimetallic catalysts with different compositions was evaluated, offering a platform for uncovering the correlation between the catalytic activity and the surface composition of bimetallic electrocatalysts. The Au-Pt alloy films were synthesized by a

  19. Patched bimetallic surfaces are active catalysts for ammonia decomposition.

    Science.gov (United States)

    Guo, Wei; Vlachos, Dionisios G

    2015-10-07

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  20. Reactions between monolayer Fe and Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M; Kobayashi, N; Hayashi, N [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1997-03-01

    Reactions between 1.5 monolayer(ML) Fe deposited on Si(001)-2x1 and -dihydride surfaces were studied in situ by reflection high-energy electron diffraction and time-of-flight ion scattering spectrometry with the use of 25 keV H ions. The reactions between Fe and Si which were successively deposited on Si(001)-dihydride surface were also studied. After the room temperature deposition Fe reacted with Si(001)-2x1 substrate resulting in the formation of polycrystalline Fe5Si3. By annealing to 560-650degC composite heteroepitaxial layer of both type A and type B {beta}-FeSi2 was formed. On the dihydride surface polycrystalline Fe was observed after 1.5ML Fe deposition at room temperature, and reaction between Fe and Si(001)-dihydride surface is not likely at room temperature. We observed 3D rough surface when we deposited only Fe layer on the dihydride surface and annealed above 700degC. The hydrogen termination of Si(001) surface prevents the deposited Fe from diffusing into the substrate below 500degC, however the annealing above 710degC leads to the diffusion. We obtained 2D ordered surface, which showed 3x3 RHEED pattern as referenced to the primitive unreconstructed Si(001) surface net, when we deposited 2.5ML Fe and 5.8ML Si successively onto Si(001)-dihydride surface and annealed to 470degC. (author)

  1. Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

    Directory of Open Access Journals (Sweden)

    Somi Kang

    2017-11-01

    Full Text Available Herein we describe the fabrication and characterization of Ag and Au bimetallic plasmonic crystals as a system that exhibits improved capabilities for quantitative, bulk refractive index (RI sensing and surface-enhanced Raman spectroscopy (SERS as compared to monometallic plasmonic crystals of similar form. The sensing optics, which are bimetallic plasmonic crystals consisting of sequential nanoscale layers of Ag coated by Au, are chemically stable and useful for quantitative, multispectral, refractive index and spectroscopic chemical sensing. Compared to previously reported homometallic devices, the results presented herein illustrate improvements in performance that stem from the distinctive plasmonic features and strong localized electric fields produced by the Ag and Au layers, which are optimized in terms of metal thickness and geometric features. Finite-difference time-domain (FDTD simulations theoretically verify the nature of the multimode plasmonic resonances generated by the devices and allow for a better understanding of the enhancements in multispectral refractive index and SERS-based sensing. Taken together, these results demonstrate a robust and potentially useful new platform for chemical/spectroscopic sensing.

  2. Surface band structures on Nb(001)

    International Nuclear Information System (INIS)

    Fang, B.; Lo, W.; Chien, T.; Leung, T.C.; Lue, C.Y.; Chan, C.T.; Ho, K.M.

    1994-01-01

    We report the joint studies of experimental and theoretical surface band structures of Nb(001). Angle-resolved photoelectron spectroscopy was used to determine surface-state dispersions along three high-symmetry axes bar Γ bar M, bar Γ bar X, and bar M bar X in the surface Brillouin zone. Ten surface bands have been identified. The experimental data are compared to self-consistent pseudopotential calculations for the 11-layer Nb(001) slabs that are either bulk terminated or fully relaxed (with a 12% contraction for the first interlayer spacing). The band calculations for a 12% surface-contracted slab are in better agreement with the experimental results than those for a bulk-terminated slab, except for a surface resonance near the Fermi level, which is related to the spin-orbit interaction. The charge profiles for all surface states or resonances have been calculated. Surface contraction effects on the charge-density distribution and the energy position of surface states and resonances will also be discussed

  3. Electrochemical Reduction of CO2 on Compositionally Variant Au-Pt Bimetallic Thin Films

    DEFF Research Database (Denmark)

    Ma, Ming; Hansen, Heine Anton; Valenti, Marco

    2017-01-01

    The electrocatalytic reduction of CO2 on Au-Pt bimetallic catalysts with different compositions was evaluated, offering a platform for uncovering the correlation between the catalytic activity and the surface composition of bimetallic electrocatalysts. The Au-Pt alloy films were synthesized...... by a magnetron sputtering co-deposition technique with tunable composition. It was found that the syngas ratio (CO:H2) on the Au-Pt films is able to be tuned by systematically controlling the binary composition. This tunable catalytic selectivity is attributed to the variation of binding strength of COOH and CO...... intermediates, influenced by the surface electronic structure (d-band center energy) which is linked to the surface composition of the bimetallic films. Notably, a gradual shift of the d-band center away from the Fermi level was observed with increasing Au content, which correspondingly reduces the binding...

  4. Electromagnetic excitation of phonons at C(001) surfaces

    International Nuclear Information System (INIS)

    Perez-Sanchez, F L; Perez-Rodriguez, F

    2009-01-01

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  5. Electromagnetic excitation of phonons at C(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F L [Escuela de Ciencias, Universidad Autonoma ' Benito Juarez' de Oaxaca, Avenida Universidad S/N, Ex-Hacienda de Cinco Senores, Ciudad Universitaria, Oaxaca de Juarez, Oaxaca, 68120 (Mexico); Perez-Rodriguez, F, E-mail: fperez@sirio.ifuap.buap.m [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Post. J-48, Puebla 72570 (Mexico)

    2009-09-02

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  6. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    Science.gov (United States)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  7. Optimal level of Au nanoparticles on Pd nanostructures providing remarkable electro-catalysis in direct ethanol fuel cell

    Science.gov (United States)

    Dutta, Abhijit; Mondal, Achintya; Broekmann, Peter; Datta, Jayati

    2017-09-01

    The designing and fabrication of economically viable electro-catalysts for ethanol oxidation reaction (EOR) in direct ethanol fuel cell (DEFC) has been one of the challenging issues over the decades. The present work deals with controlled synthesis of Pd coupled Au nano structure, as the non Pt group of catalysts for DEFC. The catalytic proficiency of bimetallic NPs (2-10 nm) are found to be strongly dependent on the Pd:Au ratio. The over voltage of EOR is considerably reduced by ∼260 mV with 33% of Au content in PdAu composition compared to Pd alone, demonstrating the beneficial role of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pd. The catalysts are further subjected to electrochemical analysis through voltammetry along with the temperature study on activation parameters. The quantitative determination of EOR products during the electrolysis is carried out by ion chromatographic analysis; vis-a-vis the coulombic efficiency of the product yield were derived from each of the compositions. Furthermore, a strong correlation among catalytic performances and bimetallic composition is established by screening the catalysts in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC. The performance testing demonstrates outstanding increase of peak power density (∼40 mWcm-2, 93%) for the best accomplishment Au (33%) covered Pd (67%) catalyst in comparison with the monometallic Pd.

  8. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection.

    Science.gov (United States)

    Tian, Yue; Zhang, Hua; Xu, Linlin; Chen, Ming; Chen, Feng

    2018-02-15

    The bimetallic Au/Ag self-assembled monolayers (SAMs) were constructed by using mono-dispersed Au/Ag nanospheres (Ag: 4.07%-34.53%) via evaporation-based assembly strategy. The composition-dependent surface-enhanced Raman scattering (SERS) spectroscopy revealed that the Au/Ag (Ag: 16.83%) SAMs provide maximized activity for triphenylmethane dyes detection. With the inter-metallic synergy, the optimized SAMs enable the Raman intensity of crystal violet molecules to be about 223 times higher than that of monometallic Au SAMs. Moreover, the SERS signals with excellent uniformity (<5% variation) are sensitive down to 10 -13   M concentrations because of the optimal matching between bimetallic plasmon resonance and the incident laser wavelength.

  9. Facile synthesis and electrochemiluminescence application of concave trisoctahedral Pd@Au core-shell nanocrystals bound by {331} high-index facets.

    Science.gov (United States)

    Zhang, Ling; Niu, Wenxin; Li, Zhiyuan; Xu, Guobao

    2011-10-07

    Concave trisoctahedral (TOH) Pd@Au core-shell nanocrystals bound by {331} facets have been synthesized for the first time. Pd nanocubes and cetyltrimethylammonium chloride were used as the structure-directing cores and capping agents, respectively. Their optical and electrocatalytic properties were investigated. This journal is © The Royal Society of Chemistry 2011

  10. Challenges in bimetallic multilayer structure formation: Pt growth on Cu monolayers on Ru(0001)

    DEFF Research Database (Denmark)

    Mancera, Luis A.; Engstfeld, Albert Kilian; Bensch, Andreas

    2017-01-01

    In a joint experimental and theoretical study, we investigated the formation and morphology of PtCu/Ru(0001) bimetallic surfaces grown at room and higher temperatures under UHV conditions. We obtained the PtCu/Ru(0001) surfaces by deposition of Pt atoms on a previously created Cu/Ru(0001) structure...... which includes only one Cu monolayer. Bimetallic surfaces prepared at different Pt coverages are investigated using STM imaging, revealing the existence of reconstruction lines and Cu islands. Although primarily created Cu islands continue growing in size by increasing Pt coverage, a continuous...

  11. Bimetallic spacer means for a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1981-01-01

    A bimetallic spacer means designed to be cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The subject bimetallic spacer means in accord with one embodiment of the invention includes a member formed, at least principally, of Zircaloy to which are attached a plurality of stainless steel strips. The latter stainless steel strips are located on the external surface of the Zircaloy member and with the major axis of each of the plurality of stainless steel strips extending substantially perpendicular to the major axis of the Zircaloy member. In accord with another embodiment of the invention, the subject bimetallic spacer means includes a member formed at least principally of Zircaloy to which a plurality of stainless steel strips are attached so as to be positioned thereon externally thereof and with the major axis of each of the plurality of stainless steel strips extending substantially parallel to the major axis of the Zircaloy member. In accord with a further embodiment of the invention, the stainless steel strips are attached to preselected members, each embodying at least a cladding of Zircaloy, which are located in the rows of fuel rods that define the perimeter of the fuel matrix of the nuclear fuel assembly. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. Namely, the stainless steel strips expand laterally relative to the fuel assembly and thereby occupy the space adjacent to the external surface of the fuel assembly

  12. On factors controlling activity of submonolayer bimetallic catalysts: Nitrogen desorption

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wei; Vlachos, Dionisios G., E-mail: vlachos@udel.edu [Center for Catalytic Science and Technology, Catalysis Center for Energy Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States)

    2014-01-07

    We model N{sub 2} desorption on submonolayer bimetallic surfaces consisting of Co clusters on Pt(111) via first-principles density functional theory-based kinetic Monte Carlo simulations. We find that submonolayer structures are essential to rationalize the high activity of these bimetallics in ammonia decomposition. We show that the N{sub 2} desorption temperature on Co/Pt(111) is about 100 K higher than that on Ni/Pt(111), despite Co/Pt(111) binding N weaker at low N coverages. Co/Pt(111) has substantially different lateral interactions than single metals and Ni/Pt. The lateral interactions are rationalized with the d-band center theory. The activity of bimetallic catalysts is the result of heterogeneity of binding energies and reaction barriers among sites, and the most active site can differ on various bimetallics. Our results are in excellent agreement with experimental data and demonstrate for the first time that the zero-coverage descriptor, used until now, for catalyst activity is inadequate due not only to lacking lateral interactions but importantly to presence of multiple sites and a complex interplay of thermodynamics (binding energies, occupation) and kinetics (association barriers) on those sites.

  13. Subsurface dimerization in III-V semiconductor (001) surfaces

    DEFF Research Database (Denmark)

    Kumpf, C.; Marks, L.D.; Ellis, D.

    2001-01-01

    We present the atomic structure of the c(8 X 2) reconstructions of InSb-, InAs-, and GaAs-(001) surfaces as determined by surface x-ray diffraction using direct methods. Contrary to common belief, group III dimers are not prominent on the surface, instead subsurface dimerization of group m atoms ...... takes place in the second bilayer, accompanied by a major rearrangement of the surface atoms above the dimers to form linear arrays. By varying the occupancies of four surface sites the (001)-c(8 X 2) reconstructions of III-V semiconductors can be described in a unified model....

  14. Surface structure of AU3Cu(001)

    DEFF Research Database (Denmark)

    Eckstein, G.A.; Maupai, S.; Dakkouri, A.S.

    1999-01-01

    The surface morphology, composition, and structure of Au3Cu(001) as determined by scanning tunneling microscopy and surface x-ray diffraction are presented. Atomic resolution STM images reveal distinctive geometric features. The analysis of the surface x-ray diffraction data provides clear evidence...... for the surface structure. [S0163-1829(99)04535-X]....

  15. Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core-Gold Shell Nanoparticle Structures.

    Science.gov (United States)

    Kim, Wansun; Lee, Jae-Chul; Lee, Gi-Ja; Park, Hun-Kuk; Lee, Anbok; Choi, Samjin

    2017-06-20

    We introduce a label-free biosensing cellulose strip sensor with surface-enhanced Raman spectroscopy (SERS)-encoded bimetallic core@shell nanoparticles. Bimetallic nanoparticles consisting of a synthesis of core Ag nanoparticles (AgNP) and a synthesis of shell gold nanoparticles (AuNPs) were fabricated on a cellulose substrate by two-stage successive ionic layer absorption and reaction (SILAR) techniques. The bimetallic nanoparticle-enhanced localized surface plasmon resonance (LSPR) effects were theoretically verified by computational calculations with finite element models of optimized bimetallic nanoparticles interacting with an incident laser source. Well-dispersed raspberry-like bimetallic nanoparticles with highly polycrystalline structure were confirmed through X-ray and electron analyses despite ionic reaction synthesis. The stability against silver oxidation and high sensitivity with superior SERS enhancement factor (EF) of the low-cost SERS-encoded cellulose strip, which achieved 3.98 × 10 8 SERS-EF, 6.1%-RSD reproducibility, and <10%-degraded sustainability, implicated the possibility of practical applications in high analytical screening methods, such as single-molecule detection. The remarkable sensitivity and selectivity of this bimetallic biosensing strip in determining aquatic toxicities for prohibited drugs, such as aniline, sodium azide, and malachite green, as well as monitoring the breast cancer progression for urine, confirmed its potential as a low-cost label-free point-of-care test chip for the early diagnosis of human diseases.

  16. Investigation of the near-surface electronic structure of Cr(001)

    International Nuclear Information System (INIS)

    Klebanoff, L.E.; Robey, S.W.; Liu, G.; Shirley, D.A.

    1985-01-01

    An angle-resolved photoelectron spectroscopy (ARPES) study of Cr(001) near-surface electronic structure is presented. Measurements are reported for energy-band dispersions along the [010] direction parallel to the crystal surface. The periodicity of these band dispersions indicates that the valence electrons experience and self-consistently establish antiferromagnetism in the near-surface layers of Cr(001). We also present highly-surface-sensitive ARPES measurements of the energy-band dispersions along the [001] direction normal to the surface. The results suggest that the surface magnetic moments, which couple ferromagnetically to each other within the surface layer, couple antiferromagnetically to the moments of the atoms in the second layer. Temperature-dependent studies are presented that reveal the persistence of near-surface antiferromagnetic order for temperatures up to 2.5 times the bulk Neel temperature. The temperature dependence of this antiferromagnetic order suggests that its thermal stability derives in part from the stability of the Cr(001) ferromagnetic surface phase

  17. Ion irradiation synthesis of Ag–Au bimetallic nanospheroids in SiO{sub 2} glass substrate with tunable surface plasmon resonance frequency

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xuan; Yu, Ruixuan; Takayanagi, Shinya [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628 (Japan); Shibayama, Tamaki; Watanabe, Seiichi [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628 (Japan)

    2013-08-07

    Ag–Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar–ion irradiation of 30 nm Ag–Au bimetallic films deposited on SiO{sub 2} glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 10{sup 17} cm{sup −2}, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linear shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag–Au nanospheroids with a FCC structure partially embedded in the SiO{sub 2} substrate was confirmed, which has a potential application in solid-state devices.

  18. Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors.

    Science.gov (United States)

    Zou, Xu; Sun, Qing; Zhang, Yuxin; Li, Guo-Dong; Liu, Yipu; Wu, Yuanyuan; Yang, Lan; Zou, Xiaoxin

    2018-03-14

    Amorphous Ni-Mn bimetallic hydroxide film on the three-dimensional nickle foam (NF)-supported conductive Ni 3 S 2 nanosheets (denoted as Ni-Mn-OH@Ni 3 S 2 /NF) is successfully synthesized by an ultrafast process (5 s). The fascinating structural characteristic endows Ni-Mn-OH@Ni 3 S 2 /NF electrodes better electrochemical performance. The specific capacitance of 2233.3 F g -1 at a current density of 15 A g -1 can achieve high current density charge and discharge at 20/30 A g -1 that the corresponding capacitance is 1529.16 and 1350 F g -1 , respectively. As well as good cycling performance after 1000 cycles can maintain 72% at 15 A g -1 . The excellent performance can be attributed to unique surface modification nanostructures and the synergistic effect of the bimetallic hydroxide film. The impressive results provide new opportunity to produce advanced electrode materials by simple and green route and this material is expected to apply in high energy density storage systems.

  19. The stability and half-metallicity of (001) surface and (001) interface based on zinc blende MnAs

    Science.gov (United States)

    Han, Hongpei; Feng, Tuanhui; Zhang, Chunli; Feng, Zhibo; Li, Ming; Yao, K. L.

    2018-06-01

    Motivated by the growth of MnAs/GaAs thin films in many experimental researches, we investigate the electronic and magnetic properties of bulk, (001) surfaces and (001) interfaces for zinc blende MnAs by means of first-principle calculations. It is confirmed that zinc blende MnAs is a nearly half-metallic ferromagnet with 4.00 μB magnetic moment. The calculated density of states show that the half-metallicity exists in As-terminated (001) surface while it is lost in Mn-terminated (001) surface. For the (001) interfaces of MnAs with semiconductor GaAs, it is found that As-Ga and Mn-As interfaces not only have higher spin polarization but also are more stable among the four considered interfaces. Our results would be helpful to grow stable and high polarized thin films or multilayers for the practical applications of spintronic devices.

  20. Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane

    KAUST Repository

    Samantaray, Manoja; Kavitake, Santosh Giridhar; Morlanes, Natalia Sanchez; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Dey, Raju; Basset, Jean-Marie

    2017-01-01

    Two compatible organometallic complexes, W(Me)(6) (1) and TiNp4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO2-700) to synthesize the well-defined bimetallic precatalyst [(equivalent to Si-O-)W(Me)(5)(equivalent to Si-O-)Ti(Np)(3)] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in H-1-H-1 multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(equivalent to Si-O-)W(Me)(5)] (3), with a TON of 98, for propane metathesis at 150 degrees C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by beta-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 degrees C) using a well-defined bimetallic system prepared via the SOMC approach.

  1. Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane

    KAUST Repository

    Samantaray, Manoja

    2017-02-10

    Two compatible organometallic complexes, W(Me)(6) (1) and TiNp4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO2-700) to synthesize the well-defined bimetallic precatalyst [(equivalent to Si-O-)W(Me)(5)(equivalent to Si-O-)Ti(Np)(3)] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in H-1-H-1 multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(equivalent to Si-O-)W(Me)(5)] (3), with a TON of 98, for propane metathesis at 150 degrees C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by beta-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 degrees C) using a well-defined bimetallic system prepared via the SOMC approach.

  2. Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joseph Adeyemi Adekoya

    2014-01-01

    Full Text Available The synthesis of new seed mediated AgNi allied bimetallic nanocomposites was successfully carried out by the successive reduction of the metal ions in diethylene glycol, ethylene glycol, glycerol, and pentaerythritol solutions, with concomitant precipitation of Ag/Ni bimetal sols. The optical measurement revealed the existence of distinct band edge with surface plasmon resonance (SPR in the region of 400–425 nm and excitonic emission with maximum peak at 382 nm which were reminiscent of cluster-in-cluster surface enriched bimetallic silver-nickel sols. The morphological characterization by transmission electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses complimented by surface scan using X-ray photoelectron spectroscopy strongly supported the formation of intimately alloyed face-centered silver/nickel nanoclusters.

  3. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction.

    Science.gov (United States)

    Hansgen, Danielle A; Vlachos, Dionisios G; Chen, Jingguang G

    2010-06-01

    The facile decomposition of ammonia to produce hydrogen is critical to its use as a hydrogen storage medium in a hydrogen economy, and although ruthenium shows good activity for catalysing this process, its expense and scarcity are prohibitive to large-scale commercialization. The need to develop alternative catalysts has been addressed here, using microkinetic modelling combined with density functional studies to identify suitable monolayer bimetallic (surface or subsurface) catalysts based on nitrogen binding energies. The Ni-Pt-Pt(111) surface, with one monolayer of Ni atoms residing on a Pt(111) substrate, was predicted to be a catalytically active surface. This was verified using temperature-programmed desorption and high-resolution electron energy loss spectroscopy experiments. The results reported here provide a framework for complex catalyst discovery. They also demonstrate the critical importance of combining theoretical and experimental approaches for identifying desirable monolayer bimetallic systems when the surface properties are not a linear function of the parent metals.

  4. Electronic structure of the chromium dioxide (001) surface

    NARCIS (Netherlands)

    Leuken, H. van; Groot, R.A. de

    1995-01-01

    Local-density calculations on the CrO2 (001) surface are reported. The half-metallic character of the bulk is found to be maintained at the surface. Surface states of oxygen p character at the top of the valence band for the semiconducting spin direction are discussed.

  5. Structural, electronic and adsorption properties of Rh(111)/Mo(110) bimetallic catalyst: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Palotás, K., E-mail: palotas@phy.bme.hu [Budapest University of Technology and Economics, Department of Theoretical Physics, H-1111 Budapest (Hungary); Slovak Academy of Sciences, Institute of Physics, Department of Complex Physical Systems, Center for Computational Materials Science, SK-84511 Bratislava (Slovakia); Bakó, I. [Hungarian Academy of Sciences, Research Center for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest (Hungary); Bugyi, L. [MTA-SZTE, Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. Sqr. 1, H-6720 Szeged (Hungary)

    2016-12-15

    Highlights: • 1 ML of Rh on Mo(110) forms a wavy structure propagating along the [001] direction. • Strain & ligand effects in the Rh film cause a downward shift of the d-band center. • CO adsorption energies are decreased by about 35% compared to pure Rh(111). • Depending on adsorption site, 0.28–0.46 e is transferred to adsorbed CO from Rh film. • CO adsorption generates 0.15–0.22 e transfer from Rh film to Mo in the unit cell. - Abstract: Geometric and electronic characterizations of one monolayer rhodium with Nishiyama-Wassermann (NW) structure on Mo(110) substrate have been performed by density functional theory (DFT) calculations. In the NW structure the Rh atoms form a wavy structure propagating along the [001] direction, characterized by an amplitude of 0.26 Å in the [110] direction and by 0.10 Å in the [110] direction of the Mo(110) substrate. Strain and ligand effects operating in the rhodium film are distinguished and found to be manifested in the downward shift of the d-band center of the electron density of states (DOS) by 0.11 eV and 0.18 eV, respectively. The shift in the d-band center of Rh DOS predicts a decrease in the surface reactivity toward CO adsorption, which has been verified by detailed calculations of bond energies of CO located at on-top, bridge and hollow adsorption sites. The CO adsorption energies are decreased by about 35% compared to those reported for pure Rh(111), offering novel catalytic pathways for the molecule. An in-depth analysis of the charge transfer and the partial DOS characters upon CO adsorption on the NW-structured Rh(111)/Mo(110) bimetallic catalyst and on the pure Rh(111) surface sheds light on the bonding mechanism of CO and on the governing factors determining its lowered bond energy on the bimetallic surface.

  6. Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuila, Debasish [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States); Ilias, Shamsuddin [North Carolina Agricultural & Technical State Univ., Greensboro, NC (United States)

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N2 adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean

  7. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn; Zhang, Wendong, E-mail: wdzhang@tyut.edu.cn; Li, Gang; Hu, Jie [Micro and Nano-system Research Centre, College of Information Engineering, Taiyuan University of Technology, 030024, Taiyuan (China); Zhou, Zhaoying, E-mail: zhouzy@mail.tsinghua.edu.cn; Yang, Xing; Dong, Hualai [MEMS Laboratory, Department of Precision Instruments, Tsinghua University, 100084, Beijing (China)

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  8. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Directory of Open Access Journals (Sweden)

    Jianlong Ji

    2014-03-01

    Full Text Available Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM, energy dispersive X-ray spectrometer (EDS, transmission electron microscopy (TEM and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS activity, using 4-mercaptopyridine (4-MP as model molecules.

  9. Density functional theory and surface reactivity study of bimetallic AgnYm (n+m = 10) clusters

    Science.gov (United States)

    Hussain, Riaz; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid; Hussain, Riaz; Hanif, Usman; Ayub, Khurshid

    2018-06-01

    Density functional theory calculations have been performed on pure silver (Agn), yttrium (Ym) and bimetallic silver yttrium clusters AgnYm (n + m = 2-10) for reactivity descriptors in order to realize sites for nucleophilic and electrophilic attack. The reactivity descriptors of the clusters, studied as a function of cluster size and shape, reveal the presence of different type of reactive sites in a cluster. The size and shape of the pure silver, yttrium and bimetallic silver yttrium cluster (n = 2-10) strongly influences the number and position of active sites for an electrophilic and/or nucleophilic attack. The trends of reactivities through reactivity descriptors are confirmed through comparison with experimental data for CO binding with silver clusters. Moreover, the adsorption of CO on bimetallic silver yttrium clusters is also evaluated. The trends of binding energies support the reactivity descriptors values. Doping of pure cluster with the other element also influence the hardness, softness and chemical reactivity of the clusters. The softness increases as we increase the number of silver atoms in the cluster, whereas the hardness decreases. The chemical reactivity increases with silver doping whereas it decreases by increasing yttrium concentration. Silver atoms are nucleophilic in small clusters but changed to electrophilic in large clusters.

  10. Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles

    KAUST Repository

    Ding, Yong

    2010-09-08

    Using a two-step seed-mediated growth method, we synthesized bimetallic nanoparticles (NPs) having a gold octahedron core and a palladium epitaxial shell with controlled Pd-shell thickness. The mismatch-release mechanism between the Au core and Pd shell of the NPs was systematically investigated by high-resolution transmission electron microscopy. In the NPs coated with a single atomic layer of Pd, the strain between the surface Pd layer and the Au core is released by Shockley partial dislocations (SPDs) accompanied by the formation of stacking faults. For NPs coated with more Pd (>2 nm), the stacking faults still exist, but no SPDs are found. This may be due to the diffusion of Au atoms into the Pd shell layers to eliminate the SPDs. At the same time, a long-range ordered L11 AuPd alloy phase has been identified in the interface area, supporting the assumption of the diffusion of Au into Pd to release the interface mismatch. With increasing numbers of Pd shell layers, the shape of the Au-Pd NP changes, step by step, from truncated-octahedral to cubic. After the bimetallic NPs were annealed at 523 K for 10 min, the SPDs at the surface of the NPs coated with a single atomic layer of Pd disappeared due to diffusion of the Au atoms into the surface layer, while the stacking faults and the L11 Au-Pd alloyed structure remained. When the annealing temperature was increased to 800 K, electron diffraction patterns and diffraction contrast images revealed that the NPs became a uniform Au-Pd alloy, and most of the stacking faults disappeared as a result of the annealing. Even so, some clues still support the existence of the L11 phase, which suggests that the L11 phase is a stable, long-range ordered structure in Au-Pd bimetallic NPs. © 2010 American Chemical Society.

  11. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen......Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  12. CO2 activation on bimetallic CuNi nanoparticles

    Directory of Open Access Journals (Sweden)

    Natalie Austin

    2016-10-01

    Full Text Available Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds. This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  13. Carbon monoxide adsorption studies on Ru:Mn bimetallic catalysts supported on alumina, silica and titania supported for the determination of metal surface area overview

    International Nuclear Information System (INIS)

    Hussain, S.T.

    1992-01-01

    Supported Ru: Mn bimetallic samples were studied using CO-chemisorption on alumina, silica and titania supports for the determination of active metal site/metal surface area. The data indicates the presence of Mn on the surface of Ru. With the increase of Mn loadings a decrease in the CO adsorption occurred indicating that presence of Mn masks the active sites responsible for Co-adsorption. On the titania supported system reduced at high and low temperature the CO-chemisorption data suggest the unusual behaviour. This behaviour is possibly caused due to creation of new active surface sites. (author)

  14. Adsorption and reaction of propanal, 2-propenol and 1-propanol on Ni/Pt(111) bimetallic surfaces

    Science.gov (United States)

    Murillo, Luis E.; Chen, Jingguang G.

    2008-07-01

    The hydrogenation of acrolein (CH 2dbnd CH sbnd CH dbnd O) can lead to the formation of three hydrogenation products, 2-propenol (CH 2dbnd CH sbnd CH 2sbnd OH), propanal (CH 3sbnd CH 2sbnd CH dbnd O), and 1-propanol (CH 3sbnd CH 2sbnd CH 2sbnd OH). In the current study the adsorption and reaction of these three molecules were investigated on Ni/Pt(111) surfaces to understand the different hydrogenation pathways of acrolein, using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). TPD experiments showed that 2-propenol underwent isomerization toward propanal on Pt(111) and the Pt sbnd Ni sbnd Pt(111) bimetallic surface, with a dominant decarbonylation pathway on the Pt(111) surface. A self-hydrogenation (disproportionation) pathway toward 1-propanol was observed on the Ni(111) film, however, the decarbonylation pathway was found to be the most dominant on this surface. Unlike 2-propenol, propanal did not undergo isomerization or self-hydrogenation pathways on any of the surfaces, with the dominant pathway being primarily the decarbonylation on Pt(111) and Ni(111). In contrast, 1-propanol underwent mainly molecular desorption from all three surfaces. These results provided additional understanding of previous studies of hydrogenation pathways of acrolein on the Ni/Pt(111) surfaces.

  15. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); CQM - Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal (Portugal)

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  16. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-01-01

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  17. Effects of different additives on bimetallic Au-Pt nanoparticles electrodeposited onto indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara, E-mail: ballarin@ms.fci.unibo.i [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy); Gazzano, Massimo [ISOF-CNR, V. Selmi, 40126-Bologna (Italy); Tonelli, Domenica [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy)

    2010-09-01

    Bimetallic Au-Pt nanoparticles (Au-Pt{sub NPs}) have been synthesized using an electrochemical reduction approach. The effects of the addition of different additives in the electrodeposition bath namely KI, 1-nonanesulfonic acid sodium salt and Triton X-100 have been investigated. The structural characterization of the bimetallic nanoparticles has been carried out using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy, X-ray diffraction (XRD) and cyclic voltammetry (CV). The Au-Pt{sub NPs} prepared in the presence of KI and Triton X-100 characterized by a relatively narrow size distribution as well as a higher particle density and surface coverage whereas no changes in the morphology were observed. These results suggest a dependence of the size and distribution of the bimetallic nanoparticles from the type and concentration of the additives employed.

  18. Structural Characterization of Bimetallic Nanocrystal Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, David A [ORNL

    2016-01-01

    Late transition metal nanocrystals find applications in heterogeneous catalysis such as plasmon-enhanced catalysis and as electrode materials for fuel cells, a zero-emission and sustainable energy technology. Their commercial viability for automotive transportation has steadily increased in recent years, almost exclusively due to the discovery of more efficient bimetallic nanocatalysts for the oxygen reduction reaction (ORR) at the cathode. Despite improvements to catalyst design, achieving high activity while maintaining durability is essential to further enhance their performance for this and other important applications in catalysis. Electronic effects arising from the generation of metal-metal interfaces, from plasmonic metals, and from lattice distortions, can vastly improve sorption properties at catalytic surfaces, while increasing durability.[1] Multimetallic lattice-strained nanoparticles are thus an interesting opportunity for fundamental research.[2,3] A colloidal synthesis approach is demonstrated to produce AuPd alloy and Pd@Au core-shell nanoicosahedra as catalysts for electro-oxidations. The nanoparticles are characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and large solid angle energy dispersive X-ray spectroscopy (EDS) on an FEI Talos 4-detector STEM/EDS system. Figure 1 shows bright-field (BF) and high-angle annular dark-field (HAADF) ac-STEM images of the alloy and core-shell nanoicosahedra together with EDS line-scans and elemental maps. These structures are unique in that the presence of twin boundaries, alloying, and core-shell morphology could create highly strained surfaces and interfaces. The shell thickness of the core-shell structures observed in HAADF-STEM images is tuned by adjusting the ratio between metal precursors (Figure 2a-f) to produce shells ranging from a few to several monolayers. Specific activity was measured in ethanol electro-oxidation to examine the effect of shell thickness on

  19. Effect of Mica and Hematite (001 Surfaces on the Precipitation of Calcite

    Directory of Open Access Journals (Sweden)

    Huifang Xu

    2018-01-01

    Full Text Available The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM, X-ray diffraction (XRD, and electron backscatter diffraction (EBSD methods. On mica, we found, in the absence of Mg2+, the substrates’ (001 surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D structure can affect the orientation of calcite nucleation with calcite (001 ~// mica (001 and calcite (010 ~// mica (010 to be the major interfacial relationship. On hematite, we did not observe frequent twinning relationship between adjacent calcite gains, but often saw preferentially nucleation of calcite at surface steps on hematite substrate. We suggest that calcite crystals initially nucleate from the Ca2+ layers adsorbed on the surfaces. The pseudo-hexagonal symmetry on mica (001 surface also leads to the observed calcite (001 twinning. A second and less common orientation between calcite {104} and mica (001 was detected but could be due to local structure damage of the mica surface. Results in the presence of Mg2+ show that the substrate surfaces can weaken Mg toxicity to calcite nucleation and lead to a higher level of Mg incorporation into calcite lattice.

  20. Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleão; Furtunato da Silva, Dionisio; Pino, Eddy Segura; Martins da Silva, Júlio César; Brambilla de Souza, Rodrigo Fernando; Hammer, Peter; Spinacé, Estevam Vitório; Neto, Almir Oliveira; Linardi, Marcelo; Coelho dos Santos, Mauro

    2013-01-01

    Carbon-supported Pd, Au and bimetallic PdAu (Pd:Au 90:10, 50:50 and 30:70 atomic ratios) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their catalytic activities toward ethanol electro-oxidation were evaluated in an alkaline medium using electrochemical techniques, in situ attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) analysis and a single alkaline direct ethanol fuel cell (ADEFC). EDX analyses showed that the actual Pd:Au atomic ratios were very similar to the nominal ones. X-ray diffractograms of PdAu/C electrocatalysts evidenced the presence of Pd-rich (fcc) and Au-rich (fcc) phases. TEM analysis showed a homogeneous dispersion of nanoparticles on the carbon support, with an average size in the range of 3–5 nm and broad size distributions. Cyclic voltammetry (CV) and chronoamperometry (CA) experiments revealed the superior ambient activity toward ethanol electro-oxidation of PdAu/C electrocatalysts with Pd:Au ratios of 90:10 and 50:50. In situ ATR-FTIR spectroscopy measurements have shown that the mechanism for ethanol electro-oxidation is dependent on catalyst composition, leading to different reaction products, such as acetaldehyde and acetate, depending on the number of electrons transferred. Experiments on a single ADEFC were conducted between 50 and 90 °C, and the best performance of 44 mW cm −2 in 2.0 mol L −1 ethanol was obtained at 85 °C for the Pd:Au 90:10 catalysts. This superior performance is most likely associated with enhancement of ethanol adsorption on Pd, oxidation of the intermediates, the presence of gold oxide-hydroxyl species, low mean particle diameters and better distribution of particles on the support

  1. Versatile Optimization of Chemical Ordering in Bimetallic Nanoparticles

    KAUST Repository

    Kovács, Gábor

    2017-01-05

    Chemical ordering in bimetallic nanocrystallites can now be efficiently determined by density-functional calculations with the help of topological energy expressions. Herein, we deal with extending the usage of that computational scheme. We show that it enables one to structurally characterize bimetallic nanoparticles of less regular shapes than previously studied magic-type particles. In fcc Pd–Au particles of different shapes (cuboctahedral Pd58Au58, C3v Pd61Au61, cubic Pd68Au67, and truncated octahedral Pd70Au70), we identify the surface segregation of gold as the driving force to the lowest-energy chemical ordering. We applied the calculated descriptor values quantifying the segregation propensity of Au and energies of Pd–Au bonds in these ∼1.5 nm large particles to optimize and analyze the chemical ordering in 3.7–6 nm large Pd–Au particles. We also discuss how to predict the chemical ordering in nanoalloys at elevated temperatures. The present study paves the way to advanced structural investigations of nanoalloys to substantially accelerate their knowledge-driven engineering and manufacturing.

  2. Versatile Optimization of Chemical Ordering in Bimetallic Nanoparticles

    KAUST Repository

    Ková cs, Gá bor; Kozlov, Sergey M.; Neyman, Konstantin M.

    2017-01-01

    Chemical ordering in bimetallic nanocrystallites can now be efficiently determined by density-functional calculations with the help of topological energy expressions. Herein, we deal with extending the usage of that computational scheme. We show that it enables one to structurally characterize bimetallic nanoparticles of less regular shapes than previously studied magic-type particles. In fcc Pd–Au particles of different shapes (cuboctahedral Pd58Au58, C3v Pd61Au61, cubic Pd68Au67, and truncated octahedral Pd70Au70), we identify the surface segregation of gold as the driving force to the lowest-energy chemical ordering. We applied the calculated descriptor values quantifying the segregation propensity of Au and energies of Pd–Au bonds in these ∼1.5 nm large particles to optimize and analyze the chemical ordering in 3.7–6 nm large Pd–Au particles. We also discuss how to predict the chemical ordering in nanoalloys at elevated temperatures. The present study paves the way to advanced structural investigations of nanoalloys to substantially accelerate their knowledge-driven engineering and manufacturing.

  3. Synthesis of Fe–Ni bimetallic nanoparticles from pixel target ablation: plume dynamics and surface characterization

    International Nuclear Information System (INIS)

    Niu Xiaoxu; Murray, Paul T.; Sarangan, Andrew

    2012-01-01

    A novel Fe–Ni bimetallic nanoparticle synthesis technique, denoted pixel target ablation, is reported. The technique entails ablating a thin film target consisting of patterned Fe and Ni pixels with a selected ratio using a KrF excimer laser. The laser energy breaks a known amount of target materials into metal atoms, which then form nanoparticles by recombination in the gas phase. Due to the nature of thin-film ablation, splashing of large particles was eliminated with the added benefit of minimizing nanoparticle agglomeration. Plume dynamics and surface characterizations were carried out to exploit the formation of Fe–Ni nanoparticles more fully. The composition was readily controlled by varying the initial relative amount of Fe and Ni target pixels. Synthesis of multi-element nanoparticles by pixel target ablation should be possible with any element combination that can be prepared as a thin-film target.

  4. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts.

    Science.gov (United States)

    Wen, Zhaojun; Duan, Xinping; Hu, Menglin; Cao, Yanning; Ye, Linmin; Jiang, Lilong; Yuan, Youzhu

    2018-02-01

    In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag 1 -Cu 0.1 /SBA-15 catalyst, on which the soot combustion starts at T ig =225°C with a T 50 =285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance. Copyright © 2017. Published by Elsevier B.V.

  5. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

    International Nuclear Information System (INIS)

    Floris, P.; Twamley, B.; Nesterenko, P.N.; Paull, B.; Connolly, D.

    2012-01-01

    Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter ∼ 1-2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction. (author)

  6. Structural investigation of the ZnSe(001)-c(2×2) surface

    DEFF Research Database (Denmark)

    Weigand, W.; Müller, A.; Kilian, L.

    2003-01-01

    Zinc selenide is a model system for II-VI compound semiconductors. The geometric structure of the clean (001)-c(2x2) surface has recently been the subject of intense debate. We report here a surface x-ray-diffraction study on the ZnSe(001)-c(2x2) surface performed under ultrahigh vacuum using...

  7. Optical properties and sensing applications of stellated and bimetallic nanoparticles

    Science.gov (United States)

    Smith, Alison F.

    This dissertation focuses on developing guidelines to aid in the design of new bimetallic platforms for sensing applications. Stellated metal nanostructures are a class of plasmonic colloids in which large electric field enhancements can occur at sharp features, making them excellent candidates for surface enhanced Raman spectroscopy (SERS) and surface enhanced infrared spectroscopy (SE-IRS) platforms. Shape-dependent rules for convex polyhedra such as cubes or octahedra exist, which describe far-field scattering and near-field enhancements. However, such rules are lacking for their concave (stellated) counterparts. This dissertation presents the optical response of stellated Au nanocrystals with Oh, D4h, D3h, C2v, and T d symmetry, which were modeled to systematically investigate the role of symmetry, branching, and particle orientation with respect to excitation source using finite difference time domain (FDTD) calculations. Expanding on stellated nanostructures, bimetallic compositions introduce an interplay between overall architecture and composition to provide tunable optical properties and the potential of new functionality. However, decoupling the complex compositional and structural contributions to the localized surface plasmon resonance (LSPR) remains a challenge, especially when the monometallic counterparts are not synthetically accessible for comparison and the theoretical tools for capturing gradient compositions are lacking. This dissertation explores a stellated Au-Pd nanocrystal model system with Oh symmetry to decouple structural and complex compositional effects on LSPR. (Abstract shortened by ProQuest.).

  8. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation

    International Nuclear Information System (INIS)

    Yan Wei; Wang Dan; Botte, Gerardine G.

    2012-01-01

    Nickel–Cobalt bimetallic hydroxide electrocatalysts, synthesized through a one-step electrodeposition method, were evaluated for the oxidation of urea in alkaline conditions with the intention of reducing the oxidation overpotential for this reaction. The Nickel–Cobalt bimetallic hydroxide catalysts were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, cyclic voltammetry (CV), and polarization techniques. A significant reduction in the overpotential (150 mV) of the reaction was observed with the Nickel–Cobalt bimetallic hydroxide electrode (ca. 43% Co content) when compared to a nickel hydroxide electrode. The decrease of the urea oxidation potential on the Nickel–Cobalt bimetallic hydroxide electrodes reveals great potential for future applications of urea electro-oxidation, including wastewater remediation, hydrogen production, sensors, and fuel cells.

  9. Structural rearrangements in the C/W(001) surface system

    International Nuclear Information System (INIS)

    Lyman, P.F.; Mullins, D.R.

    1995-01-01

    We have investigated the surface structure of the C/W(001) surface system at submonolayer C coverages using Auger-electron spectroscopy and high-resolution core-level photoelectron spectroscopy. Core-level spectroscopy is a sensitive probe of an atom's local electronic environment; by examining the core levels of the W atoms in the selvedge region, we monitored the response of the substrate to C adsorption. The average shift of the 4f core-level binding energy provided evidence for a heretofore unknown surface reconstruction that occurs upon submonolayer C adsorption. We also performed line-shape analysis on these core-level spectra, and have thereby elucidated the mechanism by which the low-coverage (√2 x √2 )R45 degree structure evolves to a c(3 √2 x √2 )R45 degree arrangement upon further C adsorption. The line-shape analysis also provides corroborating evidence for a proposed model of the saturated C/W(001)-(5x1) surface structure, and suggests that the first two or three atomic W layers are perturbed by the C adsorption and attendant reconstruction

  10. A CuNi bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE).

    Science.gov (United States)

    Liu, Bo; Zhang, Hao; Lu, Qi; Li, Guanghe; Zhang, Fang

    2018-09-01

    To address the challenges of low hydrodechlorination efficiency by non-noble metals, a CuNi bimetallic cathode with nanostructured copper array film was fabricated for effective electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution. The CuNi bimetallic cathodes were prepared by a simple one-step electrodeposition of copper onto the Ni foam substrate, with various electrodeposition time of 5/10/15/20 min. The optimum electrodeposition time was 10 min when copper was coated as a uniform nanosheet array on the nickel foam substrate surface. This cathode exhibited the highest TCE removal, which was twice higher compared to that of the nickel foam cathode. At the same passed charge of 1080C, TCE removal increased from 33.9 ± 3.3% to 99.7 ± 0.1% with the increasing operation current from 5 to 20 mA cm -2 , while the normalized energy consumption decreased from 15.1 ± 1.0 to 2.6 ± 0.01 kWh log -1  m -3 . The decreased normalized energy consumption at a higher current density was due to the much higher removal efficiency at a higher current. These results suggest that CuNi cathodes prepared by simple electrodeposition method represent a promising and cost-effective approach for enhanced electrochemical dechlorination. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Synthesis of polymer-stabilized monometallic Cu and bimetallic Cu/Ag nanoparticles and their surface-enhanced Raman scattering properties

    Science.gov (United States)

    Zhang, Danhui; Liu, Xiaoheng

    2013-03-01

    The present study demonstrates a facile process for the production of spherical-shaped Cu and Ag nanoparticles synthesized and stabilized by hydrazine and gelatin, respectively. Advantages of the synthetic method include its production of water dispersible copper and copper/silver nanoparticles at room temperature under no inert atmosphere. The resulting nanoparticles (copper or copper/silver) are investigated by X-ray diffraction (XRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 572 nm for Ag and Cu nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of ˜10 nm (silver), and ˜30 nm (copper). The results also demonstrate that the reducing order of Cu2+/Ag+ is important for the formation of the bimetallic nanoparticles. The surface-enhanced Raman scattering effects of copper and copper/silver nanoparticles were also displayed. It was found that the enhancement ability of copper/silver nanoparticles was little higher than the copper nanoparticles.

  12. TECHNOLOGICAL ADVANCEMENT OF DEPOSIT WELDING AND GAS LASER CUTTING TO INCREASE THE EFFICIENCY OF THE BIMETALLIC TOOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Burlachenko Oleg Vasil’evich

    2017-08-01

    Full Text Available Deposit welding is the application of a layer of metal on the surface of a product using fusion welding. In this paper, we consider the method of improving the technology of gas laser cutting, which makes it possible to achieve a high productivity of manufacturing a bimetallic tool. The present paper is concerned with the advantages of gas laser cutting which allows to consider this particular process of separating materials as highly-productive, low-waste, and advanced method of removing allowances of weld-deposit high-speed steel on the working surfaces of bimetallic tool. Urgency of the use of deposit welding and gas laser cutting to improve the efficiency of production of bimetallic tool is shown. The comparative analysis of gas-laser cutting and other cutting methods is given according to the geometrical parameters of cutting and surface quality. Analysis of the results of experimental studies has confirmed the high technological attractiveness and economic efficiency of manufacturing composite structures of punches and matrices when applying deposit welding of cutting parts with high-speed steels. The cost of dimensional processing of the welded cutting part is reduced by 4 to 6 times, while the manufacturing time is reduced by 6 to 12 times.

  13. Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles.

    Science.gov (United States)

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Persson, Per O Å; Kooi, Bart J; Palasantzas, George

    2017-06-22

    In this work we report strategies to nucleate bimetallic nanoparticles (NPs) made by gas phase synthesis of elements showing difficulty in homogeneous nucleation. It is shown that the nucleation assisted problem of bimetallic NP synthesis can be solved via the following pathways: (i) selecting an element which can itself nucleate and act as a nucleation center for the synthesis of bimetallic NPs; (ii) introducing H 2 or CH 4 as an impurity/trace gas to initiate nucleation during the synthesis of bimetallic NPs. The latter can solve the problem if none of the elements in a bimetallic NP can initiate nucleation. We illustrate the abovementioned strategies for the case of Mg based bimetallic NPs, which are interesting as hydrogen storage materials and exhibit both nucleation and oxidation issues even under ultra-high vacuum conditions. In particular, it is shown that adding H 2 in small proportions favors the formation of a solid solution/alloy structure even in the case of immiscible Mg and Ti, where normally phase separation occurs during synthesis. In addition, we illustrate the possibility of improving the nucleation rate, and controlling the structure and size distribution of bimetallic NPs using H 2 /CH 4 as a reactive/nucleating gas. This is shown to be associated with the dimer bond energies of the various formed species and the vapor pressures of the metals, which are key factors for NP nucleation.

  14. Ruthenium-platinum bimetallic catalysts supported on silica: characterization and study of benzene hydrogenation and CO methanation

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.K.; Rao, K.M.; Sundararaman, N.; Chandavar, K.

    1986-12-15

    Ru-Pt/SiO/sub 2/ bimetallic catalysts with varying Ru:Pt ratio have been prepared and studied with the aim to establish if they contain coclusters or isolated ruthenium and platinum particles. X-ray diffraction studies show that individual crystallites of ruthenium and platinum are present and no coclusters are formed. Metal dispersion has been determined by hydrogen chemisorption and surface composition of the catalysts has been obtained from XPS. It was found that preoxidation of the catalysts prior to reduction is essential for good platinum dispersion. The experimental turnover number (TN) for benzene hydrogenation on the bimetallic catalysts agrees very well with that of the weighted average on the individual metal catalysts and this may be taken as a kinetic evidence for the absence of coclusters. Carbon monoxide methanation activity of the bimetallic catalysts is quite similar to that of the supported platinum catalyst. 6 refs., 6 figs., 2 tabs.

  15. Bimetallic catalysts for HI decomposition in the iodine-sulfur thermochemical cycle

    International Nuclear Information System (INIS)

    Wang Laijun; Hu Songzhi; Xu Lufei; Li Daocai; Han Qi; Chen Songzhe; Zhang Ping; Xu Jingming

    2014-01-01

    Among the different kinds of thermochemical water-splitting cycles, the iodine-sulfur (IS) cycle has attracted more and more interest because it is one of the promising candidates for economical and massive hydrogen production. However, there still exist some science and technical problems to be solved before industrialization of the IS process. One such problem is the catalytic decomposition of hydrogen iodide. Although the active carbon supported platinum has been verified to present the excellent performance for HI decomposition, it is very expensive and easy to agglomerate under the harsh condition. In order to decrease the cost and increase the stability of the catalysts for HI decomposition, a series of bimetallic catalysts were prepared and studied at INET. This paper summarized our present research advances on the bimetallic catalysts (Pt-Pd, Pd-Ir and Pt-Ir) for HI decomposition. In the course of the study, the physical properties, structure, and morphology of the catalysts were characterized by specific surface area, X-ray diffractometer; and transmission electron microscopy, respectively. The catalytic activity for HI decomposition was investigated in a fixed bed reactor under atmospheric pressure. The results show that due to the higher activity and better stability, the active carbon supported bimetallic catalyst is more potential candidate than mono metallic Pt catalyst for HI decomposition in the IS thermochemical cycle. (author)

  16. First-principles study on half-metallic zinc-blende CrS and its (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bin, E-mail: hnsqxb@163.com [Department of Mathematics and Information Sciences, North China university of Water Resources and Electric Power, Zhengzhou 450011 (China); Chen, Leiming [Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou, 450015 (China)

    2016-11-01

    Half-metallic magnets with complete (100%) spin polarization have attracted growing interest due to the potential in spintronic applications. In this paper, we use the first-principles calculations to explain the seeming contradiction between the recent experimental ferromagnetism (Demper et al., 2012 [22]) and the previous theoretical antiferromagnetic ground state for half-metallic zinc-blende CrS, and the experimental ferromagnetism of zinc-blende CrS arises from the substrate effect. We also show that both Cr- and S-terminated (001) surfaces of CrS preserve the bulk half-metallicity. The calculated surface energy indicates that the S-terminated (001) surface is more stable than the Cr-terminated (001) surface within the whole effective Cr chemical potentials, and thus the S-terminated (001) surface is more likely than the Cr-terminated (001) surface when the CrS thin films are grown on ZnSe substrate.

  17. First principles study of dissolved oxygen water adsorption on Fe (001 surfaces

    Directory of Open Access Journals (Sweden)

    Dong ZHANG

    2018-02-01

    Full Text Available In order to study the mechanism of dissolved oxygen content on the surface corrosion behavior of Fe-based heat transfer, the first principle is used to study the adsorption of O2 monomolecular, H2O monolayer and dissolved oxygen system on Fe-based heat transfer surface. The GGA/PBE approximation is used to calculate the adsorption energy, state density and population change during the adsorption process. Calculations prove that when the dissolved oxygen is adsorbed on the Fe-based surface, the water molecule tends to adsorb at the top sites, and the oxygen molecule tends to adsorb at Griffiths. When the H2O molecule adsorbs and interacts on the Fe (001 surface, the charge distribution of the interfacial double electric layer changes to cause the Fe atoms to lose electrons, resulting in the change of the surface potential. When the O2 molecule adsorbs on the Fe (001 crystal surfaces, the electrons on the Fe (001 surface are lost and the surface potential increases. O2 molecule and the surface of the Fe atoms are prone to electron transfer, in which O atom's 2p orbit for the adsorption of O2 molecule on Fe (001 crystal surface play a major role. With the increase of the proportion of O2 molecule in the dissolved oxygen water, the absolute value of the adsorption energy increases, and the interaction of the Fe-based heat transfer surface is stronger. This study explores the influence law of different dissolved oxygen on the Fe base heat exchange surface corrosion, and the base metal corrosion mechanism for experimental study provides a theoretical reference.

  18. Surface Resonance Bands on (001)W: Experimental Dispersion Relations

    DEFF Research Database (Denmark)

    Willis, R. F.; Feuerbacher, B.; Christensen, N. Egede

    1977-01-01

    A band of unbound surface states (resonances), located in an energy region above the vacuum threshold corresponding to an energy band gap in the electron states of the bulk crystal, has been observed by angle-resolved secondary-electron-emission spectroscopy. The experimental dispersion behavior...... is in agreement with the two-dimensional band structure of a clean (001)W surface recently proposed by Smith and Mittheiss....

  19. Epitaxial growth of fcc Ti films on Al(001) surfaces

    International Nuclear Information System (INIS)

    Saleh, A.A.; Shutthanandan, V.; Shivaparan, N.R.; Smith, R.J.; Tran, T.T.; Chambers, S.A.

    1997-01-01

    High-energy ion scattering (HEIS), x-ray photoelectron spectroscopy, and x-ray photoelectron diffraction (XPD) were used to study the growth of thin Ti films on Al(001) surfaces. The Al surface peak area in the backscattered ion spectrum of MeV He + ions, incident along the [00 bar 1] direction, was used to monitor the atomic structure of the Ti films during growth. An initial decrease in the area was observed indicating epitaxial film growth. This decrease continued up to a critical film thickness of about 5.5 ML, after which point the structure of the film changed. Titanium films 3, 5, and 9 ML thick were characterized using XPD in the same chamber. Both the HEIS and XPD results show that the Ti films grow with an fcc structure on Al(001). A tetragonal distortion of 2.4% in the fcc Ti film was measured using ions incident along the [10 bar 1] direction. Although there is a general similarity of fcc Ti growth on both Al(001) and Al(110), the submonolayer growth regime does show differences for the two surfaces. copyright 1997 The American Physical Society

  20. Shift of localized surface plasmon resonance by Ar-ion irradiation of Ag–Au bimetallic films deposited on Al{sub 2}O{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xuan [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Shibayama, Tamaki, E-mail: shiba@qe.eng.hokudai.ac.jp [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Yu, Ruixuan; Takayanagi, Shinya [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Watanabe, Seiichi [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2013-11-01

    Effects of Ar-ion induced surface nanostructuring were studied using 100 keV Ar-ion irradiation of 30 nm Ag–Au bimetallic films deposited on Al{sub 2}O{sub 3} single crystals, under irradiation fluences ranging from 5.0 × 10{sup 15} cm{sup −2} to 6.3 × 10{sup 16} cm{sup −2}. Scanning electron microscope was used to study the ion-beam-induced surface nanostructuring. As the irradiation fluence increased, dewetting of the bimetallic films on the Al{sub 2}O{sub 3} substrate was observed, and formation of isolated Ag–Au nanostructures sustained on the substrate were obtained. Next, thermal annealing was performed under high vacuum at 1073 K for 2 h; a layer of photosensitive Ag–Au alloy nanoballs partially embedded in the Al{sub 2}O{sub 3} substrate was obtained when higher fluence irradiation (>3.8 × 10{sup 16} cm{sup −2}) was used. The microstructures of the nanoballs were investigated using a transmission electron microscope, and the nanoballs were found to be single crystals with a FCC structure. In addition, photoabsorption spectra were measured, and localized surface plasmon resonance peaks were observed. With increase in the irradiation fluence, the size of the Ag–Au nanoballs on the substrate decreased, and a blue-shift of the LSPR peaks was observed. Further control of the LSPR frequency over a wide range was achieved by modifying the chemical components, and a red-shift of the LSPR peaks was observed as the Au concentration increased. In summary, ion irradiation is an effective approach toward surface nanostructuring, and the nanocomposites obtained have potential applications in optical devices.

  1. Adsorption of Na on Ge(001)(2x1) surface

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Zu, X.T.

    2006-01-01

    The adsorption of sodium on the Ge(001)(2x1) surface at the coverage (Θ) of 0.5 and 1ML has been investigated by using ab initio total energy calculations. It was found that at Θ=0.5ML T3 and T4 sites are nearly degenerate and Na adatoms preferred to adsorb at T3 and T4 sites. This finding agrees well with Meyerheim et al.'s experimental results, but does not support theoretical investigations of Spiess et al., who found HH site was the most stable. For 1ML coverage the most stable configurations are a combination of the HH and T3 or T4 sites. Work function and dipole moment analysis showed that upon Na adsorption on Ge(001)(2x1) and Si(001)(2x1) surface the dipole-dipole repulsion is small and no depolarization effect occurs as the coverage increases from 0.5 to 1ML

  2. Designing Pd-based supported bimetallic catalysts for environmental applications

    OpenAIRE

    Nowicka, Ewa; Meenakshisundaram, Sankar

    2018-01-01

    Supported bimetallic nanoparticulate catalysts are an important class of heterogeneous catalysts for many reactions including selective oxidation, hydrogenation/hydrogenolysis, reforming, biomass conversion reactions, and many more. The activity, selectivity, and stability of these catalysts depend on their structural features including particle size, composition, and morphology. In this review, we present important structural features relevant to supported bimetallic catalysts focusing on Pd...

  3. Joint program for the improvement of bimetallic weld inspection

    International Nuclear Information System (INIS)

    Serre, M.; Rattoni, B.; Coquillay; Samman; Billet; Bodson; Olivera

    1985-02-01

    The aim of this program is to improve the in-service monitoring of austenitic and bimetallic welds in PWR Main Coolant Systems. This paper presents the work performed on the bimetallic weld connecting the safe end to the reactor vessel nozzle: suitability of ultrasonic testing for determining the size and location of defects, automation and calibration, gamma-ray examination in three different planes

  4. Self-consistent electronic structure of the contracted tungsten (001) surface

    International Nuclear Information System (INIS)

    Posternak, M.; Krakauer, H.; Freeman, A.J.

    1982-01-01

    Self-consistent linearized-augmented-plane-wave energy-band studies using the warped muffin-tin approximation for a seven-layer W(001) single slab with the surface-layer separation contracted by 6% of the bulk interlayer spacing are reported. Surface electronic structure, local densities of states, generalized susceptibility for the surface, work function, and core-level shifts are found to have insignificant differences with corresponding results for the unrelaxed surface. Several differences in surface states between theory and recent angle-resolved photoemission experiments are discussed in the light of new proposed models of the actual unreconstructed surface structure at high temperatures

  5. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Lützenkirchen-Hecht, D. [Fachbereich C - Physik, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Hübner, R.; Grenzer, J.; Facsko, S. [Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)

    2014-07-14

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.

  6. Removal of dangling bonds and surface states on silicon (001) with a monolayer of selenium

    International Nuclear Information System (INIS)

    Tao Meng; Udeshi, Darshak; Basit, Nasir; Maldonado, Eduardo; Kirk, Wiley P.

    2003-01-01

    Dangling bonds and surface states are inherent to semiconductor surfaces. By passivating dangling bonds on the silicon (001) surface with a monolayer of selenium, surface states are removed from the band gap. Magnesium contacts on selenium-passivated silicon (001) behave ohmically, as expected from the work function of magnesium and the electron affinity of silicon. After rapid thermal annealing and hot-plate annealing, magnesium contacts on selenium-passivated silicon (001) show better thermal stability than on hydrogen-passivated silicon (001), which is attributed to the suppression of silicide formation by selenium passivation

  7. Electron-phonon interaction on an Al(001) surface

    International Nuclear Information System (INIS)

    Sklyadneva, I Yu; Chulkov, E V; Echenique, P M

    2008-01-01

    We report an ab initio study of the electron-phonon (e-ph) interaction and its contribution to the lifetime broadening of excited hole (electron) surface states on Al(001). The calculations based on density-functional theory were carried out using a linear response approach in the plane-wave pseudopotential representation. The obtained results show that both the electron-phonon coupling and the linewidth experience a weak variation with the energy and momentum position of a hole (electron) surface state in the energy band. An analysis of different contributions to the e-ph coupling reveals that bulk phonon modes turn out to be more involved in the scattering processes of excited electrons and holes than surface phonon modes. It is also shown that the role of the e-ph coupling in the broadening of the Rayleigh surface phonon mode is insignificant compared to anharmonic effects

  8. Surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy

    Science.gov (United States)

    Yang, Yan; Feng, Zhong-Ying; Zhang, Jian-Min

    2018-05-01

    The spin-polarized first-principles are used to study the surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy, and the bulk Zr2CoSn Heusler alloy are also discussed to make comparison. The conduction band minimum (CBM) of half-metallic (HM) bulk Zr2CoSn alloy is contributed by ZrA, ZrB and Co atoms, while the valence band maximum (VBM) is contributed by ZrB and Co atoms. The SnSn termination is the most stable surface with the highest spin polarizations P = 77.1% among the CoCo, ZrCo, ZrZr, ZrSn and SnSn terminations of the Zr2CoSn (001) surface. In the SnSn termination of the Zr2CoSn (001) surface, the atomic partial density of states (APDOS) of atoms in the surface, subsurface and third layers are much influenced by the surface effect and the total magnetic moment (TMM) is mainly contributed by the atomic magnetic moments of atoms in fourth to ninth layers.

  9. Bimetallic Nanoparticles in Alternative Solvents for Catalytic Purposes

    Directory of Open Access Journals (Sweden)

    Trung Dang-Bao

    2017-07-01

    Full Text Available Bimetallic nanoparticles represent attractive catalytic systems thanks to the synergy between both partners at the atomic level, mainly induced by electronic effects which in turn are associated with the corresponding structures (alloy, core-shell, hetero-dimer. This type of engineered material can trigger changes in the kinetics of catalyzed processes by variations on the electrophilicity/nucleophilicity of the metal centers involved and also promote cooperative effects to foster organic transformations, including multi-component and multi-step processes. Solvents become a crucial factor in the conception of catalytic processes, not only due to their environmental impact, but also because they can preserve the bimetallic structure during the catalytic reaction and therefore increase the catalyst life-time. In this frame, the present review focuses on the recent works described in the literature concerning the synthesis of bimetallic nanoparticles in non-conventional solvents, i.e., other than common volatile compounds, for catalytic applications.

  10. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  11. Formation of Mn3O4(001) on MnO(001): Surface and interface structural stability

    International Nuclear Information System (INIS)

    Bayer, Veronika; Podloucky, Raimund; Franchini, Cesare; Allegretti, Francesco; Xu, Bo; Parteder, Georg; Ramsey, Michael G.; Surnev, Svetlozar; Netzer, Falko P.

    2007-01-01

    X-ray absorption and photoemission spectroscopies, high-resolution electron energy loss spectroscopy, spot profile analysis low energy electron diffraction, and density functional theory calculations are employed to study the growth of (001) oriented Mn 3 O 4 surfaces on a Pd(100)-supported MnO(001) substrate, with the Hausmannite planar lattice constants aligned along the [110] direction of the underlying MnO(001) support. We show that despite the rather large lattice mismatch, abrupt interfaces may exist between rocksalt MnO and Hausmannite. We argue that this process is facilitated by the relatively low computed strain energy and we propose realistic models for the interface. An atop site registry between the Mn(O) atoms of the oxygen rich Mn 3 O 4 termination and the MnO(001) O(Mn) atoms underneath is found to be the energetically most favorable configuration. The significant planar expansion is accompanied by a large compression of the Mn 3 O 4 vertical lattice constant, yielding structural distortion of the O-Mn-O octahedral axis. Spot profile analysis low energy electron diffraction experiments show that the conversion reaction proceeds easily in both directions, thus indicating the reversible redox character of the transition

  12. Molecular-dynamics theory of the temperature-dependent surface phonons of W(001)

    International Nuclear Information System (INIS)

    Wang, C.Z.; Fasolino, A.; Tosatti, E.

    1987-04-01

    We study the temperature-dependent zone-boundary surface phonons across the c(2x2)→1x1 reconstruction phase transition of the clean W(001) surface. Velocity-velocity correlations and hence the phonon spectral densities are calculated by molecular dynamics for the surface atoms of a finite thickness (001) slab, with interatomic potentials established in a previous study of the surface statics. Our calculated k = (1/2,1/2)(2π/a) surface phonon are dominated by three main low-frequency modes. Of these, the longitudinal and the shear horizontal are reconstruction-related and display critical broadening and softening at the phase transition, while the third, the shear vertical, is basically unaffected. The reconstruction phase mode, shear horizontal, appears to be responsible for the phase fluctuations which destroy long-range order at the transition. (author). 30 refs, 12 figs

  13. First Principles Calculations of Oxygen Adsorption on the UN(001) Surface

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F.; Bocharov, Dmitry; Kotomin, Eugene Alexej; Evarestov, Robert; Bandura, A.V.

    2009-01-01

    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (001) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(001) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.

  14. Synthesis and characterization of Ag-Ni bimetallic nanoparticles by laser-induced plasma

    International Nuclear Information System (INIS)

    Xiao Qingmei; Yao Zhi; Liu Jiahong; Hai Ran; Oderji, Hassan Yousefi; Ding Hongbin

    2011-01-01

    We present an approach in which laser ablation deposition is used to synthesize silver-nickel bimetallic nanoparticles. A variety of techniques, including scanning electron microscopy, energy disperse spectroscopy and X-ray photoelectron spectroscopy have been used to characterize the morphology, composition and construction of synthesized bimetallic nanoparticles, respectively. The formation mechanism of bimetallic nanoparticles has been discussed. The Raman spectra of silver-nickel bimetallic nanoparticles have been analyzed. Time-of-flight mass spectrometry has been applied to directly measure intermediate species. The results indicate that diatomic AgNi is the most abundant species and suggest that the AgNi is the most stable intermediate which may play an important role in the synthesis process. Emission spectra demonstrate that the electron temperature is in the range of 6000-10000 K during the ablation process and increases with the laser power density.

  15. The influence of surface preparation on low temperature HfO2 ALD on InGaAs (001) and (110) surfaces

    International Nuclear Information System (INIS)

    Kent, Tyler; Edmonds, Mary; Kummel, Andrew C.; Tang, Kechao; Negara, Muhammad Adi; McIntyre, Paul; Chobpattana, Varistha; Mitchell, William; Sahu, Bhagawan; Galatage, Rohit; Droopad, Ravi

    2015-01-01

    Current logic devices rely on 3D architectures, such as the tri-gate field effect transistor (finFET), which utilize the (001) and (110) crystal faces simultaneously thus requiring passivation methods for the (110) face in order to ensure a pristine 3D surface prior to further processing. Scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and correlated electrical measurement on MOSCAPs were utilized to compare the effects of a previously developed in situ pre-atomic layer deposition (ALD) surface clean on the InGaAs (001) and (110) surfaces. Ex situ wet cleans are very effective on the (001) surface but not the (110) surface. Capacitance voltage indicated the (001) surface with no buffered oxide etch had a higher C max hypothesized to be a result of poor nucleation of HfO 2 on the native oxide. An in situ pre-ALD surface clean employing both atomic H and trimethylaluminum (TMA) pre-pulsing, developed by Chobpattana et al. and Carter et al. for the (001) surface, was demonstrated to be effective on the (110) surface for producing low D it high C ox MOSCAPs. Including TMA in the pre-ALD surface clean resulted in reduction of the magnitude of the interface state capacitance. The XPS studies show the role of atomic H pre-pulsing is to remove both carbon and oxygen while STM shows the role of TMA pre-pulsing is to eliminate H induced etching. Devices fabricated at 120 °C and 300 °C were compared

  16. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tun-Dong; Fan, Tian-E [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Shao, Gui-Fang, E-mail: gfshao@xmu.edu.cn [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Zheng, Ji-Wen [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Wen, Yu-Hua [Institute of Theoretical Physics and Astrophysics, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2014-08-14

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs.

  17. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Liu, Tun-Dong; Fan, Tian-E; Shao, Gui-Fang; Zheng, Ji-Wen; Wen, Yu-Hua

    2014-01-01

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs

  18. X-ray in-situ study of copper electrodeposition on UHV prepared GaAs(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gruender, Yvonne

    2008-06-02

    For this work a unique setup for in-situ electrochemical studies was employed and improved. This setup permits UHV preparation of the GaAs(001) surface with a defined surface termination (arsenic-rich or gallium-rich) and its characterization by SXRD in UHV, under ambient pressure in inert gas and in electrolyte under potential control without passing through air. The GaAs(001) surfaces were capped by amorphous arsenic. This permitted to ship them through ambient air. Afterwards smooth well defined GaAs(001) surfaces could be recovered by thermal annealing in UHV. A first investigation of the arsenic capped sample was done by atomic force microscopy (AFM) and Surface X-Ray Diffraction (SXRD). The non bulk like termination of the arsenic buried GaAs(001) surface was revealed. For the electrochemical metal deposition, arsenic terminated (2 x 4) reconstructed and gallium terminated (4 x 2) reconstructed GaAs(001) surfaces were employed. These surfaces were characterized by STM, LEED and a first time by SXRD. The surfaces are smooth, however, a higher degree of disorder than for MBE prepared reconstructed GaAs(001) is found. After exposure of the sample to nitrogen, the surfaces were then again studied by SXRD. These two steps characterizing the bare GaAs(001) surfaces permitted us to get a better knowledge of the starting surface and its influence on the later electrodeposited copper. At ambient pressure both reconstructions are lifted, but the surface is not bulk-like terminated as can be deduced from the crystal truncation rods. Epitaxial copper clusters grow upon electrodeposition on the UHV prepared GaAs(001) surface. The copper lattice is rotated and inclined with respect to the GaAs substrate lattice, leading to eight symmetry equivalent domains. The influence of the surface termination as well as the nucleation potential on the structure of the electrodeposited copper were investigated. The tilt and rotation angles do not depend on the deposition potential but

  19. Adhesive forces at bimetallic interfaces

    International Nuclear Information System (INIS)

    Das, M.P.; Nafari, N.; Ziesche, P.; Kaschner, H.R.

    1987-03-01

    Force concepts in condensed systems have progressed significantly in recent years. In the context of bimetallic interfaces we consider the Pauli-Hellman-Feynman theorem, use it to check the variational calculations of interfacial energies and estimate the force constants. (author). 13 refs, 2 figs, 2 tabs

  20. Wnt ligands from the embryonic surface ectoderm regulate ‘bimetallic strip’ optic cup morphogenesis in mouse

    Science.gov (United States)

    Carpenter, April C.; Smith, April N.; Wagner, Heidi; Cohen-Tayar, Yamit; Rao, Sujata; Wallace, Valerie; Ashery-Padan, Ruth; Lang, Richard A.

    2015-01-01

    The Wnt/β-catenin response pathway is central to many developmental processes. Here, we assessed the role of Wnt signaling in early eye development using the mouse as a model system. We showed that the surface ectoderm region that includes the lens placode expressed 12 out of 19 possible Wnt ligands. When these activities were suppressed by conditional deletion of wntless (Le-cre; Wlsfl/fl) there were dramatic consequences that included a saucer-shaped optic cup, ventral coloboma, and a deficiency of periocular mesenchyme. This phenotype shared features with that produced when the Wnt/β-catenin pathway co-receptor Lrp6 is mutated or when retinoic acid (RA) signaling in the eye is compromised. Consistent with this, microarray and cell fate marker analysis identified a series of expression changes in genes known to be regulated by RA or by the Wnt/β-catenin pathway. Using pathway reporters, we showed that Wnt ligands from the surface ectoderm directly or indirectly elicit a Wnt/β-catenin response in retinal pigment epithelium (RPE) progenitors near the optic cup rim. In Le-cre; Wlsfl/fl mice, the numbers of RPE cells are reduced and this can explain, using the principle of the bimetallic strip, the curvature of the optic cup. These data thus establish a novel hypothesis to explain how differential cell numbers in a bilayered epithelium can lead to shape change. PMID:25715397

  1. Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces

    Science.gov (United States)

    Ishigaki, H.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface.

  2. Catalytic reforming of glycerol in supercritical water over bimetallic Pt-Ni catalyst

    NARCIS (Netherlands)

    Chakinala, A.G.; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.; de Vlieger, Dennis; Seshan, Kulathuiyer; Brilman, Derk Willem Frederik

    2013-01-01

    Catalytic reforming of pure glycerol for the production of hydrogen at low temperature and short residence times in supercritical water was investigated using a bimetallic Pt–Ni catalyst supported on alumina. Initial tests were carried out to study the reforming activity of bimetallic Pt–Ni

  3. Physical and Numerical Analysis of Extrusion Process for Production of Bimetallic Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Misiolek, W.Z.; Sikka, V.K.

    2006-08-10

    Bimetallic tubes are used for very specific applications where one of the two metals provides strength and the other provides specific properties such as aqueous corrosion and carburization, coking resistance, and special electrical and thermal properties. Bimetallic tubes have application in pulp and paper industry for heat-recovery boilers, in the chemical industry for ethylene production, and in the petrochemical industry for deep oil well explorations. Although bimetallic tubes have major applications in energy-intensive industry, they often are not used because of their cost and manufacturing sources in the United States. This project was intended to address both of these issues.

  4. Low cycle fatigue lifetime of HIP bonded Bi-metallic first wall structures of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Toshihisa; Sato, Satoshi; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hashimoto, Toshiyuki; Kitamura, Kazunori

    1998-10-01

    A HIP bonded bi-metallic panel composed of a dispersion strengthened copper (DSCu) layer and type 316L stainless steel (SS316L) cooling pipes is the reference design of the ITER first wall. To examine the fatigue lifetime of the first wall panel under cyclic mechanical loads, low cycle fatigue tests of HIP bonded bi-metallic specimens made of SS316L and DSCu were conducted with the stress ratio of -1.0 and five nominal strain range conditions ranging from 0.2 to 1.0%. Elasto-plastic analysis has also been conducted to evaluate local strain ranges under the nominal strains applied. Initial cracks were observed at the inner surface of the SS316L cooling pipes for all of the specimens tested, which was confirmed by the elasto-plastic analysis that the maximum strains of the test specimens were developed at the same locations. It was found that the HIP bonded bi-metallic test specimens had a fatigue lifetime longer than that of the SS316L raw material obtained by round bar specimens. Similarly, the fatigue lifetime of the DSCu/SS316L HIP interface was also longer than the round bar test results for the HIP joints. From these results, it has been confirmed that the bi-metallic first wall panel with built-in cooling pipes made by HIP bonding has a sufficient fatigue lifetime in comparison with the raw fatigue data of the materials, which also suggests that the fatigue lifetime evaluation has an adequate margin against fracture if it follows the design fatigue curve based on the material fatigue data. (author)

  5. Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface.

    Science.gov (United States)

    Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2015-08-07

    The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.

  6. Preparation of Rh/Ag bimetallic nanoparticles as effective catalyst for hydrogen generation from hydrolysis of KBH4

    Science.gov (United States)

    Huang, Liang; Jiao, Chengpeng; Wang, Liqiong; Huang, Zili; Liang, Feng; Liu, Simin; Wang, Yuhua; Zhang, Haijun; Zhang, Shaowei

    2018-01-01

    ISOBAM-104 protected Rh/Ag bimetallic nanoparticles (NPs) with average diameter less than 3.0 nm were synthesized by a co-reduction method. Ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM and x-ray photoelectron spectroscopy (XPS) were employed to characterize the structure, particle size, and electronic structure of the prepared bimetallic NPs. The catalytic activities of prepared bimetallic NPs for hydrogen generation from hydrolysis of a basic KBH4 solution were evaluated in detail. The results indicated that as-prepared Rh/Ag bimetallic NPs showed a higher catalytic activity than corresponding monometallic NPs. Among all the monometallic NPs and bimetallic NPs, Rh80Ag20 bimetallic NPs exhibited the highest catalytic activity with a value of 6010 mol-H2·h-1·mol-catalyst-1 at pH = 12 and 303 K. The high catalytic activities of Rh/Ag bimetallic NPs could be attributed to presence of negatively charged Rh atoms and positively charged Ag atoms, which is supported by the results of XPS and density functional theory calculation. Based on the kinetic study, the apparent activation energy for the hydrolysis reaction of the basic KBH4 solution catalyzed by Rh80Ag20 bimetallic NPs was about 47.0 ± 3.9 kJ mol-1.

  7. Effect of Mica and Hematite (001) Surfaces on the Precipitation of Calcite

    OpenAIRE

    Huifang Xu; Mo Zhou; Yihang Fang; H. Henry Teng

    2018-01-01

    The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) methods. On mica, we found, in the absence of Mg2+, the substrates’ (001) surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D) structure can affect the orientation of calcite nucleation with calcite (001) ~// mica (001) and calcite (010) ~// mica (010) to be the m...

  8. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    International Nuclear Information System (INIS)

    Daud, M.; Khan, Z.; Ashgar, A.; Danish, M. I.; Qazi, I. A.

    2015-01-01

    This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, ph, temperature, and contact time were determined for removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudo first-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at ph 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at ph 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater removal efficiency due to the small particle size, extremely large surface area (627 m 2 /g), and high adsorption capacity.

  9. Ab initio study of the electron-phonon coupling at the Cr(001) surface

    Science.gov (United States)

    Peters, L.; Rudenko, A. N.; Katsnelson, M. I.

    2018-04-01

    It is experimentally well established that the Cr(001) surface exhibits a sharp resonance around the Fermi level. However, there is no consensus about its physical origin. It is proposed to be either due to a single particle dz2 surface state renormalized by electron-phonon coupling or the orbital Kondo effect involving the degenerate dx z/ dy z states. In this paper we examine the electron-phonon coupling of the Cr(001) surface by means of ab-initio calculations in the form of density functional perturbation theory. More precisely, the electron-phonon mass-enhancement factor of the surface layer is investigated for the 3d states. For the majority and minority spin dz2 surface states we find values of 0.19 and 0.16. We show that these calculated electron-phonon mass-enhancement factors are not in agreement with the experimental data even if we use realistic values for the temperature range and surface Debye frequency for the fit of the experimental data. More precisely, then experimentally an electron-phonon mass-enhancement factor of 0.70 ±0.10 is obtained, which is not in agreement with our calculated values of 0.19 and 0.16. Our findings suggest that the experimentally observed resonance at the Cr(001) surface is not due to electron-phonon effects but due to electron-electron correlation effects.

  10. Antiferromagnetic MnN layer on the MnGa(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@cnyn.unam.mx; Takeuchi, Noboru

    2016-12-30

    Highlights: • A ferromagnetic Gallium terminated surface is stable before N incorporation. • After N incorporation, an antiferromagnetic MnN layer becomes stable in a wide range of chemical potential. • Spin density distribution shows an antiferromagnetic/ferromagnetic (MnN/MnGa) arrangement at the surface. - Abstract: Spin polarized first principles total energy calculations have been applied to study the stability and magnetic properties of the MnGa(001) surface and the formation of a topmost MnN layer with the deposit of nitrogen. Before nitrogen adsorption, surface formation energies show a stable gallium terminated ferromagnetic surface. After incorporation of nitrogen atoms, the antiferromagnetic manganese terminated surface becomes stable due to the formation of a MnN layer (Mn-N bonding at the surface). Spin density distribution shows a ferromagnetic/antiferromagnetic arrangement in the first surface layers. This thermodynamically stable structure may be exploited to growth MnGa/MnN magnetic heterostructures as well as to look for exchange biased systems.

  11. First-Principles Study on the Adsorption Properties of Transition-Metal Atoms on CaO(001) Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Byung Deok [University of Seoul, Seoul (Korea, Republic of); Jang, Young-Rok [Incheon National University, Incheon (Korea, Republic of)

    2017-03-15

    By using first-principles electronic-structure calculations based on the density functional theory, we systematically investigated the adsorption properties of transition-metal (TM) adatoms on CaO(001) surfaces. Optimized adsorption structures and energetics of TM adatoms on CaO(001) are reported for various adsorption structures. The results are different from those of TM adatoms on MgO(001). Concomitantly, this suggests different dynamical properties of TM adatoms on CaO(001) surfaces as compared with TM adatoms on MgO(001) surfaces. Also performed was an analysis of the electronic structures of the TM adatoms on CaO(001) by using the energy positions of the adsorbate states with respect to the valence band maximum of CaO. The results are discussed in connection with the charge states of the TM adatoms on doped CaO(001).

  12. A First Principles Study of H2 Adsorption on LaNiO3(001 Surfaces

    Directory of Open Access Journals (Sweden)

    Changchang Pan

    2017-01-01

    Full Text Available The adsorption of H2 on LaNiO3 was investigated using density functional theory (DFT calculations. The adsorption sites, adsorption energy, and electronic structure of LaNiO3(001/H2 systems were calculated and indicated through the calculated surface energy that the (001 surface was the most stable surface. By looking at optimized structure, adsorption energy and dissociation energy, we found that there were three types of adsorption on the surface. First, H2 molecules completely dissociate and then tend to bind with the O atoms, forming two –OH bonds. Second, H2 molecules partially dissociate with the H atoms bonding to the same O atom to form one H2O molecule. These two types are chemical adsorption modes; however, the physical adsorption of H2 molecules can also occur. When analyzing the electron structure of the H2O molecule formed by the partial dissociation of the H2 molecule and the surface O atom, we found that the interaction between H2O and the (001 surface was weaker, thus, H2O was easier to separate from the surface to create an O vacancy. On the (001 surface, a supercell was constructed to accurately study the most stable adsorption site. The results from analyses of the charge population; electron localization function; and density of the states indicated that the dissociated H and O atoms form a typical covalent bond and that the interaction between the H2 molecule and surface is mainly due to the overlap-hybridization among the H 1s, O 2s, and O 2p states. Therefore, the conductivity of LaNiO3(001/H2 is stronger after adsorption and furthermore, the conductivity of the LaNiO3 surface is better than that of the LaFeO3 surface.

  13. Theoretical study on photon-phonon coupling at (001)-(2 x 1) surfaces of Ge and {alpha}-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F.L. [Escuela de Ciencias, Universidad Autonoma ' ' Benito Juarez' ' de Oaxaca, Av. Universidad S/N, Ex-Hacienda de Cinco Senores, Ciudad Universitaria, Oaxaca de Juarez, Oax., 68120 (Mexico); Perez-Rodriguez, F. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apdo. Post. J-48, Puebla, Pue. 72570 (Mexico)

    2011-06-15

    We present a study of the far-infrared reflectance anisotropy spectra for (001) surfaces of Ge and {alpha}-Sn in the (2 x 1) asymmetric dimer geometry, which exhibit a resonance structure associated with the excitation of surface phonon modes. We have employed a theoretical formalism, based on the adiabatic bond-charge model (ABCM), for computing the far-infrared reflectance anisotropy spectra. In comparison with previous theoretical results for silicon and diamond surfaces, the resonance structure in the reflectance anisotropy spectrum for Ge(001)-(2 x 1) turns out to be similar to that observed in the spectrum for the Si(001)-(2 x 1) surface, whereas the spectrum for {alpha}-Sn(001)-(2 x 1) surface is noticeably different from the others. We have established a trend of far-infrared reflectance anisotropy spectra for IV(001) surfaces: the weaker dimer strength, the stronger resonances of low-frequency surface phonons. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Critical surface phase of α2(2 × 4) reconstructed zig-zag chains on InAs(001)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiang [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China); Zhou, Xun [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China); School of Physics and Electronics Science, Guizhou Normal University, Guizhou, Guiyang 550001 (China); Wang, Ji-Hong [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China); Luo, Zi-Jiang [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China); School of Education Administration, Guizhou University of Finance and Economics, Guizhou, Guiyang 550004 (China); Zhou, Qing; Liu, Ke; Hu, Ming-Zhe [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China); Ding, Zhao, E-mail: zding@gzu.edu.cn [Department of Electronic Information Science and Technology, Guizhou University, Guizhou, Guiyang 550025 (China)

    2014-07-01

    The critical condition for InAs(001) surface phase transition has been studied, the surface phase transition of InAs(001) showed discontinuity with hysteresis cycle as a function of substrate temperature. A mixed reconstruction surface and zig-zag chain α2(2 × 4) reconstruction surface have been observed by scanning tunneling microscopy. Considering the interaction and dynamics of surface arsenic atoms, the zig-zag chains of α2(2 × 4) reconstruction were found to be actually caused by the selective adsorption and desorption of surface arsenic dimers, they played a critical role in the surface phase transition between (2 × 4) and (4 × 2). - Highlights: • Discontinuous surface phase transition phenomena on the flat InAs(001) surface • Nanoscale InAs(001) surface observed by scanning tunneling microscopy • “Zig-Zag” chains of α2(2 × 4) reconstruction • Critical role in the surface phase transition between (2 × 4) and (4 × 2)

  15. Critical surface phase of α2(2 × 4) reconstructed zig-zag chains on InAs(001)

    International Nuclear Information System (INIS)

    Guo, Xiang; Zhou, Xun; Wang, Ji-Hong; Luo, Zi-Jiang; Zhou, Qing; Liu, Ke; Hu, Ming-Zhe; Ding, Zhao

    2014-01-01

    The critical condition for InAs(001) surface phase transition has been studied, the surface phase transition of InAs(001) showed discontinuity with hysteresis cycle as a function of substrate temperature. A mixed reconstruction surface and zig-zag chain α2(2 × 4) reconstruction surface have been observed by scanning tunneling microscopy. Considering the interaction and dynamics of surface arsenic atoms, the zig-zag chains of α2(2 × 4) reconstruction were found to be actually caused by the selective adsorption and desorption of surface arsenic dimers, they played a critical role in the surface phase transition between (2 × 4) and (4 × 2). - Highlights: • Discontinuous surface phase transition phenomena on the flat InAs(001) surface • Nanoscale InAs(001) surface observed by scanning tunneling microscopy • “Zig-Zag” chains of α2(2 × 4) reconstruction • Critical role in the surface phase transition between (2 × 4) and (4 × 2)

  16. Surface structure and reaction property of CuCl2-PdCl2 bimetallic catalyst in methanol oxycarbonylation: A DFT approach

    International Nuclear Information System (INIS)

    Meng, Qingsen; Wang, Shengping; Shen, Yongli; Yan, Bing; Wu, Yuanxin; Ma, Xinbin

    2014-01-01

    Surface structure of CuCl 2 -PdCl 2 bimetallic catalyst (Wacker-type catalyst) was built employing density functional theory (DFT) calculations, and the reaction mechanism of methanol oxycarbonylation over the CuCl 2 -PdCl 2 surfaces was also investigated. On the CuCl 2 -PdCl 2 surface, the active site for methanol oxidation was confirmed as Cu-Cl-Cu (Pd). Comparing with pure CuCl 2 surface, the introduction of Pd atom causes the electron repopulation on the surface and lowers the energy barrier for methanol oxidation, but the number of the active site decreases with the increasing of Pd doping volume. Agreed with previous experimental results, the Pd site is most favorable for the CO insertion, indicated by the lowest activation barrier for the formation of COOCH 3 on Pd atom. The lowest energy barrier for the formation of DMC appears when COOCH 3 species adsorbed on Pd atom and methoxyl adsorbed on Cu atoms, which is 0.42 eV. Finally, the reconstruction of the unsaturated surface is a spontaneous and exothermic process. Comparing with other surfaces, the rate-limiting step, methanol oxidation, on CuCl 2 -PdCl 2 surface with Pd/Cu = 1:17 has the lowest energy barrier, which is agreed with the experimental observation that PdCl 2 -CuCl 2 catalyst with Pd/Cu = 1:20 has the favorable activity. The adsorbed methoxyl will further lower the activation barrier of methanol oxidation, which is agreed with experimental observation that the Wacker-type catalysts have an induction period in the methanol oxidative carbonylation system.

  17. Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane

    Science.gov (United States)

    Liu, Yang; Zhang, Jun; Guan, Huijuan; Zhao, Yafei; Yang, Jing-He; Zhang, Bing

    2018-01-01

    In present work, we prepared the bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes (Cu-Co/PDDA-HNTs) by a deposition-reduction technique at room temperature. The analysis of XRD, SEM, TEM, HAADF-STEM and XPS were employed to systematically investigate the morphology, particle size, structure and surface properties of the nanocomposite. The results reveal that the PDDA coating with thickness of ∼15 nm could be formed on the surface of HNTs, and the existence of PDDA is beneficial to deposit Cu and Co nanoparticles (NPs) with high dispersibility on the surface. While the cost-effective nanocomposite was used for the hydrolytic dehydrogenation of ammonia-borane (NH3BH3), the nanocatalyst showed extraordinary catalytic properties with high total turnover frequency of 30.8 molH2/(molmetal min), low activation energy of 35.15 kJ mol-1 and high recycling stability (>90% conversion at 10th reuse). These results indicate that the bimetallic Cu-Co nanocatalysts on PDDA functionalized HNTs have particular potential for application in release hydrogen process.

  18. Cu-Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO

    KAUST Repository

    Sarfraz, Saad

    2016-03-23

    We report a selective and stable electrocatalyst utilizing non-noble metals consisting of Cu and Sn for the efficient and selective reduction of CO2 to CO over a wide potential range. The bimetallic electrode was prepared through the electrodeposition of Sn species on the surface of oxide-derived copper (OD-Cu). The Cu surface, when decorated with an optimal amount of Sn, resulted in a Faradaic efficiency (FE) for CO greater than 90% and a current density of −1.0 mA cm−2 at −0.6 V vs. RHE, compared to the CO FE of 63% and −2.1 mA cm−2 for OD-Cu. Excess Sn on the surface caused H2 evolution with a decreased current density. X-ray diffraction (XRD) suggests the formation of Cu-Sn alloy. Auger electron spectroscopy of the sample surface exhibits zero-valent Cu and Sn after the electrodeposition step. Density functional theory (DFT) calculations show that replacing a single Cu atom with a Sn atom leaves the d-band orbitals mostly unperturbed, signifying no dramatic shifts in the bulk electronic structure. However, the Sn atom discomposes the multi-fold sites on pure Cu, disfavoring the adsorption of H and leaving the adsorption of CO relatively unperturbed. Our catalytic results along with DFT calculations indicate that the presence of Sn on reduced OD-Cu diminishes the hydrogenation capability—i.e., the selectivity towards H2 and HCOOH—while hardly affecting the CO productivity. While the pristine monometallic surfaces (both Cu and Sn) fail to selectively reduce CO2, the Cu-Sn bimetallic electrocatalyst generates a surface that inhibits adsorbed H*, resulting in improved CO FE. This study presents a strategy to provide a low-cost non-noble metals that can be utilized as a highly selective electrocatalyst for the efficient aqueous reduction of CO2.

  19. Synthesis and properties of bimetallic aluminium alkoxides

    International Nuclear Information System (INIS)

    Vyshinskaya, K.I.; Vasil'ev, G.A.; Vishnyakova, T.A.

    1997-01-01

    A single stage method of aluminium bimetallic alkoxide synthesis, which consists in activated aluminium reaction with metal salts in the relevant alcohols, has been developed. Properties of the compounds prepared are described

  20. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation.

    Science.gov (United States)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-06-25

    In recent years, direct ethanol fuel cells (DEFCs) are attracting increasing attention owing to their wide applications. However, a significant challenge in the development of DEFC technology is the urgent need for highly active anode catalysts for the ethanol oxidation reaction. In this work, a facile and reproducible method for the high-yield synthesis of PdAu nanowire networks is demonstrated. The whole synthetic process is very simple, just mixing Na2PdCl4, HAuCl4, and KBr in an aqueous solution and using polyvinylpyrrolidone as a protective reagent while sodium borohydride as a reductant. The whole synthetic process can be simply performed at room temperature and completed in 30 min, which can greatly simplify the synthetic process and lower the preparation cost. Electrochemical catalytic measurement results prove that the as-prepared catalysts exhibit dramatically enhanced electrocatalytic activity for ethanol electrooxidation in alkaline solution. The facile synthetic process and excellent catalytic performance of the as-prepared catalysts demonstrate that they can be used as a promising catalyst for DEFCs.

  1. Structure of metal-rich (001) surfaces of III-V compound semiconductors

    DEFF Research Database (Denmark)

    Kumpf, C.; Smilgies, D.; Landemark, E.

    2001-01-01

    The atomic structure of the group-III-rich surface of III-V semiconductor compounds has been under intense debate for many years, yet none of the models agrees with the experimental data available. Here we present a model for the three-dimensional structure of the (001)-c(8x2) reconstruction on In......(8 x 2) reconstructions of III-V semiconductor surfaces contain the same essential building blocks....

  2. High resolution electron energy loss spectroscopy of clean and hydrogen covered Si(001) surfaces: first principles calculations.

    Science.gov (United States)

    Patterson, C H

    2012-09-07

    Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.

  3. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Jasmine; Mukherjee, Tulsi; Kapoor, Sudhir, E-mail: sudhirk@barc.gov.in

    2012-10-01

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: Black-Right-Pointing-Pointer First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. Black-Right-Pointing-Pointer Red cabbage extract has better reducing properties than green cabbage extract. Black-Right-Pointing-Pointer Red cabbage extract can reduce metal ions at any pH. Black-Right-Pointing-Pointer Reduction of metal ions can have important consequences in the study of soil chemistry.

  4. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    International Nuclear Information System (INIS)

    Jacob, Jasmine; Mukherjee, Tulsi; Kapoor, Sudhir

    2012-01-01

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: ► First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. ► Red cabbage extract has better reducing properties than green cabbage extract. ► Red cabbage extract can reduce metal ions at any pH. ► Reduction of metal ions can have important consequences in the study of soil chemistry.

  5. Simulation of Bimetallic Bush Hot Rolling Bonding Process

    Directory of Open Access Journals (Sweden)

    Yaqin Tian

    2015-01-01

    Full Text Available Three-dimensional model of bimetallic bush was established including the drive roller and the core roller. The model adopted the appropriate interface assumptions. Based on the bonding properties of bimetallic bush the hot rolling process was analyzed. The optimum reduction ratio of 28% is obtained by using the finite element simulation software MARC on the assumption of the bonding conditions. The stress-strain distribution of three dimensions was research assumptions to interface deformation of rolling. At the same time, based on the numerical simulation, the minimum reduction ratio 20% is obtained by using a double metal composite bush rolling new technology from the experiment research. The simulation error is not more than 8%.

  6. Yolk@Shell Nanoarchitectures with Bimetallic Nanocores-Synthesis and Electrocatalytic Applications.

    Science.gov (United States)

    Guiet, Amandine; Unmüssig, Tobias; Göbel, Caren; Vainio, Ulla; Wollgarten, Markus; Driess, Matthias; Schlaad, Helmut; Polte, Jörg; Fischer, Anna

    2016-10-10

    In the present paper, we demonstrate a versatile approach for the one-pot synthesis of metal oxide yolk@shell nanostructures filled with bimetallic nanocores. This novel approach is based on the principles of hydrophobic nanoreactor soft-templating and is exemplified for the synthesis of various AgAu NP @tin-rich ITO (AgAu@ITO TR ) yolk@shell nanomaterials. Hydrophobic nanoreactor soft-templating thereby takes advantage of polystyrene-block-poly(4-vinylpiridine) inverse micelles as two-compartment nanoreactor template, in which the core and the shell of the micelles serve as metal and metal oxide precursor reservoir, respectively. The composition, size and number of AuAg bimetallic nanoparticles incorporated within the ITO TR yolk@shell can easily be tuned. The conductivity of the ITO TR shell and the bimetallic composition of the AuAg nanoparticles, the as-synthesized AuAg NP @ITO TR yolk@shell materials could be used as efficient electrocatalysts for electrochemical glucose oxidation with improved onset potential when compared to their gold counterpart.

  7. Effect of iron on vanadium (001) strained surface magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M; Al-Barwani, M; Gismelseed, A; Al-Rawas, A; Yousif, A; Widatallah, H; Bouziane, K; Al-Omari, I, E-mail: elzain@squ.edu.o [Department of Physics, College Of Science, Box 36, Sultan Qaboos University, Al Khod 123 (Oman)

    2010-03-01

    The magnetism of the vanadium (001) surface has been a controversial subject on both theoretical and experiment fronts. Both strongly ferromagnetic and paramagnetic phases were reported. We have used the first principle full-potential linearized-augmented plane waves (FP-LAPW) as implemented in WIEN2k package to study the magnetic properties of strained surfaces of vanadium films as a function of film thickness. We found that for films thicker than about 11 monolayers, the magnetism of the strained surfaces converge to a constant value of about 0.15{mu}{sub B}. Introduction of Fe monolayers and impurities at the centre of the films affects the magnetic structure of thin films but has no influence on the surface magnetism of thicker films. For Fe monolayers positioned at the centre of thick films, the Fe atoms maintain magnetic moment of order 0.86{mu}{sub B}, a quadruple splitting of order -0.3 mm/s and a small negative isomer shift, while an Fe impurity has vanishing hyperfine fields and magnetic moment. In addition we have varied the location of the Fe monolayer and impurity within the V films and found that their position affects the surface magnetism.

  8. Buckminsterfullerene's movability on the Fe(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Kuzubov, Alexander A. [Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041 (Russian Federation); L.V. Kirensky Institute of Physics, 50 Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Kovaleva, Evgenia A., E-mail: kovaleva.evgeniya1991@mail.ru [Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041 (Russian Federation); Avramov, Pavel V. [Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566 (Korea, Republic of); Kholtobina, Anastasia S.; Mikhaleva, Natalya S. [Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041 (Russian Federation); Kuklin, Artem V. [Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041 (Russian Federation); Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566 (Korea, Republic of)

    2016-07-15

    Organic-based spintronics is one of the most fast-developing fields in nanoelectronics. Buckminsterfullerene-based composites are widely investigated due to its unique properties and there is a number of studies concerned with its interfaces with various types of substrates. Ferromagnetic surfaces are of a particular interest for potential spintronics applications. Based on the data reported in literature, we suppose that there are more than one stable structure in C{sub 60}/Fe(001) composite system. Here we investigate different possible adsorption sites of C{sub 60} molecule and reveal the possibility of their coexistence and its influence on the composite properties. - Highlights: • Atomic and electronic structure of C{sub 60}/Fe(001) composites was studied by means of DFT. • Potential barriers of C{sub 60} displacement were estimated. • Influence of C{sub 60} relocation on composite properties was discussed.

  9. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory; Laveille, Paco; Anjum, Dalaver H.; Caps, Valerie; Basset, Jean-Marie

    2015-01-01

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  10. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-04-28

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  11. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    Directory of Open Access Journals (Sweden)

    Muhammad Daud

    2015-01-01

    Full Text Available This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, pH, temperature, and contact time were determined for NO3- removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudofirst-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at pH 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at pH 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater NO3- removal efficiency due to the small particle size, extremely large surface area (627 m2/g, and high adsorption capacity.

  12. RHEED and EELS study of Pd/Al bimetallic thin film growth on different α-Al 2O 3 substrates

    Science.gov (United States)

    Moroz, V.; Rajs, K.; Mašek, K.

    2002-06-01

    Pd/Al bimetallic thin films were grown by molecular beam epitaxy on single-crystalline α-Al 2O 3(0 0 0 1) and (1 1 2¯ 0) surfaces. Substrate and deposit crystallographic structures and evolution of deposit lattice parameter during the growth were studied by reflection high-energy electron diffraction. The electron energy loss spectroscopy was used as an auxiliary method for chemical analysis. The bimetallic films were prepared by successive deposition of both Pd and Al metals. The structure of Pd and Al deposits in early stages of the growth and its dependence on the preparation conditions were studied. Two phases of Pd clusters covered by Al overlayer have been found. The formation of Al overlayer strongly influenced the lattice parameter of Pd clusters.

  13. Oxygen reduction reaction (orr) on bimetallic AuPt and AuPd(1 0 0)-electrodes: Effects of the heteroatomic junction on the reaction paths

    Science.gov (United States)

    Schulte, E.; Belletti, G.; Arce, M.; Quaino, P.

    2018-05-01

    The seek for materials to enhance the oxygen reduction reaction (orr) rate is a highly relevant topic due to its implication in fuel cell devices. Herein, the orr on bimetallic electrocatalysts based on Au-M (M = Pt, Pd) has been studied computationally, by performing density functional theory calculations. Bimetallic (1 0 0) electrode surfaces with two different Au:M ratios were proposed, and two possible pathways, associative and dissociative, were considered for the orr. Changes in the electronic properties of these materials with respect to the pure metals were acknowledged to gain understanding in the overall reactivity trend. The effect of the bimetallic junction on the stability of the intermediates O2 and OOH was also evaluated by means of geometrical and energetic parameters; being the intermediates preferably adsorbed on Pt/Pd atoms, but presenting in some cases higher adsorption energies compared with bare metals. Finally, the kinetics of the Osbnd O bond breaking in O2∗ and OOH∗ adsorbed intermediates in the bimetallic materials and the influence of the Au-M junction were studied by means of the nudge elastic-band method. A barrierless process for the scission of O2∗ was found in Au-M for the higher M ratios. Surprisingly, for Au-M with lower M ratios, the barriers were much lower than for pure Au surfaces, suggesting a highly reactive surface towards the orr. The Osbnd O scission of the OOH∗ was found to be a barrierless process in Ausbnd Pt systems and nearly barrierless in all Ausbnd Pd systems, implying that the reduction ofO2 in these systems proceeds via the full reduction of O2 to H2O , avoiding H2O2 formation.

  14. Atomistic simulations of the structures of Pd-Pt bimetallic nanoparticles and nanowires

    OpenAIRE

    Yun, Kayoung; Cha, Pil-Ryung; Lee, Jaegab; Kim, Jiyoung; Nam, Ho-Seok

    2015-01-01

    Bimetallic nanoalloys such as nanoparticles and nanowires are attracting significant attention due to their vast potential applications such as in catalysis and nanoelectronics. Notably, Pd-Pt nanoparticles/nanowires are being widely recognized as catalysts and hydrogen sensors. Compared to unary systems, alloys present more structural complexity with various compositional configurations. Therefore, it is important to understand energetically preferred atomic structures of bimetallic nanoallo...

  15. Investigation of reordered (001) Au surfaces by positive ion channeling spectroscopy, LEED and AES

    International Nuclear Information System (INIS)

    Appleton, B.R.; Noggle, T.S.; Miller, J.W.; Schow, O.E. III; Zehner, D.M.; Jenkins, L.H.; Barrett, J.H.

    1974-01-01

    As a consequence of the channeling phenomenon of positive ions in single crystals, the yield of ions Rutherford scattered from an oriented single crystal surface is dependent on the density of surface atoms exposed to the incident ion beam. Thus, the positive ion channeling spectroscopy (PICS) technique should provide a useful tool for studying reordered surfaces. This possibility was explored by examining the surfaces of epitaxially grown thin Au single crystals with the combined techniques of LEED-AES and PICS. The LEED and AES investigations showed that when the (001) surface was sputter cleaned in ultra-high vacuum, the normal (1 x 1) symmetry of the (001) surfaces reordered into a structure which gave a complex (5 x 20) LEED pattern. The yield and energy distributions of 1 MeV He ions scattered from the Au surfaces were used to determine the number of effective monolayers contributing to the normal and reordered surfaces. These combined measurements were used to characterize the nature of the reordered surface. The general applicability of the PICS technique for investigations of surface and near surface regions is discussed

  16. Structural Characteristics of Bimetallic Catalysts Supported on Nano-Ceria

    Directory of Open Access Journals (Sweden)

    J. F. Bozeman

    2011-01-01

    Full Text Available Cu-Pt bimetal catalysts supported on nanocrystalline CeO2 (nano-ceria are synthesized via the low-cost sol-gel approach followed by impregnation processing. The average particle size of the catalytic composites is 63 nm. Ceria nanopowders sequentially impregnated in copper solution and then in Pt solution transformed into Pt-skin-structured Cu-Pt/ceria nanocomposite, based on the surface elemental and bulk compositional analyses. The ceria supporter has a fluorite structure, but the structure of Cu and Pt catalytic contents, not detected by X-ray diffraction spectroscopy due to the low loading level, is yet conclusive. The bimetallic catalytic nanocomposites may potentially serve as sulfur-tolerant anode in solid oxide fuel cells.

  17. Effect of hybrid carbon nanotubes-bimetallic composite particles on the performance of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Young [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Kim, Whi-Dong; Kim, Soo H. [Department of Nanosystem and Nanoprocess Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea); Kim, Do-Geun; Kim, Jong-Kuk; Jeong, Yong-Soo; Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science, Changwon 641-831 (Korea); Kim, Joo Hyun [Division of Applied Chemical Engineering, Department of Polymer Engineering, Pukyong National University, Busan 608-739 (Korea); Lee, Jae Keun [School of Mechanical Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea)

    2010-05-15

    Hybrid carbon nanotubes-bimetallic composite nanoparticles with sea urchin-like structures (SU-CNTs) were introduced to bulk heterojunction polymer-fullerene solar cells to improve their performance. The SU-CNTs were composed of multi-walled CNTs, which were grown radially over the entire surface of the bimetallic nanoparticles composed of Ni and Al. SU-CNTs with a precisely controlled length of {proportional_to}200{+-}40 nm were dispersed homogenously in a polymer active layer. Compared with a pristine device (i.e., without SU-CNTs), the SU-CNTs-doped organic photovoltaic (OPV) cells showed an improved short-circuit current density and power conversion efficiency from 7.5 to 9.5 mA/cm{sup 2} and 2.1{+-}0.1% to 2.2{+-}0.2% (max. 2.5%), respectively. The specially designed SU-CNTs have strong potential as an effective exciton dissociation medium in the polymer active layer to enhance the performance of organic solar cells. (author)

  18. Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis

    International Nuclear Information System (INIS)

    Remita, S.; Mostafavi, M.; Delcourt, M.O.

    1996-01-01

    Irradiating aqueous solutions containing both Ag 2 So 4 and K 2 PtCl 4 leads to intermetallic aggregates of various sizes according to the stabilizing agent: polyvinylalcohol, polyacrylic acid or polyacrylate. In the last case, the particle diameter is 1.5 nm. The bimetallic character is evidenced in all cases by the spectral changes of such sols compared to pure silver sols which display a characteristic surface plasmon absorption band. This plasmon band disappears when 10 to 20 at.% or more Pr is present. Observation by TEM gives an estimation of the particle sizes. Comparable results have been obtained for Au-Pt particles. (author)

  19. Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Remita, S; Mostafavi, M; Delcourt, M O [Paris-11 Univ., 91 - Orsay (France)

    1996-02-01

    Irradiating aqueous solutions containing both Ag{sub 2}So{sub 4} and K{sub 2}PtCl{sub 4} leads to intermetallic aggregates of various sizes according to the stabilizing agent: polyvinylalcohol, polyacrylic acid or polyacrylate. In the last case, the particle diameter is 1.5 nm. The bimetallic character is evidenced in all cases by the spectral changes of such sols compared to pure silver sols which display a characteristic surface plasmon absorption band. This plasmon band disappears when 10 to 20 at.% or more Pr is present. Observation by TEM gives an estimation of the particle sizes. Comparable results have been obtained for Au-Pt particles. (author).

  20. Analysis of Al-Cu Bimetallic Bars Properties After Explosive Welding and Rolling in Modified Passes

    Directory of Open Access Journals (Sweden)

    Mróz S.

    2015-04-01

    Full Text Available The paper presents the results of the experimental tests of Al-Cu bimetallic bars rolling process in multi-radial modified passes. The bimetallic bars consist of aluminium core, grade 1050A and copper outer layer, grade M1E. The stocks were round bars with diameter 22 mm with a copper layer share of 15 and 30%. As a result of rolling in four passes, bars of a diameter of about 16.0 mm were obtained. A bimetallic stock was manufactured using an explosive welding method. The use of the designed arrangement of multi-radial modified stretching passes resulted in obtaining Al-Cu bimetallic bars with the required lateral dimensions, an uniform distribution of the cladding layer over the bar perimeter and high quality of shear strength between individual layers.

  1. Reductive dechlorination of {gamma}-hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, Varima; Bokare, Alok D. [Center for Nanobioscience, Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra (India); Chikate, Rajeev C. [Department of Chemistry, MES Abasaheb Garware College, Karve Road, Pune 411004 (India); Rode, Chandrashekhar V. [Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008 (India); Paknikar, Kishore M., E-mail: paknikar@vsnl.com [Center for Nanobioscience, Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra (India)

    2010-03-15

    Nanoscale Fe-Pd bimetallic particles were synthesized and used for degradation of lindane ({gamma}-hexachlorocyclohexane) in aqueous solution. Batch studies showed that 5 mg/L of lindane was completely dechlorinated within 5 min at a catalyst loading of 0.5 g/L and the degradation process followed first-order kinetics. GC-MS analysis in corroboration with GC-ECD results showed the presence of cyclohexane as the final degradation product. The proposed mechanism for the reductive dechlorination of lindane involves Fe corrosion-induced hydrogen atom transfer from the Pd surface. The enhanced degradation efficiency of Fe-Pd nanoparticles is attributed to: (1) high specific surface area of the nanoscale metal particles (60 m{sup 2}/g), manyfold greater that of commercial grade micro- or milli-scale iron particles ({approx}1.6 m{sup 2}/g); and, (2) increased catalytic reactivity due to the presence of Pd on the surface. Recycling and column studies showed that these nanoparticles exhibit efficient and sustained catalytic activity.

  2. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces.

    Science.gov (United States)

    Dabrowski, J; Lippert, G; Avila, J; Baringhaus, J; Colambo, I; Dedkov, Yu S; Herziger, F; Lupina, G; Maultzsch, J; Schaffus, T; Schroeder, T; Kot, M; Tegenkamp, C; Vignaud, D; Asensio, M-C

    2016-08-17

    The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene "molecules" nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.

  3. Dimer-flipping-assisted diffusion on a Si(001) surface

    International Nuclear Information System (INIS)

    Zi, J.; Min, B. J.; Lu, Y.; Wang, C. Z.; Ho, K. M.

    2000-01-01

    The binding sites and diffusion pathways of Si adatoms on a c(4x2) reconstructed Si(001) surface are investigated by a tight-binding method with an environment-dependent silicon potential in conjunction with ab initio calculations using the Car--Parrinello method. A new diffusion pathway along the trough edge driven by dimer flipping is found with a barrier of 0.74 eV, comparable to that of 0.68 eV along the top of the dimer rows

  4. Oxidative Corrosion of the UO 2 (001) Surface by Nonclassical Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, Joanne E.; Biwer, Craig A.; Chaka, Anne M. [Pacific Northwest; Ilton, Eugene S. [Pacific Northwest; Du, Yingge [Pacific Northwest; Bargar, John R. [Stanford Synchrotron; Eng, Peter J.

    2017-11-07

    Uranium oxide is central to every stage of the nuclear fuel cycle, from mining through fuel fabrication and use, to waste disposal and environmental cleanup. Its chemical and mechanical stability are intricately linked to the concentration of interstitial O atoms within the structure and the oxidation state of U. We have previously shown that during corrosion of the UO2 (111) surface under either 1 atm O2 gas or oxygenated water at room temperature, oxygen interstitials diffuse into the substrate to form a superlattice with three-layer periodicity. In the current study, we present results from surface x-ray scattering that reveal the structure of the oxygen diffusion profile beneath the (001) surface. The first few layers below the surface oscillate strongly in their surface-normal lattice parameters, suggesting preferential interstitial occupation of every other layer below the surface, which is geometrically consistent with the interstitial network that forms below the oxidized (111) surface. Deeper layers are heavily contracted and indicate that the oxidation front penetrates ~52 Å below the (001) surface after 21 days of dry O2 gas exposure at ambient pressure and temperature. X-ray photoelectron spectroscopy indicates U is present as U(IV), U(V), and U(VI).

  5. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    Science.gov (United States)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-02-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au-Ag, Ag-Pd, Au-Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au-Ag = 9.2, Ag-Pd = 9.6, Au-Pd = 9.4 nm) are characterized by UV-Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.

  6. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    Science.gov (United States)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  7. Adsorption and oxidation of oxalic acid on anatase TiO2 (001) surface: A density functional theory study.

    Science.gov (United States)

    Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun

    2015-09-15

    Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    International Nuclear Information System (INIS)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-01-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au–Ag, Ag–Pd, Au–Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au–Ag = 9.2, Ag–Pd = 9.6, Au–Pd = 9.4 nm) are characterized by UV–Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.Graphical Abstract

  9. Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Wen; Peng, Ping’an; Huang, Weilin

    2013-01-01

    Highlights: • TCBPA can be rapidly and completely dechlorinated by Pd/Fe bimetallic catalysts. • The observed rate constants are functions of dosages, initial concentration, Pd coverage and solution pH. • Pd dosage is the major factor in the observed rates of the reaction. • This is the first report investigating the dechlorination of TCBPA by Pd/Fe catalysts. -- Abstract: The Pd/Fe bimetallic catalysts of micron sizes were synthesized and the rates of tetrachlorobisphenol A (TCBPA) degradation were measured under various conditions using a batch reactor system. The results showed that TCBPA was rapidly dechlorinated to tri-, di- and mono-chlorobisphenol A and to bisphenol A (BPA). The observed rate constants (k obs ) were found to increase as functions of the Pd coverage on the Fe particles and the dosages of the catalysts within the reactors. The k obs value decreased as the initial TCBPA concentration increased, suggesting that the TCBPA dechlorination may follow a surface-site limiting Langmuir–Hinshelwood rate model. The weakly acidic solution, especially at or near pH 6.0, also favored the dechlorination of TCBPA. At pH 6.0, Pd coverage of 0.044 wt% and catalyst dosage of 5 g L −1 , TCBPA with an initial concentration of 20 μM was completely transformed within 60 min, and BPA was detected as the major product through the reaction time. Meanwhile, the k obs values measured at constant solution pH correlated linearly with the mass of particle-bound Pd introduced to the reactors, regardless of Pd/Fe catalyst dosage or Pd surface coverage. This study suggested that Pd/Fe catalysts could be potentially employed to rapidly degrade TCBPA in the contaminated environment

  10. Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing.

    Science.gov (United States)

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang-Yul

    2012-10-05

    Arc discharge in solution, generated by applying a high voltage of unipolar pulsed dc to electrodes of Ag and Pt, was used as a method to form Ag/Pt bimetallic nanocomposites via electrode erosion by the effects of the electric arc at the cathode (Ag rod) and the sputtering at the anode (Pt rod). Ag/Pt bimetallic nanocomposites were formed as colloidal particles dispersed in solution via the reduction of hydrogen radicals generated during discharge without the addition of chemical precursor or reducing agent. At a discharge time of 30 s, the fine bimetallic nanoparticles with a mean particle size of approximately 5 nm were observed by transmission electron microscopy (TEM). With increasing discharge time, the bimetallic nanoparticle size tended to increase by forming an agglomeration. The presence of the relatively small amount of Pt dispersed in the Ag matrix could be observed by the analytical mapping mode of energy-dispersive x-ray spectroscopy and high-resolution TEM. This demonstrated that the synthesized particle was in the form of a nanocomposite. No contamination of other chemical substances was detected by x-ray photoelectron spectroscopy. Hence, solution plasma could be a clean and simple process to effectively synthesize Ag/Pt bimetallic nanocomposites and it is expected to be widely applicable in the preparation of several types of nanoparticle.

  11. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    International Nuclear Information System (INIS)

    Bietti, Sergio; Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano; Fedorov, Alexey

    2014-01-01

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E A =1.31±0.15 eV, a diffusivity prefactor of D 0  = 0.53(×2.1±1) cm 2 s −1 that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  12. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  13. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    Science.gov (United States)

    Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH2OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H2PtCl6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  14. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    International Nuclear Information System (INIS)

    Liu Wei; Repo, Eveliina; Sillanpaeae, Mika; Heikkilae, Mikko; Leskelae, Markku

    2010-01-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH 2 OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H 2 PtCl 6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  15. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei; Repo, Eveliina; Sillanpaeae, Mika [Laboratory of Applied Environmental Chemistry, University of Eastern Finland, Patteristonkatu 1, FI-50100 Mikkeli (Finland); Heikkilae, Mikko; Leskelae, Markku, E-mail: weiliuzk@yahoo.cn, E-mail: mika.sillanpaa@uef.fi [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki (Finland)

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), {xi}-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH{sub 2}OH{center_dot}HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H{sub 2}PtCl{sub 6} to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  16. Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2015-12-01

    This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.

  17. Structure determination of chitosan-stabilized Pt and Pd based bimetallic nanoparticles by X-ray photoelectron spectroscopy and transmission electron microscopy

    International Nuclear Information System (INIS)

    Wu, Lihua; Shafii, Salimah; Nordin, Mohd Ridzuan; Liew, Kong Yong; Li, Jinlin

    2012-01-01

    Chitosan (CTS)-stabilized bimetallic nanoparticles were prepared at room temperature (rt.) in aqueous solution. Palladium (Pd) and platinum (Pt) were selected as the first metals while iron (Fe) and nickel (Ni) functioned as the second metals. In order to obtain the noble metal core-transition metal shell structures, bimetallic nanoparticles were prepared in a two-step process: the preparation of mono noble metallic (Pd or Pt) nanoparticles and the deposition of transition metals (Fe or Ni) on the surface of the monometallic nanoparticles. The structures of the nanoparticles were studied using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The XPS results show that Pd and Pt exist mainly in zero valences. The presence of Fe and Ni in the bimetallic nanoparticles affects the binding energy of Pd and Pt. Moreover, the studies of O 1s spectra indicate the presence of Fe or Ni shells. The analyses of TEM micrographs give the particle size and size distributions while the high-resolution TEM (HRTEM) micrographs show the existence of noble metal core lattices. The results confirm the formation of noble metal core-transition metal shell structures. -- Highlights: ► Chitosan-stabilized bimetallic nanoparticles were prepared at room temperature in aqueous solution. ► The presence of Fe or Ni shells was proven by XPS study. ► The existence of noble metal cores covered by amorphous shells was indicated by TEM study. ► The formation of noble metal core-transition metal shell structures was confirmed.

  18. Adsorption of atomic oxygen (N2O) on a clean Ge(001) surface

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.; Keim, Enrico G.; van Silfhout, Arend

    1990-01-01

    We present the results of a study concerning the interaction of atomic oxygen (as released by decomposition of N2O ) with the clean Ge(001)2×1 surface at 300 K. Ellipsometry in the photon energy range of 1.5–4 eV, surface conductance measurements and Auger electron spectroscopy(AES) have been used

  19. Thermo-mechanical efficiency of the bimetallic strip heat engine at the macro-scale and micro-scale

    International Nuclear Information System (INIS)

    Arnaud, A; Boughaleb, J; Monfray, S; Boeuf, F; Skotnicki, T; Cugat, O

    2015-01-01

    Bimetallic strip heat engines are energy harvesters that exploit the thermo-mechanical properties of bistable bimetallic membranes to convert heat into mechanical energy. They thus represent a solution to transform low-grade heat into electrical energy if the bimetallic membrane is coupled with an electro-mechanical transducer. The simplicity of these devices allows us to consider their miniaturization using MEMS fabrication techniques. In order to design and optimize these devices at the macro-scale and micro-scale, this article proposes an explanation of the origin of the thermal snap-through by giving the expressions of the constitutive equations of composite beams. This allows us to evaluate the capability of bimetallic strips to convert heat into mechanical energy whatever their size is, and to give the theoretical thermo-mechanical efficiencies which can be obtained with these harvesters. (paper)

  20. Ultrafast excited-state dynamics in shape- and composition-controlled gold–silver bimetallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zarick, Holly F. [Vanderbilt Univ., Nashville, TN (United States); Boulesbaa, Abdelaziz [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Talbert, Eric M. [Vanderbilt Univ., Nashville, TN (United States); Puretzky, Alexander A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Geohegan, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bardhan, Rizia [Vanderbilt Univ., Nashville, TN (United States)

    2017-02-01

    In this paper, we have examined the ultrafast dynamics of shape- and composition-controlled bimetallic Au/Ag core/shell nanostructures with transient absorption spectroscopy (TAS) as a function of Ag layer thickness (0–15 nm) and pump excitation fluence (50–500 nJ/pulse). Our synthesis approach generated both bimetallic nanocubes and nanopyramids with distinct dipolar plasmon resonances and plasmon dephasing behavior at the resonance. Lifetimes obtained from TAS at low powers (50 nJ/pulse) demonstrated minimal dependence on the Ag layer thickness, whereas at high power (500 nJ/pulse) a rise in electron–phonon coupling lifetime (τ1) was observed with increasing Ag shell thickness for both nanocubes and nanopyramids. This is attributable to the stronger absorption of the 400 nm pump pulse with higher Ag content, which induced higher electron temperatures. The phonon–phonon scattering lifetime (τ2) also rises with increasing Ag layer, contributed both by the increasing size of the Au/Ag nanostructures as well as by surface chemistry effects. Further, we observed that even the thinnest, 2 nm, Ag shell strongly impacts both τ1 and τ2 at high power despite minimal change in overall size, indicating that the nanostructure composition also strongly impacts the thermalization temperature following absorption of 400 nm light. We also observed a shape-dependent trend at high power, where τ2 increased for the nanopyramids with increasing Ag shell thickness and nanostructure size, but bimetallic nanocubes demonstrated an unexpected decrease in τ2 for the thickest, 15 nm, Ag shell. This was attributed to the larger number of corners and edges in the nanocubes relative to the nanopyramids.

  1. Investigation of split-off dimers on the Si(001)2x1 surface

    International Nuclear Information System (INIS)

    Schofield, S.R.; O'Brien, J.L.; Curson, N.J.; Simmons, M.Y.; Clark, R.G.

    2002-01-01

    Full text: A detailed knowledge of the nature of crystalline defects on the Si(001)2x1 surface is becoming increasingly important as more research effort is dedicated to producing atomic-scale electronic devices. Here we present high-resolution scanning tunnelling microscopy (STM) images and ab initio pseudopotential calculations of an unusual defect of the silicon (001) surface called the split-off dimer. In high-resolution filled-state images, split-off dimers appear as a pair of protrusions, in contrast to the surrounding surface dimers that appear as 'bean-shaped' protrusions. We show that π-bonding does not exist between the atoms of the split-off dimer, but instead, the dimer atoms form π-bonds with two second layer atoms as part of a tetramer bonding arrangement. We discuss the strain associated with split-off dimer defects and describe how this strain significantly affects the bonding arrangements and local density of states around these defects

  2. Developments of modeling tools for the ultrasonic propagation in bimetallic welds

    International Nuclear Information System (INIS)

    Gardahaut, A.

    2013-01-01

    This study fits into the field of ultrasonic non-destructive evaluation. It consists in the development of a dynamic ray tracing model to simulate the ultrasonic propagation in bimetallic welds. The approach has been organised in three steps. First of all, an image processing technique has been developed and applied on the macro-graphs of the weld in order to obtain a smooth cartography of the crystallographic orientation. These images are used as input data for a dynamic ray tracing model adapted to the study of anisotropic and inhomogeneous media such as bimetallic welds. Based on a kinematic and a dynamic ray tracing model, usually used in geophysics, it allows the evaluation of ray trajectories between a source point and an observation point, and the computation of the ultrasonic amplitude through the geometrical spreading of an elementary ray tube. This model has been validated in 2D by comparison of the results with a hybrid semi-analytical/finite elements code, then in 3D thanks to experimental results made on the mock-ups of the studied bimetallic welds. (author) [fr

  3. Appearance of the minority dz2 surface state and disappearance of the image-potential state: Criteria for clean Fe(001)

    Science.gov (United States)

    Eibl, Christian; Schmidt, Anke B.; Donath, Markus

    2012-10-01

    The unoccupied surface electronic structure of clean and oxidized Fe(001) was studied with spin-resolved inverse photoemission and target current spectroscopy. For the clean surface, we detected a dz2 surface state with minority spin character just above the Fermi level, while the image-potential surface state disappears. The opposite is observed for the ordered p(1×1)O/Fe(001) surface: the dz2-type surface state is quenched, while the image-potential state shows up as a pronounced feature. This behavior indicates enhanced surface reflectivity at the oxidized surface. The appearance and disappearance of specific unoccupied surface states prove to be decisive criteria for a clean Fe(001) surface. In addition, enhanced spin asymmetry in the unoccupied states is observed for the oxidized surface. Our results have implications for the use of clean and oxidized Fe(001) films as spin-polarization detectors.

  4. Surface structure and reaction property of CuCl{sub 2}-PdCl{sub 2} bimetallic catalyst in methanol oxycarbonylation: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingsen [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wang, Shengping, E-mail: spwang@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Shen, Yongli; Yan, Bing [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wu, Yuanxin [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Xinbin [Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2014-02-15

    Surface structure of CuCl{sub 2}-PdCl{sub 2} bimetallic catalyst (Wacker-type catalyst) was built employing density functional theory (DFT) calculations, and the reaction mechanism of methanol oxycarbonylation over the CuCl{sub 2}-PdCl{sub 2} surfaces was also investigated. On the CuCl{sub 2}-PdCl{sub 2} surface, the active site for methanol oxidation was confirmed as Cu-Cl-Cu (Pd). Comparing with pure CuCl{sub 2} surface, the introduction of Pd atom causes the electron repopulation on the surface and lowers the energy barrier for methanol oxidation, but the number of the active site decreases with the increasing of Pd doping volume. Agreed with previous experimental results, the Pd site is most favorable for the CO insertion, indicated by the lowest activation barrier for the formation of COOCH{sub 3} on Pd atom. The lowest energy barrier for the formation of DMC appears when COOCH{sub 3} species adsorbed on Pd atom and methoxyl adsorbed on Cu atoms, which is 0.42 eV. Finally, the reconstruction of the unsaturated surface is a spontaneous and exothermic process. Comparing with other surfaces, the rate-limiting step, methanol oxidation, on CuCl{sub 2}-PdCl{sub 2} surface with Pd/Cu = 1:17 has the lowest energy barrier, which is agreed with the experimental observation that PdCl{sub 2}-CuCl{sub 2} catalyst with Pd/Cu = 1:20 has the favorable activity. The adsorbed methoxyl will further lower the activation barrier of methanol oxidation, which is agreed with experimental observation that the Wacker-type catalysts have an induction period in the methanol oxidative carbonylation system.

  5. Surface correlation behaviors of metal-organic Langmuir-Blodgett films on differently passivated Si(001) surfaces

    Science.gov (United States)

    Bal, J. K.; Kundu, Sarathi

    2013-03-01

    Langmuir-Blodgett films of standard amphiphilic molecules like nickel arachidate and cadmium arachidate are grown on wet chemically passivated hydrophilic (OH-Si), hydrophobic (H-Si), and hydrophilic plus hydrophobic (Br-Si) Si(001) surfaces. Top surface morphologies and height-difference correlation functions g(r) with in-plane separation (r) are obtained from the atomic force microscopy studies. Our studies show that deposited bilayer and trilayer films have self-affine correlation behavior irrespective of different passivations and different types of amphiphilic molecules, however, liquid like correlation coexists only for a small part of r, which is located near the cutoff length (1/κ) or little below the correlation length ξ obtained from the liquid like and self-affine fitting, respectively. Thus, length scale dependent surface correlation behavior is observed for both types of Langmuir-Blodgett films. Metal ion specific interactions (ionic, covalent, etc.,) in the headgroup and the nature of the terminated bond (polar, nonpolar, etc.,) of Si surface are mainly responsible for having different correlation parameters.

  6. Initial oxidation processes of Si(001) surfaces by supersonic O2 molecular beams. Different oxidation mechanisms for clean and partially-oxidized surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2002-01-01

    Potential energy barriers for dissociative chemisorption of O 2 molecules on Si(001) clean surfaces were investigated using supersonic O 2 molecular beams and photoemission spectroscopy. Relative initial sticking probabilities of O 2 molecules and the saturated oxygen amount on the Si(001) surface were measured as a function of incident energy of O 2 molecules. Although the probability was independent on the incident energy in the region larger than 1 eV, the saturated oxygen amount was dependent on the incident energy without energy thresholds. An Si-2p photoemission spectrum of the Si(001) surface oxidized by thermal O 2 gas revealed the oxygen insertion into dimer backbond sites. These facts indicate that a reaction path of the oxygen insertion into dimer backbonds through bridge sites is open for the clean surface oxidation, and the direct chemisorption probability at the backbonds is negligibly small comparing with that at the bridge sites. (author)

  7. Magnetism of CrO overlayers on Fe(001)bcc surface: first principles calculations

    Science.gov (United States)

    Félix-Medina, Raúl Enrique; Leyva-Lucero, Manuel Andrés; Meza-Aguilar, Salvador; Demangeat, Claude

    2018-04-01

    Riva et al. [Surf. Sci. 621, 55 (2014)] as well as Calloni et al. [J. Phys.: Condens. Matter 26, 445001 (2014)] have studied the oxydation of Cr films deposited on Fe(001)bcc through low-energy electron diffraction, Auger electron spectroscopy and scanning tunneling microscopy. In the present work we perform a density functional approach within Quantum Expresso code in order to study structural and magnetic properties of CrO overlayers on Fe(001)bcc. The calculations are performed using DFT+U. The investigated systems include O/Cr/Fe(001)bcc, Cr/O/Fe(001)bcc, Cr0.25O0.75/Fe(001)bcc, as well as the O coverage Ox/Cr/Fe(001)bcc (x = 0.25; 0.50). We have found that the ordered CrO overlayer presents an antiferromagnetic coupling between Cr and Fe atoms. The O atoms are located closer to the Fe atoms of the surface than the Cr atoms. The ground state of the systems O/Cr/Fe(001)bcc and Cr/O/Fe(001)bcc corresponds to the O/Cr/Fe(001)bcc system with a magnetic coupling c(2 × 2). The effect of the O monolayer on Cr/Fe(001)bcc changes the ground state from p(1 × 1) ↓ to c(2 × 2) and produces an enhancement of the magnetic moments. The Ox overlayer on Cr/Fe(001)bcc produces an enhancement of the Cr magnetic moments.

  8. NEXAFS characterization and reactivity studies of bimetallic vanadium molybdenum oxynitride hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, R.; Oyama, S.T. [Virginia Polytechnic Inst., Blacksburg, VA (United States); Fruehberger, B.; Chen, J.G. [Exxon Research and Engineering Company, Annandale, NJ (United States)

    1997-02-27

    The surface and bulk compositions of vanadium molybdenum oxynitride (V{sub 2}MoO{sub 1.7}N{sub 2.4}), prepared by temperature-programmed reaction (TPR) of vanadium molybdenum oxide (V{sub 2}MoO{sub 8}) with ammonia, have been characterized using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NEXAFS data were recorded at the K-edges of nitrogen and oxygen, the L-edge of vanadium, and the M-edge of molybdenum. The nitrogen K-edge region of V-Mo oxynitride shows the characteristic NEXAFS features of early-transition-metal nitrides, although these features are different from those of either VN or Mo{sub 2}N. Furthermore, comparison of the electron yield and fluorescence yield measurements also reveals that the oxidation state is different for vanadium near the surface region and for vanadium in the bulk, which is estimated to be 2.8 {+-} 0.3 and 3.8 {+-} 0.3, respectively. The oxidation state of bulk molybdenum is also estimated to be 4.4 {+-} 0.3. The X-ray diffraction pattern shows that the bulk phase of the bimetallic oxide is different from the pure monometallic oxide phases but the oxynitride has a cubic structure that resembles the pure vanadium and molybdenum nitride phases. The V-Mo oxide as prepared shows a preferential orientation of [001] crystallographic planes which is lost during the nitridation process. This shows that the solid state transformation V{sub 2}MoO{sub 8} {yields} V{sub 2}MoO{sub 1.7}N{sub 2.4} is not topotactic. 27 refs., 8 figs., 1 tab.

  9. Simultaneous adsorption and degradation of {gamma}-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support

    Energy Technology Data Exchange (ETDEWEB)

    Chang Chun; Lian Fei [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Zhu Lingyan, E-mail: zhuly@nankai.edu.cn [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2011-10-15

    Cu amended zero valent iron bimetallic nanoparticles were synthesized by doping Cu on the surface of iron. They were incorporated with granular activated carbon (AC) to prepare supported particles (AC-Fe{sup 0}-Cu), which were used to remove {gamma}-HCH. Cu on the surface of iron enhanced the dechlorination activity of Fe{sup 0}. The dechlorination rate constant (k{sub obs}) increased with the Cu loading on the surface of iron and the maximum was achieved with 6.073% Cu. AC as a support was effective for increasing the dispersion of the nanoparticles and avoiding the agglomeration of the metallic nanoparticles. The simultaneous adsorption of {gamma}-HCH on AC accelerated the degradation rate of {gamma}-HCH by the bimetals. After reaction for 165 min, around 99% of {gamma}-HCH was removed by the solids of AC-Fe{sup 0}-Cu. In addition, AC could adsorb the degradation products. The degradation of {gamma}-HCH was mainly through dehydrochlorination and dichloroelmination based on the intermediate products detected by GC/MS. - Highlights: > Deposition of Cu on the surface of Fe enhances its dechlorination efficiency toward {gamma}-HCH. > Incorporation of the bimetallic nanoparticles with activated carbon (AC) reduces their agglomeration. > AC support increases the contact of {gamma}-HCH with the nanoparticles and enhances the degradation efficiency. > The AC support adsorbs {gamma}-HCH and its degradation products, reducing their ecological risks in water. - Impregnation of Cu amended iron on AC enhances the removal efficiency of {gamma}-HCH and reduces the concentrations of its intermediates in aqueous solution.

  10. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.

    Science.gov (United States)

    Ahmed, Suzanne; Wang, Wei; Bai, Lanjun; Gentekos, Dillon T; Hoyos, Mauricio; Mallouk, Thomas E

    2016-04-26

    Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave end of these rods is inconsistent with a scattering mechanism that we proposed earlier for acoustic propulsion, but is consistent with an acoustic streaming model developed more recently by Nadal and Lauga ( Phys. Fluids 2014 , 26 , 082001 ). Longer rods were slower at constant power, and their speed was proportional to the square of the power density, in agreement with the acoustic streaming model. The streaming model was further supported by a correlation between the disassembly of spinning chains of rods and a sharp decrease in the axial speed of autonomously moving motors within the levitation plane of the cylindrical acoustic cell. However, with bimetallic rods containing metals of different densities, a consistent polarity of motion was observed with the lighter metal end leading. Speed comparisons between single-metal rods of different densities showed that those of lower density are propelled faster. So far, these density effects are not explained in the streaming model. The directionality of bimetallic rods in acoustic fields is intriguing and offers some new possibilities for designing motors in which shape, material, and chemical asymmetry might be combined for enhanced functionality.

  11. Theoretical and Experimental Analysis of Formability of Explosive Welded Mg/Al Bimetallic Bars

    Directory of Open Access Journals (Sweden)

    Mróz S.

    2017-06-01

    Full Text Available The paper has presented the results of theoretical studies and experimental tests of the plastic deformation of Mg/Al bimetallic specimens. Theoretical studies were carried out using the Forge2011® computer program. Physical modeling, on the other hand, was performed using the Gleeble3800 simulator. Bimetallic bars of an outer diameter of 22.5 mm and a cladding layer thickness of 1.7 mm were obtained by the explosive welding method. Samples for formability tests, characterized by a diameter-to-length ratio of 1, were taken from the bars. The theoretical studies and experimental tests were carried out for the temperature range from 300 to 400°C and for different strain rates. Based on the obtained investigation results it has been found that the main parameters influencing the formability of Mg/Al bimetallic bars are strain rate than the process temperature.

  12. A photoactive bimetallic framework for direct aminoformylation of nitroarenes

    Data.gov (United States)

    U.S. Environmental Protection Agency — A bimetallic catalyst, AgPd@g-C3N4, synthesized by reducing silver and palladium salts over graphitic carbon nitride (g-C3N4), enables the concerted reductive...

  13. Facile Fabrication of Composition-Tuned Ru-Ni Bimetallics in Ordered Mesoporous Carbon for Levulinic Acid Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Gao, Guang; Zhang, Xin; Li, Fuwei [ChinaU - Petroleum; (Chinese Aca. Sci.)

    2016-02-04

    Bimetallic catalysts are of great importance due to their unique catalytic properties. However, their conventional synthesis requires tedious multistep procedures and prolonged synthetic time, and the resulting bimetallics usually disperse unevenly and show poor stability. It is challenging to develop a facile and step-economic synthetic methodology for highly efficient bimetallic catalysts. In this study, we report an elegant metal complex-involved multicomponent assembly route to highly efficient Ru–Ni bimetallics in ordered mesoporous carbons (OMC). The fabrication of composition-tuned Ru–Ni bimetallics in OMC (RuxNi1–x–OMC, x = 0.5–0.9) was facilely realized via in situ construction of CTAB-directed cubic Ia3d chitosan-ruthenium–nickel–silica mesophase before pyrolysis and silica removal. The resulting RuxNi1–x–OMC materials are in-depth characterized with X-ray diffraction, N2 adsorption–desorption, transmission electron microscopy, infrared spectrum, and X-ray absorption fine structure. This facile fabrication method renders homogeneously dispersed Ru–Ni bimetallics embedded in the mesoporous carbonaceous framework and creates a highly active and stable Ru0.9Ni0.1–OMC catalyst for the hydrogenation of levulinic acid (LA) to prepare γ-valerolactone (GVL), a biomass-derived platform molecule with wide application in the preparation of renewable chemicals and liquid transportation fuels. A high TOF (>2000 h–1) was obtained, and the Ru0.9Ni0.1–OMC catalyst could be used at least 15 times without obvious loss of its catalytic performance.

  14. A bimetallic nanocomposite electrode for direct and rapid ...

    Indian Academy of Sciences (India)

    A new label-free electrochemical DNA biosensor is presented based on carbon paste electrode (CPE) modified with gold (Au) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode. The proposed sensor was made by immobilization of 15-mer single stranded oligonucleotide probe related to ...

  15. Ab Initio Calculations for the BaTiO3 (001) Surface Structure

    Institute of Scientific and Technical Information of China (English)

    XUE Xu-Yan; WANG Chun-Lei; ZHONG Wei-Lie

    2004-01-01

    @@ The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field.We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed.The band gap reduces especially for the TiO2 termination.

  16. Site selective generation of sol-gel deposits in layered bimetallic macroporous electrode architectures.

    Science.gov (United States)

    Lalo, Hélène; Bon-Saint-Côme, Yémima; Plano, Bernard; Etienne, Mathieu; Walcarius, Alain; Kuhn, Alexander

    2012-02-07

    The elaboration of an original composite bimetallic macroporous electrode containing a site-selective sol-gel deposit is reported. Regular colloidal crystals, obtained by a modified Langmuir-Blodgett approach, are used as templates for the electrogeneration of the desired metals in the form of a well-defined layered bimetallic porous electrode. This porous matrix shows a spatially modulated electroactivity which is subsequently used as a strategy for targeted electrogeneration of a sol-gel deposit, exclusively in one predefined part of the porous electrode.

  17. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis

    Science.gov (United States)

    Krishnan, Gopi; Verheijen, Marcel A.; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2013-05-01

    Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape.Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still

  18. Ge clusters and wetting layers forming from granular films on the Si(001) surface

    International Nuclear Information System (INIS)

    Storozhevykh, M S; Arapkina, L V; Yuryev, V A

    2016-01-01

    The report studies the transformation of a Ge granular film deposited on the Si(001) surface at room temperature into a Ge/Si(001) heterostructure as a result of rapid heating and annealing at 600 °C. As a result of the short-term annealing at 600 °C in conditions of a closed system, the Ge granular film transforms into a usual wetting layer and Ge clusters with multimodal size distribution and Ge oval drops having the highest number density. After the long-term thermal treatment of the Ge film at the same temperature, Ge drops disappear; the large clusters increase their sizes at the expense of the smaller ones. The total density of Ge clusters on the surface drastically decreases. The wetting layer mixed c(4 x 2) + p(2 x 2) reconstruction transforms into a single c(4 x 2) one which is likely to be thermodynamically favoured. Pyramids or domes are not observed on the surface after any annealing. (paper)

  19. Surface phonon modes of the NaI(001) crystal surface by inelastic He atom scattering

    International Nuclear Information System (INIS)

    Brug, W.P.; Chern, G.; Duan, J.; Safron, S.A.; Skofronick, J.G.; Benedek, G.

    1990-01-01

    The present theoretical treatment of the surface dynamics of ionic insulators employs the shell model with parameters obtained from bulk materials. The approach has been generally very successful in comparisons with experiment. However, most of the experimental surface dynamics work has been on the low-mass alkali halides with very little effort on higher energy modes or on the heavier alkali halides, where effects from relaxation might be important. The work of this paper explores these latter two conditions. Inelastic scattering of He atoms from the left-angle 110 right-angle NaI(001) surface has been used to obtain the acoustic S 1 Rayleigh mode, the S 6 longitudinal mode, and the S 8 crossing mode, however, no gap S 4 optical mode was seen. The results compare favorably with reported theoretical models employing both slab calculations and the Green's function method thus indicating that bulk parameters and the shell model go a long way in explaining most of the observations

  20. Sn interaction with the CeO.sub.2./sub.(111) system: bimetallic bonding and ceria reduction

    Czech Academy of Sciences Publication Activity Database

    Škoda, M.; Cabala, M.; Cháb, Vladimír; Prince, K. C.; Sedláček, L.; Skála, T.; Šutara, F.; Matolín, V.

    2008-01-01

    Roč. 254, č. 14 (2008), 4375-4379 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LC06058 Institutional research plan: CEZ:AV0Z10100521 Keywords : resonant photoemission * RPES * XPS * LEED * ceria * tin * reduction * bimetallic interaction * bimetallic bonding Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.576, year: 2008

  1. Highly Stable Bimetallic AuIr/TiO₂ Catalyst: Physical Origins of the Intrinsic High Stability against Sintering.

    Science.gov (United States)

    Han, Chang Wan; Majumdar, Paulami; Marinero, Ernesto E; Aguilar-Tapia, Antonio; Zanella, Rodolfo; Greeley, Jeffrey; Ortalan, Volkan

    2015-12-09

    It has been a long-lived research topic in the field of heterogeneous catalysts to find a way of stabilizing supported gold catalyst against sintering. Herein, we report highly stable AuIr bimetallic nanoparticles on TiO2 synthesized by sequential deposition-precipitation. To reveal the physical origin of the high stability of AuIr/TiO2, we used aberration-corrected scanning transmission electron microscopy (STEM), STEM-tomography, and density functional theory (DFT) calculations. Three-dimensional structures of AuIr/TiO2 obtained by STEM-tomography indicate that AuIr nanoparticles on TiO2 have intrinsically lower free energy and less driving force for sintering than Au nanoparticles. DFT calculations on segregation behavior of AuIr slabs on TiO2 showed that the presence of Ir near the TiO2 surface increases the adhesion energy of the bimetallic slabs to the TiO2 and the attractive interactions between Ir and TiO2 lead to higher stability of AuIr nanoparticles as compared to Au nanoparticles.

  2. Critical assessment of Pt surface energy - An atomistic study

    Science.gov (United States)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  3. Efficiency roll-off suppression in organic light-emitting diodes using size-tunable bimetallic bowtie nanoantennas at high current densities

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yukun [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Yun, Feng, E-mail: fyun2010@mail.xjtu.edu.cn; Li, Yufeng; Feng, Lungang; Ding, Wen [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Huang, Yi [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Wu, Zhaoxin; Jiao, Bo; Li, Sanfeng [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Zhang, Ye [Solid-State Lighting Engineering Research Center, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2016-07-04

    Size-tunable bimetallic bowtie nanoantennas have been utilized to suppress the efficiency roll-off characteristics in organic light-emitting diodes (OLEDs) using both the numerical and experimental approaches. The resonant range can be widened by the strong dual-atomic couplings in bimetallic bowtie nanoantennas. Compared with the green OLED with conventional bowtie nanoantennas at a high current density of 800 mA/cm{sup 2}, the measured efficiency roll-off ratio of the OLED with size-modulated bowtie nanoantennas is decreased from 53.2% to 41.8%, and the measured current efficiency is enhanced by 29.9%. When the size-modulated bowtie nanoantennas are utilized in blue phosphorescent OLEDs, the experimental roll-off ratio is suppressed from 43.6% to 25.9% at 250 mA/cm{sup 2}, and the measured current efficiency is also enhanced significantly. It is proposed that the efficiency roll-off suppression is mainly related to the enhanced localized surface plasmon effect, which leads to a shorter radiative lifetime.

  4. Efficiency roll-off suppression in organic light-emitting diodes using size-tunable bimetallic bowtie nanoantennas at high current densities

    International Nuclear Information System (INIS)

    Zhao, Yukun; Yun, Feng; Li, Yufeng; Feng, Lungang; Ding, Wen; Huang, Yi; Wu, Zhaoxin; Jiao, Bo; Li, Sanfeng; Zhang, Ye

    2016-01-01

    Size-tunable bimetallic bowtie nanoantennas have been utilized to suppress the efficiency roll-off characteristics in organic light-emitting diodes (OLEDs) using both the numerical and experimental approaches. The resonant range can be widened by the strong dual-atomic couplings in bimetallic bowtie nanoantennas. Compared with the green OLED with conventional bowtie nanoantennas at a high current density of 800 mA/cm"2, the measured efficiency roll-off ratio of the OLED with size-modulated bowtie nanoantennas is decreased from 53.2% to 41.8%, and the measured current efficiency is enhanced by 29.9%. When the size-modulated bowtie nanoantennas are utilized in blue phosphorescent OLEDs, the experimental roll-off ratio is suppressed from 43.6% to 25.9% at 250 mA/cm"2, and the measured current efficiency is also enhanced significantly. It is proposed that the efficiency roll-off suppression is mainly related to the enhanced localized surface plasmon effect, which leads to a shorter radiative lifetime.

  5. Systematic Identification of Promoters for Methane Oxidation Catalysts Using Size- and Composition-Controlled Pd-Based Bimetallic Nanocrystals.

    Science.gov (United States)

    Willis, Joshua J; Goodman, Emmett D; Wu, Liheng; Riscoe, Andrew R; Martins, Pedro; Tassone, Christopher J; Cargnello, Matteo

    2017-08-30

    Promoters enhance the performance of catalytic active phases by increasing rates, stability, and/or selectivity. The process of identifying promoters is in most cases empirical and relies on testing a broad range of catalysts prepared with the random deposition of active and promoter phases, typically with no fine control over their localization. This issue is particularly relevant in supported bimetallic systems, where two metals are codeposited onto high-surface area materials. We here report the use of colloidal bimetallic nanocrystals to produce catalysts where the active and promoter phases are colocalized to a fine extent. This strategy enables a systematic approach to study the promotional effects of several transition metals on palladium catalysts for methane oxidation. In order to achieve these goals, we demonstrate a single synthetic protocol to obtain uniform palladium-based bimetallic nanocrystals (PdM, M = V, Mn, Fe, Co, Ni, Zn, Sn, and potentially extendable to other metal combinations) with a wide variety of compositions and sizes based on high-temperature thermal decomposition of readily available precursors. Once the nanocrystals are supported onto oxide materials, thermal treatments in air cause segregation of the base metal oxide phase in close proximity to the Pd phase. We demonstrate that some metals (Fe, Co, and Sn) inhibit the sintering of the active Pd metal phase, while others (Ni and Zn) increase its intrinsic activity compared to a monometallic Pd catalyst. This procedure can be generalized to systematically investigate the promotional effects of metal and metal oxide phases for a variety of active metal-promoter combinations and catalytic reactions.

  6. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ozkendir, O. Murat, E-mail: ozkendir@gmail.com [Mersin University, Faculty of Technology, Energy Systems Engineering, Tarsus (Turkey); Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Cengiz, E. [Karadeniz Technical University, Faculty of Science, Department of Physics, Trabzon (Turkey); Yalaz, E. [Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Söğüt, Ö.; Ayas, D.H. [Kahramanmaraş Sütçü İmam Üniversitesi, Faculty of Science and Letters, Department of Physics, Kahramanmaraş (Turkey); Thammajak, B. Nirawat [Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, T. Suranaree, A. Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-05-15

    Highlights: • Crystal and electronic properties of bimetallic AgCu and AgAu alloy thin films were studied. • Both AgCu and AgAu bimetallic samples were determined to have cubic crystal geometry. • Strong influence of Cu and Au atoms on the electronic structure of the Ag atoms were determined. - Abstract: Crystal and electronic structure properties of bimetallic AgAu and AgCu alloy thin films were investigated by X-ray spectroscopic techniques. The aim of this study is to probe the influence of Au or Cu atoms on the electronic behaviors of Ag ions in bimetallic alloy materials that yields different crystal properties. To identify the mechanisms causing crystal phase transitions, study were supported by the collected EXAFS (Extended X-ray Absorption Fine Structure) data. Crystal structures of both Cu and Au doped bimetallic Ag samples were determined mainly in cubic geometry with “Fm3m” space group. Through the Ag–Au and Ag–Cu molecular interactions during bimetallic alloy formations, highly overlapped electronic levels that supports large molecular band formations were observed with different ionization states. Besides, traces of the d–d interactions in Au rich samples were determined as the main interplay in the broad molecular bond formations. The exact atomic locations and types in the samples were determined by EXAFS studies and supported by the performed calculations with FEFF scientific code.

  7. Anharmonic vibrational modes of chemisorbed H on the Rh(001) surface

    International Nuclear Information System (INIS)

    Hamann, D.R.; Feibelman, P.J.

    1988-01-01

    The potential for H atoms in the vicinity of the fourfold hollow chemisorption site on the Rh(001) surface at monolayer coverage is calculated using local-density-functional theory, and the linear-augmented-plane-wave method. The potential is found to contain important anharmonic components, one that couples parallel and perpendicular motion, and another producing azimuthal anisotropy. Variational solutions are found for the ground and low-lying excited states of H and D in this potential. The fundamental asymmetric- and symmetric-stretch H vibrational excitations are found to have energies of 67 and 92 meV. The latter agrees with recent experimental results, and higher-lying experimental modes are interpreted as mixed excitations. Comparisons are made with spring-constant models, calculated potentials for H on Ni and Pd(001), and theories of Bloch states for H on Ni

  8. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules.

    Science.gov (United States)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2012-05-02

    A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells)

    International Nuclear Information System (INIS)

    Song, Xingjuan; Zhang, Dongming

    2014-01-01

    AFCs (alkaline fuel cells) is one of the promising fuel cells, due to their low working temperature and less corrosive environment. However, decreasing the catalyst cost and improving its performance are still the challenges in its application. Transition metal as the catalyst for AFCs not only can reduce its cost, but also has great electro-catalytic efficiency. In this paper, Carbon supported Ag–Ni bimetallic catalysts with differential Ag/Ni atomic ratios were prepared by chemically reducing silver and nickel salts. Ag 3 Ni/C shows the relatively higher ORR (oxygen reduction reaction) activity among the differential Ag/Ni bimetallic particles. In order to improve the activity and stability, the catalysts were heat-treated at the temperature of 500 °C. The results indicate that the limiting current density has been improved greatly for Ag 3 Ni/C-500 °C, which is as high as 2.5× that of Ag/C. The microstructure investigation show that the non-equilibrium state of Ag–Ni alloy by heat treatment is confirmed by HRTEM (high-resolution transmission electron microscopy) images, and Ag(111) surfaces are decreased in XRD pattern, which results in the ORR activity improved and overpotential decreased. Heat treatment also has contributed to Ag–Ni/C electrochemistry stability in some degree. - Highlights: • Ag–Ni/C is applied as cathode catalyst for AFCs (alkaline fuel cells). • Ag 3 Ni/C-500 °C shows the best performance. • Non-equilibrium state of Ag–Ni alloy by heat treatment is observed. • The decreased Ag(111) surfaces are favor to improve the catalyst activity

  10. Oxygen adsorption on the Al9Co2(001) surface: first-principles and STM study

    International Nuclear Information System (INIS)

    Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Dubois, J-M; Gaudry, É; Gille, P

    2013-01-01

    Atomic oxygen adsorption on a pure aluminum terminated Al 9 Co 2 (001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a ‘bridge’ type site between the cluster entities exposed at the (001) surface termination. The Al–O bonding between the adsorbate and the substrate presents a covalent character, with s–p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al–O distances are in agreement with those reported in Al 2 O and Al 2 O 3 oxides and for oxygen adsorption on Al(111). (paper)

  11. Water Adsorption on Clean and Defective Anatase TiO2 (001) Nanotube Surfaces: A Surface Science Approach.

    Science.gov (United States)

    Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard

    2018-04-11

    We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.

  12. Molecular Level Control Through Dual Site Participation Using Bimetallic Catalysts - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    d' Itri, Julie, L.; Kovalchuk, Vladimir, I.

    2010-02-08

    The overall goal of this research program was to explore the hypothesis that it is possible to design a bimetallic surface such that each metal catalyzes different elementary reaction steps in an overall reaction pathway. A corollary to this hypothesis is that the different ensemble size requirements for an elementary reaction step can be used to force an elementary reaction step to occur on only one of the metals. The research program involved a combination of materials synthesis, chemical kinetics experiments, spectroscopic studies and computational investigations. The major outcome of this research program was the development and dissemination of the Dual Site Model, for which chlorocarbon reactions in the presence of hydrogen were used as model systems.

  13. Design of Pd-Based Bimetallic Catalysts for ORR: A DFT Calculation Study

    Directory of Open Access Journals (Sweden)

    Lihui Ou

    2015-01-01

    Full Text Available Developing Pd-lean catalysts for oxygen reduction reaction (ORR is the key for large-scale application of proton exchange membrane fuel cells (PEMFCs. In the present paper, we have proposed a multiple-descriptor strategy for designing efficient and durable ORR Pd-based alloy catalysts. We demonstrated that an ideal Pd-based bimetallic alloy catalyst for ORR should possess simultaneously negative alloy formation energy, negative surface segregation energy of Pd, and a lower oxygen binding ability than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemistry and electronic properties of Pd-M alloys, Pd-V, Pd-Fe, Pd-Zn, Pd-Nb, and Pd-Ta, are identified theoretically to have stable Pd segregated surface and improved ORR activity. Factors affecting these properties are analyzed. The alloy formation energy of Pd with transition metals M can be mainly determined by their electron interaction. This may be the origin of the negative alloy formation energy for Pd-M alloys. The surface segregation energy of Pd is primarily determined by the surface energy and the atomic radius of M. The metals M which have smaller atomic radius and higher surface energy would tend to favor the surface segregation of Pd in corresponding Pd-M alloys.

  14. Epitaxial TiN(001) wetting layer for growth of thin single-crystal Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, J. S.; Zhang, X. Y.; Gall, D. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-08-15

    Single-crystal Cu(001) layers, 4-1400 nm thick, were deposited on MgO(001) with and without a 2.5-nm-thick TiN(001) buffer layer. X-ray diffraction and reflection indicate that the TiN(001) surface suppresses Cu-dewetting, yielding a 4 x lower defect density and a 9 x smaller surface roughness than if grown on MgO(001) at 25 deg. C. In situ and low temperature electron transport measurements indicate that ultra-thin (4 nm) Cu(001) remains continuous and exhibits partial specular scattering at the Cu-vacuum boundary with a Fuchs-Sondheimer specularity parameter p = 0.6 {+-} 0.2, suggesting that the use of epitaxial wetting layers is a promising approach to create low-resistivity single-crystal Cu nanoelectronic interconnects.

  15. Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system.

    Science.gov (United States)

    Zhou, Xiaobin; Jing, Guohua; Lv, Bihong; Zhou, Zuoming; Zhu, Runliang

    2016-10-01

    Highly active Fe/Ni bimetallic nanocomposites were prepared by using the liquid-phase reduction method, and they were proven to be effective for Cr(VI) removal coupled with US irradiation. The US-assisted Fe/Ni bimetallic system could maintain a good performance for Cr(VI) removal at a wide pH range of 3-9. Based on the characterization of the Fe/Ni nanoparticles before and after reaction, the high efficiency of the mixed system could attribute to the synergistic effects of the catalysis of Ni(0) and US cavitation. Ni(0) could facilitate the Cr(VI) reduction through electron transfer and catalytic hydrogenation. Meanwhile, US could fluidize the Fe/Ni nanoparticles to increase the actual reactive surface area and clean off the co-precipitated Fe(III)-Cr(III) hydroxides to maintain the active sites on the surface of the Fe/Ni nanoparticles. Thus, compared with shaking, the US-assisted Fe/Ni system was more efficient on Cr(VI) removal, which achieved 94.7% removal efficiency of Cr(VI) within 10 min. The pseudo-first-order rate constant (kobs) in US-assisted Fe/Ni system (0.5075 min(-1)) was over 5 times higher than that under shaking (0.0972 min(-1)). Moreover, the Fe/Ni nanoparticles still have a good performance under US irradiation after 26 days aging as well as regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Generalized Bragg-Williams model for the size-dependent order-disorder transition of bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Li, Y J; Qi, W H; Wang, M P; Liu, J F; Xiong, S Y; Huang, B Y

    2011-01-01

    Considering the different effects of exterior atoms (face, edge and corner atoms), the Bragg-Williams model is generalized to account for the size, shape and composition-dependent order-disorder transition of bimetallic nanoparticles (NPs) with B 2 , L1 0 and L1 2 ordered structures. The results show that the order-disorder temperatures T C,p are different for different shapes even in the identical particle size. The order of order-disorder temperatures of different shapes varies for different sizes. The long-range order parameter decreases with the increase in temperature in all size ranges and decreases smoothly in large sizes, but drops dramatically in small sizes. Moreover, it is also found that the order-disorder temperature of bimetallic NPs rises with increasing particle sizes and decreases with a deviation from the ideal compositions. The present predictions are consistent with the available literature results, indicating its capability in predicting other order-disorder transition phenomena of bimetallic NPs.

  17. A bimetallic nanocoral Au decorated with Pt nanoflowers (bio)sensor for H2O2 detection at low potential.

    Science.gov (United States)

    Sanzò, Gabriella; Taurino, Irene; Puppo, Francesca; Antiochia, Riccarda; Gorton, Lo; Favero, Gabriele; Mazzei, Franco; Carrara, Sandro; De Micheli, Giovanni

    2017-10-01

    In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm 2 . The good value of K m app (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis. Copyright © 2017. Published by Elsevier Inc.

  18. Diiridium Bimetallic Complexes Function as a Redox Switch To Directly Split Carbonate into Carbon Monoxide and Oxygen.

    Science.gov (United States)

    Chen, Tsun-Ren; Wu, Fang-Siou; Lee, Hsiu-Pen; Chen, Kelvin H-C

    2016-03-23

    A pair of diiridium bimetallic complexes exhibit a special type of oxidation-reduction reaction that could directly split carbonate into carbon monoxide and molecular oxygen via a low-energy pathway needing no sacrificial reagent. One of the bimetallic complexes, Ir(III)(μ-Cl)2Ir(III), can catch carbonato group from carbonate and reduce it to CO. The second complex, the rare bimetallic complex Ir(IV)(μ-oxo)2Ir(IV), can react with chlorine to release O2 by the oxidation of oxygen ions with synergistic oxidative effect of iridium ions and chlorine atoms. The activation energy needed for the key reaction is quite low (∼20 kJ/mol), which is far less than the dissociation energy of the C═O bond in CO2 (∼750 kJ/mol). These diiridium bimetallic complexes could be applied as a redox switch to split carbonate or combined with well-known processes in the chemical industry to build up a catalytic system to directly split CO2 into CO and O2.

  19. Scanning tunneling microscopy of the atomically smooth (001) surface of vanadium pentoxide V_2O_5 crystals

    International Nuclear Information System (INIS)

    Muslimov, A. E.; Butashin, A. V.; Kanevsky, V. M.

    2017-01-01

    The (001) cleavage surface of vanadium pentoxide (V_2O_5) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V_2O_5 crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surface (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.

  20. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  1. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    KAUST Repository

    LaGrow, Alec P.

    2015-05-12

    The characteristics of bimetallic nanomaterials are dictated by their size, shape and elemental distribution. Solution synthesis is widely utilized to form nanomaterials, such as nanoparticles, with controlled size and shape. However, the effects of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape-controlled synthesis on the final shape of the nanomaterials and the elemental distribution within the alloy. We demonstrate that this strategy can tune the size of monodisperse PtM (M=Ni or Cu) alloy nanocrystals ranging from 3 to 16 nm with an octahedral shape using acetylacetonate or halide precursors of Pt(II), Pt(IV) and Ni or Cu (II). The nanoparticles formed from halide precursors showed an enrichment of platinum on their surfaces, and the bromides could oxidatively etch the nanoparticles during synthesis with the O2/Br- pair. The two nanocrystal precursors can be uti-lized independently and can control the size with a trend of Pt(acac)2surface chemistry.

  2. First-principles study of the (001) surface of cubic Ba0.5Sr0.5TiO3

    International Nuclear Information System (INIS)

    Wang, Yuan Xu

    2008-01-01

    We have theoretically investigated basic properties of the (001) surface of cubic Ba 0.5 Sr 0.5 TiO 3 (BST) by the plane-wave pseudopotential method within the local-density approximation. For the BaSrO 2 -terminated surface, the surface-layer Sr atoms move inward and the surface-layer Ba atoms move outward. Moreover, the displacement of the surface-layer Sr atoms is much larger than the surface-layer Ba atoms. The rumpling of the BaSrO 2 -terminated surface is much larger than that of the Ti 2 O 4 -terminated one. The surface state appears in the band structure of the Ti 2 O 4 -terminated surface of BST. Based on the results of the calculated grand thermodynamic potential, only the BaSrO 2 -terminated surface can exist in the (001) surface of cubic BST. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Shaping Ge islands on Si(001) surfaces with misorientation angle.

    Science.gov (United States)

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2010-01-22

    A complete description of Ge growth on vicinal Si(001) surfaces in the angular miscut range 0 degrees -8 degrees is presented. The key role of substrate vicinality is clarified from the very early stages of Ge deposition up to the nucleation of 3D islands. By a systematic scanning tunneling microscopy investigation we are able to explain the competition between step-flow growth and 2D nucleation and the progressive elongation of the 3D islands along the miscut direction [110]. Using finite element calculations, we find a strict correlation between the morphological evolution and the energetic factors which govern the {105} faceting at atomic scale.

  4. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Villarraga, Fernando, E-mail: ferchogomezv@gmail.com; Radnik, Jörg; Martin, Andreas; Köckritz, Angela [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (Germany)

    2016-06-15

    Bimetallic nanoparticles (NPs) containing gold and various second metals (M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.Graphical Abstract.

  5. Determination of material distribution in heading process of small bimetallic bar

    Science.gov (United States)

    Presz, Wojciech; Cacko, Robert

    2018-05-01

    The electrical connectors mostly have silver contacts joined by riveting. In order to reduce costs, the core of the contact rivet can be replaced with cheaper material, e.g. copper. There is a wide range of commercially available bimetallic (silver-copper) rivets on the market for the production of contacts. Following that, new conditions in the riveting process are created because the bi-metal object is riveted. In the analyzed example, it is a small size object, which can be placed on the border of microforming. Based on the FEM modeling of the load process of bimetallic rivets with different material distributions, the desired distribution was chosen and the choice was justified. Possible material distributions were parameterized with two parameters referring to desirable distribution characteristics. The parameter: Coefficient of Mutual Interactions of Plastic Deformations and the method of its determination have been proposed. The parameter is determined based of two-parameter stress-strain curves and is a function of these parameters and the range of equivalent strains occurring in the analyzed process. The proposed method was used for the upsetting process of the bimetallic head of the electrical contact. A nomogram was established to predict the distribution of materials in the head of the rivet and the appropriate selection of a pair of materials to achieve the desired distribution.

  6. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    Science.gov (United States)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Preparation and characterization of bi-metallic nanoparticle catalyst having better anti-coking properties using reverse micelle technique

    Science.gov (United States)

    Zacharia, Thomas

    Energy needs are rising on an exponential basis. The mammoth energy sources like coal, natural gas and petroleum are the cause of pollution. The large outcry for an alternate energy source which is environmentally friendly and energy efficient is heard during the past few years. This is where “Clean-Fuel” like hydrogen gained its ground. Hydrogen is mainly produced by steam methane reforming (SMR). An alternate sustainable process which can reduce the cost as well as eliminate the waste products is Tri-reforming. In both these reforming processes nickel is used as catalyst. However as the process goes on the catalyst gets deactivated due to coking on the catalytic surface. This goal of this thesis work was to develop a bi-metallic catalyst which has better anti-coking properties compared to the conventional nickel catalyst. Tin was used to dope nickel. It was found that Ni3Sn complex around a core of Ni is coking resistant compared to pure nickel catalyst. Reverse micelle synthesis of catalyst preparation was used to control the size and shape of catalytic particles. These studies will benefit researches on hydrogen production and catalyst manufactures who work on different bi-metallic combinations.

  8. Molecular dynamics study of the interactions of incident N or Ti atoms with the TiN(001) surface

    International Nuclear Information System (INIS)

    Xu, Zhenhai; Zeng, Quanren; Yuan, Lin; Qin, Yi; Chen, Mingjun; Shan, Debin

    2016-01-01

    Graphical abstract: - Highlights: • Interactions of incident N or Ti atoms with TiN(001) surface are studied by CMD. • The impact position of incident N on the surface determines the interaction modes. • Adsorption could occur due to the atomic exchange process. • Resputtering and reflection may simultaneously occur. • The initial sticking coefficient of N on TiN(001) is much smaller than that of Ti. - Abstract: The interaction processes between incident N or Ti atoms and the TiN(001) surface are simulated by classical molecular dynamics based on the second nearest-neighbor modified embedded-atom method potentials. The simulations are carried out for substrate temperatures between 300 and 700 K and kinetic energies of the incident atoms within the range of 0.5–10 eV. When N atoms impact against the surface, adsorption, resputtering and reflection of particles are observed; several unique atomic mechanisms are identified to account for these interactions, in which the adsorption could occur due to the atomic exchange process while the resputtering and reflection may simultaneously occur. The impact position of incident N atoms on the surface plays an important role in determining the interaction modes. Their occurrence probabilities are dependent on the kinetic energy of incident N atoms but independent on the substrate temperature. When Ti atoms are the incident particles, adsorption is the predominant interaction mode between particles and the surface. This results in the much smaller initial sticking coefficient of N atoms on the TiN(001) surface compared with that of Ti atoms. Stoichiometric TiN is promoted by N/Ti flux ratios larger than one.

  9. Adsorption and dissociation of H{sub 2}S on Mo{sub 2}C(001) surface-A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dianling; Guo, Wenyue, E-mail: wyguo@upc.edu.cn; Liu, Yunjie; Chi, Yuhua

    2015-10-01

    Highlights: • Adsorption of reactants, intermediates involved was investigated. • The Mulliken charge and partial density of states were analyzed. • The dissociation mechanism was investigated. • The optimal pathway for the dissociation of H{sub 2}S on the Mo{sub 2}C(001) surface was given. - Abstract: The adsorption and decomposition reaction mechanisms of H{sub 2}S on Mo{sub 2}C(001) has been systematically studied using self-consistent periodic density functional theory. Results show that the molecular of H{sub 2}S is adsorbed either on the Mo top site or bridge site. Mulliken population analysis and density of states for H{sub 2}S/Mo-terminated Mo{sub 2}C(001) adsorption system are examined to confirm the adsorption mechanism of H{sub 2}S with the Mo{sub 2}C(001) surface, which can involve the donation of charge from the “s lone pair electrons” that are LUMO orbitals into the surface and the back donation of electrons from the surface into the HOMO orbital. The optimal pathway for the dissociation of H{sub 2}S on the Mo{sub 2}C(001) surface can be H{sub 2}S{sub top} → SH{sub fcc} + H{sub fcc} → S{sub fcc} + H{sub fcc} + H{sub fcc}. The first step is the rate-determining step because it has the smallest rate constant among the possible reactions pathways.

  10. A general approach for the synthesis of bimetallic M–Sn (M = Ru, Rh and Ir) catalysts for efficient hydrogenolysis of ester

    KAUST Repository

    Samal, Akshaya Kumar

    2016-11-24

    A versatile synthetic method was applied for the preparation of Sn containing bimetallic catalysts. The synthesis was performed by simply mixing the super hydride [LiB(C2H5)(3)H], with a metal (Ru, Rh or Ir) salt and an organotin complex in tetrahydrofuran solvent without using any surfactant. This leads to the formation of monodispersed M-Sn (M = Ru, Rh or Ir) bimetallic nanoparticles (NPs). These bimetallic catalysts show high performances in the hydrogenolysis of ester to the corresponding alcohol.

  11. Hut clusters on Ge(001) surfaces studied by STM and synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Nielsen, M.; Smilgies, D.-M.; Feidenhans'l, R.

    1996-01-01

    Nanoscale hut clusters formed on Ge(001) surfaces by depositing one monolayer of indium and annealing at temperatures between 350 and 500 degrees C were studied by scanning tunnelling microscopy and synchrotron X-ray diffraction. It was found that the hut clusters form regular arrays over...

  12. New bimetallic EMF cell shows promise in direct energy conversion

    Science.gov (United States)

    Hesson, J. C.; Shimotake, H.

    1968-01-01

    Concentration cell, based upon a thermally regenerative cell principle, produces electrical energy from any large heat source. This experimental bimetallic EMF cell uses a sodium-bismuth alloy cathode and a pure liquid sodium anode. The cell exhibits reliability, corrosion resistance, and high current density performance.

  13. Ni-Doping Effects on Oxygen Removal from an Orthorhombic Mo 2 C (001) Surface: A Density Functional Theory Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Mingxia [Department; Cheng, Lei [Materials; Choi, Jae-Soon [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, Unites States; Liu, Bin [Department; Curtiss, Larry A. [Materials; Assary, Rajeev S. [Materials

    2018-01-11

    Density functional theory (DFT) calculations were used to investigate the effect of Ni dopants on the removal of chemisorbed oxygen (O*) from the Mo-terminated (T-Mo) and C-terminated (Tc) Mo2C(001) surfaces. The removal of adsorbed oxygen from the catalytic site is essential to maintain the long-term activity and selectivity of the carbide catalysts in the deoxygenation process related to bio-oil stabilization and upgrading. In this contribution, the computed reaction energetics and reaction barriers of O* removal were compared among undoped and Ni-doped Mo2C(001) surfaces. The DFT calculations indicate that selected Ni-doped surfaces such as Ni adsorbed on T-Mo and Tc Mo2C(001) surfaces enable weaker binding of important reactive intermediates (O*, OH*) compared to the undoped counterparts, which is beneficial for the O* removal from the catalyst surface. This study thus confirms the promoting effect of the Ni dopant on O* removal reaction on the T-Mo Mo2C(001) and Tc Mo2C(001) surfaces. This computational prediction has been confirmed by the temperature-programmed reduction profiles of Mo2C and Ni-doped Mo2C catalysts, which had been passivated and stored in an oxygen environment.

  14. Microscopic characterization of Fe nanoparticles formed on SrTiO3(001 and SrTiO3(110 surfaces

    Directory of Open Access Journals (Sweden)

    Miyoko Tanaka

    2016-06-01

    Full Text Available Fe nanoparticles grown on SrTiO3 (STO {001} and {110} surfaces at room temperature have been studied in ultrahigh vacuum by means of transmission electron microscopy and scanning tunnelling microscopy. It was shown that some Fe nanoparticles grow epitaxially. They exhibit a modified Wulff shape: nanoparticles on STO {001} surfaces have truncated pyramid shapes while those on STO {110} surfaces have hexagonal shapes. From profile-view TEM images, approximate values of the adhesion energy of the nanoparticles for both shapes are obtained.

  15. Optical properties of GaSb(001)-c(2 x 6): The role of surface antisite defects

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Conor; Del Sole, Rodolfo [Department of Physics, CNR-INFM-SMC, Roma (Italy); European Theoretical Spectroscopy Facility (ETSF), University of Rome ' ' Tor Vergata' ' , Roma (Italy); Magri, Rita [Centro S3-CNR-Istituto di Nanoscienze, Modena (Italy); Department of Physics, University of Modena and Reggio Emilia, Modena (Italy)

    2010-08-15

    We consider the formation of surface antisite defects on a previously proposed model for the GaSb(001)-c(2 x 6) surface. Based on ab initio total energy calculations, we show how these defects stabilize the otherwise metallic surface and how their formation is driven by the excess charge associated with the Sb-rich surface conditions. The surface-sensitive optical technique of reflectance anisotropy spectroscopy is shown to be crucial for detecting the defects, and computation of spectra yields a good agreement with experiment when defects are included in the surface reconstruction. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Gas-Phase Synthesis of Bimetallic Oxide Nanoparticles with Designed Elemental Compositions for Controlling the Explosive Reactivity of Nanoenergetic Materials

    Directory of Open Access Journals (Sweden)

    Ji Young Ahn

    2011-01-01

    Full Text Available We demonstrate a simple and viable method for controlling the energy release rate and pressurization rate of nanoenergetic materials by controlling the relative elemental compositions of oxidizers. First, bimetallic oxide nanoparticles (NPs with a homogeneous distribution of two different oxidizer components (CuO and Fe2O3 were generated by a conventional spray pyrolysis method. Next, the Al NPs employed as a fuel were mixed with CuO-Fe2O3 bimetallic oxide NPs by an ultrasonication process in ethanol solution. Finally, after the removal of ethanol by a drying process, the NPs were converted into energetic materials (EMs. The effects of the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs on the explosive reactivity of the resulting EMs were examined by using a differential scanning calorimeter and pressure cell tester (PCT systems. The results clearly indicate that the energy release rate and pressurization rate of EMs increased linearly as the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs increased. This suggests that the precise control of the stoichiometric proportions of the strong oxidizer (CuO and mild oxidizer (Fe2O3 components in the bimetallic oxide NPs is a key factor in tuning the explosive reactivity of EMs.

  17. MEMS Tunneling Micro Thermometer Based onTip Deflection of Bimetallic Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Samrand K. Nezhadian

    2007-10-01

    Full Text Available Micro-electro-mechanical (MEM technology promises to significantly reduce the size, weight and cost of a variety of sensor systems. In this article has been described a highly sensitive novel type of thermometer based on deflection of a “bimetallic” microbeam. The proposed thermometer converts the thermal changes of a cantilevered bimetallic beam of submillimeter size into an electrical signal through tunneling-current modulation. The governing thermo-mechanical equation of a bimetallic cantilever beam has been derived and solved analytically. The obtained results show that the proposed tunneling micro thermometer is very sensitive to temperature changes due to exponential increasing of tunneling current but because of small gap between metallic electrodes, measurable range of temperature changes is small.

  18. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  19. Mathematical modeling of the mixing zone for getting bimetallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Stanislav L. [Institute of Applied Mechanics, Ural Branch, Izhevsk (Russian Federation)

    2011-07-01

    A mathematical model of the formation of atomic bonds in metals and alloys, based on the electrostatic interaction between the outer electron shells of atoms of chemical elements. Key words: mathematical model, the interatomic bonds, the electron shell of atoms, the potential, the electron density, bimetallic compound.

  20. Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.

    Science.gov (United States)

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2011-10-01

    A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.

  1. Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Md. Rezwan, E-mail: mrmche@yahoo.co [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Masud, Jahangir [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Ohsaka, Takeo, E-mail: ohsaka@echem.titech.ac.j [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2010-12-15

    In the present article, oxygen reduction reaction (ORR) at electrochemically fabricated tin-palladium (Sn-Pd) bimetallic electrocatalyst-modified glassy carbon (GC) electrode (Sn-Pd/GC electrode) in acidic media is addressed. Hydrodynamic voltammetric measurements were employed with a view to evaluating various kinetic parameters of the ORR at the Sn-Pd/GC electrode. The obtained results obviously demonstrated that the Sn-Pd bimetallic electrocatalyt substantially promoted the activity of the GC electrode and drove the ORR through an exclusive one-step four-electron pathway forming H{sub 2}O as the final product.

  2. Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media

    International Nuclear Information System (INIS)

    Miah, Md. Rezwan; Masud, Jahangir; Ohsaka, Takeo

    2010-01-01

    In the present article, oxygen reduction reaction (ORR) at electrochemically fabricated tin-palladium (Sn-Pd) bimetallic electrocatalyst-modified glassy carbon (GC) electrode (Sn-Pd/GC electrode) in acidic media is addressed. Hydrodynamic voltammetric measurements were employed with a view to evaluating various kinetic parameters of the ORR at the Sn-Pd/GC electrode. The obtained results obviously demonstrated that the Sn-Pd bimetallic electrocatalyt substantially promoted the activity of the GC electrode and drove the ORR through an exclusive one-step four-electron pathway forming H 2 O as the final product.

  3. Leak rate measurements on bimetallic transition samples for ILC cryomodules

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chernikov, A.; Sabirov, B.

    2008-01-01

    The results of leak test of bimetallic (titanium-stainless steel) transition elements produced by explosion welding are presented. Vacuum and high-pressure tests of the sample for leakage were carried out at room temperature and liquid nitrogen temperature. Similar tests were also carried out under thermal cycling conditions

  4. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    International Nuclear Information System (INIS)

    Taherkhani, Farid; Akbarzadeh, Hamed; Feyzi, Mostafa; Rafiee, Hamid Reza

    2015-01-01

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models

  5. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Taherkhani, Farid, E-mail: faridtaherkhani@gmail.com, E-mail: f.taherkhani@razi.ac.ir [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of); Akbarzadeh, Hamed [Hakim Sabzevari University, Department of Chemistry (Iran, Islamic Republic of); Feyzi, Mostafa; Rafiee, Hamid Reza [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of)

    2015-01-15

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.

  6. In situ monitoring of the surface reconstructions on InP(001) prepared by molecular beam epitaxy

    Science.gov (United States)

    Ozanyan, K. B.; Parbrook, P. J.; Hopkinson, M.; Whitehouse, C. R.; Sobiesierski, Z.; Westwood, D. I.

    1997-07-01

    Reflection anisotropy spectroscopy (RAS) and reflection high-energy electron diffraction (RHEED) were applied to study clean InP(001) surfaces prepared by molecular beam epitaxy (MBE). At phosphorus beam equivalent pressures (BEPs) between 3.5×10-7 and 3.5×10-6 mbar and substrate temperature (Ts) falling from 590 to 150 °C, (2×4), (2×1), (2×2), and c(4×4) RHEED patterns are observed. The main RAS features, observed at 1.7-1.9 and 2.6-2.9 eV are assigned to In and P dimers, respectively. The above reconstruction sequence is associated closely with transformations identified in RAS signatures that are induced by progressively increasing the P surface coverage. The RAS results also imply the existence of (2×4)α and (2×4)β phases. A surface-phase diagram for MBE-grown (001) InP, in the whole range of Ts and phosphorus BEPs is proposed.

  7. Spin-Polarized Hybridization at the interface between different 8-hydroxyquinolates and the Cr(001) surface

    Science.gov (United States)

    Wang, Jingying; Deloach, Andrew; Dougherty, Daniel B.; Dougherty Lab Team

    Organic materials attract a lot of attention due to their promising applications in spintronic devices. It is realized that spin-polarized metal/organic interfacial hybridization plays an important role to improve efficiency of organic spintronic devices. Hybridized interfacial states help to increase spin injection at the interface. Here we report spin-resolved STM measurements of single tris(8-hydroxyquinolinato) aluminum molecules adsorbed on the antiferromagnetic Cr(001). Our observations show a spin-polarized interface state between Alq3 and Cr(001). Tris(8-hydroxyquinolinato) chromium has also been studied and compared with Alq3, which exhibits different spin-polarized hybridization with the Cr(001) surface state than Alq3. We attribute the differences to different character of molecular orbitals in the two different quinolates.

  8. Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition

    Science.gov (United States)

    2017-09-30

    Report: Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer ...Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition Report Term: 0-Other Email: pcappillino... Layer Electroless Deposition (ALED, Figure 1) is the ability to tune growth mechanism, hence growth morphology, by altering conditions. In this

  9. Pd/Co bimetallic nanoparticles: coelectrodeposition under protection of PVP and enhanced electrocatalytic activity for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.S.; Wu, J.J. [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000 (China)

    2012-06-15

    A series of Pd-Co bimetallic nanostructures with Co compositions ranging from 0 to 13 at.% were fabricated on glassy carbon electrode by one step electrodeposition in the presence of polyvinylpyrrolidone (PVP). The roles of PVP and Co have been systematically investigated by using combined techniques such as scanning electron microscopy, energy dispersive spectrometry, cyclic voltammetry, X-ray diffraction, and chronoamperograms. PVP was used as an additive to stabilize the Pd nanoparticles and inhibit agglomeration during their formation. The prepared Pd{sub 100}Co{sub 10} bimetallic nanostructures exhibited great catalytic activity towards ethanol oxidation in alkaline, which implies that low Co doping can be a convenient way to enhance the electrocatalytic property of Pd. The present study shows that the Pd/Co bimetallic nanoparticulate can be a promising catalyst for portable applications in direct ethanol fuel cell in alkaline solution. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Effect of nanoparticle metal composition: mono- and bimetallic gold/copper dendrimer stabilized nanoparticles as solvent-free styrene oxidation catalysts

    Science.gov (United States)

    Blanckenberg, A.; Kotze, G.; Swarts, A. J.; Malgas-Enus, R.

    2018-02-01

    A range of mono- and bimetallic AumCun nanoparticles (NPs), with varying metal compositions, was prepared by using a third-generation diaminobutane poly(propylene imine) (G3 DAB-PPI) dendrimer, modified with alkyl chains, as a stabilizer. It was found that the length of the peripheral alkyl chain, ( M1 (C15), M2 (C11), and M3 (C5)), had a direct influence on the average nanoparticle size obtained, confirming the importance of the nanoparticle stabilizer during synthesis. The Au NPs showed the highest degree of agglomeration and polydispersity, whereas the Cu NPs were the smallest and most monodisperse of the NPs. The bimetallic NPs sizes were found to vary between those of the monometallic NPs, depending on the metal composition. Interestingly, the bimetallic NPs were found to be the most stable, showing very little variation in size over time, even up to 9 months. The DSNs were evaluated in the catalytic oxidation of styrene, using either H2O2 or TBHP as oxidant. Here, we show that the bimetallic DSNs are indeed the superior catalysts when compared to their monometallic analogues, under the same reaction conditions, since a good compromise between stability and activity can be achieved where the Au provides catalytic activity and the Cu serves as a stabilizer. These AumCun bimetallic DSNs present a less expensive and more stable catalyst with negligible loss of activity, opening the door to green catalysis.

  11. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    Science.gov (United States)

    Jin, Zhijun; Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-12-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10-x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10-x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd-Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd-Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5).

  12. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts.

    Science.gov (United States)

    Tathod, Anup P; Dhepe, Paresh L

    2015-02-01

    Promoter effect of Sn in the PtSn/γ-Al2O3 (AL) and PtSn/C bimetallic catalysts is studied for the conversion of variety of substrates such as, C5 sugars (xylose, arabinose), C6 sugars (glucose, fructose, galactose), hemicelluloses (xylan, arabinogalactan), inulin and agricultural wastes (bagasse, rice husk, wheat straw) into sugar alcohols (sorbitol, mannitol, xylitol, arabitol, galactitol). In all the reactions, PtSn/AL showed enhanced yields of sugar alcohols by 1.5-3 times than Pt/AL. Compared to C, AL supported bimetallic catalysts showed prominent enhancement in the yields of sugar alcohols. Bimetallic catalysts characterized by X-ray diffraction study revealed the stability of catalyst and absence of alloy formation thereby indicating that Pt and Sn are present as individual particles in PtSn/AL. The TEM analysis also confirmed stability of the catalysts and XPS study disclosed formation of electron deficient Sn species which helps in polarizing carbonyl bond to achieve enhanced hydrogenation activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A Tunable Bimetallic MOF-74 for Adsorption Chiller Applications: A Tunable Bimetallic MOF-74 for Adsorption Chiller Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian [Pacific Northwest National Laboratory, 99352 Richland WA USA; Zheng, Jian [Pacific Northwest National Laboratory, 99352 Richland WA USA; Barpaga, Dushyant [Pacific Northwest National Laboratory, 99352 Richland WA USA; Sabale, Sandip [Pacific Northwest National Laboratory, 99352 Richland WA USA; P.G. Department of Chemistry, Jaysingpur College, 416101 Jaysingpur Maharashtra India; Arey, Bruce [Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, 99352 Richland WA USA; Derewinski, Miroslaw A. [Pacific Northwest National Laboratory, 99352 Richland WA USA; McGrail, B. Peter [Pacific Northwest National Laboratory, 99352 Richland WA USA; Motkuri, Radha Kishan [Pacific Northwest National Laboratory, 99352 Richland WA USA

    2018-02-12

    A mixed metal strategy, in which two different metal nodes coexist in one MOF framework, was examined using MOF-74. The Ni salt precursor for the MOF-74(Ni) analogue was partially replaced during synthesis with relatively inexpensive Zn salt. These bimetallic MOFs were developed and examined for water sorption for potential use in adsorption cooling/chiller applications. Varying concentration ratios of Ni:Zn in MOF-74 achieved using this mixed metal strategy were shown to provide unique impacts on H2O uptake while significantly mitigating the costs of synthesis

  14. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    Science.gov (United States)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  15. Electrocatalytic oxidation of ethylene glycol at palladium-bimetallic nanocatalysts (PdSn and PdNi) supported on sulfonate-functionalised multi-walled carbon nanotubes

    CSIR Research Space (South Africa)

    Ramulifho, T

    2013-04-01

    Full Text Available Electrocatalytic oxidation of ethylene glycol (EG) in alkaline medium using nano-scaled palladium-based bimetallic catalysts (PdM, where M = Ni and Sn) supported on sulfonated multi-walled carbon nanotubes (SF-MWCNTs) is compared. The bimetallic...

  16. Properties of the CuGaSe2 and CuInSe2 (001) surface

    International Nuclear Information System (INIS)

    Deniozou, T.

    2005-01-01

    The main task of this work was to investigate the (001) CuGaSe 2 and CuInSe 2 surface in dependence of preparation and stoichiometry. The knowledge of the atomic structure as well as other surface properties is important in respect to optimization of novel thin film solar cells. For the characterization of the layers mainly Auger electron Spectroscopy, low-energy electron diffraction and photoelectron spectroscopy were implemented. The development of an appropriate procedure with Ar + sputtering and annealing combined with decapping enabled the preparation of clean and well-ordered surfaces. Different surface structures were observed in dependence of the layer preparation and composition. A (4 x 1) reconstruction was observed for the first time on CuGaSe 2 layers grown with a moderate Cu-excess after preparation by sputtering and annealing. Similarly a (4 x 2) reconstruction was detected on CuInSe2 surfaces of Cu-poor layers. A reconstruction could be also observed on Cu-poorer layers, however the facets/steps could not be completely removed. Cu-richer layers were facet-free, however the observed reconstruction was also weaker. Thus it was shown that in contrary to recent expectations, according to which only the (112) surface is stable, also the (001) can be stable under particular conditions. The appearance of facets or steps is correlated with the presence of CuIn 3 Se 5 or CuGa 3 Se 5 phases. This information is furthermore important for the understanding of grain boundaries in polycrystalline CuGaSe 2 and CuInSe 2 . Binding energy shifts were observed for the first time on all Se3d, In4d, Ga3d, Cu3d core levels of the reconstructed surfaces. By comparison with results from the literature from the similar ZnSe (100) surface a modell for the (4 x 2) reconstruction was proposed. The surface components in the Se3d, In4d and Cu3d emission were attributed to Se dimers or In and Cu adatoms respectively. The x 1 periodicity of the (4 x 1) reconstruction of CuGaSe 2 is

  17. Ti, Al and N adatom adsorption and diffusion on rocksalt cubic AlN (001) and (011) surfaces: Ab initio calculations

    Science.gov (United States)

    Mastail, C.; David, M.; Nita, F.; Michel, A.; Abadias, G.

    2017-11-01

    We use ab initio calculations to determine the preferred nucleation sites and migration pathways of Ti, Al and N adatoms on cubic NaCl-structure (B1) AlN surfaces, primary inputs towards a further thin film growth modelling of the TiAlN alloy system. The potential energy landscape is mapped out for both metallic species and nitrogen adatoms for two different AlN surface orientations, (001) and (110), using density functional theory. For all species, the adsorption energies on AlN(011) surface are larger than on AlN(001) surface. Ti and Al adatom adsorption energy landscapes determined at 0 K by ab initio show similar features, with stable binding sites being located in, or near, epitaxial surface positions, with Ti showing a stronger binding compared to Al. In direct contrast, N adatoms (Nad) adsorb preferentially close to N surface atoms (Nsurf), thus forming strong N2-molecule-like bonds on both AlN(001) and (011). Similar to N2 desorption mechanisms reported for other cubic transition metal nitride surfaces, in the present work we investigate Nad/Nsurf desorption on AlN(011) using a drag calculation method. We show that this process leaves a Nsurf vacancy accompanied with a spontaneous surface reconstruction, highlighting faceting formation during growth.

  18. Two 3D structured Co-Ni bimetallic oxides as cathode catalysts for high-performance alkaline direct methanol fuel cells

    Science.gov (United States)

    Liu, Yan; Shu, Chengyong; Fang, Yuan; Chen, Yuanzhen; Liu, Yongning

    2017-09-01

    Two NiCo2O4 bimetallic oxides were synthesized via a facile hydrothermal method. SEM and TEM observations show that these materials have three-dimensional (3D) dandelion-like (DL) and flower-like (FL) morphologies. Their large specific surface areas (90.68 and 19.8 m2·g-1) and porous structures provide many active sites and effective transport pathways for the oxygen reduction reaction (ORR). Electrochemical measurements with a rotating ring-disc electrode (RRDE) indicate that the electron transfer numbers of the NiCo2O4-DL and NiCo2O4-FL catalysts for ORR in an alkaline solution are 3.97 and 3.91, respectively. Fuel cells were assembled with the bimetallic oxides, PtRu/C and a polymer fiber membrane (PFM) as cathode catalysts, anode catalyst and electrolyte film, respectively. For NiCo2O4-DL, the peak power density reaches up to 73.5 mW·cm-2 at 26 °C, which is the highest room-temperature value reported to date. The high catalytic activity of NiCo2O4 is mainly attributed to the presence of many Co3+ cations that directly donate electrons to O2 to reduce it via a more efficient and effective route. Furthermore, the catalytic performance of NiCo2O4-DL is superior to that of NiCo2O4-FL because it has a higher specific surface area and is less crystalline.

  19. Scanning tunneling microscopy of the atomically smooth (001) surface of vanadium pentoxide V{sub 2}O{sub 5} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-01-15

    The (001) cleavage surface of vanadium pentoxide (V{sub 2}O{sub 5}) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V{sub 2}O{sub 5} crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surface (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.

  20. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization

    Science.gov (United States)

    Zhao, Jun; Zhang, Dongming; Zhao, Jie

    2011-09-01

    Superfine bimetallic Cu-Ag core-shell powders were synthesized by reduction of copper sulfate pentahydrate and silver nitrate with eco-friendly ascorbic acid as a reducing agent and cyclodextrins as a protective agent in an aqueous system. The influence of Ag/Cu ratio on coatings was investigated. Ag was homogeneously distributed on the surface of Cu particles at a mole ratio of Ag/Cu=1. FE-SEM showed an uniformity of Ag coatings on Cu particles. Antioxidation of Cu particles was improved by increasing Ag/Cu ratio. TEM-EDX and UV-vis spectra also revealed that Cu cores were covered by Ag nanoshells on the whole. The surface composition analysis by XPS indicated that only small parts of Cu atoms in the surface were oxidized. It was noted that the hindrance of cyclodextrins chemisorbed on particles plays an important role in forming high quality and good dispersity Cu-Ag (Cu@Ag) core-shell powders.

  1. Density functional study of structural and electronic properties of bimetallic silver-gold clusters: Comparison with pure gold and silver clusters

    Science.gov (United States)

    Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo

    2002-08-01

    Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic

  2. Synthesis and Growth Mechanism of Multimetallic Core-Shell and Hollow-Like Nanoparticles

    Science.gov (United States)

    Londono-Calderon, Alejandra

    A thorough control of nanoscale systems is crucial for developing and improving their activity in a variety of application fields. These range from nanocatalysis, plasmonics, nanosensors, nanomedicine, communications, and others. Controlling and understanding the growth and spatial distribution of multi metallic systems allow us to explore the correlation between the characteristics of the nanoparticle (composition, surface chemistry, crystallinity, etc.) and their properties (mechanical, optical, structural, etc.). In this dissertation bimetallic and multi-metallic nanoparticles were obtained by a seed mediated method and galvanic replacement. Combinations of the type core shell of Au Ag, Au Pd and Au Pd-Au Au multi-metallic systems were studied. A galvanic replacement method was used to obtain hollow-like Au/Pt nanoboxes and Au AgM (M = Au, Pd or Pt) yolk-shell structures with voids in the middle shell. Characterization regarding composition, morphology, optical properties and atomic structures was performed. The mechanical properties of Au Pd nanocubes were studied in situ by the use of a TEM-AFM nanomechanical holder. The nanoparticles strengthening mechanism relies on the Au core resistance to the motion of partial dislocations. The catalytic efficiency of core-shell and nanorattles structures were tested with a model reaction for the decomposition of 4-ntp to 4-amp. Yolk-shell systems exhibit an enhancement in the catalytic decomposition rate in comparison with solid and bimetallic system. Finally, the development of an Electrospray assisted Langmuir Blodgett technique was successfully employed for the deposition of nanoparticles monolayer on a substrate. High particle density and coverage of the substrate makes this a promising technique to finely tune nanoparticles self-assembly.

  3. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  4. Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    Science.gov (United States)

    Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-01-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10−x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10−x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd–Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd–Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5). PMID:29308263

  5. Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media

    Science.gov (United States)

    Zanato, A. F. S.; Silva, V. C.; Lima, D. A.; Jacinto, M. J.

    2017-11-01

    Monometallic Pd- and bimetallic PtPd-nanoparticles supported on a mesoporous magnetic magnetite@silica matrix resembling a core-shell structure (Fe3O4@mSiO2) have been fabricated. The material was characterized by transmission electron microscope (TEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectra (XPS), energy dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). The catalysts were applied in the removal of anthracene from liquid phase via catalytic hydrogenation. It was found that anthracene as a model compound could be completely converted into the partially hydrogenated species by the monometallic and bimetallic solids. However, during the recycling study the bimetallic material (Fe3O4@mSiO2PtPd-) showed an enhanced activity towards anthracene removal compared with the monometallic materials. A single portion of the PtPd-based catalyst can be used up to 11 times in the hydrogenation of anthracene under mild conditions (6 atm of H2, 75 °C, 20 min). Thanks to the presence of a dense magnetic core, the catalysts were capable of responding to an applied external magnetic field and once the reaction was completed, catalyst/product separation was straightforward.

  6. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Al-Shareef, Reem A.; Harb, Moussab; Saih, Youssef; Ould-Chikh, Samy; Roldan, Manuel A.; Anjum, Dalaver H.; Guyonnet, Elodie Bile; Candy, Jean-Pierre; Jan, Deng-Yang; Abdo, Suheil F.; Aguilar-Tapia, Antonio; Proux, Olivier; Hazemann, Jean-Louis; Basset, Jean-Marie

    2018-01-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  7. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Alshareef, Reem Abdul aziz Hamed

    2018-04-25

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  8. Effect of Cu{sup 2+}/Al{sup 3+} mole ratio on structure of Cu-Al bimetallic nanoparticles prepared by radiation induced method

    Energy Technology Data Exchange (ETDEWEB)

    Abedini, Alam; Larki, Farhad; Saion, Elias; Noroozi, Monir [Putra Malaysia Univ., Serdang, Selangor (Malaysia). Dept. of Physics

    2013-07-15

    Cu-Al bimetallic nanoparticles were synthesized by gamma irradiation technique in aqueous solutions containing metal chlorides as precursors, polyvinyl alcohol (PVA) as a capping agent, isopropanol as a radical scavenger, and distilled water as a solvent. The Cu-Al bimetallic nanoparticles were characterized by transmission electron microscopy (TEM), UV-visible absorption spectrometry, powder X-ray diffractometer (XRD), and Energy-dispersive X-ray spectroscopy (EDX). The TEM, XRD, EDX, and absorption analyses confirmed the formation of core-shell structure of Cu-Al bimetallic nanoparticles at lower Cu{sup 2+}/Al{sup 3+} mole ratio, and the formation of Cu-Al alloy nanoparticles at higher Cu{sup 2+}/Al{sup 3+} mole ratio. The TEM analysis for particle size and size distribution revealed that the average particle size of Cu-Al bimetallic nanoparticles decreased with the increase of absorbed dose. It may be explained due to the competition between nucleation and aggregation processes in the formation of metallic nanoparticles under irradiation. (orig.)

  9. Standard practice for evaluation of disbonding of bimetallic stainless alloy/steel plate for use in high-pressure, high-temperature refinery hydrogen service

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers a procedure for the evaluation of disbonding of bimetallic stainless alloy/steel plate for use in refinery high-pressure/high-temperature (HP/HT) gaseous hydrogen service. It includes procedures to (1) produce suitable laboratory test specimens, (2) obtain hydrogen charging conditions in the laboratory that are similar to those found in refinery HP/HT hydrogen gas service for evaluation of bimetallic specimens exposed to these environments, and (3) perform analysis of the test data. The purpose of this practice is to allow for comparison of data among test laboratories on the resistance of bimetallic stainless alloy/steels to hydrogen-induced disbonding (HID). 1.2 This practice applies primarily to bimetallic products fabricated by weld overlay of stainless alloy onto a steel substrate. Most of the information developed using this practice has been obtained for such materials. The procedures described herein, may also be appropriate for evaluation of hot roll bonded, explosive bonded...

  10. Self-consistent electronic structure and segregation profiles of the Cu-Ni (001) random-alloy surface

    DEFF Research Database (Denmark)

    Ruban, Andrei; Abrikosov, I. A.; Kats, D. Ya.

    1994-01-01

    We have calculated the electronic structure and segregation profiles of the (001) surface of random Cu-Ni alloys with varying bulk concentrations by means of the coherent potential approximation and the linear muffin-tin-orbitals method. Exchange and correlation were included within the local......-density approximation. Temperature effects were accounted for by means of the cluster-variation method and, for comparison, by mean-field theory. The necessary interaction parameters were calculated by the Connolly-Williams method generalized to the case of a surface of a random alloy. We find the segregation profiles...

  11. Directed self-assembly of nanoporous metallic- and bimetallic nanoparticle thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Torsten [Fachbereich Physik, Universitaet Konstanz (Germany); Gindy, Nabil; Fahmi, Amir [Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham (United Kingdom)

    2010-07-01

    Nanoporous thin films attracted considerable interest due to potential applications in optical coatings, catalysis, sensors as well as electronic devices. Recently, such films were prepared by post deposition treatments. The present study is focused on the fabrication of nanoporous thin films via directed self-assembly of hybrid materials. Due to the nature of this process no additional treatments are necessary to develop the pores. Hierarchical nanoporous structures are fabricated directly via deposition of polymer templated Au-nanoparticles onto hydrophilic substrates. These films exhibit two different pore diameters and a total pore density of more than 10{sup 10} holes per cm{sup 2}. Control over the pore size is achieved by changing the molecular weight of the PS-b-P4VP diblock copolymer. Moreover, the porous morphology is used as a template to fabricate bimetallic nanostructured thin films. Such well-defined nanostructures, not only exhibit unique physical properties but also provide control over the hydrophobicity of the coated surfaces.

  12. One-dimensional silicon nanolines in the Si(001):H surface

    International Nuclear Information System (INIS)

    Bianco, F.; Köster, S. A.; Longobardi, M.; Owen, J. H.G.; Renner, Ch.; Bowler, D. R.

    2013-01-01

    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the monohydride Si(001):H surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometer long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality

  13. Ab-initio study of the coadsorption of Li and H on Pt(001), Pt(110) and Pt(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Farida [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Zemirli, Mourad, E-mail: zemirlimourad@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Benakki, Mouloud; Bouarab, Said [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria)

    2012-02-15

    The coadsorption of Li and H atoms on Pt(001), Pt(110) and Pt(111) surfaces is studied using density functional theory with generalised gradient approximation. In all calculations Li, H and the two topmost layers of the metal were allowed to relax. At coverage of 0.25 mono-layer in a p(2 Multiplication-Sign 2) unit cell, lithium adsorption at the hollow site for the three surfaces is favoured over top and bridge sites. The most favoured adsorption sites for H atom on the Pt(001) and Pt(110) surfaces are the top and bridge sites, while on Pt(111) surface the fcc site appears to be slightly favoured over the hcp site. The coadsorption of Li and atomic hydrogen shows that the interaction between the two adsorbates is stabilising when they are far from each other. The analysis of Li, H and Pt local density of states shows that Li strongly interacts with the Pt surfaces.

  14. Hydrogenation of ethene catalyzed by Ir atom deposited on γ-Al2O3(001) surface: From ab initio calculations

    International Nuclear Information System (INIS)

    Chen, Yongchang; Sun, Zhaolin; Song, Lijuan; Li, Qiang; Xu, Ming

    2012-01-01

    Ethene hydrogenation reaction, catalyzed by an iridium atom adsorbed on γ-Al 2 O 3 (001) surface, is studied via ab initio calculations based on density functional theory (DFT). The catalyzed reaction process and activation energy are compared with the counterparts of a reaction occurs in vacuum condition. It is found that the activation energy barrier is substantially lowered by the adsorbed Ir atom on the γ-Al 2 O 3 (001). The catalyzed reaction is modeled in two steps: (1) Hydrogen molecular dissolution and then bonded with C 2 H 4 molecular. (2) Desorption of the C 2 H 6 molecular from the surface. -- Highlights: ► The ethene hydrogenation reaction is simulated with nudged elastic band methods. ► The catalytic effect of the Ir atom on γ-Al 2 O 3 (001) surface is modeled. ► Details of the catalytic reaction are exhibited.

  15. Real-time observation of the dehydrogenation processes of methanol on clean Ru(001) and Ru(001)-p(2×2) O surfaces by a temperature-programmed electron-stimulated desorption ion angular distribution/time-of-flight system

    Science.gov (United States)

    Sasaki, Takehiko; Itai, Yuichiro; Iwasawa, Yasuhiro

    1999-12-01

    Decomposition processes of methanol on clean and oxygen-precovered Ru(001) surfaces have been visualized in real time with a temperature-programmed (TP) electron-stimulated desorption ion angular distribution (ESDIAD)/time-of-flight (TOF) system. The mass of desorbed ions during temperature-programmed surface processes was identified by TOF measurements. In the case of methanol (CH 3OD) adsorption on Ru(001)-p(2×2)-O, a halo pattern of H + from the methyl group of methoxy species was observed at 100-200 K, followed by a broad pattern from the methyl group at 230-250 K and by a near-center pattern from O + ions originating from adsorbed CO above 300 K. The halo pattern is attributed to a perpendicular conformation of the CO bond axis of the methoxy species, leading to off-normal CH bond scission. On the other hand, methanol adsorbed on clean Ru(001) did not give any halo pattern but a broad pattern was observed along the surface normal, indicating that the conformation of the methoxy species is not ordered on the clean surface. Comparison between the ESDIAD images of the oxygen-precovered surface and the clean surface suggests that the precovered oxygen adatoms induce ordering of the methoxy species. Real-time ESDIAD measurements revealed that the oxygen atoms at the Ru(001)-p(2×2)-O surface have a positive effect on selective dehydrogenation of the methoxy species to CO+H 2 and a blocking effect on CO bond breaking of the methoxy species.

  16. First-principles study of the (001) surface of cubic Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan Xu [Computational Materials Science Center, National Institute for Materials Science, Tsukuba 305-0044 (Japan); Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2008-06-15

    We have theoretically investigated basic properties of the (001) surface of cubic Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) by the plane-wave pseudopotential method within the local-density approximation. For the BaSrO{sub 2}-terminated surface, the surface-layer Sr atoms move inward and the surface-layer Ba atoms move outward. Moreover, the displacement of the surface-layer Sr atoms is much larger than the surface-layer Ba atoms. The rumpling of the BaSrO{sub 2}-terminated surface is much larger than that of the Ti{sub 2}O{sub 4}-terminated one. The surface state appears in the band structure of the Ti{sub 2}O{sub 4}-terminated surface of BST. Based on the results of the calculated grand thermodynamic potential, only the BaSrO{sub 2}-terminated surface can exist in the (001) surface of cubic BST. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Adsorption of Zn(II) on the kaolinite(001) surfaces in aqueous environment: A combined DFT and molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang; Kong, Xiang-Ping; Zhang, Bao-Hua; Wang, Juan, E-mail: juaner80@163.com

    2017-08-31

    Highlights: • Zn(II) adsorption on two types of neutral kaolinite(001) surfaces is investigated. • Surface “Ou” is found the preferred site for mono- and bi-dentate complexes. • Both Zn(II) and surface oxygen accept electrons from aqua oxygens. • Coupling of O 2p with Zn sp{sup 3}d{sup 2} (or sp{sup 3}) hybridization states is the bonding nature. - Abstract: Adsorption of Zn(II) on two types of neutral (001) surfaces of kaolinite, tetrahedral Si(t) and octahedral Al(o), was studied by means of DFT calculations and classical molecular dynamics simulations. The position and structure for both outer-sphere and mono-/bi-dentate inner-sphere complexes of Zn(II) in aqueous environment were examined, with binding energy and radial distribution function calculated. Outer-sphere complex on the Si(t) surface, monodentate inner-sphere complex of “O{sub u}” (surface oxygen with “upright” hydrogen) site and bidentate complex of “O{sub u}-O{sub u}” site of neighboring Al centers on the Al(o) surface are considered to be the dominant adsorption species. The outer-sphere complex is found six-coordinated with distorted octahedral geometry, while both the inner-sphere complexes exhibit the tetrahedral structure with coordination number of four. Hydrogen bonding interactions between oxygen or hydrogen of the kaolinite(001) surfaces and the aqua ligands of Zn(II) act as the key role for the structure and stability of adsorption complexes. Upon the Mulliken population analysis and partial density of states, both Zn(II) and surface oxygen accept electrons from aqua oxygens, and coupling of O 2p with the sp{sup 3}d{sup 2} or sp{sup 3} hybridization states of Zn(II) is the primary bonding nature of Zn(II) with oxygen in outer- and inner-sphere complexes, respectively.

  18. Origin of the quasiparticle peak in the spectral density of Cr(001) surfaces

    Science.gov (United States)

    Peters, L.; Jacob, D.; Karolak, M.; Lichtenstein, A. I.; Katsnelson, M. I.

    2017-12-01

    In the spectral density of Cr(001) surfaces, a sharp resonance close to the Fermi level is observed in both experiment and theory. For the physical origin of this peak, two mechanisms were proposed: a single-particle dz2 surface state renormalized by electron-phonon coupling and an orbital Kondo effect due to the degenerate dx z/dy z states. Despite several experimental and theoretical investigations, the origin is still under debate. In this work, we address this problem by two different approaches of the dynamical mean-field theory: first, by the spin-polarized T -matrix fluctuation exchange approximation suitable for weakly and moderately correlated systems; second, by the noncrossing approximation derived in the limit of weak hybridization (i.e., for strongly correlated systems) capturing Kondo-type processes. By using recent continuous-time quantum Monte Carlo calculations as a benchmark, we find that the high-energy features, everything except the resonance, of the spectrum are captured within the spin-polarized T -matrix fluctuation exchange approximation. More precisely, the particle-particle processes provide the main contribution. For the noncrossing approximation, it appears that spin-polarized calculations suffer from spurious behavior at the Fermi level. Then, we turned to non-spin-polarized calculations to avoid this unphysical behavior. By employing two plausible starting hybridization functions, it is observed that the characteristics of the resonance are crucially dependent on the starting point. It appears that only one of these starting hybridizations could result in an orbital Kondo resonance in the presence of a strong magnetic field like in the Cr(001) surface. It is for a future investigation to first resolve the unphysical behavior within the spin-polarized noncrossing approximation and then check for an orbital Kondo resonance.

  19. 3C-SiC nanocrystal growth on 10° miscut Si(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Deokar, Geetanjali, E-mail: gitudeo@gmail.com [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); D' Angelo, Marie; Demaille, Dominique [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Cavellin, Catherine Deville [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Faculté des Sciences et Technologie UPEC, 61 av. De Gaulle, Créteil F-94010 (France)

    2014-04-01

    The growth of 3C-SiC nano-crystal (NC) on 10° miscut Si(001) substrate by CO{sub 2} thermal treatment is investigated by scanning and high resolution transmission electron microscopies. The vicinal Si(001) surface was thermally oxidized prior to the annealing at 1100 °C under CO{sub 2} atmosphere. The influence of the atomic steps at the vicinal SiO{sub 2}/Si interface on the SiC NC growth is studied by comparison with the results obtained for fundamental Si(001) substrates in the same conditions. For Si miscut substrate, a substantial enhancement in the density of the SiC NCs and a tendency of preferential alignment of them along the atomic step edges is observed. The SiC/Si interface is abrupt, without any steps and epitaxial growth with full relaxation of 3C-SiC occurs by domain matching epitaxy. The CO{sub 2} pressure and annealing time effect on NC growth is analyzed. The as-prepared SiC NCs can be engineered further for potential application in optoelectronic devices and/or as a seed for homoepitaxial SiC or heteroepitaxial GaN film growth. - Highlights: • Synthesis of 3C-SiC nanocrystals epitaxied on miscut-Si using a simple technique • Evidence of domain matching epitaxy at the SiC/Si interface • SiC growth proceeds along the (001) plane of host Si. • Substantial enhancement of the SiC nanocrystal density due to the miscut • Effect of the process parameters (CO{sub 2} pressure and annealing duration)

  20. Effects of surface properties of (010), (001) and (100) of MnWO4 and FeWO4 on absorption of collector

    International Nuclear Information System (INIS)

    Qiu, X.Y.; Huang, H.W.; Gao, Y.D.

    2016-01-01

    Graphical abstract: - Highlights: • The (010) plane is the easiest one to be seen in wolframite, followed by (001) plane and (100) plane. • (010) and (001) are the primary planes for the absorption of anion collector ions. • W atom can be the absorption site in (001) plane but not in (010) plane. • The proportion of platy particles as well as their perfect cleavage planes increases with the decrease of particle size. • Cleavages occupied by W atom can lead to a low recovery when using BHA alone as the collector of wolframite. - Abstract: The atom distribution and electronic properties of (010), (001) and (100) planes of MnWO 4 and FeWO 4 were studied based on a DFT calculation. The surface stabilities of the three planes were compared according to their surface energies. The most stable one is (010) plane, followed by (001) and (100). (010) and (001) are the main planes for absorption of anion collector ions, which is supported by their bonding relationship and charge density distribution of surface atoms and finally proved by the results of flotation test and stereomicroscope analysis. In addition, the tungsten atoms can be viewed as the absorption site for collectors in (001) plane but not in (010) plane, which can explain the phenomenon in flotation test that the recovery of wolframite can hardly be further boosted even with a high dosage of BHA.

  1. Co on Fe{sub 3}O{sub 4}(001): Towards precise control of surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Gargallo-Caballero, Raquel; Martín-García, Laura; Marco, José F.; Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química Física “Rocasolano,” CSIC, Madrid E-28006 (Spain); Quesada, Adrián [Instituto de Cerámica y Vidrio, CSIC, Madrid E-28049 (Spain); Granados-Miralles, Cecilia [Department of Chemistry, Aarhus University, Langelandsgade 140, Århus DK-8000 (Denmark); Foerster, Michael; Aballe, Lucía [ALBA Synchrotron, CELLS, Barcelona, E-08290 (Spain); Bliem, Roland; Parkinson, Gareth S. [Institute of Applied Physics, Vienna University of Technology, Vienna A-1040 (Austria); Blaha, Peter [Institute of Materials Chemistry, Vienna University of Technology, Vienna A-1060 (Austria)

    2016-03-07

    A novel approach to incorporate cobalt atoms into a magnetite single crystal is demonstrated by a combination of x-ray spectro-microscopy, low-energy electron diffraction, and density-functional theory calculations. Co is deposited at room temperature on the reconstructed magnetite (001) surface filling first the subsurface octahedral vacancies and then occupying adatom sites on the surface. Progressive annealing treatments at temperatures up to 733 K diffuse the Co atoms into deeper crystal positions, mainly into octahedral ones with a marked inversion level. The oxidation state, coordination, and magnetic moments of the cobalt atoms are followed from their adsorption to their final incorporation into the bulk, mostly as octahedral Co{sup 2+}. This precise control of the near-surface Co atoms location opens up the way to accurately tune the surface physical and magnetic properties of mixed spinel oxides.

  2. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential.

    Science.gov (United States)

    Mittal, Amit Kumar; Kumar, Sanjay; Banerjee, Uttam Chand

    2014-10-01

    In this study a synthetic approach for the stable, mono-dispersed high yielding bimetallic (Ag-Se) nanoparticles by quercetin and gallic acid is described. The bimetallic nanoparticles were synthesized at room temperature. Different reaction parameters (concentration of quercetin, gallic acid and Ag/Se salt, pH, temperature and reaction time) were optimized to control the properties of nanoparticles. The nanoparticles were characterized by various analytical techniques and their size was determined to be 30-35 nm. Our findings suggest that both the reduction as well as stabilization of nanoparticles were achieved by the flavonoids and phenolics. This study describes the efficacy of quercetin and gallic acid mediated synthesis of bimetallic (Ag-Se) nanoparticles and their in vitro antioxidant, antimicrobial (Gram-positive and Gram-negative bacteria) and antitumor potentials. The synthesized Ag-Se nanoparticles were used as anticancer agents for Dalton lymphoma (DL) cells and in in vitro 80% of its viability was reduced at 50 μg/mL. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jeena, S. E.; Gnanaprakasam, P. [Karunya University, Department of Chemistry (India); Selvaraju, T., E-mail: veluselvaraju@gmail.com [Bharathiar University, Department of Chemistry (India)

    2017-01-15

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt{sub 40}/C or Pt{sub 20}/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  4. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Science.gov (United States)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt40/C or Pt20/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  5. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    International Nuclear Information System (INIS)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt_4_0/C or Pt_2_0/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  6. Porous Diatomite-Immobilized Cu–Ni Bimetallic Nanocatalysts for Direct Synthesis of Dimethyl Carbonate

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2012-01-01

    Full Text Available A series of diatomite-immobilized Cu–Ni bimetallic nanocatalysts was prepared under ultrasonication and evaluated for the direct synthesis of dimethyl carbonate under various conditions. Upon being fully characterized by TPR, TPD, BET, SEM, XRD, and XPS methodologies, it is found that the bimetallic composite is effectively alloyed and well immobilized inside or outside the pore of diatomite. Under the optimal conditions of 1.2 MPa and 120∘C, the prepared catalyst with loading of 15% exhibited the highest methanol conversion of 6.50% with DMC selectivity of 91.2% as well as more than 10-hour lifetime. The possible reaction mechanism was proposed and discussed in detail. To our knowledge, this is the first report to use diatomite as a catalyst support for direct DMC synthesis from methanol and CO2.

  7. Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems

    Directory of Open Access Journals (Sweden)

    Anna M. Venezia

    2013-06-01

    Full Text Available Steam reforming of light hydrocarbons provides a promising method for hydrogen production. Ni-based catalysts are so far the best and the most commonly used catalysts for steam reforming because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalysts. However, nickel catalysts are susceptible to deactivation from the deposition of carbon, even when operating at steam-to-carbon ratios predicted to be thermodynamically outside of the carbon-forming regime. Reactivity and deactivation by carbon formation can be tuned by modifying Ni surfaces with a second metal, such as Au through alloy formation. In the present review, we summarize the very recent progress in the design, synthesis, and characterization of supported bimetallic Ni-based catalysts for steam reforming. The progress in the modification of Ni with noble metals (such as Au and Ag is discussed in terms of preparation, characterization and pretreatment methods. Moreover, the comparison with the effects of other metals (such as Sn, Cu, Co, Mo, Fe, Gd and B is addressed. The differences of catalytic activity, thermal stability and carbon species between bimetallic and monometallic Ni-based catalysts are also briefly shown.

  8. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    Science.gov (United States)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  9. Chitosan supported bimetallic Pd/Co nanoparticles as a heterogeneous catalyst for the reduction of nitroaromatics to amines

    Directory of Open Access Journals (Sweden)

    Sajjad Keshipour

    2017-01-01

    Full Text Available A new bimetallic nanocomposite of chitosan was prepared. Pd and Co nanoparticles were deposited on chitosan to produce a new heterogeneous recyclable catalyst for use in the bimetallic catalytic reduction reaction. The catalyst was characterized with common analysis methods for nanocomposites including Energy Dispersive X-Ray Spectroscopy, X-Ray Diffraction pattern, Thermal Gravimetric Analysis, Flame Atomic Absorption Spectroscopy and Scanning Electron Microscopy, and applied in the reduction reaction of nitroaromatics using NaBH4 at room temperature. The bimetallic system gave good results compared to each of the applied metals. Various aromatic amines and diamines were used in the reduction reaction. The aromatic amines were obtained as the sole product of the reduction reaction with 15 mol% Pd and 12 mol% Co during 2h. This reaction had some advantages such as mild reaction conditions, high yield, green solvent, and a recyclable catalyst. Also, the recovered catalyst was applicable in the reduction reaction without a significant decrease in the activity for up to six times.

  10. Light alkane (mixed feed selective dehydrogenation using bi-metallic zeolite supported catalyst

    Directory of Open Access Journals (Sweden)

    Zeeshan Nawaz

    2009-12-01

    Full Text Available Light alkanes are the important intermediates of many refinery processes and their catalytic dehydrogenation gives corresponding alkenes. The aim behind this experimentation is to investigate reaction behavior of mixed alkanes during direct catalytic dehydrogenation and emphasis has been given to enhance propene. Bi-metallic zeolite supported catalyst Pt-Sn/ZSM-5 was prepared by sequentional impregnation method and characterized by BET, EDS and XRD. Direct dehydrogenation reaction is highly endothermic and its conversion is thermodynamically limited. Results showed that the increase in temperature increases the conversion to some extent but there is no overall effect on selectivity of propene. Increase in time-on-stream (TOS remarkably improves propene selectivity at the expense of lower conversion. The performances of bi-metallic zeolite based catalyst largely affected by coke deposition. The presence of butane and ethane adversely affected propane conversion. Optimum propene selectivity is about 48 %, obtained at 600 oC and time-on-stream 10 h.

  11. A comparative study of the adsorption and hydrogenation of acrolein on Pt(1 1 1), Ni(1 1 1) film and Pt Ni Pt(1 1 1) bimetallic surfaces

    Science.gov (United States)

    Murillo, Luis E.; Chen, Jingguang G.

    In this study we have investigated the reaction pathways for the decomposition and hydrogenation of acrolein (CH 2dbnd CH-CH dbnd O) on Ni/Pt(1 1 1) surfaces under ultra-high vacuum (UHV) conditions using temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). While gas-phase hydrogenation products are not observed from clean Pt(1 1 1), the subsurface Pt-Ni-Pt(1 1 1), with Ni residing below the first layer of Pt, is active for the self-hydrogenation of the C dbnd O bond to produce unsaturated alcohol (2-propenol) and the C dbnd C bond to produce saturated aldehyde (propanal), with the latter being the main hydrogenation product without the consecutive hydrogenation to saturated alcohol. For a thick Ni(1 1 1) film prepared on Pt(1 1 1), the self-hydrogenation yields for both products are lower than that from the Pt-Ni-Pt(1 1 1) surface. The presence of pre-adsorbed hydrogen further enhances the selectivity toward C dbnd O bond hydrogenation on the Pt-Ni-Pt(1 1 1) surface. In addition, HREELS studies of the adsorption of the two hydrogenation products, 2-propenol and propanal, are performed on the Pt-Ni-Pt(1 1 1) surface to identify the possible surface intermediates during the reaction of acrolein. The results presented here indicate that the hydrogenation activity and selectivity of acrolein on Pt(1 1 1) can be significantly modified by the formation of the bimetallic surfaces.

  12. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  13. Computer Simulation of Material Flow in Warm-forming Bimetallic Components

    Science.gov (United States)

    Kong, T. F.; Chan, L. C.; Lee, T. C.

    2007-05-01

    Bimetallic components take advantage of two different metals or alloys so that their applicable performance, weight and cost can be optimized. However, since each material has its own flow properties and mechanical behaviour, heterogeneous material flows will occur during the bimetal forming process. Those controls of process parameters are relatively more complicated than forming single metals. Most previous studies in bimetal forming have focused mainly on cold forming, and less relevant information about the warm forming has been provided. Indeed, changes of temperature and heat transfer between two materials are the significant factors which can highly influence the success of the process. Therefore, this paper presents a study of the material flow in warm-forming bimetallic components using finite-element (FE) simulation in order to determine the suitable process parameters for attaining the complete die filling. A watch-case-like component made of stainless steel (AISI-316L) and aluminium alloy (AL-6063) was used as the example. The warm-forming processes were simulated with the punch speeds V of 40, 80, and 120 mm/s and the initial temperatures of the stainless steel TiSS of 625, 675, 725, 775, 825, 875, 925, 975, and 1025 °C. The results showed that the AL-6063 flowed faster than the AISI-316L and so the incomplete die filling was only found in the AISI-316L region. A higher TiSS was recommended to avoid incomplete die filling. The reduction of V is also suggested because this can save the forming energy and prevent the damage of tooling. Eventually, with the experimental verification, the results from the simulation were in agreement with those of the experiments. On the basis of the results of this study, engineers can gain a better understanding of the material flow in warm-forming bimetallic components, and be able to determine more efficiently the punch speed and initial material temperature for the process.

  14. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics, and mechanism

    International Nuclear Information System (INIS)

    Fang Zhanqiang; Qiu Xinhong; Chen Jinhong; Qiu Xiuqi

    2011-01-01

    Polybrominated diphenyl ethers have been identified as a new class of organic pollutants with ecological risk due to their toxicity, bioaccumulation, and global distribution. Proper remediation technologies are needed to remove them from the environment. In this paper, Ni/Fe bimetallic nanoparticles were synthesized by chemical deposition and used to degrade decabromodiphenyl ether (BDE209). The characteristics of Ni/Fe nanoparticles were analyzed by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and Brunnaer-Emmett-Teller surface area analysis. Ni/Fe bimetallic nanoparticles with diameters in the order of 20-50 nm could effectively degrade BDE209 in the solvent (tetrahydrofuran/water). Influence factors, such as Ni/Fe nanoparticle dosage, initial BDE209 concentration, and Ni loading, on the removal of BDE209 were studied. The results indicated that the degradation of BDE209 followed pseudo-first-order kinetics, and the degradation rate of BDE209 increased with increasing the amount of nano Ni/Fe particles, Ni/Fe ratio, and decreasing the initial concentration of BDE209. Through analyzed the mass balance of the BDE209 removal, degradation was the main process of BDE209 removal. The mechanism of debromination was deduced by analyzing the reaction products using gas chromatography-mass spectrometry, the bromide ion in the solution and varying the solvent conditions. Stepwise hydrogen reduction is the main process of debromination, and the hydrion play an important role in the reaction. Moreover, the experiment of long term performance and leaching of Ni were also carried out to test the stability and durability of Ni/Fe nanoparticles in BDE209 degradation.

  15. Observation of second spin reorientation transition within ultrathin region in Fe films on Ag(001) surface

    International Nuclear Information System (INIS)

    Khim, T.-Y.; Shin, M.; Lee, H.; Park, B.-G.; Park, J.-H.

    2014-01-01

    We acquired direct measurements for in-plane and perpendicular-to-plane magnetic moments of Fe films using an x-ray magnetic circular dichroism technique with increase of the Fe thickness (up to 40 Å) on the Ag(001) surface. Epitaxial Fe/Ag(001) films were grown in situ with the thickness varying from 2 Å to 40 Å, and the magnetic anisotropy was carefully investigated as a function of the film thickness. We found re-entrance of the in-plane magnetic anisotropy of the Fe film in ultrathin region. The results manifest that the epitaxial Fe/Ag(001) film undergoes two distinct spin reorientation transitions from in-plane to out-of-plane at the film thickness t ≈ 9 Å and back to in-plane at t ≈ 18 Å as t increases.

  16. One-dimensional electron liquid at a surface. Gold nanowires on Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Blumenstein, Christian

    2012-09-11

    Self-organized nanowires at semiconductor surfaces offer the unique opportunity to study electrons in reduced dimensions. Notably the dimensionality of the system determines it's electronic properties, beyond the quasiparticle description. In the quasi-one-dimensional (1D) regime with weak lateral coupling between the chains, a Peierls instability can be realized. A nesting condition in the Fermi surface leads to a backfolding of the 1D electron band and thus to an insulating state. It is accompanied by a charge density wave (CDW) in real space that corresponds to the nesting vector. This effect has been claimed to occur in many surface-defined nanowire systems, such as the In chains on Si(111) or the Au reconstructions on the terraced Si(553) and Si(557) surfaces. Therefore a weak coupling between the nanowires in these systems has to be concluded. However theory proposes another state in the perfect 1D limit, which is completely destroyed upon slight coupling to higher dimensions. In this so-called Tomonaga-Luttinger liquid (TLL) state, the quasiparticle description of the Fermi liquid breaks down. Since the interaction between the electrons is enhanced due to the strong confinement, only collective excitations are allowed. This leads to novel effects like spin charge separation, where spin and charge degrees of freedom are decoupled and allowed to travel independently along the 1D-chain. Such rare state has not been realized at a surface until today. This thesis uses a novel approach to realize nanowires with improved confinement by studying the Au reconstructed Ge(001) surface. A new cleaning procedure using piranha solution is presented, in order to prepare a clean and long-range ordered substrate. To ensure optimal growth of the Au nanowires the phase diagram is extensively studied by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The structural elements of the chains are revealed and described in high detail. Remarkably

  17. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.; Ahmed, Syud M.; Coates, Geoffrey W.

    2011-01-01

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  18. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  19. Hybrid HF-DFT comparative study of SrZrO{sub 3} and SrTiO{sub 3}(001) surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Evarestov, R.A.; Bandura, A.V.; Alexandrov, V.E. [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetskii Prospekt, Stary Petergof, 198504 St. Petersburg (Russian Federation)

    2006-10-15

    Hybrid HF-DFT LCAO simulations of SrZrO{sub 3} and SrTiO{sub 3}(001) surface properties are performed in a single-slab model framework. The SrZrO{sub 3}(001) surface was studied by an ab initio method for the first time. Three slab models with different surface terminations including up to 8 atomic planes were used for calculation of the various surface characteristics (surface energies, atomic charges, density of electronic states). The dependence of the results on the chosen model and on the kind of d-element is analyzed. The dissimilarity in the surface oxygen atom contributions to the total density of states of two crystals is attributed to the more ionic nature of Zr-O bonds compared to Ti-O bonds. It is found that in the case of SrZrO{sub 3} the electronic density is biased towards the SrO-terminated surface and this surface should be more basic in nature than the SrO surface of SrTiO{sub 3} crystal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca- and Fe-doped MgO(001) surface basic sites.

    Science.gov (United States)

    Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto

    2012-08-02

    The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.

  1. Oxygen-vacancy defects on BaTiO3 (001) surface: a quantum chemical study

    International Nuclear Information System (INIS)

    Duque, Carlos; Stashans, Arvids

    2003-01-01

    A quantum-chemical study of technologically important BaTiO 3 crystal and oxygen-vacancy defects on its (001) surface is reported in the present work. The computations are made using a quantum-chemical method developed for periodic systems (crystals), which is based on the Hartree-Fock theory. The atomic rearrangement due to the surface creation is obtained for a pure BaTiO 3 by means of the periodic large unit cell (LUC) model and using an automated geometry optimisation procedure. The same technique is employed to study the electronic and structural properties of the material due to the presence of an O vacancy and F centre (two electrons trapped in an oxygen vacancy). The computations are carried out for both cubic and tetragonal lattices

  2. Magnetic surface domain imaging of uncapped epitaxial FeRh(001) thin films across the temperature-induced metamagnetic transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xianzhong; Matthes, Frank; Bürgler, Daniel E., E-mail: d.buergler@fz-juelich.de; Schneider, Claus M. [Peter Grünberg Institut, Electronic Properties (PGI-6) and Jülich-Aachen Research Alliance, Fundamentals of Future Information Technology (JARA-FIT), Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-01-15

    The surface magnetic domain structure of uncapped epitaxial FeRh/MgO(001) thin films was imaged by in-situ scanning electron microscopy with polarization analysis (SEMPA) at various temperatures between 122 and 450 K. This temperature range covers the temperature-driven antiferromagnetic-to-ferromagnetic phase transition in the body of the films that was observed in-situ by means of the more depth-sensitive magneto-optical Kerr effect. The SEMPA images confirm that the interfacial ferromagnetism coexisting with the antiferromagnetic phase inside the film is an intrinsic property of the FeRh(001) surface. Furthermore, the SEMPA data display a reduction of the in-plane magnetization occuring well above the phase transition temperature which, thus, is not related to the volume expansion at the phase transition. This observation is interpreted as a spin reorientation of the surface magnetization for which we propose a possible mechanism based on temperature-dependent tetragonal distortion due to different thermal expansion coefficients of MgO and FeRh.

  3. Atomic structure of the GaAs(001)-c(4x4) surface: first-principles evidence for diversity of heterodimer motifs.

    Science.gov (United States)

    Penev, E; Kratzer, P; Scheffler, M

    2004-10-01

    The GaAs(001)-c(4x4) surface was studied using ab initio atomistic thermodynamics based on density-functional theory calculations. We demonstrate that in a range of stoichiometries, between those of the conventional three As-dimer and the new three Ga-As-dimer models, there exists a diversity of atomic structures featuring Ga-As heterodimers. These results fully explain the experimental scanning tunneling microscopy images and are likely to be relevant also to the c(4x4)-reconstructed (001) surfaces of other III-V semiconductors.

  4. Study of selective Fischer-Tropsch catalysts synthesized by the destruction of bimetallic carbonyl complexes on activated γ-Al2O3 support

    International Nuclear Information System (INIS)

    Maksimov, Yu.V.; Matveev, V.V.; Suzdalev, I.P.; Khomenko, T.I.; Kadushin, A.A.

    1990-01-01

    The bimetallic catalysts obtained by the deposition of a Fe-Co binuclear cluster on the dehydroxylated γ-Al 2 O 3 are studied and compared to some other relative systems. These bimetallic catalysts are found to be active and selective in olefin synthesis. This is connected with the formation of Fe-Co contact which is detectable by Moessbauer spectroscopy. (orig.)

  5. Bimetallic Ag-Pd nanoparticles-decorated graphene oxide: a fascinating three-dimensional nanohybrid as an efficient electrochemical sensing platform for vanillin determination

    International Nuclear Information System (INIS)

    Li, Junhua; Feng, Haibo; Li, Jun; Jiang, Jianbo; Feng, Yonglan; He, Lingzhi; Qian, Dong

    2015-01-01

    Highlights: • A 3D Ag-Pd/GO nanohybrid was fabricated via a green and in situ chemical route. • Ag-Pd/GO shows excellent electro-catalytic properties for the oxidation of vanillin. • The 3D hybrid-based sensor shows excellent performances for the vanillin detection. • This proposed method was successfully used to detect vanillin in children’s snacks. - Abstract: In this work, a fascinating hybrid based on Ag-Pd bimetallic nanoparticles-decorated graphene oxide (Ag-Pd/GO) has been successfully synthesized by a green and in situ chemical reduction strategy. The resultant hybrid was particularly characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible spectroscopy and electrochemical techniques. The morphological results illustrate that Ag-Pd nanoparticles in microspheric appearances are highly dispersed and embedded on the GO layers, resulting in a rough surface and three-dimensional (3D) microstructure with a high Ag-Pd content in the matrix. The as-synthesized 3D Ag-Pd/GO hybrid displays distinctly enhanced electrocatalytic activity for the vanillin oxidation in comparison with that of the monometal-decorated GO, revealing a synergistic effect of the matrix GO and the doped bimetallic Ag-Pd. Therefore, the Ag-Pd/GO composite can be used as an enhanced electrochemical sensing platform for the sensitive determination of vanillin, and the fabricated sensor displays a wide detection range of 0.02–45 μmol dm −3 , low detection limit of 5 nmol dm −3 and satisfactory recoveries between 98.8 % and 103.5 %. All the results demonstrate that the 3D hybrids integrated graphene with bimetallic nanoparticles are promising candidates for the development of high-performance electrochemical sensors

  6. Synergy between Two Metal Catalysts: A Highly Active Silica Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane

    KAUST Repository

    Samantaray, Manoja

    2016-06-01

    A well-defined, silica supported, bimetallic precatalyst [≡Si-O-W(Me)5 ≡Si-O-Zr(Np)3](4) has been synthesized for the first time via successively grafting two organometallic complexes [W(CH3)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of Zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON: 1436) than the monometallic W hydride (TON: 650) in metathesis of n-decane at 150 0C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation which occurs on Zr. The produced olefin resulting from a ß–H elimination undergoes easy metathesis on W.

  7. Combined DFT and XPS investigation of iodine anions adsorption on the sulfur terminated (001) chalcopyrite surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kui, E-mail: likui9606@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Zhao, Yaolin, E-mail: zhaoyaolin@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Peng, E-mail: zp32@qq.com [Sino Shaanxi Nuclear Industry Group, Xi’an 710100 (China); He, Chaohui, E-mail: hechaohui@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Deng, Jia, E-mail: djkokocase@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Ding, Shujiang, E-mail: dingsj@mail.xjtu.edu.cn [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Shi, Weiqun, E-mail: shiwq@ihep.ac.cn [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2016-12-30

    Highlights: • Metal surface sites of (001)-S surface of chalcopyrite show significant chemical affinity to iodide and iodate. • The energetically favorable active site is copper for iodide adsorption and iron for iodate adsorption, respectively. • Iodate undergoes a dissociative adsorption on the copper site of chalcopyrite surface. - Abstract: The adsorption of iodine anions (iodide and iodate) on the sulfur terminated (001) chalcopyrite surface has been systematically investigated combining first-principles calculations based on density functional theory (DFT) with X-ray photoelectron spectroscopy (XPS) measurements. Based on the total energy calculations and geometric optimization, the thermodynamically preferred site was copper atom for iodide adsorption and iron atom for iodate adsorption, respectively. In the case of Cu site mode, the iodate underwent a dissociative adsorption, where one I−O bond of iodate ion was broken and the dissociative oxygen atom adsorbed on the adjacent sulphur site. Projected density of states (PDOS) analysis further clarified the interaction mechanism between active sites of chalcopyrite surface and adsorbates. In addition, full-range XPS spectra qualitatively revealed the presence of iodine on chalcopyrite surface. High resolution XPS spectra of the I 3d peaks after adsorption verified the chemical environment of iodine. The binding energies of 618.8 eV and 623.5 eV for I 3d{sub 5/2} peaks unveiled that the adsorption of iodide and iodate ions on copper-iron sulfide minerals was the result of formation of low solubility metal iodides precipitate. Also two I 3d peaks with low intensity around 618 eV and 630 eV might be related to the inorganic reduction of iodate to iodide by reducing S{sup 2−} ion of chalcopyrite.

  8. Multilayer bimetallic media as protection method of radioactive radiation

    International Nuclear Information System (INIS)

    Borts, B.V.; Tkachenko, V.I.; Tkachenko, I.V.

    2010-01-01

    Multilayer bimetallic media as means of protection of the earth's space vehicle from radioactive space radiation is described in the proposed paper. Evaluation of radiation losses of electron energy in inhomogeneous media is carried out; these media may be formed by layers of materials with different dielectric constants or they may be simulated by dielectric permittivity varying in space by harmonic law. It is shown that in such media the radiation losses of electron are proportional to the square of parameter of inhomogeneity, that is the losses are low. In the case when in periodic laminar medium with sharp boundaries the conditions of parametric union of self-waves of medium are satisfied, the losses of electron are proportional to the inhomogeneity parameter to first power and are comparable with losses that are caused by elementary events of scattering. The mean length of radiation losses of electron with energy 2(6) MeV in multilayer bimetallic medium tungsten-aluminum with period L ∼ 0,3 ·10 -6 cm is comparable with mean path of electron in such medium. The characteristic angles of radiation have the discrete character and are directed from 0 to 180 degree C. The power of losses increases with the radiation angle increase and is maximal for characteristic angles approaching 90 degree C.

  9. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis.

    Science.gov (United States)

    Luo, Fang; Yang, Die; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-08-15

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC-MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Precursor state of oxygen molecules on the Si(001) surface during the initial room-temperature adsorption

    Science.gov (United States)

    Hwang, Eunkyung; Chang, Yun Hee; Kim, Yong-Sung; Koo, Ja-Yong; Kim, Hanchul

    2012-10-01

    The initial adsorption of oxygen molecules on Si(001) is investigated at room temperature. The scanning tunneling microscopy images reveal a unique bright O2-induced feature. The very initial sticking coefficient of O2 below 0.04 Langmuir is measured to be ˜0.16. Upon thermal annealing at 250-600 °C, the bright O2-induced feature is destroyed, and the Si(001) surface is covered with dark depressions that seem to be oxidized structures with -Si-O-Si- bonds. This suggests that the observed bright O2-induced feature is an intermediate precursor state that may be either a silanone species or a molecular adsorption structure.

  11. Structure of bimetallic clusters. Extended x-ray absorption fine structure (EXAFS) studies of Rh--Cu clusters

    International Nuclear Information System (INIS)

    Meitzner, G.; Via, G.H.; Lytle, F.W.; Sinfelt, J.H.

    1983-01-01

    An investigation of the structure of the bimetallic clusters present in rhodium--copper catalysts was conducted with the use of extended x-ray absorption fine structure (EXAFS) measurements. Two catalysts were studied, both employing silica as a support for the clusters and both containing 1 wt. % rhodium. In one catalyst the Cu:Rh atomic ratio was 1:2 and in the other 1:1. Studies were made of the EXAFS associated with the K absorption edges of the rhodium and copper. The results of the EXAFS studies indicate that copper concentrates at the surface of the rhodium--copper clusters. In this regard the results are similar to our earlier reported results on ruthenium--copper clusters. However, the extent of surface segregation of the copper appears to be less pronounced for rhodium--copper clusters. This result is reasonable on the basis that rhodium and copper, unlike ruthenium and copper, exhibit at least some miscibility in the bulk

  12. Effect of nanoscale flows on the surface structure of nanoporous catalysts.

    Science.gov (United States)

    Montemore, Matthew M; Montessori, Andrea; Succi, Sauro; Barroo, Cédric; Falcucci, Giacomo; Bell, David C; Kaxiras, Efthimios

    2017-06-07

    The surface structure and composition of a multi-component catalyst are critical factors in determining its catalytic performance. The surface composition can depend on the local pressure of the reacting species, leading to the possibility that the flow through a nanoporous catalyst can affect its structure and reactivity. Here, we explore this possibility for oxidation reactions on nanoporous gold, an AgAu bimetallic catalyst. We use microscopy and digital reconstruction to obtain the morphology of a two-dimensional slice of a nanoporous gold sample. Using lattice Boltzmann fluid dynamics simulations along with thermodynamic models based on first-principles total-energy calculations, we show that some sections of this sample have low local O 2 partial pressures when exposed to reaction conditions, which leads to a pure Au surface in these regions, instead of the active bimetallic AgAu phase. We also explore the effect of temperature on the surface structure and find that moderate temperatures (≈300-450 K) should result in the highest intrinsic catalytic performance, in apparent agreement with experimental results.

  13. Chemical- or radiation-assisted selective dealloying in bimetallic nanoclusters

    International Nuclear Information System (INIS)

    Mattei, G.; De Marchi, G.; Maurizio, C.; Mazzoldi, P.; Sada, C.; Bello, V.; Battaglin, G.

    2003-01-01

    A selective dealloying in bimetallic nanoclusters prepared by ion implantation has been found upon thermal annealing in oxidizing atmosphere or irradiation with light ions. In the first process, the incoming oxygen interacts preferentially with copper promoting Cu 2 O formation, therefore extracting copper from the alloy. In the second process the irradiation with Ne ions promotes a preferential extraction of Au from the alloy, resulting in the formation of Au-enriched 'satellite' nanoparticles around the original Au x Cu 1-x cluster

  14. A Bimetallic Aluminium(Salphen) Complex for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide.

    Science.gov (United States)

    Wu, Xiao; North, Michael

    2017-01-10

    A bimetallic aluminium(salphen) complex is reported as a sustainable, efficient and inexpensive catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. In the presence of this complex and tetrabutylammonium bromide, terminal and internal epoxides reacted at 50 °C and 10 bar carbon dioxide pressure to afford their corresponding cyclic carbonates in yields of 50-94 % and 30-71 % for terminal and internal cyclic carbonates, respectively. Mechanistic studies using deuterated epoxides and an analogous monometallic aluminium(salphen) chloride complex support a mechanism for catalysis by the bimetallic complex, which involves intramolecular cooperative catalysis between the two aluminium centres. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Silicate formation at the interface of Pr-oxide as a high-K dielectric and Si(001) surfaces

    International Nuclear Information System (INIS)

    Schmeisser, D.; Zheng, F.; Perez-Dieste, V.; Himpsel, F.J.; LoNigro, R.; Toro, R.G.; Malandrino, G.; Fragala, I.L.

    2006-01-01

    The composition and chemical bonding of the first atoms across the interface between Si(001) and the dielectric determine the quality of dielectric gate stacks. An analysis of that hidden interface is a challenge as it requires both, high sensitivity and elemental and chemical state information. We used X-ray absorption spectroscopy in total electron yield and total fluorescence yield at the Si2p and the O1s edges to address that issue. We report on results of Pr 2 O 3 /Si(001) as prepared by both, epitaxial growth and metal organic chemical vapor deposition (MOCVD), and compare to the SiO 2 /Si(001) system as a reference. We find evidence for the silicate formation at the interface as derived from the characteristic features at the Si2p and the O1s edges. The results are in line with model experiments in which films of increasing film thickness are deposited in situ on bare Si(001) surfaces

  16. Bimetallic Catalysts Containing Gold and Palladium for Environmentally Important Reactions

    Directory of Open Access Journals (Sweden)

    Ahmad Alshammari

    2016-07-01

    Full Text Available Supported bimetallic nanoparticles (SBN are extensively used as efficient redox catalysts. This kind of catalysis particularly using SBN has attracted immense research interest compared to their parent metals due to their unique physico-chemical properties. The primary objective of this contribution is to provide comprehensive overview about SBN and their application as promising catalysts. The present review contains four sections in total. Section 1 starts with a general introduction, recent progress, and brief summary of the application of SBN as promising catalysts for different applications. Section 2 reviews the preparation and characterization methods of SBN for a wide range of catalytic reactions. Section 3 concentrates on our own results related to the application of SBN in heterogeneous catalysis. In this section, the oxidation of cyclohexane to adipic acid (an eco-friendly and novel approach will be discussed. In addition, the application of bimetallic Pd catalysts for vapor phase toluene acetoxylation in a fixed bed reactor will also be highlighted. Acetoxylation of toluene to benzyl acetate is another green route to synthesize benzyl acetate in one step. Finally, Section 4 describes the summary of the main points and also presents an outlook on the application of SBN as promising catalysts for the production of valuable products.

  17. Electrochemical and structural characterization of carbon-supported Pt-Pd bimetallic electrocatalysts prepared by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Masato; Beard, Kevin D.; Ma Shuguo; Blom, Douglas A.; St-Pierre, Jean; Van Zee, John W. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Monnier, John R., E-mail: monnier@cec.sc.ed [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-10-01

    Electrochemical and structural characteristics of various Pt-Pd/C bimetallic catalysts prepared by electroless deposition (ED) methods have been investigated. Structural analysis was conducted by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). Monometallic Pt or Pd particles were not detected by EDS, indicating the ED methodology formed only bimetallic particles. The size of the Pt-Pd bimetallic particles was smaller than those of a commercially available Pt/C catalyst. The morphology of the Pt on Pd/C catalysts was identified and corresponded to Pd particles partially encapsulated by Pt. The electrochemical characteristics of the lowest Pd loading catalyst (7.0% Pt on 0.5% Pd/C) for the oxygen reduction reaction (ORR) have been investigated by the rotating ring disk electrode technique. The electrochemical activity was equal or lower than the commercially available Pt/C catalyst; however, the amount of hydrogen peroxide observed at the ring was reduced by the Pd, suggesting that such a catalyst has the potential to decrease ionomer degradation in applications. The Pt on Pd/C catalysts also show a higher tolerance to ripening induced by potential cycling. Therefore, catalyst suitability cannot be judged solely by its initial performance; information related to specific degradation mechanisms is also needed for a more complete assessment.

  18. Morphological Evolution of Pit-Patterned Si(001) Substrates Driven by Surface-Energy Reduction

    Science.gov (United States)

    Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel; Montalenti, Francesco

    2017-09-01

    Lateral ordering of heteroepitaxial islands can be conveniently achieved by suitable pit-patterning of the substrate prior to deposition. Controlling shape, orientation, and size of the pits is not trivial as, being metastable, they can significantly evolve during deposition/annealing. In this paper, we exploit a continuum model to explore the typical metastable pit morphologies that can be expected on Si(001), depending on the initial depth/shape. Evolution is predicted using a surface-diffusion model, formulated in a phase-field framework, and tackling surface-energy anisotropy. Results are shown to nicely reproduce typical metastable shapes reported in the literature. Moreover, long time scale evolutions of pit profiles with different depths are found to follow a similar kinetic pathway. The model is also exploited to treat the case of heteroepitaxial growth involving two materials characterized by different facets in their equilibrium Wulff's shape. This can lead to significant changes in morphologies, such as a rotation of the pit during deposition as evidenced in Ge/Si experiments.

  19. Synthesis and characterization of Pd-on-Pt and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuangyin; Jiang, San Ping; Wang Xin

    2011-01-01

    The authors have successfully synthesized Pd-on-Pt (thickness: 12 nm) and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes (MWCNTs) via a seed-mediated growth approach. Pt nanoparticles as seeds were pre-deposited on MWCNTs with uniform distribution followed by the successive seed-mediated growth of metal atoms reduced by a weak reducing agent, ascorbic acid. The essential role of pre-deposited nanoseed particles on MWCNTs was demonstrated. The as-prepared materials were characterization by transition electron microscopy, energy-dispersive X-ray spectroscopy, and element mapping tools. The current strategy extends the classical seed-mediated growth method to prepare bimetallic nanosheath on MWCNT support.

  20. Comparison of P-containing {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, V.; Dalai, A.K. [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Adjaye, J. [Syncrude Edmonton Research Centre, Edmonton, AB (Canada)

    2006-09-01

    Phosphorus containing {gamma}-Al{sub 2}O{sub 3} supported bimetallic Ni-Mo carbide, nitride and sulfide catalysts have been synthesized from an oxide precursor containing 12.73wt.% Mo, 2.54wt.% Ni and 2.38wt.% P and characterized by elemental analysis, pulsed CO chemisorption, surface area measurements, X-ray diffraction, temperature-programmed reduction and DRIFT spectroscopy of CO adsorption. DRIFT spectroscopy of adsorbed CO on activated catalysts showed that carbide and nitride catalysts have surface exposed sites of Mo{sup o+} (0bimetallic Ni-Mo carbide, nitride and sulfide catalysts were compared against commercial Ni-Mo/Al{sub 2}O{sub 3} catalyst in a trickle bed reactor using light gas oil and heavy gas oil derived from Athabasca bitumen in the temperature range 340-370 and 375-400{sup o}C respectively at 8.8MPa. The gradual transformation of Ni-Mo carbide and nitride phases into Ni-Mo sulfide phases was observed during precoking period, and the formed Ni-Mo sulfide phases enhanced the HDN and HDS activities of carbide and nitride catalysts. The {gamma}-Al{sub 2}O{sub 3} supported Ni-Mo bimetallic sulfide catalyst was found to be more active for HDN and HDS of light gas oil and heavy gas oil than the corresponding carbide and nitride catalysts on the basis of unit weight. (author)

  1. Nanoripple formation on GaAs (001) surface by reverse epitaxy during ion beam sputtering at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debasree; Ghose, Debabrata, E-mail: debabrata1.ghose@gmail.com

    2016-11-01

    Highlights: • GaAs (001) surfaces are sputtered by 1 keV Ar{sup +} at sample temperature of 450 °C. • Highly ordered defect-free ripples develop at near-normal incidence angles (θ ≈ 0–25{sup 0}). • Concurrent sample rotation does not alter the ripple orientation with respect to the ion beam. • At grazing incidence angles anisotropic structure is formed. • Concurrent sample rotation shows that the structure orientation depends on the beam direction. - Abstract: Self-organized pattern formation by the process of reverse epitaxial growth has been investigated on GaAs (001) surfaces during 1 keV Ar{sup +} bombardment at target temperature of 450 °C for a wide range of incident angles. Highly ordered ripple formation driven by diffusion instability is evidenced at near normal incidence angles. Concurrent sample rotation shows that the ripple morphology and its orientation do not depend on the incident beam direction; rather they are determined by the symmetry of the crystal face.

  2. Ge(001):B gas-source molecular beam epitaxy: B surface segregation, hydrogen desorption, and film growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.; Greene, J.E. [Materials Science Department, the Coordinated Science Laboratory and the Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    1999-03-01

    Ultrahigh B-doped Ge(001) layers, with concentrations C{sub B} up to 8{times}10{sup 21} cm{sup {minus}3}, were grown by gas-source molecular beam epitaxy from Ge{sub 2}H{sub 6} and B{sub 2}H{sub 6} at temperatures T{sub s}=325{degree}C (in the surface-reaction-limited regime) and 600{degree}C (in the flux-limited regime). The samples were quenched, D site exchanged for H, and D{sub 2} temperature-programed desorption (TPD) used to determine B coverages {theta}{sub B} as a function of C{sub B} and T{sub s} by comparison with B-adsorbed Ge(001) reference samples with known {theta}{sub B} values. During Ge(001):B film growth, strong surface B segregation to the second layer was observed with surface-to-bulk B concentration ratios ranging up to 6000. The TPD spectra exhibited {alpha}{sub 2} and {alpha}{sub 1} peaks associated with dideuteride and monodeuteride desorption as well as lower-temperature B-induced {alpha}{sub 2}{sup {asterisk}} and {alpha}{sub 1}{sup {asterisk}} peaks associated with deuterium desorption from Ge{sup {asterisk}} surface atoms with B backbonds. Increasing {theta}{sub B} expanded the area under {alpha}{sub 2}{sup {asterisk}} and {alpha}{sub 1}{sup {asterisk}} at the expense of {alpha}{sub 2} and {alpha}{sub 1} and decreased the total D coverage {theta}{sub D}. The TPD results were used to determine the B segregation enthalpy, {minus}0.64 eV, and to explain and model the effects of high B coverages on Ge(001) growth kinetics. At T{sub s}=325{degree}C, where B segregation is kinetically hindered, film deposition rates R{sub Ge} are not a strong function of C{sub B}, exhibiting only a small decrease at C{sub B}{approx_gt}5{times}10{sup 18} cm{sup {minus}3}. However, at T{sub s}=600{degree}C, R{sub Ge} decreases by up to 40{percent} with increasing C{sub B}{approx_gt}1{times}10{sup 18} cm{sup {minus}3}. This is due primarily to the combination of B-induced Ge dimer vacancies and the deactivation of surface dangling bonds caused by charge transfer

  3. Structure and energetics of bimetallic surface confined alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bergbreiter, Andreas; Roetter, Ralf T.; Engstfeld, Albert K.; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany); Gross, Axel [Institute for Theoretical Chemistry, Ulm University (Germany)

    2009-07-01

    The atomic distribution in a number of A{sub x}B{sub 1-x}/B type surface alloys was determined by STM imaging with chemical contrast and statistically evaluated. Whereas in the systems Au{sub x}Pt{sub 1-x}/Pt(111), Ag{sub x}Pt{sub 1-x}/Pt(111), and Pd{sub x}Ru{sub 1-x}/Ru(0001) we find preferences for larger homoatomic aggregates, the atom distribution in Pt{sub x}Ru{sub 1-x}/Ru(0001) and Ag{sub x}Pd{sub 1-x}/Pd(111) is very close to a random one[1]. In Ag{sub x}Pd{sub 1-x}/Pd(111), our data show a small tendency towards clustering for x{sub Ag}<0.5, whereas at x{sub Ag}>0.5 this is reversed to a slight preference for heteroatomic neighborhoods. Based on these experimental results, we have derived effective cluster interaction energies for all surface alloys. These allow us to calculate phase diagrams for the surface alloys that we compare to predictions from theoretical work and to the behaviour of the corresponding bulk systems. We also discuss in how far the different atom distributions affect chemical and catalytic properties of the surface alloys.

  4. Analysis of structure and vibrational dynamics of the BeTe(001) surface using X-ray diffraction, Raman spectroscopy, and density functional theory

    DEFF Research Database (Denmark)

    Kumpf, C.; Müller, A.; Weigand, W.

    2003-01-01

    The atomic structure and lattice dynamics of epitaxial BeTe(001) thin films are derived from surface x-ray diffraction and Raman spectroscopy. On the Te-rich BeTe(001) surface [1 (1) over bar0]-oriented Te dimers are identified. They cause a (2 X 1) superstructure and induce a pronounced buckling...... in the underlying Te layer. The Be-rich surface exhibits a (4 X 1) periodicity with alternating Te dimers and Te-Be-Te trimers. A vibration eigenfrequency of 165 cm(-1) is observed for the Te-rich surface, while eigenmodes at 157 and 188 cm(-1) are found for the Be-rich surface. The experimentally derived atomic...... geometry and the vibration modes are in very good agreement with the results of density functional theory calculations....

  5. Native SrTiO3 (001) surface layer from resonant Ti L2,3 reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valvidares, Manuel; Huijben, Mark; Yu, Pu; Ramesh, Ramamoorthy; Kortright, Jeffrey

    2010-11-03

    We quantitatively model resonant Ti L2,3 reflectivity Rs,p(q, hn) from several SrTiO3 (001) single crystals having different initial surface preparations and stored in ambient conditions before and between measurements. All samples exhibit unexpected 300 K Rs(hn) - Rp(hn) anisotropy corresponding to weak linear dichroism and tetragonal distortion of the TiO6 octahedra indicating a surface layer with properties different from cubic SrTiO3. Oscillations in Rs(q) confirm a ubiquitous surface layer 2-3 nm thick that evolves over a range of time scales. Resonant optical constant spectra derived from Rs,p(hn) assuming a uniform sample are refined using a single surface layer to fit measured Rs(q). Differences in surface layer and bulk optical properties indicate that the surface is significantly depleted in Sr and enriched in Ti and O. While consistent with the tendency of SrTiO3 surfaces toward non-stoichiometry, this layer does not conform simply to existing models for the near surface region and apparently forms via room temperature surface reactions with the ambient. This new quantitative spectral modeling approach is generally applicable and has potential to study near-surface properties of a variety of systems with unique chemical and electronic sensitivities.

  6. NOVEL SUPPORTED BIMETALLIC CARBIDE CATALYSTS FOR COPROCESSING OF COAL WITH WASTE METERIALS

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox; Chunshan Song; Fred Allen; Weilin Wang; Viviane Schwartz; Xinqin Wang; Jianli Yang

    2001-01-01

    The overall objectives of this project are to explore the potential of novel monometallic and bimetallic Mo-based carbide catalysts for heavy hydrocarbon coprocessing, and to understand the fundamental chemistry related to the reaction pathways of coprocessing and the role of the catalysts in the conversion of heavy hydrocarbon resources into liquid fuels based on the model compound reactions.

  7. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    Science.gov (United States)

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  8. Surface structural reconstruction of SrVO3 thin films on SrTiO3 (001)

    Science.gov (United States)

    Wang, Gaomin; Saghayezhian, Mohammad; Chen, Lina; Guo, Hangwen; Zhang, Jiandi

    Paramagnetic metallic oxide SrVO3>(SVO) is an itinerant system known to undergo thickness-induced metal-insulator-transition (MIT) in ultrathin film form, which makes it a prototype system for the study of the mechanism behind metal-insulator-transition like structure distortion, electron correlations and disorder-induced localization. We have grown SrVO3 thin film with atomically flat surface through the layer-by-layer deposition by laser Molecular Beam Epitaxy (laser-MBE) on SrTiO3 (001) surface. Low Energy Electron Diffraction (LEED) measurements reveal that there is a (√2X √2) R45°surface reconstruction independent of film thickness. By using LEED-I(V) structure refinement, we determine the surface structure. In combination with X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM), we discuss the implication on the MIT in ultrathin films below 2-3 unit cell thickness. This work is supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  9. Effects of surface properties of (010), (001) and (100) of MnWO{sub 4} and FeWO{sub 4} on absorption of collector

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, X.Y. [School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan (China); Guangzhou Research Institute of Non-Ferrous Metals, Guangzhou 510651, Guangdong (China); Huang, H.W., E-mail: hhwknight@163.com [School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan (China); Guangzhou Research Institute of Non-Ferrous Metals, Guangzhou 510651, Guangdong (China); Gao, Y.D. [Guangzhou Research Institute of Non-Ferrous Metals, Guangzhou 510651, Guangdong (China)

    2016-03-30

    Graphical abstract: - Highlights: • The (010) plane is the easiest one to be seen in wolframite, followed by (001) plane and (100) plane. • (010) and (001) are the primary planes for the absorption of anion collector ions. • W atom can be the absorption site in (001) plane but not in (010) plane. • The proportion of platy particles as well as their perfect cleavage planes increases with the decrease of particle size. • Cleavages occupied by W atom can lead to a low recovery when using BHA alone as the collector of wolframite. - Abstract: The atom distribution and electronic properties of (010), (001) and (100) planes of MnWO{sub 4} and FeWO{sub 4} were studied based on a DFT calculation. The surface stabilities of the three planes were compared according to their surface energies. The most stable one is (010) plane, followed by (001) and (100). (010) and (001) are the main planes for absorption of anion collector ions, which is supported by their bonding relationship and charge density distribution of surface atoms and finally proved by the results of flotation test and stereomicroscope analysis. In addition, the tungsten atoms can be viewed as the absorption site for collectors in (001) plane but not in (010) plane, which can explain the phenomenon in flotation test that the recovery of wolframite can hardly be further boosted even with a high dosage of BHA.

  10. The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO{sub 2} by radiolytic method

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Marek [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk (Poland); Nadolna, Joanna, E-mail: joanna.nadolna@ug.edu.pl [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland); Gołąbiewska, Anna [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Mazierski, Paweł [Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland); Klimczuk, Tomasz [Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk (Poland); Remita, Hynd [Laboratoire de Chimie Physique, CNRS-UMR 8000, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); CNRS, Laboratoire de Chimie Physique, UMR 8000, 91405 Orsay (France); Zaleska-Medynska, Adriana [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Department of Environmental Technology, University of Gdansk, 80-308 Gdansk (Poland)

    2016-08-15

    Highlights: • Pd-Pt decorated TiO{sub 2} shows the highest activity under visible light among all. • Concurrent addition of metal precursors results in rise of BNPs size and Vis-activity. • Subsequent addition of metal precursors enhances UV–vis stability of modified TiO{sub 2}. • Superoxide radicals are responsible for pollutants degradation over BNPs-TiO{sub 2}. - Abstract: TiO{sub 2} (P25) was modified with small and relatively monodisperse mono- and bimetallic clusters (Ag, Pd, Pt, Ag/Pd, Ag/Pt and Pd/Pt) induced by radiolysis to improve its photocatalytic activity. The as-prepared samples were characterized by X-ray fluorescence spectrometry (XRF), photoluminescence spectrometry (PL), diffuse reflectance spectroscopy (DRS), X-ray powder diffractometry (XRD), scanning transition electron microscopy (STEM) and BET surface area analysis. The effect of metal type (mono- and bimetallic modification) as well as deposition method (simultaneous or subsequent deposition of two metals) on the photocatalytic activity in toluene removal in gas phase under UV–vis irradiation (light-emitting diodes- LEDs) and phenol degradation in liquid phase under visible light irradiation (λ > 420 nm) were investigated. The highest photoactivity under Vis light was observed for TiO{sub 2} co-loaded with platinum (0.1%) and palladium (0.1%) clusters. Simultaneous addition of metal precursors results in formation of larger metal nanoparticles (15–30 nm) on TiO{sub 2} surface and enhances the Vis-induced activity of Ag/Pd-TiO{sub 2} up to four times, while the subsequent metal ions addition results in formation of metal particle size ranging from 4 to 20 nm. Subsequent addition of metal precursors results in formation of BNPs (bimetallic nanoparticle) composites showing higher stability in four cycles of toluene degradation under UV–vis. Obtained results indicated that direct electron transfer from the BNPs to the conduction band of the semiconductor is responsible for

  11. Co-sputter deposited nickel-copper bimetallic nanoalloy embedded carbon films for electrocatalytic biomarker detection

    Science.gov (United States)

    Shiba, Shunsuke; Kato, Dai; Kamata, Tomoyuki; Niwa, Osamu

    2016-06-01

    We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d-mannitol, which should be detected with a low detection limit in urine samples for the diagnosis of severe intestinal diseases. With a Ni/Cu ratio of around 64/36, the electrocatalytic current per metal area was 3.4 times larger than that of an alloy film electrode with a similar composition (~70/30). This improved electrocatalytic activity realized higher stability (n = 60, relative standard deviation (RSD): 4.6%) than the alloy film (RSD: 32.2%) as demonstrated by continuous measurements of d-mannitol.We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d

  12. Spin-polarized scanning tunneling microscopy and spectroscopy study of chromium on a Cr(001) surface.

    Science.gov (United States)

    Lagoute, J; Kawahara, S L; Chacon, C; Repain, V; Girard, Y; Rousset, S

    2011-02-02

    Several tens of chromium layers were deposited at 250 °C on a Cr(001) surface and investigated by spin-polarized scanning tunneling microscopy (SP-STM), Auger electron spectroscopy (AES) and scanning tunneling spectroscopy (STS). Chromium is found to grow with a mound-like morphology resulting from the stacking of several monolayers which do not uniformly cover the whole surface of the substrate. The terminal plane consists of an irregular array of Cr islands with lateral sizes smaller than 20 × 20 nm(2). Combined AES and STS measurements reveal the presence of a significant amount of segregants prior to and after deposition. A detailed investigation of the surface shows that it consists of two types of patches. Thanks to STS measurements, the two types of area have been identified as being either chromium pure or segregant rich. SP-STM experiments have evidenced that the antiferromagnetic layer coupling remains in the chromium mounds after deposition and is not significantly affected by the presence of the segregants.

  13. Ab-initio study of the interfacial properties in ultrathin MgO films on O-rich FeO/Fe(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Junjin; Yu, Byungdeok [University of Seoul, Seoul (Korea, Republic of)

    2014-09-15

    Using ab-initio simulations based on density functional theory, we systematically studied the interfacial properties of MgO films on O-rich FeO/Fe(001) surfaces with increasing number of MgO layers from one to three monolayers (MLs). The structural and the adhesion properties of the MgO/FeO/Fe(001) system were assessed and compared with those of simple MgO/Fe(001) interfaces. Our calculated results showed that the adhesion energy for MgO/FeO/Fe(001) was smaller than that for simple MgO/Fe(001). An analysis of the electronic structures and the charge rearrangements of the MgO/FeO/Fe(001) interfaces was also performed. The work functions of the MgO/FeO/Fe(001) systems upon the deposition of MgO films exhibited smaller decreases (0.45 - 0.67 eV) than those (1.43 - 1.74 eV) of the MgO/Fe(001) systems. In addition, the obtained work functions (3.77 - 3.99 eV) for MgO/FeO/Fe(001) were much larger than those (2.12 - 2.43 eV) for MgO/Fe(001).

  14. Comparison of Bimetallic and Trimetallic Catalyst in Reductive Dechlorination; Influence of Copper Addition

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Kaštánek, Petr; Maléterová, Ywetta; Kallistová, A.; Šolcová, Olga

    2015-01-01

    Roč. 2, č. 7 (2015), s. 1954-1958 E-ISSN 3159-0040 R&D Projects: GA TA ČR TA04020700 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : PCB * reductive dechlorination * bimetallic and trimetallic catalysts Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.jmest.org/wp-content/uploads/JMESTN42350950.pdf

  15. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane

    KAUST Repository

    Li, Lidong; Anjum, Dalaver; Zhu, Haibo; Saih, Youssef; Laveille, Paco; D'Souza, Lawrence; Basset, Jean-Marie

    2015-01-01

    A new dry reforming of methane catalyst comprised of NiCo bimetallic nanoparticles and a Mgx(Al)O support that exhibits high coke resistance and long-term on-stream stability is reported. The structural characterization by XRD, TEM, temperature

  16. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    KAUST Repository

    LaGrow, Alec P.; Knudsen, Kristian; AlYami, Noktan; Anjum, Dalaver H.; Bakr, Osman

    2015-01-01

    of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape

  17. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  18. Monometallic Pd and Pt and Bimetallic Pd-Pt/Al2O3-TiO2 for the HDS of DBT: Effect of the Pd and Pt Incorporation Method

    Directory of Open Access Journals (Sweden)

    Reynaldo Martínez Guerrero

    2014-01-01

    Full Text Available The effect of the preparation method of monometallic Pd and Pt and bimetallic Pd-Pt/Al2O3-TiO2 catalysts on the hydrodesulfurization (HDS of dibenzothiophene (DBT was investigated in this study. The synthesis was accomplished using three methods: (A impregnation, (B metal organic chemical vapor deposition (MOCVD, and (C impregnation-MOCVD. The bimetallic Pd-Pt catalyst prepared by the impregnation-MOCVD method was most active for the HDS of DBT compared to those prepared by the single impregnation or MOCVD method due to the synergetic effect between both noble metals. The greater selectivity toward biphenyl indicated that this bimetallic Pd-Pt catalyst preferentially removes sulfur via the direct desulfurization mechanism. However, the bimetallic Pd-Pt catalyst prepared using the single MOCVD method did not produce any cyclohexylbenzene, which is most likely associated with the hydrogenation/dehydrogenation sites.

  19. Electrochemically Smart Bimetallic Materials Featuring Group 11 Metals: In-situ Conductive Network Generation and Its Impact on Cell Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Esther [Stony Brook Univ., NY (United States)

    2016-11-30

    Our results for this program “Electrochemically smart bimetallic materials featuring Group 11 metals: in-situ conductive matrix generation and its impact on battery capacity, power and reversibility” have been highly successful: 1) we demonstrated material structures which generated in-situ conductive networks through electrochemical activation with increases in conductivity up to 10,000 fold, 2) we pioneered in situ analytical methodology to map the cathodes at several stages of discharge through the use of Energy Dispersive X-ray Diffraction (EDXRD) to elucidate the kinetic dependence of the conductive network formation, and 3) we successfully designed synthetic methodology for direct control of material properties including crystallite size and surface area which showed significant impact on electrochemical behavior.

  20. Non-Precious Bimetallic Catalysts for Selective Dehydrogenation of an Organic Chemical Hydride System

    KAUST Repository

    Shaikh Ali, Anaam

    2015-07-06

    Methylcyclohexane (MCH)-Toluene (TOL) chemical hydride cycles as a hydrogen carrier system is successful with the selective dehydrogenation reaction of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report improved selectivity using non-precious metal nickel-based bimetallic catalysts, where the second metal occupies the unselective step sites.

  1. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001) by the systematic control of composition, annealing temperature and time.

    Science.gov (United States)

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2017-01-01

    Multi-metallic alloy nanoparticles (NPs) can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25) hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa.

  2. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001 by the systematic control of composition, annealing temperature and time.

    Directory of Open Access Journals (Sweden)

    Puran Pandey

    Full Text Available Multi-metallic alloy nanoparticles (NPs can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25 hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa.

  3. Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping

    Directory of Open Access Journals (Sweden)

    Prakash C. Sharma

    2012-10-01

    Full Text Available Pristine complex quaternary hydride (LiBH4/2LiNH2 and its destabilized counterpart (LiBH4/2LiNH2/nanoMgH2 have recently shown promising reversible hydrogen storage capacity under moderate operating conditions. The destabilization of complex hydride via nanocrystalline MgH2 apparently lowers the thermodynamic heat values and thus enhances the reversible hydrogen storage behavior at moderate temperatures. However, the kinetics of these materials is rather low and needs to be improved for on-board vehicular applications. Nanocatalyst additives such as nano Ni, nano Fe, nano Co, nano Mn and nano Cu at low concentrations on the complex hydride host structures have demonstrated a reduction in the decomposition temperature and overall increase in the hydrogen desorption reaction rates. Bi-metallic nanocatalysts such as the combination of nano Fe and nano Ni have shown further pronounced kinetics enhancement in comparison to their individual counterparts. Additionally, the vital advantage of using bi-metallic nanocatalysts is to enable the synergistic effects and characteristics of the two transitional nanometal species on the host hydride matrix for the optimized hydrogen storage behavior.

  4. Adsorption of SF6 decomposed gas on anatase (101) and (001) surfaces with oxygen defect: A density functional theory study

    Science.gov (United States)

    Zhang, Xiaoxing; Chen, Qinchuan; Tang, Ju; Hu, Weihua; Zhang, Jinbin

    2014-01-01

    The detection of partial discharge by analyzing the components of SF6 gas in gas-insulated switchgears is important to the diagnosis and assessment of the operational state of power equipment. A gas sensor based on anatase TiO2 is used to detect decomposed gases in SF6. In this paper, first-principle density functional theory calculations are adopted to analyze the adsorption of SO2, SOF2, and SO2F2, the primary decomposition by-products of SF6 under partial discharge, on anatase (101) and (001) surfaces. Simulation results show that the perfect anatase (001) surface has a stronger interaction with the three gases than that of anatase (101), and both surfaces are more sensitive and selective to SO2 than to SOF2 and SO2F2. The selection of a defect surface to SO2, SOF2, and SO2F2 differs from that of a perfect surface. This theoretical result is corroborated by the sensing experiment using a TiO2 nanotube array (TNTA) gas sensor. The calculated values are analyzed to explain the results of the Pt-doped TNTA gas sensor sensing experiment. The results imply that the deposited Pt nanoparticles on the surface increase the active sites of the surface and the gas molecules may decompose upon adsorption on the active sites. PMID:24755845

  5. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids.

    Science.gov (United States)

    Zhang, Weiqing; Yang, Jizheng; Lu, Xianmao

    2012-08-28

    Here we report the synthesis of Pt/Ag bimetallic nanostructures with controlled number of void spaces via a tailored galvanic replacement reaction (GRR). Ag nanocubes (NCs) were employed as the template to react with Pt ions in the presence of HCl. The use of HCl in the GRR caused rapid precipitation of AgCl, which grew on the surface of Ag NCs and acted as a removable secondary template for the deposition of Pt. The number of nucleation sites for AgCl was tailored by controlling the amount of HCl added to the Ag NCs or by introducing PVP to the reaction. This strategy led to the formation of Pt/Ag hollow nanoboxes, dimers, multimers, or popcorn-shaped nanostructures consisting of one, two, or multiple hollow domains. Due to the presence of large void space and porous walls, these nanostructures exhibited high surface area and improved catalytic activity for methanol oxidation reaction.

  6. Structure and Dynamics of Water on Aqueous Barium Ion and the {001} Barite Surface

    International Nuclear Information System (INIS)

    Stack, Andrew G.; Rustad, James R.

    2007-01-01

    The structure of water and its dynamics affect a number of fundamental properties of an interface. Yet, these properties are often inaccessible experimentally and computational studies including solvent are comparatively few. Here, we estimate the structure and kinetics of water exchange of aqueous barium ions and barium ions within the {001} barite surface using molecular dynamics and the reactive flux method. For the aqueous ion, the Ba-O distance to water in the first hydration shell was found to be 280 pm with a coordination number of 8.3, and the best estimate of the exchange rate constant is 4.8 x 10 9 s -1 , closely matching experimental estimates. For the barite surface, the first shell water distance was 282 pm, with a coordination number of 0.9 and the best estimate of the rate constant for exchange is 1.7 x 10 10 s -1 , 3.5 times faster than that of the aqueous ion.

  7. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens.

    Science.gov (United States)

    Fakhri, Ali; Tahami, Shiva; Naji, Mahsa

    2017-04-01

    Nano-medicine is a breakthrough discovery in the healthcare sector. Doxycycline is a new generation antibiotic which is proved to be a boon in the treatment of patients with complicated skin infections. We have tried to explore the benefits of synthesized bimetallic silver-gold nanoparticles in combination with new generation antibiotic for burn infections. The bimetallic nanoparticles synthesized by core-shell method were characterized using scanning electron microscopy equipped with an energy dispersive spectrometer, transmission electron microscopy, X-ray diffraction and UV-Vis spectroscopy. The calculated average particle sizes of the Ag-Au NPs were found to be 27.5nm. The Ag-Au core-shell BNPs show a characteristic Plasmon peak at 525nm which is broad and red shifted. The synergistic antimicrobial activity of doxycycline conjugated bimetallic nanoparticles was investigated against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Micrococcus luteus. This combined therapeutic agent showed greater bactericidal activity. Synergy of antibiotic with bimetallic nanoparticles is quite promising for significant application in burn healing therapy. The mechanism of the antibacterial activity was studied through the formation of reactive oxygen species (ROS) that was later suppressed with antioxidant to establish correlation with the Ag-Au NPs antimicrobial activity. Ag-Au NPs showed effective antiproliferative activity toward A549 human lung cancer (CCL-185) and MCF-7 human breast cancer (HTB-22) cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. CuAu–ZnO–graphene nanocomposite: A novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance

    International Nuclear Information System (INIS)

    Xie, Hong; Ye, Xiaoliang; Duan, Kaiyue; Xue, Muyin; Du, Yongling; Ye, Weichun; Wang, Chunming

    2015-01-01

    Graphical abstract: In this work, we have successfully synthesized a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite, and which behaved an enhanced photocatalytic activity. - Highlights: • A bimetallic alloy-based catalyst: CuAu–ZnO–Gr is synthesized. • CuAu–ZnO–Gr behaves an enhanced photocatalytic activity. • The detailed explanation of photocatalytic mechanism of CuAu–ZnO–Gr. - Abstract: The bimetallic alloy CuAu nanoparticles (NPs) can produce more photogenerated electrons when compared with single metal Au NPs. Moreover, graphene (Gr) sheets can help the charge separation and slow down the recombination of the electron hole pairs of ZnO. Hence, a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite is synthesized. Due to the synergistic effect among CuAu NPs, ZnO nanopyramids, and Gr sheets, CuAu–ZnO–Gr behaves an enhanced photocatalytic activity for the photocatalytic degradation of synthetic colorants methyl orange (MO), methylene blue (MB), indigotin (IN), sunset yellow (SY), and tartrazine (TT) under the simulated sunlight irradiation. Furthermore, the apparent rate constants (k app ) of MO, MB, IN, SY, and TT degradation are estimated respectively. In addition, the as-prepared CuAu–ZnO–Gr nanocomposite is characterized by X-ray diffraction, UV–vis spectrum, transmission electron microscopy, energy dispersive X-ray analysis (EDX), and EDX mapping. As a result of the facile synthesis route and the enhanced photocatalytic activity, this new material CuAu–ZnO–Gr can be a promising photocatalyst for the degradation of dyes

  9. CuAu–ZnO–graphene nanocomposite: A novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hong [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Ye, Xiaoliang [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Duan, Kaiyue; Xue, Muyin; Du, Yongling; Ye, Weichun [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang, Chunming, E-mail: wangcm@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2015-07-05

    Graphical abstract: In this work, we have successfully synthesized a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite, and which behaved an enhanced photocatalytic activity. - Highlights: • A bimetallic alloy-based catalyst: CuAu–ZnO–Gr is synthesized. • CuAu–ZnO–Gr behaves an enhanced photocatalytic activity. • The detailed explanation of photocatalytic mechanism of CuAu–ZnO–Gr. - Abstract: The bimetallic alloy CuAu nanoparticles (NPs) can produce more photogenerated electrons when compared with single metal Au NPs. Moreover, graphene (Gr) sheets can help the charge separation and slow down the recombination of the electron hole pairs of ZnO. Hence, a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite is synthesized. Due to the synergistic effect among CuAu NPs, ZnO nanopyramids, and Gr sheets, CuAu–ZnO–Gr behaves an enhanced photocatalytic activity for the photocatalytic degradation of synthetic colorants methyl orange (MO), methylene blue (MB), indigotin (IN), sunset yellow (SY), and tartrazine (TT) under the simulated sunlight irradiation. Furthermore, the apparent rate constants (k{sub app}) of MO, MB, IN, SY, and TT degradation are estimated respectively. In addition, the as-prepared CuAu–ZnO–Gr nanocomposite is characterized by X-ray diffraction, UV–vis spectrum, transmission electron microscopy, energy dispersive X-ray analysis (EDX), and EDX mapping. As a result of the facile synthesis route and the enhanced photocatalytic activity, this new material CuAu–ZnO–Gr can be a promising photocatalyst for the degradation of dyes.

  10. Time-resolved two-photon photoemission at the Si(001)-surface. Hot electron dynamics and two-dimensional Fano resonance; Zeitaufgeloeste Zweiphotonen-Photoemission an der Si(001)-Oberflaeche. Dynamik heisser Elektronen und zweidimensionaler Fano-Effekt

    Energy Technology Data Exchange (ETDEWEB)

    Eickhoff, Christian

    2010-10-27

    By combining ultrafast laser excitation with energy-, angle- and time-resolved twophoton photoemission (2PPE), the electronic properties of bulk silicon and the Si(001) surface are investigated in this thesis. A custom-built laser- and UHV-systemequipped with a display type 2D-CCD-detector gives new insight into the relaxation dynamics of excited carriers on a femtosecond timescale. The bandgap between occupied valence bands and unoccupied conduction bands characteristically influences the dynamics of excited electrons in the bulk, as well as in surface states and resonances. For the electron-phonon interaction this leads to the formation of a bottleneck during the relaxation of hot electrons in the conduction band, which maintains the elevated electronic temperature for several picoseconds. During relaxation, excited electrons also scatter from the conduction band into the unoccupied dangling-bond surface state D{sub down}. Depending on the excitation density this surface recombination is dominated by electron-electron- or electron-phonon scattering. The relaxation of the carriers in the D{sub down}-band is again slowed down by the formation of a bottleneck in electron-phonon coupling. Furthermore, the new laser system has allowed detection of the Rydberg-like series of image-potential resonances on the Si(001)-surface. It is shown that the lifetime of these image-potential resonances in front of the semiconducting surface exhibits the same behavior as those in front of metallic surfaces. Moreover the electron-phonon coupling in the first image-potential resonance was investigated and compared to the D{sub down}-surface state. For the first time, Fano-type lineprofiles are demonstrated and analyzed in a 2PPEprocess on a surface. Tuning the photon energy of the pump-laser across the resonance between the occupied dangling-bond state D{sub up}, and the unoccupied image-potential resonance n=1, reveals a clear intensity variation that can be successfully described

  11. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility.

    Science.gov (United States)

    Yuryev, Vladimir A; Arapkina, Larisa V

    2011-09-05

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  12. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001 surface: nucleation, morphology, and CMOS compatibility

    Directory of Open Access Journals (Sweden)

    Yuryev Vladimir

    2011-01-01

    Full Text Available Abstract Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001 surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C and high (≳600°C temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001 surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001 quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  13. Structure evolution during the cooling and coalesced cooling processes of Cu-Co bimetallic clusters

    International Nuclear Information System (INIS)

    Li Guojian; Wang Qiang; Li Donggang; Lue Xiao; He Jicheng

    2008-01-01

    Constant-temperature molecular dynamics with general EAM was employed to study the structure evolutions during the cooling and coalesced cooling processes of Cu-Co bimetallic clusters. It shows that the desired particle morphologies and structures can be obtained by controlling the composition and distribution of hetero atoms during synthesis process

  14. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    Science.gov (United States)

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  15. Resonant and kinematical enhancement of He scattering from LiF(001) surface and pseudosurface vibrational normal modes

    International Nuclear Information System (INIS)

    Nichols, W.L.; Weare, J.H.

    1986-01-01

    One-phonon cross sections calculated from sagittally polarized vibrational normal modes account for most salient inelastic-scattering intensities seen in He-LiF(001) and measurements published by Brusdeylins, Doak, and Toennies. We have found that most inelastic intensities which cannot be attributed to potential resonances can be explained as kinematically enhanced scattering from both surface and pseudosurface bulk modes

  16. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    Science.gov (United States)

    Bustam, Mohamad Azmi; Chong, Fai Kait; Man, Zakaria B.; Khan, Muhammad Saqib; Shariff, Azmi M.

    2014-01-01

    Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI) method with TiO2 (Degussa-P25) as support and calcined at different temperatures (180, 200, and 300°C) for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR) and temperature programmed reduction (TPR). The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD) removal (86.82%). According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion. PMID:25105158

  17. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Nadia Riaz

    2014-01-01

    Full Text Available Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI method with TiO2 (Degussa-P25 as support and calcined at different temperatures (180, 200, and 300°C for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR and temperature programmed reduction (TPR. The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD removal (86.82%. According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion.

  18. Diffractive scattering of H atoms from the (001) surface of LiF at 78 K

    International Nuclear Information System (INIS)

    Caracciolo, G.; Iannotta, S.; Scoles, G.; Valbusa, U.

    1980-01-01

    We have built an apparatus for the measurement of high resolution diffractive scattering of hydrogen atoms from crystal surfaces. The apparatus comprises a hydrogen atom beam source, a hexapolar magnetic field velocity selector, a variable temperature UHV crystal manipulator, and a rotatable bolometer detector. The diffraction pattern of a beam of hydrogen atoms scattered by a (001) LiF surface at 78 K has been obtained for different angles of incidence and different orientations of the crystal. The Debye--Waller factor has been measured leading to a surface Debye temperature theta/sub S/=550 +- 38 K. The corrugated-hard-wall-with-a-well model of Garibaldi et al. [Surf. Sci. 48, 649 (1975)] has been used for the interpretation of the intensities of the diffracted peaks. By means of a best fit procedure we obtain a main ''corrugation'' parameter xi 0 =0.095 A. By comparison of the data with the theory of Cabrera et al. [Surf. Sci. 19, 70 (1967] at the first order, the strength parameters of a periodic Morse potential have been determined

  19. Reaction of Tri-methylaluminum on Si (001) Surface for Initial Aluminum Oxide Thin-Film Growth

    International Nuclear Information System (INIS)

    Kim, Dae Hee; Kim, Dae Hyun; Jeong, Yong Chan; Seo, Hwa Il; Kim, Yeong Cheol

    2010-01-01

    We studied the reaction of tri-methylaluminum (TMA) on hydroxyl (OH)-terminated Si (001) surfaces for the initial growth of aluminum oxide thin-films using density functional theory. TMA was adsorbed on the oxygen atom of OH due to the oxygen atom's lone pair electrons. The adsorbed TMA reacted with the hydrogen atom of OH to produce a di-methylaluminum group (DMA) and methane with an energy barrier of 0.50 eV. Low energy barriers in the range of 0 - 0.11 eV were required for DMA migration to the inter-dimer, intra-dimer, and inter-row sites on the surface. A unimethylaluminum group (UMA) was generated at each site with low energy barriers in the range of 0.21 - 0.25 eV. Among the three sites, the inter-dimer site was the most probable for UMA formation

  20. Synthesis and Catalytic Activity of Pluronic Stabilized Silver-Gold Bimetallic Nanoparticles

    OpenAIRE

    Holden, Megan S.; Nick, Kevin E.; Hall, Mia; Milligan, Jamie R.; Chen, Qiao; Perry, Christopher C.

    2014-01-01

    In this report, we demonstrate a rapid, simple, and green method for synthesizing silver-gold (Ag-Au) bimetallic nanoparticles (BNPs). We used a novel modification to the galvanic replacement reaction by suspending maltose coated silver nanoparticles (NPs) in ≈ 2% aqueous solution of EO100PO65EO100 (Pluronic F127) prior to HAuCl4 addition. The Pluronic F127 stabilizes the BNPs, imparts biocompatibility, and mitigates the toxicity issues associated with other surfactant stabilizers. BNPs with ...

  1. Activity and Selectivity for O-2 Reduction to H2O2 on Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Verdaguer Casadevall, Arnau; Karamad, Mohammadreza

    2013-01-01

    Industrially viable electrochemical production of H2O2 requires active, selective and stable electrocatalyst materials to catalyse the oxygen reduction reaction to H2O2. On the basis of density functional theory calculations, we explain why single site catalysts such as Pd/Au show improved...

  2. Solvent-Mediated Eco-Friendly Synthesis and Characterization of Monodispersed Bimetallic Ag/Pd Nano composites for Sensing and Raman Scattering Applications

    International Nuclear Information System (INIS)

    Sathiyadevi, G.; Loganathan, B.; Karthikeyan, B.; Karthikeyan, B.

    2014-01-01

    The solvent-mediated eco-friendly monodispersed Ag/Pd bimetallic nano composites (BNCs) having thick core and thin shell have been prepared through novel green chemical solvent reduction method. Reducing solvent, dimethyl formamide (DMF) is employed for the controlled green synthesis. Characterization of the synthesized Ag/Pd BNCs has been done by x-ray diffraction (XRD) studies, high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray analysis (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern. The nature of the interaction of L-cysteine with Ag/Pd BNCs has been studied by using surface plasmon spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), cyclic voltammetry (CV), and theoretical methods.

  3. Characterization and electrocatalytic activity of Pt–M (M=Cu, Ag, and Pd) bimetallic nanoparticles synthesized by pulsed plasma discharge in water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Min; Cho, Ah-Rong; Lee, Sang-Yul, E-mail: sylee@kau.ac.kr [Korea Aerospace University, Department of Materials Engineering, Center for Surface Technology and Applications (Korea, Republic of)

    2015-07-15

    The synthetic approach for electrocatalysts is one of the most important methods of determining electrocatalytic performance. In this work, we synthesized Pt and Pt–M (M=Cu, Ag, and Pd) bimetallic nanoparticles using a pulsed plasma discharge in water. A morphological investigation revealed that the as-synthesized Pt and Pt–M bimetallic nanoparticles constituted a nanochain network structure interconnected with primary nanoparticles of 4–6 nm in size, and the nanochains grew from the primary nanoparticles via the oriented attachment. The Z-contrast, EDX line scanning, and XRD analysis confirmed that the Pt was alloyed with M without elemental segregation or phase segregation. Furthermore, it was found that the composition difference was dependent on the electrode temperature determined by the power density and thermal parameters. The electrochemical results revealed that the electrocatalytic activity, stability, and durability of the Pt–Ag bimetallic nanoparticles were superior with respect to the methanol oxidation reaction, which could be attributed to the downshift of the d-band center via electronic modification.

  4. [Diagnostic advantages of the test system "DS-EIA-HBsAg-0.01" for detection of HBV surface antigen].

    Science.gov (United States)

    Egorova, N I; Pyrenkova, I Iu; Igolkina, S N; Sharipova, I N; Puzyrev, V F; Obriadina, A P; Burkov, A N; Kornienko, N V; Fields, H A; Korovkin, A S; Shalunova, N V; Bektemirov, T A; Kuznetsov, K V; Koshcheeva, N A; Ulanova, T I

    2009-01-01

    The new highly sensitive test system "DS-EIA-HBsAg-0.01" (Priority Certificate No. 2006129019 of August 10, 2006) in detecting hepatitis B surface antigen (HBsAg) was assessed. The sensitivity of the test was estimated using the federal standards sample HBsAg 42-28-311-06, panels' samples Boston Biomedica Inc. (West Bridgewater, Mass, USA) and ZeptoMetrix Corp. (Buffalo, NY, USA). The findings have indicated that "DS-EIA-HBsAg-0.01" is equally effective in detecting different subtypes of HBsAg during a seroconversion period earlier than alternative assays. Along with its high analytical and diagnostic sensitivity, the system shows a high diagnostic specificity.

  5. High strength bimetallic composite material fabricated by electroslag casting and characteristics of its composite interface

    Directory of Open Access Journals (Sweden)

    Tian-shun Dong

    2016-11-01

    Full Text Available Bimetallic composite material of bainitic steel and PD3 steel was produced with electroslag casting process, and element distribution of its composite interface was investigated by theoretical calculation and energy dispersive spectrometer (EDS. Results show that the tensile strength (1,450 MPa, hardness (HRC 41-47 and impact toughness (94.7J·cm-2 of bainitic steel were comparatively high, while its elongation was slightly low (4.0%. Tensile strength (1,100 MPa, hardness (>HRC 31 and elongation (7.72% of the interface were also relatively high, but its impact toughness was low at 20.4 J·cm-2. Results of theoretical calculation of the element distribution in the interface region were basically consistent with that of EDS. Therefore, electroslag casting is a practical process to produce bimetallic composite material of bainitic steel and PD3 steel, and theoretical calculation also is a feasible method to study element distribution of their interface.

  6. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong; Anjum, Dalaver H.; Zhou, Lu; Laveille, Paco; Basset, Jean-Marie

    2015-01-01

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles

  7. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: Direct observation and quantification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiliang [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, 500-712 Gwangju (Korea, Republic of); Jeong, Seung-Woo, E-mail: swjeong@kunsan.ac.kr [Department of Environmental Engineering, Kunsan National University, Kunsan 550-701 (Korea, Republic of); Choi, Heechul, E-mail: hcchoi@gist.ac.kr [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, 500-712 Gwangju (Korea, Republic of)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer TCE DNAPL removal inside pores using NZVI or bimetals in a 2-D system was visualized. Black-Right-Pointing-Pointer Presence of nitrate and humic substances decrease the TCE DNAPL removal efficiency. Black-Right-Pointing-Pointer Presence of ethanol increases the TCE DNAPL removal efficiency. Black-Right-Pointing-Pointer Metal catalysts enhance the TCE DNAPL removal using NZVI in a short term reaction. Black-Right-Pointing-Pointer Metal catalysts do not increase the DNAPL removal efficiency for a long term reaction. - Abstract: Direct trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) removal inside pore areas using nanoscale zerovalent iron (NZVI) and bimetallic nanoparticles were first investigated in a water-saturated porous glass micromodel. Effects of nitrate, aqueous ethanol co-solvent, humic substance, and elapsed time on TCE DNAPL removal using NZVI were studied by direct visualization. The removal efficiency was then quantified by directly measuring the remaining TCE DNAPL blobs area using an image analyzer. As ethanol content of co-solvent increased, TCE DNAPL removal by NZVI was also increased implying sequential TCE DNAPL removal mechanisms: as dissolved TCE was degraded by NZVI, TCE dissolution from TCE blobs would be then facilitated and the TCE blob areas would be eventually reduced. The presence of nitrate and humic substance hindered the NZVI reactivity for the TCE DNAPL removal. In contrast, the TCE DNAPL removal efficiency was enhanced using bimetallic nanoparticles in a short-term reaction by generating atomic hydrogen for catalytic hydro-dechlorination. However, all TCE DNAPL removal efficiencies reached the same level after long-term reaction using both NZVI and bimetallic nanoparticles. Direct TCE DNAPL observation clearly implied that TCE blobs existed for long time even though all TCE blobs were fully exposed to NZVI and bimetallic nanoparticles.

  8. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: Direct observation and quantification

    International Nuclear Information System (INIS)

    Wang, Qiliang; Jeong, Seung-Woo; Choi, Heechul

    2012-01-01

    Highlights: ► TCE DNAPL removal inside pores using NZVI or bimetals in a 2-D system was visualized. ► Presence of nitrate and humic substances decrease the TCE DNAPL removal efficiency. ► Presence of ethanol increases the TCE DNAPL removal efficiency. ► Metal catalysts enhance the TCE DNAPL removal using NZVI in a short term reaction. ► Metal catalysts do not increase the DNAPL removal efficiency for a long term reaction. - Abstract: Direct trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) removal inside pore areas using nanoscale zerovalent iron (NZVI) and bimetallic nanoparticles were first investigated in a water-saturated porous glass micromodel. Effects of nitrate, aqueous ethanol co-solvent, humic substance, and elapsed time on TCE DNAPL removal using NZVI were studied by direct visualization. The removal efficiency was then quantified by directly measuring the remaining TCE DNAPL blobs area using an image analyzer. As ethanol content of co-solvent increased, TCE DNAPL removal by NZVI was also increased implying sequential TCE DNAPL removal mechanisms: as dissolved TCE was degraded by NZVI, TCE dissolution from TCE blobs would be then facilitated and the TCE blob areas would be eventually reduced. The presence of nitrate and humic substance hindered the NZVI reactivity for the TCE DNAPL removal. In contrast, the TCE DNAPL removal efficiency was enhanced using bimetallic nanoparticles in a short-term reaction by generating atomic hydrogen for catalytic hydro-dechlorination. However, all TCE DNAPL removal efficiencies reached the same level after long-term reaction using both NZVI and bimetallic nanoparticles. Direct TCE DNAPL observation clearly implied that TCE blobs existed for long time even though all TCE blobs were fully exposed to NZVI and bimetallic nanoparticles.

  9. Analysis of the dimerized Sb/Si(001)-(2x1) surface by x-ray standing waves

    International Nuclear Information System (INIS)

    Lyman, P.F.; Qian, Y.; Bedzyk, M.J.

    1994-12-01

    X-ray standing wave measurements were undertaken to study the bonding position of Sb adatoms on the Sb-saturated Si(001)-(2x1) surface. Using the (004) and (022) Bragg reflections, the authors find that the Sb atoms form dimers, and that the center of the Sb ad-dimers lies 1.64 angstrom above the bulk-like Si(004) surface atomic plane. These in-plane results are compared to two structural models consisting of dimers whose bonds are parallel to the surface plane and whose centers are either shifted or unshifted (parallel to the dimer bond direction) relative to the underlying substrate planes. The authors thus find two special cases consistent with these data: one with symmetric (unshifted) dimers having a dimer bond length of 2.81 angstrom, and the other with midpoint-shifted dimers, having a bond length of 2.88 angstrom and a lateral shift of 0.21 angstrom

  10. One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fang; Yang, Die; Chen, Zuliang, E-mail: zuliang.chen@newcastle.edu.au; Megharaj, Mallavarapu; Naidu, Ravendra

    2016-02-13

    Highlights: • Green synthesis of bimetallic Fe/Pd NPs was firstly reported using the one-step method. • 98.0% of Orange II was removed by Fe/Pd NPs, but only 16.0% by Fe NPs. • Fe/Pd NPs with a diameter ranging from 10 to 100 nm were observed. • Removing Orange II using Fe/Pd NPs involved both adsorption and catalytic degradation. - Abstract: To reduce cost and enhance reactivity, bimetallic Fe/Pd nanoparticles (NPs) were firstly synthesized using grape leaf aqueous extract to remove Orange II. Green synthesized bimetallic Fe/Pd NPs (98.0%) demonstrated a far higher ability to remove Orange II in 12 h compared to Fe NPs (16.0%). Meanwhile, all precursors, e.g., grape leaf extract, Fe{sup 2+} and Pd{sup 2+}, had no obvious effect on removing Orange II since less than 2.0% was removed. Kinetics study revealed that the removal rate fitted well to the pseudo-first-order reduction and pseudo-second-order adsorption model, meaning that removing Orange II via Fe/Pd NPs involved both adsorption and catalytic reduction. The remarkable stability of Fe/Pd NPs showed the potential application for removing azo dyes. Furthermore, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) confirmed the changes in Fe/Pd NPs before and after reaction with Orange II. High Performance Liquid Chromatography–Mass Spectrum (HPLC–MS) identified the degraded products in the removal of Orange II, and finally a removal mechanism was proposed. This one-step strategy using grape leaf aqueous extract to synthesize Fe/Pd NPs is simple, cost-effective and environmentally benign, making possible the large-scale production of Fe/Pd NPs for field remediation.

  11. Ag-Cu Bimetallic Nanoparticles Prepared by Microemulsion Method as Catalyst for Epoxidation of Styrene

    Directory of Open Access Journals (Sweden)

    Hong-Kui Wang

    2012-01-01

    Full Text Available Ag/Cu bimetallic nanocatalysts supported on reticulate-like γ-alumina were prepared by a microemulsion method using N2H4·H2O as the reducing agent. The catalysts were activated by calcination followed with hydrogen reduction at 873K, and the properties were confirmed using various characterization techniques. Compared with metal oxides particles, Ag-Cu particles exhibited smaller sizes (<5 nm after calcination in H2 at 873K. XPS results indicated that the binding energies changed with the Ag/Cu ratios, suggesting that increasing the copper content gave both metals a greater tendency to lose electrons. Furthermore, Ag-Cu bimetallic nanoparticles supported on γ-alumina showed better catalytic activity on the epoxidation of styrene as compared with the corresponding monometallic silver or copper. The styrene oxide selectivity could reach 76.6% at Ag/Cu molar ratio of 3/1, while the maximum conversion (up to 94.6% appeared at Ag/Cu molar ratio of 1/1 because of the maximum interaction between silver and copper.

  12. Effect of surface Fe-S hybrid structure on the activity of the perfect and reduced α-Fe2O3(001) for chemical looping combustion

    Science.gov (United States)

    Xiao, Xianbin; Qin, Wu; Wang, Jianye; Li, Junhao; Dong, Changqing

    2018-05-01

    Sulfurization of the gradually reduced Fe2O3 surfaces is inevitable while Fe2O3 is used as an oxygen carrier (OC) for coal chemical looping combustion (CLC), which will result in formation of Fe-S hybrid structure on the surfaces. The Fe-S hybrid structure will directly alter the reactivity of the surfaces. Therefore, detailed properties of Fe-S hybrid structure over the perfect and reduced Fe2O3(001) surfaces, and its effect on the interfacial interactions, including CO oxidization and decomposition on the surfaces, were investigated by using density functional theory (DFT) calculations. The S atom prefers to chemically bind to Fe site with electron transfer from the surfaces to the S atom, and a deeper reduction of Fe2O3(001) leads to an increasing interaction between S and Fe. The formation of Fe-S hybrid structure alters the electronic properties of the gradually reduced Fe2O3(001) surfaces, promoting CO oxidation on the surfaces ranging from Fe2O3 to FeO, but depressing carbon deposition on the surfaces ranging from FeO to Fe. The sulfurized FeO acts as a watershed to realize relatively high CO oxidation rate and low carbon deposition. Results provided a fundamental understanding for controlling and optimizing the CLC processes.

  13. Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction

    Science.gov (United States)

    Fang, Zhiqiang; Hao, Zhaomin; Dong, Qingsong; Cui, Yong

    2018-04-01

    Transition metal oxides that derived from metal-organic framework (MOF) precursor have intensively received attention because of their numerous electrochemical applications. Bimetallic Ni-Fe oxides have been rarely reported on the basis of MOF-related strategy. Herein, a bimetallic NiFe2O4 was successfully synthesized via confined carburization in NiFe-MOF precursors and characterized by XRD, XPS, SEM, and TEM. After conducting an investigation of oxygen evolution reaction (OER), the as-synthesized NiFe2O4 material exhibited good catalytic efficiency and high stability and durability in alkaline media. The as-synthesized NiFe2O4 material would promote the development of MOFs in non-noble-metal OER catalyst.

  14. Ab-initio perturbed-cluster study of carbon monoxide adsorption at a stepped LiF(001) surface

    Science.gov (United States)

    Pisani, C.; Corà, F.; Orlando, R.; Nada, R.

    1993-02-01

    The perturbed-cluster ab-initio Hartree-Fock approach to the study of local defects in crystals [J. Chem. Phys. 92(1990)7448] is applied to the study of CO adsorption at a stepped LiF(001) surface. The step is simulated by a tablet of four ions superimposed on an infinite LiF(001) monolayer. The geometry of the step is first optimized, and corresponds to an important relaxation of cations and anions of the tablet inwards and outwards, respectively. The equilibrium configuration, adsorption energy and vibrational frequency of CO at a corner of the tablet occupied by a lithium cation are calculated. With respect to adsorption at a perfect (100) face, there is a large increase in interaction energy, especially when adsorption occurs via the oxygen atom. This difference is essentially related to modifications of the electrostatic field experienced by the adsorbed molecule.

  15. A resolution study for electrostatic force microscopy on bimetallic samples using the boundary element method

    International Nuclear Information System (INIS)

    Shen Yongxing; Lee, Minhwan; Lee, Wonyoung; Barnett, David M; Pinsky, Peter M; Prinz, Friedrich B

    2008-01-01

    Electrostatic force microscopy (EFM) is a special design of non-contact atomic force microscopy used for detecting electrostatic interactions between the probe tip and the sample. Its resolution is limited by the finite probe size and the long-range characteristics of electrostatic forces. Therefore, quantitative analysis is crucial to understanding the relationship between the actual local surface potential distribution and the quantities obtained from EFM measurements. To study EFM measurements on bimetallic samples with surface potential inhomogeneities as a special case, we have simulated such measurements using the boundary element method and calculated the force component and force gradient component that would be measured by amplitude modulation (AM) EFM and frequency modulation (FM) EFM, respectively. Such analyses have been performed for inhomogeneities of various shapes and sizes, for different tip-sample separations and tip geometries, for different applied voltages, and for different media (e.g., vacuum or water) in which the experiment is performed. For a sample with a surface potential discontinuity, the FM-EFM resolution expression agrees with the literature; however, the simulation for AM-EFM suggests the existence of an optimal tip radius of curvature in terms of resolution. On the other hand, for samples with strip- and disk-shaped surface potential inhomogeneities, we have obtained quantitative expressions for the detectability size requirements as a function of experimental conditions for both AM- and FM-EFMs, which suggest that a larger tip radius of curvature is moderately favored for detecting the presence of such inhomogeneities

  16. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  17. Bimetallic low thermal-expansion panels of Co-base and silicide-coated Nb-base alloys for high-temperature structural applications

    International Nuclear Information System (INIS)

    Rhein, R.K.; Novak, M.D.; Levi, C.G.; Pollock, T.M.

    2011-01-01

    Research highlights: → Low net thermal expansion bimetallic structural lattice constructed. → Temperatures on the order of 1000 deg. C reached. → Improved silicide coating for niobium alloy developed. - Abstract: The fabrication and high temperature performance of low thermal expansion bimetallic lattices composed of Co-base and Nb-base alloys have been investigated. A 2D sheet lattice with a coefficient of thermal expansion (CTE) lower than the constituent materials of construction was designed for thermal cycling to 1000 deg. C with the use of elastic-plastic finite element analyses. The low CTE lattice consisted of a continuous network of the Nb-base alloy C-103 with inserts of high CTE Co-base alloy Haynes 188. A new coating approach wherein submicron alumina particles were incorporated into (Nb, Cr, Fe) silicide coatings was employed for oxidation protection of the Nb-base alloy. Thermal gravimetric analysis results indicate that the addition of submicron alumina particles reduced the oxidative mass gain by a factor of four during thermal cycling, increasing lifetime. Bimetallic cells with net expansion of 6 x 10 -6 /deg. C and 1 x 10 -6 /deg. C at 1000 deg. C were demonstrated and their measured thermal expansion characteristics were consistent with analytical models and finite element analysis predictions.

  18. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong

    2015-06-25

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.

  19. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles.

    Science.gov (United States)

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1-30.0 μM and 30.0-330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. Copyright © 2014. Published by Elsevier B.V.

  20. Influence of defects on the adhesion of transition metals on non-polar MgO(001) surface: comparative theoretical analysis

    International Nuclear Information System (INIS)

    Zhukovskii, Yu.F.; Kotomin, E.A.

    2004-01-01

    Full text: First principles simulations were performed for noble (Ag) and transition (Cu) atoms adsorbed on regular and defective MgO(001) substrate [1]. Both metal atoms and surface O vacancies (F s centers) were distributed uniformly with one Ag (Cu) atom or F 2 defect per 2x2 surface supercell. Surface O 2- ions are the energetically more preferable for metal atom adsorption on a regular substrate as compared to Mg 2+ ions. The nature of the interaction between Ag or Cu adatoms and a defectless MgO substrate is physisorption (despite the difference in the adsorption energies: 0.62 eV vs. 0.39 eV per Cu and Ag adatom, respectively). Above the F s centers, metal atoms are bounded much stronger as compared with the regular O 2- sites (2.4 eV vs. 2.1 eV per Cu and Ag adatoms, respectively). This is accompanied by a substantial charge transfer towards each adatom (Δq Cu = 0.41 e and Δq Ag = 0.32 e) as well as a formation of partly covalent Me-F s bonds across the interface (Mulliken bond populations p Cu-F s = 0.25 e and p Ag-F s = 0.33 e). Thus, adsorption of transition metal atom on the defective MgO(001) substrate clearly indicates a strong electrostatic bonding because of the considerable interfacial charge redistribution. [1] Yu.F. Zhukovskii, E.A. Kotomin, and G. Borstel, Adsorption of single Ag and Cu atoms on regular and defective MgO(001) substrates: an ab initio study - Vacuum, 73 (2004) in press

  1. Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation.

    Science.gov (United States)

    Feng, Yue; Bin, Duan; Yan, Bo; Du, Yukou; Majima, Tetsuro; Zhou, Weiqiang

    2017-05-01

    Porous bimetallic PdNi catalysts were fabricated by a novel method, namely, reduction of Pd and Ni oxides prepared via calcining the complex chelate of PdNi-dimethylglyoxime (PdNi-dmg). The morphology and composition of the as-prepared PdNi were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the electrochemical properties of PdNi catalysts towards ethanol electrooxidation were also studied by electrochemical impedance spectrometry (EIS), cyclic voltammetry (CV) and chronoamperometry (CA) measurement. In comparison with porous Pd and commercial Pd/C catalysts, porous structural PdNi catalysts showed higher electrocatalytic activity and durability for ethanol electrooxidation, which may be ascribed to Pd and Ni property, large electroactive surface area and high electron transfer property. The Ni exist in the catalyst in the form of the nickel hydroxides (Ni(OH) 2 and NiOOH) which have a high electron and proton conductivity enhances the catalytic activity of the catalysts. All results highlight the great potential application of the calcination-reduction method for synthesizing high active porous PdNi catalysts in direct ethanol fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Preparation of highly dispersed Ru-Sn bimetallic supported catalysts from the single source precursors Cp(PPh32Ru-SnX3 (X = Cl or Br

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Bernardes Silva

    2003-06-01

    Full Text Available In this work highly dispersed Ru-Sn bimetallic catalysts have been prepared from organobimetallic Cp(PPh32Ru-SnX3 (X = Cl or Br complexes. These single source precursors can be easily impregnated in high surface area supports, such as activated carbon and sol-gel SiO2, and upon controlled thermal treatment the ligands are released as volatile products resulting in the formation of the bimetallic system Ru-Sn. Catalytic reactions, such as hydrodechlorination of CCl4 and chlorobenzene and TPR (Temperature Programmed Reduction experiments carried out with these RuSn catalysts suggested a strong interaction between Ruthenium and Tin. Mössbauer measurements showed that these materials when exposed to air are immediately oxidized to form Sn (IV. It was shown that upon controlled reduction conditions with H2 it is possible to reduce selectively Sn to different oxidation states and different phases. The Sn oxidation state showed significant effect on the catalytic hydrogenation of 1,5-cyclooctadiene. The use of these single source precursors with a controlled decomposition/reduction procedure allows the preparation of unique catalysts with an intimate interaction between the components ruthenium and tin and the possibility of varying the Sn oxidation state around the Ru metal.

  3. Rotated domain network in graphene on cubic-SiC(001)

    International Nuclear Information System (INIS)

    Chaika, Alexander N; Aristov, Victor Y; Molodtsova, Olga V; Zakharov, Alexei A; Marchenko, Dmitry; Sánchez-Barriga, Jaime; Varykhalov, Andrei; Babenkov, Sergey V; Portail, Marc; Zielinski, Marcin; Murphy, Barry E; Krasnikov, Sergey A; Lübben, Olaf; Shvets, Igor V

    2014-01-01

    The atomic structure of the cubic-SiC(001) surface during ultra-high vacuum graphene synthesis has been studied using scanning tunneling microscopy (STM) and low-energy electron diffraction. Atomically resolved STM studies prove the synthesis of a uniform, millimeter-scale graphene overlayer consisting of nanodomains rotated by ±13.5° relative to the 〈110〉-directed boundaries. The preferential directions of the domain boundaries coincide with the directions of carbon atomic chains on the SiC(001)-c(2 × 2) reconstruction, fabricated prior to graphene synthesis. The presented data show the correlation between the atomic structures of the SiC(001)-c(2 × 2) surface and the graphene/SiC(001) rotated domain network and pave the way for optimizing large-area graphene synthesis on low-cost cubic-SiC(001)/Si(001) wafers. (paper)

  4. Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution

    Science.gov (United States)

    Xu, You; Li, Yinghao; Yin, Shuli; Yu, Hongjie; Xue, Hairong; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-06-01

    Design of highly active and cost-effective electrocatalysts is very important for the generation of hydrogen by electrochemical water-splitting. Herein, we report the fabrication of ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles (CoRu@NCs) and demonstrate their promising feasibility for efficiently catalyzing the hydrogen evolution reaction (HER) over a wide pH range. The resultant CoRu@NC nanohybrids possess an alloy–carbon core–shell structure with encapsulated low-ruthenium-content CoRu bimetallic alloy nanoparticles (10–30 nm) as the core and ultrathin nitrogen-doped graphitized carbon layers (2–6 layers) as the shell. Remarkably, the optimized catalyst (CoRu@NC-2 sample) with a Ru content as low as 2.04 wt% shows superior catalytic activity and excellent durability for HER in acidic, neutral, and alkaline conditions. This work offers a new method for the design and synthesis of non-platium-based electrocatalysts for HER in all-pH.

  5. First-principles study on the thermodynamic stability, magnetism, and half-metallicity of full-Heusler alloy Ti{sub 2}FeGe (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yan; Zhang, Jian-Min, E-mail: jmzhang@snnu.edu.cn

    2017-05-10

    For the Ti{sub 2}FeGe Heusler alloy, the surface stability, electronic and magnetic properties of the various (001) surfaces have been studied by using first-principles calculations. The TiGe termination is the most stable one while the GeGe* termination is the most unstable one. Both the density of states (DOS) and atomic magnetic moments (AMMs) of the central layers are similar to the corresponding bulk characters due to no influence of surface effect as we expected. The TiGe termination has the highest spin polarization 96.67%, followed by the TiFe (67.17%), GeGe* (66.51%) and FeFe* terminations (62.02%). The TiTi* terminations has the lowest spin polarization 61.31%. The magnetic moments for atoms on the surfaces and subsurfaces of these terminations are different from the bulk case. - Highlights: • TiGe termination is the most stable while GeGe* termination is the most unstable. • TiGe termination has the highest spin polarization followed by TiFe, GeGe*, FeFe* and TiTi*. • Atomic magnetic moments at the (001) surfaces are greatly different from the bulk values.

  6. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  7. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    Science.gov (United States)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  8. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.2; bimetallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.; Sayers, D.

    1993-01-01

    The structural information obtained using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to the study of nanometer scale bimetallic clusters. (author)

  9. Different growth mechanisms of Ge by Stranski-Krastanow on Si (111) and (001) surfaces: An STM study

    Energy Technology Data Exchange (ETDEWEB)

    Teys, S.A., E-mail: teys@isp.nsc.ru

    2017-01-15

    Highlights: • Different atomic mechanisms of transition from two-dimensional to three-dimensional-layer growth on Sransky-Krastanov observed. • The transition from 2D–3D Ge growth on Si (111) and (001) is very different. • Various changes in morphology, surface structures and sequence Ge redistribution during the growth shown. • The sequence of appearance of different incorporation places of Ge atoms was shown. - Abstract: Structural and morphological features of the wetting layer formation and the transition to the three-dimensional Ge growth on (111) and (100) Si surfaces under quasi-equilibrium growth conditions were studied by means of scanning tunneling microscopy. The mechanism of the transition from the wetting layer to the three-dimensional Ge growth on Si was demonstrated. The principal differences and general trends of the atomic processes involved in the wetting layers formation on substrates with different orientations were demonstrated. The Ge growth is accompanied by the Ge atom redistribution and partial strain relaxation due to the formation of new surfaces, vacancies and surface structures of a decreased density. The analysis of three-dimensional Ge islands sites nucleation of after the wetting layer formation was carried out on the (111) surface. The transition to the three-dimensional growth at the Si(100) surface begins with single {105} facets nucleation on the rough Ge(100) surface.

  10. Different growth mechanisms of Ge by Stranski-Krastanow on Si (111) and (001) surfaces: An STM study

    International Nuclear Information System (INIS)

    Teys, S.A.

    2017-01-01

    Highlights: • Different atomic mechanisms of transition from two-dimensional to three-dimensional-layer growth on Sransky-Krastanov observed. • The transition from 2D–3D Ge growth on Si (111) and (001) is very different. • Various changes in morphology, surface structures and sequence Ge redistribution during the growth shown. • The sequence of appearance of different incorporation places of Ge atoms was shown. - Abstract: Structural and morphological features of the wetting layer formation and the transition to the three-dimensional Ge growth on (111) and (100) Si surfaces under quasi-equilibrium growth conditions were studied by means of scanning tunneling microscopy. The mechanism of the transition from the wetting layer to the three-dimensional Ge growth on Si was demonstrated. The principal differences and general trends of the atomic processes involved in the wetting layers formation on substrates with different orientations were demonstrated. The Ge growth is accompanied by the Ge atom redistribution and partial strain relaxation due to the formation of new surfaces, vacancies and surface structures of a decreased density. The analysis of three-dimensional Ge islands sites nucleation of after the wetting layer formation was carried out on the (111) surface. The transition to the three-dimensional growth at the Si(100) surface begins with single {105} facets nucleation on the rough Ge(100) surface.

  11. Role of Pt(0) in bimetallic (Pt,Fe)-FER catalysts in the N2O decomposition

    Czech Academy of Sciences Publication Activity Database

    Tabor, Edyta; Jíša, Kamil; Nováková, Jana; Bastl, Zdeněk; Vondrová, Alena; Závěta, K.; Sobalík, Zdeněk

    2013-01-01

    Roč. 165, JAN 2013 (2013), s. 40-47 ISSN 1387-1811 R&D Projects: GA ČR GA203/09/1627 Institutional support: RVO:61388955 Keywords : bimetallic Pt,Fe- FER * Pt- FER * Pt(0) clusters Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.209, year: 2013

  12. Highly selective bimetallic Pt-Cu/Mg(Al)O catalysts for the aqueous-phase reforming of glycerol

    NARCIS (Netherlands)

    Boga, D.A.; Oord, R.; Beale, A.M.; Chung, Y.M.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2013-01-01

    Monometallic Pt and bimetallic Pt-Cu catalysts supported on Mg(Al)O mixed oxides, obtained by calcination of the corresponding layered double hydroxides (LDHs), were prepared and tested in the aqueous-phase reforming (APR) of glycerol. The effect of the Mg/Al ratio and calcination temperature of the

  13. Rational design of Mg-Al mixed oxide-supported bimetallic catalysts for dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganok, Andrey I. [Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, D' Iorio Hall, 10 Marie Curie Street, Ottawa, Ont. (Canada); Inaba, Mieko [Natural Gas Technology Development Team, Teikoku Oil Co., 9-23-30 Kitakarasuyama, Setagaya-ku, Tokyo 157-0061 (Japan); Tsunoda, Tatsuo; Uchida, Kunio; Suzuki, Kunio; Hayakawa, Takashi [Institute for Materials and Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Takehira, Katsuomi [Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan)

    2005-09-18

    A novel synthetic strategy for preparing bimetallic Ru-M (M=Cr, Fe, Co, Ni and Cu) catalysts, supported on Mg-Al mixed oxide, has been introduced. It was based on a 'memory effect', i.e. on the ability of Mg-Al mixed oxide to reconstruct a layered structure upon rehydration with an aqueous solution. By repeated calcinations-rehydration cycles, layered double hydroxide (LDH) precursors of catalysts containing two different metals were synthesized. Bimetallic catalysts were then generated (1) in situ from LDH under methane reforming reaction conditions and (2) from mixed metal oxides obtained by preliminary LDH calcination. Among all the LDH-derived catalysts, a Ru{sup 0.1%}-Ni{sup 5.0%}/MgAlO{sub x} sample revealed the highest activity and selectivity to syngas, a suitable durability and a low coking capacity. A promoting effect of ruthenium on catalytic function of supported nickel was demonstrated. Preliminary LDH calcination was shown to markedly affect the catalytic activity of the derived catalysts and especially their coking properties.

  14. Electrocatalytic properties of monometallic and bimetallic nanoparticles-incorporated polypyrrole films for electro-oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, V.; Alagar, M. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India); Hamerton, I. [Chemistry Division, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2006-10-06

    Oxidative electrochemical polymerization of pyrrole at indium-doped tin oxide (ITO) is accomplished from a neat monomer solution with a supporting electrolyte (0.3M n-tetrabutyl ammonium tetrafluoroborate) by multiple-scan cyclic voltammetry. Polypyrrole (Ppy) films containing nanometer-sized platinum and Pt/Pd bimetallic particles are electro-synthesized on ITO glass plates by voltammetric cycling between -0.1 and +1V (versus Ag/AgCl/3M NaCl). The electrocatalytic oxidation of methanol on the nanoparticle-modified polypyrrole films is studied by means of electrochemical techniques. The modified electrode exhibits significant eletrocatalytic activity for methanol oxidation. The enhanced electrocatalytic activities may be due to the uniform dispersion of nanoparticles in the polypyrrole film and a synergistic effect of the highly-dispersed metal particles so that the polypyrrole film reduces electrode poisoning by adsorbed CO species. The monometallic (Pt) and bimetallic (Pt/Pd) nanoparticles are uniformly dispersed in polypyrrole matrixes, as confirmed by scanning electron microscopic and atomic force microscopic analysis. Energy dispersive X-ray analysis is used to characterize the composition of metal present in the nanoparticle-modified electrodes. (author)

  15. Real-time cellular and molecular dynamics of bi-metallic self-therapeutic nanoparticle in cancer cells

    Science.gov (United States)

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Paspala, Syed Ameer Basha; Habeeb, Md. Aejaz; Khan, Aleem Ahmed

    2018-02-01

    Since last decades various kinds of nanoparticles have been functionalized to improve their biomedical applications. However, the biological effect of un-modified/non-functionalized bi-metallic magnetic nanoparticles remains under investigated. Herein we demonstrate a multifaceted non-functionalized bi-metallic inorganic Gd-SPIO nanoparticle which passes dual high MRI contrast and can kill the cancer cells through several mechanisms. The results of the present study demonstrate that Gd-SPIO nanoparticles have potential to induce cancer cell death by production of reactive oxygen species and apoptotic events. Furthermore, Gd-SPIO nanoparticles also enhance the expression levels of miRNA-199a and miRNA-181a-7p which results in decreased levels of cancer markers such as C-met, TGF-β and hURP. One very interesting finding of this study reveals side scatter-based real-time analysis of nanoparticle uptake in cancer cells using flow cytometry analysis. In conclusion, this study paves a way for future investigation of un-modified inorganic nanoparticles to purport enhanced therapeutic effect in combination with potential anti-tumor drugs/molecules in cancer cells.

  16. DFT study of oxygen adsorption on Mo{sub 2}C(001) and (201) surfaces at different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lihong, E-mail: chenglihong001@126.com [School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi (China); Li, Wenkui; Chen, Zhiqin; Ai, Jianping; Zhou, Zehua [School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, Jiangxi (China); Liu, Jianwen, E-mail: liujw@nsccsz.gov.cn [National Supercomputing Center in Shenzhen, Shenzhen 518055 (China)

    2017-07-31

    Highlights: • O adsorption manners on Mo{sub 2}C surfaces were calculated by DFT method. • Stable oxygen adsorption states and coverage were identified at given T and p. • O{sub 2} results in full oxidation while H{sub 2}O and CO{sub 2} cause partial oxidation of Mo{sub 2}C surfaces. • Hydrogen could be used to avoid Mo{sub 2}C surface oxidation. - Abstract: Density functional theory (DFT) calculations were performed to investigate oxygen adsorption on Mo{sub 2}C(001) and (201)surfaces at different coverage. The energies and structures of oxygen from lowest to saturated coverages were clearly identified on each surface. Thermodynamics method was introduced to reveal the roles of temperature, pressure as well as oxygen sources (O{sub 2}, H{sub 2}O and CO{sub 2}) on the surface oxygen coverage, which is related to the surface oxidation. On the basis of phase diagram, we can easily identify the stable oxygen coverage at different defined conditions. In addition, it reveals that O{sub 2} is the strongest oxidant, which results in the full coverage of oxygen on both surfaces in a wide range of temperature and pressure. Then, H{sub 2}O and CO{sub 2} are weaker oxidants, which could only cause partial oxidation of Mo{sub 2}C surfaces. These results indicate the facile oxidation of Mo{sub 2}C catalyst. The possible ways to avoid surface oxidation are keeping higher temperature and H{sub 2} pressure in the gas phase.

  17. General aspects of surface alloy formation

    Energy Technology Data Exchange (ETDEWEB)

    Bergbreiter, Andreas; Engstfeld, Albert K.; Roetter, Ralf T.; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Berko, Andras

    2010-07-01

    Surface confined alloys are excellent model systems for studies of structure-property relationships of bimetallic surfaces. They are formed by deposition of a guest metal B onto a substrate A, followed by annealing to a temperature, where place exchange between adatoms and atoms from the underlying surface layer becomes possible and diffusion into the bulk is sufficiently slow. We exemplarily confirmed by scanning tunneling microscopy and Auger electron spectroscopy for PtRu/Ru(0001), PdRu/Ru(0001), AuPt/Pt(111), AgPt/Pt(111), and AgPd/Pd(111), surface alloys are obtained for systems where metal B has a negative surface segregation energy within metal A. By exchanging A and B, however, AB surface alloys are most likely overgrown by metal B, which we demonstrate for RuPt/Pt(111) in comparison to PtRu/Ru(0001).

  18. Bimetallic Porous Iron (pFe) Materials for Remediation/Removal of Tc from Aqueous Systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Remediation of Tc remains an unresolved challenge at SRS and other DOE sites. The objective of this project was to develop novel bimetallic porous iron (pFe) materials for Tc removal from aqueous systems. We showed that the pFe is much more effective in removing TcO4 - (×30) and ReO4 - (×8) from artificial groundwater than granular iron. Tc K-edge XANES spectroscopy indicated that Tc speciation on the pFe was 18% adsorbed TcO4 -, 28% Tc(IV) in Tc dioxide and 54% Tc(IV) into the structure of Fe hydroxide. A variety of catalytic metal nanoparticles (i.e., Ni, Cu, Zn, Ag, Sn and Pd) were successfully deposited on the pFe using scalable chemical reduction methods. The Zn-pFe was outstanding among the six bimetallic pFe materials, with a capacity increase of >100% for TcO4 - removal and of 50% for ReO4 - removal, compared to the pFe. These results provide a highly applicable platform for solving critical DOE and industrial needs related to nuclear environmental stewardship and nuclear power production.

  19. On Metal Segregation of Bimetallic Nanocatalysts Prepared by a One-Pot Method in Microemulsions

    Directory of Open Access Journals (Sweden)

    Concha Tojo

    2017-02-01

    Full Text Available A comparative study on different bimetallic nanocatalysts prepared from microemulsions using a one-pot method has been carried out. The analysis of experimental observations, complemented by simulation studies, provides detailed insight into the factors affecting nanoparticle architecture: (1 The metal segregation in a bimetallic nanocatalysts is the result of the combination of three main kinetic parameters: the reduction rate of metal precursors (related to reduction standard potentials, the material intermicellar exchange rate (determined by microemulsion composition, and the metal precursors concentration; (2 A minimum difference between the reduction standard potentials of the two metals of 0.20 V is needed to obtain a core-shell structure. For values ∆ε0 smaller than 0.20 V the obtaining of alloys cannot be avoided, neither by changing the microemulsion nor by increasing metal concentration; (3 As a rule, the higher the film flexibility around the micelles, the higher the degree of mixture in the nanocatalyst; (4 A minimum concentration of metal precursors is required to get a core-shell structure. This minimum concentration depends on the microemulsion flexibility and on the difference in reduction rates.

  20. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fang; Yang, Die; Chen, Zuliang, E-mail: Zuliang.chen@newcastle.edu.au; Megharaj, Mallavarapu; Naidu, Ravi

    2016-08-15

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20 nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC–MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. - Graphical abstract: TEM image for the Fe/Pd NPs synthesized by grape leaf aqueous extract. - Highlights: • The one-step green synthesis of Fe/Pd nanoparticles has been systematically characterized. • TEM showed that the Fe/Pd NPs were polydispersed with a diameter ranging from 2 to 20 nm. • Active biomolecules in the grape extract were identified.

  1. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis

    International Nuclear Information System (INIS)

    Luo, Fang; Yang, Die; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20 nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC–MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. - Graphical abstract: TEM image for the Fe/Pd NPs synthesized by grape leaf aqueous extract. - Highlights: • The one-step green synthesis of Fe/Pd nanoparticles has been systematically characterized. • TEM showed that the Fe/Pd NPs were polydispersed with a diameter ranging from 2 to 20 nm. • Active biomolecules in the grape extract were identified.

  2. Structural optimization of Au–Pd bimetallic nanoparticles with improved particle swarm optimization method

    International Nuclear Information System (INIS)

    Shao Gui-Fang; Zhu Meng; Shangguan Ya-Li; Li Wen-Ran; Zhang Can; Wang Wei-Wei; Li Ling

    2017-01-01

    Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles (NPs) on their structures, a fundamental understanding of their structural characteristics is crucial for their syntheses and wide applications. In this article, a systematical atomic-level investigation of Au–Pd bimetallic NPs is conducted by using the improved particle swarm optimization (IPSO) with quantum correction Sutton–Chen potentials (Q-SC) at different Au/Pd ratios and different sizes. In the IPSO, the simulated annealing is introduced into the classical particle swarm optimization (PSO) to improve the effectiveness and reliability. In addition, the influences of initial structure, particle size and composition on structural stability and structural features are also studied. The simulation results reveal that the initial structures have little effects on the stable structures, but influence the converging rate greatly, and the convergence rate of the mixing initial structure is clearly faster than those of the core-shell and phase structures. We find that the Au–Pd NPs prefer the structures with Au-rich in the outer layers while Pd-rich in the inner ones. Especially, when the Au/Pd ratio is 6:4, the structure of the nanoparticle (NP) presents a standardized Pd core Au shell structure. (paper)

  3. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics and mechanism

    International Nuclear Information System (INIS)

    Xie, Yingying; Fang, Zhanqiang; Cheng, Wen; Tsang, Pokeung Eric; Zhao, Dongye

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are commonly used as additive flame retardants in all kinds of electronic products. PBDEs are now ubiquitous in the environment, with soil as a major sink, especially in e-waste recycling sites. This study investigated the degradation of decabromodiphenyl ether (BDE209) in a spiked soil using Ni/Fe bimetallic nanoparticles. The results indicated that Ni/Fe bimetallic nanoparticles are able to degrade BDE209 in soil at ambient temperature and the removal efficiency can reach 72% when an initial pH of 5.6 and at a Ni/Fe dosage of 0.03 g/g. A declining trend in degradation was noticed with decreasing Ni loading and increasing of initial BDE209 concentration. The degradation products of BDE209 were analyzed by GC-MS, which showed that the degradation of BDE209 was a process of stepwise debromination from nBr to (n − 1)Br. And a possible debromination pathway was proposed. At last, the degradation process was analyzed as two-step mechanism, mass transfer and reaction. This current study shows the potential ability of Ni/Fe nanoparticles to be used for removal of PBDEs in contaminated soil. - Highlights: • Ni/Fe bimetallic nanoparticles could effectively degradate BDE209 in soil. • The effects of various factors on remediation of BDE209 in soil using Ni/Fe were considered. • The degradation of BDE209 was a process of stepwise debromination from nBr to (n − 1)Br. • A possible debromination pathway and mechanism about removal of BDE209 in soil were proposed

  4. The use of mechanical alloying for the preparation of palladized magnesium bimetallic particles for the remediation of PCBs.

    Science.gov (United States)

    Coutts, Janelle L; Devor, Robert W; Aitken, Brian; Hampton, Michael D; Quinn, Jacqueline W; Clausen, Christian A; Geiger, Cherie L

    2011-09-15

    The kinetic rate of dechlorination of a polychlorinated biphenyl (PCB-151) by mechanically alloyed Mg/Pd was studied for optimization of the bimetallic system. Bimetal production was first carried out in a small-scale environment using a SPEX 8000M high-energy ball mill with 4-μm-magnesium and palladium impregnated on graphite, with optimized parameters including milling time and Pd-loading. A 5.57-g sample of bimetal containing 0.1257% Pd and ball milled for 3 min resulted in a degradation rate of 0.00176 min(-1)g(-1) catalyst as the most reactive bimetal. The process was then scaled-up, using a Red Devil 5400 Twin-Arm Paint Shaker, fitted with custom plates to hold milling canisters. Optimization parameters tested included milling time, number of ball bearings used, Pd-loading, and total bimetal mass milled. An 85-g sample of bimetal containing 0.1059% Pd and ball-milled for 23 min with 16 ball bearings yielded the most reactive bimetal with a degradation rate of 0.00122 min(-1)g(-1) catalyst. Further testing showed adsorption did not hinder extraction efficiency and that dechlorination products were only seen when using the bimetallic system, as opposed to any of its single components. The bimetallic system was also tested for its ability to degrade a second PCB congener, PCB-45, and a PCB mixture (Arochlor 1254); both contaminants were seen to degrade successfully. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  6. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf Ewald

    2017-01-01

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  7. First-principles study of native defects in bulk Sm2CuO4 and its (001) surface structure

    Science.gov (United States)

    Zheng, Fubao; Zhang, Qinfang; Meng, Qiangqiang; Wang, Baolin; Song, Fengqi; Yunoki, Seiji; Wang, Guanghou

    2018-04-01

    Using the first-principles calculations based on the density functional theory, we have studied the bulk defect formation and surface structures of Sm2CuO4. To ensure the accuracy of calculations, the spin order of Cu atoms is rechecked and it is the well-known nearest-neighbor antiferromagnetic ground state, which can be attributed to the hole-mediated superexchange through the strong pdσ hybridization interaction between Cu dx2-y2 electron and the neighboring oxygen px (or py) electron. Under each present experimental condition, the Sm vacancy has a very high formation energy and is unlikely to be stable. The Cu vacancy is a shallow acceptor, which is preferred under O-rich conditions, whereas the O vacancy is a donor and energetically favorable under O-poor conditions. To construct its (001) surface structure, CuOO, CuO, and Cu terminated surfaces are found to be most favorable under different experimental conditions. The stable surface structures are always accompanied by significant surface atomic reconstructions and electron charge redistribution, which are intimately correlated to each other.

  8. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization

    International Nuclear Information System (INIS)

    Zhao Jun; Zhang Dongming; Zhao Jie

    2011-01-01

    Superfine bimetallic Cu-Ag core-shell powders were synthesized by reduction of copper sulfate pentahydrate and silver nitrate with eco-friendly ascorbic acid as a reducing agent and cyclodextrins as a protective agent in an aqueous system. The influence of Ag/Cu ratio on coatings was investigated. Ag was homogeneously distributed on the surface of Cu particles at a mole ratio of Ag/Cu=1. FE-SEM showed an uniformity of Ag coatings on Cu particles. Antioxidation of Cu particles was improved by increasing Ag/Cu ratio. TEM-EDX and UV-vis spectra also revealed that Cu cores were covered by Ag nanoshells on the whole. The surface composition analysis by XPS indicated that only small parts of Cu atoms in the surface were oxidized. It was noted that the hindrance of cyclodextrins chemisorbed on particles plays an important role in forming high quality and good dispersity Cu-Ag (Cu-Ag) core-shell powders. - Graphical abstract: Mechanism of fabricating Cu-Ag particles with good dispersibility using β-CDs as a protective agent was studied because of its special structure. Highlights: → Green supramolecular β-CD used as a protective agent and ascorbic acid(Vc) as a reducing agent to fabricate Cu-Ag powders. → Particles are monodisperse and the diameter is close to nanoscale(100-150 nm). → Resistance of Cu particles to oxidation was higher. → Formation mechanism explained.

  9. TEM and EELS studies of microwave-irradiation synthesis of bimetallic platinum nanocatalysts

    International Nuclear Information System (INIS)

    Mathe, N R; Scriba, M R; Coville, N J; Olivier, J E

    2014-01-01

    Microwave-irradiation (MW) synthesis of nanostructured materials provides for the synthesis of metal nanoparticles, using fast and uniform heating rates. This procedure affords better control of the shape and size of the nanoparticles when compared to conventional methods. In this work, microwave-irradiation was used to produce platinum-cobalt (Pt-Co) and platinum-nickel (Pt-Ni) nanoparticles for use as electrocatalysts in the methanol oxidation reaction. High resolution TEM imaging and EELS studies revealed that these bimetallic nanoparticles form islands or hetero-structures

  10. [Decolorization of the azo dye reactive red X-3B by an Al-Cu bimetallic system].

    Science.gov (United States)

    Fan, Jin-hong; Ma, Lu-ming; Wang, Hong-wu; Wu, De-li

    2008-06-01

    The decoloration mechanism and kinetics of the azo dye reactive red X-3B by an Al-Cu bimetallic system were investigated by measuring the dye removal, the TOC removal and the aniline concentration, and by adding EDTA as control experiments. The results showed the colority removal rate of X-3B reached 83% in the near neutral pH medium for 30 min and 96.4% for 120 min, in which, about 34% was due to the X-3B reduced to aniline, and about 20% and 30% was due to the flocculating of aluminum ions and surface adsorption of aluminum-fillings respectively. The decolorization of dyeing wastewater is a gradual reaction process, which first adsorbs a large number of dyeing ingredients and then carries out inner electrolysis reduction, improved effectively by the flocculating action of aluminum ions. The decolorization reaction appears to be a pseudo first-order reaction and increases with rising temperature.

  11. Green synthesis of Pt-on-Pd bimetallic nanodendrites on graphene via in situ reduction, and their enhanced electrocatalytic activity for methanol oxidation

    International Nuclear Information System (INIS)

    Cai, Zhi-xiong; Liu, Cong-cong; Wu, Geng-huang; Chen, Xiao-mei; Chen, Xi

    2014-01-01

    Graphical abstract: - Highlights: • Porous 3D dendrite-like structure of Pt-on-Pd bimetallic nanostructures supported on graphene were prepared. • The surface of nanostructures was very “clean” because of the surfactant-free formation process and the use of green reagent. • The hetero-nanostructures showed excellent electrocatalytic performance in methanol oxidation. - Abstract: A green synthesis of Pt-on-Pd bimetallic nanodendrites supported on graphene (GPtPdNDs) with a Pd interior and a dendrite-like Pt exterior was achieved using a two-step preparation, mixing graphene and PdCl 4 2− first, then adding PtCl 4 2− and ethanol without any other solvent. The morphology, structure and composition of the thus-prepared GPtPdNDs were characterized by transmission electron microscopy (TEM), high resolution TEM, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Because no halide ions (refer in particular to Br - , I − ) or surfactant was involved in the synthesis, the prepared GPtPdNDs were directly modified onto a glassy carbon electrode and showed excellent electrocatalytic performance in methanol oxidation without any pretreatments. Moreover, with the special structure of PtPdNDs and the synergetic effects of Pt and Pd and the enhanced electron transfer by graphene, the GPtPdNDs composites exhibited higher electrocatalytic activity and better tolerance to Pt nanoparticles supported on graphene (GPtNPs) and Pt/C for methanol oxidation

  12. Stabilization of polar Mn3O4(001) film on Ag(001): Interplay between kinetic and structural stability

    Science.gov (United States)

    Kundu, Asish K.; Barman, Sukanta; Menon, Krishnakumar S. R.

    2017-10-01

    Stabilization processes of polar surfaces are often very complex and interesting. Understanding of these processes is crucial as it ultimately determines the properties of the film. Here, by the combined study of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Ultraviolet Photoemission Spectroscopy (UPS) techniques we show that, although there can be many processes involved in the stabilization of the polar surfaces, in case of Mn3O4(001)/Ag(001), it goes through different reconstructions of the Mn2O4 terminated surface which is in good agreements with the theoretical predictions. The complex surface phase diagram has been probed by LEED as a function of film thickness, oxygen partial pressure and substrate temperature during growth, while their chemical compositions have been probed by XPS. Below a critical film thickness of ∼ 1 unit cell height (8 sublayers or 3 ML) of Mn3O4 and oxygen partial pressure range of 2 × 10-8 mbar oxygen partial pressure (> 5 × 10-7 mbar) and higher temperature UHV annealing. The origin of these stripes has been explained with the help of UPS results.

  13. Low energy Cu clusters slow deposition on a Fe (001) surface investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shixu [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gong, Hengfeng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Division of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Xuanzhi [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Gongping, E-mail: ligp@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Zhiguang, E-mail: zhgwang@impcas.ac.cn [Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-09-30

    Highlights: • We study the deposition of low energy Cu clusters on Fe (001) surface by molecular dynamics. • The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. • The phenomenon of contact epitaxy of cluster occurred. • The thermal diffusion of cluster atoms was analyzed. - Abstract: The slow deposition of low energy Cu clusters on a Fe (001) surface was investigated by molecular dynamics simulation. A many-body potential based on Finnis–Sinclair model was used to describe the interactions among atoms. Three clusters comprising of 13, 55 and 147 atoms, respectively, were deposited with incident energies ranging from 0.0 to 1.0 eV/atom at various substrate temperatures (0, 300 and 800 K). The rearrangement and the diffusion of cluster can occur, only when the cluster atoms are activated and obtained enough migration energy. The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. In the former, the migration energy originates from the latent heat of binding energy for the soft deposition regime and primarily comes from the incident energy of cluster for the energetic cluster deposition regime. In the latter, the thermal vibration would result in some cluster atoms activated again at medium and high substrate temperatures. Also, the effects of incident energy, cluster size and substrate temperature on the interaction potential energy between cluster and substrate, the final deposition morphology of cluster, the spreading index and the structure parameter of cluster are analyzed.

  14. Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination organic framework modification and their application in supercapacitors.

    Science.gov (United States)

    Yao, Yuechao; Liu, Peng; Li, Xiaoyan; Zeng, Shaozhong; Lan, Tongbin; Huang, Haitao; Zeng, Xierong; Zou, Jizhao

    2018-05-17

    Herein, N-doped graphitic hierarchically porous carbon nanofibers (NGHPCF) were prepared by electrospinning the composite of bimetallic-coordination metal-organic frameworks and polyacrylonitrile, followed by a pyrolysis and acid wash process. Control over the N content, specific surface area, and degree of graphitization of NGHPCF materials has been realized by adjusting the Co/Zn metal coordination content as well as the pyrolysis temperature. The obtained NGHPCF with a high specific surface area (623 m2 g-1) and nitrogen content (13.83 wt%) exhibit a high capacitance of 326 F g-1 at 0.5 A g-1. In addition, the capacitance of 170 F g-1 is still maintained at a high current density (40 A g-1); this indicates a high capacitance retention capability. Furthermore, a superb energy density (9.61 W h kg-1) is obtained with a high power density (62.4 W kg-1) using an organic electrolyte. These results fully illustrate that the prepared NGHPCF binder-free electrodes are promising candidates for high-performance supercapacitors.

  15. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    Science.gov (United States)

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  16. Facile and Rapid Synthesis of Ultrafine PtPd Bimetallic Nanoparticles and Their High Performance toward Methanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Tiantian Xia

    2014-01-01

    Full Text Available Uniform and sub-10 nm size bimetallic PtPd nanoparticles (NPs have been synthesized via a simple and facile method without using any surfactants at an ambient temperature. As a green and clean reductive agent, ascorbic acid (AA was employed for the coreduction of K2PtCl4 and K2PdCl4 in aqueous solution. The morphology, composition, and structure of PtPd NPs had been characterized by transmission electron microscopy (TEM, field emission high resolution transmission electron microscopy (FE-HRTEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and X-ray photoelectron spectroscope (XPS. Comparing with both the monometallic Pt and Pd, the as-prepared alloy nanoparticles show superior electrocatalytic activity and better tolerance against poisoning by intermediates generated during methanol electrooxidation, which makes them a promising electrocatalysts for direct methanol fuel cells (DMFCs. Meanwhile, the green and simple approach could be easily extended to the manufacture of bimetallic or trimetallic alloy nanomaterials.

  17. Spatial Bimetallic Castings Manufactured from Iron Alloys

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this paper a conception for manufacturing method of skeleton castings with composite features was shown. Main application of such castings are the working organs of machines subjected to intensive abrasive and erosive wear. Skeleton geometry was based on three-dimensional cubic net consisting of circular connectors and nodes joining 6 connectors according to Cartesian co-ordinate system. Dimension of an elementary cell was equal to 10 mm and diameter of single connector was equal to 5 mm. For bimetallic castings preparation two Fe based alloys were used: L25SHMN cast steel for skeleton substrate and ZlCr15NiMo cast iron for working part of the casting. In presented work obtained structure was analyzed with indication of characteristic regions. Authors described phenomena occurring at the alloys interface and phases in transition zone. A thesis was formulated concerning localization of transition zone at the cast iron matrix – cast steel reinforcement interface. Direction of further studies were indicated.

  18. Activation and dissociation of CO2 on the (001), (011), and (111) surfaces of mackinawite (FeS): A dispersion-corrected DFT study.

    Science.gov (United States)

    Dzade, N Y; Roldan, A; de Leeuw, N H

    2015-09-07

    Iron sulfide minerals, including mackinawite (FeS), are relevant in origin of life theories, due to their potential catalytic activity towards the reduction and conversion of carbon dioxide (CO2) to organic molecules, which may be applicable to the production of liquid fuels and commodity chemicals. However, the fundamental understanding of CO2 adsorption, activation, and dissociation on FeS surfaces remains incomplete. Here, we have used density functional theory calculations, corrected for long-range dispersion interactions (DFT-D2), to explore various adsorption sites and configurations for CO2 on the low-index mackinawite (001), (110), and (111) surfaces. We found that the CO2 molecule physisorbs weakly on the energetically most stable (001) surface but adsorbs relatively strongly on the (011) and (111) FeS surfaces, preferentially at Fe sites. The adsorption of the CO2 on the (011) and (111) surfaces is shown to be characterized by significant charge transfer from surface Fe species to the CO2 molecule, which causes a large structural transformation in the molecule (i.e., forming a negatively charged bent CO2 (-δ) species, with weaker C-O confirmed via vibrational frequency analyses). We have also analyzed the pathways for CO2 reduction to CO and O on the mackinawite (011) and (111) surfaces. CO2 dissociation is calculated to be slightly endothermic relative to the associatively adsorbed states, with relatively large activation energy barriers of 1.25 eV and 0.72 eV on the (011) and (111) surfaces, respectively.

  19. A Preliminary Report on the Strength and Metallography of a Bimetallic Friction Stir Weld Joint Between AA6061 and MIL-DTL-46100E High Hardness Steel Armor

    Science.gov (United States)

    2012-11-26

    bimetallic friction stir weld joint between AA6061 and MIL-DTL-46100E High Hardness steel armor. ABSTRACT One half inch thick plates of 6061-T6 aluminum...alloy and High Hardness steel armor (MIL- STD-46100) were successfully joined by the friction stir welding (FSW) process using a tungsten-rhenium...4. TITLE AND SUBTITLE A preliminary report on the strength and metallography of a bimetallic friction stir weld joint between AA6061 and MIL-DTL

  20. Dissociation of N{sub 2}O on anatase TiO{sub 2} (001) surface – The effect of oxygen vacancy and presence of Ag cluster

    Energy Technology Data Exchange (ETDEWEB)

    Sowmiya, M.; Senthilkumar, K., E-mail: ksenthil@buc.edu.in

    2016-12-15

    Highlights: • This study elucidates the dissociation of N{sub 2}O on anatase TiO{sub 2} (001) surface. • N{sub 2}O is decomposed into N{sub 2} and O on reduced TiO{sub 2} even in the presence of Ag cluster. • Excess charge in reduced TiO{sub 2} surface is transferred to the adsorbed N{sub 2}O molecule. • The vibrational frequency analysis also performed to study the dissociation of N{sub 2}O. • Anatase TiO{sub 2} with oxygen vacancies is a suitable catalyst for decomposition of N{sub 2}O. - Abstract: The increase in concentration of nitrous oxide (N{sub 2}O) in the atmosphere is one of the major contributors to the greenhouse effect, ozone depletion and climate change. Therefore, it is important to decompose harmful N{sub 2}O molecule into harmless N{sub 2}. In the present work, we have studied the decomposition of N{sub 2}O on anatase TiO{sub 2} (001) surface using first principle calculations. The results indicates that the N{sub 2}O molecule is physisorbed on perfect TiO{sub 2} surface without any dissociation, and is dissociated into N{sub 2} and oxygen on the reduced TiO{sub 2} surface. In addition, it has been found that the interaction between N{sub 2}O and TiO{sub 2} is augmented by the presence of Ag cluster on anatase (001) surface. On the basis of Bader charge analysis and electron density difference plot, it has been found that the excess charge in the reduced anatase TiO{sub 2} (001) surface is transferred to the adsorbed N{sub 2}O molecule, which results the weakening of N–O bond of N{sub 2}O followed by the decomposition of N{sub 2}O into N{sub 2} and O. Vibrational frequency analysis also performed to confirm the decomposition of N{sub 2}O molecule. From the pathway for N{sub 2}O dissociation on reduced TiO{sub 2} and Ag/TiO{sub 2} surfaces, it has been observed that the dissociation reaction of N{sub 2}O on TiO{sub 2} surface is highly exothermic with activation energy barrier of 0.25 eV. The results presented in this work show that the

  1. Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni-Cu catalysts on various supports

    NARCIS (Netherlands)

    Ardiyanti, A. R.; Khromova, S. A.; Venderbosch, R. H.; Yakovlev, V. A.; Melian-Cabrera, I. V.; Heeres, H. J.

    2012-01-01

    Bimetallic Ni-Cu catalysts on various Supports (CeO2-ZrO2, ZrO2, SiO2, TiO2, rice husk carbon, and Sibunite) with metal contents ranging from 7.5 to 9.0 (Ni) and 3.1-3.6 wt.% (Cu) for the inorganic supports and 17.1-17.8 (Ni) and 7.1-7.8 (Cu) for the carbon supports were synthesised and screened for

  2. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  3. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.; Widger, Peter C. B.; Ahmed, Syud M.; Jeske, Ryan C.; Hirahata, Wataru; Lobkovsky, Emil B.; Coates, Geoffrey W.

    2010-01-01

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  4. Preparation and catalytic activities for H{sub 2}O{sub 2} decomposition of Rh/Au bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Deng, Xiangong; Jiao, Chengpeng; Lu, Lilin; Zhang, Shaowei [The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2016-07-15

    Graphical abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method, the activity of Rh80Au20 BNPs were about 3.6 times higher than that of Rh NPs. - Highlights: • Rh/Au bimetallic nanoparticles (BNPs) of 3∼5 nm in diameter were prepared. • Activity for H{sub 2}O{sub 2} decomposition of BNPs is 3.6 times higher than that of Rh NPs. • The high activity of BNPs was caused by the existence of charged Rh atoms. • The apparent activation energy for H{sub 2}O{sub 2} decomposition over the BNPs was calculated. - Abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method and characterized by UV–vis, XRD, FT-IR, XPS, TEM, HR-TEM and DF-STEM, the effects of composition on their particle sizes and catalytic activities for H{sub 2}O{sub 2} decomposition were also studied. The as-prepared Rh/Au BNPs possessed a high catalytic activity for the H{sub 2}O{sub 2} decomposition, and the activity of the Rh{sub 80}Au{sub 20} BNPs with average size of 2.7 nm were about 3.6 times higher than that of Rh monometallic nanoparticles (MNPs) even the Rh MNPs possess a smaller particle size of 1.7 nm. In contrast, Au MNPs with size of 2.7 nm show no any activity. Density functional theory (DFT) calculation as well as XPS results showed that charged Rh and Au atoms formed via electronic charge transfer effects could be responsible for the high catalytic activity of the BNPs.

  5. Chlorine triggered de-alloying of AuAg@Carbon nanodots: Towards fabrication of a dual signalling assay combining the plasmonic property of bimetallic alloy nanoparticles and photoluminescence of carbon nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpour, Zahra; Safavi, Afsaneh, E-mail: safavi@susc.ac.ir; Abdollahi, Seyyed Hossein

    2017-03-22

    Integration of Au-Ag alloy and fluorescent carbon nanodots (C-dots) into a single platform resulted in a new dual sensing assay for chlorine. Selective etching of Ag from AuAg@C-dots was transformed into: (i) colorimetric signal by surface plasmon resonance (SPR) tuning of the alloy and (ii) fluorimetric signal by perturbation of fluorescence energy transfer between C-dots and alloy nanoparticles. Fast oxidizing of silver atoms incorporated in the bimetallic structure induced by chlorine resulted in selective de-alloying of bimetallic hybrid nanoparticles and an intense visible change of the colloidal dispersion color. On the other hand, the systematic change in Au/Ag ratio strongly affected the emission intensity of C-dots in the hybrid structure leading to an enhancement in the fluorescence signal. Thus, the assay enables the detection of chlorine both under visible and UV lights with high sensitivity. The detection limit (DL) values were calculated as 6.2 × 10{sup −7} M and 5.1 × 10{sup −7} M through colorimetric and fluorimetric pathways, respectively. Most importantly, it was demonstrated to be selective over common cations, anions and some reactive oxygen species (ROS). This assay was successfully applied to the determination of chlorine concentration in bleach solution and tap water. It is robust and is suitable for cost effective chlorine measurement in environmental samples. - Highlights: • A new dual signalling assay for hypochlorite ion is introduced. • Bimetallic Au-Ag nanoparticles are hybridized with fluorescent carbon nanodots. • It shows amplified colorimetric response with respect to monometallic counterparts. • This sensor is multifunctional, robust, rapid and sensitive. • The practical applicability is investigated for environmental monitoring.

  6. Structure determination of the Si(001)-(2 x 1)-H reconstruction by surface X-ray diffraction: Weakening of the dimer bond by the addition of hydrogen

    DEFF Research Database (Denmark)

    Lauridsen, E.M.; Baker, J.; Nielsen, M.

    2000-01-01

    The atomic structure of the monohydride Si(001)-(2 x 1)-H reconstruction has been investigated by surface X-ray diffraction. Atomic relaxations down to the eighth layer have been determined. The bond length of the hydrogenated silicon dimers was found to be 2.47 +/- 0.02 Angstrom. which is longer...... than the dimer bond of the clean (2 x 1)-reconstructed Si(001) surface and also 5% longer than the bulk bond length of 2.35 Angstrom. The differences to the (2 x 1) structure of the clean surface are discussed in terms of the elimination of the weak pi-bond character of the dimer bond by the addition...

  7. Ethers on Si(001): A Prime Example for the Common Ground between Surface Science and Molecular Organic Chemistry.

    Science.gov (United States)

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf

    2017-11-20

    By using computational chemistry it has been shown that the adsorption of ether molecules on Si(001) under ultrahigh vacuum conditions can be understood with classical concepts of organic chemistry. Detailed analysis of the two-step reaction mechanism-1) formation of a dative bond between the ether oxygen atom and a Lewis acidic surface atom and 2) nucleophilic attack of a nearby Lewis basic surface atom-shows that it mirrors acid-catalyzed ether cleavage in solution. The O-Si dative bond is the strongest of its kind, and the reactivity in step 2 defies the Bell-Evans-Polanyi principle. Electron rearrangement during C-O bond cleavage has been visualized with a newly developed method for analyzing bonding, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular S N 2 reactions. Our findings illustrate how surface science and molecular chemistry can mutually benefit from each other and unexpected insight can be gained. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    Science.gov (United States)

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  10. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.; Poater, Albert; Childers, M. Ian; Widger, Peter C B; Lapointe, Anne M.; Lobkovsky, Emil B.; Coates, Geoffrey W.; Cavallo, Luigi

    2013-01-01

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  11. Bimetallic Blisks with Shrouded Turbine Blades for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    L. A. Magerramova

    2015-01-01

    Full Text Available The paper discusses prospects of using blisks with shrouded blades. Increasing an engine life and efficiency as well as mass reduction can also be achieved by increasing blade numbers and decreasing disk diameter. But design engineers are faced with the problem of blade placement because of the disk size and root dimensions.The problem of increasing life and cyclic durability, vibration strength, and lightweight design of the turbine gas turbine wheels, can be solved by an elimination of blade - disk locks.The technology of manufacturing one-piece blisks by connecting the blades with the disc part using hot isostatic pressing was developed. This technology allows us to use blades with shrouds. It is necessary to increase efficiency and to improve high cycle fatigue performance of rotor blades.One of the pressing problems is to ensure the necessary position of shrouds in relation to each other in the manufacturing process as well as in the service. Numerical studies of the influence of the shroud mounting position on blade strength during operation allowed us to develop a methodology of choosing a shroud mounting position.Based on the two turbine wheels (LPT and HPT calculations advantages of blisk design with respect to the lock-based design were shown. Application of bimetallic blisks with shrouded blades resulted in a lifespan increase and weight reduction.In addition, other advantages of blisk design are as follows: possible reduction in the number of parts, elimination of leaks and fretting that take place in the blade - disk locks, exception of expensive broaching operations and disk alloy saving. The shortcoming is elimination of damping in root connection. In addition, there are no widely used repair methods.Despite these disadvantages the usage of bimetallic turbine blisks with shrouded blades is very promising.

  12. Three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for direct methanol and direct ethanol fuel cell applications

    Science.gov (United States)

    Kung, Chih-Chien; Lin, Po-Yuan; Xue, Yuhua; Akolkar, Rohan; Dai, Liming; Yu, Xiong; Liu, Chung-Chiun

    2014-06-01

    A novel composite material of hierarchically structured platinum-ruthenium (PtRu) nanoparticles grown on large surface area three dimensional graphene foam (3D GF) is reported. 3D GF was incorporated with PtRu bimetallic nanoparticles as an electrochemical nanocatalyst for methanol and ethanol oxidation. PtRu/3D GF nanocatalyst showed a higher tolerance to poisoning by CO and exhibited improved catalytic activity for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Cyclic voltammetry (CV) results and long-term cycling stability tests demonstrated that GF provided a promising platform for the development of electrochemical nanocatalysts. Specifically, PtRu/3D GF nanocatalyst showed excellent catalytic activity toward MOR and EOR compared with PtRu/Graphene (Commercial graphene), PtRu/C (Vulcan XC-72R carbon), and PtRu alone. The crystal size of PtRu on 3D GF was reduced to 3.5 nm and its active surface area was enhanced to 186.2 m2 g-1. Consequently, the MOR and EOR rates were nearly doubled on PtRu/3D GF compared to those on PtRu/Graphene.

  13. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, B. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelium 9, 040 01 Košice (Slovakia); Oriňak, A., E-mail: andrej.orinak@upjs.sk [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Oriňaková, R. [Department of Physical Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice (Slovakia); Lorinčík, J. [Research Center Rez, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Jerigová, M. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); Velič, D. [Department of Physical Chemistry, Comenius University, Mlynská dolina 842 15 Bratislava 4 (Slovakia); International Laser Centre, Ilkovičová 3, 841 01 Bratislava (Slovakia); Mičušík, M. [Polymer institute, Slovak Academy of Sciences, Dubravská cesta 9, 84541 Bratislava (Slovakia); and others

    2017-02-28

    Highlights: • Zn/Cu/MWCNTs catalyst with good activity. • Methane conversion to hydrogen with high effectivity. • ZnO/Cu responsible for catalytic activity. - Abstract: Mono and bimetallic multiwalled carbon nanotubes (MWCNTs) fortified with Cu and Zn metal particles were studied to improve the efficiency of the thermocatalytic conversion of methane to hydrogen. The surface of the catalyst and the dispersion of the metal particles were studied by scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and with energy-dispersive X-ray spectroscopy (EDS). It was confirmed that the metal particles were successfully dispersed on the MWCNT surface and XPS analysis showed that the Zn was oxidised to ZnO at high temperatures. The conversion of methane to hydrogen during the catalytic pyrolysis was studied by pyrolysis gas chromatography using different amounts of catalyst. The best yields of hydrogen were obtained using pyrolysis conditions of 900 °C and 1.2 mg of Zn/Cu/MWCNT catalyst for 1.5 mL of methane.The initial conversion of methane to hydrogen obtained with Zn/Cu/MWCNTs was 49%, which represent a good conversion rate of methane to hydrogen for a non-noble metal catalyst.

  14. Selective hydrodechlorination of 1,2-dichloroethane to ethylene over Pd-Ag/Al_2O_3 catalysts prepared by surface reduction

    International Nuclear Information System (INIS)

    Han, Yuxiang; Gu, Guangfeng; Sun, Jingya; Wang, Wenjuan; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2015-01-01

    Graphical abstract: - Highlights: • Surface reduction method was used for preparation of Pd-Ag(Cu) bimetallic catalysts. • Hydrodechlorination of 1,2-dichloroethane was investigated for production of ethylene. • Ag(Cu) selectively deposited on Pd surface during surface reduction process. • Ethylene selectivity was enhanced over Pd-Ag(Cu)/Al_2O_3 catalyst prepared by surface reduction. • Isolated Pd site is the key species for ethylene selectivity. - Abstract: Alumina supported Pd-Ag and (Cu) bimetallic catalysts (denoted as sr-Pd-Ag/Al_2O_3 or sr-Pd-Cu/Al_2O_3) with varied Pd/Ag (or Cu) ratios were prepared using the surface reduction method, and the gas-phase catalytic hydrodechlorination of 1,2-dichloroethane over the catalysts were investigated. For comparison, Pd-Ag bimetallic catalysts were prepared by the conventional co-impregnation method (denoted as im-Pd-Ag/Al_2O_3). The catalysts were characterized by N_2 adsorption, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and CO chemisorption. Characterization results indicated that surface reduction led to selective deposition of metallic Ag on the surface of Pd particles, while Pd and Ag just disorderly mixed in the catalyst prepared by impregnation method. Therefore, sr-Pd-Ag/Al_2O_3 exhibited a higher ethylene selectivity than im-Pd-Ag/Al_2O_3 for hydrodechlorination of 1,2-dichloroethane at a similar Ag loading amount. Moreover, among sr-Pd-Ag/Al_2O_3, sr-Pd-Cu/Al_2O_3 and im-Pd-Ag/Al_2O_3 catalysts, the ethylene selectivity decreased over these catalysts following the order: sr-Pd-Ag/Al_2O_3 > sr-Pd-Cu/Al_2O_3 > im-Pd-Ag/Al_2O_3. The present results indicate that surface reduction can be used as a potential method to synthesize catalyst with enhanced ethylene selectivity in hydrodechlorination of 1,2-dichloroethane.

  15. Catalytic Sorption of (Chloro)Benzene and Napthalene in Aqueous Solutions by Granular Activated Carbon Supported Bimetallic Iron and Palladium Nanoparticles

    Science.gov (United States)

    Adsorption of benzene, chlorobenzene, and naphthalene on commercially available granular activated carbon (GAC) and bimetallic nanoparticle (Fe/Pd) loaded GAC was investigated for the potential use in active capping of contaminated sediments. Freundlich and Langmuir linearizatio...

  16. Spectral and magnetic properties of hematite Fe2O3 (001) surface: results from DFT+DMFT

    Science.gov (United States)

    Kabir, Alamgir; Turkowski, Volodymyr; Rahman, Talat S.

    2015-03-01

    It has been demonstrated that strong correlation effects may significantly modify the spectrum of a system, in particular leading to an increase of the bandgap and to a change in the orbital occupancies, which affects the magnetic properties of the system. With this in mind, we have examined the spectral and magnetic properties of the hematite Fe2O3 film system with (001) surface orientation by using the combined density functional theory (DFT) and dynamical mean-field theory (DMFT) approach. We pay special attention to the surface geometry and electronic structure, magnetization and magnetic anisotropy (MA) of the system by performing calculations at different values of the parameters for the local Coulomb repulsion and exchange energy. To calculate the MA of the system, we propose and apply a combined Bruno model within DMFT, and demonstrate that under-coordinated surface Fe atoms contribute significantly to the MA of the film. We also compare our results with the DFT+U solution and show that the dynamical effects taken into account by the DMFT significantly affect system properties, notably leading to a decrease of the atomic magnetic moments. Work supported in part by DOE Grant No. DOE-DE-FG02-07ER46354.

  17. Displacement disorder and reconstruction of the (001) face of tungsten

    International Nuclear Information System (INIS)

    Egorushkin, V.E.; Kul'ment'ev, A.I.; Savushkin, E.V.

    1992-01-01

    The reconstruction of the (001) border of tungsten is examined taking into consideration random static displacements of surface atoms in the high-temperature (1 x 1) phase. A microscopic model is proposed, in which the creation of c(2 x 2) phase is described as a transition of the Jahn-Teller type and an ordering of static displacements. It is shown that displacement disorder induces instability of (001) tungsten with respect to reconstruction. The effect of a uniform electric field on a disordered reconstructing surface is examined. A possible reason is given for pronounced differences in the results of investigations of the structural conversion of the (001) face in tungsten when different experimental methods are used

  18. Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption

    Science.gov (United States)

    Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.

    2018-04-01

    The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.

  19. The interaction of deuterium with AgPd/Pd(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Diemant, Thomas; Martin, Jan; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2016-07-01

    AgPd/Pd(111) surface alloys, which consist of a reactive and an inert metal, represent an ideal test case for the study of ensemble effects on bimetallic surfaces. In the present contribution, we have studied their deuterium adsorption properties by temperature-programmed desorption (TPD) measurements. The structural properties (surface contents and atom distribution) were determined already earlier by high-resolution scanning tunnelling microscopy (STM), which enables us to correlate the structural properties of these surface alloys to their adsorption behaviour. Most prominently, a steady decrease of the adsorbate coverage with increasing Ag content is observed. The results will be compared to findings on the interaction of CO with these surface alloys.

  20. Ordering of vacancies on Si(001)

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.

    1997-01-01

    Missing dimer vacancies are always present on the clean Si(001) surface. The vacancy density can be increased by ion bombardment (Xe+, Ar+), etching (O2, Br2, I2, etc.) or Ni contamination. The equilibrium shape at low vacancy concentrations (<0.2¿0.3 monolayers) of these vacancy islands is

  1. Low-cycle fatigue of sheet elements with ''soft'' surface layer

    International Nuclear Information System (INIS)

    Luk'yanov, V.F.; Kharchenko, V.Ya.; Berezutskij, V.I.; Ovsyannikov, V.G.

    1978-01-01

    Investigated are regularities of low-cycle fatigue of bimetallic sheet constructions made of chrome-nickel-molybdenum steel, plated with a low-alloyed steel with a reduced yield limit. Static repeated bending tests have been carried out using two-layer samples. The surface layer has been shown to increase resistance to nucleation and propagation of cracks under pulsating load if stresses are not more than 2 times higher than the yield limit. Increase in stresses leads to elastoplastic deformation and reduces durability. The positive effect of the surface layer is advisable to be used when welding-up surface defects and strengthening welded joints of high-strength steels

  2. Structural, electronic and magnetic properties of small bimetallic zirconium–palladium clusters: Ab initio study

    International Nuclear Information System (INIS)

    Bezi Javan, Masoud

    2015-01-01

    Highlights: • Electronic and magnetic properties of small Zr n Pd m (n + m ⩽ 5) have been investigated. • Binding energies of the Zr n clusters are significantly higher than Pd n clusters. • Binding energy of the Pd n clusters increase with substituting one or more Zr atom. • HOMO–LUMO gap of the Zr n Pd m clusters increase in comparison with pure states. - Abstract: Structural, electronic and magnetic properties of small bimetallic zirconium–palladium clusters, Zr n Pd m (n + m ⩽ 5), have been investigated using density functional theory with considering generalized gradient approximation and PBE functional. We have determined the ground state conformations of the bimetallic zirconium–palladium clusters by substitution of Zr and Pd atoms in the optimized lowest energy structures of pure zirconium and palladium clusters. Results reveal that binding energies of the pure Zr n clusters are significantly higher than Pd n clusters with the same number of atoms. Also it is found that binding energy of the Zr n and Pd n clusters increase with growth of the number of consisting atoms in the clusters. Results indicate that, for both Zr n and Pd n clusters the binding energy of planar forms is lower than three-dimensional structures. We have also found that the binding energy of the Pd n clusters increase with substituting one or more Zr atoms in these clusters. We have also studied the HOMO–LUMO energy gap and magnetic moment of the pure and combined Zr and Pd clusters. The energy gap analysis of the pure and combined Pd and Zr clusters show that in generally the HOMO–LUMO gap of the bimetallic Zr n Pd m clusters increase in comparison with their corresponding pure clusters with the same number of atoms. According to the spin polarization DFT calculations all of the Zr n Pd m (n + m ⩽ 5) have net magnetic moments as instance the Zr 2 , Pd 2 and ZrPd clusters show a total magnetic moment value of 2 μ B . Some more discussions around charge population

  3. Synthesis, structure and magnetic properties of the one-dimensional bimetallic oxide [Cu(terpy)Mo2O7

    International Nuclear Information System (INIS)

    Burkholder, Eric; Gabriel Armatas, N.; Golub, Vladimir; O'Connor, Charles J.; Zubieta, Jon

    2005-01-01

    The hydrothermal reaction of Cu(CH 3 CO 2 ) 2 .H 2 O, Na 2 MoO 4 and terpyridine at 140 deg. C for 48 h yields [Cu(terpy)Mo 2 O 7 ] (1), a bimetallic one-dimensional oxide. The structure consists of ruffled chains of edge- and corner-sharing {MoO 5 } square pyramids, decorated with {CuN 3 O 2 } '4+1' axially distorted square pyramids. The Cu(II) polyhedra are disposed so as to produce an alternating pattern of Cu-Cu distances across the {Mo 2 O 2 } rhombi of the chain of 6.25 and 6.82 A. This structural feature is reflected in the magnetic properties which are characteristic of a dimer rather than a linear chain, consistent with an alternating antiferromagnetic Heisenberg chain. -- Graphical abstract: Hydrothermal synthesis provided the one-dimensional bimetallic oxide [Cu(terpy)Mo 2 O 7 ], a material consisting of a zig-zag {Mo 2 O 7 } n 2 n - chain, decorated with {Cu(terpy)} 2+ groups exhibiting alternating short-long Cu-Cu distances between copper sites

  4. Synthesis and characterization of bimetallic metal-organic framework Cu-Ru-BTC with HKUST-1 structure.

    Science.gov (United States)

    Gotthardt, Meike A; Schoch, Roland; Wolf, Silke; Bauer, Matthias; Kleist, Wolfgang

    2015-02-07

    The bimetallic metal-organic framework Cu-Ru-BTC with the stoichiometric formula Cu2.75Ru0.25(BTC)2·xH2O, which is isoreticular to HKUST-1, was successfully prepared in a direct synthesis using mild reaction conditions. The partial substitution of Cu(2+) by Ru(3+) centers in the paddlewheel structure and the absence of other Ru-containing phases was proven using X-ray absorption spectroscopy.

  5. Real-time monitoring of initial thermal oxidation on Si(001) surfaces by synchrotron radiation photoemission spectroscopy

    CERN Document Server

    Yoshigoe, A; Teraoka, Y

    2003-01-01

    The thermal oxidation of Si(001) surfaces at 860 K, 895 K, 945 K and 1000 K under the O sub 2 pressure of 1 x 10 sup - sup 4 Pa has been investigated by time-resolved photoemission measurements with synchrotron radiation. Based on time evolution analyses by reaction kinetics models, it was found that the oxidation at 860 K, 895 K and 945 K has progressed with the Langmuir adsorption type, whereas the oxidation at 1000 K has showed the character of the two-dimensional island growth involving SiO desorption. The oxidation rates increases with increasing surface temperature in the passive oxidation condition. The time evolution of each Si oxidation state (Si sup n sup + : n = 1, 2, 3, 4) derived from the Si-2p core-level shifts has also been analyzed. The results revealed that the thermal energy contribution to the migration process of the adsorbed oxygen and the emission of the bulk silicon atoms. Thus, the fraction of the Si sup 4 sup + bonding state, i.e. SiO sub 2 structure, was increased. (author)

  6. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.

    Science.gov (United States)

    Chang, Xin; Liu, An-Feng; Cai, Bo; Luo, Jin-Yue; Pan, Hui; Huang, Yao-Bing

    2016-12-08

    The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fatique crack propagation in bimetallic welds influence of residual stresses and metallurgical look

    International Nuclear Information System (INIS)

    Zahouane, A.I.

    1988-06-01

    Generally, in nuclear power plants, many components made of austenitic stainless steels are very often replaced by low alloyed steels cladded with stainless steels, mainly for economical reasons. Due to cracks existing at the limit of the two kinds of steel, it is interesting to try to understand how they appear. Residual stresses are generally identified as one of the factors which act to produce these cracks. Measurements of such residual stresses have been performed, using the hole drilling method (drilling of a hole at the center of a gauge roset stuck at the surface of the material). Owing to the obtained results, it is possible to explain the decrease in the crack propagation rate observed, on fatigue crack growth test performed on specimens taken in the transition ferritic/austenitic zone. The stress intensity factor due to the residual stresses is valued by weight function method. It is possible to explain qualitatively the phenomena observed under cyclic loading when using the obtained value of this stress intensity factor. A more quantitative approach based on the use of an efficient stress intensity factor, allow to better describe the effect of residual stresses on the fatigue crack propagation in bimetallic welds [fr

  8. Bimetallic oxamato complexes synthesized into mesoporous matrix as precursor to tunable nanosized oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kalinke, Lucas H.G. [Instituto de Química, Universidade Federal de Goiás—UFG, Goiânia, GO 74001-970 (Brazil); Instituto Federal de Goiás—IFG, Anápolis, GO (Brazil); Stumpf, Humberto O. [Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais—UFMG, Belo Horizonte, MG (Brazil); Mazali, Italo O. [Instituto de Química, Universidade Estadual de Campinas—UNICAMP, Campinas, SP (Brazil); Cangussu, Danielle, E-mail: danielle_cangussu@ufg.br [Instituto de Química, Universidade Federal de Goiás—UFG, Goiânia, GO 74001-970 (Brazil)

    2015-10-15

    Highlights: • The bimetallic oxamato complexes as single-source precursor. • We prepared into a porous silica glass tunable nanosized oxide powders. • X-ray diffraction shows the formation of CeO{sub 2}/CuO and spinel cobaltite. • The different number of IDC allows control of the nanoparticle size. - Abstract: The bimetallic complexes were employed to prepare into a porous silica glass tunable nanosized oxide powders through the single source precursor (SSP) method. These materials were prepared by first anchoring of [Cu(opba)]{sup 2−} [opba = ortho-phenylenebis(oxamato)], second by reaction in situ with second metal [Co(II) or Ce(III)] and followed by a thermal treatment. The different number of impregnation–decomposition cycles (IDC) allows control of the nanoparticle size. X-ray diffraction shows the formation of mixture CeO{sub 2}–CuO and spinel copper cobaltite. Raman spectroscopy confirmed the formation of such phases. Transmission electron microscopy images revealed that spinel cobaltite particles (8 IDC) present a mean size of about 9 nm, whereas for the CeO{sub 2}–CuO phase the particle diameters are 4 nm (2 IDC) and 8 nm (6 IDC). For CeO{sub 2}–CuO the diffuse reflectance spectroscopy indicates a consistent red shift in band gap from 3.41 to 2.87 eV with increasing of particle size due to quantum confinement effect.

  9. In situ electro-polymerization of nitrogen doped carbon dots and their application in an electrochemiluminescence biosensor for the detection of intracellular lead ions.

    Science.gov (United States)

    Xiong, Chengyi; Liang, Wenbin; Wang, Haijun; Zheng, Yingning; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2016-04-25

    Here, a novel sensitive electrochemiluminescence (ECL) biosensor using N doped carbon dots (N-CDs) in situ electro-polymerized onto a glassy carbon electrode (GCE) as luminophores, and Pd-Au hexoctahedrons (Pd@Au HOHs) as enhancers, was developed for the detection of intracellular lead ions (Pb(2+)).

  10. Optical Second Harmonic Spectroscopy of Boron-Reconstructed Si(001)

    International Nuclear Information System (INIS)

    Lim, D.; Downer, M. C.; Ekerdt, J. G.; Arzate, N.; Mendoza, Bernardo S.; Gavrilenko, V. I.; Wu, R. Q.

    2000-01-01

    Optical second harmonic generation (SHG) spectroscopy is used to probe Si(001) following thermal decomposition of diborane at the surface. Incorporation of boron (B) at second layer substitutional sites at H-free Si(001) intensifies and redshifts the E 1 SHG spectral peak, while subsequent H termination further intensifies and blueshifts E 1 , in sharp contrast to the effect of bulk B doping or nonsubstitutional B. Ab initio pseudopotential and semiempirical tight binding calculations independently reproduce these unique trends, and attribute them to the surface electric field associated with charge transfer to electrically active B acceptors, and rehybridization of atomic bonds. (c) 2000 The American Physical Society

  11. Three-Dimensional Graphene Supported Bimetallic Nanocomposites with DNA Regulated-Flexibly Switchable Peroxidase-Like Activity.

    Science.gov (United States)

    Yuan, Fang; Zhao, Huimin; Zang, Hongmei; Ye, Fei; Quan, Xie

    2016-04-20

    A synergistic bimetallic enzyme mimetic catalyst, three-dimensional (3D) graphene/Fe3O4-AuNPs, was successfully fabricated which exhibited flexibly switchable peroxidase-like activity. Compared to the traditional 2D graphene-based monometallic composite, the introduced 3D structure, which was induced by the addition of glutamic acid, and bimetallic anchoring approach dramatically improved the catalytic activity, as well as the catalysis velocity and its affinity for substrate. Herein, Fe3O4NPs acted as supporters for AuNPs, which contributed to enhance the efficiency of electron transfer. On the basis of the measurement of Mott-Schottky plots of graphene and metal anchored hybrids, the catalysis mechanism was elucidated by the decrease of Fermi level resulted from the chemical doping behavior. Notably, the catalytic activity was able to be regulated by the adsorption and desorption of single-stranded DNA molecules, which laid a basis for its utilization in the construction of single-stranded DNA-based colorimetric biosensors. This strategy not only simplified the operation process including labeling, modification, and imprinting, but also protected the intrinsic affinity between the target and biological probe. Accordingly, based on the peroxidase-like activity and its controllability, our prepared nanohybrids was successfully adopted in the visualized and label-free sensing detections of glucose, sequence-specific DNA, mismatched nucleotides, and oxytetracycline.

  12. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    International Nuclear Information System (INIS)

    Figuera, Juan de la; Vergara, Lucía; N'Diaye, Alpha T.; Quesada, Adrian; Schmid, Andreas K.

    2013-01-01

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along directions. ► Magnetic domain wall structures include wide Néel-caps

  13. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  14. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-01-08

    A new dry reforming of methane catalyst comprised of NiCo bimetallic nanoparticles and a Mgx(Al)O support that exhibits high coke resistance and long-term on-stream stability is reported. The structural characterization by XRD, TEM, temperature-programmed reduction, and BET analysis demonstrates that the excellent performance of this catalyst is ascribed to the synergy of various parameters, including metal-nanoparticle size, metal-support interaction, catalyst structure, ensemble size, and alloy effects.

  15. Sputtering of Ge(001): transition between dynamic scaling regimes

    DEFF Research Database (Denmark)

    Smilgies, D.-M.; Eng, P.J.; Landemark, E.

    1997-01-01

    We have studied the dynamic behavior of the Ge(001) surface during sputtering in situ and in real time using synchrotron X-ray diffraction. We find two dynamic regimes as a function of surface temperature and sputter current which are separated by a sharp transition. The boundary between these two...

  16. How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles?

    Directory of Open Access Journals (Sweden)

    Emma Westsson

    2014-11-01

    Full Text Available Nanometer-sized materials have significantly different chemical and physical properties compared to bulk material. However, these properties do not only depend on the elemental composition but also on the structure, shape, size and arrangement. Hence, it is not only of great importance to develop synthesis routes that enable control over the final structure but also characterization strategies that verify the exact nature of the nanoparticles obtained. Here, we consider the verification of contemporary synthesis strategies for the preparation of bimetallic core-shell particles in particular in relation to potential particle structures, such as partial absence of core, alloying and raspberry-like surface. It is discussed what properties must be investigated in order to fully confirm a covering, pin-hole free shell and which characterization techniques can provide such information. Not uncommonly, characterization strategies of core-shell particles rely heavily on visual imaging like transmission electron microscopy. The strengths and weaknesses of various techniques based on scattering, diffraction, transmission and absorption for investigating core-shell particles are discussed and, in particular, cases where structural ambiguities still remain will be highlighted. Our main conclusion is that for particles with extremely thin or mono-layered shells—i.e., structures outside the limitation of most imaging techniques—other strategies, not involving spectroscopy or imaging, are to be employed. We will provide a specific example of Fe-Pt core-shell particles prepared in bicontinuous microemulsion and point out the difficulties that arise in the characterization process of such particles.

  17. Changes in local surface structure and Sr depletion in Fe-implanted SrTiO{sub 3} (001)

    Energy Technology Data Exchange (ETDEWEB)

    Lobacheva, O., E-mail: olobache@gmail.com [Department of Physics and Astronomy, Western University, London, ON N6A 5B7 (Canada); Yiu, Y.M. [Department of Chemistry, Western University, London, ON N6A 5B7 (Canada); Chen, N. [Canadian Light Source, Saskatoon, SK S7N 0X4 (Canada); Sham, T.K.; Goncharova, L.V. [Department of Physics and Astronomy, Western University, London, ON N6A 5B7 (Canada); Department of Chemistry, Western University, London, ON N6A 5B7 (Canada)

    2017-01-30

    Highlights: • Fe ion implantation of SrTiO{sub 3} and post-implantation results in formation of Sr{sub 1-y}Ti{sub 1-x}Fe{sub x+y}O{sub 3-δ} phase. • In Sr{sub 1-y}Ti{sub 1-x}Fe{sub x+y}O{sub 3-δ} phase, Fe assumes Fe{sup 3+} oxidation state in the bulk and Fe{sup 2+} oxidation state in the near surface area. • FEFF9 calculations indicate that Fe ions can substitute both Ti and Sr sites. • Formation of Sr{sub 1-y}Ti{sub 1-x}Fe{sub x+y}O{sub 3-δ} phase is accompanied by Sr depletion in the near surface region. - Abstract: Local surface structure of single crystal strontium titanate SrTiO{sub 3} (001) samples implanted with Fe in the range of concentrations between 2 × 10{sup 14} to 2 × 10{sup 16} Fe/cm{sup 2} at 30 keV has been investigated. In order to facilitate Fe substitution (doping), implanted samples were annealed in oxygen at 350 °C. Sr depletion was observed from the near-surface layers impacted by the ion-implantation process, as revealed by Rutherford Backscattering Spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray Absorption Near Edge Spectroscopy (XANES), and Atomic Force Microscopy (AFM). Hydrocarbon contaminations on the surface may contribute to the mechanisms of Sr depletion, which have important implications for Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-δ} materials in gas sensing applications.

  18. Surface Chemistry of La0.99Sr0.01NbO4-d and Its Implication for Proton Conduction.

    Science.gov (United States)

    Li, Cheng; Pramana, Stevin S; Ni, Na; Kilner, John; Skinner, Stephen J

    2017-09-06

    Acceptor-doped LaNbO 4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO 4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO 4 (La 0.99 Sr 0.01 NbO 4-d , denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO 4 , has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D 2 16 O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.

  19. Synergy between Two Metal Catalysts: A Highly Active Silica Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane

    KAUST Repository

    Samantaray, Manoja; Dey, Raju; Kavitake, Santosh Giridhar; Abou-Hamad, Edy; Bendjeriou-Sedjerari, Anissa; Hamieh, Ali Imad Ali; Basset, Jean-Marie

    2016-01-01

    A well-defined, silica supported, bimetallic precatalyst [≡Si-O-W(Me)5 ≡Si-O-Zr(Np)3](4) has been synthesized for the first time via successively grafting two organometallic complexes [W(CH3)6 (1) followed by ZrNp4 (2)] on a single silica support

  20. Shape and structural motifs control of MgTi bimetallic nanoparticles using hydrogen and methane as trace impurities

    NARCIS (Netherlands)

    Krishnan, Gopi; de Graaf, Sytze; ten Brink, Gert H.; Verheijen, Marcel A.; Kooi, Bart J.; Palasantzas, George

    2018-01-01

    In this work we report the influence of methane/hydrogen on the nucleation and formation of MgTi bimetallic nanoparticles (NPs) prepared by gas phase synthesis. We show that a diverse variety of structural motifs can be obtained from MgTi alloy, TiCx/Mg/MgO, TiCx/MgO and TiHx/MgO core/shell NPs via

  1. Thermo-structural analysis of the rf-induced pulsed surface heating of the CLIC accelerating structures

    CERN Document Server

    Huopana, Jouni Juhani

    2006-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider. The acceleration of the particles is done by RF (Radio Frequency). The surfaces of the RF (radio frequency) accelerating cavities are exposed to high pulsed RF currents which induce cyclic thermal stresses. These cyclic stresses are crucial for the fatigue lifetime of the cavities. To study the fatigue phenomenon properly the induced stresses must be well known. ANSYS FEM simulations were made to study the thermo-structural behaviour of the CLIC accelerating structure in copper zirconium, bimetallic and diamond coated constructions. The simulations showed the existence of high thermal stresses and low stress level shockwaves. It was also shown that the bimetallic structure increases stress values due to the differences in material properties. Diamond coating was found to reduce the thermal stresses.

  2. Production of biodiesel from sunflower oil using highly catalytic bimetallic gold–silver core–shell nanoparticle

    International Nuclear Information System (INIS)

    Banerjee, Madhuchanda; Dey, Binita; Talukdar, Jayanta; Chandra Kalita, Mohan

    2014-01-01

    Bimetallic Gold–silver core–shell nanoparticles (Au@Ag NPs) were synthesized at room temperature, where gold nanoparticles (AuNPs) served as seeds for continuous deposition of silver atoms on its surface. The core–shell structure was examined by UV–vis spectroscopy, transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis. The catalytic activity of these nanoparticles toward biodiesel production from Sunflower oil through transesterification was studied. The confirmation for biofuel synthesis was performed using Fourier Transform Infra-Red (FTIR) spectroscopy. Fuel properties are determined by standard ASTM (American society for Testing and Materials) protocols. Our observations show that at certain catalyst concentration, temperature and reaction time, highest yield of biodiesel (86.9%) is attained. The fuel properties of the synthesized biofuel are at par with standard biofuel. Further, the catalyst showed sustained activity for 3 cycles of transesterification. - Highlights: • Gold–silver core–shell NPs were used for biofuel synthesis from sunflower oil. • At the optimized condition, biodiesel yield of 86.9% was achieved. • Fuel properties of the biofuel synthesized are at par with standard biofuel. • The catalyst showed sustained activity for 3 cycles of transesterification

  3. In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH 4 /CO 2 reaction

    KAUST Repository

    Al-Sabban, Bedour

    2017-05-02

    Dry reforming of methane (DRM) proceeds via CH4 decomposition to leave surface carbon species, followed by their removal with CO2-derived species. Reactivity tuning for stoichiometric CH4/CO2 reactants was attempted by alloying the non-noble metals Co and Ni, which have high affinity with CO2 and high activity for CH4 decomposition, respectively. This study was focused on providing evidence of the capturing surface coverage of the reactive intermediates and the associated structural changes of the metals during DRM at high temperature using in-operando X-ray absorption spectroscopy (XAS). On the Co catalysts, the first-order effects with respect to CH4 pressure and negative-order effects with respect to CO2 pressure on the DRM rate are consistent with the competitive adsorption of the surface oxygen species on the same sites as the CH4 decomposition reaction. The Ni surface provides comparatively higher rates of CH4 decomposition and the resultant DRM than the Co catalyst but leaves some deposited carbon on the catalyst surface. In contrast, the bimetallic CoNi catalyst exhibits reactivity towards the DRM but with kinetic orders resembling Co catalyst, producing negligible carbon deposition by balancing CH4 and CO2 activation. The in-operando X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements confirmed that the Co catalyst was progressively oxidized from the surface to the bulk with reaction time, whereas CoNi and Ni remained relatively reduced during DRM. Density functional theory (DFT) calculation considering the high reaction temperature for DRM confirmed the unselective site arrangement between Co and Ni atoms in both the surface and bulk of the alloy nanoparticle (NP). The calculated heat of oxygen chemisorption became more exothermic in the order of Ni, CoNi, Co, consistent with the catalytic behavior. The comprehensive experimental and theoretical evidence provided herein clearly suggests

  4. Carbon nanotube on Si(001): structural and electronic properties

    International Nuclear Information System (INIS)

    Orellana, W.; Fazzio, A.; Miwa, R.W.

    2003-01-01

    Full text: The promising nanoscale technology based on carbon nanotubes has attracted much attention due to the unique electronic, chemical and mechanical properties of the nanotubes. Single-wall carbon nanotubes (SWCNs) provide an ideal atomically uniform one dimensional (1D) conductors, having a strong electronic confinement around its circumference, which can be retained up to room temperature[1]. This interesting property may lead one to consider SWCNs as 1D conductors for the development of nanoscale electronic devices. In this work the structural and electronic properties of the contact between a metallic (6,6) SWCN adsorbed on a silicon (001) surface are studied from first-principles total-energy calculations. We consider two adsorption sites for the tube on the Si(001) surface: on the top of the Si-dimer rows and on the surface 'trench' between two consecutive dimer rows. Our results show a chemical bond between the nanotube and Si(001) when the tube is located along the 'trench', which corresponds to the only bound structure. We find a binding energy per tube length of 0.21 eV/angstrom. We also verified that the binding energy depends on the rotation of the tube. Typically, a rotation of 15 deg can reduce the binding energy up to 0.07 eV/angstrom. Our calculated electronic properties indicate that the most stable structure shows a subband associated to the tube/surface bond that cross the Fermi level. This result indicates an enhanced metallic behavior along the tube/surface contact characterizing a 1D quantum wire. The charge transfer between the Si surface and the tube is also discussed. [1] Z. Yao, C. Dekker, and P. Avouris in Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris Eds., (Springer, Berlin 2001), p. 147. (author)

  5. Electronic structure studies of a clock-reconstructed Al/Pd(1 0 0) surface alloy

    Science.gov (United States)

    Kirsch, Janet E.; Tainter, Craig J.

    We have employed solid-state Fenske-Hall band structure calculations to examine the electronic structure of Al/Pd(1 0 0), a surface alloy that undergoes a reconstruction, or rearrangement, of the atoms in the top few surface layers. Surface alloys are materials that consist primarily of a single elemental metal, but which have a bimetallic surface composition that is only a few atomic layers in thickness. The results of this study indicate that reconstruction into a clock configuration simultaneously optimizes the intralayer bonding within the surface plane and the bonding between the first and second atomic layers. These results also allow us to examine the fundamental relationship between the electronic and physical structures of this reconstructed surface alloy.

  6. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  7. High Sensitive and Selective Sensing of Hydrogen Peroxide Released from Pheochromocytoma Cells Based on Pt-Au Bimetallic Nanoparticles Electrodeposited on Reduced Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Guangxia Yu

    2015-01-01

    Full Text Available In this study, a high sensitive and selective hydrogen peroxide (H2O2 sensor was successfully constructed with Pt-Au bimetallic nanoparticles (Pt-Au NPs/reduced graphene sheets (rGSs hybrid films. Various molar ratios of Au to Pt and different electrodeposition conditions were evaluated to control the morphology and electrocatalytic activity of the Pt-Au bimetallic nanoparticles. Upon optimal conditions, wide linear ranges from 1 µM to 1.78 mM and 1.78 mM to 16.8 mM were obtained, with a detection limit as low as 0.31 µM. Besides, due to the synergetic effects of the bimetallic NPs and rGSs, the amperometric H2O2 sensor could operate at a low potential of 0 V. Under this potential, not only common anodic interferences induced from ascorbic acid, uric acid and dopamine, but also the cathodic interference induced from endogenous O2 could be effectively avoided. Furthermore, with rat pheochromocytoma cells (PC 12 as model, the proposed sensor had been successfully used in the detection of H2O2 released from the cancer cells. This method with wide linear ranges and excellent selectivity can provide a promising alternative for H2O2 monitoring in vivo in the fields of physiology, pathology and diagnosis.

  8. Study of carbon-supported bimetallic PtCu nanoparticles by ASAXS

    International Nuclear Information System (INIS)

    Bulat, N.V.; Avakyan, L.A; Pryadchenko, V.V.; Srabionyan, V.V.; Belenov, S.V.; Bugaev, L.A.

    2017-01-01

    Bimetallic platinum-copper nanoparticles on carbon support are studied as a perspective electrochemical catalyst by anomalous small-angle X-ray scattering near the Pt absorption L 3 -edge. The simultaneous fitting of several diffraction patterns measured at different photon energies lead to a satisfactory agreement between experimental and model curves in the assumption of core-shell structure of the particles with Pt-rich shell and Cu-rich core. It is shown that the average size of as prepared nanoparticles is about 6 nm with distribution spread of about ±2 nm and with thickness of Pt-rich shell approximately 1.6 nm. After annealing at 350o C the average size of the particles increased by two times with additional enlargement of the Pt-rich shell thickness. (paper)

  9. The use of bimetallic welds in the THTR steam generators

    International Nuclear Information System (INIS)

    Blumer, U.; Fricker, H.; Amacker, S.

    1984-01-01

    Heat exchanger tubes operating under high temperatures must be designed in two qualities of material. The part which has relatively low tube wall temperature can be designed with the use of ferritic material for economic reasons. At a certain temperature level, the creep strength and the stability of this material are no longer sufficient, and an austenitic tube material must be provided for the higher temperature section of the heat exchanger bundle. This paper deals with welds between the two tubing sections, with emphasis on their application in the thorium high temperature reactor (THTR) steam generators. While the tubing of heat exchanger equipment in general needs careful design to withstand a number of different loading types, the use of bimetallic welds requires special attention to prevent it from becoming a weak spot in the design

  10. Density functional study of CaN monolayer on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Saati asr, Maryam; Zahedifar, Maedeh; Hashemifar, S. Javad; Akbarzadeh, Hadi

    2016-01-01

    In this work, the first-principles computations are performed to study the structural and magnetic properties of CaN/Si(001) interface. Bulk CaN in the zinc-blende (ZB) structure is argued to be an ionic magnetic compound with a total spin moment of 1 μ{sub B} per formula unit, originated from the p electrons of N ions. Various interface configurations of a ZB CaN monolayer on Si (001) surface are investigated and the lowest energy and the highest spin polarized interfaces are extracted. Then the minimum energy path between the lowest energy and the highest spin polarized interfaces are calculated by using the nudged elastic band method and it is argued that both these systems are unstable toward a nonmagnetic interface with a rock–salt arrangement of Ca and N atoms. - Highlights: • Ab-initio studies are done on various structures of CaN monolayer on Si (001). • The lowest energy system was found to be the N-top configuration interface, while the highest spin polarization was observed in the Ca-hollow termination. • Both Ca-hollow and N-top are unstable toward a nonmagnetic rock–salt CaN monolayer on silicon surface. • Realization of a magnetic CaN/Si (001) interface likely requires some buffer layer on silicon surface, prior to the thin film deposition.

  11. Density functional study of CaN monolayer on Si(001)

    International Nuclear Information System (INIS)

    Saati asr, Maryam; Zahedifar, Maedeh; Hashemifar, S. Javad; Akbarzadeh, Hadi

    2016-01-01

    In this work, the first-principles computations are performed to study the structural and magnetic properties of CaN/Si(001) interface. Bulk CaN in the zinc-blende (ZB) structure is argued to be an ionic magnetic compound with a total spin moment of 1 μ_B per formula unit, originated from the p electrons of N ions. Various interface configurations of a ZB CaN monolayer on Si (001) surface are investigated and the lowest energy and the highest spin polarized interfaces are extracted. Then the minimum energy path between the lowest energy and the highest spin polarized interfaces are calculated by using the nudged elastic band method and it is argued that both these systems are unstable toward a nonmagnetic interface with a rock–salt arrangement of Ca and N atoms. - Highlights: • Ab-initio studies are done on various structures of CaN monolayer on Si (001). • The lowest energy system was found to be the N-top configuration interface, while the highest spin polarization was observed in the Ca-hollow termination. • Both Ca-hollow and N-top are unstable toward a nonmagnetic rock–salt CaN monolayer on silicon surface. • Realization of a magnetic CaN/Si (001) interface likely requires some buffer layer on silicon surface, prior to the thin film deposition.

  12. Bimetallic iron and cobalt incorporated MFI/MCM-41 composite and its catalytic properties

    International Nuclear Information System (INIS)

    Li, Baoshan; Xu, Junqing; Li, Xiao; Liu, Jianjun; Zuo, Shengli; Pan, Zhiyun; Wu, Ziyu

    2012-01-01

    Graphical abstract: The formation of FeCo-MFI/MCM-41 composite is based on two steps, the first step of synthesizing the MFI-type proto-zeolite unites under hydrothermal conditions. The second step of assembling these zeolite fragment together new silica and heteroatom source on the CTAB surfactant micelle to synthesize the mesoporous product with hexagonal structure. Highlights: ► Bimetallic iron and cobalt incorporated MFI/MCM-41 composite was prepared using templating method. ► FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of meso- and micro-porous structures. ► Iron and cobalt ions incorporated into the silica framework with tetrahedral coordination. -- Abstract: The MFI/MCM-41 composite material with bimetallic Fe and Co incorporation was prepared using templating method via a two-step hydrothermal crystallization procedure. The obtained products were characterized by a series of techniques including powder X-ray diffraction, N 2 sorption, transmission electron microscopy, scanning electron microscope, H 2 temperature programmed reduction, thermal analyses, and X-ray absorption fine structure spectroscopy of the Fe and Co K-edge. The catalytic properties of the products were investigated by residual oil hydrocracking reactions. Characterization results showed that the FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of stable meso- and micro-porous structures. Iron and cobalt ions were incorporated into the silicon framework, which was confirmed by H 2 temperature programmed reduction and X-ray absorption fine structure spectroscopy. This composite presented excellent activities in hydrocracking of residual oil, which was superior to the pure materials of silicate-1/MCM-41.

  13. The role of surface morphology in nanocatalyst engineering

    Energy Technology Data Exchange (ETDEWEB)

    Stamenkovic, V. [Argonne National Laboratory, Argonne, IL (United States). Material Science Div.

    2008-07-01

    This study investigated extended polycrystalline platinum (Pt) alloys and PtNi(hkl) and Pt(hkl) single crystalline surfaces for various catalytic reactions. The surfaces were treated in an ultra-high vacuum by sputtering and annealing cycles. Auger electron spectroscopy (AES), low energy ion spectroscopy (LEIS), and ultraviolet photoelectron spectroscopy (UPS) techniques were used to characterize the alloys before they were transferred into an electrochemical environment. The study showed that electronic effect was caused by changes in the metallic d-band centre position. Structural effects were caused by surface roughening. The sputtered surfaces formed a Pt-skeleton on the outermost layers as a result of the dissolution of transition metal atoms. A modification of Pt electronic properties altered the adsorption and catalytic properties of the corresponding bimetallic alloy. The most active systems for the oxygen reduction reaction (ORR) were observed in the Pt-skin near-surface formation. 3 refs.

  14. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad-Bagher, E-mail: mbgholivand2013@gmail.com [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Jalalvand, Ali R. [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina); Goicoechea, Hector C. [Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina)

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1–30.0 μM and 30.0–330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. - Highlights: • Eight variables were screened by Min Run Res IV FD to identify the key variables. • Mathematical models for the two studied responses were developed by FCCCD. • By using DF the responses were optimized simultaneously. • The SEM image of the modified electrode was processed by digital image processing. • The sensor was successfully applied to determination of nitrite in real samples.

  15. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles

    International Nuclear Information System (INIS)

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R.; Goicoechea, Hector C.

    2014-01-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor