WorldWideScience

Sample records for pcr gene expression

  1. Using PCR to Target Misconceptions about Gene Expression

    Directory of Open Access Journals (Sweden)

    Leslie K. Wright

    2013-02-01

    Full Text Available We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA and gene expression (mRNA/protein and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression.

  2. Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue

    Directory of Open Access Journals (Sweden)

    Ravid Rivka

    2008-05-01

    Full Text Available Abstract Background Studies of gene expression in post mortem human brain can contribute to understanding of the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD, Parkinson's disease (PD and dementia with Lewy bodies (DLB. Quantitative real-time PCR (RT qPCR is often used to analyse gene expression. The validity of results obtained using RT qPCR is reliant on accurate data normalization. Reference genes are generally used to normalize RT qPCR data. Given that expression of some commonly used reference genes is altered in certain conditions, this study aimed to establish which reference genes were stably expressed in post mortem brain tissue from individuals with AD, PD or DLB. Results The present study investigated the expression stability of 8 candidate reference genes, (ubiquitin C [UBC], tyrosine-3-monooxygenase [YWHAZ], RNA polymerase II polypeptide [RP II], hydroxymethylbilane synthase [HMBS], TATA box binding protein [TBP], β-2-microglobulin [B2M], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], and succinate dehydrogenase complex-subunit A, [SDHA] in cerebellum and medial temporal gyrus of 6 AD, 6 PD, 6 DLB subjects, along with 5 matched controls using RT qPCR (TaqMan® Gene Expression Assays. Gene expression stability was analysed using geNorm to rank the candidate genes in order of decreasing stability in each disease group. The optimal number of genes recommended for accurate data normalization in each disease state was determined by pairwise variation analysis. Conclusion This study identified validated sets of mRNAs which would be appropriate for the normalization of RT qPCR data when studying gene expression in brain tissue of AD, PD, DLB and control subjects.

  3. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Science.gov (United States)

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data.

  4. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Directory of Open Access Journals (Sweden)

    Mary McMillan

    Full Text Available Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA is sufficient for effective normalisation of qRT-PCR data.

  5. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    Directory of Open Access Journals (Sweden)

    Lee Yeon-Su

    2010-05-01

    Full Text Available Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. Methods We assessed the suitability of six possible reference genes, beta-actin (ACTB, glyceraldehydes-3-phosphate dehydrogenase (GAPDH, hypoxanthine phosphoribosyl transferase 1 (HPRT1, beta-2-microglobulin (B2M, ribosomal subunit L29 (RPL29 and 18S ribosomal RNA (18S rRNA in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. Results This RT-qPCR study showed that there are statistically significant (p Conclusion This study validated RPL29 and RPL29-B2M as the best single reference genes and combination, for RT-qPCR analysis of 'all stomach tissues', and B2M and B2M-GAPDH as the best single reference gene and combination, for 'stomach cancer cell lines'. Use of these validated reference genes should provide more exact interpretation of differential gene expressions at transcription level in stomach cancer.

  6. Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects.

    Science.gov (United States)

    Shakeel, Muhammad; Rodriguez, Alicia; Tahir, Urfa Bin; Jin, Fengliang

    2018-02-01

    Whenever gene expression is being examined, it is essential that a normalization process is carried out to eliminate non-biological variations. The use of reference genes, such as glyceraldehyde-3-phosphate dehydrogenase, actin, and ribosomal protein genes, is the usual method of choice for normalizing gene expression. Although reference genes are used to normalize target gene expression, a major problem is that the stability of these genes differs among tissues, developmental stages, species, and responses to abiotic factors. Therefore, the use and validation of multiple reference genes are required. This review discusses the reasons that why RT-qPCR has become the preferred method for validating results of gene expression profiles, the use of specific and non-specific dyes and the importance of use of primers and probes for qPCR as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. The conflicts arising in the use of classical reference genes in gene normalization and their replacement with novel references are also discussed by citing the high stability and low stability of classical and novel reference genes under various biotic and abiotic experimental conditions by employing various methods applied for the reference genes amplification.

  7. DAG expression: high-throughput gene expression analysis of real-time PCR data using standard curves for relative quantification.

    Directory of Open Access Journals (Sweden)

    María Ballester

    Full Text Available BACKGROUND: Real-time quantitative PCR (qPCR is still the gold-standard technique for gene-expression quantification. Recent technological advances of this method allow for the high-throughput gene-expression analysis, without the limitations of sample space and reagent used. However, non-commercial and user-friendly software for the management and analysis of these data is not available. RESULTS: The recently developed commercial microarrays allow for the drawing of standard curves of multiple assays using the same n-fold diluted samples. Data Analysis Gene (DAG Expression software has been developed to perform high-throughput gene-expression data analysis using standard curves for relative quantification and one or multiple reference genes for sample normalization. We discuss the application of DAG Expression in the analysis of data from an experiment performed with Fluidigm technology, in which 48 genes and 115 samples were measured. Furthermore, the quality of our analysis was tested and compared with other available methods. CONCLUSIONS: DAG Expression is a freely available software that permits the automated analysis and visualization of high-throughput qPCR. A detailed manual and a demo-experiment are provided within the DAG Expression software at http://www.dagexpression.com/dage.zip.

  8. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    International Nuclear Information System (INIS)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues or cells under investigation

  9. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Directory of Open Access Journals (Sweden)

    Radtke Arnold

    2008-11-01

    Full Text Available Abstract Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR. The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC is presented. Methods Six genes, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, hydroxymethyl-bilane synthase (HMBS, hypoxanthine phosphoribosyl-transferase 1 (HPRT1, succinate dehydrogenase complex, subunit A (SDHA and ubiquitin C (UBC, with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the

  10. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Science.gov (United States)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Methods Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues

  11. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    International Nuclear Information System (INIS)

    Rho, Hyun-Wook; Lee, Byoung-Chan; Choi, Eun-Seok; Choi, Il-Ju; Lee, Yeon-Su; Goh, Sung-Ho

    2010-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. We assessed the suitability of six possible reference genes, beta-actin (ACTB), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), hypoxanthine phosphoribosyl transferase 1 (HPRT1), beta-2-microglobulin (B2M), ribosomal subunit L29 (RPL29) and 18S ribosomal RNA (18S rRNA) in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. This RT-qPCR study showed that there are statistically significant (p < 0.05) differences in the expression levels of HPRT1 and 18S rRNA in 'normal-' versus 'tumor stomach tissues'. The stability analyses by geNorm suggest B2M-GAPDH, as best reference gene combination for 'stomach cancer cell lines'; RPL29-HPRT1, for 'all stomach tissues'; and ACTB-18S rRNA, for 'all stomach cell lines and tissues'. NormFinder also identified B2M as the best reference gene for 'stomach cancer cell lines', RPL29-B2M for 'all stomach tissues', and 18S rRNA-ACTB for 'all stomach cell lines and tissues'. The comparisons of normalized expression of the target gene, GPNMB, showed different interpretation of target gene expression depend on best single reference gene or combination. This study validated RPL29 and RPL29-B2M as the best single reference

  12. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    Science.gov (United States)

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  13. Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis L.f.).

    Science.gov (United States)

    Galeano, Esteban; Vasconcelos, Tarcísio Sales; Ramiro, Daniel Alves; De Martin, Valentina de Fátima; Carrer, Helaine

    2014-07-22

    Teak (Tectona grandis L.f.) is currently the preferred choice of the timber trade for fabrication of woody products due to its extraordinary qualities and is widely grown around the world. Gene expression studies are essential to explore wood formation of vascular plants, and quantitative real-time reverse transcription PCR (qRT-PCR) is a sensitive technique employed for quantifying gene expression levels. One or more appropriate reference genes are crucial to accurately compare mRNA transcripts through different tissues/organs and experimental conditions. Despite being the focus of some genetic studies, a lack of molecular information has hindered genetic exploration of teak. To date, qRT-PCR reference genes have not been identified and validated for teak. Identification and cloning of nine commonly used qRT-PCR reference genes from teak, including ribosomal protein 60s (rp60s), clathrin adaptor complexes medium subunit family (Cac), actin (Act), histone 3 (His3), sand family (Sand), β-Tubulin (Β-Tub), ubiquitin (Ubq), elongation factor 1-α (Ef-1α), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Expression profiles of these genes were evaluated by qRT-PCR in six tissue and organ samples (leaf, flower, seedling, root, stem and branch secondary xylem) of teak. Appropriate gene cloning and sequencing, primer specificity and amplification efficiency was verified for each gene. Their stability as reference genes was validated by NormFinder, BestKeeper, geNorm and Delta Ct programs. Results obtained from all programs showed that TgUbq and TgEf-1α are the most stable genes to use as qRT-PCR reference genes and TgAct is the most unstable gene in teak. The relative expression of the teak cinnamyl alcohol dehydrogenase (TgCAD) gene in lignified tissues at different ages was assessed by qRT-PCR, using TgUbq and TgEf-1α as internal controls. These analyses exposed a consistent expression pattern with both reference genes. This study proposes a first broad

  14. Screening Reliable Reference Genes for RT-qPCR Analysis of Gene Expression in Moringa oleifera.

    Science.gov (United States)

    Deng, Li-Ting; Wu, Yu-Ling; Li, Jun-Cheng; OuYang, Kun-Xi; Ding, Mei-Mei; Zhang, Jun-Jie; Li, Shu-Qi; Lin, Meng-Fei; Chen, Han-Bin; Hu, Xin-Sheng; Chen, Xiao-Yang

    2016-01-01

    Moringa oleifera is a promising plant species for oil and forage, but its genetic improvement is limited. Our current breeding program in this species focuses on exploiting the functional genes associated with important agronomical traits. Here, we screened reliable reference genes for accurately quantifying the expression of target genes using the technique of real-time quantitative polymerase chain reaction (RT-qPCR) in M. oleifera. Eighteen candidate reference genes were selected from a transcriptome database, and their expression stabilities were examined in 90 samples collected from the pods in different developmental stages, various tissues, and the roots and leaves under different conditions (low or high temperature, sodium chloride (NaCl)- or polyethyleneglycol (PEG)- simulated water stress). Analyses with geNorm, NormFinder and BestKeeper algorithms revealed that the reliable reference genes differed across sample designs and that ribosomal protein L1 (RPL1) and acyl carrier protein 2 (ACP2) were the most suitable reference genes in all tested samples. The experiment results demonstrated the significance of using the properly validated reference genes and suggested the use of more than one reference gene to achieve reliable expression profiles. In addition, we applied three isotypes of the superoxide dismutase (SOD) gene that are associated with plant adaptation to abiotic stress to confirm the efficacy of the validated reference genes under NaCl and PEG water stresses. Our results provide a valuable reference for future studies on identifying important functional genes from their transcriptional expressions via RT-qPCR technique in M. oleifera.

  15. Selection and Validation of Reference Genes for qRT-PCR Expression Analysis of Candidate Genes Involved in Olfactory Communication in the Butterfly Bicyclus anynana

    OpenAIRE

    Arun, Alok; Bauml?, V?ronique; Amelot, Ga?l; Nieberding, Caroline M.

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at ident...

  16. Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Watermelon is one of the major Cucurbitaceae crops and the recent availability of genome sequence greatly facilitates the fundamental researches on it. Quantitative real-time reverse transcriptase PCR (qRT-PCR is the preferred method for gene expression analyses, and using validated reference genes for normalization is crucial to ensure the accuracy of this method. However, a systematic validation of reference genes has not been conducted on watermelon. In this study, transcripts of 15 candidate reference genes were quantified in watermelon using qRT-PCR, and the stability of these genes was compared using geNorm and NormFinder. geNorm identified ClTUA and ClACT, ClEF1α and ClACT, and ClCAC and ClTUA as the best pairs of reference genes in watermelon organs and tissues under normal growth conditions, abiotic stress, and biotic stress, respectively. NormFinder identified ClYLS8, ClUBCP, and ClCAC as the best single reference genes under the above experimental conditions, respectively. ClYLS8 and ClPP2A were identified as the best reference genes across all samples. Two to nine reference genes were required for more reliable normalization depending on the experimental conditions. The widely used watermelon reference gene 18SrRNA was less stable than the other reference genes under the experimental conditions. Catalase family genes were identified in watermelon genome, and used to validate the reliability of the identified reference genes. ClCAT1and ClCAT2 were induced and upregulated in the first 24 h, whereas ClCAT3 was downregulated in the leaves under low temperature stress. However, the expression levels of these genes were significantly overestimated and misinterpreted when 18SrRNA was used as a reference gene. These results provide a good starting point for reference gene selection in qRT-PCR analyses involving watermelon.

  17. Evaluation of Suitable Reference Genes for Normalization of qPCR Gene Expression Studies in Brinjal (Solanum melongena L.) During Fruit Developmental Stages.

    Science.gov (United States)

    Kanakachari, Mogilicherla; Solanke, Amolkumar U; Prabhakaran, Narayanasamy; Ahmad, Israr; Dhandapani, Gurusamy; Jayabalan, Narayanasamy; Kumar, Polumetla Ananda

    2016-02-01

    Brinjal/eggplant/aubergine is one of the major solanaceous vegetable crops. Recent availability of genome information greatly facilitates the fundamental research on brinjal. Gene expression patterns during different stages of fruit development can provide clues towards the understanding of its biological functions. Quantitative real-time PCR (qPCR) has become one of the most widely used methods for rapid and accurate quantification of gene expression. However, its success depends on the use of a suitable reference gene for data normalization. For qPCR analysis, a single reference gene is not universally suitable for all experiments. Therefore, reference gene validation is a crucial step. Suitable reference genes for qPCR analysis of brinjal fruit development have not been investigated so far. In this study, we have selected 21 candidate reference genes from the Brinjal (Solanum melongena) Plant Gene Indices database (compbio.dfci.harvard.edu/tgi/plant.html) and studied their expression profiles by qPCR during six different fruit developmental stages (0, 5, 10, 20, 30, and 50 days post anthesis) along with leaf samples of the Pusa Purple Long (PPL) variety. To evaluate the stability of gene expression, geNorm and NormFinder analytical softwares were used. geNorm identified SAND (SAND family protein) and TBP (TATA binding protein) as the best pairs of reference genes in brinjal fruit development. The results showed that for brinjal fruit development, individual or a combination of reference genes should be selected for data normalization. NormFinder identified Expressed gene (expressed sequence) as the best single reference gene in brinjal fruit development. In this study, we have identified and validated for the first time reference genes to provide accurate transcript normalization and quantification at various fruit developmental stages of brinjal which can also be useful for gene expression studies in other Solanaceae plant species.

  18. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  19. Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR

    Science.gov (United States)

    2014-01-01

    Background Gene expression analysis using quantitative reverse transcription PCR (qRT-PCR) is a robust method wherein the expression levels of target genes are normalised using internal control genes, known as reference genes, to derive changes in gene expression levels. Although reference genes have recently been suggested for olive tissues, combined/independent analysis on different cultivars has not yet been tested. Therefore, an assessment of reference genes was required to validate the recent findings and select stably expressed genes across different olive cultivars. Results A total of eight candidate reference genes [glyceraldehyde 3-phosphate dehydrogenase (GAPDH), serine/threonine-protein phosphatase catalytic subunit (PP2A), elongation factor 1 alpha (EF1-alpha), polyubiquitin (OUB2), aquaporin tonoplast intrinsic protein (TIP2), tubulin alpha (TUBA), 60S ribosomal protein L18-3 (60S RBP L18-3) and polypyrimidine tract-binding protein homolog 3 (PTB)] were chosen based on their stability in olive tissues as well as in other plants. Expression stability was examined by qRT-PCR across 12 biological samples, representing mesocarp tissues at various developmental stages in three different olive cultivars, Barnea, Frantoio and Picual, independently and together during the 2009 season with two software programs, GeNorm and BestKeeper. Both software packages identified GAPDH, EF1-alpha and PP2A as the three most stable reference genes across the three cultivars and in the cultivar, Barnea. GAPDH, EF1-alpha and 60S RBP L18-3 were found to be most stable reference genes in the cultivar Frantoio while 60S RBP L18-3, OUB2 and PP2A were found to be most stable reference genes in the cultivar Picual. Conclusions The analyses of expression stability of reference genes using qRT-PCR revealed that GAPDH, EF1-alpha, PP2A, 60S RBP L18-3 and OUB2 are suitable reference genes for expression analysis in developing Olea europaea mesocarp tissues, displaying the highest level

  20. Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum using quantitative real-time RT-PCR.

    Directory of Open Access Journals (Sweden)

    Jacinta Gimeno

    Full Text Available Switchgrass (Panicum virgatum has received a lot of attention as a forage and bioenergy crop during the past few years. Gene expression studies are in progress to improve new traits and develop new cultivars. Quantitative real time PCR (qRT-PCR has emerged as an important technique to study gene expression analysis. For accurate and reliable results, normalization of data with reference genes is essential. In this work, we evaluate the stability of expression of genes to use as reference for qRT-PCR in the grass P. virgatum. Eleven candidate reference genes, including eEF-1α, UBQ6, ACT12, TUB6, eIF-4a, GAPDH, SAMDC, TUA6, CYP5, U2AF, and FTSH4, were validated for qRT-PCR normalization in different plant tissues and under different stress conditions. The expression stability of these genes was verified by the use of two distinct algorithms, geNorm and NormFinder. Differences were observed after comparison of the ranking of the candidate reference genes identified by both programs but eEF-1α, eIF-4a, CYP5 and U2AF are ranked as the most stable genes in the samples sets under study. Both programs discard the use of SAMDC and TUA6 for normalization. Validation of the reference genes proposed by geNorm and NormFinder were performed by normalization of transcript abundance of a group of target genes in different samples. Results show similar expression patterns when the best reference genes selected by both programs were used but differences were detected in the transcript abundance of the target genes. Based on the above research, we recommend the use of different statistical algorithms to identify the best reference genes for expression data normalization. The best genes selected in this study will help to improve the quality of gene expression data in a wide variety of samples in switchgrass.

  1. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Ruby Chandna

    Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.

  2. PCR Expression Analysis Of the Estrogeninducible Gene Bcei in Gastrointestinal and Other Human Tumors

    Directory of Open Access Journals (Sweden)

    Iris Wundrack

    1994-01-01

    Full Text Available A polymerase chain reaction (PCR assay was developed to test for tumor cell specific expression of the BCEI gene. This new marker gene, reported at first for human breast cancer, was found specifically active in various gastrointestinal carcinomas by previously applying immunohistochemistry and RNA (Northern blot analysis. Presently, by using reverse transcription -PCR analysis, a series of primary tumor tissues and established tumor cell lines were testcd for BCEI transcription. This approach was compared to immunostaining achieved by an antibody directed against the BCEI gene’s product. The result demonstrate the superior sensitivity of PCR by indicating the gene’ s expression in cases where immunohistochemical testing remained negative.

  3. Selection of Reliable Reference Genes for Gene Expression Studies of a Promising Oilseed Crop, Plukenetia volubilis, by Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Longjian Niu

    2015-06-01

    Full Text Available Real-time quantitative PCR (RT-qPCR is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis, a promising oilseed crop known for its polyunsaturated fatty acid (PUFA-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt, BestKeeper, geNorm, and NormFinder were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE, actin (ACT and phospholipase A22 (PLA were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13, cyclophilin (CYC and elongation factor-1alpha (EF1α were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi.

  4. Selection of Reliable Reference Genes for Gene Expression Studies of a Promising Oilseed Crop, Plukenetia volubilis, by Real-Time Quantitative PCR

    Science.gov (United States)

    Niu, Longjian; Tao, Yan-Bin; Chen, Mao-Sheng; Fu, Qiantang; Li, Chaoqiong; Dong, Yuling; Wang, Xiulan; He, Huiying; Xu, Zeng-Fu

    2015-01-01

    Real-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt), BestKeeper, geNorm, and NormFinder) were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE), actin (ACT) and phospholipase A22 (PLA) were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13), cyclophilin (CYC) and elongation factor-1alpha (EF1α) were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII) were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi. PMID:26047338

  5. Selection of Housekeeping Genes for Transgene Expression Analysis in Eucommia ulmoides Oliver Using Real-Time RT-PCR

    Directory of Open Access Journals (Sweden)

    Ren Chen

    2010-01-01

    Full Text Available In order to select appropriate housekeeping genes for accurate calibration of experimental variations in real-time (RT- PCR results in transgene expression analysis, particularly with respect to the influence of transgene on stability of endogenous housekeeping gene expression in transgenic plants, we outline a reliable strategy to identify the optimal housekeeping genes from a set of candidates by combining statistical analyses of their (RT- PCR amplification efficiency, gene expression stability, and transgene influences. We used the strategy to select two genes, ACTα and EF1α, from 10 candidate housekeeping genes, as the optimal housekeeping genes to evaluate transgenic Eucommia ulmoides Oliver root lines overexpressing IPPI or FPPS1 genes, which are involved in isoprenoid biosynthesis.

  6. Selection of reference genes for qRT-PCR analysis of gene expression in sea cucumber Apostichopus japonicus during aestivation

    Science.gov (United States)

    Zhao, Ye; Chen, Muyan; Wang, Tianming; Sun, Lina; Xu, Dongxue; Yang, Hongsheng

    2014-11-01

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a technique that is widely used for gene expression analysis, and its accuracy depends on the expression stability of the internal reference genes used as normalization factors. However, many applications of qRT-PCR used housekeeping genes as internal controls without validation. In this study, the expression stability of eight candidate reference genes in three tissues (intestine, respiratory tree, and muscle) of the sea cucumber Apostichopus japonicus was assessed during normal growth and aestivation using the geNorm, NormFinder, delta CT, and RefFinder algorithms. The results indicate that the reference genes exhibited significantly different expression patterns among the three tissues during aestivation. In general, the β-tubulin (TUBB) gene was relatively stable in the intestine and respiratory tree tissues. The optimal reference gene combination for intestine was 40S ribosomal protein S18 (RPS18), TUBB, and NADH dehydrogenase (NADH); for respiratory tree, it was β-actin (ACTB), TUBB, and succinate dehydrogenase cytochrome B small subunit (SDHC); and for muscle it was α-tubulin (TUBA) and NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 13 (NDUFA13). These combinations of internal control genes should be considered for use in further studies of gene expression in A. japonicus during aestivation.

  7. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Thrush Anthony

    2010-01-01

    Full Text Available Abstract Background Perennial ryegrass (Lolium perenne L. is an important pasture and turf crop. Biotechniques such as gene expression studies are being employed to improve traits in this temperate grass. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is among the best methods available for determining changes in gene expression. Before analysis of target gene expression, it is essential to select an appropriate normalisation strategy to control for non-specific variation between samples. Reference genes that have stable expression at different biological and physiological states can be effectively used for normalisation; however, their expression stability must be validated before use. Results Existing Serial Analysis of Gene Expression data were queried to identify six moderately expressed genes that had relatively stable gene expression throughout the year. These six candidate reference genes (eukaryotic elongation factor 1 alpha, eEF1A; TAT-binding protein homolog 1, TBP-1; eukaryotic translation initiation factor 4 alpha, eIF4A; YT521-B-like protein family protein, YT521-B; histone 3, H3; ubiquitin-conjugating enzyme, E2 were validated for qRT-PCR normalisation in 442 diverse perennial ryegrass (Lolium perenne L. samples sourced from field- and laboratory-grown plants under a wide range of experimental conditions. Eukaryotic EF1A is encoded by members of a multigene family exhibiting differential expression and necessitated the expression analysis of different eEF1A encoding genes; a highly expressed eEF1A (h, a moderately, but stably expressed eEF1A (s, and combined expression of multigene eEF1A (m. NormFinder identified eEF1A (s and YT521-B as the best combination of two genes for normalisation of gene expression data in perennial ryegrass following different defoliation management in the field. Conclusions This study is unique in the magnitude of samples tested with the inclusion of numerous field-grown samples

  8. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    Directory of Open Access Journals (Sweden)

    Alok Arun

    Full Text Available Real-time quantitative reverse transcription PCR (qRT-PCR is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae, two developmental stages (pupal and adult and two sexes (male and female, all of which were subjected to two food treatments (food stress and control feeding ad libitum. The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the

  9. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    Science.gov (United States)

    Arun, Alok; Baumlé, Véronique; Amelot, Gaël; Nieberding, Caroline M

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression

  10. In search of suitable reference genes for gene expression studies of human renal cell carcinoma by real-time PCR

    Directory of Open Access Journals (Sweden)

    Kristiansen Glen

    2007-06-01

    Full Text Available Abstract Background Housekeeping genes are commonly used as endogenous reference genes for the relative quantification of target genes in gene expression studies. No conclusive systematic study comparing the suitability of different candidate reference genes in clear cell renal cell carcinoma has been published to date. To remedy this situation, 10 housekeeping genes for normalizing purposes of RT-PCR measurements already recommended in various studies were examined with regard to their usefulness as reference genes. Results The expression of the potential reference genes was examined in matched malignant and non-malignant tissue specimens from 25 patients with clear cell renal cell carcinoma. Quality assessment of isolated RNA performed with a 2100 Agilent Bioanalyzer showed a mean RNA integrity number of 8.7 for all samples. The between-run variations related to the crossing points of PCR reactions of a control material ranged from 0.17% to 0.38%. The expression of all genes did not depend on age, sex, and tumour stage. Except the genes TATA box binding protein (TBP and peptidylprolyl isomerase A (PPIA, all genes showed significant differences in expression between malignant and non-malignant pairs. The expression stability of the candidate reference genes was additionally controlled using the software programs geNorm and NormFinder. TBP and PPIA were validated as suitable reference genes by normalizing the target gene ADAM9 using these two most stably expressed genes in comparison with up- and down-regulated housekeeping genes of the panel. Conclusion Our study demonstrated the suitability of the two housekeeping genes PPIA and TBP as endogenous reference genes when comparing malignant tissue samples with adjacent normal tissue samples from clear cell renal cell carcinoma. Both genes are recommended as reference genes for relative gene quantification in gene profiling studies either as single gene or preferably in combination.

  11. Comprehensive evaluation of candidate reference genes for gene expression studies in Lysiphlebia japonica (Hymenoptera: Aphidiidae) using RT-qPCR.

    Science.gov (United States)

    Gao, Xue-Ke; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lü, Li-Min; Zhang, Li-Juan; Zhu, Xiang-Zhen; Wang, Li; Lu, Hui; Cui, Jin-Jie

    2017-12-30

    Lysiphlebia japonica (Ashmead) is a predominant parasitoid of cotton-melon aphids in the fields of northern China with a proven ability to effectively control cotton aphid populations in early summer. For accurate normalization of gene expression in L. japonica using quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR), reference genes with stable gene expression patterns are essential. However, no appropriate reference genes is L. japonica have been investigated to date. In the present study, 12 selected housekeeping genes from L. japonica were cloned. We evaluated the stability of these genes under various experimental treatments by RT-qPCR using four independent (geNorm, NormFinder, BestKeeper and Delta Ct) and one comparative (RefFinder) algorithm. We identified genes showing the most stable levels of expression: DIMT, 18S rRNA, and RPL13 during different stages; AK, RPL13, and TBP among sexes; EF1A, PPI, and RPL27 in different tissues, and EF1A, RPL13, and PPI in adults fed on different diets. Moreover, the expression profile of a target gene (odorant receptor 1, OR1) studied during the developmental stages confirms the reliability of the chosen selected reference genes. This study provides for the first time a comprehensive list of suitable reference genes for gene expression studies in L. japonica and will benefit subsequent genomics and functional genomics research on this natural enemy. Copyright © 2017. Published by Elsevier B.V.

  12. Selection of housekeeping genes for normalization by real-time RT-PCR: analysis of Or-MYB1 gene expression in Orobanche ramosa development.

    Science.gov (United States)

    González-Verdejo, C I; Die, J V; Nadal, S; Jiménez-Marín, A; Moreno, M T; Román, B

    2008-08-15

    Real-time PCR has become the method of choice for accurate and in-depth expression studies of candidate genes. To avoid bias, real-time PCR is referred to one or several internal control genes that should not fluctuate among treatments. A need for reference genes in the parasitic plant Orobanche ramosa has emerged, and the studies in this area have not yet been evaluated. In this study, the genes 18S rRNA, Or-act1, Or-tub1, and Or-ubq1 were compared in terms of expression stability using the BestKeeper software program. Among the four common endogenous control genes, Or-act1 and Or-ubq1 were the most stable in O. ramosa samples. In parallel, a study was carried out studying the expression of the transcription factor Or-MYB1 that seemed to be implicated during preinfection stages. The normalization strategy presented here is a prerequisite to accurate real-time PCR expression profiling that, among other things, opens up the possibility of studying messenger RNA levels of low-copy-number-like transcription factors.

  13. Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean

    Directory of Open Access Journals (Sweden)

    Renata Stolf-Moreira

    2011-01-01

    Full Text Available The objective of this work was to validate, by quantitative PCR in real time (RT-qPCR, genes to be used as reference in studies of gene expression in soybean in drought-stressed trials. Four genes commonly used in soybean were evaluated: Gmβ-actin, GmGAPDH, GmLectin and GmRNAr18S. Total RNA was extracted from six samples: three from roots in a hydroponic system with different drought intensities (0, 25, 50, 75 and 100 minutes of water stress, and three from leaves of plants grown in sand with different soil moistures (15, 5 and 2.5% gravimetric humidity. The raw cycle threshold (Ct data were analyzed, and the efficiency of each primer was calculated for an overall analysis of the Ct range among the different samples. The GeNorm application was used to evaluate the best reference gene, according to its stability. The GmGAPDH was the least stable gene, with the highest mean values of expression stability (M, and the most stable genes, with the lowest M values, were the Gmβ-actin and GmRNAr18S, when both root and leaves samples were tested. These genes can be used in RT-qPCR as reference gene for expression analysis.

  14. Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies.

    Science.gov (United States)

    de Vega-Bartol, José J; Santos, Raquen Raissa; Simões, Marta; Miguel, Célia M

    2013-05-01

    Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination. No single reference gene is universal, so a systematic characterization of endogenous genes for concrete conditions is fundamental for accuracy. We identified suitable internal control genes to normalize qPCR data obtained at different steps of somatic embryogenesis (embryonal mass proliferation, embryo maturation and germination) in two representative conifer species, Pinus pinaster and Picea abies. Candidate genes included endogenous genes commonly used in conifers, genes previously tested in model plants, and genes with a lower variation of the expression along embryo development according to genome-wide transcript profiling studies. Three different algorithms were used to evaluate expression stability. The geometric average of the expression values of elongation factor-1α, α-tubulin and histone 3 in P. pinaster, and elongation factor-1α, α-tubulin, adenosine kinase and CAC in P. abies were adequate for expression studies throughout somatic embryogenesis. However, improved accuracy was achieved when using other gene combinations in experiments with samples at a single developmental stage. The importance of studies selecting reference genes to use in different tissues or developmental stages within one or close species, and the instability of commonly used reference genes, is highlighted.

  15. Identifying Stable Reference Genes for qRT-PCR Normalisation in Gene Expression Studies of Narrow-Leafed Lupin (Lupinus angustifolius L..

    Directory of Open Access Journals (Sweden)

    Candy M Taylor

    Full Text Available Quantitative Reverse Transcription PCR (qRT-PCR is currently one of the most popular, high-throughput and sensitive technologies available for quantifying gene expression. Its accurate application depends heavily upon normalisation of gene-of-interest data with reference genes that are uniformly expressed under experimental conditions. The aim of this study was to provide the first validation of reference genes for Lupinus angustifolius (narrow-leafed lupin, a significant grain legume crop using a selection of seven genes previously trialed as reference genes for the model legume, Medicago truncatula. In a preliminary evaluation, the seven candidate reference genes were assessed on the basis of primer specificity for their respective targeted region, PCR amplification efficiency, and ability to discriminate between cDNA and gDNA. Following this assessment, expression of the three most promising candidates [Ubiquitin C (UBC, Helicase (HEL, and Polypyrimidine tract-binding protein (PTB] was evaluated using the NormFinder and RefFinder statistical algorithms in two narrow-leafed lupin lines, both with and without vernalisation treatment, and across seven organ types (cotyledons, stem, leaves, shoot apical meristem, flowers, pods and roots encompassing three developmental stages. UBC was consistently identified as the most stable candidate and has sufficiently uniform expression that it may be used as a sole reference gene under the experimental conditions tested here. However, as organ type and developmental stage were associated with greater variability in relative expression, it is recommended using UBC and HEL as a pair to achieve optimal normalisation. These results highlight the importance of rigorously assessing candidate reference genes for each species across a diverse range of organs and developmental stages. With emerging technologies, such as RNAseq, and the completion of valuable transcriptome data sets, it is possible that other

  16. Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes.

    Science.gov (United States)

    Spalenza, Veronica; Girolami, Flavia; Bevilacqua, Claudia; Riondato, Fulvio; Rasero, Roberto; Nebbia, Carlo; Sacchi, Paola; Martin, Patrice

    2011-09-01

    Gene expression studies in blood cells, particularly lymphocytes, are useful for monitoring potential exposure to toxicants or environmental pollutants in humans and livestock species. Quantitative PCR is the method of choice for obtaining accurate quantification of mRNA transcripts although variations in the amount of starting material, enzymatic efficiency, and the presence of inhibitors can lead to evaluation errors. As a result, normalization of data is of crucial importance. The most common approach is the use of endogenous reference genes as an internal control, whose expression should ideally not vary among individuals and under different experimental conditions. The accurate selection of reference genes is therefore an important step in interpreting quantitative PCR studies. Since no systematic investigation in bovine lymphocytes has been performed, the aim of the present study was to assess the expression stability of seven candidate reference genes in circulating lymphocytes collected from 15 dairy cows. Following the characterization by flow cytometric analysis of the cell populations obtained from blood through a density gradient procedure, three popular softwares were used to evaluate the gene expression data. The results showed that two genes are sufficient for normalization of quantitative PCR studies in cattle lymphocytes and that YWAHZ, S24 and PPIA are the most stable genes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Validation of reference genes for RT-qPCR analysis of CYP4T expression in crucian carp

    Directory of Open Access Journals (Sweden)

    Fei Mo

    2014-09-01

    Full Text Available Reference genes are commonly used for normalization of target gene expression during RT-qPCR analysis. However, no housekeeping genes or reference genes have been identified to be stable across different tissue types or under different experimental conditions. To identify the most suitable reference genes for RT-qPCR analysis of target gene expression in the hepatopancreas of crucian carp (Carassius auratus under various conditions (sex, age, water temperature, and drug treatments, seven reference genes, including beta actin (ACTB, beta-2 microglobulin (B2M, embryonic elongation factor-1 alpha (EEF1A, glyceraldehyde phosphate dehydrogenase (GAPDH, alpha tubulin (TUBA, ribosomal protein l8 (RPL8 and glucose-6-phosphate dehydrogenase (G6PDH, were evaluated in this study. The stability and ranking of gene expression were analyzed using three different statistical programs: GeNorm, Normfinder and Bestkeeper. The expression errors associated with selection of the genes were assessed by the relative quantity of CYP4T. The results indicated that all the seven genes exhibited variability under the experimental conditions of this research, and the combination of ACTB/TUBA/EEF1A or of ACTB/EEF1A was the best candidate that raised the accuracy of quantitative analysis of gene expression. The findings highlighted the importance of validation of housekeeping genes for research on gene expression under different conditions of experiment and species.

  18. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    Science.gov (United States)

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P cancer group (P prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  19. Expression analysis of fusarium wilt resistance gene in melon by real-time quantitative pcr

    International Nuclear Information System (INIS)

    Wang, X.; Xu, B.; Zhao, L.; Gao, P.; Luan, F.

    2014-01-01

    Melon Actin gene was used as a reference gene, to explore the gene expression profiles of the Fom-2 gene in roots, stems, and leaves of melon MR-1 under induction by Fusarium oxysporum f. sp. melonis. Monitoring using real-time quantitative PCR showed similar accumulation patterns of Fom-2 in roots, stems, and leaves over the observation period of 1 to 11 days; the expression level in stems was the highest. The expression of the Fom-2 gene was strengthened by the prolongation of induction time. In stems, the expression of Fom-2 was 5.737 times higher than in the control at three days; in roots, expression of Fom-2 was 5.617 times higher than in the control at five days. Similarly, the expression of Fom-2 in leaves obviously increased. It was 4.441 times higher than in the control at 5 days. The expression of Fom-2 was non-tissue specific, up-regulated under induction by Fusarium, and related to early resistance to Fusarium wilt. (author)

  20. In situ PCR detection and significance of IL-3 gene expression in irradiated hematopoietic cells of mouse bone marrow

    International Nuclear Information System (INIS)

    Peng Ruiyun; Wang Dewen; Xiong Chengqi; Gao Yabing; Li Yanping; Yang Hong; Cui Yufang

    2000-01-01

    Objective: To study the significance of endogenous interleukin 3(IL-3) gene expression in repair of irradiated mouse bone marrow. Methods: Seventy-eight LACA mice were subjected to total body irradiation with 60 Co γ-rays and were sacrificed within 4 weeks after irradiation. The bone marrow histopathological sections were stained with HE, and the expression of endogenous IL-3 gene was detected by means of immunocytochemistry,in situ hybridization(ISH) and in situ reverse transcription PCR(IS RT-PCR). Results: Obvious injury of bone marrow occurred after irradiation and then recovered within 4 weeks. IL-3 protein was obviously increased in the cytoplasm of recovering hematopoietic cells(HCs), especially on day 21 after irradiation, while its mRNA was poorly positive by ISH on days 10-21, especially day 15.IS RT-PCR showed that IL-3 mRNA was strongly positive in recovering HCs cytoplasm, especially on days 10 to 15. Conclusion: In situ RT-PCR can objectively reflect the regulation of IL-3 gene expression in bone marrow after irradiation, and the expression of endogenous IL-3 gene may play an important role in hematopoietic reconstruction of irradiated bone marrow

  1. Selection of Reference Genes for qRT-PCR Analysis of Gene Expression in Stipa grandis during Environmental Stresses.

    Directory of Open Access Journals (Sweden)

    Dongli Wan

    Full Text Available Stipa grandis P. Smirn. is a dominant plant species in the typical steppe of the Xilingole Plateau of Inner Mongolia. Selection of suitable reference genes for the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR is important for gene expression analysis and research into the molecular mechanisms underlying the stress responses of S. grandis. In the present study, 15 candidate reference genes (EF1 beta, ACT, GAPDH, SamDC, CUL4, CAP, SNF2, SKIP1, SKIP5, SKIP11, UBC2, UBC15, UBC17, UCH, and HERC2 were evaluated for their stability as potential reference genes for qRT-PCR under different stresses. Four algorithms were used: GeNorm, NormFinder, BestKeeper, and RefFinder. The results showed that the most stable reference genes were different under different stress conditions: EF1beta and UBC15 during drought and salt stresses; ACT and GAPDH under heat stress; SKIP5 and UBC17 under cold stress; UBC15 and HERC2 under high pH stress; UBC2 and UBC15 under wounding stress; EF1beta and UBC17 under jasmonic acid treatment; UBC15 and CUL4 under abscisic acid treatment; and HERC2 and UBC17 under salicylic acid treatment. EF1beta and HERC2 were the most suitable genes for the global analysis of all samples. Furthermore, six target genes, SgPOD, SgPAL, SgLEA, SgLOX, SgHSP90 and SgPR1, were selected to validate the most and least stable reference genes under different treatments. Our results provide guidelines for reference gene selection for more accurate qRT-PCR quantification and will promote studies of gene expression in S. grandis subjected to environmental stress.

  2. The utility of optical detection system (qPCR) and bioinformatics methods in reference gene expression analysis

    Science.gov (United States)

    Skarzyńska, Agnieszka; Pawełkowicz, Magdalena; PlÄ der, Wojciech; Przybecki, Zbigniew

    2016-09-01

    Real-time quantitative polymerase chain reaction is consider as the most reliable method for gene expression studies. However, the expression of target gene could be misinterpreted due to improper normalization. Therefore, the crucial step for analysing of qPCR data is selection of suitable reference genes, which should be validated experimentally. In order to choice the gene with stable expression in the designed experiment, we performed reference gene expression analysis. In this study genes described in the literature and novel genes predicted as control genes, based on the in silico analysis of transcriptome data were used. Analysis with geNorm and NormFinder algorithms allow to create the ranking of candidate genes and indicate the best reference for flower morphogenesis study. According to the results, genes CACS and CYCL were characterised the most stable expression, but the least suitable genes were TUA and EF.

  3. Real-time PCR gene expression profiling

    Czech Academy of Sciences Publication Activity Database

    Kubista, Mikael; Sjögreen, B.; Forootan, A.; Šindelka, Radek; Jonák, Jiří; Andrade, J.M.

    2007-01-01

    Roč. 1, - (2007), s. 56-60 ISSN 1360-8606 R&D Projects: GA AV ČR KJB500520601 Institutional research plan: CEZ:AV0Z50520514 Keywords : real - time PCR, * expression profiling * statistical analysis Subject RIV: EB - Genetics ; Molecular Biology

  4. Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean.

    Directory of Open Access Journals (Sweden)

    Shuhua Ma

    Full Text Available Due to its accuracy, sensitivity and high throughput, real time quantitative PCR (RT-qPCR has been widely used in analysing gene expression. The quality of data from such analyses is affected by the quality of reference genes used. Expression stabilities for nine candidate reference genes widely used in soybean were evaluated under different stresses in this study. Our results showed that EF1A and ACT11 were the best under salinity stress, TUB4, TUA5 and EF1A were the best under drought stress, ACT11 and UKN2 were the best under dark treatment, and EF1B and UKN2 were the best under virus infection. EF1B and UKN2 were the top two genes which can be reliably used in all of the stress conditions assessed.

  5. Simultaneous Expression of GUS and Actin Genes by Using the Multiplex RT-PCR and Multiplex Gold Nanoparticle Probes.

    Science.gov (United States)

    Ghazi, Yaser; Vaseghi, Akbar; Ahmadi, Sepideh; Haddadi, Fatemeh

    2018-04-23

    Gene expression analysis is considered to be extremely important in many different biological researches. DNA-based diagnostic test, which contributes to DNA identification, has higher specificity, cost, and speed than some biochemical and molecular methods. In this study, we try to use the novel nano technology approach with Multiplex RT-PCR and Gold nano particular probes (GNPs-probes) in order to get gene expression in Curcumas melons. We used Agrobacterium tumefactions for gene transfer and GUS reporter gene as a reporter. After cDNA synthesis, Multiplex PCR and Multiplex RT-PCR techniques were used. Finally, probes were designed for RNA of GUS and Actin genes, and then the analysis of the gene expression using the probes attached to GNPs was carried out and the color changes in the GNPs were applied. In the following, probes hybridization was checked with DNA between 400 to 700 nm wavelengths and the highest rate was observed in the 550 to 650 nm. The results show that the simultaneous use of GNP-attached detectors and Multiplex RT-PCRcan reduce time and costmore considerably than somelaboratory methods for gene expiration investigation. Additionally, it can be seen thatthere is an increase in sensitivity and specificity of our investigation. Based on our findings, this can bea novel study doneusingMultiplex RT-PCRand unmodified AuNPs for gene transfer and expression detection to plants. We can claim that this assay has a remarkable advantage including rapid, cost-effectiveness, specificity and accuracy to detect transfer and expression genes in plants. Also,we can use this technique from other gene expressionsin many different biology samples.

  6. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

    Science.gov (United States)

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-04-16

    The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  7. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Directory of Open Access Journals (Sweden)

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  8. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae using reverse-transcription quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Miao Yuan

    Full Text Available The brown planthopper (BPH, Nilaparvata lugens (Hemiptera, Delphacidae, is one of the most important rice pests. Abundant genetic studies on BPH have been conducted using reverse-transcription quantitative real-time PCR (qRT-PCR. Using qRT-PCR, the expression levels of target genes are calculated on the basis of endogenous controls. These genes need to be appropriately selected by experimentally assessing whether they are stably expressed under different conditions. However, such studies on potential reference genes in N. lugens are lacking. In this paper, we presented a systematic exploration of eight candidate reference genes in N. lugens, namely, actin 1 (ACT, muscle actin (MACT, ribosomal protein S11 (RPS11, ribosomal protein S15e (RPS15, alpha 2-tubulin (TUB, elongation factor 1 delta (EF, 18S ribosomal RNA (18S, and arginine kinase (AK and used four alternative methods (BestKeeper, geNorm, NormFinder, and the delta Ct method to evaluate the suitability of these genes as endogenous controls. We examined their expression levels among different experimental factors (developmental stage, body part, geographic population, temperature variation, pesticide exposure, diet change, and starvation following the MIQE (Minimum Information for publication of Quantitative real time PCR Experiments guidelines. Based on the results of RefFinder, which integrates four currently available major software programs to compare and rank the tested candidate reference genes, RPS15, RPS11, and TUB were found to be the most suitable reference genes in different developmental stages, body parts, and geographic populations, respectively. RPS15 was the most suitable gene under different temperature and diet conditions, while RPS11 was the most suitable gene under different pesticide exposure and starvation conditions. This work sheds light on establishing a standardized qRT-PCR procedure in N. lugens, and serves as a starting point for screening for reference genes for

  9. Predator-induced defences in Daphnia pulex: Selection and evaluation of internal reference genes for gene expression studies with real-time PCR

    Directory of Open Access Journals (Sweden)

    Gilbert Don

    2010-06-01

    Full Text Available Abstract Background The planktonic microcrustacean Daphnia pulex is among the best-studied animals in ecological, toxicological and evolutionary research. One aspect that has sustained interest in the study system is the ability of D. pulex to develop inducible defence structures when exposed to predators, such as the phantom midge larvae Chaoborus. The available draft genome sequence for D. pulex is accelerating research to identify genes that confer plastic phenotypes that are regularly cued by environmental stimuli. Yet for quantifying gene expression levels, no experimentally validated set of internal control genes exists for the accurate normalization of qRT-PCR data. Results In this study, we tested six candidate reference genes for normalizing transcription levels of D. pulex genes; alpha tubulin (aTub, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, TATA box binding protein (Tbp syntaxin 16 (Stx16, X-box binding protein 1 (Xbp1 and CAPON, a protein associated with the neuronal nitric oxide synthase, were selected on the basis of an earlier study and from microarray studies. One additional gene, a matrix metalloproteinase (MMP, was tested to validate its transcriptional response to Chaoborus, which was earlier observed in a microarray study. The transcription profiles of these seven genes were assessed by qRT-PCR from RNA of juvenile D. pulex that showed induced defences in comparison to untreated control animals. We tested the individual suitability of genes for expression normalization using the programs geNorm, NormFinder and BestKeeper. Intriguingly, Xbp1, Tbp, CAPON and Stx16 were selected as ideal reference genes. Analyses on the relative expression level using the software REST showed that both classical housekeeping candidate genes (aTub and GAPDH were significantly downregulated, whereas the MMP gene was shown to be significantly upregulated, as predicted. aTub is a particularly ill suited reference gene because five copies are

  10. Validation of reference genes for quantitative expression analysis by real-time rt-PCR in four lepidopteran insects.

    Science.gov (United States)

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2(-ΔΔCt) method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.

  11. Localisation of Abundant and Organ-Specific Genes Expressed in Rosa hybrida Leaves and Flower Buds by Direct In Situ RT-PCR

    Directory of Open Access Journals (Sweden)

    Agata Jedrzejuk

    2012-01-01

    Full Text Available In situ PCR is a technique that allows specific nucleic acid sequences to be detected in individual cells and tissues. In situ PCR and IS-RT-PCR are elegant techniques that can increase both sensitivity and throughput, but they are, at best, only semiquantitative; therefore, it is desirable first to ascertain the expression pattern by conventional means to establish the suitable conditions for each probe. In plants, in situ RT-PCR is widely used in the expression localisation of specific genes, including MADS-box and other function-specific genes or housekeeping genes in floral buds and other organs. This method is especially useful in small organs or during early developmental stages when the separation of particular parts is impossible. In this paper, we compared three different labelling and immunodetection methods by using in situ RT-PCR in Rosa hybrida flower buds and leaves. As target genes, we used the abundant β-actin and RhFUL gene, which is expressed only in the leaves and petals/sepals of flower buds. We used digoxygenin-11-dUTP, biotin-11-dUTP, and fluorescein-12-dUTP-labelled nucleotides and antidig-AP/ streptavidin-fluorescein-labelled antibodies. All of the used methods gave strong, specific signal and all of them may be used in localization of gene expression on tissue level in rose organs.

  12. Characterizing bacterial gene expression in nitrogen cycle metabolism with RT-qPCR.

    Science.gov (United States)

    Graham, James E; Wantland, Nicholas B; Campbell, Mark; Klotz, Martin G

    2011-01-01

    Recent advances in DNA sequencing have greatly accelerated our ability to obtain the raw information needed to recognize both known and potential novel modular microbial genomic capacity for nitrogen metabolism. With PCR-based approaches to quantifying microbial mRNA expression now mainstream in most laboratories, researchers can now more efficiently propose and test hypotheses on the contributions of individual microbes to the biological accessibility of nitrogen upon which all other life depends. We review known microbial roles in these key nitrogen transformations, and describe the necessary steps in carrying out relevant gene expression studies. An example experimental design is then provided characterizing Nitrosococcus oceani mRNA expression in cultures responding to ammonia. The approach described, that of assessing microbial genome inventory and testing putative modular gene expression by mRNA quantification, is likely to remain an important tool in understanding individual microbial contributions within microbial community activities that maintain the Earth's nitrogen balance. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Expression Stabilities of Ten Candidate Reference Genes for RT-qPCR in Zanthoxylum bungeanum Maxim.

    Science.gov (United States)

    Fei, Xitong; Shi, Qianqian; Yang, Tuxi; Fei, Zhaoxue; Wei, Anzhi

    2018-03-30

    Real-time reverse transcription quantitative PCR has become a common method for studying gene expression, however, the optimal selection of stable reference genes is a prerequisite for obtaining accurate quantification of transcript abundance. Suitable reference genes for RT-qPCR have not yet been identified for Chinese prickly ash ( Zanthoxylum bungeanum Maxim.). Chinese prickly ash is the source of an important food seasoning in China. In recent years, Chinese prickly ash has also been developed as a medicinal plant. The expression stabilities of ten genes ( 18S , 28S , EF , UBA , UBQ , TIF , NTB , TUA , RPS , and TIF5A ) were evaluated in roots, stems, leaves, flowers and fruits at five developmental stages and also under stress from cold, drought, and salt. To do this we used three different statistical algorithms: geNorm, NormFinder and BestKeeper. Among the genes investigated, UBA and UBQ were found to be most stable for the different cultivars and different tissues examined, UBQ and TIF for fruit developmental stage. Meanwhile, EF and TUA were most stable under cold treatment, EF and UBQ under drought treatment and NTB and RPS under salt treatment. UBA and UBQ for all samples evaluated were most stably expressed, but 18S , TUA and RPS were found to be generally unreliable as reference genes. Our results provide a basis for the future selection of reference genes for biological research with Chinese prickly ash, under a variety of conditions.

  14. Identification and comprehensive evaluation of reference genes for RT-qPCR analysis of host gene-expression in Brassica juncea-aphid interaction using microarray data.

    Science.gov (United States)

    Ram, Chet; Koramutla, Murali Krishna; Bhattacharya, Ramcharan

    2017-07-01

    Brassica juncea is a chief oil yielding crop in many parts of the world including India. With advancement of molecular techniques, RT-qPCR based study of gene-expression has become an integral part of experimentations in crop breeding. In RT-qPCR, use of appropriate reference gene(s) is pivotal. The virtue of the reference genes, being constant in expression throughout the experimental treatments, needs to be validated case by case. Appropriate reference gene(s) for normalization of gene-expression data in B. juncea during the biotic stress of aphid infestation is not known. In the present investigation, 11 reference genes identified from microarray database of Arabidopsis-aphid interaction at a cut off FDR ≤0.1, along with two known reference genes of B. juncea, were analyzed for their expression stability upon aphid infestation. These included 6 frequently used and 5 newly identified reference genes. Ranking orders of the reference genes in terms of expression stability were calculated using advanced statistical approaches such as geNorm, NormFinder, delta Ct and BestKeeper. The analysis suggested CAC, TUA and DUF179 as the most suitable reference genes. Further, normalization of the gene-expression data of STP4 and PR1 by the most and the least stable reference gene, respectively has demonstrated importance and applicability of the recommended reference genes in aphid infested samples of B. juncea. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Identification of normalization factors for quantitative real-time RT-PCR analysis of gene expression in Pacific abalone Haliotis discus hannai

    Science.gov (United States)

    Qiu, Reng; Sun, Boguang; Fang, Shasha; Sun, Li; Liu, Xiao

    2013-03-01

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is widely used in studies of gene expression. In most of these studies, housekeeping genes are used as internal references without validation. To identify appropriate reference genes for qRT-PCR in Pacific abalone Haliotis discus hannai, we examined the transcription stability of six housekeeping genes in abalone tissues in the presence and absence of bacterial infection. For this purpose, abalone were infected with the bacterial pathogen Vibrio anguillarum for 12 h and 48 h. The mRNA levels of the housekeeping genes in five tissues (digestive glands, foot muscle, gill, hemocyte, and mantle) were determined by qRT-PCR. The PCR data was subsequently analyzed with the geNorm and NormFinder algorithms. The results show that in the absence of bacterial infection, elongation factor-1-alpha and beta-actin were the most stably expressed genes in all tissues, and thus are suitable as cross-tissue type normalization factors. However, we did not identify any universal reference genes post infection because the most stable genes varied between tissue types. Furthermore, for most tissues, the optimal reference genes identified by both algorithms at 12 h and 48 h post-infection differed. These results indicate that bacterial infection induced significant changes in the expression of abalone housekeeping genes in a manner that is dependent on tissue type and duration of infection. As a result, different normalization factors must be used for different tissues at different infection points.

  16. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  17. Expression analysis of fiber related genes in cotton (gossypium hirsutum l.) through real time pcr

    International Nuclear Information System (INIS)

    Iqbal, N.; Khatoon, A.; Asif, M.; Bashir, A.

    2016-01-01

    Cotton fibers are unicellular seed trichomes and the largest known plant cells. Fiber morphogenesis in cotton is a complex process involving a large number of genes expressed throughout fiber development process. The expression profiling of five gene families in various cotton tissues was carried out through real time PCR. Expression analysis revealed that transcripts of expansin, tubulin and E6 were elevated from 5 to 20 days post anthesis (DPA) fibers. Three Lipid transfer proteins (LTPs) including LTP1, LTP3, LTP7 exhibited highest expression in 10 - 20 DPA fibers. Transcripts of LTP3 were detected in fibers and non fiber tissues that of LTP7 were almost negligible in non fiber tissues. Sucrose phosphate synthase gene showed highest expression in 10 DPA fibers while sucrose synthse (susy) expressed at higher rate in 5-20 DPA fibers as well as roots. The results reveal that most of fiber related genes showed high expression in 5-20 DPA fibers. Comprehensive expression study may help to determine tissue and stage specificity of genes under study. The study may also help to explore complex process of fiber development and understand the role of these genes in fiber development process. Highly expressed genes in fibers may be transformed in cotton for improvement of fiber quality traits. Genes that were expressed specifically in fibers or other tissues could be used for isolation of upstream regulatory sequences. (author)

  18. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    Directory of Open Access Journals (Sweden)

    Jing Cai

    Full Text Available Hulless barley (Hordeum vulgare L. var. nudum. hook. f. has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin, E2 (Ubiquitin conjugating enzyme 2, TUBα (Alpha-tubulin, TUBβ6 (Beta-tubulin 6, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase, EF-1α (Elongation factor 1-alpha, SAMDC (S-adenosylmethionine decarboxylase, PKABA1 (Gene for protein kinase HvPKABA1, PGK (Phosphoglycerate kinase, and HSP90 (Heat shock protein 90-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression

  19. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    Science.gov (United States)

    Cai, Jing; Li, Pengfei; Luo, Xiao; Chang, Tianliang; Li, Jiaxing; Zhao, Yuwei; Xu, Yao

    2018-01-01

    Hulless barley (Hordeum vulgare L. var. nudum. hook. f.) has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin), E2 (Ubiquitin conjugating enzyme 2), TUBα (Alpha-tubulin), TUBβ6 (Beta-tubulin 6), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), EF-1α (Elongation factor 1-alpha), SAMDC (S-adenosylmethionine decarboxylase), PKABA1 (Gene for protein kinase HvPKABA1), PGK (Phosphoglycerate kinase), and HSP90 (Heat shock protein 90)-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression analysis

  20. Comparison of lung cancer cell lines representing four histopathological subtypes with gene expression profiling using quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Kawaguchi Makoto

    2010-01-01

    Full Text Available Abstract Background Lung cancers are the most common type of human malignancy and are intractable. Lung cancers are generally classified into four histopathological subtypes: adenocarcinoma (AD, squamous cell carcinoma (SQ, large cell carcinoma (LC, and small cell carcinoma (SC. Molecular biological characterization of these subtypes has been performed mainly using DNA microarrays. In this study, we compared the gene expression profiles of these four subtypes using twelve human lung cancer cell lines and the more reliable quantitative real-time PCR (qPCR. Results We selected 100 genes from public DNA microarray data and examined them by DNA microarray analysis in eight test cell lines (A549, ABC-1, EBC-1, LK-2, LU65, LU99, STC 1, RERF-LC-MA and a normal control lung cell line (MRC-9. From this, we extracted 19 candidate genes. We quantified the expression of the 19 genes and a housekeeping gene, GAPDH, with qPCR, using the same eight cell lines plus four additional validation lung cancer cell lines (RERF-LC-MS, LC-1/sq, 86-2, and MS-1-L. Finally, we characterized the four subtypes of lung cancer cell lines using principal component analysis (PCA of gene expression profiling for 12 of the 19 genes (AMY2A, CDH1, FOXG1, IGSF3, ISL1, MALL, PLAU, RAB25, S100P, SLCO4A1, STMN1, and TGM2. The combined PCA and gene pathway analyses suggested that these genes were related to cell adhesion, growth, and invasion. S100P in AD cells and CDH1 in AD and SQ cells were identified as candidate markers of these lung cancer subtypes based on their upregulation and the results of PCA analysis. Immunohistochemistry for S100P and RAB25 was closely correlated to gene expression. Conclusions These results show that the four subtypes, represented by 12 lung cancer cell lines, were well characterized using qPCR and PCA for the 12 genes examined. Certain genes, in particular S100P and CDH1, may be especially important for distinguishing the different subtypes. Our results

  1. Validating Internal Control Genes for the Accurate Normalization of qPCR Expression Analysis of the Novel Model Plant Setaria viridis.

    Directory of Open Access Journals (Sweden)

    Julia Lambret-Frotté

    Full Text Available Employing reference genes to normalize the data generated with quantitative PCR (qPCR can increase the accuracy and reliability of this method. Previous results have shown that no single housekeeping gene can be universally applied to all experiments. Thus, the identification of a suitable reference gene represents a critical step of any qPCR analysis. Setaria viridis has recently been proposed as a model system for the study of Panicoid grasses, a crop family of major agronomic importance. Therefore, this paper aims to identify suitable S. viridis reference genes that can enhance the analysis of gene expression in this novel model plant. The first aim of this study was the identification of a suitable RNA extraction method that could retrieve a high quality and yield of RNA. After this, two distinct algorithms were used to assess the gene expression of fifteen different candidate genes in eighteen different samples, which were divided into two major datasets, the developmental and the leaf gradient. The best-ranked pair of reference genes from the developmental dataset included genes that encoded a phosphoglucomutase and a folylpolyglutamate synthase; genes that encoded a cullin and the same phosphoglucomutase as above were the most stable genes in the leaf gradient dataset. Additionally, the expression pattern of two target genes, a SvAP3/PI MADS-box transcription factor and the carbon-fixation enzyme PEPC, were assessed to illustrate the reliability of the chosen reference genes. This study has shown that novel reference genes may perform better than traditional housekeeping genes, a phenomenon which has been previously reported. These results illustrate the importance of carefully validating reference gene candidates for each experimental set before employing them as universal standards. Additionally, the robustness of the expression of the target genes may increase the utility of S. viridis as a model for Panicoid grasses.

  2. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms.

    Science.gov (United States)

    Green, Clayton B; Cheng, Georgina; Chandra, Jyotsna; Mukherjee, Pranab; Ghannoum, Mahmoud A; Hoyer, Lois L

    2004-02-01

    An RT-PCR assay was developed to analyse expression patterns of genes in the Candida albicans ALS (agglutinin-like sequence) family. Inoculation of a reconstituted human buccal epithelium (RHE) model of mucocutaneous candidiasis with strain SC5314 showed destruction of the epithelial layer by C. albicans and also formation of an upper fungal layer that had characteristics similar to a biofilm. RT-PCR analysis of total RNA samples extracted from C. albicans-inoculated buccal RHE showed that ALS1, ALS2, ALS3, ALS4, ALS5 and ALS9 were consistently detected over time as destruction of the RHE progressed. Detection of transcripts from ALS7, and particularly from ALS6, was more sporadic, but not associated with a strictly temporal pattern. The expression pattern of ALS genes in C. albicans cultures used to inoculate the RHE was similar to that observed in the RHE model, suggesting that contact of C. albicans with buccal RHE does little to alter ALS gene expression. RT-PCR analysis of RNA samples extracted from model denture and catheter biofilms showed similar gene expression patterns to the buccal RHE specimens. Results from the RT-PCR analysis of biofilm RNA specimens were consistent between various C. albicans strains during biofilm development and were comparable to gene expression patterns in planktonic cells. The RT-PCR assay described here will be useful for analysis of human clinical specimens and samples from other disease models. The method will provide further insight into the role of ALS genes and their encoded proteins in the diverse interactions between C. albicans and its host.

  3. Pre-amplification in the context of high-throughput qPCR gene expression experiment

    Czech Academy of Sciences Publication Activity Database

    Korenková, Vlasta; Scott, J.; Novosadová, Vendula; Jindřichová, Marie; Langerová, Lucie; Švec, David; Šídová, Monika; Sjoback, R.

    2015-01-01

    Roč. 16, č. 5 (2015) ISSN 1471-2199 R&D Projects: GA ČR(CZ) GAP304/12/1585; GA ČR(CZ) GA15-08239S; GA ČR GA13-02154S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : High-throughput qPCR * Gene expression * Exponential pre-amplification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.500, year: 2015

  4. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    OpenAIRE

    Ezer, Daphne; Moignard, Victoria; G?ttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete ...

  5. Reliable gene expression analysis by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in data accuracy.

    Science.gov (United States)

    Remans, Tony; Keunen, Els; Bex, Geert Jan; Smeets, Karen; Vangronsveld, Jaco; Cuypers, Ann

    2014-10-01

    Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results; however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this commentary, we direct researchers to appropriate procedures, outline a method to present the remaining uncertainty in data accuracy, and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data. © 2014 American Society of Plant Biologists. All rights reserved.

  6. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression

    Directory of Open Access Journals (Sweden)

    Řičicová Markéta

    2010-04-01

    Full Text Available Abstract Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein and of genes belonging to the ALS (agglutinin-like sequence, SAP (secreted aspartyl protease, PLB (phospholipase B and LIP (lipase gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP or in the Centres for Disease Control (CDC reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR model, and on mucosal surfaces in the reconstituted human epithelium (RHE model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression

  7. Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2013-12-01

    Full Text Available Real-time quantitative PCR (qRT-PCR is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2 in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

  8. Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions

    DEFF Research Database (Denmark)

    Svingen, Terje; Letting, Heidi; Hadrup, Niels

    2015-01-01

    In biological research the analysis of gene expression levels in cells and tissues can be a powerful tool to gain insights into biological processes. For this, quantitative RT-PCR (RT-qPCR) is a popular method that often involve the use of constitutively expressed endogenous reference (or...... ‘housekeeping’) gene for normalization of data. Thus, it is essential to use reference genes that have been verified to be stably expressed within the specific experimental setting. Here, we have analysed the expression stability of 12 commonly used reference genes (Actb, B2m, Gapdh, Hprt, Pgk1, Rn18s, Rpl13a...

  9. Identification and validation of superior reference gene for gene expression normalization via RT-qPCR in staminate and pistillate flowers of Jatropha curcas - A biodiesel plant.

    Science.gov (United States)

    Karuppaiya, Palaniyandi; Yan, Xiao-Xue; Liao, Wang; Wu, Jun; Chen, Fang; Tang, Lin

    2017-01-01

    Physic nut (Jatropha curcas L) seed oil is a natural resource for the alternative production of fossil fuel. Seed oil production is mainly depended on seed yield, which was restricted by the low ratio of staminate flowers to pistillate flowers. Further, the mechanism of physic nut flower sex differentiation has not been fully understood yet. Quantitative Real Time-Polymerase Chain Reaction is a reliable and widely used technique to quantify the gene expression pattern in biological samples. However, for accuracy of qRT-PCR, appropriate reference gene is highly desirable to quantify the target gene level. Hence, the present study was aimed to identify the stable reference genes in staminate and pistillate flowers of J. curcas. In this study, 10 candidate reference genes were selected and evaluated for their expression stability in staminate and pistillate flowers, and their stability was validated by five different algorithms (ΔCt, BestKeeper, NormFinder, GeNorm and RefFinder). Resulting, TUB and EF found to be the two most stably expressed reference for staminate flower; while GAPDH1 and EF found to be the most stably expressed reference gene for pistillate flowers. Finally, RT-qPCR assays of target gene AGAMOUS using the identified most stable reference genes confirmed the reliability of selected reference genes in different stages of flower development. AGAMOUS gene expression levels at different stages were further proved by gene copy number analysis. Therefore, the present study provides guidance for selecting appropriate reference genes for analyzing the expression pattern of floral developmental genes in staminate and pistillate flowers of J. curcas.

  10. Identification of Reference Genes for Normalizing Quantitative Real-Time PCR in Urechis unicinctus

    Science.gov (United States)

    Bai, Yajiao; Zhou, Di; Wei, Maokai; Xie, Yueyang; Gao, Beibei; Qin, Zhenkui; Zhang, Zhifeng

    2018-06-01

    The reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most important techniques of studying gene expression. A set of valid reference genes are essential for the accurate normalization of data. In this study, five candidate genes were analyzed with geNorm, NormFinder, BestKeeper and ΔCt methods to identify the genes stably expressed in echiuran Urechis unicinctus, an important commercial marine benthic worm, under abiotic (sulfide stress) and normal (adult tissues, embryos and larvae at different development stages) conditions. The comprehensive results indicated that the expression of TBP was the most stable at sulfide stress and in developmental process, while the expression of EF- 1- α was the most stable at sulfide stress and in various tissues. TBP and EF- 1- α were recommended as a suitable reference gene combination to accurately normalize the expression of target genes at sulfide stress; and EF- 1- α, TBP and TUB were considered as a potential reference gene combination for normalizing the expression of target genes in different tissues. No suitable gene combination was obtained among these five candidate genes for normalizing the expression of target genes for developmental process of U. unicinctus. Our results provided a valuable support for quantifying gene expression using RT-qPCR in U. unicinctus.

  11. Biomarker discovery for colon cancer using a 761 gene RT-PCR assay

    Directory of Open Access Journals (Sweden)

    Hackett James R

    2007-08-01

    Full Text Available Abstract Background Reverse transcription PCR (RT-PCR is widely recognized to be the gold standard method for quantifying gene expression. Studies using RT-PCR technology as a discovery tool have historically been limited to relatively small gene sets compared to other gene expression platforms such as microarrays. We have recently shown that TaqMan® RT-PCR can be scaled up to profile expression for 192 genes in fixed paraffin-embedded (FPE clinical study tumor specimens. This technology has also been used to develop and commercialize a widely used clinical test for breast cancer prognosis and prediction, the Onco typeDX™ assay. A similar need exists in colon cancer for a test that provides information on the likelihood of disease recurrence in colon cancer (prognosis and the likelihood of tumor response to standard chemotherapy regimens (prediction. We have now scaled our RT-PCR assay to efficiently screen 761 biomarkers across hundreds of patient samples and applied this process to biomarker discovery in colon cancer. This screening strategy remains attractive due to the inherent advantages of maintaining platform consistency from discovery through clinical application. Results RNA was extracted from formalin fixed paraffin embedded (FPE tissue, as old as 28 years, from 354 patients enrolled in NSABP C-01 and C-02 colon cancer studies. Multiplexed reverse transcription reactions were performed using a gene specific primer pool containing 761 unique primers. PCR was performed as independent TaqMan® reactions for each candidate gene. Hierarchal clustering demonstrates that genes expected to co-express form obvious, distinct and in certain cases very tightly correlated clusters, validating the reliability of this technical approach to biomarker discovery. Conclusion We have developed a high throughput, quantitatively precise multi-analyte gene expression platform for biomarker discovery that approaches low density DNA arrays in numbers of

  12. Housekeeping gene expression during fetal brain development in the rat-validation by semi-quantitative RT-PCR.

    Science.gov (United States)

    Al-Bader, Maie Dawoud; Al-Sarraf, Hameed Ali

    2005-04-21

    Mammalian gene expression is usually carried out at the level of mRNA where the amount of mRNA of interest is measured under different conditions such as growth and development. It is therefore important to use a "housekeeping gene", that does not change in relative abundance during the experimental conditions, as a standard or internal control. However, recent data suggest that expression of some housekeeping genes may vary with the extent of cell proliferation, differentiation and under various experimental conditions. In this study, the expression of various housekeeping genes (18S rRNA [18S], glyceraldehydes-3-phosphate dehydrogenase [G3PDH], beta-glucuronidase [BGLU], histone H4 [HH4], ribosomal protein L19 [RPL19] and cyclophilin [CY]) was investigated during fetal rat brain development using semi-quantitative RT-PCR at 16, 19 and 21 days gestation. It was found that all genes studied, with exception to G3PDH, did not show any change in their expression levels during development. G3PDH, on the other hand, showed increased expression with development. These results suggest that the choice of a housekeeping gene is critical to the interpretation of experimental results and should be modified according to the nature of the study.

  13. Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects

    OpenAIRE

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae...

  14. Bone to pick: the importance of evaluating reference genes for RT-qPCR quantification of gene expression in craniosynostosis and bone-related tissues and cells

    Directory of Open Access Journals (Sweden)

    Yang Xianxian

    2012-05-01

    Full Text Available Abstract Background RT-qPCR is a common tool for quantification of gene expression, but its accuracy is dependent on the choice and stability (steady state expression levels of the reference gene/s used for normalization. To date, in the bone field, there have been few studies to determine the most stable reference genes and, usually, RT-qPCR data is normalised to non-validated reference genes, most commonly GAPDH, ACTB and 18 S rRNA. Here we draw attention to the potential deleterious impact of using classical reference genes to normalise expression data for bone studies without prior validation of their stability. Results Using the geNorm and Normfinder programs, panels of mouse and human genes were assessed for their stability under three different experimental conditions: 1 disease progression of Crouzon syndrome (craniosynostosis in a mouse model, 2 proliferative culture of cranial suture cells isolated from craniosynostosis patients and 3 osteogenesis of a mouse bone marrow stromal cell line. We demonstrate that classical reference genes are not always the most ‘stable’ genes and that gene ‘stability’ is highly dependent on experimental conditions. Selected stable genes, individually or in combination, were then used to normalise osteocalcin and alkaline phosphatase gene expression data during cranial suture fusion in the craniosynostosis mouse model and strategies compared. Strikingly, the expression trends of alkaline phosphatase and osteocalcin varied significantly when normalised to the least stable, the most stable or the three most stable genes. Conclusion To minimise errors in evaluating gene expression levels, analysis of a reference panel and subsequent normalization to several stable genes is strongly recommended over normalization to a single gene. In particular, we conclude that use of single, non-validated “housekeeping” genes such as GAPDH, ACTB and 18 S rRNA, currently a widespread practice by researchers in

  15. Selection of Reliable Reference Genes for Gene Expression Studies in the Biofuel Plant Jatropha curcas Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2013-12-01

    Full Text Available Jatropha curcas is a promising renewable feedstock for biodiesel and bio-jet fuel production. To study gene expression in Jatropha in different tissues throughout development and under stress conditions, we examined a total of 11 typical candidate reference genes using real-time quantitative polymerase chain reaction (RT-qPCR analysis, which is widely used for validating transcript levels in gene expression studies. The expression stability of these candidate reference genes was assessed across a total of 20 samples, including various tissues at vegetative and reproductive stages and under desiccation and cold stress treatments. The results obtained using software qBasePLUS showed that the top-ranked reference genes differed across the sample subsets. The combination of actin, GAPDH, and EF1α would be appropriate as a reference panel for normalizing gene expression data across samples at different developmental stages; the combination of actin, GAPDH, and TUB5 should be used as a reference panel for normalizing gene expression data across samples under various abiotic stress treatments. With regard to different developmental stages, we recommend the use of actin and TUB8 for normalization at the vegetative stage and GAPDH and EF1α for normalization at the reproductive stage. For abiotic stress treatments, we recommend the use of TUB5 and TUB8 for normalization under desiccation stress and GAPDH and actin for normalization under cold stress. These results are valuable for future research on gene expression during development or under abiotic stress in Jatropha. To our knowledge, this is the first report on the stability of reference genes in Jatropha.

  16. Gene expression results in lipopolysaccharide-stimulated monocytes depend significantly on the choice of reference genes

    Directory of Open Access Journals (Sweden)

    Øvstebø Reidun

    2010-05-01

    Full Text Available Abstract Background Gene expression in lipopolysaccharide (LPS-stimulated monocytes is mainly studied by quantitative real-time reverse transcription PCR (RT-qPCR using GAPDH (glyceraldehyde 3-phosphate dehydrogenase or ACTB (beta-actin as reference gene for normalization. Expression of traditional reference genes has been shown to vary substantially under certain conditions leading to invalid results. To investigate whether traditional reference genes are stably expressed in LPS-stimulated monocytes or if RT-qPCR results are dependent on the choice of reference genes, we have assessed and evaluated gene expression stability of twelve candidate reference genes in this model system. Results Twelve candidate reference genes were quantified by RT-qPCR in LPS-stimulated, human monocytes and evaluated using the programs geNorm, Normfinder and BestKeeper. geNorm ranked PPIB (cyclophilin B, B2M (beta-2-microglobulin and PPIA (cyclophilin A as the best combination for gene expression normalization in LPS-stimulated monocytes. Normfinder suggested TBP (TATA-box binding protein and B2M as the best combination. Compared to these combinations, normalization using GAPDH alone resulted in significantly higher changes of TNF-α (tumor necrosis factor-alpha and IL10 (interleukin 10 expression. Moreover, a significant difference in TNF-α expression between monocytes stimulated with equimolar concentrations of LPS from N. meningitides and E. coli, respectively, was identified when using the suggested combinations of reference genes for normalization, but stayed unrecognized when employing a single reference gene, ACTB or GAPDH. Conclusions Gene expression levels in LPS-stimulated monocytes based on RT-qPCR results differ significantly when normalized to a single gene or a combination of stably expressed reference genes. Proper evaluation of reference gene stabiliy is therefore mandatory before reporting RT-qPCR results in LPS-stimulated monocytes.

  17. Analysis of gene expression in small numbers of purified hemopoietic progenitor cells by RT-PCR.

    Science.gov (United States)

    Ziegler, B L; Lamping, C P; Thoma, S J; Fliedner, T M

    1995-05-01

    Primitive hemopoietic stem cells represent the most probable targets for genetic alterations due to exposure to ionizing irradiation or chemical carcinogens. We have applied a two-step protocol for the purification of CD34+HLA-DR-/low hemopoietic progenitor cells from cord blood (CB). CD34+ cells were isolated by monoclonal antibody (mAb) against CD34 (My10) and immunomagnetic beads. Beads were cleaved off the CD34+ cells by enzymatic treatment with chymopapain. Due to chymopapain-resistance of epitopes recognized by the used mAbs purity control of CD34+ cells and separation into CD34+HLA-DR-/low and CD34+HLA-DR+ subsets could be performed by using flow cytometry. Two miniaturized procedures were applied to isolate poly(A)+ mRNA for the reverse transcription polymerase chain reaction (RT-PCR) from small numbers of CD34+HLA-DR-/low cells. In five experiments, the mean purity of immunomagnetically isolated CD34+ cells was 93.8% +/- 3.9. Flow cytometry sorting of CD34+ cells resulted in pure CD34+HLA-DR-/low populations (purity > 98.8%; range 98.8% to 99.9%; viability > 96%) with an average yield of 2600 +/- 800 cells/5 x 10(7) low density CB cells. By RT-PCR using both poly(A)+ mRNA isolation procedures, sequences corresponding to CD34 and beta 2-microglobulin were amplified from as few as 20 cells. Furthermore, a sequence-independent RT-PCR (SIP-RT-PCR) was applied to amplify the cDNA derived from five erythroblasts isolated from a burst-forming unit-erythroid (BFU-E). Upon hybridization, full-length c-fos message was detected in the SIP-RT-PCR amplified material. Our data demonstrate that gene expression can be detected at the transcriptional level in small numbers of hemopoietic progenitor cells. In addition, the SIP-RT-PCR may allow the amplification of unique mRNA species when subtractive hybridization procedures are performed. The presented data should be useful to analyze gene expression in rare subsets of radiation-exposed immature hemopoietic stem

  18. Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.

    Science.gov (United States)

    Eickelberg, Garrett J; Fisher, Alison J

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the FLOWERING LOCUS C gene, a key regulator of floral timing in Arabidopsis thaliana plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate students in biochemistry or molecular biology courses. The project provides students with hands-on experience with RT-qPCR, the current "gold standard" for gene expression analysis, including detailed data analysis using the common 2-ΔΔCT method. Moreover, it provides a convenient starting point for many inquiry-driven projects addressing diverse questions concerning ecological biochemistry, naturally occurring genetic variation, developmental biology, and the regulation of gene expression in nature. Copyright © 2013 Wiley Periodicals, Inc.

  19. Evaluation of suitable reference genes for gene expression studies ...

    Indian Academy of Sciences (India)

    2011-12-14

    Dec 14, 2011 ... MADS family of TFs control floral organ identity within each whorl of the flower by activating downstream genes. Measuring gene expression in different tissue types and developmental stages is of fundamental importance in TFs functional research. In last few years, quantitative real-time. PCR (qRT-PCR) ...

  20. Expression patterns of WRKY genes in di-haploid Populus simonii × P. nigra in response to salinity stress revealed by quantitative real-time PCR and RNA sequencing.

    Science.gov (United States)

    Wang, Shengji; Wang, Jiying; Yao, Wenjing; Zhou, Boru; Li, Renhua; Jiang, Tingbo

    2014-10-01

    Spatio-temporal expression patterns of 13 out of 119 poplar WRKY genes indicated dynamic and tissue-specific roles of WRKY family proteins in salinity stress tolerance. To understand the expression patterns of poplar WRKY genes under salinity stress, 51 of the 119 WRKY genes were selected from di-haploid Populus simonii × P. nigra by quantitative real-time PCR (qRT-PCR). We used qRT-PCR to profile the expression of the top 13 genes under salinity stress across seven time points, and employed RNA-Seq platforms to cross-validate it. Results demonstrated that all the 13 WRKY genes were expressed in root, stem, and leaf tissues, but their expression levels and overall patterns varied notably in these tissues. Regarding overall gene expression in roots, the 13 genes were significantly highly expressed at all six time points after the treatment, reaching the plateau of expression at hour 9. In leaves, the 13 genes were similarly up-regulated from 3 to 12 h in response to NaCl treatment. In stems, however, expression levels of the 13 genes did not show significant changes after the NaCl treatment. Regarding individual gene expression across the time points and the three tissues, the 13 genes can be classified into three clusters: the lowly expressed Cluster 1 containing PthWRKY28, 45 and 105; intermediately expressed Clusters 2 including PthWRKY56, 88 and 116; and highly expressed Cluster 3 consisting of PthWRKY41, 44, 51, 61, 62, 75 and 106. In general, genes in Cluster 2 and 3 displayed a dynamic pattern of "induced amplification-recovering", suggesting that these WRKY genes and corresponding pathways may play a critical role in mediating salt response and tolerance in a dynamic and tissue-specific manner.

  1. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  2. Selection of reference genes for qPCR in hairy root cultures of peanut

    Directory of Open Access Journals (Sweden)

    Medrano Giuliana

    2011-10-01

    Full Text Available Abstract Background Hairy root cultures produced via Agrobacterium rhizogenes-mediated transformation have emerged as practical biological models to elucidate the biosynthesis of specialized metabolites. To effectively understand the expression patterns of the genes involved in the metabolic pathways of these compounds, reference genes need to be systematically validated under specific experimental conditions as established by the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines. In the present report we describe the first validation of reference genes for RT-qPCR in hairy root cultures of peanut which produce stilbenoids upon elicitor treatments. Results A total of 21 candidate reference genes were evaluated. Nineteen genes were selected based on previous qPCR studies in plants and two were from the T-DNAs transferred from A. rhizogenes. Nucleotide sequences of peanut candidate genes were obtained using their homologous sequences in Arabidopsis. To identify the suitable primers, calibration curves were obtained for each candidate reference gene. After data analysis, 12 candidate genes meeting standard efficiency criteria were selected. The expression stability of these genes was analyzed using geNorm and NormFinder algorithms and a ranking was established based on expression stability of the genes. Candidate reference gene expression was shown to have less variation in methyl jasmonate (MeJA treated root cultures than those treated with sodium acetate (NaOAc. Conclusions This work constitutes the first effort to validate reference genes for RT-qPCR in hairy roots. While these genes were selected under conditions of NaOAc and MeJA treatment, we anticipate these genes to provide good targets for reference genes for hairy roots under a variety of stress conditions. The lead reference genes were a gene encoding for a TATA box binding protein (TBP2 and a gene encoding a ribosomal protein (RPL8C. A

  3. Quantitative Real Time PCR approach to study gene expression profile during prenatal growth of skeletal muscle in pig of Duroc and Pietrain breeds

    Directory of Open Access Journals (Sweden)

    M. Cagnazzo

    2010-01-01

    Full Text Available The quantitative real time-PCR (QRT-PCR is a very sensitive method used to quantify mRNA level in gene expression analysis. Combining amplification, detection and quantification in a single step, allows a more accurate measurement compared to the traditional PCR end point analysis (Pfaffl, 2001; Bustin, 2002.

  4. Expressão dos genes nodC, nodW e nopP em Bradyrhizobium japonicum estirpe CPAC 15 avaliada por RT-qPCR Expression of nodC, nodW and nopP genes in Bradyrhizobium japonicum CPAC 15 strain evaluated by RT-qPCR

    Directory of Open Access Journals (Sweden)

    Simone Bortolan

    2009-11-01

    Full Text Available O objetivo deste trabalho foi avaliar a expressão, por RT-qPCR, dos genes de nodulação nodC e nodW e do gene nopP da estirpe CPAC 15, que provavelmente atuam na infecção das raízes da soja. Foram realizados dois experimentos. No primeiro, a expressão dos genes foi avaliada nas células após a incubação com genisteína por 15 min, 1, 4 e 8 horas. Os resultados revelaram que os três genes apresentaram maior expressão imediatamente após o contato com o indutor (15 min. No segundo experimento, a bactéria foi cultivada na presença de indutores (genisteína ou exsudatos de sementes de soja por 48 horas. A expressão dos três genes foi maior na presença de genisteína, com valores de expressão para nodC, nodW e nopP superiores ao controle. Os resultados obtidos confirmam a funcionalidade dos três genes na estirpe CPAC 15, com ênfase para o nopP, cuja funcionalidade em Bradyrhizobium japonicum foi descrita pela primeira vez.The objective of this work was to evaluate, by RT-qPCR, the expression of the nodC and nodW nodulation genes and of the nopP gene of the CPAC 15 strain, which probably play a role in the infection of soybean roots. Two experiments were done. In the first, the gene expression was evaluated in cells after incubation with genistein for 15 min, 1, 4 and 8 hours. Results showed that the three genes showed higher expression immediately after contact with the inducer (15 min. In the second experiment, the bacterium was grown in the presence of inducers (genistein or soybean seed exudates for 48 hours. The expression of the three genes was greater when induced by genistein, and the expression of nodC, nodW and nopP had higher values than the control. The results confirm the functionality of the three genes in the CPAC 15 strain, with an emphasis on the nopP, whose functionality in Bradyrhizobium japonicum was described for the first time.

  5. A probe-based qRT-PCR method to profile immunological gene expression in blood of captive beluga whales (Delphinapterus leucas

    Directory of Open Access Journals (Sweden)

    Ming-An Tsai

    2017-09-01

    Full Text Available Cytokines are fundamental for a functioning immune system, and thus potentially serve as important indicators of animal health. Quantitation of mRNA using quantitative reverse transcription polymerase chain reaction (qRT-PCR is an established immunological technique. It is particularly suitable for detecting the expression of proteins against which monoclonal antibodies are not available. In this study, we developed a probe-based quantitative gene expression assay for immunological assessment of captive beluga whales (Delphinapterus leucas that is one of the most common cetacean species on display in aquariums worldwide. Six immunologically relevant genes (IL-2Rα, -4, -10, -12, TNFα, and IFNγ were selected for analysis, and two validated housekeeping genes (PGK1 and RPL4 with stable expression were used as reference genes. Sixteen blood samples were obtained from four animals with different health conditions and stored in RNAlater™ solution. These samples were used for RNA extraction followed by qRT-PCR analysis. Analysis of gene transcripts was performed by relative quantitation using the comparative Cq method with the integration of amplification efficiency and two reference genes. The expression levels of each gene in the samples from clinically healthy animals were normally distributed. Transcript outliers for IL-2Rα, IL-4, IL-12, TNFα, and IFNγ were noticed in four samples collected from two clinically unhealthy animals. This assay has the potential to identify immune system deviation from normal state, which is caused by health problems. Furthermore, knowing the immune status of captive cetaceans could help both trainers and veterinarians in implementing preventive approaches prior to disease onset.

  6. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Redman Julia C

    2008-07-01

    Full Text Available Abstract Background Medicago truncatula is a model legume species that is currently the focus of an international genome sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst such genes are many encoding transcription factors (TFs, which are arguably the most important class of regulatory proteins. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is the most sensitive method currently available for transcript quantification, and one that can be scaled up to analyze transcripts of thousands of genes in parallel. Thus, qRT-PCR is an ideal method to tackle the problem of TF transcript quantification in Medicago and other plants. Results We established a bioinformatics pipeline to identify putative TF genes in Medicago truncatula and to design gene-specific oligonucleotide primers for qRT-PCR analysis of TF transcripts. We validated the efficacy and gene-specificity of over 1000 TF primer pairs and utilized these to identify sets of organ-enhanced TF genes that may play important roles in organ development or differentiation in this species. This community resource will be developed further as more genome sequence becomes available, with the ultimate goal of producing validated, gene-specific primers for all Medicago TF genes. Conclusion High-throughput qRT-PCR using a 384-well plate format enables rapid, flexible, and sensitive quantification of all predicted Medicago transcription factor mRNAs. This resource has been utilized recently by several groups in Europe, Australia, and the USA, and we expect that it will become the 'gold-standard' for TF transcript profiling in Medicago truncatula.

  7. ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization.

    Science.gov (United States)

    Sang, Jian; Wang, Zhennan; Li, Man; Cao, Jiabao; Niu, Guangyi; Xia, Lin; Zou, Dong; Wang, Fan; Xu, Xingjian; Han, Xiaojiao; Fan, Jinqi; Yang, Ye; Zuo, Wanzhu; Zhang, Yang; Zhao, Wenming; Bao, Yiming; Xiao, Jingfa; Hu, Songnian; Hao, Lili; Zhang, Zhang

    2018-01-04

    Real-time quantitative PCR (RT-qPCR) has become a widely used method for accurate expression profiling of targeted mRNA and ncRNA. Selection of appropriate internal control genes for RT-qPCR normalization is an elementary prerequisite for reliable expression measurement. Here, we present ICG (http://icg.big.ac.cn), a wiki-driven knowledgebase for community curation of experimentally validated internal control genes as well as their associated experimental conditions. Unlike extant related databases that focus on qPCR primers in model organisms (mainly human and mouse), ICG features harnessing collective intelligence in community integration of internal control genes for a variety of species. Specifically, it integrates a comprehensive collection of more than 750 internal control genes for 73 animals, 115 plants, 12 fungi and 9 bacteria, and incorporates detailed information on recommended application scenarios corresponding to specific experimental conditions, which, collectively, are of great help for researchers to adopt appropriate internal control genes for their own experiments. Taken together, ICG serves as a publicly editable and open-content encyclopaedia of internal control genes and accordingly bears broad utility for reliable RT-qPCR normalization and gene expression characterization in both model and non-model organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Selection of reference genes for expression analysis using quantitative real-time PCR in the pea aphid, Acyrthosiphon pisum (Harris (Hemiptera, Aphidiae.

    Directory of Open Access Journals (Sweden)

    Chunxiao Yang

    Full Text Available To facilitate gene expression study and obtain accurate qRT-PCR analysis, normalization relative to stable expressed housekeeping genes is required. In this study, expression profiles of 11 candidate reference genes, including actin (Actin, elongation factor 1 α (EF1A, TATA-box-binding protein (TATA, ribosomal protein L12 (RPL12, β-tubulin (Tubulin, NADH dehydrogenase (NADH, vacuolar-type H+-ATPase (v-ATPase, succinate dehydrogenase B (SDHB, 28S ribosomal RNA (28S, 16S ribosomal RNA (16S, and 18S ribosomal RNA (18S from the pea aphid Acyrthosiphon pisum, under different developmental stages and temperature conditions, were investigated. A total of four analytical tools, geNorm, Normfinder, BestKeeper, and the ΔCt method, were used to evaluate the suitability of these genes as endogenous controls. According to RefFinder, a web-based software tool which integrates all four above-mentioned algorithms to compare and rank the reference genes, SDHB, 16S, and NADH were the three most stable house-keeping genes under different developmental stages and temperatures. This work is intended to establish a standardized qRT-PCR protocol in pea aphid and serves as a starting point for the genomics and functional genomics research in this emerging insect model.

  9. A comparative study of three different gene expression analysis methods.

    Science.gov (United States)

    Choe, Jae Young; Han, Hyung Soo; Lee, Seon Duk; Lee, Hanna; Lee, Dong Eun; Ahn, Jae Yun; Ryoo, Hyun Wook; Seo, Kang Suk; Kim, Jong Kun

    2017-12-04

    TNF-α regulates immune cells and acts as an endogenous pyrogen. Reverse transcription polymerase chain reaction (RT-PCR) is one of the most commonly used methods for gene expression analysis. Among the alternatives to PCR, loop-mediated isothermal amplification (LAMP) shows good potential in terms of specificity and sensitivity. However, few studies have compared RT-PCR and LAMP for human gene expression analysis. Therefore, in the present study, we compared one-step RT-PCR, two-step RT-LAMP and one-step RT-LAMP for human gene expression analysis. We compared three gene expression analysis methods using the human TNF-α gene as a biomarker from peripheral blood cells. Total RNA from the three selected febrile patients were subjected to the three different methods of gene expression analysis. In the comparison of three gene expression analysis methods, the detection limit of both one-step RT-PCR and one-step RT-LAMP were the same, while that of two-step RT-LAMP was inferior. One-step RT-LAMP takes less time, and the experimental result is easy to determine. One-step RT-LAMP is a potentially useful and complementary tool that is fast and reasonably sensitive. In addition, one-step RT-LAMP could be useful in environments lacking specialized equipment or expertise.

  10. GENE EXPRESSION CHANGES AND ANTI-PROLIFERATIVE EFFECT OF NONI (Morinda citrifolia FRUIT EXTRACT ANALYSED BY REAL TIME-PCR

    Directory of Open Access Journals (Sweden)

    hermansyah hermansyah

    2017-05-01

    Full Text Available To elucidate the anti-proliferative effect of noni (Morinda citrifolia fruit extract for a Saccharomyces cerevisiae model organism, analysis of gene expression changes related to cell cycle associated with inhibition effect of noni fruit extract was carried out. Anti-proliferative of noni fruit extract was analyzed using gene expression changes of Saccharomyces cerevisiae (strains FY833 and BY4741.  Transcriptional analysis of genes that play a role in cell cycle was conducted by growing cells on YPDAde broth medium containing 1% (w/v noni fruit extract, and then subjected using quantitative real-time polymerase chain reaction (RT-PCR.  Transcriptional level of genes CDC6 (Cell Division Cycle-6, CDC20 (Cell Division Cycle-20, FAR1 (Factor ARrest-1, FUS3 (FUSsion-3, SIC1 (Substrate/Subunit Inhibitor of Cyclin-dependent protein kinase-1, WHI5 (WHIskey-5, YOX1 (Yeast homeobOX-1 and YHP1 (Yeast Homeo-Protein-1 increased, oppositely genes expression of DBF4 (DumbBell Forming, MCM1 (Mini Chromosome Maintenance-1 and TAH11 (Topo-A Hypersensitive-11 decreased, while the expression level of genes CDC7 (Cell Division Cycle-7, MBP1 (MIul-box Binding Protein-1 and SWI6 (SWItching deficient-6 relatively unchanged. These results indicated that gene expression changes might associate with anti-proliferative effect from noni fruit extract. These gene expressions changes lead to the growth inhibition of S.cerevisiae cell because of cell cycle defect.

  11. Reference gene identification for reliable normalisation of quantitative RT-PCR data in Setaria viridis.

    Science.gov (United States)

    Nguyen, Duc Quan; Eamens, Andrew L; Grof, Christopher P L

    2018-01-01

    Quantitative real-time polymerase chain reaction (RT-qPCR) is the key platform for the quantitative analysis of gene expression in a wide range of experimental systems and conditions. However, the accuracy and reproducibility of gene expression quantification via RT-qPCR is entirely dependent on the identification of reliable reference genes for data normalisation. Green foxtail ( Setaria viridis ) has recently been proposed as a potential experimental model for the study of C 4 photosynthesis and is closely related to many economically important crop species of the Panicoideae subfamily of grasses, including Zea mays (maize), Sorghum bicolor (sorghum) and Sacchurum officinarum (sugarcane). Setaria viridis (Accession 10) possesses a number of key traits as an experimental model, namely; (i) a small sized, sequenced and well annotated genome; (ii) short stature and generation time; (iii) prolific seed production, and; (iv) is amendable to Agrobacterium tumefaciens -mediated transformation. There is currently however, a lack of reference gene expression information for Setaria viridis ( S. viridis ). We therefore aimed to identify a cohort of suitable S. viridis reference genes for accurate and reliable normalisation of S. viridis RT-qPCR expression data. Eleven putative candidate reference genes were identified and examined across thirteen different S. viridis tissues. Of these, the geNorm and NormFinder analysis software identified SERINE / THERONINE - PROTEIN PHOSPHATASE 2A ( PP2A ), 5 '- ADENYLYLSULFATE REDUCTASE 6 ( ASPR6 ) and DUAL SPECIFICITY PHOSPHATASE ( DUSP ) as the most suitable combination of reference genes for the accurate and reliable normalisation of S. viridis RT-qPCR expression data. To demonstrate the suitability of the three selected reference genes, PP2A , ASPR6 and DUSP , were used to normalise the expression of CINNAMYL ALCOHOL DEHYDROGENASE ( CAD ) genes across the same tissues. This approach readily demonstrated the suitably of the three

  12. Identification of Suitable Reference Genes for Investigating Gene Expression in Anterior Cruciate Ligament Injury by Using Reverse Transcription-Quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Leal

    Full Text Available The anterior cruciate ligament (ACL is one of the most frequently injured structures during high-impact sporting activities. Gene expression analysis may be a useful tool for understanding ACL tears and healing failure. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR has emerged as an effective method for such studies. However, this technique requires the use of suitable reference genes for data normalization. Here, we evaluated the suitability of six reference genes (18S, ACTB, B2M, GAPDH, HPRT1, and TBP by using ACL samples of 39 individuals with ACL tears (20 with isolated ACL tears and 19 with ACL tear and combined meniscal injury and of 13 controls. The stability of the candidate reference genes was determined by using the NormFinder, geNorm, BestKeeper DataAssist, and RefFinder software packages and the comparative ΔCt method. ACTB was the best single reference gene and ACTB+TBP was the best gene pair. The GenEx software showed that the accumulated standard deviation is reduced when a larger number of reference genes is used for gene expression normalization. However, the use of a single reference gene may not be suitable. To identify the optimal combination of reference genes, we evaluated the expression of FN1 and PLOD1. We observed that at least 3 reference genes should be used. ACTB+HPRT1+18S is the best trio for the analyses involving isolated ACL tears and controls. Conversely, ACTB+TBP+18S is the best trio for the analyses involving (1 injured ACL tears and controls, and (2 ACL tears of patients with meniscal tears and controls. Therefore, if the gene expression study aims to compare non-injured ACL, isolated ACL tears and ACL tears from patients with meniscal tear as three independent groups ACTB+TBP+18S+HPRT1 should be used. In conclusion, 3 or more genes should be used as reference genes for analysis of ACL samples of individuals with and without ACL tears.

  13. Selection and Verification of Candidate Reference Genes for Mature MicroRNA Expression by Quantitative RT-PCR in the Tea Plant (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Hui Song

    2016-05-01

    Full Text Available Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is a rapid and sensitive method for analyzing microRNA (miRNA expression. However, accurate qRT-PCR results depend on the selection of reliable reference genes as internal positive controls. To date, few studies have identified reliable reference genes for differential expression analysis of miRNAs among tissues, and among experimental conditions in plants. In this study, three miRNAs and four non-coding small RNAs (ncRNA were selected as reference candidates, and the stability of their expression was evaluated among different tissues and under different experimental conditions in the tea plant (Camellia sinensis using the geNorm and NormFinder programs. It was shown that miR159a was the best single reference gene in the bud to the fifth leaf, 5S rRNA was the most suitable gene in different organs, miR6149 was the most stable gene when the leaves were attacked by Ectropis oblique and U4, miR5368n and miR159a were the best genes when the leaves were treated by methyl jasmonate (MeJA, salicylic acid (SA and abscisic acid (ABA, respectively. Our results provide suitable reference genes for future investigations on miRNA functions in tea plants.

  14. Cloning and evaluation of reference genes for quantitative real-time PCR analysis in Amorphophallus

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2017-04-01

    Full Text Available Quantitative real-time reverse transcription PCR (RT-qPCR has been widely used in the detection and quantification of gene expression levels because of its high accuracy, sensitivity, and reproducibility as well as its large dynamic range. However, the reliability and accuracy of RT-qPCR depends on accurate transcript normalization using stably expressed reference genes. Amorphophallus is a perennial plant with a high content of konjac glucomannan (KGM in its corm. This crop has been used as a food source and as a traditional medicine for thousands of years. Without adequate knowledge of gene expression profiles, there has been no report of validated reference genes in Amorphophallus. In this study, nine genes that are usually used as reference genes in other crops were selected as candidate reference genes. These putative sequences of these genes Amorphophallus were cloned by the use of degenerate primers. The expression stability of each gene was assessed in different tissues and under two abiotic stresses (heat and waterlogging in A. albus and A. konjac. Three distinct algorithms were used to evaluate the expression stability of the candidate reference genes. The results demonstrated that EF1-a, EIF4A, H3 and UBQ were the best reference genes under heat stress in Amorphophallus. Furthermore, EF1-a, EIF4A, TUB, and RP were the best reference genes in waterlogged conditions. By comparing different tissues from all samples, we determined that EF1-α, EIF4A, and CYP were stable in these sets. In addition, the suitability of these reference genes was confirmed by validating the expression of a gene encoding the small heat shock protein SHSP, which is related to heat stress in Amorphophallus. In sum, EF1-α and EIF4A were the two best reference genes for normalizing mRNA levels in different tissues and under various stress treatments, and we suggest using one of these genes in combination with 1 or 2 reference genes associated with different

  15. Exploring Valid Reference Genes for Quantitative Real-Time PCR Analysis in Sesamia inferens (Lepidoptera: Noctuidae)

    OpenAIRE

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study...

  16. Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples.

    Science.gov (United States)

    Mehta, Rohini; Birerdinc, Aybike; Hossain, Noreen; Afendy, Arian; Chandhoke, Vikas; Younossi, Zobair; Baranova, Ancha

    2010-05-21

    Given the epidemic proportions of obesity worldwide and the concurrent prevalence of metabolic syndrome, there is an urgent need for better understanding the underlying mechanisms of metabolic syndrome, in particular, the gene expression differences which may participate in obesity, insulin resistance and the associated series of chronic liver conditions. Real-time PCR (qRT-PCR) is the standard method for studying changes in relative gene expression in different tissues and experimental conditions. However, variations in amount of starting material, enzymatic efficiency and presence of inhibitors can lead to quantification errors. Hence the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Recent studies have shown that both obesity and presence of insulin resistance influence an expression of commonly used reference genes in omental fat. In this study we validated candidate reference genes suitable for qRT-PCR profiling experiments using visceral adipose samples from obese and lean individuals. Cross-validation of expression stability of eight selected reference genes using three popular algorithms, GeNorm, NormFinder and BestKeeper found ACTB and RPII as most stable reference genes. We recommend ACTB and RPII as stable reference genes most suitable for gene expression studies of human visceral adipose tissue. The use of these genes as a reference pair may further enhance the robustness of qRT-PCR in this model system.

  17. Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples

    Directory of Open Access Journals (Sweden)

    Afendy Arian

    2010-05-01

    Full Text Available Abstract Background Given the epidemic proportions of obesity worldwide and the concurrent prevalence of metabolic syndrome, there is an urgent need for better understanding the underlying mechanisms of metabolic syndrome, in particular, the gene expression differences which may participate in obesity, insulin resistance and the associated series of chronic liver conditions. Real-time PCR (qRT-PCR is the standard method for studying changes in relative gene expression in different tissues and experimental conditions. However, variations in amount of starting material, enzymatic efficiency and presence of inhibitors can lead to quantification errors. Hence the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Recent studies have shown that both obesity and presence of insulin resistance influence an expression of commonly used reference genes in omental fat. In this study we validated candidate reference genes suitable for qRT-PCR profiling experiments using visceral adipose samples from obese and lean individuals. Results Cross-validation of expression stability of eight selected reference genes using three popular algorithms, GeNorm, NormFinder and BestKeeper found ACTB and RPII as most stable reference genes. Conclusions We recommend ACTB and RPII as stable reference genes most suitable for gene expression studies of human visceral adipose tissue. The use of these genes as a reference pair may further enhance the robustness of qRT-PCR in this model system.

  18. Validation of suitable reference genes for quantitative gene expression analysis in Panax ginseng

    Directory of Open Access Journals (Sweden)

    Meizhen eWang

    2016-01-01

    Full Text Available Reverse transcription-qPCR (RT-qPCR has become a popular method for gene expression studies. Its results require data normalization by housekeeping genes. No single gene is proved to be stably expressed under all experimental conditions. Therefore, systematic evaluation of reference genes is necessary. With the aim to identify optimum reference genes for RT-qPCR analysis of gene expression in different tissues of Panax ginseng and the seedlings grown under heat stress, we investigated the expression stability of eight candidate reference genes, including elongation factor 1-beta (EF1-β, elongation factor 1-gamma (EF1-γ, eukaryotic translation initiation factor 3G (IF3G, eukaryotic translation initiation factor 3B (IF3B, actin (ACT, actin11 (ACT11, glyceraldehyde-3-phosphate dehydrogenase (GAPDH and cyclophilin ABH-like protein (CYC, using four widely used computational programs: geNorm, Normfinder, BestKeeper, and the comparative ΔCt method. The results were then integrated using the web-based tool RefFinder. As a result, EF1-γ, IF3G and EF1-β were the three most stable genes in different tissues of P. ginseng, while IF3G, ACT11 and GAPDH were the top three-ranked genes in seedlings treated with heat. Using three better reference genes alone or in combination as internal control, we examined the expression profiles of MAR, a multiple function-associated mRNA-like non-coding RNA (mlncRNA in P. ginseng. Taken together, we recommended EF1-γ/IF3G and IF3G/ACT11 as the suitable pair of reference genes for RT-qPCR analysis of gene expression in different tissues of P. ginseng and the seedlings grown under heat stress, respectively. The results serve as a foundation for future studies on P. ginseng functional genomics.

  19. Circadian expression of clock genes and clock-controlled genes in the rat retina

    NARCIS (Netherlands)

    Kamphuis, Willem; Cailotto, Cathy; Dijk, Frederike; Bergen, Arthur; Buijs, Ruud M.

    2005-01-01

    The circadian expression patterns of genes encoding for proteins that make up the core of the circadian clock were measured in rat retina using real-time quantitative PCR (qPCR). Transcript levels of several genes previously used for normalization of qPCR assays were determined and the effect of

  20. Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs.

    Science.gov (United States)

    Borowska, D; Rothwell, L; Bailey, R A; Watson, K; Kaiser, P

    2016-02-01

    Quantitative polymerase chain reaction (qPCR) is a powerful technique for quantification of gene expression, especially genes involved in immune responses. Although qPCR is a very efficient and sensitive tool, variations in the enzymatic efficiency, quality of RNA and the presence of inhibitors can lead to errors. Therefore, qPCR needs to be normalised to obtain reliable results and allow comparison. The most common approach is to use reference genes as internal controls in qPCR analyses. In this study, expression of seven genes, including β-actin (ACTB), β-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), TATA box binding protein (TBP), α-tubulin (TUBAT) and 28S ribosomal RNA (r28S), was determined in cells isolated from chicken lymphoid tissues and stimulated with three different mitogens. The stability of the genes was measured using geNorm, NormFinder and BestKeeper software. The results from both geNorm and NormFinder were that the three most stably expressed genes in this panel were TBP, GAPDH and r28S. BestKeeper did not generate clear answers because of the highly heterogeneous sample set. Based on these data we will include TBP in future qPCR normalisation. The study shows the importance of appropriate reference gene normalisation in other tissues before qPCR analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases

    DEFF Research Database (Denmark)

    Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian

    2016-01-01

    Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results......, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected...... by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori...

  2. Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba skin biopsies

    Directory of Open Access Journals (Sweden)

    Casini Silvia

    2006-09-01

    Full Text Available Abstract Background Odontocete cetaceans occupy the top position of the marine food-web and are particularly sensitive to the bioaccumulation of lipophilic contaminants. The effects of environmental pollution on these species are highly debated and various ecotoxicological studies have addressed the impact of xenobiotic compounds on marine mammals, raising conservational concerns. Despite its sensitivity, quantitative real-time PCR (qRT-PCR has never been used to quantify gene induction caused by exposure of cetaceans to contaminants. A limitation for the application of qRT-PCR is the need for appropriate reference genes which allow the correct quantification of gene expression. A systematic evaluation of potential reference genes in cetacean skin biopsies is presented, in order to validate future qRT-PCR studies aiming at using the expression of selected genes as non-lethal biomarkers. Results Ten commonly used housekeeping genes (HKGs were partially sequenced in the striped dolphin (Stenella coeruleoalba and, for each gene, PCR primer pairs were specifically designed and tested in qRT-PCR assays. The expression of these potential control genes was examined in 30 striped dolphin skin biopsy samples, obtained from specimens sampled in the north-western Mediterranean Sea. The stability of selected control genes was determined using three different specific VBA applets (geNorm, NormFinder and BestKeeper which produce highly comparable results. Glyceraldehyde-3P-dehydrogenase (GAPDH and tyrosine 3-monooxygenase (YWHAZ always rank as the two most stably expressed HKGs according to the analysis with geNorm and Normfinder, and are defined as optimal control genes by BestKepeer. Ribosomal protein L4 (RPL4 and S18 (RPS18 also exhibit a remarkable stability of their expression levels. On the other hand, transferrin receptor (TFRC, phosphoglycerate kinase 1 (PGK1, hypoxanthine ribosyltransferase (HPRT1 and β-2-microglobin (B2M show variable expression

  3. Selection of reference genes for quantitative real time RT-PCR during dimorphism in the zygomycete Mucor circinelloides.

    Science.gov (United States)

    Valle-Maldonado, Marco I; Jácome-Galarza, Irvin E; Gutiérrez-Corona, Félix; Ramírez-Díaz, Martha I; Campos-García, Jesús; Meza-Carmen, Víctor

    2015-03-01

    Mucor circinelloides is a dimorphic fungal model for studying several biological processes including cell differentiation (yeast-mold transitions) as well as biodiesel and carotene production. The recent release of the first draft sequence of the M. circinelloides genome, combined with the availability of analytical methods to determine patterns of gene expression, such as quantitative Reverse transcription-Polymerase chain reaction (qRT-PCR), and the development of molecular genetic tools for the manipulation of the fungus, may help identify M. circinelloides gene products and analyze their relevance in different biological processes. However, no information is available on M. circinelloides genes of stable expression that could serve as internal references in qRT-PCR analyses. One approach to solve this problem consists in the use of housekeeping genes as internal references. However, validation of the usability of these reference genes is a fundamental step prior to initiating qRT-PCR assays. This work evaluates expression of several constitutive genes by qRT-PCR throughout the morphological differentiation stages of M. circinelloides; our results indicate that tfc-1 and ef-1 are the most stable genes for qRT-PCR assays during differentiation studies and they are proposed as reference genes to carry out gene expression studies in this fungus.

  4. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis.

    Science.gov (United States)

    Enciso, M; Carrascosa, J P; Sarasa, J; Martínez-Ortiz, P A; Munné, S; Horcajadas, J A; Aizpurua, J

    2018-02-01

    Is it possible to determine the receptivity status of an endometrium by combined quantitative reverse transcription PCR (RT-qPCR) expression analysis of genes involved in endometrial proliferation and immunity? The new ER Map®/ER Grade® test can predict endometrial receptivity status by RT-qPCR using a new panel of genes involved in endometrial proliferation and the maternal immune response associated to embryonic implantation. The human endometrium reaches a receptive status adequate for embryonic implantation around Days 19-21 of the menstrual cycle. During this period, known as the window of implantation (WOI), the endometrium shows a specific gene expression profile suitable for endometrial function evaluation. The number of molecular diagnostic tools currently available to characterize this process is very limited. In this study, a new system for human endometrial receptivity evaluation was optimized and presented for the first time. ER Map®/ER Grade® validation was achieved on 312 endometrial samples including fertile women and patients undergoing fertility treatment between July 2014 and March 2016. Expression analyses of 184 genes involved in endometrial receptivity and immune response were performed. Samples were additionally tested with an independent endometrial receptivity test. A total of 96 fertile women and 120 assisted reproduction treatment (ART) patients participated in the study. Endometrial biopsy samples were obtained at LH + 2 and LH + 7 days in fertile subjects in a natural cycle and at the window of implantation (WOI) in patients in a hormone-replacement therapy (HRT) cycle. Total RNA was purified, quality-checked and reverse-transcribed. Gene expression was quantified by high-throughput RT-qPCR and statistically analyzed. Informative genes were selected and used to classify samples into four different groups of endometrial receptivity status. Significantly different gene expression levels were found in 85 out of 184 selected genes when

  5. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Neutelings Godfrey

    2010-04-01

    Full Text Available Abstract Background Quantitative real-time PCR (qRT-PCR is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs. Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L. Results Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups. qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59. LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both ge

  6. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey

    2010-04-19

    Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and Norm

  7. Selection and evaluation of reference genes for expression studies with quantitative PCR in the model fungus Neurospora crassa under different environmental conditions in continuous culture.

    Directory of Open Access Journals (Sweden)

    Kathleen D Cusick

    Full Text Available Neurospora crassa has served as a model organism for studying circadian pathways and more recently has gained attention in the biofuel industry due to its enhanced capacity for cellulase production. However, in order to optimize N. crassa for biotechnological applications, metabolic pathways during growth under different environmental conditions must be addressed. Reverse-transcription quantitative PCR (RT-qPCR is a technique that provides a high-throughput platform from which to measure the expression of a large set of genes over time. The selection of a suitable reference gene is critical for gene expression studies using relative quantification, as this strategy is based on normalization of target gene expression to a reference gene whose expression is stable under the experimental conditions. This study evaluated twelve candidate reference genes for use with N. crassa when grown in continuous culture bioreactors under different light and temperature conditions. Based on combined stability values from NormFinder and Best Keeper software packages, the following are the most appropriate reference genes under conditions of: (1 light/dark cycling: btl, asl, and vma1; (2 all-dark growth: btl, tbp, vma1, and vma2; (3 temperature flux: btl, vma1, act, and asl; (4 all conditions combined: vma1, vma2, tbp, and btl. Since N. crassa exists as different cell types (uni- or multi-nucleated, expression changes in a subset of the candidate genes was further assessed using absolute quantification. A strong negative correlation was found to exist between ratio and threshold cycle (CT values, demonstrating that CT changes serve as a reliable reflection of transcript, and not gene copy number, fluctuations. The results of this study identified genes that are appropriate for use as reference genes in RT-qPCR studies with N. crassa and demonstrated that even with the presence of different cell types, relative quantification is an acceptable method for measuring

  8. Selection and evaluation of reference genes for expression studies with quantitative PCR in the model fungus Neurospora crassa under different environmental conditions in continuous culture.

    Science.gov (United States)

    Cusick, Kathleen D; Fitzgerald, Lisa A; Pirlo, Russell K; Cockrell, Allison L; Petersen, Emily R; Biffinger, Justin C

    2014-01-01

    Neurospora crassa has served as a model organism for studying circadian pathways and more recently has gained attention in the biofuel industry due to its enhanced capacity for cellulase production. However, in order to optimize N. crassa for biotechnological applications, metabolic pathways during growth under different environmental conditions must be addressed. Reverse-transcription quantitative PCR (RT-qPCR) is a technique that provides a high-throughput platform from which to measure the expression of a large set of genes over time. The selection of a suitable reference gene is critical for gene expression studies using relative quantification, as this strategy is based on normalization of target gene expression to a reference gene whose expression is stable under the experimental conditions. This study evaluated twelve candidate reference genes for use with N. crassa when grown in continuous culture bioreactors under different light and temperature conditions. Based on combined stability values from NormFinder and Best Keeper software packages, the following are the most appropriate reference genes under conditions of: (1) light/dark cycling: btl, asl, and vma1; (2) all-dark growth: btl, tbp, vma1, and vma2; (3) temperature flux: btl, vma1, act, and asl; (4) all conditions combined: vma1, vma2, tbp, and btl. Since N. crassa exists as different cell types (uni- or multi-nucleated), expression changes in a subset of the candidate genes was further assessed using absolute quantification. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes serve as a reliable reflection of transcript, and not gene copy number, fluctuations. The results of this study identified genes that are appropriate for use as reference genes in RT-qPCR studies with N. crassa and demonstrated that even with the presence of different cell types, relative quantification is an acceptable method for measuring gene

  9. Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases

    OpenAIRE

    Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian; Aznar, Susana; Pakkenberg, Bente; Brudek, Tomasz

    2016-01-01

    Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain sampl...

  10. Selection of reliable reference genes for quantitative real-time PCR in human T cells and neutrophils

    Directory of Open Access Journals (Sweden)

    Ledderose Carola

    2011-10-01

    Full Text Available Abstract Background The choice of reliable reference genes is a prerequisite for valid results when analyzing gene expression with real-time quantitative PCR (qPCR. This method is frequently applied to study gene expression patterns in immune cells, yet a thorough validation of potential reference genes is still lacking for most leukocyte subtypes and most models of their in vitro stimulation. In the current study, we evaluated the expression stability of common reference genes in two widely used cell culture models-anti-CD3/CD28 activated T cells and lipopolysaccharide stimulated neutrophils-as well as in unselected untreated leukocytes. Results The mRNA expression of 17 (T cells, 7 (neutrophils or 8 (unselected leukocytes potential reference genes was quantified by reverse transcription qPCR, and a ranking of the preselected candidate genes according to their expression stability was calculated using the programs NormFinder, geNorm and BestKeeper. IPO8, RPL13A, TBP and SDHA were identified as suitable reference genes in T cells. TBP, ACTB and SDHA were stably expressed in neutrophils. TBP and SDHA were also the most stable genes in untreated total blood leukocytes. The critical impact of reference gene selection on the estimated target gene expression is demonstrated for IL-2 and FIH expression in T cells. Conclusions The study provides a shortlist of suitable reference genes for normalization of gene expression data in unstimulated and stimulated T cells, unstimulated and stimulated neutrophils and in unselected leukocytes.

  11. rpb2 is a reliable reference gene for quantitative gene expression analysis in the dermatophyte Trichophyton rubrum.

    Science.gov (United States)

    Jacob, Tiago R; Peres, Nalu T A; Persinoti, Gabriela F; Silva, Larissa G; Mazucato, Mendelson; Rossi, Antonio; Martinez-Rossi, Nilce M

    2012-05-01

    The selection of reference genes used for data normalization to quantify gene expression by real-time PCR amplifications (qRT-PCR) is crucial for the accuracy of this technique. In spite of this, little information regarding such genes for qRT-PCR is available for gene expression analyses in pathogenic fungi. Thus, we investigated the suitability of eight candidate reference genes in isolates of the human dermatophyte Trichophyton rubrum subjected to several environmental challenges, such as drug exposure, interaction with human nail and skin, and heat stress. The stability of these genes was determined by geNorm, NormFinder and Best-Keeper programs. The gene with the most stable expression in the majority of the conditions tested was rpb2 (DNA-dependent RNA polymerase II), which was validated in three T. rubrum strains. Moreover, the combination of rpb2 and chs1 (chitin synthase) genes provided for the most reliable qRT-PCR data normalization in T. rubrum under a broad range of biological conditions. To the best of our knowledge this is the first report on the selection of reference genes for qRT-PCR data normalization in dermatophytes and the results of these studies should permit further analysis of gene expression under several experimental conditions, with improved accuracy and reliability.

  12. Validation of reference genes for RT-qPCR analysis in Herbaspirillum seropedicae.

    Science.gov (United States)

    Pessoa, Daniella Duarte Villarinho; Vidal, Marcia Soares; Baldani, José Ivo; Simoes-Araujo, Jean Luiz

    2016-08-01

    The RT-qPCR technique needs a validated set of reference genes for ensuring the consistency of the results from the gene expression. Expression stabilities for 9 genes from Herbaspirillum seropedicae, strain HRC54, grown with different carbon sources were calculated using geNorm and NormFinder, and the gene rpoA showed the best stability values. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Selection of reference genes for RT-qPCR analysis in the monarch butterfly, Danaus plexippus (L.), a migrating bio-indicator

    Science.gov (United States)

    Quantitative real-time PCR (qRT-PCR) is a reliable and reproducible technique for measuring and evaluating changes in gene expression. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. In this study, expres...

  14. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Gene expression analysis in watermelon (Citrullus lanatus fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC, β-actin (ClACT, and alpha tubulin 5 (ClTUA5 as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1, a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  15. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Science.gov (United States)

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  16. Differentially expressed genes of Tetrahymena thermophila in response to tributyltin (TBT) identified by suppression subtractive hybridization and real time quantitative PCR.

    Science.gov (United States)

    Feng, Lifang; Miao, Wei; Wu, Yuxuan

    2007-02-15

    Tributyltin (TBT) is widely used as antifouling paints, agriculture biocides, and plastic stabilizers around the world, resulting in great pollution problem in aquatic environments. However, it has been short of the biomonitor to detect TBT in freshwater. We constructed the suppression subtractive hybridization library of Tetrahymena thermophila exposed to TBT, and screened out 101 Expressed Sequence Tags whose expressions were significantly up- or down-regulated with TBT treatment. From this, a series of genes related to the TBT toxicity were discovered, such as glutathione-S-transferase gene (down-regulated), plasma membrane Ca2+ ATPase isoforms 3 gene (up-regulated) and NgoA (up-regulated). Furthermore, their expressions under different concentrations of TBT treatment (0.5-40 ppb) were detected by real time fluorescent quantitative PCR. The differentially expressed genes of T. thermophila in response to TBT were identified, which provide the basic to make Tetrahymena as a sensitive, rapid and convenient TBT biomonitor in freshwater based on rDNA inducible expression system.

  17. Selecting and validating reference genes for quantitative real-time PCR in Plutella xylostella (L.).

    Science.gov (United States)

    You, Yanchun; Xie, Miao; Vasseur, Liette; You, Minsheng

    2018-05-01

    Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.

  18. Gene expression analysis in prostate cancer: the importance of the endogenous control.

    LENUS (Irish Health Repository)

    Vajda, Alice

    2013-03-01

    Aberrant gene expression is a hallmark of cancer. Quantitative reverse-transcription PCR (qRT-PCR) is the gold-standard for quantifying gene expression, and commonly employs a house-keeping gene (HKG) as an endogenous control to normalize results; the choice of which is critical for accurate data interpretation. Many factors, including sample type, pathological state, and oxygen levels influence gene expression including putative HKGs. The aim of this study was to determine the suitability of commonly used HKGs for qRT-PCR in prostate cancer.

  19. Gene expression profiling of acute myeloid leukemia samples from adult patients with AML-M1 and -M2 through boutique microarrays, real-time PCR and droplet digital PCR.

    Science.gov (United States)

    Handschuh, Luiza; Kaźmierczak, Maciej; Milewski, Marek C; Góralski, Michał; Łuczak, Magdalena; Wojtaszewska, Marzena; Uszczyńska-Ratajczak, Barbara; Lewandowski, Krzysztof; Komarnicki, Mieczysław; Figlerowicz, Marek

    2018-03-01

    Acute myeloid leukemia (AML) is the most common and severe form of acute leukemia diagnosed in adults. Owing to its heterogeneity, AML is divided into classes associated with different treatment outcomes and specific gene expression profiles. Based on previous studies on AML, in this study, we designed and generated an AML-array containing 900 oligonucleotide probes complementary to human genes implicated in hematopoietic cell differentiation and maturation, proliferation, apoptosis and leukemic transformation. The AML-array was used to hybridize 118 samples from 33 patients with AML of the M1 and M2 subtypes of the French-American‑British (FAB) classification and 15 healthy volunteers (HV). Rigorous analysis of the microarray data revealed that 83 genes were differentially expressed between the patients with AML and the HV, including genes not yet discussed in the context of AML pathogenesis. The most overexpressed genes in AML were STMN1, KITLG, CDK6, MCM5, KRAS, CEBPA, MYC, ANGPT1, SRGN, RPLP0, ENO1 and SET, whereas the most underexpressed genes were IFITM1, LTB, FCN1, BIRC3, LYZ, ADD3, S100A9, FCER1G, PTRPE, CD74 and TMSB4X. The overexpression of the CPA3 gene was specific for AML with mutated NPM1 and FLT3. Although the microarray-based method was insufficient to differentiate between any other AML subgroups, quantitative PCR approaches enabled us to identify 3 genes (ANXA3, S100A9 and WT1) whose expression can be used to discriminate between the 2 studied AML FAB subtypes. The expression levels of the ANXA3 and S100A9 genes were increased, whereas those of WT1 were decreased in the AML-M2 compared to the AML-M1 group. We also examined the association between the STMN1, CAT and ABL1 genes, and the FLT3 and NPM1 mutation status. FLT3+/NPM1- AML was associated with the highest expression of STMN1, and ABL1 was upregulated in FLT3+ AML and CAT in FLT3- AML, irrespectively of the NPM1 mutation status. Moreover, our results indicated that CAT and WT1

  20. Exploring Valid Reference Genes for Quantitative Real-time PCR Analysis in Plutella xylostella (Lepidoptera: Plutellidae)

    Science.gov (United States)

    Fu, Wei; Xie, Wen; Zhang, Zhuo; Wang, Shaoli; Wu, Qingjun; Liu, Yong; Zhou, Xiaomao; Zhou, Xuguo; Zhang, Youjun

    2013-01-01

    Abstract: Quantitative real-time PCR (qRT-PCR), a primary tool in gene expression analysis, requires an appropriate normalization strategy to control for variation among samples. The best option is to compare the mRNA level of a target gene with that of reference gene(s) whose expression level is stable across various experimental conditions. In this study, expression profiles of eight candidate reference genes from the diamondback moth, Plutella xylostella, were evaluated under diverse experimental conditions. RefFinder, a web-based analysis tool, integrates four major computational programs including geNorm, Normfinder, BestKeeper, and the comparative ΔCt method to comprehensively rank the tested candidate genes. Elongation factor 1 (EF1) was the most suited reference gene for the biotic factors (development stage, tissue, and strain). In contrast, although appropriate reference gene(s) do exist for several abiotic factors (temperature, photoperiod, insecticide, and mechanical injury), we were not able to identify a single universal reference gene. Nevertheless, a suite of candidate reference genes were specifically recommended for selected experimental conditions. Our finding is the first step toward establishing a standardized qRT-PCR analysis of this agriculturally important insect pest. PMID:23983612

  1. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR.

    Science.gov (United States)

    Li, Xiuying; Yang, Qiwei; Bai, Jinping; Xuan, Yali; Wang, Yimin

    2015-01-01

    Normalization to a reference gene is the method of choice for quantitative reverse transcription-PCR (RT-qPCR) analysis. The stability of reference genes is critical for accurate experimental results and conclusions. We have evaluated the expression stability of eight commonly used reference genes found in four different human mesenchymal stem cells (MSC). Using geNorm, NormFinder and BestKeeper algorithms, we show that beta-2-microglobulin and peptidyl-prolylisomerase A were the optimal reference genes for normalizing RT-qPCR data obtained from MSC, whereas the TATA box binding protein was not suitable due to its extensive variability in expression. Our findings emphasize the significance of validating reference genes for qPCR analyses. We offer a short list of reference genes to use for normalization and recommend some commercially-available software programs as a rapid approach to validate reference genes. We also demonstrate that the two reference genes, β-actin and glyceraldehyde-3-phosphate dehydrogenase, are frequently used are not always successful in many cases.

  2. Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases.

    Science.gov (United States)

    Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian; Aznar, Susana; Pakkenberg, Bente; Brudek, Tomasz

    2016-11-17

    Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain samples from two brain regions from Alzheimer's disease (AD), Parkinson's disease (PD), Multiple System Atrophy, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori validation of RGs for RT-qPCR studies.

  3. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    Directory of Open Access Journals (Sweden)

    Pek-Lan Chan

    Full Text Available BACKGROUND: The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR. With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. RESULTS: In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569 outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN. PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. CONCLUSIONS: Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection

  4. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    Science.gov (United States)

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate

  5. Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer

    Directory of Open Access Journals (Sweden)

    Miller Nicola

    2007-11-01

    Full Text Available Abstract Background Real-time quantitative PCR (RQ-PCR forms the basis of many breast cancer biomarker studies and novel prognostic assays, paving the way towards personalised cancer treatments. Normalisation of relative RQ-PCR data is required to control for non-biological variation introduced during sample preparation. Endogenous control (EC genes, used in this context, should ideally be expressed constitutively and uniformly across treatments in all test samples. Despite widespread recognition that the accuracy of the normalised data is largely dependent on the reliability of the EC, there are no reports of the systematic validation of genes commonly used for this purpose in the analysis of gene expression by RQ-PCR in primary breast cancer tissues. The aim of this study was to identify the most suitable endogenous control genes for RQ-PCR analysis of primary breast tissue from a panel of eleven candidates in current use. Oestrogen receptor alpha (ESR1 was used a target gene to compare the effect of choice of EC on the estimate of gene quantity. Results The expression and validity of candidate ECs (GAPDH, TFRC, ABL, PPIA, HPRT1, RPLP0, B2M, GUSB, MRPL19, PUM1 and PSMC4 was determined in 6 benign and 21 malignant primary breast cancer tissues. Gene expression data was analysed using two different statistical models. MRPL19 and PPIA were identified as the most stable and reliable EC genes, while GUSB, RPLP0 and ABL were least stable. There was a highly significant difference in variance between ECs. ESR1 expression was appreciably higher in malignant compared to benign tissues and there was a significant effect of EC on the magnitude of the error associated with the relative quantity of ESR1. Conclusion We have validated two endogenous control genes, MRPL19 and PPIA, for RQ-PCR analysis of gene expression in primary breast tissue. Of the genes in current use in this field, the above combination offers increased accuracy and resolution in the

  6. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Zou Ruiyang

    2011-04-01

    Full Text Available Abstract Background Accurate interpretation of quantitative PCR (qPCR data requires normalization using constitutively expressed reference genes. Ribosomal RNA is often used as a reference gene for transcriptional studies in E. coli. However, the choice of reliable reference genes has not been systematically validated. The objective of this study is to identify a set of reliable reference genes for transcription analysis in recombinant protein over-expression studies in E. coli. Results In this study, the meta-analysis of 240 sets of single-channel Affymetrix microarray data representing over-expressions of 63 distinct recombinant proteins in various E. coli strains identified twenty candidate reference genes that were stably expressed across all conditions. The expression of these twenty genes and two commonly used reference genes, rrsA encoding ribosomal RNA 16S and ihfB, was quantified by qPCR in E. coli cells over-expressing four genes of the 1-Deoxy-D-Xylulose 5-Phosphate pathway. From these results, two independent statistical algorithms identified three novel reference genes cysG, hcaT, and idnT but not rrsA and ihfB as highly invariant in two E. coli strains, across different growth temperatures and induction conditions. Transcriptomic data normalized by the geometric average of these three genes demonstrated that genes of the lycopene synthetic pathway maintained steady expression upon enzyme overexpression. In contrast, the use of rrsA or ihfB as reference genes led to the mis-interpretation that lycopene pathway genes were regulated during enzyme over-expression. Conclusion This study identified cysG/hcaT/idnT to be reliable novel reference genes for transcription analysis in recombinant protein producing E. coli.

  7. Predicting response to primary chemotherapy: gene expression profiling of paraffin-embedded core biopsy tissue.

    Science.gov (United States)

    Mina, Lida; Soule, Sharon E; Badve, Sunil; Baehner, Fredrick L; Baker, Joffre; Cronin, Maureen; Watson, Drew; Liu, Mei-Lan; Sledge, George W; Shak, Steve; Miller, Kathy D

    2007-06-01

    Primary chemotherapy provides an ideal opportunity to correlate gene expression with response to treatment. We used paraffin-embedded core biopsies from a completed phase II trial to identify genes that correlate with response to primary chemotherapy. Patients with newly diagnosed stage II or III breast cancer were treated with sequential doxorubicin 75 mg/M2 q2 wks x 3 and docetaxel 40 mg/M2 weekly x 6; treatment order was randomly assigned. Pretreatment core biopsy samples were interrogated for genes that might correlate with pathologic complete response (pCR). In addition to the individual genes, the correlation of the Oncotype DX Recurrence Score with pCR was examined. Of 70 patients enrolled in the parent trial, core biopsies samples with sufficient RNA for gene analyses were available from 45 patients; 9 (20%) had inflammatory breast cancer (IBC). Six (14%) patients achieved a pCR. Twenty-two of the 274 candidate genes assessed correlated with pCR (p < 0.05). Genes correlating with pCR could be grouped into three large clusters: angiogenesis-related genes, proliferation related genes, and invasion-related genes. Expression of estrogen receptor (ER)-related genes and Recurrence Score did not correlate with pCR. In an exploratory analysis we compared gene expression in IBC to non-inflammatory breast cancer; twenty-four (9%) of the genes were differentially expressed (p < 0.05), 5 were upregulated and 19 were downregulated in IBC. Gene expression analysis on core biopsy samples is feasible and identifies candidate genes that correlate with pCR to primary chemotherapy. Gene expression in IBC differs significantly from noninflammatory breast cancer.

  8. Identification of genes for normalization of real-time RT-PCR data in breast carcinomas

    DEFF Research Database (Denmark)

    Lyng, Maria B; Laenkholm, Anne-Vibeke; Pallisgaard, Niels

    2008-01-01

    BACKGROUND: Quantitative real-time RT-PCR (RT-qPCR) has become a valuable molecular technique in basic and translational biomedical research, and is emerging as an equally valuable clinical tool. Correlation of inter-sample values requires data normalization, which can be accomplished by various...... means, the most common of which is normalization to internal, stably expressed, reference genes. Recently, such traditionally utilized reference genes as GAPDH and B2M have been found to be regulated in various circumstances in different tissues, emphasizing the need to identify genes independent...... of factors influencing the tissue, and that are stably expressed within the experimental milieu. In this study, we identified genes for normalization of RT-qPCR data for invasive breast cancer (IBC), with special emphasis on estrogen receptor positive (ER+) IBC, but also examined their applicability to ER...

  9. No control genes required: Bayesian analysis of qRT-PCR data.

    Directory of Open Access Journals (Sweden)

    Mikhail V Matz

    Full Text Available Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process.In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts. Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests.Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  10. No control genes required: Bayesian analysis of qRT-PCR data.

    Science.gov (United States)

    Matz, Mikhail V; Wright, Rachel M; Scott, James G

    2013-01-01

    Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  11. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  12. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

    Directory of Open Access Journals (Sweden)

    Borges-Pérez Andrés

    2008-12-01

    Full Text Available Abstract Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC, SGN-U321250 (TIP41, SGN-U346908 ("Expressed" and SGN-U316474 (SAND genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real

  13. Reference gene validation for gene expression normalization in canine osteosarcoma : a geNorm algorithm approach

    NARCIS (Netherlands)

    Selvarajah, G.T.; Bonestroo, F.A.S.; Timmermans Sprang, E.P.M.; Kirpensteijn, J.|info:eu-repo/dai/nl/189846992; Mol, J.A.|info:eu-repo/dai/nl/070918775

    2017-01-01

    Background Quantitative PCR (qPCR) is a common method for quantifying mRNA expression. Given the heterogeneity present in tumor tissues, it is crucial to normalize target mRNA expression data using appropriate reference genes that are stably expressed under a variety of pathological and experimental

  14. Validation of putative reference genes for normalization of Q-RT-PCR data from paraffin-embedded lymphoid tissue

    DEFF Research Database (Denmark)

    Green, Tina Marie; de Stricker, Karin; Møller, Michael Boe

    2009-01-01

    Normalization of quantitative reverse transcription-PCR (Q-RT-PCR) data to appropriate tissue-specific reference genes is an essential part of interpreting the results. This study aimed to determine the most appropriate reference genes for normalizing gene expressions in lymphatic tissue...... was 0.93 (Pnormalization with the appropriate reference genes. Thus, we show that formalin-fixed, paraffin-embedded lymphoid samples are suitable for Q-RT-PCR when using thoroughly validated reference genes....

  15. Altered Gene Expression by Low-Dose Arsenic Exposure in Humans and Cultured Cardiomyocytes: Assessment by Real-Time PCR Arrays

    Directory of Open Access Journals (Sweden)

    Judy Mumford

    2011-06-01

    Full Text Available Chronic arsenic exposure results in higher risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. The purpose of this study was to investigate the effects on expression of selected genes in the blood lymphocytes from 159 people exposed chronically to arsenic in their drinking water using a novel RT-PCR TaqMan low-density array (TLDA. We found that expression of tumor necrosis factor-α (TNF-α, which activates both inflammation and NF-κB-dependent survival pathways, was strongly associated with water and urinary arsenic levels. Expression of KCNA5, which encodes a potassium ion channel protein, was positively associated with water and toe nail arsenic levels. Expression of 2 and 11 genes were positively associated with nail and urinary arsenic, respectively. Because arsenic exposure has been reported to be associated with long QT intervals and vascular disease in humans, we also used this TLDA for analysis of gene expression in human cardiomyocytes exposed to arsenic in vitro. Expression of the ion-channel genes CACNA1, KCNH2, KCNQ1 and KCNE1 were down-regulated by 1-mM arsenic. Alteration of some common pathways, including those involved in oxidative stress, inflammatory signaling, and ion-channel function, may underlay the seemingly disparate array of arsenic-associated diseases, such as cancer, cardiovascular disease, and diabetes.

  16. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat

    Directory of Open Access Journals (Sweden)

    Porceddu Enrico

    2009-02-01

    Full Text Available Abstract Background Usually the reference genes used in gene expression analysis have been chosen for their known or suspected housekeeping roles, however the variation observed in most of them hinders their effective use. The assessed lack of validated reference genes emphasizes the importance of a systematic study for their identification. For selecting candidate reference genes we have developed a simple in silico method based on the data publicly available in the wheat databases Unigene and TIGR. Results The expression stability of 32 genes was assessed by qRT-PCR using a set of cDNAs from 24 different plant samples, which included different tissues, developmental stages and temperature stresses. The selected sequences included 12 well-known HKGs representing different functional classes and 20 genes novel with reference to the normalization issue. The expression stability of the 32 candidate genes was tested by the computer programs geNorm and NormFinder using five different data-sets. Some discrepancies were detected in the ranking of the candidate reference genes, but there was substantial agreement between the groups of genes with the most and least stable expression. Three new identified reference genes appear more effective than the well-known and frequently used HKGs to normalize gene expression in wheat. Finally, the expression study of a gene encoding a PDI-like protein showed that its correct evaluation relies on the adoption of suitable normalization genes and can be negatively affected by the use of traditional HKGs with unstable expression, such as actin and α-tubulin. Conclusion The present research represents the first wide screening aimed to the identification of reference genes and of the corresponding primer pairs specifically designed for gene expression studies in wheat, in particular for qRT-PCR analyses. Several of the new identified reference genes outperformed the traditional HKGs in terms of expression stability

  17. Identification and validation of reference genes for quantitative real-time PCR in Drosophila suzukii (Diptera: Drosophilidae.

    Directory of Open Access Journals (Sweden)

    Yifan Zhai

    Full Text Available To accurately evaluate gene expression levels and obtain more accurate quantitative real-time RT-PCR (qRT-PCR data, normalization relative to reliable reference gene(s is required. Drosophila suzukii, is an invasive fruit pest native to East Asia, and recently invaded Europe and North America, the stability of its reference genes have not been previously investigated. In this study, ten candidate reference genes (RPL18, RPS3, AK, EF-1β, TBP, NADH, HSP22, GAPDH, Actin, α-Tubulin, were evaluated for their suitability as normalization genes under different biotic (developmental stage, tissue and population, and abiotic (photoperiod, temperature conditions. The three statistical approaches (geNorm, NormFinder and BestKeeper and one web-based comprehensive tool (RefFinder were used to normalize analysis of the ten candidate reference genes identified α-Tubulin, TBP and AK as the most stable candidates, while HSP22 and Actin showed the lowest expression stability. We used three most stable genes (α-Tubulin, TBP and AK and one unstably expressed gene to analyze the expression of P-glycoprotein in abamectin-resistant and sensitive strains, and the results were similar to reference genes α-Tubulin, TBP and AK, which show good stability, while the result of HSP22 has a certain bias. The three validated reference genes can be widely used for quantification of target gene expression with qRT-PCR technology in D.suzukii.

  18. Amplification biases: possible differences among deviating gene expressions

    Directory of Open Access Journals (Sweden)

    Piumi Francois

    2008-01-01

    Full Text Available Abstract Background Gene expression profiling has become a tool of choice to study pathological or developmental questions but in most cases the material is scarce and requires sample amplification. Two main procedures have been used: in vitro transcription (IVT and polymerase chain reaction (PCR, the former known as linear and the latter as exponential. Previous reports identified enzymatic pitfalls in PCR and IVT protocols; however the possible differences between the sequences affected by these amplification defaults were only rarely explored. Results Screening a bovine cDNA array dedicated to embryonic stages with embryonic (n = 3 and somatic tissues (n = 2, we proceeded to moderate amplifications starting from 1 μg of total RNA (global PCR or IVT one round. Whatever the tissue, 16% of the probes were involved in deviating gene expressions due to amplification defaults. These distortions were likely due to the molecular features of the affected sequences (position within a gene, GC content, hairpin number but also to the relative abundance of these transcripts within the tissues. These deviating genes mainly encoded housekeeping genes from physiological or cellular processes (70% and constituted 2 subsets which did not overlap (molecular features, signal intensities, gene ID. However, the differential expressions identified between embryonic stages were both reliable (minor intersect with biased expressions and relevant (biologically validated. In addition, the relative expression levels of those genes were biologically similar between amplified and unamplified samples. Conclusion Conversely to the most recent reports which challenged the use of intense amplification procedures on minute amounts of RNA, we chose moderate PCR and IVT amplifications for our gene profiling study. Conclusively, it appeared that systematic biases arose even with moderate amplification procedures, independently of (i the sample used: brain, ovary or embryos, (ii

  19. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae.

    Directory of Open Access Journals (Sweden)

    Meng Sun

    Full Text Available The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA, elongation factor 1 (EF1, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, ribosomal protein S13 (RPS13, ribosomal protein S20 (RPS20, tubulin (TUB, and β-actin (ACTB were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1 were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands. 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults. 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C. To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83 was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  20. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  1. Identification of suitable reference genes for gene expression studies of shoulder instability.

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Leal

    Full Text Available Shoulder instability is a common shoulder injury, and patients present with plastic deformation of the glenohumeral capsule. Gene expression analysis may be a useful tool for increasing the general understanding of capsule deformation, and reverse-transcription quantitative polymerase chain reaction (RT-qPCR has become an effective method for such studies. Although RT-qPCR is highly sensitive and specific, it requires the use of suitable reference genes for data normalization to guarantee meaningful and reproducible results. In the present study, we evaluated the suitability of a set of reference genes using samples from the glenohumeral capsules of individuals with and without shoulder instability. We analyzed the expression of six commonly used reference genes (ACTB, B2M, GAPDH, HPRT1, TBP and TFRC in the antero-inferior, antero-superior and posterior portions of the glenohumeral capsules of cases and controls. The stability of the candidate reference gene expression was determined using four software packages: NormFinder, geNorm, BestKeeper and DataAssist. Overall, HPRT1 was the best single reference gene, and HPRT1 and B2M composed the best pair of reference genes from different analysis groups, including simultaneous analysis of all tissue samples. GenEx software was used to identify the optimal number of reference genes to be used for normalization and demonstrated that the accumulated standard deviation resulting from the use of 2 reference genes was similar to that resulting from the use of 3 or more reference genes. To identify the optimal combination of reference genes, we evaluated the expression of COL1A1. Although the use of different reference gene combinations yielded variable normalized quantities, the relative quantities within sample groups were similar and confirmed that no obvious differences were observed when using 2, 3 or 4 reference genes. Consequently, the use of 2 stable reference genes for normalization, especially

  2. Identification of Reference Genes for RT-qPCR Data Normalization in Cannabis sativa Stem Tissues

    Directory of Open Access Journals (Sweden)

    Lauralie Mangeot-Peter

    2016-09-01

    Full Text Available Gene expression profiling via quantitative real-time PCR is a robust technique widely used in the life sciences to compare gene expression patterns in, e.g., different tissues, growth conditions, or after specific treatments. In the field of plant science, real-time PCR is the gold standard to study the dynamics of gene expression and is used to validate the results generated with high throughput techniques, e.g., RNA-Seq. An accurate relative quantification of gene expression relies on the identification of appropriate reference genes, that need to be determined for each experimental set-up used and plant tissue studied. Here, we identify suitable reference genes for expression profiling in stems of textile hemp (Cannabis sativa L., whose tissues (isolated bast fibres and core are characterized by remarkable differences in cell wall composition. We additionally validate the reference genes by analysing the expression of putative candidates involved in the non-oxidative phase of the pentose phosphate pathway and in the first step of the shikimate pathway. The goal is to describe the possible regulation pattern of some genes involved in the provision of the precursors needed for lignin biosynthesis in the different hemp stem tissues. The results here shown are useful to design future studies focused on gene expression analyses in hemp.

  3. Identification of Reference Genes for RT-qPCR Data Normalization in Cannabis sativa Stem Tissues.

    Science.gov (United States)

    Mangeot-Peter, Lauralie; Legay, Sylvain; Hausman, Jean-Francois; Esposito, Sergio; Guerriero, Gea

    2016-09-15

    Gene expression profiling via quantitative real-time PCR is a robust technique widely used in the life sciences to compare gene expression patterns in, e.g., different tissues, growth conditions, or after specific treatments. In the field of plant science, real-time PCR is the gold standard to study the dynamics of gene expression and is used to validate the results generated with high throughput techniques, e.g., RNA-Seq. An accurate relative quantification of gene expression relies on the identification of appropriate reference genes, that need to be determined for each experimental set-up used and plant tissue studied. Here, we identify suitable reference genes for expression profiling in stems of textile hemp (Cannabis sativa L.), whose tissues (isolated bast fibres and core) are characterized by remarkable differences in cell wall composition. We additionally validate the reference genes by analysing the expression of putative candidates involved in the non-oxidative phase of the pentose phosphate pathway and in the first step of the shikimate pathway. The goal is to describe the possible regulation pattern of some genes involved in the provision of the precursors needed for lignin biosynthesis in the different hemp stem tissues. The results here shown are useful to design future studies focused on gene expression analyses in hemp.

  4. Selection of Suitable Reference Genes for Quantitative Real-time PCR in Sapium sebiferum

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2017-05-01

    Full Text Available Chinese tallow (Sapium sebiferum L. is a promising landscape and bioenergy plant. Measuring gene expression by quantitative real-time polymerase chain reaction (qRT-PCR can provide valuable information on gene function. Stably expressed reference genes for normalization are a prerequisite for ensuring the accuracy of the target gene expression level among different samples. However, the reference genes in Chinese tallow have not been systematically validated. In this study, 12 candidate reference genes (18S, GAPDH, UBQ, RPS15, SAND, TIP41, 60S, ACT7, PDF2, APT, TBP, and TUB were investigated with qRT-PCR in 18 samples, including those from different tissues, from plants treated with sucrose and cold stresses. The data were calculated with four common algorithms, geNorm, BestKeeper, NormFinder, and the delta cycle threshold (ΔCt. TIP41 and GAPDH were the most stable for the tissue-specific experiment, GAPDH and 60S for cold treatment, and GAPDH and UBQ for sucrose stresses, while the least stable genes were 60S, TIP41, and 18S respectively. The comprehensive results showed APT, GAPDH, and UBQ to be the top-ranked stable genes across all the samples. The stability of 60S was the lowest during all experiments. These selected reference genes were further validated by comparing the expression profiles of the chalcone synthase gene in Chinese tallow in different samples. The results will help to improve the accuracy of gene expression studies in Chinese tallow.

  5. Validation of commonly used reference genes for sleep-related gene expression studies

    Directory of Open Access Journals (Sweden)

    Castro Rosa MRPS

    2009-05-01

    Full Text Available Abstract Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, and hypoxanthine guanine phosphoribosyl transferase (HPRT. Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF and glycerol-3-phosphate dehydrogenase1 (GPD1 was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results.

  6. Gene Expression Profiling in Fish Toxicology: A Review.

    Science.gov (United States)

    Kumar, Girish; Denslow, Nancy D

    In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.

  7. Selection of Reliable Reference Genes for Gene Expression Studies on Rhododendron molle G. Don.

    Science.gov (United States)

    Xiao, Zheng; Sun, Xiaobo; Liu, Xiaoqing; Li, Chang; He, Lisi; Chen, Shangping; Su, Jiale

    2016-01-01

    The quantitative real-time polymerase chain reaction (qRT-PCR) approach has become a widely used method to analyze expression patterns of target genes. The selection of an optimal reference gene is a prerequisite for the accurate normalization of gene expression in qRT-PCR. The present study constitutes the first systematic evaluation of potential reference genes in Rhododendron molle G. Don. Eleven candidate reference genes in different tissues and flowers at different developmental stages of R. molle were assessed using the following three software packages: GeNorm, NormFinder, and BestKeeper. The results showed that EF1- α (elongation factor 1-alpha), 18S (18s ribosomal RNA), and RPL3 (ribosomal protein L3) were the most stable reference genes in developing rhododendron flowers and, thus, in all of the tested samples, while tublin ( TUB ) was the least stable. ACT5 (actin), RPL3 , 18S , and EF1- α were found to be the top four choices for different tissues, whereas TUB was not found to favor qRT-PCR normalization in these tissues. Three stable reference genes are recommended for the normalization of qRT-PCR data in R. molle . Furthermore, the expression profiles of RmPSY (phytoene synthase) and RmPDS (phytoene dehydrogenase) were assessed using EF1- α, 18S , ACT5 , RPL3 , and their combination as internals. Similar trends were found, but these trends varied when the least stable reference gene TUB was used. The results further prove that it is necessary to validate the stability of reference genes prior to their use for normalization under different experimental conditions. This study provides useful information for reliable qRT-PCR data normalization in gene studies of R. molle .

  8. Selection of Reliable Reference Genes for Gene Expression Studies on Rhododendron molle G. Don

    Directory of Open Access Journals (Sweden)

    Zheng Xiao

    2016-10-01

    Full Text Available The quantitative real-time polymerase chain reaction (qRT-PCR approach has become a widely used method to analyze expression patterns of target genes. The selection of an optimal reference gene is a prerequisite for the accurate normalization of gene expression in qRT-PCR. The present study constitutes the first systematic evaluation of potential reference genes in Rhododendron molle G. Don. Eleven candidate reference genes in different tissues and flowers at different developmental stages of R. molle were assessed using the following three software packages: GeNorm, NormFinder and BestKeeper. The results showed that EF1-α (elongation factor 1-alpha, 18S (18s ribosomal RNA and RPL3 (ribosomal protein L3 were the most stable reference genes in developing rhododendron flowers and, thus, in all of the tested samples, while tublin (TUB was the least stable. ACT5 (actin, RPL3, 18S and EF1-α were found to be the top four choices for different tissues, whereas TUB was not found to favor qRT-PCR normalization in these tissues. Three stable reference genes are recommended for the normalization of qRT-PCR data in R. molle. Furthermore, the expression profiles of RmPSY (phytoene synthase and RmPDS (phytoene dehydrogenase were assessed using EF1-α, 18S, ACT5, and RPL3 and their combination as internals. Similar trends were found, but these trends varied when the least stable reference gene TUB was used. The results further prove that it is necessary to validate the stability of reference genes prior to their use for normalization under different experimental conditions. This study provides useful information for reliable qRT-PCR data normalization in gene studies of R. molle.

  9. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    Directory of Open Access Journals (Sweden)

    Lucie Kosinová

    Full Text Available The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3 in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information

  10. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development.

    Science.gov (United States)

    Cheng, Yuan; Bian, Wuying; Pang, Xin; Yu, Jiahong; Ahammed, Golam J; Zhou, Guozhi; Wang, Rongqing; Ruan, Meiying; Li, Zhimiao; Ye, Qingjing; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2017-01-01

    Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR) is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs). Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red) using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170), SlFRG12 (Solyc04g009770), SlFRG16 (Solyc10g081190), SlFRG27 (Solyc06g007510), and SlFRG37 (Solyc11g005330) were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070) and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species.

  11. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    2017-08-01

    Full Text Available Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs. Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170, SlFRG12 (Solyc04g009770, SlFRG16 (Solyc10g081190, SlFRG27 (Solyc06g007510, and SlFRG37 (Solyc11g005330 were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070 and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species.

  12. Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Zhimin Yang

    Full Text Available Tall fescue (Festuca arundinacea Schreb. is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41 was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species.

  13. Selection of reference genes for gene expression studies in heart failure for left and right ventricles.

    Science.gov (United States)

    Li, Mengmeng; Rao, Man; Chen, Kai; Zhou, Jianye; Song, Jiangping

    2017-07-15

    Real-time quantitative reverse transcriptase-PCR (qRT-PCR) is a feasible tool for determining gene expression profiles, but the accuracy and reliability of the results depends on the stable expression of selected housekeeping genes in different samples. By far, researches on stable housekeeping genes in human heart failure samples are rare. Moreover the effect of heart failure on the expression of housekeeping genes in right and left ventricles is yet to be studied. Therefore we aim to provide stable housekeeping genes for both ventricles in heart failure and normal heart samples. In this study, we selected seven commonly used housekeeping genes as candidates. By using the qRT-PCR, the expression levels of ACTB, RAB7A, GAPDH, REEP5, RPL5, PSMB4 and VCP in eight heart failure and four normal heart samples were assessed. The stability of candidate housekeeping genes was evaluated by geNorm and Normfinder softwares. GAPDH showed the least variation in all heart samples. Results also indicated the difference of gene expression existed in heart failure left and right ventricles. GAPDH had the highest expression stability in both heart failure and normal heart samples. We also propose using different sets of housekeeping genes for left and right ventricles respectively. The combination of RPL5, GAPDH and PSMB4 is suitable for the right ventricle and the combination of GAPDH, REEP5 and RAB7A is suitable for the left ventricle. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Transcriptome-wide selection of a reliable set of reference genes for gene expression studies in potato cyst nematodes (Globodera spp.).

    Science.gov (United States)

    Sabeh, Michael; Duceppe, Marc-Olivier; St-Arnaud, Marc; Mimee, Benjamin

    2018-01-01

    Relative gene expression analyses by qRT-PCR (quantitative reverse transcription PCR) require an internal control to normalize the expression data of genes of interest and eliminate the unwanted variation introduced by sample preparation. A perfect reference gene should have a constant expression level under all the experimental conditions. However, the same few housekeeping genes selected from the literature or successfully used in previous unrelated experiments are often routinely used in new conditions without proper validation of their stability across treatments. The advent of RNA-Seq and the availability of public datasets for numerous organisms are opening the way to finding better reference genes for expression studies. Globodera rostochiensis is a plant-parasitic nematode that is particularly yield-limiting for potato. The aim of our study was to identify a reliable set of reference genes to study G. rostochiensis gene expression. Gene expression levels from an RNA-Seq database were used to identify putative reference genes and were validated with qRT-PCR analysis. Three genes, GR, PMP-3, and aaRS, were found to be very stable within the experimental conditions of this study and are proposed as reference genes for future work.

  15. Assessment of reference gene stability in Rice stripe virus and Rice black streaked dwarf virus infection rice by quantitative Real-time PCR.

    Science.gov (United States)

    Fang, Peng; Lu, Rongfei; Sun, Feng; Lan, Ying; Shen, Wenbiao; Du, Linlin; Zhou, Yijun; Zhou, Tong

    2015-10-24

    Stably expressed reference gene(s) normalization is important for the understanding of gene expression patterns by quantitative Real-time PCR (RT-qPCR), particularly for Rice stripe virus (RSV) and Rice black streaked dwarf virus (RBSDV) that caused seriously damage on rice plants in China and Southeast Asia. The expression of fourteen common used reference genes of Oryza sativa L. were evaluated by RT-qPCR in RSV and RBSDV infected rice plants. Suitable normalization reference gene(s) were identified by geNorm and NormFinder algorithms. UBQ 10 + GAPDH and UBC + Actin1 were identified as suitable reference genes for RT-qPCR normalization under RSV and RBSDV infection, respectively. When using multiple reference genes, the expression patterns of OsPRIb and OsWRKY, two virus resistance genes, were approximately similar with that reported previously. Comparatively, by using single reference gene (TIP41-Like), a weaker inducible response was observed. We proposed that the combination of two reference genes could obtain more accurate and reliable normalization of RT-qPCR results in RSV- and RBSDV-infected plants. This work therefore sheds light on establishing a standardized RT-qPCR procedure in RSV- and RBSDV-infected rice plants, and might serve as an important point for discovering complex regulatory networks and identifying genes relevant to biological processes or implicated in virus.

  16. Gene expression profiles in prostate cancer: identification of candidate non-invasive diagnostic markers.

    Science.gov (United States)

    Mengual, L; Ars, E; Lozano, J J; Burset, M; Izquierdo, L; Ingelmo-Torres, M; Gaya, J M; Algaba, F; Villavicencio, H; Ribal, M J; Alcaraz, A

    2014-04-01

    To analyze gene expression profiles of prostate cancer (PCa) with the aim of determining the relevant differentially expressed genes and subsequently ascertain whether this differential expression is maintained in post-prostatic massage (PPM) urine samples. Forty-six tissue specimens (36 from PCa patients and 10 controls) and 158 urine PPM-urines (113 from PCa patients and 45 controls) were collected between December 2003 and May 2007. DNA microarrays were used to identify genes differentially expressed between tumour and control samples. Ten genes were technically validated in the same tissue samples by quantitative RT-PCR (RT-qPCR). Forty two selected differentially expressed genes were validated in an independent set of PPM-urines by qRT-PCR. Multidimensional scaling plot according to the expression of all the microarray genes showed a clear distinction between control and tumour samples. A total of 1047 differentially expressed genes (FDR≤.1) were indentified between both groups of samples. We found a high correlation in the comparison of microarray and RT-qPCR gene expression levels (r=.928, P<.001). Thirteen genes maintained the same fold change direction when analyzed in PPM-urine samples and in four of them (HOXC6, PCA3, PDK4 and TMPRSS2-ERG), these differences were statistically significant (P<.05). The analysis of PCa by DNA microarrays provides new putative mRNA markers for PCa diagnosis that, with caution, can be extrapolated to PPM-urines. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  17. Evaluation of Housekeeping Genes for Quantitative Real-Time PCR Analysis of Bradysia odoriphaga (Diptera: Sciaridae

    Directory of Open Access Journals (Sweden)

    Caihua Shi

    2016-07-01

    Full Text Available The soil insect Bradysia odoriphaga (Diptera: Sciaridae causes substantial damage to Chinese chive. Suitable reference genes in B. odoriphaga (Bradysia odoriphaga have yet to be identified for normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR. This study was focused on identifying the expression stability of 12 candidate housekeeping genes in B. odoriphaga under various experiment conditions. The final stability ranking of 12 housekeeping genes was obtained with RefFinder, and the most suitable number of reference genes was analyzed by GeNorm. The results revealed that the most appropriate sets of internal controls were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18 across all samples. The use of the most suitable reference genes versus an arbitrarily selected reference gene resulted in significant differences in the analysis of a target gene expression. HSP23 in B. odoriphaga was found to be up-regulated under low temperatures. These results will contribute to the standardization of qRT-PCR and will also be valuable for further research on gene function in B. odoriphaga.

  18. Transcriptional expression of type I interferon response genes and stability of housekeeping genes in the human endometrium and endometriosis

    DEFF Research Database (Denmark)

    Vestergaard, Anna L; Knudsen, Ulla B; Munk, Torben

    2011-01-01

    Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic locations. The pathogenesis is much debated, and type I interferons could be involved. The expression of genes of the type I interferon response were profiled by a specific PCR Array...... of RNA obtained from ectopic and eutopic endometrium collected from 9 endometriosis patients and 9 healthy control women. Transcriptional expression levels of selected interferon-regulated and housekeeping genes were investigated by real-time quantitative reverse transcriptase PCR (qRT-PCR). Stably...... expressed housekeeping genes for valid normalization of transcriptional studies of endometrium and endometriosis have not yet been published. Here, seven housekeeping genes were evaluated for stability using the GeNorm and NormFinder software. A normalization factor based on HMBS, TBP, and YWHAZ expression...

  19. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation.

    Science.gov (United States)

    Sihto, Henna-Maria; Tasara, Taurai; Stephan, Roger; Johler, Sophia

    2014-07-01

    Staphylococcus aureus represents the most prevalent cause of food-borne intoxications worldwide. While being repressed by competing bacteria in most matrices, this pathogen exhibits crucial competitive advantages during growth at high salt concentrations or low pH, conditions frequently encountered in food production and preservation. We aimed to identify reference genes that could be used to normalize qPCR mRNA expression levels during growth of S. aureus in food-related osmotic (NaCl) and acidic (lactic acid) stress adaptation models. Expression stability of nine housekeeping genes was evaluated in full (LB) and nutrient-deficient (CYGP w/o glucose) medium under conditions of osmotic (4.5% NaCl) and acidic stress (lactic acid, pH 6.0) after 2-h exposure. Among the set of candidate reference genes investigated, rplD, rpoB,gyrB, and rho were most stably expressed in LB and thus represent the most suitable reference genes for normalization of qPCR data in osmotic or lactic acid stress models in a rich medium. Under nutrient-deficient conditions, expression of rho and rpoB was highly stable across all tested conditions. The presented comprehensive data on changes in expression of various S. aureus housekeeping genes under conditions of osmotic and lactic acid stress facilitate selection of reference genes for qPCR-based stress response models. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Isolation of MA-ACS Gene Family and Expression Study of MA-ACS1 Gene in Musa acuminata Cultivar Pisang Ambon Lumut

    Directory of Open Access Journals (Sweden)

    LISTYA UTAMI KARMAWAN

    2009-03-01

    Full Text Available Musa acuminata cultivar pisang ambon lumut is a native climacteric fruit from Indonesia. Climacteric fruit ripening process is triggered by the gaseous plant hormone ethylene. The rate limiting enzyme involved in ethylene biosynthesis is ACC synthase (ACS which is encoded by ACS gene family. The objective of this study is to identify MA-ACS gene family in M. acuminata cultivar pisang ambon lumut and to study the MA-ACS1 gene expression. The result showed that there were nine M. acuminata ACS gene family members called MA-ACS1–9. Two of them (MA-ACS1 and MA-ACS2 were assessed using reverse transcriptase PCR (RT-PCR for gene expression study and it was only MA-ACS1 correlated with fruit ripening. The MA-ACS1 gene fragment has been successfully isolated and characterized and it has three introns, four exons, and one stop codon. It also shows highest homology with MACS1 gene from M. acuminata cultivar Hsian Jien Chiao (GenBank accession number AF056164. Expression analysis of MA-ACS1 using quantitative PCR (qPCR showed that MA-ACS1 gene expression increased significantly in the third day, reached maximum at the fifth day, and then decreased in the seventh day after harvesting. The qPCR expression analysis result correlated with the result of physical analysis during fruit ripening.

  1. Directly Transforming PCR-Amplified DNA Fragments into Plant Cells Is a Versatile System That Facilitates the Transient Expression Assay

    Science.gov (United States)

    Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan

    2013-01-01

    A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells. PMID:23468926

  2. Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay.

    Directory of Open Access Journals (Sweden)

    Yuming Lu

    Full Text Available A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments based transient expression system (PCR-TES for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells.

  3. A longitudinal study of gene expression in healthy individuals

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  4. RNA-seq reveals more consistent reference genes for gene expression studies in human non-melanoma skin cancers

    Directory of Open Access Journals (Sweden)

    Van L.T. Hoang

    2017-08-01

    Full Text Available Identification of appropriate reference genes (RGs is critical to accurate data interpretation in quantitative real-time PCR (qPCR experiments. In this study, we have utilised next generation RNA sequencing (RNA-seq to analyse the transcriptome of a panel of non-melanoma skin cancer lesions, identifying genes that are consistently expressed across all samples. Genes encoding ribosomal proteins were amongst the most stable in this dataset. Validation of this RNA-seq data was examined using qPCR to confirm the suitability of a set of highly stable genes for use as qPCR RGs. These genes will provide a valuable resource for the normalisation of qPCR data for the analysis of non-melanoma skin cancer.

  5. Identification of Optimal Reference Genes for Normalization of qPCR Analysis during Pepper Fruit Development

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    2017-06-01

    Full Text Available Due to its high sensitivity and reproducibility, quantitative real-time PCR (qPCR is practiced as a useful research tool for targeted gene expression analysis. For qPCR operations, the normalization with suitable reference genes (RGs is a crucial step that eventually determines the reliability of the obtained results. Although pepper is considered an ideal model plant for the study of non-climacteric fruit development, at present no specific RG have been developed or validated for the qPCR analyses of pepper fruit. Therefore, this study aimed to identify stably expressed genes for their potential use as RGs in pepper fruit studies. Initially, a total of 35 putative RGs were selected by mining the pepper transcriptome data sets derived from the PGP (Pepper Genome Platform and PGD (Pepper Genome Database. Their expression stabilities were further measured in a set of pepper (Capsicum annuum L. var. 007e fruit samples, which represented four different fruit developmental stages (IM: Immature; MG: Mature green; B: Break; MR: Mature red using the qPCR analysis. Then, based on the qPCR results, three different statistical algorithms, namely geNorm, Normfinder, and boxplot, were chosen to evaluate the expression stabilities of these putative RGs. It should be noted that nine genes were proven to be qualified as RGs during pepper fruit development, namely CaREV05 (CA00g79660; CaREV08 (CA06g02180; CaREV09 (CA06g05650; CaREV16 (Capana12g002666; CaREV21 (Capana10g001439; CaREV23 (Capana05g000680; CaREV26 (Capana01g002973; CaREV27 (Capana11g000123; CaREV31 (Capana04g002411; and CaREV33 (Capana08g001826. Further analysis based on geNorm suggested that the application of the two most stably expressed genes (CaREV05 and CaREV08 would provide optimal transcript normalization in the qPCR experiments. Therefore, a new and comprehensive strategy for the identification of optimal RGs was developed. This strategy allowed for the effective normalization of the qPCR

  6. RT-qPCR normalization genes in the red alga Chondrus crispus.

    Directory of Open Access Journals (Sweden)

    Nathalie Kowalczyk

    Full Text Available Chondrus crispus is a common red macroalga living on the rocky shores of the North Atlantic Ocean. It has a long research history, being a major source of carrageenan, a thickener widely used in the food industry, but also for physiological and ecological studies. To establish it as a model for red algae, its genome has been sequenced, allowing the development of molecular tools such as quantification of gene expression, including RNAseq and RT-qPCR. To determine appropriate genes for RT-qPCR normalization, the expression of 14 genes was monitored in 18 conditions using two sets of algal samples: samples from the sequenced strain, cultured and stressed in laboratory conditions and C. crispus collected on the shore and stressed in situ. The expression stability of the genes between the samples was evaluated by comparing the Ct range and using the programs geNorm and NormFinder. The candidate genes encoded translation related proteins (initiation factors IF4A-1 and IF4A-2, elongation factor EF1α and eRF3, an eukaryotic polypeptide chain release factor, cytoskeleton proteins (two β-tubulins, α-tubulin and actin, enzymes involved in the pentose phosphate pathway (glucose 6-phosphate deshydrogenase, protein recycling process (ubiquitin and ubiquitin-conjugating enzyme and glycolysis (isocitrate dehydrogenase. The two sets of samples showed different expression patterns. Most of the genes were stable in the algae cultivated in the laboratory, whereas environmental samples showed a more important variation in gene expression. When analyzing the two sets separately, the ranking of the most stables genes were different from one method to another. When considering all samples, the two statistical methods were concordant, revealing translation initiation factor 4A-2 and eukaryotic polypeptide chain release factor 3 as pertinent normalization genes. This study highlights thus the importance of testing reference genes according to the experiments as well

  7. Selection and validation of endogenous reference genes for qRT-PCR analysis in leafy spurge (Euphorbia esula.

    Directory of Open Access Journals (Sweden)

    Wun S Chao

    Full Text Available Quantitative real-time polymerase chain reaction (qRT-PCR is the most important tool in measuring levels of gene expression due to its accuracy, specificity, and sensitivity. However, the accuracy of qRT-PCR analysis strongly depends on transcript normalization using stably expressed reference genes. The aim of this study was to find internal reference genes for qRT-PCR analysis in various experimental conditions for seed, adventitious underground bud, and other organs of leafy spurge. Eleven candidate reference genes (BAM4, PU1, TRP-like, FRO1, ORE9, BAM1, SEU, ARF2, KAPP, ZTL, and MPK4 were selected from among 171 genes based on expression stabilities during seed germination and bud growth. The other ten candidate reference genes were selected from three different sources: (1 3 stably expressed leafy spurge genes (60S, bZIP21, and MD-100 identified from the analyses of leafy spurge microarray data; (2 3 orthologs of Arabidopsis "general purpose" traditional reference genes (GAPDH_1, GAPDH_2, and UBC; and (3 4 orthologs of Arabidopsis stably expressed genes (UBC9, SAND, PTB, and F-box identified from Affymetrix ATH1 whole-genome GeneChip studies. The expression stabilities of these 21 genes were ranked based on the C(T values of 72 samples using four different computation programs including geNorm, Normfinder, BestKeeper, and the comparative ΔC(T method. Our analyses revealed SAND, PTB, ORE9, and ARF2 to be the most appropriate reference genes for accurate normalization of gene expression data. Since SAND and PTB were obtained from 4 orthologs of Arabidopsis, while ORE9 and ARF2 were selected from 171 leafy spurge genes, it was more efficient to identify good reference genes from the orthologs of other plant species that were known to be stably expressed than that of randomly testing endogenous genes. Nevertheless, the two newly identified leafy spurge genes, ORE9 and ARF2, can serve as orthologous candidates in the search for reference genes

  8. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  9. Selection and evaluation of reference genes for RT-qPCR expression studies on Burkholderia tropica strain Ppe8, a sugarcane-associated diazotrophic bacterium grown with different carbon sources or sugarcane juice.

    Science.gov (United States)

    da Silva, Paula Renata Alves; Vidal, Marcia Soares; de Paula Soares, Cleiton; Polese, Valéria; Simões-Araújo, Jean Luís; Baldani, José Ivo

    2016-11-01

    Among the members of the genus Burkholderia, Burkholderia tropica has the ability to fix nitrogen and promote sugarcane plant growth as well as act as a biological control agent. There is little information about how this bacterium metabolizes carbohydrates as well as those carbon sources found in the sugarcane juice that accumulates in stems during plant growth. Reverse transcription quantitative PCR (RT-qPCR) can be used to evaluate changes in gene expression during bacterial growth on different carbon sources. Here we tested the expression of six reference genes, lpxC, gyrB, recA, rpoA, rpoB, and rpoD, when cells were grown with glucose, fructose, sucrose, mannitol, aconitic acid, and sugarcane juice as carbon sources. The lpxC, gyrB, and recA were selected as the most stable reference genes based on geNorm and NormFinder software analyses. Validation of these three reference genes during strain Ppe8 growth on the same carbon sources showed that genes involved in glycogen biosynthesis (glgA, glgB, glgC) and trehalose biosynthesis (treY and treZ) were highly expressed when Ppe8 was grown in aconitic acid relative to other carbon sources, while otsA expression (trehalose biosynthesis) was reduced with all carbon sources. In addition, the expression level of the ORF_6066 (gluconolactonase) gene was reduced on sugarcane juice. The results confirmed the stability of the three selected reference genes (lpxC, gyrB, and recA) during the RT-qPCR and also their robustness by evaluating the relative expression of genes involved in glycogen and trehalose biosynthesis when strain Ppe8 was grown on different carbon sources and sugarcane juice.

  10. How to perform RT-qPCR accurately in plant species? A case study on flower colour gene expression in an azalea (Rhododendron simsii hybrids) mapping population.

    Science.gov (United States)

    De Keyser, Ellen; Desmet, Laurence; Van Bockstaele, Erik; De Riek, Jan

    2013-06-24

    Flower colour variation is one of the most crucial selection criteria in the breeding of a flowering pot plant, as is also the case for azalea (Rhododendron simsii hybrids). Flavonoid biosynthesis was studied intensively in several species. In azalea, flower colour can be described by means of a 3-gene model. However, this model does not clarify pink-coloration. The last decade gene expression studies have been implemented widely for studying flower colour. However, the methods used were often only semi-quantitative or quantification was not done according to the MIQE-guidelines. We aimed to develop an accurate protocol for RT-qPCR and to validate the protocol to study flower colour in an azalea mapping population. An accurate RT-qPCR protocol had to be established. RNA quality was evaluated in a combined approach by means of different techniques e.g. SPUD-assay and Experion-analysis. We demonstrated the importance of testing noRT-samples for all genes under study to detect contaminating DNA. In spite of the limited sequence information available, we prepared a set of 11 reference genes which was validated in flower petals; a combination of three reference genes was most optimal. Finally we also used plasmids for the construction of standard curves. This allowed us to calculate gene-specific PCR efficiencies for every gene to assure an accurate quantification. The validity of the protocol was demonstrated by means of the study of six genes of the flavonoid biosynthesis pathway. No correlations were found between flower colour and the individual expression profiles. However, the combination of early pathway genes (CHS, F3H, F3'H and FLS) is clearly related to co-pigmentation with flavonols. The late pathway genes DFR and ANS are to a minor extent involved in differentiating between coloured and white flowers. Concerning pink coloration, we could demonstrate that the lower intensity in this type of flowers is correlated to the expression of F3'H. Currently in plant

  11. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    Science.gov (United States)

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  12. Validation of reference genes for quantitative real-time PCR in Périgord black truffle (Tuber melanosporum) developmental stages.

    Science.gov (United States)

    Zarivi, Osvaldo; Cesare, Patrizia; Ragnelli, Anna Maria; Aimola, Pierpaolo; Leonardi, Marco; Bonfigli, Antonella; Colafarina, Sabrina; Poma, Anna Maria; Miranda, Michele; Pacioni, Giovanni

    2015-08-01

    The symbiotic fungus Tuber melanosporum Vittad. (Périgord black truffle) belongs to the Ascomycota and forms mutualistic symbiosis with tree and shrub roots. This truffle has a high value in a global market and is cultivated in many countries of both hemispheres. The publication of the T. melanosporum genome has given researchers unique opportunities to learn more about the biology of the fungus. Real-time quantitative PCR (qRT-PCR) is a definitive technique for quantitating differences in transcriptional gene expression levels between samples. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. These housekeeping genes must show stable expression under given experimental conditions for the qRT-PCR results to be accurate. Unfortunately, there are no studies on the stability of housekeeping genes used in T. melanosporum development. In this study, we present a morphological and microscopical classification of the developmental stages of T. melanosporum fruit body, and investigate the expression levels of 12 candidate reference genes (18S rRNA; 5.8S rRNA; Elongation factor 1-alpha; Elongation factor 1-beta; α-tubulin; 60S ribosomal protein L29; β-tubulin; 40S ribosomal protein S1; 40S ribosomal protein S3; Glucose-6-phosphate dehydrogenase; β-actin; Ubiquitin-conjugating enzyme). To evaluate the suitability of these genes as endogenous controls, five software-based approaches and one web-based comprehensive tool (RefFinder) were used to analyze and rank the tested genes. We demonstrate here that the 18S rRNA gene shows the most stable expression during T. melanosporum development and that a set of three genes, 18S rRNA, Elongation factor 1-alpha and 40S ribosomal protein S3, is the most suitable to normalize qRT-PCR data from all the analyzed developmental stages; conversely, 18S rRNA, Glucose-6-phosphate dehydrogenase and Elongation factor 1-alpha are the most suitable

  13. Validation of Suitable Reference Genes for RT-qPCR Data in Achyranthes bidentata Blume under Different Experimental Conditions

    Directory of Open Access Journals (Sweden)

    Jinting Li

    2017-05-01

    Full Text Available Real-time quantitative polymerase chain reaction (RT-qPCR is a sensitive technique for gene expression studies. However, choosing the appropriate reference gene is essential to obtain reliable results for RT-qPCR assays. In the present work, the expression of eight candidate reference genes, EF1-α (elongation factor 1-α, GAPDH (glyceraldehyde 3-phosphate dehydrogenase, UBC (ubiquitin-conjugating enzyme, UBQ (polyubiquitin, ACT (actin, β-TUB (β-tubulin, APT1 (adenine phosphoribosyltransferase 1, and 18S rRNA (18S ribosomal RNA, was evaluated in Achyranthes bidentata samples using two algorithms, geNorm and NormFinder. The samples were classified into groups according to developmental stages, various tissues, stresses (cold, heat, drought, NaCl, and hormone treatments (MeJA, IBA, SA. Suitable combination of reference genes for RT-qPCR normalization should be applied according to different experimental conditions. In this study, EF1-α, UBC, and ACT genes were verified as the suitable reference genes across all tested samples. To validate the suitability of the reference genes, we evaluated the relative expression of CAS, which is a gene that may be involved in phytosterol synthesis. Our results provide the foundation for gene expression analysis in A. bidentata and other species of Amaranthaceae.

  14. Defining suitable reference genes for RT-qPCR analysis on human sertoli cells after 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure.

    Science.gov (United States)

    Ribeiro, Mariana Antunes; dos Reis, Mariana Bisarro; de Moraes, Leonardo Nazário; Briton-Jones, Christine; Rainho, Cláudia Aparecida; Scarano, Wellerson Rodrigo

    2014-11-01

    Quantitative real-time RT-PCR (qPCR) has proven to be a valuable molecular technique to quantify gene expression. There are few studies in the literature that describe suitable reference genes to normalize gene expression data. Studies of transcriptionally disruptive toxins, like tetrachlorodibenzo-p-dioxin (TCDD), require careful consideration of reference genes. The present study was designed to validate potential reference genes in human Sertoli cells after exposure to TCDD. 32 candidate reference genes were analyzed to determine their applicability. geNorm and NormFinder softwares were used to obtain an estimation of the expression stability of the 32 genes and to identify the most suitable genes for qPCR data normalization.

  15. Differential expression of granulopoiesis related genes in neutrophil subsets distinguished by membrane expression of CD177

    DEFF Research Database (Denmark)

    Hu, Nan; Mora-Jensen, Helena; Theilgaard-Mønch, Kim

    2014-01-01

    OBJECTIVE: Differential gene expression in CD177+ and CD177- neutrophils was investigated, in order to detect possible differences in neutrophil function which could be related to the pathogenesis of ANCA-associated Vasculitides (AAV). METHODS: Neutrophils were isolated from healthy controls (HC......) with high, negative or bimodal CD177 expression, and sorted into CD177+ and CD177- subpopulations. Total RNA was screened for expression of 24,000 probes with Illumina Ref-8 Beadchips. Genes showing differential expression between CD177+ and CD177- subsets in microarray analysis were re-assessed using...... quantitative-PCR. CD177 expression on neutrophil precursors in bone marrow was analyzed using quantitative PCR and flowcytometry. RESULTS: The proportion of CD177+ cells increased during neutrophil maturation in bone marrow. Fold change analysis of gene expression profile of sorted CD177+ and CD177...

  16. Environmental Regulation of Plant Gene Expression: An Rt-qPCR Laboratory Project for an Upper-Level Undergraduate Biochemistry or Molecular Biology Course

    Science.gov (United States)

    Eickelberg, Garrett J.; Fisher, Alison J.

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the "FLOWERING LOCUS C" gene, a key regulator of floral timing in "Arabidopsis thaliana" plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate…

  17. Identification of endogenous control genes for normalisation of real-time quantitative PCR data in colorectal cancer.

    LENUS (Irish Health Repository)

    Kheirelseid, Elrasheid A H

    2010-01-01

    BACKGROUND: Gene expression analysis has many applications in cancer diagnosis, prognosis and therapeutic care. Relative quantification is the most widely adopted approach whereby quantification of gene expression is normalised relative to an endogenously expressed control (EC) gene. Central to the reliable determination of gene expression is the choice of control gene. The purpose of this study was to evaluate a panel of candidate EC genes from which to identify the most stably expressed gene(s) to normalise RQ-PCR data derived from primary colorectal cancer tissue. RESULTS: The expression of thirteen candidate EC genes: B2M, HPRT, GAPDH, ACTB, PPIA, HCRT, SLC25A23, DTX3, APOC4, RTDR1, KRTAP12-3, CHRNB4 and MRPL19 were analysed in a cohort of 64 colorectal tumours and tumour associated normal specimens. CXCL12, FABP1, MUC2 and PDCD4 genes were chosen as target genes against which a comparison of the effect of each EC gene on gene expression could be determined. Data analysis using descriptive statistics, geNorm, NormFinder and qBasePlus indicated significant difference in variances between candidate EC genes. We determined that two genes were required for optimal normalisation and identified B2M and PPIA as the most stably expressed and reliable EC genes. CONCLUSION: This study identified that the combination of two EC genes (B2M and PPIA) more accurately normalised RQ-PCR data in colorectal tissue. Although these control genes might not be optimal for use in other cancer studies, the approach described herein could serve as a template for the identification of valid ECs in other cancer types.

  18. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Filipe Pinto

    Full Text Available Cyanobacteria are a group of photosynthetic prokaryotes that have a diverse morphology, minimal nutritional requirements and metabolic plasticity that has made them attractive organisms to use in biotechnological applications. The use of these organisms as cell factories requires the knowledge of their physiology and metabolism at a systems level. For the quantification of gene transcripts real-time quantitative polymerase chain reaction (RT-qPCR is the standard technique. However, to obtain reliable RT-qPCR results the use and validation of reference genes is mandatory. Towards this goal we have selected and analyzed twelve candidate reference genes from three morphologically distinct cyanobacteria grown under routinely used laboratory conditions. The six genes exhibiting less variation in each organism were evaluated in terms of their expression stability using geNorm, NormFinder and BestKeeper. In addition, the minimum number of reference genes required for normalization was determined. Based on the three algorithms, we provide a list of genes for cyanobacterial RT-qPCR data normalization. To our knowledge, this is the first work on the validation of reference genes for cyanobacteria constituting a valuable starting point for future works.

  19. Evaluation of reference genes for real-time quantitative PCR studies in Candida glabrata following azole treatment

    Directory of Open Access Journals (Sweden)

    Li Qingdi

    2012-06-01

    Full Text Available Abstract Background The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata. Results The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25 remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1α, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4 were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-ΔΔCT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-ΔΔCT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13 as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such

  20. Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress.

    Science.gov (United States)

    Lyu, Yuping; Wu, Xiaoqing; Ren, He; Zhou, Fangyuan; Zhou, Hongzi; Zhang, Xinjian; Yang, Hetong

    2017-10-01

    An appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e., elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme, glyceraldehyde-3-phosphate dehydrogenase, α-tubulin, actin, from the effective biocontrol isolate T. afroharzianum strain LTR-2 were tested for their expression during growth in liquid culture amended with OA. Four in silico programs (comparative ΔCt, NormFinder, geNorm and BestKeeper) were used to evaluate the expression stabilities of six candidate reference genes. The elongation factor 1 gene EF-1 was identified as the most stably expressed reference gene, and was used as the normalizer to quantify the expression level of the oxalate decarboxylase coding gene OXDC in T. afroharzianum strain LTR-2 under OA stress. The result showed that the expression of OXDC was significantly up-regulated as expected. This study provides an effective method to quantify expression changes of target genes in T. afroharzianum under OA stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. In vitro and in vivo MMP gene expression localisation by In Situ-RT-PCR in cell culture and paraffin embedded human breast cancer cell line xenografts

    International Nuclear Information System (INIS)

    Haupt, Larisa M; Thompson, Erik W; Trezise, Ann EO; Irving, Rachel E; Irving, Michael G; Griffiths, Lyn R

    2006-01-01

    Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in

  2. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data

    Directory of Open Access Journals (Sweden)

    Alves-Ferreira Marcio

    2010-03-01

    Full Text Available Abstract Background Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR. Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. Results By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. Conclusion We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references

  3. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data.

    Science.gov (United States)

    Artico, Sinara; Nardeli, Sarah M; Brilhante, Osmundo; Grossi-de-Sa, Maria Fátima; Alves-Ferreira, Marcio

    2010-03-21

    Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1alpha5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhbetaTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in

  4. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    Science.gov (United States)

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  5. Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR.

    Science.gov (United States)

    Ramiah, K; van Reenen, C A; Dicks, L M T

    2007-05-30

    Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA by Lactobacillus plantarum 423, grown in the presence of bile, pancreatin and at low pH, was studied by real-time PCR. Mub, MapA and EF-Tu were up-regulated in the presence of mucus, proportional to increasing concentrations. Expression of MapA was up-regulated in the presence of 3.0 g/l bile and 3.0 g/l pancreatin at pH 6.5. Similar results were recorded in the presence of 10.0 g/l bile and 10.0 g/l pancreatin at pH 6.5. Expression of Mub was down-regulated in the presence of bile and pancreatin, whilst the expression of EF-Tu and plaA remained unchanged. Expression of Mub and MapA remained unchanged at pH 4.0, whilst expression of EF-Tu and plaA were up-regulated. Expression of MapA was down-regulated in the presence of 1.0 g/l l-cysteine HCl, suggesting that the gene is regulated by transcription attenuation that involves cysteine.

  6. Analysis on the arcelin expression in bruchid pest resistant wild pulses using real time RT-qPCR.

    Science.gov (United States)

    Sakthivelkumar, Shanmugavel; Veeramani, Velayutham; Hilda, Karuppiah; Arumugam, Munusamy; Janarthanan, Sundaram

    2014-12-01

    Arcelin, the antimetabolic protein from wild pulses is a known natural insecticidal molecule. Wild pulses with high arcelin content could serve as potential source to. increase the levels of insect resistance in cultivated pulse crops. In this study, arcelin (Arl) gene expression was screened in seven stored product insect pest resistant wild pulse varieties using real time RT-qPCR. Arcelin gene specific real time PCR primers were synthesized from arcelin mRNA sequence of the wild pulse variety, Lablab purpureus. The results revealed different levels of arcelin gene expression in the tested varieties. Canavalia virosa registered significantly high content indicating its suitability for utilization of arcelin gene in developing stored product insect pest resistance with other cultivated pulses.

  7. Screening suitable reference genes for normalization in reverse transcription quantitative real-time PCR analysis in melon.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Melon (Cucumis melo. L is not only an economically important cucurbitaceous crop but also an attractive model for studying many biological characteristics. Screening appropriate reference genes is essential to reverse transcription quantitative real-time PCR (RT-qPCR, which is key to many studies involving gene expression analysis. In this study, 14 candidate reference genes were selected, and the variations in their expression in roots and leaves of plants subjected to biotic stress, abiotic stress, and plant growth regulator treatment were assessed by RT-qPCR. The stability of the expression of the selected genes was determined and ranked using geNorm and NormFinder. geNorm identified the two most stable genes for each set of conditions: CmADP and CmUBIep across all samples, CmUBIep and CmRPL in roots, CmRAN and CmACT in leaves, CmADP and CmRPL under abiotic stress conditions, CmTUA and CmACT under biotic stress conditions, and CmRAN and CmACT under plant growth regulator treatments. NormFinder determined CmRPL to be the best reference gene in roots and under biotic stress conditions and CmADP under the other experimental conditions. CmUBC2 and CmPP2A were not found to be suitable under many experimental conditions. The catalase family genes CmCAT1, CmCAT2, and CmCAT3 were identified in melon genome and used as target genes to validate the reliability of identified reference genes. The catalase family genes showed the most upregulation 3 days after inoculation with Fusarium wilt in roots, after which they were downregulated. Their levels of expression were significantly overestimated when the unsuitable reference gene was used for normalization. These results not only provide guidelines for the selection of reference genes for gene expression analyses in melons but may also provide valuable information for studying the functions of catalase family genes in stress responses.

  8. Identification and Evaluation of Reliable Reference Genes for Quantitative Real-Time PCR Analysis in Tea Plant (Camellia sinensis (L.) O. Kuntze)

    Science.gov (United States)

    Hao, Xinyuan; Horvath, David P.; Chao, Wun S.; Yang, Yajun; Wang, Xinchao; Xiao, Bin

    2014-01-01

    Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a crucial step in qRT-PCR normalization. To date, only a few housekeeping genes have been identified and used as reference genes in tea plant. The validity of those reference genes are not clear since their expression stabilities have not been rigorously examined. To identify more appropriate reference genes for qRT-PCR studies on tea plant, we examined the expression stability of 11 candidate reference genes from three different sources: the orthologs of Arabidopsis traditional reference genes and stably expressed genes identified from whole-genome GeneChip studies, together with three housekeeping gene commonly used in tea plant research. We evaluated the transcript levels of these genes in 94 experimental samples. The expression stabilities of these 11 genes were ranked using four different computation programs including geNorm, Normfinder, BestKeeper, and the comparative ∆CT method. Results showed that the three commonly used housekeeping genes of CsTUBULIN1, CsACINT1 and Cs18S rRNA1 together with CsUBQ1 were the most unstable genes in all sample ranking order. However, CsPTB1, CsEF1, CsSAND1, CsCLATHRIN1 and CsUBC1 were the top five appropriate reference genes for qRT-PCR analysis in complex experimental conditions. PMID:25474086

  9. Using RNA-Seq Data to Evaluate Reference Genes Suitable for Gene Expression Studies in Soybean.

    Directory of Open Access Journals (Sweden)

    Aldrin Kay-Yuen Yim

    Full Text Available Differential gene expression profiles often provide important clues for gene functions. While reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR is an important tool, the validity of the results depends heavily on the choice of proper reference genes. In this study, we employed new and published RNA-sequencing (RNA-Seq datasets (26 sequencing libraries in total to evaluate reference genes reported in previous soybean studies. In silico PCR showed that 13 out of 37 previously reported primer sets have multiple targets, and 4 of them have amplicons with different sizes. Using a probabilistic approach, we identified new and improved candidate reference genes. We further performed 2 validation tests (with 26 RNA samples on 8 commonly used reference genes and 7 newly identified candidates, using RT-qPCR. In general, the new candidate reference genes exhibited more stable expression levels under the tested experimental conditions. The three newly identified candidate reference genes Bic-C2, F-box protein2, and VPS-like gave the best overall performance, together with the commonly used ELF1b. It is expected that the proposed probabilistic model could serve as an important tool to identify stable reference genes when more soybean RNA-Seq data from different growth stages and treatments are used.

  10. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue

    Directory of Open Access Journals (Sweden)

    Dunner Susana

    2008-09-01

    Full Text Available Abstract Background Real-time reverse transcriptase quantitative polymerase chain reaction (real-time RTqPCR is a technique used to measure mRNA species copy number as a way to determine key genes involved in different biological processes. However, the expression level of these key genes may vary among tissues or cells not only as a consequence of differential expression but also due to different factors, including choice of reference genes to normalize the expression levels of the target genes; thus the selection of reference genes is critical for expression studies. For this purpose, ten candidate reference genes were investigated in bovine muscular tissue. Results The value of stability of ten candidate reference genes included in three groups was estimated: the so called 'classical housekeeping' genes (18S, GAPDH and ACTB, a second set of genes used in expression studies conducted on other tissues (B2M, RPII, UBC and HMBS and a third set of novel genes (SF3A1, EEF1A2 and CASC3. Three different statistical algorithms were used to rank the genes by their stability measures as produced by geNorm, NormFinder and Bestkeeper. The three methods tend to agree on the most stably expressed genes and the least in muscular tissue. EEF1A2 and HMBS followed by SF3A1, ACTB, and CASC3 can be considered as stable reference genes, and B2M, RPII, UBC and GAPDH would not be appropriate. Although the rRNA-18S stability measure seems to be within the range of acceptance, its use is not recommended because its synthesis regulation is not representative of mRNA levels. Conclusion Based on geNorm algorithm, we propose the use of three genes SF3A1, EEF1A2 and HMBS as references for normalization of real-time RTqPCR in muscle expression studies.

  11. Recommended Reference Genes for Quantitative PCR Analysis in Soybean Have Variable Stabilities during Diverse Biotic Stresses.

    Directory of Open Access Journals (Sweden)

    Raman Bansal

    Full Text Available For real-time reverse transcription-PCR (qRT-PCR in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2 in soybean under biotic stress from Bean pod mottle virus (BPMV, powdery mildew (PMD, soybean aphid (SBA, and two-spotted spider mite (TSSM. BPMV, PMD, SBA, and TSSM are amongst the most common pest problems on soybean in North-Central U.S. and other regions. Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper and a web-based tool (RefFinder. Reference genes showed variability in their expression as well as stability across various stressors and the best reference genes were stress-dependent. ABCT and FBOX were found to be the most stable in soybean under both BPMV and SBA stress but these genes had only minimal to moderate stability during PMD and TSSM stress. Expression of TUA4 and CYP was found to be most stable during PMD stress; TUB4 and TUA4 were stable under TSSM stress. Under various biotic stresses on soybean analyzed, GPDH expression was found to be consistently unstable. For all biotic stressors on soybean, we obtained pairwise variation (V2/3 values less than 0.15 which suggested that combined use of the two most stable reference genes would be sufficient for normalization. Further, we demonstrated the utility of normalizing the qRT-PCR data for target genes using the most stable reference genes validated in current study. Following of the recommendations from our current study will enable an accurate and reliable normalization of qRT-PCR data in soybean under biotic stress.

  12. Selection of reference genes for quantitative real-time RT-PCR studies in tomato fruit of the genotype MT-Rg1

    Directory of Open Access Journals (Sweden)

    Karla L. González-Aguilera

    2016-09-01

    Full Text Available Quantitative real-time RT-PCR (qRT-PCR has become one of the most widely used methods for accurate quantification of gene expression. Since there are no universal reference genes for normalization, the optimal strategy to normalize raw qRT-PCR data is to perform an initial comparison of a set of independent reference genes to assess the most stable ones in each biological model. Normalization of a qRT-PCR experiment helps to ensure that the results are both statistically significant and biologically meaningful. Tomato is the model of choice to study fleshy fruit development. The miniature tomato (Solanum lycopersicum L. cultivar Micro-Tom (MT is considered a model system for tomato genetics and functional genomics. A new genotype, containing the Rg1 allele, improves tomato in vitro regeneration. In this work, we evaluated the expression stability of four tomato reference genes, namely CAC, SAND, Expressed and ACTIN2. We showed that the genes CAC and Exp are the best reference genes of the four we tested during fruit development in the MT-Rg1 genotype. Furthermore, we validated the reference genes by showing that the expression profiles of the transcription factors FRUITFULL1 (FUL1 and APETALA2c (AP2c during fruit development are comparable to previous reports using other tomato cultivars.

  13. PCR-based detection of gene transfer vectors: application to gene doping surveillance.

    Science.gov (United States)

    Perez, Irene C; Le Guiner, Caroline; Ni, Weiyi; Lyles, Jennifer; Moullier, Philippe; Snyder, Richard O

    2013-12-01

    Athletes who illicitly use drugs to enhance their athletic performance are at risk of being banned from sports competitions. Consequently, some athletes may seek new doping methods that they expect to be capable of circumventing detection. With advances in gene transfer vector design and therapeutic gene transfer, and demonstrations of safety and therapeutic benefit in humans, there is an increased probability of the pursuit of gene doping by athletes. In anticipation of the potential for gene doping, assays have been established to directly detect complementary DNA of genes that are top candidates for use in doping, as well as vector control elements. The development of molecular assays that are capable of exposing gene doping in sports can serve as a deterrent and may also identify athletes who have illicitly used gene transfer for performance enhancement. PCR-based methods to detect foreign DNA with high reliability, sensitivity, and specificity include TaqMan real-time PCR, nested PCR, and internal threshold control PCR.

  14. Detection of growth hormone doping by gene expression profiling of peripheral blood.

    Science.gov (United States)

    Mitchell, Christopher J; Nelson, Anne E; Cowley, Mark J; Kaplan, Warren; Stone, Glenn; Sutton, Selina K; Lau, Amie; Lee, Carol M Y; Ho, Ken K Y

    2009-12-01

    GH abuse is a significant problem in many sports, and there is currently no robust test that allows detection of doping beyond a short window after administration. Our objective was to evaluate gene expression profiling in peripheral blood leukocytes in-vivo as a test for GH doping in humans. Seven men and thirteen women were administered GH, 2 mg/d sc for 8 wk. Blood was collected at baseline and at 8 wk. RNA was extracted from the white cell fraction. Microarray analysis was undertaken using Agilent 44K G4112F arrays using a two-color design. Quantitative RT-PCR using TaqMan gene expression assays was performed for validation of selected differentially expressed genes. GH induced an approximately 2-fold increase in circulating IGF-I that was maintained throughout the 8 wk of the study. GH induced significant changes in gene expression with 353 in women and 41 in men detected with a false discovery rate of less than 5%. None of the differentially expressed genes were common between men and women. The maximal changes were a doubling for up-regulated or halving for down-regulated genes, similar in magnitude to the variation between individuals. Quantitative RT-PCR for seven target genes showed good concordance between microarray and quantitative PCR data in women but not in men. Gene expression analysis of peripheral blood leukocytes is unlikely to be a viable approach for the detection of GH doping.

  15. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer.

    Science.gov (United States)

    Gianni, Luca; Zambetti, Milvia; Clark, Kim; Baker, Joffre; Cronin, Maureen; Wu, Jenny; Mariani, Gabriella; Rodriguez, Jaime; Carcangiu, Marialuisa; Watson, Drew; Valagussa, Pinuccia; Rouzier, Roman; Symmans, W Fraser; Ross, Jeffrey S; Hortobagyi, Gabriel N; Pusztai, Lajos; Shak, Steven

    2005-10-10

    We sought to identify gene expression markers that predict the likelihood of chemotherapy response. We also tested whether chemotherapy response is correlated with the 21-gene Recurrence Score assay that quantifies recurrence risk. Patients with locally advanced breast cancer received neoadjuvant paclitaxel and doxorubicin. RNA was extracted from the pretreatment formalin-fixed paraffin-embedded core biopsies. The expression of 384 genes was quantified using reverse transcriptase polymerase chain reaction and correlated with pathologic complete response (pCR). The performance of genes predicting for pCR was tested in patients from an independent neoadjuvant study where gene expression was obtained using DNA microarrays. Of 89 assessable patients (mean age, 49.9 years; mean tumor size, 6.4 cm), 11 (12%) had a pCR. Eighty-six genes correlated with pCR (unadjusted P < .05); pCR was more likely with higher expression of proliferation-related genes and immune-related genes, and with lower expression of estrogen receptor (ER) -related genes. In 82 independent patients treated with neoadjuvant paclitaxel and doxorubicin, DNA microarray data were available for 79 of the 86 genes. In univariate analysis, 24 genes correlated with pCR with P < .05 (false discovery, four genes) and 32 genes showed correlation with P < .1 (false discovery, eight genes). The Recurrence Score was positively associated with the likelihood of pCR (P = .005), suggesting that the patients who are at greatest recurrence risk are more likely to have chemotherapy benefit. Quantitative expression of ER-related genes, proliferation genes, and immune-related genes are strong predictors of pCR in women with locally advanced breast cancer receiving neoadjuvant anthracyclines and paclitaxel.

  16. Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses

    International Nuclear Information System (INIS)

    Fu, Li-Yun; Jia, Hu-Liang; Dong, Qiong-Zhu; Wu, Jin-Cai; Zhao, Yue; Zhou, Hai-Jun; Ren, Ning; Ye, Qin-Hai; Qin, Lun-Xiu

    2009-01-01

    Housekeeping genes are routinely used as endogenous references to account for experimental differences in gene expression assays. However, recent reports show that they could be de-regulated in different diseases, model animals, or even under varied experimental conditions, which may lead to unreliable results and consequently misinterpretations. This study focused on the selection of suitable reference genes for quantitative PCR in human hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) with different clinical outcomes. We evaluated 6 commonly used housekeeping genes' expression levels in 108 HBV-related HCCs' matched tumor and non-tomor tissue samples with different clinical outcomes and 26 normal liver specimens by real-time PCR. The expression stability of the 6 genes was compared using the software programs geNorm and NormFinder. To show the impact of reference genes on data analysis, we took PGK1 as a target gene normalized by each reference gene, and performed one-way ANOVA and the equivalence test. With the geNorm and NormFinder software programs, analysis of TBP and HPRT1 showed the best stability in all tissue samples, while 18s and ACTB were less stable. When 18s or ACTB was used for normalization, no significant difference of PGK1 expression (p > 0.05) was found among HCC tissues with and without metastasis, and normal liver specimens; however, dramatically differences (p < 0.001) were observed when either TBP or the combination of TBP and HPRT1 were selected as reference genes. TBP and HPRT1 are the most reliable reference genes for q-PCR normalization in HBV-related HCC specimens. However, the well-used ACTB and 18S are not suitable, which actually lead to the misinterpretation of the results in gene expression analysis

  17. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity.

    Directory of Open Access Journals (Sweden)

    Mateusz G Adamski

    Full Text Available Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR and high throughput qPCR. This technique is adjusted to the input sample quantity (e.g., the number of cells and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA permits the normalization of results between different batches and between different instruments--regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1 the achievement of absolute quantification and (2 a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available.

  18. Gene expression pattern at different time points following ALA-PDT

    International Nuclear Information System (INIS)

    Verwanger, T.; Sanovic, R.; Ruhdorfer, S.; Aberger, F.; Frischauf, A.; Krammer, B.

    2003-01-01

    Full text: The photo sensitizer protoporphyrin IX, endogenously accumulated from the precursor aminolevulinic acid (ALA), is a successful agent in photodynamic tumor therapy. In spite of encouraging clinical results, the basic mechanisms leading to cell death are not fully understood. We therefore set out to analyze the alteration of the gene expression pattern in the squamous cell carcinoma cell line A-431 at different time points after photodynamic treatment with endogenous protoporphyrin IX by cDNA-array technique. Cells were incubated for 16 hours with 100 μg/ml ALA and irradiated with a fluence of 3.5 J/cm 2 resulting in 50 % survival until 8 hours post treatment. RNA was isolated at 1.5, 3, 5 and 8 hours post treatment as well as of 3 controls (untreated, light only and dark), radioactively labelled by reverse transcription with 33P-dCTP and hybridized onto macroarray PCR filters containing PCR products of 2135 genes, which were selected for relevance in tumors, stress response and signal transduction. Verification of observed expression changes was carried out by real time PCR. We found a strong induction of expression of immediate early genes like c-fos as well as decreased expression of genes involved in proliferation like myc and the proliferating cell nuclear antigen (PCNA). (author)

  19. Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60Co γ-rays ex vivo

    International Nuclear Information System (INIS)

    Vaiphei, S. Thangminlal; Keppen, Joshua; Nongrum, Saibadaiahun; Sharan, R.N.; Chaubey, R.C.; Kma, L.

    2015-01-01

    In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving 60 Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of 60 Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min -1 at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples. (author)

  20. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    Science.gov (United States)

    Yurong, Chai; Yumin, Lu; Tianyun, Wang; Weihong, Hou; Lexun, Xue

    2006-12-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase ( CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  1. The normally expressed kappa immunoglobulin light chain gene repertoire and somatic mutations studied by single-sided specific polymerase chain reaction (PCR); frequent occurrence of features often assigned to autoimmunity

    DEFF Research Database (Denmark)

    Juul, L; Hougs, L; Andersen, V

    1997-01-01

    The expressed human kappa light chain gene repertoire utilized by healthy individuals was studied by two different single-sided specific PCR techniques to avoid bias for certain V genes. A total of 103 rearranged kappa sequences from peripheral blood mononuclear cells from healthy individuals were...

  2. CDX2 gene expression in acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Arnaoaut, H.H.; Mokhtar, D.A.; Samy, R.M.; Omar, Sh.A.; Khames, S.A.

    2014-01-01

    CDX genes are classically known as regulators of axial elongation during early embryogenesis. An unsuspected role for CDX genes has been revealed during hematopoietic development. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. We used reversed transcriptase polymerase chain reaction (RT-PCR) to determine the expression level of CDX2 gene in 30 pediatric patients with acute lymphoblastic leukemia (ALL) at diagnosis and 30 healthy volunteers. ALL patients were followed up to detect minimal residual disease (MRD) on days 15 and 42 of induction. We found that CDX2 gene was expressed in 50% of patients and not expressed in controls. Associations between gene expression and different clinical and laboratory data of patients revealed no impact on different findings. With follow up, we could not confirm that CDX2 expression had a prognostic significance.

  3. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    Science.gov (United States)

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  4. Identification of differentially expressed genes in childhood asthma.

    Science.gov (United States)

    Zhang, Nian-Zhen; Chen, Xiu-Juan; Mu, Yu-Hua; Wang, Hewen

    2018-05-01

    Asthma has been the most common chronic disease in children that places a major burden for affected people and their families.An integrated analysis of microarrays studies was performed to identify differentially expressed genes (DEGs) in childhood asthma compared with normal control. We also obtained the differentially methylated genes (DMGs) in childhood asthma according to GEO. The genes that were both differentially expressed and differentially methylated were identified. Functional annotation and protein-protein interaction network construction were performed to interpret biological functions of DEGs. We performed q-RT-PCR to verify the expression of selected DEGs.One DNA methylation and 3 gene expression datasets were obtained. Four hundred forty-one DEGs and 1209 DMGs in childhood asthma were identified. Among which, 16 genes were both differentially expressed and differentially methylated in childhood asthma. Natural killer cell mediated cytotoxicity pathway, Jak-STAT signaling pathway, and Wnt signaling pathway were 3 significantly enriched pathways in childhood asthma according to our KEGG enrichment analysis. The PPI network of top 20 up- and downregulated DEGs consisted of 822 nodes and 904 edges and 2 hub proteins (UBQLN4 and MID2) were identified. The expression of 8 DEGs (GZMB, FGFBP2, CLC, TBX21, ALOX15, IL12RB2, UBQLN4) was verified by qRT-PCR and only the expression of GZMB and FGFBP2 was inconsistent with our integrated analysis.Our finding was helpful to elucidate the underlying mechanism of childhood asthma and develop new potential diagnostic biomarker and provide clues for drug design.

  5. Gene expression profiling demonstrates WNT/β-catenin pathway genes alteration in Mexican patients with colorectal cancer and diabetes mellitus.

    Science.gov (United States)

    Ivonne Wence-Chavez, Laura; Palomares-Chacon, Ulises; Pablo Flores-Gutierrez, Juan; Felipe Jave-Suarez, Luis; Del Carmen Aguilar-Lemarroy, Adriana; Barros-Nunez, Patricio; Esperanza Flores-Martinez, Silvia; Sanchez-Corona, Jose; Alejandra Rosales-Reynoso, Monica

    2017-01-01

    Several studies have shown a strong association between diabetes mellitus (DM) and increased risk of colorectal cancer (CRC). The fundamental mechanisms that support this association are not entirely understood; however, it is believed that hyperinsulinemia and hyperglycemia may be involved. Some proposed mechanisms include upregulation of mitogenic signaling pathways like MAPK, PI3K, mTOR, and WNT, which are involved in cell proliferation, growth, and cancer cell survival. The purpose of this study was to evaluate the gene expression profile and identify differently expressed genes involved in mitogenic pathways in CRC patients with and without DM. In this study, microarray analysis of gene expression followed by quantitative PCR (qPCR) was performed in cancer tissue from CRC patients with and without DM to identify the gene expression profiles and validate the differently expressed genes. Among the study groups, some differently expressed genes were identified. However, when bioinformatics clustering tools were used, a significant modulation of genes involved in the WNT pathway was evident. Therefore, we focused on genes participating in this pathway, such as WNT3A, LRP6, TCF7L2, and FRA-1. Validation of the expression levels of those genes by qPCR showed that CRC patients without type 2 diabetes mellitus (T2DM) expressed significantly more WNT3Ay LRP6, but less TCF7L2 and FRA-1 compared to controls, while in CRC patients with DM the expression levels of WNT3A, LRP6, TCF7L2, and FRA-1 were significantly higher compared to controls. Our results suggest that WNT/β-catenin pathway is upregulated in patients with CRC and DM, demonstrating its importance and involvement in both pathologies.

  6. Investigation of PAX3/7-FKHR fusion genes and IGF2 gene expression in rhabdomyosarcoma tumors.

    Science.gov (United States)

    de Souza, Robson Ramos; Oliveira, Indhira Dias; Caran, Eliana Maria Monteiro; Alves, Maria Teresa de Seixas; Abib, Simone; Toledo, Silvia Regina Caminada

    2012-12-01

    The purpose of our study was to investigate the prevalence of the PAX3/7-FKHR fusion genes and quantify the IGF2 gene expression in rhabdomyosarcoma (RMS) samples. Soft tissue sarcomas account 5% of childhood cancers and 50% of them are RMS. Morphological evaluation of pediatric RMS has defined two histological subtypes, embryonal (ERMS) and alveolar (ARMS). Chromosomal analyses have demonstrated two translocations associated with ARMS, resulting in the PAX3/7-FKHR rearrangements. Reverse transcriptase-polymerase chain reaction (RT-PCR) is extremely useful in the diagnosis of ARMS positive for these rearrangements. Additionally, several studies have shown a significant involvement of IGF pathway in the pathogenesis of RMS. The presence of PAX3/7-FKHR gene fusions was studied in 25 RMS samples from patients attending the IOP-GRAACC/UNIFESP and three RMS cell lines by RT-PCR. IGF2 gene expression was quantified by qPCR and related with clinic pathological parameters. Of the 25 samples, nine (36%) were ARMS and 16 (64%) were ERMS. PAX3/7-FKHR gene fusions expression was detected in 56% of ARMS tumor samples. IGF2 overexpression was observed in 80% of samples and could indicate an important role of this pathway in RMS biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Identification of reference genes for RT-qPCR in ovine mammary tissue during late pregnancy and lactation and in response to maternal nutritional programming.

    Science.gov (United States)

    Paten, A M; Pain, S J; Peterson, S W; Blair, H T; Kenyon, P R; Dearden, P K; Duncan, E J

    2014-08-01

    The mammary gland is a complex tissue consisting of multiple cell types which, over the lifetime of an animal, go through repeated cycles of development associated with pregnancy, lactation and involution. The mammary gland is also known to be sensitive to maternal programming by environmental stimuli such as nutrition. The molecular basis of these adaptations is of significant interest, but requires robust methods to measure gene expression. Reverse-transcription quantitative PCR (RT-qPCR) is commonly used to measure gene expression, and is currently the method of choice for validating genome-wide expression studies. RT-qPCR requires the selection of reference genes that are stably expressed over physiological states and treatments. In this study we identify suitable reference genes to normalize RT-qPCR data for the ovine mammary gland in two physiological states; late pregnancy and lactation. Biopsies were collected from offspring of ewes that had been subjected to different nutritional paradigms during pregnancy to examine effects of maternal programming on the mammary gland of the offspring. We evaluated eight candidate reference genes and found that two reference genes (PRPF3 and CUL1) are required for normalising RT-qPCR data from pooled RNA samples, but five reference genes are required for analyzing gene expression in individual animals (SENP2, EIF6, MRPL39, ATP1A1, CUL1). Using these stable reference genes, we showed that TET1, a key regulator of DNA methylation, is responsive to maternal programming and physiological state. The identification of these novel reference genes will be of utility to future studies of gene expression in the ovine mammary gland. Copyright © 2014 the American Physiological Society.

  8. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  9. Expression profiles of genes involved in tanshinone biosynthesis of ...

    Indian Academy of Sciences (India)

    Expression profiles of genes involved in tanshinone biosynthesis of two. Salvia miltiorrhiza genotypes with different tanshinone contents. Zhenqiao Song, Jianhua Wang and Xingfeng Li. J. Genet. 95, 433–439. Table 1. S. miltiorrhiza genes and primer pairs used for qRT-PCR. Gene. GenBank accession. Primer name.

  10. PRAME gene expression profile in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Tânia Maria Vulcani-Freitas

    2011-02-01

    Full Text Available Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas.

  11. Identification of pathogenic genes related to rheumatoid arthritis through integrated analysis of DNA methylation and gene expression profiling.

    Science.gov (United States)

    Zhang, Lei; Ma, Shiyun; Wang, Huailiang; Su, Hang; Su, Ke; Li, Longjie

    2017-11-15

    The purpose of our study was to identify new pathogenic genes used for exploring the pathogenesis of rheumatoid arthritis (RA). To screen pathogenic genes of RA, an integrated analysis was performed by using the microarray datasets in RA derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Afterwards, the integrated analysis of DNA methylation and gene expression profiling was used to screen crucial genes. In addition, we used RT-PCR and MSP to verify the expression levels and methylation status of these crucial genes in 20 synovial biopsy samples obtained from 10 RA model mice and 10 normal mice. BCL11B, CCDC88C, FCRLA and APOL6 were both up-regulated and hypomethylated in RA according to integrated analysis, RT-PCR and MSP verification. Four crucial genes (BCL11B, CCDC88C, FCRLA and APOL6) identified and analyzed in this study might be closely connected with the pathogenesis of RA. Copyright © 2017. Published by Elsevier B.V.

  12. A PCR-aided transcript titration assay revealing very low expression of a gene at band 3p21 in 33 cells lines derived from all types of lung cancer

    NARCIS (Netherlands)

    Kok, K; Buchhagen, D L; Carritt, B; Buys, C H; van den Berg, Anke

    1993-01-01

    We have developed a general PCR-based method to quantify the amount of a specific mRNA present in a given cell line or tissue. We applied this quantitative PCR to analyse the expression of D8, a human gene which we recently identified in the chromosomal region 3p21, the common deletion region of

  13. Reference gene selection for real-time quantitative PCR analysis of the mouse uterus in the peri-implantation period.

    Directory of Open Access Journals (Sweden)

    Pengfei Lin

    Full Text Available The study of uterine gene expression patterns is valuable for understanding the biological and molecular mechanisms that occur during embryo implantation. Real-time quantitative RT-PCR (qRT-PCR is an extremely sensitive technique that allows for the precise quantification of mRNA abundance; however, selecting stable reference genes suitable for the normalization of qRT-PCR data is required to avoid the misinterpretation of experimental results and erroneous analyses. This study employs several mouse models, including an early pregnancy, a pseudopregnancy, a delayed implantation and activation, an artificial decidualization and a hormonal treatment model; ten candidate reference genes (PPIA, RPLP0, HPRT1, GAPDH, ACTB, TBP, B2M, 18S, UBC and TUBA that are found in uterine tissues were assessed for their suitability as internal controls for relative qRT-PCR quantification. GeNorm(PLUS, NormFinder, and BestKeeper were used to evaluate these candidate reference genes, and all of these methods identified RPLP0 and GAPDH as the most stable candidates and B2M and 18S as the least stable candidates. However, when the different models were analyzed separately, the reference genes exhibited some variation in their expression levels.

  14. Differential neutrophil gene expression in early bovine pregnancy

    Directory of Open Access Journals (Sweden)

    Kizaki Keiichiro

    2013-02-01

    Full Text Available Abstract Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT-stimulated gene expression in peripheral blood leukocytes (PBL, was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination, 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15, myxovirus-resistance (MX 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1, were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte

  15. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  16. A three-gene expression signature model for risk stratification of patients with neuroblastoma.

    Science.gov (United States)

    Garcia, Idoia; Mayol, Gemma; Ríos, José; Domenech, Gema; Cheung, Nai-Kong V; Oberthuer, André; Fischer, Matthias; Maris, John M; Brodeur, Garrett M; Hero, Barbara; Rodríguez, Eva; Suñol, Mariona; Galvan, Patricia; de Torres, Carmen; Mora, Jaume; Lavarino, Cinzia

    2012-04-01

    Neuroblastoma is an embryonal tumor with contrasting clinical courses. Despite elaborate stratification strategies, precise clinical risk assessment still remains a challenge. The purpose of this study was to develop a PCR-based predictor model to improve clinical risk assessment of patients with neuroblastoma. The model was developed using real-time PCR gene expression data from 96 samples and tested on separate expression data sets obtained from real-time PCR and microarray studies comprising 362 patients. On the basis of our prior study of differentially expressed genes in favorable and unfavorable neuroblastoma subgroups, we identified three genes, CHD5, PAFAH1B1, and NME1, strongly associated with patient outcome. The expression pattern of these genes was used to develop a PCR-based single-score predictor model. The model discriminated patients into two groups with significantly different clinical outcome [set 1: 5-year overall survival (OS): 0.93 ± 0.03 vs. 0.53 ± 0.06, 5-year event-free survival (EFS): 0.85 ± 0.04 vs. 0.042 ± 0.06, both P model was an independent marker for survival (P model robustly classified patients in the total cohort and in different clinically relevant risk subgroups. We propose for the first time in neuroblastoma, a technically simple PCR-based predictor model that could help refine current risk stratification systems. ©2012 AACR.

  17. Analysis of gene expression of myo1c and inpp5k genes involved in endometrial adenocarcinoma

    International Nuclear Information System (INIS)

    Koul, A.M.; Nadeem, A.; Baryalai, P.

    2012-01-01

    Abstract: Inpp5k gene encodes a protein which plays a very vital role in a number of metabolic pathways. It is very significant in the glucose metabolism where it regulates the signalling of the insulin pathway. But the full molecular details of the pathways regulated by Inpp5k encoded protein are not known. It is speculated that Inpp5k gene expression is altered in case of endometrial adenocarcinoma. Myolc gene encodes for a protein called Myosin-lc which acts an actin-based molecular motor in the cells. II has been studied that this gene down-regulates during endometrial adenocarcinoma and colorectal cancers. In this study the expression analysis of these two was carried out using multiplex PCR. An endogenous control was used for this PCR. ACTS gene served as the endogenous control because of it being a house keeping gene. It thus shows a universal expression in all cells. Thus in this study the gene expression of Inpp5k and Myulc genes was comparatively analysed with ACTS gene. The results that came out of this study showed an over-expression of Inpp5k gene and down-regulation of myolc gene with respect to ACTS gene in cancer cell lines as was indicated by the previous studies with these genes. Expression of both genes i.e. Inpp5k and Myolc was statistically compared between normal and cancerous cell lines and was found statistically significant at a value of P< O.O I in most of the cases. (author)

  18. Validation of RNAi by real time PCR

    DEFF Research Database (Denmark)

    Josefsen, Knud; Lee, Ying Chiu

    2011-01-01

    Real time PCR is the analytic tool of choice for quantification of gene expression, while RNAi is concerned with downregulation of gene expression. Together, they constitute a powerful approach in any loss of function studies of selective genes. We illustrate here the use of real time PCR to verify...

  19. Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60Co γ-rays ex vivo.

    Science.gov (United States)

    Vaiphei, S Thangminlal; Keppen, Joshua; Nongrum, Saibadaiahun; Chaubey, R C; Kma, L; Sharan, R N

    2015-01-01

    In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving (60)Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of (60)Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min(-1) at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue.

    Science.gov (United States)

    Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu

    2017-08-30

    To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  2. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Van Zeveren Alex

    2005-12-01

    Full Text Available Abstract Background Real-time quantitative PCR is a sensitive and very efficient technique to examine gene transcription patterns in preimplantation embryos, in order to gain information about embryo development and to optimize assisted reproductive technologies. Critical to the succesful application of real-time PCR is careful assay design, reaction optimization and validation to maximize sensitivity and accuracy. In most of the studies published GAPD, ACTB or 18S rRNA have been used as a single reference gene without prior verification of their expression stability. Normalization of the data using unstable controls can result in erroneous conclusions, especially when only one reference gene is used. Results In this study the transcription levels of 8 commonly used reference genes (ACTB, GAPD, Histone H2A, TBP, HPRT1, SDHA, YWHAZ and 18S rRNA were determined at different preimplantation stages (2-cell, 8-cell, blastocyst and hatched blastocyst in order to select the most stable genes to normalize quantitative data within different preimplantation embryo stages. Conclusion Using the geNorm application YWHAZ, GAPD and SDHA were found to be the most stable genes across the examined embryonic stages, while the commonly used ACTB was shown to be highly regulated. We recommend the use of the geometric mean of those 3 reference genes as an accurate normalization factor, which allows small expression differences to be reliably measured.

  3. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq data

    Directory of Open Access Journals (Sweden)

    Perkins James R

    2012-07-01

    Full Text Available Abstract Background Measuring gene transcription using real-time reverse transcription polymerase chain reaction (RT-qPCR technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these methods, together with other functions to read in and normalise the data using the chosen reference gene(s. Results We have developed two R/Bioconductor packages, ReadqPCR and NormqPCR, intended for a user with some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-qPCR data. We illustrate their potential use in a workflow analysing a generic RT-qPCR experiment, and apply this to a real dataset. Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.htmland http://www.bioconductor.org/packages/release/bioc/html/NormqPCR.html Conclusions These packages increase the repetoire of RT-qPCR analysis tools available to the R user and allow them to (amongst other things read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate reference genes, normalise the data and look for differential expression between samples.

  4. Assessing reference genes for accurate transcript normalization using quantitative real-time PCR in pearl millet [Pennisetum glaucum (L. R. Br].

    Directory of Open Access Journals (Sweden)

    Prasenjit Saha

    Full Text Available Pearl millet [Pennisetum glaucum (L. R.Br.], a close relative of Panicoideae food crops and bioenergy grasses, offers an ideal system to perform functional genomics studies related to C4 photosynthesis and abiotic stress tolerance. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR provides a sensitive platform to conduct such gene expression analyses. However, the lack of suitable internal control reference genes for accurate transcript normalization during qRT-PCR analysis in pearl millet is the major limitation. Here, we conducted a comprehensive assessment of 18 reference genes on 234 samples which included an array of different developmental tissues, hormone treatments and abiotic stress conditions from three genotypes to determine appropriate reference genes for accurate normalization of qRT-PCR data. Analyses of Ct values using Stability Index, BestKeeper, ΔCt, Normfinder, geNorm and RefFinder programs ranked PP2A, TIP41, UBC2, UBQ5 and ACT as the most reliable reference genes for accurate transcript normalization under different experimental conditions. Furthermore, we validated the specificity of these genes for precise quantification of relative gene expression and provided evidence that a combination of the best reference genes are required to obtain optimal expression patterns for both endogeneous genes as well as transgenes in pearl millet.

  5. Alteration in follistatin gene expression detected in prenatally androgenized rats.

    Science.gov (United States)

    Salehi Jahromi, Marziyeh; Ramezani Tehrani, Fahimeh; Hill, Jennifer W; Noroozzadeh, Mahsa; Zarkesh, Maryam; Ghasemi, Asghar; Zadeh-Vakili, Azita

    2017-06-01

    Impaired ovarian follicle development, the hallmark of polycystic ovarian syndrome (PCOS), is believed to be due to the changes in expression of related genes such as follistatin (FST). Expression of FST gene and methylation level of its promoter in theca cells from adult female rats, prenatally exposed to androgen excess, during different phases of the estrus cycle was determined and compared with controls. Eight pregnant Wistar rats (experimental group) were treated by subcutaneous injection of 5 mg free testosterone on day 20 of pregnancy, while controls (n = 8) received 500 ml solvent. Based on observed vaginal smear, adult female offspring of mothers were divided into three groups. Levels of serum steroidogenic sexual hormones and gonadotropins, expression and promoter methylation of the FST gene were measured using ELISA, cyber-green real-time PCR and bisulfite sequence PCR (BSP), respectively. Compared to controls, the relative expression of FST gene in the treated group decreased overall by 0.85 fold; despite significant changes in different phases, but no significant differences in methylation of FST promoter. Our results reveal that manifestation of PCOS-like phenotype following prenatal exposure to excess androgen is associated with irregularity in expression of the FST gene during the estrus cycle.

  6. Biofilm-Associated Gene Expression in Staphylococcus pseudintermedius on a Variety of Implant Materials.

    Science.gov (United States)

    Crawford, Evan C; Singh, Ameet; Gibson, Thomas W G; Scott Weese, J

    2016-05-01

    To evaluate the expression of biofilm-associated genes in Staphylococcus pseudintermedius on multiple clinically relevant surfaces. In vitro experimental study. Two strains of methicillin-resistant S. pseudintermedius isolated from clinical infections representing the most common international isolates. A quantitative polymerase chain reaction (qPCR) assay for expression of genes related to biofilm initial adhesion, formation/maturation, antimicrobial resistance, and intracellular communication was developed and validated. S. pseudintermedius biofilms were grown on 8 clinically relevant surfaces (polymethylmethacrylate, stainless steel, titanium, latex, silicone, polydioxanone, polystyrene, and glass) and samples of logarithmic and stationary growth phases were collected. Gene expression in samples was measured by qPCR. Significant differences in gene expression were identified between surfaces and between bacterial strains for most gene/strain/surface combinations studied. Expression of genes responsible for production of extracellular matrix were increased in biofilms. Expression of genes responsible for initial adhesion and intracellular communication was markedly variable. Antimicrobial resistance gene expression was increased on multiple surfaces, including stainless steel and titanium. A method for evaluation of expression of multiple biofilm-associated genes in S. pseudintermedius was successfully developed and applied to the study of biofilms on multiple surfaces. Variations in expression of these genes have a bearing on understanding the development and treatment of implant-associated biofilm infections and will inform future clinical research. © Copyright 2016 by The American College of Veterinary Surgeons.

  7. SASqPCR: robust and rapid analysis of RT-qPCR data in SAS.

    Directory of Open Access Journals (Sweden)

    Daijun Ling

    Full Text Available Reverse transcription quantitative real-time PCR (RT-qPCR is a key method for measurement of relative gene expression. Analysis of RT-qPCR data requires many iterative computations for data normalization and analytical optimization. Currently no computer program for RT-qPCR data analysis is suitable for analytical optimization and user-controllable customization based on data quality, experimental design as well as specific research aims. Here I introduce an all-in-one computer program, SASqPCR, for robust and rapid analysis of RT-qPCR data in SAS. This program has multiple macros for assessment of PCR efficiencies, validation of reference genes, optimization of data normalizers, normalization of confounding variations across samples, and statistical comparison of target gene expression in parallel samples. Users can simply change the macro variables to test various analytical strategies, optimize results and customize the analytical processes. In addition, it is highly automatic and functionally extendable. Thus users are the actual decision-makers controlling RT-qPCR data analyses. SASqPCR and its tutorial are freely available at http://code.google.com/p/sasqpcr/downloads/list.

  8. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer.

    LENUS (Irish Health Repository)

    Chang, Kah Hoong

    2010-01-01

    BACKGROUND: Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies. METHODS: We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (miR-21 and miR-31) and tumour suppressor (miR-143 and miR-145) target miRNAs were assessed. RESULTS: In the array experiment, miR-26a, miR-345, miR-425 and miR-454 were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) and two small nucleolar RNA genes (RNU48 and Z30), miR-16 and miR-345 were identified as the most stably expressed reference genes. The combined use of miR-16 and miR-345 to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue. CONCLUSIONS: Our study demonstrates that the top six most

  9. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer

    LENUS (Irish Health Repository)

    Chang, Kah Hoong

    2010-04-29

    Abstract Background Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies. Methods We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (miR-21 and miR-31) and tumour suppressor (miR-143 and miR-145) target miRNAs were assessed. Results In the array experiment, miR-26a, miR-345, miR-425 and miR-454 were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) and two small nucleolar RNA genes (RNU48 and Z30), miR-16 and miR-345 were identified as the most stably expressed reference genes. The combined use of miR-16 and miR-345 to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue. Conclusions Our study demonstrates that the top six most

  10. Selection of internal control genes for real-time quantitative PCR in ovary and uterus of sows across pregnancy.

    Directory of Open Access Journals (Sweden)

    María Martínez-Giner

    Full Text Available BACKGROUND: Reproductive traits play a key role in pig production in order to reduce costs and increase economic returns. Among others, gene expression analyses represent a useful approach to study genetic mechanisms underlying reproductive traits in pigs. The application of reverse-transcription quantitative PCR requires the selection of appropriate reference genes, whose expression levels should not be affected by the experimental conditions, especially when comparing gene expression across different physiological stages. RESULTS: The gene expression stability of ten potential reference genes was studied by three different methods (geNorm, NormFinder and BestKeeper in ovary and uterus collected at five different physiological time points (heat, and 15, 30, 45 and 60 days of pregnancy. Although final ranking differed, the three algorithms gave very similar results. Thus, the most stable genes across time were TBP and UBC in uterus and TBP and HPRT1 in ovary, while HMBS and ACTB showed the less stable expression in uterus and ovary, respectively. When studied as a systematic effect, the reproductive stage did not significantly affect the expression of the candidate reference genes except at 30d and 60d of pregnancy, when a general drop in expression was observed in ovary. CONCLUSIONS: Based in our results, we propose the use of TBP, UBC and SDHA in uterus and TBP, GNB2L1 and HPRT1 in ovary for normalization of longitudinal expression studies using quantitative PCR in sows.

  11. Single-cell gene-expression profiling and its potential diagnostic applications

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Kubista, Mikael; Aman, P.

    2011-01-01

    Roč. 11, č. 7 (2011), s. 735-740 ISSN 1473-7159 R&D Projects: GA ČR(CZ) GAP303/10/1338; GA ČR(CZ) GA301/09/1752 Institutional research plan: CEZ:AV0Z50520701 Keywords : gene-expression profiling * RT-qPCR * single-cell gene-expression profiling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.859, year: 2011

  12. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

    Directory of Open Access Journals (Sweden)

    Kuchipudi Suresh V

    2012-10-01

    Full Text Available Abstract Background One requisite of quantitative reverse transcription PCR (qRT-PCR is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA, ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9 (ATP5G1] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. Results The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs, pig tracheal epithelial cells (PTECs, and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. Conclusions Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH were highly affected by influenza virus infection and

  13. Gene expression profiling distinguishes between spontaneous and radiation-induced rat mammary carcinomas

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Kakinuma, Shizuko; Shimada, Yoshiya; Yamashita, Satoshi; Ushijima, Toshikazu

    2008-01-01

    The ability to distinguish between spontaneous and radiation-induced cancers in humans is expected to improve the resolution of estimated risk from low dose radiation. Mammary carcinomas were obtained from Sprague-Dawley rats that were either untreated (n=45) or acutely γ-irradiated (1 Gy; n=20) at seven weeks of age. Gene expression profiles of three spontaneous and four radiation-induced carcinomas, as well as those of normal mammary glands, were analyzed by microarrays. Differential expression of identified genes of interest was then verified by quantitative polymerase chain reaction (qPCR). Cluster analysis of global gene expression suggested that spontaneous carcinomas were distinguished from a heterogeneous population of radiation-induced carcinomas, though most gene expressions were common. We identified 50 genes that had different expression levels between spontaneous and radiogenic carcinomas. We then selected 18 genes for confirmation of the microarray data by qPCR analysis and obtained the following results: high expression of Plg, Pgr and Wnt4 was characteristic to all spontaneous carcinomas; Tnfsf11, Fgf10, Agtr1a, S100A9 and Pou3f3 showed high expression in a subset of radiation-induced carcinomas; and increased Gp2, Areg and Igf2 expression, as well as decreased expression of Ca3 and noncoding RNA Mg1, were common to all carcinomas. Thus, gene expression analysis distinguished between spontaneous and radiogenic carcinomas, suggesting possible differences in their carcinogenic mechanism. (author)

  14. Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer cell lines treated with and without transient transfection.

    Directory of Open Access Journals (Sweden)

    Lin-Lin Liu

    Full Text Available Reverse transcription-quantitative polymerase chain reaction (RT-qPCR is a powerful technique for examining gene expression changes during tumorigenesis. Target gene expression is generally normalized by a stably expressed endogenous reference gene; however, reference gene expression may differ among tissues under various circumstances. Because no valid reference genes have been documented for human breast cancer cell lines containing different cancer subtypes treated with transient transfection, we identified appropriate and reliable reference genes from thirteen candidates in a panel of 10 normal and cancerous human breast cell lines under experimental conditions with/without transfection treatments with two transfection reagents. Reference gene expression stability was calculated using four algorithms (geNorm, NormFinder, BestKeeper and comparative delta Ct, and the recommended comprehensive ranking was provided using geometric means of the ranking values using the RefFinder tool. GeNorm analysis revealed that two reference genes should be sufficient for all cases in this study. A stability analysis suggests that 18S rRNA-ACTB is the best reference gene combination across all cell lines; ACTB-GAPDH is best for basal breast cancer cell lines; and HSPCB-ACTB is best for ER+ breast cancer cells. After transfection, the stability ranking of the reference gene fluctuated, especially with Lipofectamine 2000 transfection reagent in two subtypes of basal and ER+ breast cell lines. Comparisons of relative target gene (HER2 expression revealed different expressional patterns depending on the reference genes used for normalization. We suggest that identifying the most stable and suitable reference genes is critical for studying specific cell lines under certain circumstances.

  15. Expression profiles of sugarcane under drought conditions: Variation in gene regulation

    Directory of Open Access Journals (Sweden)

    Júlio César Farias de Andrade

    2015-01-01

    Full Text Available AbstractDrought is a major factor in decreased sugarcane productivity because of the resulting morphophysiological effects that it causes. Gene expression studies that have examined the influence of water stress in sugarcane have yielded divergent results, indicating the absence of a fixed pattern of changes in gene expression. In this work, we investigated the expression profiles of 12 genes in the leaves of a drought-tolerant genotype (RB72910 of sugarcane and compared the results with those of other studies. The genotype was subjected to 80–100% water availability (control condition and 0–20% water availability (simulated drought. To analyze the physiological status, the SPAD index, Fv/Fm ratio, net photosynthesis (A, stomatal conductance (gs and stomatal transpiration (E were measured. Total RNA was extracted from leaves and the expression of SAMDC, ZmPIP2-1 protein, ZmTIP4-2 protein, WIP protein, LTP protein, histone H3, DNAj, ferredoxin I, β-tubulin, photosystem I, gene 1 and gene 2 was analyzed by quantitative real-time PCR (RT-PCR. Important differences in the expression profiles of these genes were observed when compared with other genotypes, suggesting that complex defense mechanisms are activated in response to water stress. However, there was no recognizable pattern for the changes in expression of the different proteins associated with tolerance to drought stress.

  16. Systematic analysis of gene expression pattern in has-miR-197 over-expressed human uterine leiomyoma cells.

    Science.gov (United States)

    Ling, Jing; Wu, Xiaoli; Fu, Ziyi; Tan, Jie; Xu, Qing

    2015-10-01

    Our previous study showed that the expression of miR-197 in leiomyoma was down-regulated compared with myometrium. Further, miR-197 has been identified to affect uterine leiomyoma cell proliferation, apoptosis, and metastasis ability, though the responsible molecular mechanism has not been well elucidated. In this study, we sought to determine the expression patterns of miR-197 targeted genes and to explore their potential functions, participating Pathways and the networks that are involved in the biological behavior of human uterine leiomyoma. After transfection of human uterine leiomyoma cells with miR-197, we confirmed the expression level of miR-197 using quantitative real-time PCR (qRT-PCR), and we detected the gene expression profiles after miR-197 over-expression through DNA microarray analysis. Further, we performed GO and Pathway analysis. The dominantly dys-regulated genes, which were up- or down-regulated by more than 10-fold, compared with parental cells, were confirmed using qRT-PCR technology. Compared with the control group, miR-197 was up-regulated by 30-fold after miR-197 lentiviral transfection. The microarray data showed that 872 genes were dys-regulated by more than 2-fold in human uterine leiomyoma cells after miR-197 overexpression, including 537 up-regulated and 335 down-regulated genes. The GO analysis indicated that the dys-regulated genes were primarily involved in response to stimuli, multicellular organ processes, and the signaling of biological progression. Further, Pathway analysis data showed that these genes participated in regulating several signaling Pathways, including the JAK/STAT signaling Pathway, the Toll-like receptor signaling Pathway, and cytokine-cytokine receptor interaction. The qRT-PCR results confirmed that 17 of the 66 selected genes, which were up- or down-regulated more than 10-fold by miR-197, were consistent with the microarray results, including tumorigenesis-related genes, such as DRT7, SLC549, SFMBT2, FLJ37956

  17. The workflow of single-cell expression profiling using quantitative real-time PCR

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Kubista, Mikael

    2014-01-01

    Roč. 14, č. 3 (2014), s. 323-331 ISSN 1473-7159 R&D Projects: GA ČR GA13-02154S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : single-cell workflow * gene expression profiling * RT-qPCR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.516, year: 2014

  18. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station.

    Directory of Open Access Journals (Sweden)

    Macarena Parra

    Full Text Available The International Space Station (ISS National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for

  19. [Construction and functional identification of eukaryotic expression vector carrying Sprague-Dawley rat MSX-2 gene].

    Science.gov (United States)

    Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng

    2008-01-01

    To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.

  20. Selection and validation of a set of reliable reference genes for quantitative RT-PCR studies in the brain of the Cephalopod Mollusc Octopus vulgaris

    Directory of Open Access Journals (Sweden)

    Biffali Elio

    2009-07-01

    Full Text Available Abstract Background Quantitative real-time polymerase chain reaction (RT-qPCR is valuable for studying the molecular events underlying physiological and behavioral phenomena. Normalization of real-time PCR data is critical for a reliable mRNA quantification. Here we identify reference genes to be utilized in RT-qPCR experiments to normalize and monitor the expression of target genes in the brain of the cephalopod mollusc Octopus vulgaris, an invertebrate. Such an approach is novel for this taxon and of advantage in future experiments given the complexity of the behavioral repertoire of this species when compared with its relatively simple neural organization. Results We chose 16S, and 18S rRNA, actB, EEF1A, tubA and ubi as candidate reference genes (housekeeping genes, HKG. The expression of 16S and 18S was highly variable and did not meet the requirements of candidate HKG. The expression of the other genes was almost stable and uniform among samples. We analyzed the expression of HKG into two different set of animals using tissues taken from the central nervous system (brain parts and mantle (here considered as control tissue by BestKeeper, geNorm and NormFinder. We found that HKG expressions differed considerably with respect to brain area and octopus samples in an HKG-specific manner. However, when the mantle is treated as control tissue and the entire central nervous system is considered, NormFinder revealed tubA and ubi as the most suitable HKG pair. These two genes were utilized to evaluate the relative expression of the genes FoxP, creb, dat and TH in O. vulgaris. Conclusion We analyzed the expression profiles of some genes here identified for O. vulgaris by applying RT-qPCR analysis for the first time in cephalopods. We validated candidate reference genes and found the expression of ubi and tubA to be the most appropriate to evaluate the expression of target genes in the brain of different octopuses. Our results also underline the

  1. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    Full Text Available Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8 is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment.

  2. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    Science.gov (United States)

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  3. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization Under Ethanol Stress Conditions in Oenococcus oeni SD-2a

    Directory of Open Access Journals (Sweden)

    Shuai Peng

    2018-05-01

    Full Text Available The powerful Quantitative real-time PCR (RT-qPCR was widely used to assess gene expression levels, which requires the optimal reference genes used for normalization. Oenococcus oeni (O. oeni, as the one of most important microorganisms in wine industry and the most resistant lactic acid bacteria (LAB species to ethanol, has not been investigated regarding the selection of stable reference genes for RT-qPCR normalization under ethanol stress conditions. In this study, nine candidate reference genes (proC, dnaG, rpoA, ldhD, ddlA, rrs, gyrA, gyrB, and dpoIII were analyzed to determine the most stable reference genes for RT-qPCR in O. oeni SD-2a under different ethanol stress conditions (8, 12, and 16% (v/v ethanol. The transcript stabilities of these genes were evaluated using the algorithms geNorm, NormFinder, and BestKeeper. The results showed that dnaG and dpoIII were selected as the best reference genes across all experimental ethanol conditions. Considering single stress experimental modes, dpoIII and dnaG would be suitable to normalize expression level for 8% ethanol shock treatment, while the combination of gyrA, gyrB, and rrs would be suitable for 12% ethanol shock treatment. proC and gyrB revealed the most stable expression in 16% ethanol shock treatment. This study selected and validated for the first time the reference genes for RT-qPCR normalization in O. oeni SD-2a under ethanol stress conditions.

  4. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  5. The claudin gene family: expression in normal and neoplastic tissues

    International Nuclear Information System (INIS)

    Hewitt, Kyle J; Agarwal, Rachana; Morin, Patrice J

    2006-01-01

    The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors. We identified all the human CLDN genes from Genbank and we used the large public SAGE database to ascertain the gene expression of all 21 CLDN in 266 normal and neoplastic tissues. Using real-time RT-PCR, we also surveyed a subset of 13 CLDN genes in 24 normal and 24 neoplastic tissues. We show that claudins represent a family of highly related proteins, with claudin-16, and -23 being the most different from the others. From in silico analysis and RT-PCR data, we find that most claudin genes appear decreased in cancer, while CLDN3, CLDN4, and CLDN7 are elevated in several malignancies such as those originating from the pancreas, bladder, thyroid, fallopian tubes, ovary, stomach, colon, breast, uterus, and the prostate. Interestingly, CLDN5 is highly expressed in vascular endothelial cells, providing a possible target for antiangiogenic therapy. CLDN18 might represent a biomarker for gastric cancer. Our study confirms previously known CLDN gene expression patterns and identifies new ones, which may have applications in the detection, prognosis and therapy of several human cancers. In particular we identify several malignancies that express CLDN3 and CLDN4. These cancers may represent ideal candidates for a novel therapy being developed based on CPE, a toxin that specifically binds claudin-3 and claudin-4

  6. Selection and validation of reference genes for quantitative gene expression analyses in various tissues and seeds at different developmental stages in Bixa orellana L.

    Science.gov (United States)

    Moreira, Viviane S; Soares, Virgínia L F; Silva, Raner J S; Sousa, Aurizangela O; Otoni, Wagner C; Costa, Marcio G C

    2018-05-01

    Bixa orellana L., popularly known as annatto, produces several secondary metabolites of pharmaceutical and industrial interest, including bixin, whose molecular basis of biosynthesis remain to be determined. Gene expression analysis by quantitative real-time PCR (qPCR) is an important tool to advance such knowledge. However, correct interpretation of qPCR data requires the use of suitable reference genes in order to reduce experimental variations. In the present study, we have selected four different candidates for reference genes in B. orellana , coding for 40S ribosomal protein S9 (RPS9), histone H4 (H4), 60S ribosomal protein L38 (RPL38) and 18S ribosomal RNA (18SrRNA). Their expression stabilities in different tissues (e.g. flower buds, flowers, leaves and seeds at different developmental stages) were analyzed using five statistical tools (NormFinder, geNorm, BestKeeper, ΔCt method and RefFinder). The results indicated that RPL38 is the most stable gene in different tissues and stages of seed development and 18SrRNA is the most unstable among the analyzed genes. In order to validate the candidate reference genes, we have analyzed the relative expression of a target gene coding for carotenoid cleavage dioxygenase 1 (CCD1) using the stable RPL38 and the least stable gene, 18SrRNA , for normalization of the qPCR data. The results demonstrated significant differences in the interpretation of the CCD1 gene expression data, depending on the reference gene used, reinforcing the importance of the correct selection of reference genes for normalization.

  7. Measurement of Gene Expression in Archival Paraffin-Embedded Tissues

    Science.gov (United States)

    Cronin, Maureen; Pho, Mylan; Dutta, Debjani; Stephans, James C.; Shak, Steven; Kiefer, Michael C.; Esteban, Jose M.; Baker, Joffre B.

    2004-01-01

    Throughout the last decade many laboratories have shown that mRNA levels in formalin-fixed and paraffin-embedded (FPE) tissue specimens can be quantified by reverse transcriptase-polymerase chain reaction (RT-PCR) techniques despite the extensive RNA fragmentation that occurs in tissues so preserved. We have developed RT-PCR methods that are sensitive, precise, and that have multianalyte capability for potential wide use in clinical research and diagnostic assays. Here it is shown that the extent of fragmentation of extracted FPE tissue RNA significantly increases with archive storage time. Probe and primer sets for RT-PCR assays based on amplicons that are both short and homogeneous in length enable effective reference gene-based data normalization for cross comparison of specimens that differ substantially in age. A 48-gene assay used to compare gene expression profiles from the same breast cancer tissue that had been either frozen or FPE showed very similar profiles after reference gene-based normalization. A 92-gene assay, using RNA extracted from three 10-μm FPE sections of archival breast cancer specimens (dating from 1985 to 2001) yielded analyzable data for these genes in all 62 tested specimens. The results were substantially concordant when estrogen receptor, progesterone receptor, and HER2 receptor status determined by RT-PCR was compared with immunohistochemistry assays for these receptors. Furthermore, the results highlight the advantages of RT-PCR over immunohistochemistry with respect to quantitation and dynamic range. These findings support the development of RT-PCR analysis of FPE tissue RNA as a platform for multianalyte clinical diagnostic tests. PMID:14695316

  8. GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR.

    Science.gov (United States)

    Gubelmann, Carine; Gattiker, Alexandre; Massouras, Andreas; Hens, Korneel; David, Fabrice; Decouttere, Frederik; Rougemont, Jacques; Deplancke, Bart

    2011-01-01

    The vast majority of genes in humans and other organisms undergo alternative splicing, yet the biological function of splice variants is still very poorly understood in large part because of the lack of simple tools that can map the expression profiles and patterns of these variants with high sensitivity. High-throughput quantitative real-time polymerase chain reaction (qPCR) is an ideal technique to accurately quantify nucleic acid sequences including splice variants. However, currently available primer design programs do not distinguish between splice variants and also differ substantially in overall quality, functionality or throughput mode. Here, we present GETPrime, a primer database supported by a novel platform that uniquely combines and automates several features critical for optimal qPCR primer design. These include the consideration of all gene splice variants to enable either gene-specific (covering the majority of splice variants) or transcript-specific (covering one splice variant) expression profiling, primer specificity validation, automated best primer pair selection according to strict criteria and graphical visualization of the latter primer pairs within their genomic context. GETPrime primers have been extensively validated experimentally, demonstrating high transcript specificity in complex samples. Thus, the free-access, user-friendly GETPrime database allows fast primer retrieval and visualization for genes or groups of genes of most common model organisms, and is available at http://updepla1srv1.epfl.ch/getprime/. Database URL: http://deplanckelab.epfl.ch.

  9. Investigation of SLC6A4 gene expression in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Elif Funda Şener

    2015-06-01

    Full Text Available Objective: Autism is defined as a complex neurodevelopmental disorder. Genetics plays a major role in the etiology of autism spectrum disorders (ASD. The role of the serotonin in the development of autism has been widely investigated. SLC6A4 gene (SERT or 5-HT has an important role reuptaking of serotonin. Because of this, our study examined the expression level of SLC6A4 gene in autism patients. Methods: Thirty-four patients (26 male, 8 female who diagnosed as autism firstly according to DSM-V criteria in the Department of child psychiatry, Erciyes University Medical Faculty and healthy 23 controls (16 male, 7 female were enrolled in this study. Total RNA was isolated from peripheral blood samples using TRIzol. Quantitative Real-time PCR (qRT-PCR was performed to detect SLC6A4 gene expression. Results: SLC6A4 gene expression was found statistically significant and low in autism group compared with controls (p=0,027. Conclusion: The low gene expression in the patient group implied that there is an abnormality of serotonin reuptake. According to our results, we suggest that much more studies may be planned with the expression and methylation profile of this gene combined with gene polymorphisms especially affecting the expression in larger sample sizes. J Clin Exp Invest 2015; 6 (2: 165-169

  10. SCREENING OF COMMON FLAX FAD GENES BY PCR

    Directory of Open Access Journals (Sweden)

    Veronika Štefúnová

    2013-02-01

    Full Text Available Currently, flax (Linum usitatissimum L. is an important crop from commercial and economical aspects. In the spotlight is the linseed oil as a source of α-linolenic acid. The aim of presented study was to analyse fatty acid desaturase (FAD genes in flax. Several genotypes of flax (Hohenheim, La Plata 1938, Redwing USA and Escalina were used. The primers described by Vrinten et al. (2005 were used for PCR amplification reactions. Two FAD3 genes, LuFAD3A and LuFAD3B, were identified in a genome of flax. Subsequently the nucleotide sequences between origins and genotypes of flax FAD genes were compared. Primarily were used the nucleotide sequences of FAD2 and FAD3C genes available in NCBI database. Differences were found using BLAST program in nucleotide sequences of FAD genes and the specific primers were designed to amplify a specific target sequences in a genome of flax. These primers were used in PCR amplification reactions to identification of FAD2 and FAD3C genes. The PCR products were separated by electrophoresis on agarose gel.

  11. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  12. Evaluation of Candidate Reference Genes for Quantitative Gene Expression Analysis in Spodoptera exigu a after Long-time Exposure to Cadmium.

    Science.gov (United States)

    Płachetka-Bożek, Anna; Augustyniak, Maria

    2017-08-21

    Studies on the transcriptional control of gene expression play an important role in many areas of biology. Reference genes, which are often referred to as housekeeping genes, such as GAPDH, G3PDH, EF2, RpL7A, RpL10, TUBα and Actin, have traditionally been assumed to be stably expressed in all conditions, and they are frequently used to normalize mRNA levels between different samples in qPCR analysis. However, it is known that the expression of these genes is influenced by numerous factors, such as experimental conditions. The difference in gene expression underlies a range of biological processes, including development, reproduction and behavior. The aim of this study was to show the problems associated with using reference genes in the qPCR technique, in a study on inbred strains of Spodoptera exigua selected toward cadmium resistance. We present and discuss our results and observations, and give some recommendations concerning the use and limitations of housekeeping genes as internal standards, especially in research on insects. Our results suggest that holometabolism and poikilothermia, as well as time since metamorphosis and the level of exposure to the selective factor (cadmium in this case), have a significant effect on the expression of reference genes.

  13. Reference Gene Selection for qRT-PCR Normalization Analysis in kenaf (Hibiscus cannabinus L. under Abiotic Stress and Hormonal Stimuli

    Directory of Open Access Journals (Sweden)

    Xiaoping Niu

    2017-05-01

    Full Text Available Kenaf (Hibiscus cannabinus L., an environmental friendly and economic fiber crop, has a certain tolerance to abiotic stresses. Identification of reliable reference genes for transcript normalization of stress responsive genes expression by quantitative real-time PCR (qRT-PCR is important for exploring the molecular mechanisms of plants response to abiotic stresses. In this study, nine candidate reference genes were cloned, and their expression stabilities were assessed in 132 abiotic stress and hormonal stimuli samples of kenaf using geNorm, NormFinder, and BestKeeper algorithms. Results revealed that HcPP2A (Protein phosphatase 2A and HcACT7 (Actin 7 were the optimum reference genes across all samples; HcUBC (Ubiquitin-conjugating enzyme like protein was the worst reference gene for transcript normalization. The reliability of the selected reference genes was further confirmed by evaluating the expression profile of HcWRKY28 gene at different stress durations. This work will benefit future studies on discovery of stress-tolerance genes and stress-signaling pathways in this important fiber crop.

  14. Development of a quantitative competitive reverse transcriptase polymerase chain reaction for the quantification of growth hormone gene expression in pigs

    Directory of Open Access Journals (Sweden)

    Maurício Machaim Franco

    2003-01-01

    Full Text Available After the advent of the genome projects, followed by the discovery of DNA polymorphisms, basic understanding of gene expression is the next focus to explain the association between polymorphisms and the level of gene expression, as well as to demonstrate the interaction among genes. Among the various techniques for the investigation of transcriptional profiling involving patterns of gene expression, quantitative PCR is the simplest analytical laboratory technique. The objective of this work was to analyze two strategies of a competitive PCR technique for the quantification of the pig growth hormone (GH gene expression. A pair of primers was designed targeting exons 3 and 5, and two competitive PCR strategies were performed, one utilizing a specific amplicon as a competitor, and the other utilizing a low-stringency PCR amplicon as a competitor. The latter strategy proved to be easier and more efficient, offering an accessible tool that can be used in any kind of competitive reaction, facilitating the study of gene expression patterns for both genetics and diagnostics of infectious diseases.

  15. Gene expression profile and immunological evaluation of unique hypothetical unknown proteins of Mycobacterium leprae by using quantitative real-time PCR.

    Science.gov (United States)

    Kim, Hee Jin; Prithiviraj, Kalyani; Groathouse, Nathan; Brennan, Patrick J; Spencer, John S

    2013-02-01

    The cell-mediated immunity (CMI)-based in vitro gamma interferon release assay (IGRA) of Mycobacterium leprae-specific antigens has potential as a promising diagnostic means to detect those individuals in the early stages of M. leprae infection. Diagnosis of leprosy is a major obstacle toward ultimate disease control and has been compromised in the past by the lack of specific markers. Comparative bioinformatic analysis among mycobacterial genomes identified potential M. leprae-specific proteins called "hypothetical unknowns." Due to massive gene decay and the prevalence of pseudogenes, it is unclear whether any of these proteins are expressed or are immunologically relevant. In this study, we performed cDNA-based quantitative real-time PCR to investigate the expression status of 131 putative open reading frames (ORFs) encoding hypothetical unknowns. Twenty-six of the M. leprae-specific antigen candidates showed significant levels of gene expression compared to that of ESAT-6 (ML0049), which is an important T cell antigen of low abundance in M. leprae. Fifteen of 26 selected antigen candidates were expressed and purified in Escherichia coli. The seroreactivity to these proteins of pooled sera from lepromatous leprosy patients and cavitary tuberculosis patients revealed that 9 of 15 recombinant hypothetical unknowns elicited M. leprae-specific immune responses. These nine proteins may be good diagnostic reagents to improve both the sensitivity and specificity of detection of individuals with asymptomatic leprosy.

  16. Construction of an adult barnacle (Balanus amphitrite cDNA library and selection of reference genes for quantitative RT-PCR studies

    Directory of Open Access Journals (Sweden)

    Burgess J Grant

    2009-06-01

    Full Text Available Abstract Background Balanus amphitrite is a barnacle commonly used in biofouling research. Although many aspects of its biology have been elucidated, the lack of genetic information is impeding a molecular understanding of its life cycle. As part of a wider multidisciplinary approach to reveal the biogenic cues influencing barnacle settlement and metamorphosis, we have sequenced and annotated the first cDNA library for B. amphitrite. We also present a systematic validation of potential reference genes for normalization of quantitative real-time PCR (qRT-PCR data obtained from different developmental stages of this animal. Results We generated a cDNA library containing expressed sequence tags (ESTs from adult B. amphitrite. A total of 609 unique sequences (comprising 79 assembled clusters and 530 singlets were derived from 905 reliable unidirectionally sequenced ESTs. Bioinformatics tools such as BLAST, HMMer and InterPro were employed to allow functional annotation of the ESTs. Based on these analyses, we selected 11 genes to study their ability to normalize qRT-PCR data. Total RNA extracted from 7 developmental stages was reverse transcribed and the expression stability of the selected genes was compared using geNorm, BestKeeper and NormFinder. These software programs produced highly comparable results, with the most stable gene being mt-cyb, while tuba, tubb and cp1 were clearly unsuitable for data normalization. Conclusion The collection of B. amphitrite ESTs and their annotation has been made publically available representing an important resource for both basic and applied research on this species. We developed a qRT-PCR assay to determine the most reliable reference genes. Transcripts encoding cytochrome b and NADH dehydrogenase subunit 1 were expressed most stably, although other genes also performed well and could prove useful to normalize gene expression studies.

  17. Glycosylation-related gene expression in HT29-MTX-E12 cells upon infection by Helicobacter pylori.

    Science.gov (United States)

    Cairns, Michael T; Gupta, Ananya; Naughton, Julie A; Kane, Marian; Clyne, Marguerite; Joshi, Lokesh

    2017-10-07

    To identify glycosylation-related genes in the HT29 derivative cell line, HT29-MTX-E12, showing differential expression on infection with Helicobacter pylori ( H. pylori ). Polarised HT29-MTX-E12 cells were infected for 24 h with H. pylori strain 26695. After infection RNA was isolated from both infected and non-infected host cells. Sufficient infections were carried out to provide triplicate samples for microarray analysis and for qRT-PCR analysis. RNA was isolated and hybridised to Affymetrix arrays. Analysis of microarray data identified genes significantly differentially expressed upon infection. Genes were grouped into gene ontology functional categories. Selected genes associated with host glycan structure (glycosyltransferases, hydrolases, lectins, mucins) were validated by real-time qRT-PCR analysis. Infection of host cells was confirmed by the isolation of live bacteria after 24 h incubation and by PCR amplification of bacteria-specific genes from the host cell RNA. H. pylori do not survive incubation under the adopted culture conditions unless they associate with the adherent mucus layer of the host cell. Microarray analysis identified a total of 276 genes that were significantly differentially expressed ( P < 0.05) upon H. pylori infection and where the fold change in expression was greater than 2. Six of these genes are involved in glycosylation-related processes. Real-time qRT-PCR demonstrated significant downregulation (1.8-fold, P < 0.05) of the mucin MUC20. REG4 was heavily expressed and significantly downregulated (3.1-fold, P < 0.05) upon infection. Gene ontology analysis was consistent with previous studies on H. pylori infection. Gene expression data suggest that infection with H. pylori causes a decrease in glycan synthesis, resulting in shorter and simpler glycan structures.

  18. Selection of reliable reference genes for RT-qPCR studies in Octopus vulgaris paralarvae during development and immune-stimulation.

    Science.gov (United States)

    García-Fernández, P; Castellanos-Martínez, S; Iglesias, J; Otero, J J; Gestal, C

    2016-07-01

    The common octopus, Octopus vulgaris is a new candidate species for aquaculture. However, rearing of octopus paralarvae is hampered by high mortality and poor growth rates that impede its entire culture. The study of genes involved in the octopus development and immune response capability could help to understand the key of paralarvae survival and thus, to complete the octopus life cycle. Quantitative real-time PCR (RT-qPCR) is the most frequently tool used to quantify the gene expression because of specificity and sensitivity. However, reliability of RT-qPCR requires the selection of appropriate normalization genes whose expression must be stable across the different experimental conditions of the study. Hence, the aim of the present work is to evaluate the stability of six candidate genes: β-actin (ACT), elongation factor 1-α (EF), ubiquitin (UBI), β-tubulin (TUB), glyceraldehyde 3-phosphate dehydrogenase (GADPH) and ribosomal RNA 18 (18S) in order to select the best reference gene. The stability of gene expression was analyzed using geNorm, NormFinder and Bestkeeper, in octopus paralarvae of seven developmental stages (embryo, paralarvae of 0, 10, 15, 20, 30 and 34days) and paralarvae of 20days after challenge with Vibrio lentus and Vibrio splendidus. The results were validated by measuring the expression of PGRP, a stimuli-specific gene. Our results showed UBI, EF and 18S as the most suitable reference genes during development of octopus paralarvae, and UBI, ACT and 18S for bacterial infection. These results provide a basis for further studies exploring molecular mechanism of their development and innate immune defense. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Identification and validation of reference genes for qRT-PCR studies of the obligate aphid pathogenic fungus Pandora neoaphidis during different developmental stages.

    Science.gov (United States)

    Zhang, Shutao; Chen, Chun; Xie, Tingna; Ye, Sudan

    2017-01-01

    The selection of stable reference genes is a critical step for the accurate quantification of gene expression. To identify and validate the reference genes in Pandora neoaphidis-an obligate aphid pathogenic fungus-the expression of 13classical candidate reference genes were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction(qPCR) at four developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae). Four statistical algorithms, including geNorm, NormFinder, BestKeeper and Delta Ct method were used to rank putative reference genes according to their expression stability and indicate the best reference gene or combination of reference genes for accurate normalization. The analysis of comprehensive ranking revealed that ACT1and 18Swas the most stably expressed genes throughout the developmental stages. To further validate the suitability of the reference genes identified in this study, the expression of cell division control protein 25 (CDC25) and Chitinase 1(CHI1) genes were used to further confirm the validated candidate reference genes. Our study presented the first systematic study of reference gene(s) selection for P. neoaphidis study and provided guidelines to obtain more accurate qPCR results for future developmental efforts.

  20. Cloning of radiation-induced new gene RS1 expressed in mouse intestinal epithelium by enhanced RACE

    International Nuclear Information System (INIS)

    Wang Fengchao; Wang Junping; Su Yongping; Gao Jinsheng; Lou Shufen; Liu Xiaohong; Ren Jiong; Zhang Bo

    2003-01-01

    Objective: To obtain full-length cDNA of radiation-induced new gene RS1 expressed in mouse intestinal epithelium. Methods: The tissue expression profile of RS1 was analyzed by semi-quantitative RT-PCR to find the target tissue which highly expresses RS1. The total RNA extracted from the corresponding tissue was taken as the template for reverse-transcription. Enhanced RACE PCR was used to clone the full-length cDNA of RS1, including enrichment of the target gene through biotin-labeled probe for magnetic bead purification and nested PCR. Results: About a 2 kb long 3' end was successfully cloned and cloning of the 5' end proceeded well. Conclusion: The result is consistent with our experiment design. The set of combined techniques has been identified with the cloning of full-length cDNA from EST sequence especially when the optimal gene-specific primers are not available or the expression level of target gene is low

  1. Expression of circadian clock genes and proteins in urothelial cancer is related to cancer-associated genes

    International Nuclear Information System (INIS)

    Litlekalsoy, Jorunn; Rostad, Kari; Kalland, Karl-Henning; Hostmark, Jens G.; Laerum, Ole Didrik

    2016-01-01

    The purpose of this study was to evaluate invasive and metastatic potential of urothelial cancer by investigating differential expression of various clock genes/proteins participating in the 24 h circadian rhythms and to compare these gene expressions with transcription of other cancer-associated genes. Twenty seven paired samples of tumour and benign tissue collected from patients who underwent cystectomy were analysed and compared to 15 samples of normal bladder tissue taken from patients who underwent cystoscopy for benign prostate hyperplasia (unrelated donors). Immunohistochemical analyses were made for clock and clock-related proteins. In addition, the gene-expression levels of 22 genes (clock genes, casein kinases, oncogenes, tumour suppressor genes and cytokeratins) were analysed by real-time quantitative PCR (qPCR). Considerable up- or down-regulation and altered cellular distribution of different clock proteins, a reduction of casein kinase1A1 (CSNK1A1) and increase of casein kinase alpha 1 E (CSNK1E) were found. The pattern was significantly correlated with simultaneous up-regulation of stimulatory tumour markers, and a down-regulation of several suppressor genes. The pattern was mainly seen in aneuploid high-grade cancers. Considerable alterations were also found in the neighbouring bladder mucosa. The close correlation between altered expression of various clock genes and common tumour markers in urothelial cancer indicates that disturbed function in the cellular clock work may be an important additional mechanism contributing to cancer progression and malignant behaviour. The online version of this article (doi:10.1186/s12885-016-2580-y) contains supplementary material, which is available to authorized users

  2. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    Science.gov (United States)

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  3. Gene Expression Profiles of Main Olfactory Epithelium in Adenylyl Cyclase 3 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Zhenshan Wang

    2015-11-01

    Full Text Available Adenylyl Cyclase 3 (AC3 plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE. In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3−/− and wild-type (AC3+/+ mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3−/− mice was significantly altered, compared to AC3+/+ mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3−/− and AC3+/+ mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE.

  4. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions

    Directory of Open Access Journals (Sweden)

    Benshui Shu

    2018-04-01

    Full Text Available Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this present study, the fragments of eight candidate reference genes were cloned and identified from the pest Spodoptera litura. In addition, the expression stability of these genes in different samples from larvae of control and azadirachtin treatments were evaluated by the computational methods of NormFinder, BestKeeper, Delta CT, geNorm, and RefFinder. According to our results, two of the reference genes should be the optimal number for RT-qPCR analysis. Furthermore, the best reference genes for different samples were showed as followed: EF-1α and EF2 for cuticle, β-Tubulin and RPL7A for fat body, EF2 and Actin for midgut, EF2 and RPL13A for larva and RPL13A and RPL7A for all the samples. Our results established a reliable normalization for RT-qPCR experiments in S. litura and ensure the data more accurate for the mechanism analysis of azadirachtin.

  5. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions.

    Science.gov (United States)

    Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Sethuraman, Veeran; Yi, Xin; Zhong, Guohua

    2018-01-01

    Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this present study, the fragments of eight candidate reference genes were cloned and identified from the pest Spodoptera litura . In addition, the expression stability of these genes in different samples from larvae of control and azadirachtin treatments were evaluated by the computational methods of NormFinder, BestKeeper, Delta CT, geNorm, and RefFinder. According to our results, two of the reference genes should be the optimal number for RT-qPCR analysis. Furthermore, the best reference genes for different samples were showed as followed: EF-1α and EF2 for cuticle, β-Tubulin and RPL7A for fat body, EF2 and Actin for midgut, EF2 and RPL13A for larva and RPL13A and RPL7A for all the samples. Our results established a reliable normalization for RT-qPCR experiments in S. litura and ensure the data more accurate for the mechanism analysis of azadirachtin.

  6. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans

    Directory of Open Access Journals (Sweden)

    Vandesompele Jo

    2008-01-01

    Full Text Available Abstract Background In the nematode Caenorhabditis elegans the conserved Ins/IGF-1 signaling pathway regulates many biological processes including life span, stress response, dauer diapause and metabolism. Detection of differentially expressed genes may contribute to a better understanding of the mechanism by which the Ins/IGF-1 signaling pathway regulates these processes. Appropriate normalization is an essential prerequisite for obtaining accurate and reproducible quantification of gene expression levels. The aim of this study was to establish a reliable set of reference genes for gene expression analysis in C. elegans. Results Real-time quantitative PCR was used to evaluate the expression stability of 12 candidate reference genes (act-1, ama-1, cdc-42, csq-1, eif-3.C, mdh-1, gpd-2, pmp-3, tba-1, Y45F10D.4, rgs-6 and unc-16 in wild-type, three Ins/IGF-1 pathway mutants, dauers and L3 stage larvae. After geNorm analysis, cdc-42, pmp-3 and Y45F10D.4 showed the most stable expression pattern and were used to normalize 5 sod expression levels. Significant differences in mRNA levels were observed for sod-1 and sod-3 in daf-2 relative to wild-type animals, whereas in dauers sod-1, sod-3, sod-4 and sod-5 are differentially expressed relative to third stage larvae. Conclusion Our findings emphasize the importance of accurate normalization using stably expressed reference genes. The methodology used in this study is generally applicable to reliably quantify gene expression levels in the nematode C. elegans using quantitative PCR.

  7. Quantitative real-time PCR analysis of Anopheles dirus TEP1 and NOS during Plasmodium berghei infection, using three reference genes

    Directory of Open Access Journals (Sweden)

    Jonathan W.K. Liew

    2017-07-01

    Full Text Available Quantitative reverse transcription PCR (qRT-PCR has been an integral part of characterizing the immunity of Anopheles mosquitoes towards Plasmodium invasion. Two anti-Plasmodium factors of Anopheles, thioester-containing protein 1 (TEP1 and nitric oxide synthase (NOS, play a role in the refractoriness of Anopheles towards Plasmodium infection and are generally expressed during infection. However, these are less studied in Anopheles dirus, a dominant malaria vector in Southeast Asia. Furthermore, most studies used a single reference gene for normalization during gene expression analysis without proper validation. This may lead to erroneous quantification of expression levels. Therefore, the present study characterized and investigated the expression profiles of TEP1 and NOS of Anopheles dirus during P. berghei infection. Prior to that, the elongation factor 1-alpha (EF1, actin 1 (Act and ribosomal protein S7 (S7 genes were validated for their suitability as a set of reference genes. TEP1 and NOS expressions in An. dirus were found to be significantly induced after P. berghei infection.

  8. The presence of p53 influences the expression of multiple human cytomegalovirus genes at early times postinfection.

    Science.gov (United States)

    Hannemann, Holger; Rosenke, Kyle; O'Dowd, John M; Fortunato, Elizabeth A

    2009-05-01

    Human cytomegalovirus (HCMV) is a common cause of morbidity and mortality in immunocompromised and immunosuppressed individuals. During infection, HCMV is known to employ host transcription factors to facilitate viral gene expression. To further understand the previously observed delay in viral replication and protein expression in p53 knockout cells, we conducted microarray analyses of p53(+/+) and p53(-/-) immortalized fibroblast cell lines. At a multiplicity of infection (MOI) of 1 at 24 h postinfection (p.i.), the expression of 22 viral genes was affected by the absence of p53. Eleven of these 22 genes (group 1) were examined by real-time reverse transcriptase, or quantitative, PCR (q-PCR). Additionally, five genes previously determined to have p53 bound to their nearest p53-responsive elements (group 2) and three control genes without p53 binding sites in their upstream sequences (group 3) were also examined. At an MOI of 1, >3-fold regulation was found for five group 1 genes. The expression of group 2 and 3 genes was not changed. At an MOI of 5, all genes from group 1 and four of five genes from group 2 were found to be regulated. The expression of control genes from group 3 remained unchanged. A q-PCR time course of four genes revealed that p53 influences viral gene expression most at immediate-early and early times p.i., suggesting a mechanism for the reduced and delayed production of virions in p53(-/-) cells.

  9. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  10. Over-expression of Eph and ephrin genes in advanced ovarian cancer: ephrin gene expression correlates with shortened survival

    Directory of Open Access Journals (Sweden)

    Lincoln Douglas

    2006-06-01

    Full Text Available Abstract Background Increased expression of Eph receptor tyrosine kinases and their ephrin ligands has been implicated in tumor progression in a number of malignancies. This report describes aberrant expression of these genes in ovarian cancer, the commonest cause of death amongst gynaecological malignancies. Methods Eph and ephrin expression was determined using quantitative real time RT-PCR. Correlation of gene expression was measured using Spearman's rho statistic. Survival was analysed using log-rank analysis and (was visualised by Kaplan-Meier survival curves. Results Greater than 10 fold over-expression of EphA1 and a more modest over-expression of EphA2 were observed in partially overlapping subsets of tumors. Over-expression of EphA1 strongly correlated (r = 0.801; p Conclusion These data imply that increased levels of ephrins A1 and A5 in the presence of high expression of Ephs A1 and A2 lead to a more aggressive tumor phenotype. The known functions of Eph/ephrin signalling in cell de-adhesion and movement may explain the observed correlation of ephrin expression with poor prognosis.

  11. Evaluation of Reference Genes to Analyze Gene Expression in Silverside Odontesthes humensis Under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Tony L. R. Silveira

    2018-03-01

    Full Text Available Some mammalian reference genes, which are widely used to normalize the qRT-PCR, could not be used for this purpose due to its high expression variation. The normalization with false reference genes leads to misinterpretation of results. The silversides (Odontesthes spp. has been used as models for evolutionary, osmoregulatory and environmental pollution studies but, up to now, there are no studies about reference genes in any Odontesthes species. Furthermore, many studies on silversides have used reference genes without previous validations. Thus, present study aimed to was to clone and sequence potential reference genes, thereby identifying the best ones in Odontesthes humensis considering different tissues, ages and conditions. For this purpose, animals belonging to three ages (adults, juveniles, and immature were exposed to control, Roundup®, and seawater treatments for 24 h. Blood samples were subjected to flow-cytometry and other collected tissues to RNA extraction; cDNA synthesis; molecular cloning; DNA sequencing; and qRT-PCR. The candidate genes tested included 18s, actb, ef1a, eif3g, gapdh, h3a, atp1a, and tuba. Gene expression results were analyzed using five algorithms that ranked the candidate genes. The flow-cytometry data showed that the environmental challenges could trigger a systemic response in the treated fish. Even during this systemic physiological disorder, the consensus analysis of gene expression revealed h3a to be the most stable gene expression when only the treatments were considered. On the other hand, tuba was the least stable gene in the control and gapdh was the least stable in both Roundup® and seawater groups. In conclusion, the consensus analyses of different tissues, ages, and treatments groups revealed that h3a is the most stable gene whereas gapdh and tuba are the least stable genes, even being considered two constitutive genes.

  12. Genome-Wide Constitutively Expressed Gene Analysis and New Reference Gene Selection Based on Transcriptome Data: A Case Study from Poplar/Canker Disease Interaction

    Directory of Open Access Journals (Sweden)

    Jiaping Zhao

    2017-10-01

    Full Text Available A number of transcriptome datasets for differential expression (DE genes have been widely used for understanding organismal biology, but these datasets also contain untapped information that can be used to develop more precise analytical tools. With the use of transcriptome data generated from poplar/canker disease interaction system, we describe a methodology to identify candidate reference genes from high-throughput sequencing data. This methodology will improve the accuracy of RT-qPCR and will lead to better standards for the normalization of expression data. Expression stability analysis from xylem and phloem of Populus bejingensis inoculated with the fungal canker pathogen Botryosphaeria dothidea revealed that 729 poplar transcripts (1.11% were stably expressed, at a threshold level of coefficient of variance (CV of FPKM < 20% and maximum fold change (MFC of FPKM < 2.0. Expression stability and bioinformatics analysis suggested that commonly used house-keeping (HK genes were not the most appropriate internal controls: 70 of the 72 commonly used HK genes were not stably expressed, 45 of the 72 produced multiple isoform transcripts, and some of their reported primers produced unspecific amplicons in PCR amplification. RT-qPCR analysis to compare and evaluate the expression stability of 10 commonly used poplar HK genes and 20 of the 729 newly-identified stably expressed transcripts showed that some of the newly-identified genes (such as SSU_S8e, LSU_L5e, and 20S_PSU had higher stability ranking than most of commonly used HK genes. Based on these results, we recommend a pipeline for deriving reference genes from transcriptome data. An appropriate candidate gene should have a unique transcript, constitutive expression, CV value of expression < 20% (or possibly 30% and MFC value of expression <2, and an expression level of 50–1,000 units. Lastly, when four of the newly identified HK genes were used in the normalization of expression data for 20

  13. Gene expression of circulating tumour cells in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Bölke E

    2009-09-01

    Full Text Available Abstract Background The diagnostic tools to predict the prognosis in patients suffering from breast cancer (BC need further improvements. New technological achievements like the gene profiling of circulating tumour cells (CTC could help identify new prognostic markers in the clinical setting. Furthermore, gene expression patterns of CTC might provide important informations on the mechanisms of tumour cell metastasation. Materials and methods We performed realtime-PCR and multiplex-PCR analyses following immunomagnetic separation of CTC. Peripheral blood (PB samples of 63 patients with breast cancer of various stages were analyzed and compared to a control group of 14 healthy individuals. After reverse-transcription, we performed multiplex PCR using primers for the genes ga733.3, muc-1 and c-erbB2. Mammaglobin1, spdef and c-erbB2 were analyzed applying realtime-PCR. Results ga733.2 overexpression was found in 12.7% of breast cancer cases, muc-1 in 15.9%, mgb1 in 9.1% and spdef in 12.1%. In this study, c-erbB2 did not show any significant correlation to BC, possibly due to a highly ambient expression. Besides single gene analyses, gene profiles were additionally evaluated. Highly significant correlations to BC were found in single gene analyses of ga733.2 and muc-1 and in gene profile analyses of ga733.3*muc-1 and GA7 ga733.3*muc-1*mgb1*spdef. Conclusion Our study reveals that the single genes ga733.3, muc-1 and the gene profiles ga733.3*muc-1 and ga733.3*3muc-1*mgb1*spdef can serve as markers for the detection of CTC in BC. The multigene analyses found highly positive levels in BC patients. Our study indicates that not single gene analyses but subtle patterns of multiple genes lead to rising accuracy and low loss of specificity in detection of breast cancer cases.

  14. Molecular Characterization and Expression Analysis of Equine ( Gene in Horse (

    Directory of Open Access Journals (Sweden)

    Ki-Duk Song

    2014-05-01

    Full Text Available The objective of this study was to determine the molecular characteristics of the horse vascular endothelial growth factor alpha gene (VEGFα by constructing a phylogenetic tree, and to investigate gene expression profiles in tissues and blood leukocytes after exercise for development of suitable biomarkers. Using published amino acid sequences of other vertebrate species (human, chimpanzee, mouse, rat, cow, pig, chicken and dog, we constructed a phylogenetic tree which showed that equine VEGFα belonged to the same clade of the pig VEGFα. Analysis for synonymous (Ks and non-synonymous substitution ratios (Ka revealed that the horse VEGFα underwent positive selection. RNA was extracted from blood samples before and after exercise and different tissue samples of three horses. Expression analyses using reverse transcription-polymerase chain reaction (RT-PCR and quantitative-polymerase chain reaction (qPCR showed ubiquitous expression of VEGFα mRNA in skeletal muscle, kidney, thyroid, lung, appendix, colon, spinal cord, and heart tissues. Analysis of differential expression of VEGFα gene in blood leukocytes after exercise indicated a unimodal pattern. These results will be useful in developing biomarkers that can predict the recovery capacity of racing horses.

  15. Cloning and Expression Vector Construction of Glutamate Decarboxylase Gene from Lactobacillus Plantarum

    Directory of Open Access Journals (Sweden)

    B Arabpour

    2016-06-01

    Full Text Available BACKGROUND AND OBJECTIVE: Gamma-aminobutyric acid (GABA is a four-carbon non-protein amino acid used in the treatment of hypertension, diabetes, inflammation, and depression. GABA is synthesized by glutamic acid decarboxylase (GAD enzyme in many organisms, including bacteria. Therefore, cloning of this enzyme is essential to the optimization of GABA production. This study aimed to clone and construct the expression vector of GAD gene from Lactobacillus plantarum PTCC 1058 bacterium. METHODS: In this experimental study, we investigated the morphological, biochemical, genetic and 16s rDNA sequencing of L. plantarum PTCC 1058 strain. Genomic DNA of the bacterium was isolated and amplified using the GAD gene via polymerase chain reaction (PCR. Afterwards, the gene was inserted into the pJET1.2/blunt cloning vector and subcloned in vector pET32a. Plasmid pET32a-gad expression vector was transformed in Escherichia coli BL21 strain, and protein expression was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE. FINDINGS: Morphological, biochemical and genetic analyses of 16s rDNA sequencing indicated that the studied substrain was of the L. plantarum strain. In addition, results of nucleotide sequencing of the fragmented segment via PCR showed the presence of GAD gene. Results of colony PCR and SDS-PAGE analysis confirmed the accuracy of the cloning and gene expression of the recombinant Escherichia coli BL21 strain. CONCLUSION: According to the results of this study, cloning of GAD gene from L. plantarum PTCC 1058 was successful. These cloned genes could grow rapidly in prokaryotic and eukaryotic systems and be used in cost-effective culture media and even non-recyclable waste.

  16. Gene expression analysis of the rat testis after treatment with di(2-ethylhexyl) phthalate using cDNA microarray and real-time RT-PCR

    International Nuclear Information System (INIS)

    Kijima, Kazuyasu; Toyosawa, Kaoru; Yasuba, Masashi; Matsuoka, Nobuo; Adachi, Tetsuya; Komiyama, Masatoshi; Mori, Chisato

    2004-01-01

    To investigate the effects of di(2-ethylhexyl) phthalate (DEHP) on gene expression in rat testis, 6-week-old male Sprague-Dawley rats were given a single oral dose of 20 or 2000 mg/kg and euthanized 3, 6, 24, or 72 h thereafter. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells were significantly increased in the testis at 24 and 72 h after the exposure to 2000 mg/kg of DEHP. On cDNA microarray analysis, in addition to apoptosis-related genes, genes associated with atrophy, APEX nuclease, MutS homologue (E. coli), testosterone-repressed-prostatic-message-2 (TRPM-2), connective tissue growth factor, collagen alpha 2 type V, and cell adhesion kinase were differentially expressed. To investigate the relationship between histopathological alteration and gene expression, we selected genes associated with apoptosis and analyzed their expression by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). With 20 mg/kg of DEHP treatment, bcl-2, key gene related to apoptosis, was increased. Up-regulation of bcl-2, inhibitor of Apaf-1/caspase-9/caspase-2 cascade of apoptosis, may be related to the fact that no morphological apoptotic change was induced after dosing of 20 mg/kg DEHP. With 2000 mg/kg of DEHP treatment, the apoptotic activator cascade, Fas/FasL, FADD/caspase-8/caspase-3 cascade, and Apaf-1/caspase-9/caspase-2 cascade were increased and bcl-2 was decreased. Thus, these gene regulations might lead the cells into apoptosis in the case of high exposure to DEHP. In contrast, FADD/caspase-10/caspase-6 cascade and caspase-11/caspase-3 cascade were not increased. These results indicate that the cascades of FADD/caspase-10/caspase-6 and caspase-11/caspase-3 are not related to apoptosis with DEHP treatment

  17. Selection and validation of reference genes for miRNA expression studies during porcine pregnancy.

    Directory of Open Access Journals (Sweden)

    Jocelyn M Wessels

    Full Text Available MicroRNAs comprise a family of small non-coding RNAs that modulate several developmental and physiological processes including pregnancy. Their ubiquitous presence is confirmed in mammals, worms, flies and plants. Although rapid advances have been made in microRNA research, information on stable reference genes for validation of microRNA expression is still lacking. Real time PCR is a widely used tool to quantify gene transcripts. An appropriate reference gene must be chosen to minimize experimental error in this system. A small difference in miRNA levels between experimental samples can be biologically meaningful as these entities can affect multiple targets in a pathway. This study examined the suitability of six commercially available reference genes (RNU1A, RNU5A, RNU6B, SNORD25, SCARNA17, and SNORA73A in maternal-fetal tissues from healthy and spontaneously arresting/dying conceptuses from sows were separately analyzed at gestation day 20. Comparisons were also made with non-pregnant endometrial tissues from sows. Spontaneous fetal loss is a prime concern to the commercial pork industry. Our laboratory has previously identified deficits in vasculature development at maternal-fetal interface as one of the major participating causes of fetal loss. Using this well-established model, we have extended our studies to identify suitable microRNA reference genes. A methodical approach to assessing suitability was adopted using standard curve and melting curve analysis, PCR product sequencing, real time PCR expression in a panel of gestational tissues, and geNorm and NormFinder analysis. Our quantitative real time PCR analysis confirmed expression of all 6 reference genes in maternal and fetal tissues. All genes were uniformly expressed in tissues from healthy and spontaneously arresting conceptus attachment sites. Comparisons between tissue types (maternal/fetal/non-pregnant revealed significant differences for RNU5A, RNU6B, SCARNA17, and SNORA73A

  18. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, James D., E-mail: jtucker@biology.biosci.wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Joiner, Michael C. [Department of Radiation Oncology, Wayne State University, Detroit, Michigan (United States); Thomas, Robert A.; Grever, William E.; Bakhmutsky, Marina V. [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Chinkhota, Chantelle N.; Smolinski, Joseph M. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States); Divine, George W. [Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan (United States); Auner, Gregory W. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States)

    2014-03-15

    Purpose: Rapid and reliable methods for conducting biological dosimetry are a necessity in the event of a large-scale nuclear event. Conventional biodosimetry methods lack the speed, portability, ease of use, and low cost required for triaging numerous victims. Here we address this need by showing that polymerase chain reaction (PCR) on a small number of gene transcripts can provide accurate and rapid dosimetry. The low cost and relative ease of PCR compared with existing dosimetry methods suggest that this approach may be useful in mass-casualty triage situations. Methods and Materials: Human peripheral blood from 60 adult donors was acutely exposed to cobalt-60 gamma rays at doses of 0 (control) to 10 Gy. mRNA expression levels of 121 selected genes were obtained 0.5, 1, and 2 days after exposure by reverse-transcriptase real-time PCR. Optimal dosimetry at each time point was obtained by stepwise regression of dose received against individual gene transcript expression levels. Results: Only 3 to 4 different gene transcripts, ASTN2, CDKN1A, GDF15, and ATM, are needed to explain ≥0.87 of the variance (R{sup 2}). Receiver-operator characteristics, a measure of sensitivity and specificity, of 0.98 for these statistical models were achieved at each time point. Conclusions: The actual and predicted radiation doses agree very closely up to 6 Gy. Dosimetry at 8 and 10 Gy shows some effect of saturation, thereby slightly diminishing the ability to quantify higher exposures. Analyses of these gene transcripts may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations or in clinical radiation emergencies.

  19. Cloning and expression analysis of a novel ammonium transporter gene from eichhornia

    International Nuclear Information System (INIS)

    Li, Y.; Yan, G.; Zheng, L.

    2014-01-01

    In order to explore the molecular mechanism for Eichhornia crassipes to transport ammonium from outside, we cloned a novel ammonium transporter (EcAMT) gene from E. crassipes and identified its function by using yeast complementation experiment. The full-length cDNA of EcAMT contains a 1506 nucletide-long open reading frame which encodes a protein of 501 amino acids. Bioinformatics analysis predicted that EcAMT had 8 transmembrane regions. The expressions of EcAMT gene under three different nitrogen conditions were evaluated by quantitative reverse transcriptase PCR (qRT-PCR) and the results showed that the expression of EcAMT gene was up-regulated under nitrogen starvation. Our study results revealed some molecular mechanism of E. crassipes to absorb the ammonium in eutrophic water. (author)

  20. A simple and accurate two-step long DNA sequences synthesis strategy to improve heterologous gene expression in pichia.

    Directory of Open Access Journals (Sweden)

    Jiang-Ke Yang

    Full Text Available In vitro gene chemical synthesis is a powerful tool to improve the expression of gene in heterologous system. In this study, a two-step gene synthesis strategy that combines an assembly PCR and an overlap extension PCR (AOE was developed. In this strategy, the chemically synthesized oligonucleotides were assembled into several 200-500 bp fragments with 20-25 bp overlap at each end by assembly PCR, and then an overlap extension PCR was conducted to assemble all these fragments into a full length DNA sequence. Using this method, we de novo designed and optimized the codon of Rhizopus oryzae lipase gene ROL (810 bp and Aspergillus niger phytase gene phyA (1404 bp. Compared with the original ROL gene and phyA gene, the codon-optimized genes expressed at a significantly higher level in yeasts after methanol induction. We believe this AOE method to be of special interest as it is simple, accurate and has no limitation with respect to the size of the gene to be synthesized. Combined with de novo design, this method allows the rapid synthesis of a gene optimized for expression in the system of choice and production of sufficient biological material for molecular characterization and biotechnological application.

  1. Identification and validation of reference genes for qRT-PCR studies of the obligate aphid pathogenic fungus Pandora neoaphidis during different developmental stages.

    Directory of Open Access Journals (Sweden)

    Shutao Zhang

    Full Text Available The selection of stable reference genes is a critical step for the accurate quantification of gene expression. To identify and validate the reference genes in Pandora neoaphidis-an obligate aphid pathogenic fungus-the expression of 13classical candidate reference genes were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction(qPCR at four developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae. Four statistical algorithms, including geNorm, NormFinder, BestKeeper and Delta Ct method were used to rank putative reference genes according to their expression stability and indicate the best reference gene or combination of reference genes for accurate normalization. The analysis of comprehensive ranking revealed that ACT1and 18Swas the most stably expressed genes throughout the developmental stages. To further validate the suitability of the reference genes identified in this study, the expression of cell division control protein 25 (CDC25 and Chitinase 1(CHI1 genes were used to further confirm the validated candidate reference genes. Our study presented the first systematic study of reference gene(s selection for P. neoaphidis study and provided guidelines to obtain more accurate qPCR results for future developmental efforts.

  2. A novel mean-centering method for normalizing microRNA expression from high-throughput RT-qPCR data

    Directory of Open Access Journals (Sweden)

    Wylie Dennis

    2011-12-01

    Full Text Available Abstract Background Normalization is critical for accurate gene expression analysis. A significant challenge in the quantitation of gene expression from biofluids samples is the inability to quantify RNA concentration prior to analysis, underscoring the need for robust normalization tools for this sample type. In this investigation, we evaluated various methods of normalization to determine the optimal approach for quantifying microRNA (miRNA expression from biofluids and tissue samples when using the TaqMan® Megaplex™ high-throughput RT-qPCR platform with low RNA inputs. Findings We compared seven normalization methods in the analysis of variation of miRNA expression from biofluid and tissue samples. We developed a novel variant of the common mean-centering normalization strategy, herein referred to as mean-centering restricted (MCR normalization, which is adapted to the TaqMan Megaplex RT-qPCR platform, but is likely applicable to other high-throughput RT-qPCR-based platforms. Our results indicate that MCR normalization performs comparable to or better than both standard mean-centering and other normalization methods. We also propose an extension of this method to be used when migrating biomarker signatures from Megaplex to singleplex RT-qPCR platforms, based on the identification of a small number of normalizer miRNAs that closely track the mean of expressed miRNAs. Conclusions We developed the MCR method for normalizing miRNA expression from biofluids samples when using the TaqMan Megaplex RT-qPCR platform. Our results suggest that normalization based on the mean of all fully observed (fully detected miRNAs minimizes technical variance in normalized expression values, and that a small number of normalizer miRNAs can be selected when migrating from Megaplex to singleplex assays. In our study, we find that normalization methods that focus on a restricted set of miRNAs tend to perform better than methods that focus on all miRNAs, including

  3. Gene expression alterations associated with outcome in aromatase inhibitor-treated ER+ early-stage breast cancer patients

    DEFF Research Database (Denmark)

    Gravgaard Thomsen, Karina Hedelund; Lyng, Maria Bibi; Elias, Daniel

    2015-01-01

    predictive of outcome of ER+ breast cancer patients treated with AIs are needed. Global gene expression analysis was performed on ER+ primary breast cancers from patients treated with adjuvant AI monotherapy; half experienced recurrence (median follow-up 6.7 years). Gene expression alterations were validated...... by qRT-PCR, and functional studies evaluating the effect of siRNA-mediated gene knockdown on cell growth were performed. Twenty-six genes, including TFF3, DACH1, RGS5, and GHR, were shown to exhibit altered expression in tumors from patients with recurrence versus non-recurrent (fold change ≥1.5, p ....05), and the gene expression alterations were confirmed using qRT-PCR. Ten of these 26 genes could be linked in a network associated with cellular proliferation, growth, and development. TFF3, which encodes for trefoil factor 3 and is an estrogen-responsive oncogene shown to play a functional role in tamoxifen...

  4. Xylella fastidiosa gene expression analysis by DNA microarrays

    Directory of Open Access Journals (Sweden)

    Regiane F. Travensolo

    2009-01-01

    Full Text Available Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM2 and liquid BCYE. All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others. The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.

  5. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Kim, Dong-Sub; Kang, Si-Yong; Lee, Geung-Joo; Kim, Jin-Baek

    2008-06-01

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 ( ∼ 61.4 %) responsive genes to ν -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H 2 O 2 scavenging activity in leaves were applied

  6. Identification of Reference Genes for Quantitative Real Time PCR Assays in Aortic Tissue of Syrian Hamsters with Bicuspid Aortic Valve.

    Science.gov (United States)

    Rueda-Martínez, Carmen; Fernández, M Carmen; Soto-Navarrete, María Teresa; Jiménez-Navarro, Manuel; Durán, Ana Carmen; Fernández, Borja

    2016-01-01

    Bicuspid aortic valve (BAV) is the most frequent congenital cardiac malformation in humans, and appears frequently associated with dilatation of the ascending aorta. This association is likely the result of a common aetiology. Currently, a Syrian hamster strain with a relatively high (∼40%) incidence of BAV constitutes the only spontaneous animal model of BAV disease. The characterization of molecular alterations in the aorta of hamsters with BAV may serve to identify pathophysiological mechanisms and molecular markers of disease in humans. In this report, we evaluate the expression of ten candidate reference genes in aortic tissue of hamsters in order to identify housekeeping genes for normalization using quantitative real time PCR (RT-qPCR) assays. A total of 51 adult (180-240 days old) and 56 old (300-440 days old) animals were used. They belonged to a control strain of hamsters with normal, tricuspid aortic valve (TAV; n = 30), or to the affected strain of hamsters with TAV (n = 45) or BAV (n = 32). The expression stability of the candidate reference genes was determined by RT-qPCR using three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable reference genes for the three algorithms employed were Cdkn1β, G3pdh and Polr2a. We propose the use of Cdkn1β, or both Cdkn1β and G3pdh as reference genes for mRNA expression analyses in Syrian hamster aorta.

  7. Identification of Reference Genes for Quantitative Real Time PCR Assays in Aortic Tissue of Syrian Hamsters with Bicuspid Aortic Valve.

    Directory of Open Access Journals (Sweden)

    Carmen Rueda-Martínez

    Full Text Available Bicuspid aortic valve (BAV is the most frequent congenital cardiac malformation in humans, and appears frequently associated with dilatation of the ascending aorta. This association is likely the result of a common aetiology. Currently, a Syrian hamster strain with a relatively high (∼40% incidence of BAV constitutes the only spontaneous animal model of BAV disease. The characterization of molecular alterations in the aorta of hamsters with BAV may serve to identify pathophysiological mechanisms and molecular markers of disease in humans. In this report, we evaluate the expression of ten candidate reference genes in aortic tissue of hamsters in order to identify housekeeping genes for normalization using quantitative real time PCR (RT-qPCR assays. A total of 51 adult (180-240 days old and 56 old (300-440 days old animals were used. They belonged to a control strain of hamsters with normal, tricuspid aortic valve (TAV; n = 30, or to the affected strain of hamsters with TAV (n = 45 or BAV (n = 32. The expression stability of the candidate reference genes was determined by RT-qPCR using three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable reference genes for the three algorithms employed were Cdkn1β, G3pdh and Polr2a. We propose the use of Cdkn1β, or both Cdkn1β and G3pdh as reference genes for mRNA expression analyses in Syrian hamster aorta.

  8. ABCG2 in peptic ulcer: gene expression and mutation analysis.

    Science.gov (United States)

    Salagacka-Kubiak, Aleksandra; Żebrowska, Marta; Wosiak, Agnieszka; Balcerczak, Mariusz; Mirowski, Marek; Balcerczak, Ewa

    2016-08-01

    The aim of this study was to evaluate the participation of polymorphism at position C421A and mRNA expression of the ABCG2 gene in the development of peptic ulcers, which is a very common and severe disease. ABCG2, encoded by the ABCG2 gene, has been found inter alia in the gastrointestinal tract, where it plays a protective role eliminating xenobiotics from cells into the extracellular environment. The materials for the study were biopsies of gastric mucosa taken during a routine endoscopy. For genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) at position C421A, DNA was isolated from 201 samples, while for the mRNA expression level by real-time PCR, RNA was isolated from 60 patients. The control group of healthy individuals consisted of 97 blood donors. The dominant genotype in the group of peptic ulcer patients and healthy individuals was homozygous CC. No statistically significant differences between healthy individuals and the whole group of peptic ulcer patients and, likewise, between the subgroups of peptic ulcer patients (infected and uninfected with Helicobacter pylori) were found. ABCG2 expression relative to GAPDH expression was found in 38 of the 60 gastric mucosa samples. The expression level of the gene varies greatly among cases. The statistically significant differences between the intensity (p = 0.0375) of H. pylori infection and ABCG2 gene expression have been shown. It was observed that the more intense the infection, the higher the level of ABCG2 expression.

  9. Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress.

    Science.gov (United States)

    Chen, Jingchao; Huang, Zhaofeng; Huang, Hongjuan; Wei, Shouhui; Liu, Yan; Jiang, Cuilan; Zhang, Jie; Zhang, Chaoxian

    2017-04-21

    Goosegrass (Eleusine indica) is one of the most serious annual grassy weeds worldwide, and its evolved herbicide-resistant populations are more difficult to control. Quantitative real-time PCR (qPCR) is a common technique for investigating the resistance mechanism; however, there is as yet no report on the systematic selection of stable reference genes for goosegrass. This study proposed to test the expression stability of 9 candidate reference genes in goosegrass in different tissues and developmental stages and under stress from three types of herbicide. The results show that for different developmental stages and organs (control), eukaryotic initiation factor 4 A (eIF-4) is the most stable reference gene. Chloroplast acetolactate synthase (ALS) is the most stable reference gene under glyphosate stress. Under glufosinate stress, eIF-4 is the best reference gene. Ubiquitin-conjugating enzyme (UCE) is the most stable reference gene under quizalofop-p-ethyl stress. The gene eIF-4 is the recommended reference gene for goosegrass under the stress of all three herbicides. Moreover, pairwise analysis showed that seven reference genes were sufficient to normalize the gene expression data under three herbicides treatment. This study provides a list of reliable reference genes for transcript normalization in goosegrass, which will facilitate resistance mechanism studies in this weed species.

  10. Identification of a set of endogenous reference genes for miRNA expression studies in Parkinson's disease blood samples.

    Science.gov (United States)

    Serafin, Alice; Foco, Luisa; Blankenburg, Hagen; Picard, Anne; Zanigni, Stefano; Zanon, Alessandra; Pramstaller, Peter P; Hicks, Andrew A; Schwienbacher, Christine

    2014-10-10

    Research on microRNAs (miRNAs) is becoming an increasingly attractive field, as these small RNA molecules are involved in several physiological functions and diseases. To date, only few studies have assessed the expression of blood miRNAs related to Parkinson's disease (PD) using microarray and quantitative real-time PCR (qRT-PCR). Measuring miRNA expression involves normalization of qRT-PCR data using endogenous reference genes for calibration, but their choice remains a delicate problem with serious impact on the resulting expression levels. The aim of the present study was to evaluate the suitability of a set of commonly used small RNAs as normalizers and to identify which of these miRNAs might be considered reliable reference genes in qRT-PCR expression analyses on PD blood samples. Commonly used reference genes snoRNA RNU24, snRNA RNU6B, snoRNA Z30 and miR-103a-3p were selected from the literature. We then analyzed the effect of using these genes as reference, alone or in any possible combination, on the measured expression levels of the target genes miR-30b-5p and miR-29a-3p, which have been previously reported to be deregulated in PD blood samples. We identified RNU24 and Z30 as a reliable and stable pair of reference genes in PD blood samples.

  11. Selection of Reference Genes for Expression Studies in Diaphorina citri (Hemiptera: Liviidae).

    Science.gov (United States)

    Bassan, Meire Menezes; Angelotti-Mendonc A, Je Ssika; Alves, Gustavo Rodrigues; Yamamoto, Pedro Takao; Moura O Filho, Francisco de Assis Alves

    2017-12-05

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is considered the main vector of the bacteria associated with huanglongbing, a very serious disease that has threatened the world citrus industry. The absence of efficient control management protocols, including a lack of resistant cultivars, has led to the development of different approaches to study this pathosystem. The production of resistant genotypes relies on D. citri gene expression analyses by RT-qPCR to assess control of the vector population. High-quality, reliable RT-qPCR analyses depend upon proper reference gene selection and validation. However, adequate D. citri reference genes have not yet been identified. In the present study, we evaluated the genes EF 1-α, ACT, GAPDH, RPL7, RPL17, and TUB as candidate reference genes for this insect. Gene expression stability was evaluated using the mathematical algorithms deltaCt, NormFinder, BestKeeper, and geNorm, at five insect developmental stages, grown on two different plant hosts [Citrus sinensis (L.) Osbeck (Sapindales: Rutaceae) and Murraya paniculata (L.) Jack (Sapindales: Rutaceae)]. The final gene ranking was calculated using RefFinder software, and the V-ATPase-A gene was selected for validation. According to our results, two reference genes are recommended when different plant hosts and developmental stages are considered. Considering gene expression studies in D. citri grown on M. paniculata, regardless of the insect developmental stage, GAPDH and RPL7 have the best fit as reference genes in RT-qPCR analyses, whereas GAPDH and EF 1-α are recommended as reference genes in insect studies using C. sinensis. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. A novel BDNF gene promoter directs expression to skeletal muscle

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2003-06-01

    Full Text Available Abstract Background Cell-specific expression of the gene that encodes brain-derived neurotrophic factor (BDNF is required for the normal development of peripheral sensory neurons and efficient synaptic transmission in the mature central and peripheral nervous system. The control of BDNF gene expression involves multiple tissue and cell-specific promoters that are differentially regulated. The molecular mechanisms that are responsible for tissue and cell-specific expression of these promoters are still incompletely understood. Results The cloning and analysis of three additional zebrafish (Danio rerio BDNF gene exons and two associated promoters, is reported. Among them are two exons that generate a novel tripartite mature transcript. The exons were located on the transcription unit, whose overall organization was determined by cloning, Southern blot hybridization and sequence analysis, and compared with the pufferfish (Fugu rubripes and mammalian BDNF loci, revealing a conserved but more compact organization. Structural and functional analysis of the exons, their adjacent promoters and 5' flanks, showed that they are expressed cell-specifically. The promoter associated with the 5' exon of the tripartite transcript is GC-rich, TATA-less and the 5' flank adjacent to it contains multiple Sp1, Mef2, and AP1 elements. A fusion gene containing the promoter and 1.5 KB of 5' flank is directed exclusively to skeletal muscle of transiently transfected embryos. The second promoter, whose associated 5' exon contains a 25-nucleotide segment of identity with a mammalian BDNF gene exon, was transiently expressed in yolk of the early embryo. RT-PCR analysis of total RNA from whole juvenile fish and adult female skeletal muscle revealed tissue-specific expression of the 5' exons but the novel exon could not be detected even after two rounds of nested PCR. Conclusion The zebrafish BDNF gene is as complex as the mammalian gene yet much more compact. Its exons are

  13. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  14. Evaluation of Candidate Reference Genes for Quantitative Gene Expression Analysis in Spodoptera exigu a after Long-time Exposure to Cadmium

    OpenAIRE

    P?achetka-Bo?ek, Anna; Augustyniak, Maria

    2017-01-01

    Studies on the transcriptional control of gene expression play an important role in many areas of biology. Reference genes, which are often referred to as housekeeping genes, such as GAPDH, G3PDH, EF2, RpL7A, RpL10, TUB? and Actin, have traditionally been assumed to be stably expressed in all conditions, and they are frequently used to normalize mRNA levels between different samples in qPCR analysis. However, it is known that the expression of these genes is influenced by numerous factors, su...

  15. Evaluation of reference genes for RT-qPCR study in abalone Haliotis discus hannai during heavy metal overload stress

    Directory of Open Access Journals (Sweden)

    Sang Yoon Lee

    2016-06-01

    Full Text Available Abstract Background The evaluation of suitable reference genes as normalization controls is a prerequisite requirement for launching quantitative reverse transcription-PCR (RT-qPCR-based expression study. In order to select the stable reference genes in abalone Haliotis discus hannai tissues (gill and hepatopancreas under heavy metal exposure conditions (Cu, Zn, and Cd, 12 potential candidate housekeeping genes were subjected to expression stability based on the comprehensive ranking while integrating four different statistical algorithms (geNorm, NormFinder, BestKeeper, and ΔCT method. Results Expression stability in the gill subset was determined as RPL7 > RPL8 > ACTB > RPL3 > PPIB > RPL7A > EF1A > RPL4 > GAPDH > RPL5 > UBE2 > B-TU. On the other hand, the ranking in the subset for hepatopancreas was RPL7 > RPL3 > RPL8 > ACTB > RPL4 > EF1A > RPL5 > RPL7A > B-TU > UBE2 > PPIB > GAPDH. The pairwise variation assessed by the geNorm program indicates that two reference genes could be sufficient for accurate normalization in both gill and hepatopancreas subsets. Overall, both gill and hepatopancreas subsets recommended ribosomal protein genes (particularly RPL7 as stable references, whereas traditional housekeepers such as β-tubulin (B-TU and glyceraldehyde-3-phosphate dehydrogenase (GAPDH genes were ranked as unstable genes. The validation of reference gene selection was confirmed with the quantitative assay of MT transcripts. Conclusions The present analysis showed the importance of validating reference genes with multiple algorithmic approaches to select genes that are truly stable. Our results indicate that expression stability of a given reference gene could not always have consensus across tissue types. The data from this study could be a good guide for the future design of RT-qPCR studies with respect to metal regulation/detoxification and other related

  16. Establishing a novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure for the direct detection of gene doping.

    Science.gov (United States)

    Beiter, Thomas; Zimmermann, Martina; Fragasso, Annunziata; Armeanu, Sorin; Lauer, Ulrich M; Bitzer, Michael; Su, Hua; Young, William L; Niess, Andreas M; Simon, Perikles

    2008-01-01

    So far, the abuse of gene transfer technology in sport, so-called gene doping, is undetectable. However, recent studies in somatic gene therapy indicate that long-term presence of transgenic DNA (tDNA) following various gene transfer protocols can be found in DNA isolated from whole blood using conventional PCR protocols. Application of these protocols for the direct detection of gene doping would require almost complete knowledge about the sequence of the genetic information that has been transferred. Here, we develop and describe the novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure that overcomes this difficulty. Apart from the interesting perspectives that this spiPCR procedure offers in the fight against gene doping, this technology could also be of interest in biodistribution and biosafety studies for gene therapeutic applications.

  17. Gene expression and 18FDG uptake in atherosclerotic carotid plaques

    DEFF Research Database (Denmark)

    Pedersen, Sune Folke; Graebe, Martin; Fisker Hag, Anne Mette

    2010-01-01

    ) and an additional ipsilateral internal carotid artery stenosis of greater than 60% were recruited. FDG uptake in the carotids was determined by PET/computed tomography and expressed as mean and maximal standardized uptake values (SUVmean and SUVmax). The atherosclerotic plaques were subsequently recovered...... by carotid endarterectomy. The gene expression of markers of vulnerability - CD68, IL-18, matrix metalloproteinase 9, cathepsin K, GLUT-1, and hexokinase type II (HK2) - were measured in plaques by quantitative PCR. RESULTS: In a multivariate linear regression model, GLUT-1, CD68, cathepsin K, and HK2 gene...... expression remained in the final model as predictive variables of FDG accumulation calculated as SUVmean (R=0.26, PK, and HK2 gene expression as independent predictive variables of FDG accumulation calculated...

  18. Microarray analysis of the gene expression profile in triethylene glycol dimethacrylate-treated human dental pulp cells.

    Science.gov (United States)

    Torun, D; Torun, Z Ö; Demirkaya, K; Sarper, M; Elçi, M P; Avcu, F

    2017-11-01

    Triethylene glycol dimethacrylate (TEGDMA) is an important resin monomer commonly used in the structure of dental restorative materials. Recent studies have shown that unpolymerized resin monomers may be released into the oral environment and cause harmful biological effects. We investigated changes in the gene expression profiles of TEGDMA-treated human dental pulp cells (hDPCs) following short- (1-day) and long-term (7-days) exposure. HDPCs were exposed to a noncytotoxic concentration of TEGDMA, and gene expression profiles were evaluated by microarray analysis. The results were confirmed by quantitative reverse-transcriptase PCR (qRT PCR). In total, 1282 and 1319 genes (up- or down-regulated) were differentially expressed compared with control group after the 1- and 7-day incubation periods, respectively. Biological ontology-based analyses revealed that metabolic, cellular, and developmental processes constituted the largest groups of biological functional processes. qRT-PCR analysis on bone morphogenetic protein-2 (BMP-2), BMP-4, secreted protein, acidic, cysteine-rich, collagen type I alpha 1, oxidative stress-induced growth inhibitor 1, MMP3, interleukin-6, and heme oxygenase-1 genes confirmed the changes in expression observed in the microarray analysis. Our results suggest that TEGDMA can change the many functions of hDPCs through large changes in gene expression levels and complex interactions with different signaling pathways.

  19. Xylella fastidiosa gene expression analysis by DNA microarrays

    OpenAIRE

    Travensolo,Regiane F.; Carareto-Alves,Lucia M.; Costa,Maria V.C.G.; Lopes,Tiago J.S.; Carrilho,Emanuel; Lemos,Eliana G.M.

    2009-01-01

    Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcrip...

  20. Validation of housekeeping genes for quantitative real-time PCR in in-vivo and in-vitro models of cerebral ischaemia

    Directory of Open Access Journals (Sweden)

    Serena Joaquín

    2009-06-01

    Full Text Available Abstract Background Studies of gene expression in experimental cerebral ischaemia models can contribute to understanding the pathophysiology of brain ischaemia and to identifying prognostic markers and potential therapeutic targets. The normalization of relative qRT-PCR data using a suitable reference gene is a crucial prerequisite for obtaining reliable conclusions. No validated housekeeping genes have been reported for the relative quantification of the mRNA expression profile activated in in-vitro ischaemic conditions, whereas for the in-vivo model different reference genes have been used. The present study aims to determine the expression stability of ten housekeeping genes (Gapdh, β2m, Hprt, Ppia, Rpl13a, Oaz1, 18S rRNA, Gusb, Ywhaz and Sdha to establish their suitability as control genes for in-vitro and in-vivo cerebral ischaemia models. Results The expression stability of the candidate reference genes was evaluated using the 2-ΔC'T method and ANOVA followed by Dunnett's test. For the in-vitro model using primary cultures of rat astrocytes, all genes analysed except for Rpl13a and Sdha were found to have significantly different levels of mRNA expression. These different levels were also found in the case of the in-vivo model of pMCAO in rats except for Hprt, Sdha and Ywhaz mRNA, where the expression did not vary. Sdha and Ywhaz were identified by geNorm and NormFinder as the two most stable genes. Conclusion We have validated endogenous control genes for qRT-PCR analysis of gene expression in in-vitro and in-vivo cerebral ischaemia models. For normalization purposes, Rpl13a and Sdha are found to be the most suitable genes for the in-vitro model and Sdha and Ywhaz for the in-vivo model. Genes previously used as housekeeping genes for the in-vivo model in the literature were not validated as good control genes in the present study, showing the need for careful evaluation for each new experimental setup.

  1. Discovery, characterization and expression of a novel zebrafish gene, znfr, important for notochord formation.

    Science.gov (United States)

    Xu, Yan; Zou, Peng; Liu, Yao; Deng, Fengjiao

    2010-06-01

    Genes specifically expressed in the notochord may be crucial for proper notochord development. Using the digital differential display program offered by the National Center for Biotechnology Information, we identified a novel EST sequence from a zebrafish ovary library (No. XM_701450). The full-length cDNA of this transcript was cloned by performing 3' and 5'-RACE and was further confirmed by PCR and sequencing. The resulting 614 bp gene was found to encode a novel 94 amino acid protein that did not share significant homology with any other known protein. Characterization of the genomic sequence revealed that the gene spanned 4.9 kb and was composed of four exons and three introns. RT-PCR gene expression analysis revealed that our gene of interest was expressed in ovary, kidney, brain, mature oocytes and during the early stages of embryogenesis. During embryonic development, znfr mRNA was found to be expressed in the embryonic shield, chordamesoderm and the vacuolated notochord cells by in situ hybridization. Based on this information, we hypothesize that this novel gene is an important maternal factor required for zebrafish notochord formation during early embryonic development. We have thus named this gene znfr (zebrafish notochord formation related).

  2. In vivo gene expression and immunoreactivity of Leptospira collagenase.

    Science.gov (United States)

    Janwitthayanan, Weena; Keelawat, Somboon; Payungporn, Sunchai; Lowanitchapat, Alisa; Suwancharoen, Duangjai; Poovorawan, Yong; Chirathaworn, Chintana

    2013-06-12

    Pulmonary hemorrhage is an increasing cause of death of leptospirosis patients. Bacterial collagenase has been shown to be involved in lung hemorrhage induced by various infectious agents. According to Leptospira whole genome study, colA, a gene suggested to code for bacterial collagenase has been identified. We investigated colA gene expression in lung tissues of Leptospira infected hamsters. Golden Syrian Hamsters were injected intraperitoneally with Leptospira interrogans serovar Pyrogenes. The hamsters were sacrificed on days 3, 5 and 7 post-infection and lung tissues were collected for histological examination and RNA extraction. Lung pathologies including atelectasis and hemorrhage were observed. Expression of colA gene in lung tissues was demonstrated by both RT-PCR and real time PCR. In addition, ColA protein was cloned and the purified protein could react with sera from leptospirosis patients. Leptospira ColA protein may play a role in Leptospira survival or pathogenesis in vivo. Its reaction with leptospirosis sera suggests that this protein is immunogenic and could be another candidate for vaccine development. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family.

    Science.gov (United States)

    Guo, Chunlei; Guo, Rongrong; Xu, Xiaozhao; Gao, Min; Li, Xiaoqin; Song, Junyang; Zheng, Yi; Wang, Xiping

    2014-04-01

    WRKY proteins comprise a large family of transcription factors that play important roles in plant defence regulatory networks, including responses to various biotic and abiotic stresses. To date, no large-scale study of WRKY genes has been undertaken in grape (Vitis vinifera L.). In this study, a total of 59 putative grape WRKY genes (VvWRKY) were identified and renamed on the basis of their respective chromosome distribution. A multiple sequence alignment analysis using all predicted grape WRKY genes coding sequences, together with those from Arabidopsis thaliana and tomato (Solanum lycopersicum), indicated that the 59 VvWRKY genes can be classified into three main groups (I-III). An evaluation of the duplication events suggested that several WRKY genes arose before the divergence of the grape and Arabidopsis lineages. Moreover, expression profiles derived from semiquantitative PCR and real-time quantitative PCR analyses showed distinct expression patterns in various tissues and in response to different treatments. Four VvWRKY genes showed a significantly higher expression in roots or leaves, 55 responded to varying degrees to at least one abiotic stress treatment, and the expression of 38 were altered following powdery mildew (Erysiphe necator) infection. Most VvWRKY genes were downregulated in response to abscisic acid or salicylic acid treatments, while the expression of a subset was upregulated by methyl jasmonate or ethylene treatments.

  4. Gene Expression Analysis of Immunostained Endothelial Cells Isolated from Formaldehyde-fixated Paraffin Embedded Tumors Using Laser Capture Microdissection – a Technical Report

    Science.gov (United States)

    Kaneko, Tomoatsu; Okiji, Takashi; Kaneko, Reika; Suda, Hideaki; Nör, Jacques E.

    2009-01-01

    Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections that can then be used for gene expression analysis. In conventional LCM, frozen tissues stained with hematoxylin are normally used to the molecular analysis. Recent studies suggested that it is possible to carry out gene expression analysis of formaldehyde-fixated paraffin embedded (FFPE) tissues that were stained with hematoxylin. However, it is still unclear if quantitative gene expression analyses can be performed from LCM cells from FFPE tissues that were subjected to immunostaining to enhance identification of target cells. In this proof-of-principle study, we analyzed by RT-PCR and real time PCR the expression of genes in factor VIII immunostained human endothelial cells that were dissected from FFPE tissues by LCM. We observed that immunostaining should be performed at 4°C to preserve the mRNA from the cells. The expression of Bcl-2 in the endothelial cells was evaluated by RT-PCR and by real time PCR. GAPDH and 18S were used as house keeping genes for RT-PCR and real time PCR, respectively. This report unveils a method for quantitative gene expression analysis in cells that were identified by immunostaining and retrieved by LCM from FFPE tissues. This method is ideally suited for the analysis of relatively rare cell types within a tissue, and should improve on our ability to perform differential diagnosis of pathologies as compared to conventional LCM. PMID:19425073

  5. Expression and Localization of TRK-Fused Gene Products in the Rat Brain and Retina

    International Nuclear Information System (INIS)

    Maebayashi, Hisae; Takeuchi, Shigako; Masuda, Chiaki; Makino, Satoshi; Fukui, Kenji; Kimura, Hiroshi; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It has been reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. However, no information regarding the localization of Tfg in rat tissues is available. In this study, we investigated the expression of Tfg mRNA in normal rat tissues using reverse transcription-polymerase chain reaction (RT-PCR). We also produced an antibody against Tfg gene products and examined the localization of TFG in the rat brain and retina. The RT-PCR experiments demonstrated that two types of Tfg mRNA were expressed in rat tissues: the conventional form of Tfg (cTfg) and a novel variant form, retinal Tfg (rTfg). RT-PCR analyses demonstrated that cTfg was ubiquitously expressed in rat tissues, while rTfg was predominantly expressed in the brain and retina. Western blot analysis demonstrated two bands with molecular weights of about 30 kDa and 50 kDa in the rat brain. Immunohistochemistry indicated that TFG proteins were predominantly expressed by neurons in the brain. In the rat retina, intense TFG-immunoreactivity was detected in the layer of rods and cones and the outer plexiform layer

  6. Exploring gene expression changes in the amphioxus gill after poly(I:C) challenge using digital expression profiling.

    Science.gov (United States)

    Zhang, Qi-Lin; Qiu, Han-Yue; Liang, Ming-Zhong; Luo, Bang; Wang, Xiu-Qiang; Chen, Jun-Yuan

    2017-11-01

    Amphioxus, a cephalochordate, is a key model animal for studying the evolution of vertebrate immunity. Recently, studies have revealed that microRNA (miRNA) expression profiles change significantly in the amphioxus gill after immune stimulation, but it remains largely unknown how gene expression responds to immune stress. Elucidating gene expression changes in the amphioxus gill will provide a deeper understanding of the evolution of gill immunity in vertebrates. Here, we used high-throughput RNA sequencing technology (RNA-seq) to conduct tag-based digital gene expression profiling (DGE) analyses of the gills of control Branchiostoma belcheri and of those exposed to the viral mimic, poly(I:C) (pIC). Six libraries were created for the control and treatment groups including three biological replicates per group. A total of 1999 differently expressed genes (DEGs) were obtained, with 571 and 1428 DEGs showing up- or down-regulation, respectively, in the treatment group. Enrichment analysis of gene ontology (GO) terms and pathways revealed that the DEGs were primarily related to immune and defense response, apoptosis, human disease, cancer, protein metabolism, enzyme activity, and regulatory processes. In addition, eight DEGs were randomly selected to validate the RNA-seq data using real-time quantitative PCR (qRT-PCR), and the results confirmed the accuracy of the RNA-seq approach. Next, we screened eight key responding genes to examine the dynamic changes in expression levels at different time points in more detail. The results indicated that expressions of TRADD, MARCH, RNF31, NF-κb, CYP450, TNFRSF6B, IFI and LECT1 were induced to participate in the antiviral response against pIC. This study provides a valuable resource for understanding the role of the amphioxus gill in antiviral immunity and the evolution of gill immunity in vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response

    Directory of Open Access Journals (Sweden)

    Nasrine Bendjilali

    2017-01-01

    Full Text Available Many cells experience hypoxia, or low oxygen, and respond by dramatically altering gene expression. In the yeast Saccharomyces cerevisiae, genes that respond are required for many oxygen-dependent cellular processes, such as respiration, biosynthesis, and redox regulation. To more fully characterize the global response to hypoxia, we exposed yeast to hypoxic conditions, extracted RNA at different times, and performed RNA sequencing (RNA-seq analysis. Time-course statistical analysis revealed hundreds of genes that changed expression by up to 550-fold. The genes responded with varying kinetics suggesting that multiple regulatory pathways are involved. We identified most known oxygen-regulated genes and also uncovered new regulated genes. Reverse transcription-quantitative PCR (RT-qPCR analysis confirmed that the lysine methyltransferase EFM6 and the recombinase DMC1, both conserved in humans, are indeed oxygen-responsive. Looking more broadly, oxygen-regulated genes participate in expected processes like respiration and lipid metabolism, but also in unexpected processes like amino acid and vitamin metabolism. Using principle component analysis, we discovered that the hypoxic response largely occurs during the first 2 hr and then a new steady-state expression state is achieved. Moreover, we show that the oxygen-dependent genes are not part of the previously described environmental stress response (ESR consisting of genes that respond to diverse types of stress. While hypoxia appears to cause a transient stress, the hypoxic response is mostly characterized by a transition to a new state of gene expression. In summary, our results reveal that hypoxia causes widespread and complex changes in gene expression to prepare the cell to function with little or no oxygen.

  8. Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response.

    Science.gov (United States)

    Bendjilali, Nasrine; MacLeon, Samuel; Kalra, Gurmannat; Willis, Stephen D; Hossian, A K M Nawshad; Avery, Erica; Wojtowicz, Olivia; Hickman, Mark J

    2017-01-05

    Many cells experience hypoxia, or low oxygen, and respond by dramatically altering gene expression. In the yeast Saccharomyces cerevisiae, genes that respond are required for many oxygen-dependent cellular processes, such as respiration, biosynthesis, and redox regulation. To more fully characterize the global response to hypoxia, we exposed yeast to hypoxic conditions, extracted RNA at different times, and performed RNA sequencing (RNA-seq) analysis. Time-course statistical analysis revealed hundreds of genes that changed expression by up to 550-fold. The genes responded with varying kinetics suggesting that multiple regulatory pathways are involved. We identified most known oxygen-regulated genes and also uncovered new regulated genes. Reverse transcription-quantitative PCR (RT-qPCR) analysis confirmed that the lysine methyltransferase EFM6 and the recombinase DMC1, both conserved in humans, are indeed oxygen-responsive. Looking more broadly, oxygen-regulated genes participate in expected processes like respiration and lipid metabolism, but also in unexpected processes like amino acid and vitamin metabolism. Using principle component analysis, we discovered that the hypoxic response largely occurs during the first 2 hr and then a new steady-state expression state is achieved. Moreover, we show that the oxygen-dependent genes are not part of the previously described environmental stress response (ESR) consisting of genes that respond to diverse types of stress. While hypoxia appears to cause a transient stress, the hypoxic response is mostly characterized by a transition to a new state of gene expression. In summary, our results reveal that hypoxia causes widespread and complex changes in gene expression to prepare the cell to function with little or no oxygen. Copyright © 2017 Bendjilali et al.

  9. Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines

    International Nuclear Information System (INIS)

    Junnila, Siina; Kokkola, Arto; Karjalainen-Lindsberg, Marja-Liisa; Puolakkainen, Pauli; Monni, Outi

    2010-01-01

    Gastric cancer is one of the most common malignancies worldwide and the second most common cause of cancer related death. Gene copy number alterations play an important role in the development of gastric cancer and a change in gene copy number is one of the main mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. To highlight genes of potential biological and clinical relevance in gastric cancer, we carried out a systematic array-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines and validated the results using an affinity capture based transcript analysis (TRAC assay) and real-time qRT-PCR. Integrated microarray analysis revealed altogether 256 genes that were located in recurrent regions of gains or losses and had at least a 2-fold copy number- associated change in their gene expression. The expression levels of 13 of these genes, ALPK2, ASAP1, CEACAM5, CYP3A4, ENAH, ERBB2, HHIPL2, LTB4R, MMP9, PERLD1, PNMT, PTPRA, and OSMR, were validated in a total of 118 gastric samples using either the qRT-PCR or TRAC assay. All of these 13 genes were differentially expressed between cancerous samples and nonmalignant tissues (p < 0.05) and the association between copy number and gene expression changes was validated for nine (69.2%) of these genes (p < 0.05). In conclusion, integrated gene expression and copy number microarray analysis highlighted genes that may be critically important for gastric carcinogenesis. TRAC and qRT-PCR analyses validated the microarray results and therefore the role of these genes as potential biomarkers for gastric cancer

  10. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    Science.gov (United States)

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Expression of olfactory signaling genes in the eye.

    Directory of Open Access Journals (Sweden)

    Alexey Pronin

    Full Text Available To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors.Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy.We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles.Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment.

  12. Selecting a set of housekeeping genes for quantitative real-time PCR in normal and tetraploid haemocytes of soft-shell clams, Mya arenaria.

    Science.gov (United States)

    Siah, A; Dohoo, C; McKenna, P; Delaporte, M; Berthe, F C J

    2008-09-01

    The transcripts involved in the molecular mechanisms of haemic neoplasia in relation to the haemocyte ploidy status of the soft-shell clam, Mya arenaria, have yet to be identified. For this purpose, real-time quantitative RT-PCR constitutes a sensitive and efficient technique, which can help determine the gene expression involved in haemocyte tetraploid status in clams affected by haemic neoplasia. One of the critical steps in comparing transcription profiles is the stability of selected housekeeping genes, as well as an accurate normalization. In this study, we selected five reference genes, S18, L37, EF1, EF2 and actin, generally used as single control genes. Their expression was analyzed by real-time quantitative RT-PCR at different levels of haemocyte ploidy status in order to select the most stable genes. Using the geNorm software, our results showed that L37, EF1 and S18 represent the most stable gene expressions related to various ploidy status ranging from 0 to 78% of tetraploid haemocytes in clams sampled in North River (Prince Edward Island, Canada). However, actin gene expression appeared to be highly regulated. Hence, using it as a housekeeping gene in tetraploid haemocytes can result in inaccurate data. To compare gene expression levels related to haemocyte ploidy status in Mya arenaria, using L37, EF1 and S18 as housekeeping genes for accurate normalization is therefore recommended.

  13. [Construction of eukaryotic recombinant vector and expression in COS7 cell of LipL32-HlyX fusion gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying

    2009-04-01

    This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.

  14. PRAME Gene Expression in Acute Leukemia and Its Clinical Significance

    International Nuclear Information System (INIS)

    Ding, Kai; Wang, Xiao-ming; Fu, Rong; Ruan, Er-bao; Liu, Hui; Shao, Zong-hong

    2012-01-01

    To investigate the expression of the preferentially expressed antigen of melanoma (PRAME) gene in acute leukemia and its clinical significance. The level of expressed PRAME mRNA in bone marrow mononuclear cells from 34 patients with acute leukemia (AL) and in 12 bone marrow samples from healthy volunteers was measured via RT-PCR. Correlation analyses between PRAME gene expression and the clinical characteristics (gender, age, white blood count, immunophenotype of leukemia, percentage of blast cells, and karyotype) of the patients were performed. The PRAME gene was expressed in 38.2% of all 34 patients, in 40.7% of the patients with acute myelogenous leukemia (AML, n=27), and in 28.6% of the patients with acute lymphoblastic leukemia (ALL, n=7), but was not expressed in the healthy volunteers. The difference in the expression levels between AML and ALL patients was statistically significant. The rate of gene expression was 80% in M 3 , 33.3% in M 2 , and 28.6% in M 5 . Gene expression was also found to be correlated with CD15 and CD33 expression and abnormal karyotype, but not with age, gender, white blood count or percentage of blast cells. The PRAME gene is highly expressed in acute leukemia and could be a useful marker to monitor minimal residual disease. This gene is also a candidate target for the immunotherapy of acute leukemia

  15. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sub; Kang, Si-Yong; Lee, Geung-Joo; Kim, Jin-Baek

    2008-06-15

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 ({sup {approx}}61.4 %) responsive genes to {nu} -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H{sub 2}O{sub 2} scavenging activity in leaves were applied.

  16. Selection of suitable housekeeping genes for real-time quantitative PCR in CD4(+ lymphocytes from asthmatics with or without depression.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available OBJECTIVE: No optimal housekeeping genes (HKGs have been identified for CD4(+ T cells from non-depressive asthmatic and depressive asthmatic adults for normalizing quantitative real-time PCR (qPCR assays. The aim of present study was to select appropriate HKGs for gene expression analysis in purified CD4(+ T cells from these asthmatics. METHODS: Three groups of subjects (Non-depressive asthmatic, NDA, n = 10, Depressive asthmatic, DA, n = 11, and Healthy control, HC, n = 10 respectively were studied. qPCR for 9 potential HKGs, namely RNA, 28S ribosomal 1 (RN28S1, ribosomal protein, large, P0 (RPLP0, actin, beta (ACTB, cyclophilin A (PPIA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, phosphoglycerate kinase 1 (PGK1, beta-2-microglobulin (B2M, glucuronidase, beta (GUSB and ribosomal protein L13a (RPL13A, was performed. Then the data were analyzed with three different applications namely BestKeeper, geNorm, and NormFinder. RESULTS: The analysis of gene expression data identified B2M and RPLP0 as the most stable reference genes and showed that the level of PPIA was significantly different among subjects of three groups when the two best HKGs identified were applied. Post-hoc analysis by Student-Newman-Keuls correction shows that depressive asthmatics and non-depressive asthmatics exhibited lower expression level of PPIA than healthy controls (p<0.05. CONCLUSIONS: B2M and RPLP0 were identified as the most optimal HKGs in gene expression studies involving human blood CD4(+ T cells derived from normal, depressive asthmatics and non-depressive asthmatics. The suitability of using the PPIA gene as the HKG for such studies was questioned due to its low expression in asthmatics.

  17. Constitutive expression of pluripotency-associated genes in mesodermal progenitor cells (MPCs.

    Directory of Open Access Journals (Sweden)

    Simone Pacini

    Full Text Available BACKGROUND: We recently characterized a progenitor of mesodermal lineage (MPCs from the human bone marrow of adults or umbilical cord blood. These cells are progenitors able to differentiate toward mesenchymal, endothelial and cardiomyogenic lineages. Here we present an extensive molecular characterization of MPCs, from bone marrow samples, including 39 genes involved in stem cell machinery, differentiation and cell cycle regulation. METHODOLOGY/PRINCIPAL FINDINGS: MPCs are cytofluorimetrically characterized and quantitative RT-PCR was performed to evaluate the gene expression profile, comparing it with MSCs and hESCs lines. Immunofluorescence and dot-blot analysis confirm qRT-PCR data. MPCs exhibit an increased expression of OCT4, NANOG, SALL4, FBX15, SPP1 and to a lesser extent c-MYC and KLF4, but lack LIN28 and SOX2. MPCs highly express SOX15. CONCLUSIONS/SIGNIFICANCE: MPCs express many pluripotency-associated genes and show a peculiar Oct-4 molecular circuit. Understanding this unique molecular mechanism could lead to identifying MPCs as feasible, long telomeres, target cells for reprogramming with no up-regulation of the p53 pathway. Furthermore MPCs are easily and inexpensively harvested from human bone marrow.

  18. Real-time PCR analysis of genes encoding tumor antigens in esophageal tumors and a cancer vaccine

    DEFF Research Database (Denmark)

    Weinert, Brian T; Krishnadath, Kausilia K; Milano, Francesca

    2009-01-01

    Tumor antigens are the primary target of therapeutic cancer vaccines. We set out to define and compare the expression pattern of tumor antigen genes in esophagus carcinoma biopsies and in an allogeneic tumor lysate-based cancer vaccine, MelCancerVac. Cells used for vaccine production were treated...... in the production of the vaccine. Quantitative PCR was used to assay 74 tumor antigen genes in patients with squamous cell carcinoma of the esophagus. 81% (13/16) of tumors expressed more than five cancer/testis (CT) antigens. A total of 96 genes were assayed in the tumor cell clone (DDM1.7) used to make tumor cell...

  19. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions

    OpenAIRE

    Benshui Shu; Jingjing Zhang; Gaofeng Cui; Ranran Sun; Veeran Sethuraman; Xin Yi; Guohua Zhong

    2018-01-01

    Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this...

  20. [Differential gene expression profile in ischemic myocardium of Wistar rats with acute myocardial infarction: the study on gene construction, identification and function].

    Science.gov (United States)

    Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo

    2008-06-18

    To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (Ppathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.

  1. Gene Structures, Classification, and Expression Models of the DREB Transcription Factor Subfamily in Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Yunlin Chen

    2013-01-01

    Full Text Available We identified 75 dehydration-responsive element-binding (DREB protein genes in Populus trichocarpa. We analyzed gene structures, phylogenies, domain duplications, genome localizations, and expression profiles. The phylogenic construction suggests that the PtrDREB gene subfamily can be classified broadly into six subtypes (DREB A-1 to A-6 in Populus. The chromosomal localizations of the PtrDREB genes indicated 18 segmental duplication events involving 36 genes and six redundant PtrDREB genes were involved in tandem duplication events. There were fewer introns in the PtrDREB subfamily. The motif composition of PtrDREB was highly conserved in the same subtype. We investigated expression profiles of this gene subfamily from different tissues and/or developmental stages. Sixteen genes present in the digital expression analysis had high levels of transcript accumulation. The microarray results suggest that 18 genes were upregulated. We further examined the stress responsiveness of 15 genes by qRT-PCR. A digital northern analysis showed that the PtrDREB17, 18, and 32 genes were highly induced in leaves under cold stress, and the same expression trends were shown by qRT-PCR. Taken together, these observations may lay the foundation for future functional analyses to unravel the biological roles of Populus’ DREB genes.

  2. Co-Cultures of Pseudomonas aeruginosa and Roseobacter denitrificans Reveal Shifts in Gene Expression Levels Compared to Solo Cultures

    Directory of Open Access Journals (Sweden)

    Crystal A. Conway

    2012-01-01

    Full Text Available Consistent biosynthesis of desired secondary metabolites (SMs from pure microbial cultures is often unreliable. In a proof-of-principle study to induce SM gene expression and production, we describe mixed “co-culturing” conditions and monitoring of messages via quantitative real-time PCR (qPCR. Gene expression of model bacterial strains (Pseudomonas aeruginosa PAO1 and Roseobacter denitrificans Och114 was analyzed in pure solo and mixed cocultures to infer the effects of interspecies interactions on gene expression in vitro, Two P. aeruginosa genes (PhzH coding for portions of the phenazine antibiotic pathway leading to pyocyanin (PCN and the RhdA gene for thiosulfate: cyanide sulfurtransferase (Rhodanese and two R. denitrificans genes (BetaLact for metallo-beta-lactamase and the DMSP gene for dimethylpropiothetin dethiomethylase were assessed for differential expression. Results showed that R. denitrificans DMSP and BetaLact gene expression became elevated in a mixed culture. In contrast, P. aeruginosa co-cultures with R. denitrificans or a third species did not increase target gene expression above control levels. This paper provides insight for better control of target SM gene expression in vitro and bypass complex genetic engineering manipulations.

  3. PCR-RFLP analyses for studying the diversity of GH and Pit-1 genes in Slovak Simmental cattle

    Directory of Open Access Journals (Sweden)

    Anna Trakovická

    2013-10-01

    Full Text Available The aim of this study was evaluation of growth hormone (GH and specific pituitary transcription factor (Pit-1 genes diversity in population of 353 Slovak Simmental cows. The analyses were based on single nucleotide polymorphisms GH/AluI and Pit-1/HinfI detections. A polymorphic site of GH gene (AluI has been linked to differences in circulating metabolites, metabolic hormones and milk yield. Bovine Pit-1 is responsible for pituitary development and hormone secreting gene expression, including GH gene. The Pit-1/HinfI locus was associated with growth, milk production and reproduction performance in cattle. Samples of genomic DNA were analyzed by PCR-RFLP method. Digestion of GH gene PCR products with restriction enzyme AluI revealed allele L and V with frequency 0.695 and 0.305, respectively. The digested Pit-1 gene PCR products with enzyme HinfI revealed alleles A (0.249 and B (0.751. Dominant genotypes were for GH gene heterozygous LV (0.47 and for Pit-1 gene homozygous BB (0.56 animals. The observed heterozygosity, effective allele numbers and polymorphism information content of GH/AluI and Pit-1/HinfI bovine loci population were 0.42/0.37, 1.73/1.59 and 0.33/0.30, respectively. The median polymorphic information content of loci was also transferred to the higher observed homozygosity in population (0.58/0.63. Keywords: cattle, growth hormone, leptin, PCR, Pit-1, polymorphism.

  4. Stability of Reference Genes for Messenger RNA Quantification by Real-Time PCR in Mouse Dextran Sodium Sulfate Experimental Colitis.

    Directory of Open Access Journals (Sweden)

    Nour Eissa

    Full Text Available Many animal models have been developed to characterize the complexity of colonic inflammation. In dextran sodium sulfate (DSS experimental colitis in mice the choice of reference genes is critical for accurate quantification of target genes using quantitative real time PCR (RT-qPCR. No studies have addressed the performance of reference genes in mice DSS-experimental colitis. This study aimed to determine the stability of reference genes expression (RGE in DSS-experimental murine colitis.Colitis was induced in male C57BL/6 mice using DSS5% for 5 days, control group received water. RNA was extracted from inflamed and non-inflamed colon. Using RT-qPCR, comparative analysis of 13 RGE was performed according to predefined criteria and relative colonic TNF-α and IL-1β gene expression was determined by calculating the difference in the threshold cycle.Colitis significantly altered the stability of mucosal RGE. Commonly used glyceraldehyde-3-phosphate dehydrogenase (Gapdh, β-actin (Actb, or β2-microglobulin (β2m showed the highest variability within the inflamed and control groups. Conversely, TATA-box-binding protein (Tbp and eukaryotic translation elongation factor 2 (Eef2 were not affected by inflammation and were the most stable genes. Normalization of colonic TNF-α and IL-1β mRNA levels was dependent on the reference gene used. Depending on the genes used to normalize the data, statistical significance varied from significant when TBP / Eef2 were used to non-significant when Gapdh, Actb or β2m were used.This study highlights the appropriate choice of RGE to ensure adequate normalization of RT-qPCR data when using this model. Suboptimal RGE may explain controversial results from published studies. We recommend using Tbp and Eef2 instead of Gapdh, Actb or β2m as reference genes.

  5. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane Ebsen; Andersen, Ole

    2008-01-01

    BACKGROUND: The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine...... the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS......: In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a) and high...

  6. Gene expression profiling of liver cancer stem cells by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    David W Y Ho

    Full Text Available BACKGROUND: Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90(+ liver cancer stem cells (CSCs in hepatocellular carcinoma (HCC. Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq to compare the gene expression profiling of CD90(+ cells sorted from tumor (CD90(+CSCs with parallel non-tumorous liver tissues (CD90(+NTSCs and elucidate the roles of putative target genes in hepatocarcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS: CD90(+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90(+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90(+CSCs and CD90(+NTSCs, and validated by quantitative real-time PCR (qRT-PCR on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes between CD90(+CSCs and CD90(+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90(+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3, a member of glypican family, was markedly elevated in CD90(+CSCs compared to CD90(+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90(+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90(+CSCs in liver tumor tissues. CONCLUSIONS

  7. Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    Science.gov (United States)

    Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat

    2012-01-01

    Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes

  8. Identification of potential internal control genes for real-time PCR analysis during stress response in Pyropia haitanensis

    Science.gov (United States)

    Wang, Xia; Feng, Jianhua; Huang, Aiyou; He, Linwen; Niu, Jianfeng; Wang, Guangce

    2017-11-01

    Pyropia haitanensis has prominent stress-resistance characteristics and is endemic to China. Studies into the stress responses in these algae could provide valuable information on the stress-response mechanisms in the intertidal Rhodophyta. Here, the effects of salinity and light intensity on the quantum yield of photosystem II in Py. haitanensis were investigated using pulse-amplitude-modulation fluorometry. Total RNA and genomic DNA of the samples under different stress conditions were isolated. By normalizing to the genomic DNA quantity, the RNA content in each sample was evaluated. The cDNA was synthesized and the expression levels of seven potential internal control genes were evaluated using qRT-PCR method. Then, we used geNorm, a common statistical algorithm, to analyze the qRT-PCR data of seven reference genes. Potential genes that may constantly be expressed under different conditions were selected, and these genes showed stable expression levels in samples under a salinity treatment, while tubulin, glyceraldehyde-3-phosphate dehydrogenase and actin showed stability in samples stressed by strong light. Based on the results of the pulse amplitude-modulation fluorometry, an absolute quantification was performed to obtain gene copy numbers in certain stress-treated samples. The stably expressed genes as determined by the absolute quantification in certain samples conformed to the results of the geNorm screening. Based on the results of the software analysis and absolute quantification, we proposed that elongation factor 3 and 18S ribosomal RNA could be used as internal control genes when the Py. haitanensis blades were subjected to salinity stress, and that α-tubulin and 18S ribosomal RNA could be used as the internal control genes when the stress was from strong light. In general, our findings provide a convenient reference for the selection of internal control genes when designing experiments related to stress responses in Py. haitanensis.

  9. Identification of Candida Species Using MP65 Gene and Evaluation of the Candida albicans MP65 Gene Expression in BALB/C Mice.

    Science.gov (United States)

    Bineshian, Farahnaz; Yadegari, Mohammad Hossien; Sharifi, Zohre; Akbari Eidgahi, Mohammadreza; Nasr, Reza

    2015-05-01

    Systemic candidiasis is a major public health concern. In particular, in immunocompromised people, such as patients with neutropenia, patients with Acquired Immune Deficiency Syndrome (AIDS) and cancer who are undergoing antiballistic chemotherapy or bone marrow transplants, and people with diabetes. Since the clinical signs and symptoms are nonspecific, early diagnosis is often difficult. The 65-kDa mannoprotein (MP65) gene of Candida albicans is appropriate for detection and identification of systemic candidiasis. This gene encodes a putative b-glucanase mannoprotein of 65 kDa, which plays a major role in the host-fungus relationship, morphogenesis and pathogenicity. The current study aimed to identify different species of Candida (C. albicans, C. glabrata and C. parapsilosis) using the Polymerase Chain Reaction (PCR) technique and also to evaluate C. albicans MP65 gene expression in BALB/C mice. All yeast isolates were identified on cornmeal agar supplemented with tween-80, germ tube formation in serum, and assimilation of carbon sources in the API 20 C AUX yeast identification system. Polymerase Chain Reaction was performed on all samples using species-specific primers for the MP65 65 kDa gene. After RNA extraction, cDNA synthesis was performed by the Maxime RT Pre Mix kit. Candida albicans MP65 gene expression was evaluated by quantitative Real-Time (q Real-Time) and Real-Time (RT) PCR techniques. The 2-ΔΔCT method was used to analyze relative changes in gene expression of MP65. For statistical analysis, nonparametric Wilcoxon test was applied using the SPSS version 16 software. Using biochemical methods, one hundred, six and one isolates of clinical samples were determined as C. albicans, C. glabrata and C. parapsilosis, respectively. Species-specific primers for PCR experiments were applied to clinical specimens, and in all cases a single expected band for C. albicans, C. glabrata and C. parapsilosis was obtained (475, 361 and 124 base pairs, respectively

  10. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events

    Directory of Open Access Journals (Sweden)

    Tigst Demeke

    2018-05-01

    Full Text Available Droplet digital PCR (ddPCR has been used for absolute quantification of genetically engineered (GE events. Absolute quantification of GE events by duplex ddPCR requires the use of appropriate primers and probes for target and reference gene sequences in order to accurately determine the amount of GE materials. Single copy reference genes are generally preferred for absolute quantification of GE events by ddPCR. Study has not been conducted on a comparison of reference genes for absolute quantification of GE canola events by ddPCR. The suitability of four endogenous reference sequences (HMG-I/Y, FatA(A, CruA and Ccf for absolute quantification of GE canola events by ddPCR was investigated. The effect of DNA extraction methods and DNA quality on the assessment of reference gene copy numbers was also investigated. ddPCR results were affected by the use of single vs. two copy reference genes. The single copy, FatA(A, reference gene was found to be stable and suitable for absolute quantification of GE canola events by ddPCR. For the copy numbers measured, the HMG-I/Y reference gene was less consistent than FatA(A reference gene. The expected ddPCR values were underestimated when CruA and Ccf (two copy endogenous Cruciferin sequences were used because of high number of copies. It is important to make an adjustment if two copy reference genes are used for ddPCR in order to obtain accurate results. On the other hand, real-time quantitative PCR results were not affected by the use of single vs. two copy reference genes. Keywords: Canola, Digital PCR, DNA extraction, GMO, Reference genes

  11. Bayesian mixture models for assessment of gene differential behaviour and prediction of pCR through the integration of copy number and gene expression data.

    Directory of Open Access Journals (Sweden)

    Filippo Trentini

    Full Text Available We consider modeling jointly microarray RNA expression and DNA copy number data. We propose Bayesian mixture models that define latent Gaussian probit scores for the DNA and RNA, and integrate between the two platforms via a regression of the RNA probit scores on the DNA probit scores. Such a regression conveniently allows us to include additional sample specific covariates such as biological conditions and clinical outcomes. The two developed methods are aimed respectively to make inference on differential behaviour of genes in patients showing different subtypes of breast cancer and to predict the pathological complete response (pCR of patients borrowing strength across the genomic platforms. Posterior inference is carried out via MCMC simulations. We demonstrate the proposed methodology using a published data set consisting of 121 breast cancer patients.

  12. In situ reverse transcription-PCR for monitoring gene expression in individual Methanosarcina mazei S-6 cells

    DEFF Research Database (Denmark)

    Lange, Marianne; Tolker-Nielsen, Tim; Molin, Søren

    2000-01-01

    An in situ reverse transcription-PCR protocol for detecting specific mRNA in Methanosarcina mazei S-6 is described. This method allowed us to detect heat shock-induced increases in the intracellular levels of the transcript of the universal stress gene dnaK. The cell walls of paraformaldehyde...

  13. The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots

    Directory of Open Access Journals (Sweden)

    LUCIA KUSUMAWATI

    2013-09-01

    Full Text Available Subtilisin-like serine protease (MtSBT, serine carboxypeptidase (MtSCP, MtN5, non-specific lipid transfer protein (MtnsLTP, early nodulin2-like protein (MtENOD2-like, FAD-binding domain containing protein (MtFAD-BP1, and rhicadhesin receptor protein (MtRHRE1 were among 34 proteins found in the supernatant of M. truncatula 2HA and sickle cell suspension cultures. This study investigated the expression of genes encoding those proteins in roots and developing nodules. Two methods were used: quantitative real time RT-PCR and gene expression analysis (with promoter:GUS fusion in roots. Those proteins are predicted as secreted proteins which is indirectly supported by the findings that promoter:GUS fusions of six of the seven genes encoding secreted proteins were strongly expressed in the vascular bundle of transgenic hairy roots. All six genes have expressed in 14-day old nodule. The expression levels of the selected seven genes were quantified in Sinorhizobium-inoculated and control plants using quantitative real time RT-PCR. In conclusion, among seven genes encoding secreted proteins analyzed, the expression level of only one gene, MtN5, was up-regulated significantly in inoculated root segments compared to controls. The expression of MtSBT1, MtSCP1, MtnsLTP, MtFAD-BP1, MtRHRE1 and MtN5 were higher in root tip than in other tissues examined.

  14. Gene structure and expression characteristic of a novel odorant receptor gene cluster in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae).

    Science.gov (United States)

    Wang, S-N; Shan, S; Zheng, Y; Peng, Y; Lu, Z-Y; Yang, Y-Q; Li, R-J; Zhang, Y-J; Guo, Y-Y

    2017-08-01

    Odorant receptors (ORs) expressed in the antennae of parasitoid wasps are responsible for detection of various lipophilic airborne molecules. In the present study, 107 novel OR genes were identified from Microplitis mediator antennal transcriptome data. Phylogenetic analysis of the set of OR genes from M. mediator and Microplitis demolitor revealed that M. mediator OR (MmedOR) genes can be classified into different subfamilies, and the majority of MmedORs in each subfamily shared high sequence identities and clear orthologous relationships to M. demolitor ORs. Within a subfamily, six MmedOR genes, MmedOR98, 124, 125, 126, 131 and 155, shared a similar gene structure and were tightly linked in the genome. To evaluate whether the clustered MmedOR genes share common regulatory features, the transcription profile and expression characteristics of the six closely related OR genes were investigated in M. mediator. Rapid amplification of cDNA ends-PCR experiments revealed that the OR genes within the cluster were transcribed as single mRNAs, and a bicistronic mRNA for two adjacent genes (MmedOR124 and MmedOR98) was also detected in female antennae by reverse transcription PCR. In situ hybridization experiments indicated that each OR gene within the cluster was expressed in a different number of cells. Moreover, there was no co-expression of the two highly related OR genes, MmedOR124 and MmedOR98, which appeared to be individually expressed in a distinct population of neurons. Overall, there were distinct expression profiles of closely related MmedOR genes from the same cluster in M. mediator. These data provide a basic understanding of the olfactory coding in parasitoid wasps. © 2017 The Royal Entomological Society.

  15. Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae.

    Directory of Open Access Journals (Sweden)

    Preeti Arya

    Full Text Available Nucleotide binding site leucine-rich repeats (NBS-LRR disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR and coiled coil (CC (1 ∶ 1 was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple.

  16. Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae.

    Science.gov (United States)

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1 ∶ 1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple.

  17. Gene expression profile of Bombyx mori hemocyte under the stress of destruxin A.

    Directory of Open Access Journals (Sweden)

    Liang Gong

    Full Text Available Destruxin A (DA is a cyclo-peptidic mycotoxin from the entomopathogenic fungus Metarhizium anisopliae. To uncover potential genes associated with its molecular mechanisms, a digital gene expression (DGE profiling analysis was used to compare differentially expressed genes in the hemocytes of silkworm larvae treated with DA. Ten DGE libraries were constructed, sequenced, and assembled, and the unigenes with least 2.0-fold difference were further analyzed. The numbers of up-regulated genes were 10, 20, 18, 74 and 8, as well as the numbers of down-regulated genes were 0, 1, 8, 13 and 3 at 1, 4, 8, 12 and 24 h post treatment, respectively. Totally, the expression of 132 genes were significantly changed, among them, 1, 3 and 12 genes were continually up-regulated at 4, 3 and 2 different time points, respectively, while 1 gene was either up or down-regulated continually at 2 different time points. Furthermore, 68 genes were assigned to one or multiple gene ontology (GO terms and 89 genes were assigned to specific Kyoto Encyclopedia of Genes and Genomes (KEGG Orthology. In-depth analysis identified that these genes putatively involved in insecticide resistance, cell apoptosis, and innate immune defense. Finally, twenty differentially expressed genes were randomly chosen and validated by quantitative real-time PCR (qRT-PCR. Our studies provide insights into the toxic effect of this microbial insecticide on silkworm's hemocytes, and are helpful to better understanding of the molecular mechanisms of DA as a biological insecticide.

  18. Cloning and Expression of TRYP6 Gene from Leishmania major (MRHO/IR/75/ER

    Directory of Open Access Journals (Sweden)

    G Eslami

    2008-06-01

    Full Text Available Background: Leishmania, needs to detoxify the macrophage derived potent peroxides (H2O2. Tryparedoxin path­way contains tryparedoxin peroxidase (TSA or TRYP. The aim of the study was to detect the full-length gene se­quence and its encoded protein of the LmTRYP6 gene (EU251502, and comparison the gene sequence with LmTRYP6 (LmjF15.1140, another previously reported member of this gene family.Methods: L.major (MRHO/IR/75/ER promastigotes were cultured, DNA and RNA were extracted and the inter­ested gene was amplified using PCR and RT-PCR methods.  PCR/ RT-PCR fragments were purified and cloned first in pTZ57R/T and then in pET15b expression vector. The expressed protein was verified using western blot method. Char­acterization of the expressed protein was performed bioinformatically.Results: Molecular evaluation revealed that the cloned LmTRYP6 gene (EU251502 encoded a predicted 184 amino acid long protein with a theoretical isoelectric point of 6.1101. Alignment showed a number of changes in amino acid composition including the replacement of highly conserved Trp177 by Cys in LmTRYP6 (ABX26130.Conclusion: So far no study has been done on this group, i.e.  TRYP6 gene, from tryparedoxin peroxidase family. The low homology with LmTRYP6 (LmjF15.1140 and vast array of differences observed in the gene under study (LmTRYP6; EU251502 could open new windows in the field of anti-Leishmania combat. Based on its important role in the viability and successful establishment of the parasite in the host organism it looks to be very good candi­date for vaccine development and any other sort of novel drug development.

  19. Androgens regulate gene expression in avian skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Matthew J Fuxjager

    Full Text Available Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus, zebra finch (Taenopygia guttata, and ochre-bellied flycatcher (Mionectes oleagieus. Because skeletal muscles that control wing movement make up the bulk of a bird's body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T up-regulated expression of parvalbumin (PV and insulin-like growth factor I (IGF-I, two genes whose products enhance cellular Ca(2+ cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction.

  20. Temporal profile of estrogen-dependent gene expression in LHRH-producing GT1-7 cells.

    Science.gov (United States)

    Varju, Patricia; Chang, Ken C; Hrabovszky, Erik; Merchenthaler, István; Liposits, Zsolt

    2009-02-01

    The long-term cellular effects of estrogens are mediated by nuclear estrogen receptors which act as transcription factors to regulate gene expression. Hypothalamic targets of estrogen action include luteinizing hormone-releasing hormone-secreting neurons controlling reproduction in vertebrates. Microarray analysis and qRT-PCR studies were performed on GT1-7, immortalized LHRH neurons after 17beta-estradiol treatment to reveal the nature of estrogen-regulated genes and the time course of changes in their expression profile. More than 1000 transcripts showed robust responses to estrogen treatment and the majority of responding genes were up-regulated. Early-responding genes showed altered expression 0.5-2h after estrogen exposure, whereas late-responding genes changed after 24-48h treatment. Up-regulated genes encoded transcription factors, molecules involved in cellular movement, cell death, immune response, neurotransmitter and neuropeptide receptors, ion channels and transporters. The 17beta-estradiol modulation of 12 genes - representing characteristic gene clusters - has been confirmed by qRT-PCR. Our studies highlighted diverse gene networks, cell regulatory mechanisms and metabolic pathways through which estrogen may alter gene expression in immortalized LHRH neurons. The findings also support the notion that genomic effects of estrogen targeting in vivo directly the LHRH neuronal network of mammals play an important role in the central feedback regulation of the reproductive axis by estrogen.

  1. Selection of Reference Genes for Expression Study in Pulp and Seeds of Theobroma grandiflorum (Willd. ex Spreng. Schum.

    Directory of Open Access Journals (Sweden)

    Lucas Ferraz Dos Santos

    Full Text Available Cupuassu (Theobroma grandiflorum [Willd. ex Spreng.] Schum is a species of high economic importance in Brazil with great potential at international level due to the multiple uses of both its seeds and pulp in the industry of sweets and cosmetics. For this reason, the cupuassu breeding program focused on the selection of genotypes with high pulp and seed quality-selection associated with the understanding of the mechanisms involved in fruit formation. Gene expression is one of the most used approaches related to such understanding. In this sense, quantitative real-time PCR (qPCR is a powerful tool, since it rapidly and reliably quantifies gene expression levels across different experimental conditions. The analysis by qPCR and the correct interpretation of data depend on signal normalization using reference genes, i.e. genes presenting a uniform pattern of expression in the analyzed samples. Here, we selected and analyzed the expression of five genes from cupuassu (ACP, ACT, GAPDH, MDH, TUB to be used as candidates for reference genes on pulp and seed of young, maturing and mature cupuassu fruits. The evaluation of the gene expression stability was obtained using the NormFinder, geNorm and BestKeeper programs. In general, our results indicated that the GAPDH and MDH genes constituted the best combination as reference genes to analyze the expression of cupuassu samples. To our knowledge, this is the first report of reference gene definition in cupuassu, and these results will support subsequent analysis related to gene expression studies in cupuassu plants subjected to different biotic or abiotic conditions as well as serve as a tool for diversity analysis based on pulp and seed quality.

  2. Gene expression patterns in formalin-fixed, paraffin-embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients.

    Science.gov (United States)

    Chang, Jenny C; Makris, Andreas; Gutierrez, M Carolina; Hilsenbeck, Susan G; Hackett, James R; Jeong, Jennie; Liu, Mei-Lan; Baker, Joffre; Clark-Langone, Kim; Baehner, Frederick L; Sexton, Krsytal; Mohsin, Syed; Gray, Tara; Alvarez, Laura; Chamness, Gary C; Osborne, C Kent; Shak, Steven

    2008-03-01

    Previously, we had identified gene expression patterns that predicted response to neoadjuvant docetaxel. Other studies have validated that a high Recurrence Score (RS) by the 21-gene RT-PCR assay is predictive of worse prognosis but better response to chemotherapy. We investigated whether tumor expression of these 21 genes and other candidate genes can predict response to docetaxel. Core biopsies from 97 patients were obtained before treatment with neoadjuvant docetaxel (4 cycles, 100 mg/m2 q3 weeks). Three 10-microm FFPE sections were submitted for quantitative RT-PCR assays of 192 genes that were selected from our previous work and the literature. Of the 97 patients, 81 (84%) had sufficient invasive cancer, 80 (82%) had sufficient RNA for QRTPCR assay, and 72 (74%) had clinical response data. Mean age was 48.5 years, and the median tumor size was 6 cm. Clinical complete responses (CR) were observed in 12 (17%), partial responses in 41 (57%), stable disease in 17 (24%), and progressive disease in 2 patients (3%). A significant relationship (P<0.05) between gene expression and CR was observed for 14 genes, including CYBA. CR was associated with lower expression of the ER gene group and higher expression of the proliferation gene group from the 21 gene assay. Of note, CR was more likely with a high RS (P=0.008). We have established molecular profiles of sensitivity to docetaxel. RT-PCR technology provides a potential platform for a predictive test of docetaxel chemosensitivity using small amounts of routinely processed material.

  3. Gene expression profile of AIDS-related Kaposi's sarcoma

    International Nuclear Information System (INIS)

    Cornelissen, Marion; Kuyl, Antoinette C van der; Burg, Remco van den; Zorgdrager, Fokla; Noesel, Carel JM van; Goudsmit, Jaap

    2003-01-01

    Kaposi's Sarcoma (KS) is a proliferation of aberrant vascular structures lined by spindle cells, and is caused by a gammaherpes virus (HHV8/KSHV). Its course is aggravated by co-infection with HIV-1, where the timing of infection with HIV-1 and HHV8 is important for the clinical outcome. In order to better understand the pathogenesis of KS, we have analysed tissue from two AIDS-KS lesions, and from normal skin by serial analysis of gene expression (SAGE). Semi-quantitative RT-PCR was then used to validate the results. The expression profile of AIDS-related KS (AIDS-KS) reflects an active process in the skin. Transcripts of HHV8 were found to be very low, and HIV-1 mRNA was not detected by SAGE, although it could be found using RT-PCR. Comparing the expression profile of AIDS-KS tissue with publicly available SAGE libraries suggested that AIDS-KS mRNA levels are most similar to those in an artificially mixed library of endothelial cells and leukocytes, in line with the description of KS lesions as containing spindle cells with endothelial characteristics, and an inflammatory infiltrate. At least 64 transcripts were found to be significantly elevated, and 28 were statistically downregulated in AIDS-KS compared to normal skin. Five of the upregulated mRNAs, including Tie 1 and sialoadhesin/CD169, were confirmed by semi-quantitative PCR to be elevated in additional AIDS-KS biopsies. Antibodies to sialoadhesin/CD169, a known marker of activated macrophages, were shown to specifically label tumour macrophages. The expression profile of AIDS-KS showed 64 genes to be significantly upregulated, and 28 genes downregulated, compared with normal skin. One of the genes with increased expression was sialoadhesin (CD169). Antibodies to sialoadhesin/CD169 specifically labelled tumour-associated macrophages, suggesting that macrophages present in AIDS-KS lesions belong to a subset of human CD169+ macrophages

  4. Molecular characterization and expression of maternally expressed gene 3 (Meg3/Gtl2) RNA in the mouse inner ear

    DEFF Research Database (Denmark)

    Manji, S.S.; Sørensen, Brita Singers; Klockars, T.

    2006-01-01

    The pathways responsible for sound perception in the cochlea involve the coordinated and regulated expression of hundreds of genes. By using microarray analysis, we identified several transcripts enriched in the inner ear, including the maternally expressed gene 3 (Meg3/Gtl2), an imprinted...... noncoding RNA. Real-time PCR analysis demonstrated that Meg3/Gtl2 was highly expressed in the cochlea, brain, and eye. Molecular studies revealed the presence of several Meg3/Gtl2 RNA splice variants in the mouse cochlea, brain, and eye. In situ hybridizations showed intense Meg3/Gtl2 RNA staining...... otocyst and localized to the spiral ganglion, stria vascularis, Reissner's membrane, and greater epithelial ridge (GER) in the cochlear duct. RT-PCR analysis performed on cell lines derived from the organ of Corti, representing neural, supporting, and hair cells, showed significantly elevated levels...

  5. Analyzing Plasmodium falciparum erythrocyte membrane protein 1 gene expression by a next generation sequencing based method

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Petersen, Bent; Seguin-Orlando, Andaine

    2013-01-01

    at identifying PfEMP1 features associated with high virulence. Here we present the first effective method for sequence analysis of var genes expressed in field samples: a sequential PCR and next generation sequencing based technique applied on expressed var sequence tags and subsequently on long range PCR......, encoded by ~60 highly variable 'var' genes per haploid genome. PfEMP1 is exported to the surface of infected erythrocytes and is thought to be fundamental to immune evasion by adhesion to host and parasite factors. The highly variable nature has constituted a roadblock in var expression studies aimed...

  6. Presence and Expression of Microbial Genes Regulating Soil Nitrogen Dynamics Along the Tanana River Successional Sequence

    Science.gov (United States)

    Boone, R. D.; Rogers, S. L.

    2004-12-01

    We report on work to assess the functional gene sequences for soil microbiota that control nitrogen cycle pathways along the successional sequence (willow, alder, poplar, white spruce, black spruce) on the Tanana River floodplain, Interior Alaska. Microbial DNA and mRNA were extracted from soils (0-10 cm depth) for amoA (ammonium monooxygenase), nifH (nitrogenase reductase), napA (nitrate reductase), and nirS and nirK (nitrite reductase) genes. Gene presence was determined by amplification of a conserved sequence of each gene employing sequence specific oligonucleotide primers and Polymerase Chain Reaction (PCR). Expression of the genes was measured via nested reverse transcriptase PCR amplification of the extracted mRNA. Amplified PCR products were visualized on agarose electrophoresis gels. All five successional stages show evidence for the presence and expression of microbial genes that regulate N fixation (free-living), nitrification, and nitrate reduction. We detected (1) nifH, napA, and nirK presence and amoA expression (mRNA production) for all five successional stages and (2) nirS and amoA presence and nifH, nirK, and napA expression for early successional stages (willow, alder, poplar). The results highlight that the existing body of previous process-level work has not sufficiently considered the microbial potential for a nitrate economy and free-living N fixation along the complete floodplain successional sequence.

  7. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  8. Reference gene validation for qPCR in rat carotid body during postnatal development

    Directory of Open Access Journals (Sweden)

    Carroll John L

    2011-10-01

    Full Text Available Abstract Background The carotid bodies are the main arterial oxygen chemoreceptors in mammals. Afferent neural output from the carotid bodies to brainstem respiratory and cardiovascular nuclei provides tonic input and mediates important protective responses to acute and chronic hypoxia. It is widely accepted that the selection of reference genes for mRNA normalization in quantitative real-time PCR must be validated for a given tissue and set of conditions. This is particularly important for studies in carotid body during early postnatal maturation as the arterial oxygen tension undergoes major changes from fetal to postnatal life, which may affect reference gene expression. In order to determine the most stable and suitable reference genes for the study of rat carotid body during development, six commonly used reference genes, β-actin, RPII (RNA polymerase II, PPIA (peptidyl-proyl-isomerase A, TBP (TATA-box binding protein, GAPDH, and 18s rRNA, were evaluated in two age groups (P0-1 and P14-16 under three environmental oxygen conditions (normoxia, chronic hypoxia and chronic hyperoxia using the three most commonly used software programs, geNorm, NormFinder and BestKeeper. Findings The three programs produced similar results but the reference gene rankings were not identical between programs or experimental conditions. Overall, 18s rRNA was the least stable reference gene for carotid body and, when hyperoxia and/or hypoxia conditions were included, actin was similarly unstable. Conclusions Reference or housekeeping gene expression for qPCR studies of carotid body during postnatal development may vary with developmental stage and environmental conditions. Selection of the best reference gene or combination of reference genes for carotid body development studies should take environmental conditions into account. Two commonly used reference genes, 18s rRNA and actin, may be unsuitable for studies of carotid body maturation, especially if the study

  9. Rapid detection of pathological mutations and deletions of the haemoglobin beta gene (HBB) by High Resolution Melting (HRM) analysis and Gene Ratio Analysis Copy Enumeration PCR (GRACE-PCR).

    Science.gov (United States)

    Turner, Andrew; Sasse, Jurgen; Varadi, Aniko

    2016-10-19

    Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements. The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples. A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %. We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts.

  10. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  11. Cocoa polyphenols and fiber modify colonic gene expression in rats.

    Science.gov (United States)

    Massot-Cladera, Malen; Franch, Àngels; Castell, Margarida; Pérez-Cano, Francisco J

    2017-08-01

    Cocoa intake has been associated with health benefits, improving cardiovascular function and metabolism, as well as modulating intestinal immune function. The aim of this study was to take an in-depth look into the mechanisms affected by the cocoa intake by evaluating the colonic gene expression after nutritional intervention, and to ascertain the role of the fiber of cocoa in these effects. To achieve this, Wistar rats were fed for 3 weeks with either a reference diet, a diet containing 10 % cocoa (C10), a diet based on cocoa fiber (CF) or a diet containing inulin (I). At the end of the study, colon was excised to obtain the RNA to evaluate the differential gene expression by microarray. Results were validated by RT-PCR. The C10 group was the group with most changes in colonic gene expression, most of them down-regulated but a few in common with the CF diet. The C10 diet significantly up-regulated the expression of Scgb1a1 and Scnn1 g and down-regulated Tac4, Mcpt2, Fcer1a and Fabp1 by twofold, most of them related to lipid metabolism and immune function. The CF and I diets down-regulated the expression of Serpina10 and Apoa4 by twofold. Similar patterns of expression were found by PCR. Most of the effects attributed to cocoa consumption on genes related to the immune system (B cell and mast cell functionality) and lipid metabolism in the colon tissue were due not only to its fiber content, but also to the possible contribution of polyphenols and other compounds.

  12. MacoNPV baculovirus midgut-specific gene expression during infection of the bertha armyworm, Mamestra configurata

    Energy Technology Data Exchange (ETDEWEB)

    Donly, B. Cameron, E-mail: Cam.Donly@agr.gc.ca [London Research and Development Centre, AAFC, London, ON (Canada); Kaplanoglu, Emine [London Research and Development Centre, AAFC, London, ON (Canada); Theilmann, David A. [Summerland Research and Development Centre, AAFC, Summerland, BC (Canada); Baldwin, Doug; Sieminska, Edyta; Hegedus, Dwayne D.; Erlandson, Martin A. [Saskatoon Research and Development Centre, AAFC, Saskatoon, SK (Canada)

    2016-12-15

    Baculoviruses have two forms, occlusion derived virus (ODV) which is responsible for primary infection in host midgut tissue and budded virus (BV), which infects all other host tissues during secondary infection. This study examined the primary infection by ODV of midgut cells of bertha armyworm Mamestra configurata fourth instar larvae and measured the expression of viral genes over a time course of infection. Both digital PCR and RNA sequencing methods showed the profile of transcription to be different from those produced by AcMNPV BV infection of in vitro cell cultures. This included having unique collections of genes expressed early, as well as much greater late gene expression of p6.9 and much reduced expression of polh and p10. These differences likely reflect characteristics unique to the critical step of in vivo midgut cell infection, and provide insights into the processes that regulate viral gene expression in different host tissues. -- Highlights: •The transcriptome of MacoNPV ODV in larval midgut was measured by RNA-seq and digital PCR. •The earliest genes expressed included fusion protein, hoar, and me53. •p6.9 was highly expressed late but polH and p10 were less so. •These patterns are unique from BV of other baculoviruses in tissue culture cells.

  13. MacoNPV baculovirus midgut-specific gene expression during infection of the bertha armyworm, Mamestra configurata

    International Nuclear Information System (INIS)

    Donly, B. Cameron; Kaplanoglu, Emine; Theilmann, David A.; Baldwin, Doug; Sieminska, Edyta; Hegedus, Dwayne D.; Erlandson, Martin A.

    2016-01-01

    Baculoviruses have two forms, occlusion derived virus (ODV) which is responsible for primary infection in host midgut tissue and budded virus (BV), which infects all other host tissues during secondary infection. This study examined the primary infection by ODV of midgut cells of bertha armyworm Mamestra configurata fourth instar larvae and measured the expression of viral genes over a time course of infection. Both digital PCR and RNA sequencing methods showed the profile of transcription to be different from those produced by AcMNPV BV infection of in vitro cell cultures. This included having unique collections of genes expressed early, as well as much greater late gene expression of p6.9 and much reduced expression of polh and p10. These differences likely reflect characteristics unique to the critical step of in vivo midgut cell infection, and provide insights into the processes that regulate viral gene expression in different host tissues. -- Highlights: •The transcriptome of MacoNPV ODV in larval midgut was measured by RNA-seq and digital PCR. •The earliest genes expressed included fusion protein, hoar, and me53. •p6.9 was highly expressed late but polH and p10 were less so. •These patterns are unique from BV of other baculoviruses in tissue culture cells.

  14. Multiway real-time PCR gene expression profiling in yeast. Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Elbing, K.; Andrade-Garda, J.M.; Sjögreen, B.; Forootan, A.; Kubista, Mikael

    2008-01-01

    Roč. 9, č. 170 (2008), s. 1-41 ISSN 1471-2164 Institutional research plan: CEZ:AV0Z50520701 Keywords : Expression Profiling * Real-time PCR * Yeast Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.926, year: 2008

  15. Reference gene selection for qRT-PCR assays in Stellera chamaejasme subjected to abiotic stresses and hormone treatments based on transcriptome datasets.

    Science.gov (United States)

    Liu, Xin; Guan, Huirui; Song, Min; Fu, Yanping; Han, Xiaomin; Lei, Meng; Ren, Jingyu; Guo, Bin; He, Wei; Wei, Yahui

    2018-01-01

    Stellera chamaejasme Linn, an important poisonous plant of the China grassland, is toxic to humans and livestock. The rapid expansion of S. chamaejasme has greatly damaged the grassland ecology and, consequently, seriously endangered the development of animal husbandry. To draft efficient prevention and control measures, it has become more urgent to carry out research on its adaptive and expansion mechanisms in different unfavorable habitats at the genetic level. Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely used technique for studying gene expression at the transcript level; however, qRT-PCR requires reference genes (RGs) as endogenous controls for data normalization and only through appropriate RG selection and qRT-PCR can we guarantee the reliability and robustness of expression studies and RNA-seq data analysis. Unfortunately, little research on the selection of RGs for gene expression data normalization in S. chamaejasme has been reported. In this study, 10 candidate RGs namely, 18S , 60S , CYP , GAPCP1 , GAPDH2 , EF1B , MDH , SAND , TUA1 , and TUA6 , were singled out from the transcriptome database of S. chamaejasme , and their expression stability under three abiotic stresses (drought, cold, and salt) and three hormone treatments (abscisic acid, ABA; gibberellin, GA; ethephon, ETH) were estimated with the programs geNorm, NormFinder, and BestKeeper. Our results showed that GAPCP1 and EF1B were the best combination for the three abiotic stresses, whereas TUA6 and SAND , TUA1 and CYP , GAPDH2 and 60S were the best choices for ABA, GA, and ETH treatment, respectively. Moreover, GAPCP1 and 60S were assessed to be the best combination for all samples, and 18S was the least stable RG for use as an internal control in all of the experimental subsets. The expression patterns of two target genes ( P5CS2 and GI ) further verified that the RGs that we selected were suitable for gene expression normalization. This work is the first attempt to

  16. [Sequences and expression pattern of mce gene in Leptospira interrogans of different serogroups].

    Science.gov (United States)

    Zhang, Lei; Xue, Feng; Yan, Jie; Mao, Ya-fei; Li, Li-wei

    2008-11-01

    To determine the frequency of mce gene in Leptospira interrogans, and to investigate the gene transcription levels of L. interrogans before and after infecting cells. The segments of entire mce genes from 13 L.interrogans strains and 1 L.biflexa strain were amplified by PCR and then sequenced after T-A cloning. A prokaryotic expression system of mce gene was constructed; the expression and output of the target recombinant protein rMce were examined by SDS-PAGE and Western Blot assay. Rabbits were intradermally immunized with rMce to prepare the antiserum, the titer of antiserum was measured by immunodiffusion test. The transcription levels of mce gene in L.interrogans serogroup Icterohaemorrhagiae serovar lai strain 56601 before and after infecting J774A.1 cells were monitored by real-time fluorescence quantitative RT-PCR. mce gene was carried in all tested L.interrogans strains, but not in L.biflexa serogroup Semaranga serovar patoc strain Patoc I. The similarities of nucleotide and putative amino acid sequences of the cloned mce genes to the reported sequences (GenBank accession No: NP712236) were 99.02%-100% and 97.91%-100%, respectively. The constructed prokaryotic expression system of mce gene expressed rMce and the output of rMce was about 5% of the total bacterial proteins. The antiserum against whole cell of L.interrogans strain 56601 efficiently recognized rMce. After infecting J774A.1 cells, transcription levels of the mce gene in L.interrogans strain 56601 were remarkably up-regulated. The constructed prokaryotic expression system of mce gene and the prepared antiserum against rMce provide useful tools for further study of the gene function.

  17. Expression of NCED gene in colored cotton genotypes subjected to water stress

    Directory of Open Access Journals (Sweden)

    Alexandre M. S. de Souza

    Full Text Available ABSTRACT Considering that the NCED gene acts on the biosynthetic cascade of ABA, a hormone involved in the functioning of stomata and consequently in the regulation of transpiration, the aim of this research was to analyze the expression of this gene in colored cotton genotypes subjected to water stress at the beginning of plant growth. Four colored cotton genotypes were used, subjected to two managements, with and without water stress, beginning the treatments when the blade of the first true leaves reached an area that allowed the evaluation of gas exchange. For the studies of the expression of the NCED gene, via RT-qPCR, leaves were collected on three distinct dates: at 4 and 6 days of water stress, and after the plants regained their turgor. The differential expression of NCED was found in all genotypes, with higher levels of expression related to six days of water stress. When the stomatal conductance was around 25%, there was overexpression in the genotype CNPA 2009.13, followed by CNPA 2009.6, BRS SAFIRA and CNPA 2009.11, confirming the data obtained in the semi-quantitative RT-PCR. The NCED gene is involved in the response to water stress in the vegetative phase of colored cotton.

  18. Elicitor and fusarium-induced expression of NPR-1 like genes in banana

    CSIR Research Space (South Africa)

    Endah, R

    2008-11-01

    Full Text Available NPR1 is an essential positive regulator of salicylic acid-induced PR gene expression and systemic acquired resistance. Two novel full-length NPR1-like genes; MNPR1A and MNPR1B, were isolated by application of the PCR and RACE techniques. The two...

  19. Identification of valid endogenous control genes for determining gene expression in C6 glioma cell line treated with conditioned medium from adipose-derived stem cell.

    Science.gov (United States)

    Iser, I C; de Campos, R P; Bertoni, A P S; Wink, M R

    2015-10-01

    There is growing evidence that mesenchymal stem cells (MSCs) can be important players in the tumor microenvironment. They can affect the glioma progression through the modulation of different genes. This modulation can be evaluated through a very useful model, treating the tumor cells with MSC-conditioned medium. However, for an accurate and reliable gene expression analysis, normalization of gene expression data against reference genes is a prerequisite. We performed a systematic review in an attempt to find a reference gene to use when analyzing gene expression in C6 glioma cells lines. Considering that we were not able to find a reference gene originated by an appropriate validation, in this study we evaluated candidate genes to be used as reference gene in C6 cells under different treatments with adipose-derived stem cells conditioned medium (CM-ADSCs). β-actin (ACTB); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); hypoxanthine-guanine phosphoribosyltransferase I (HPRT-1); TATA box binding protein (TBP) and beta-2-microglobulin (B2M) were evaluated by real-time reverse transcription PCR (RT-qPCR). The mean Cq, the maximum fold change (MFC) and NormFinder software were used for reference gene evaluation and selection. The GAPDH and ACTB genes have been the most widely used reference genes to normalize among the different investigated genes in our review, however, controversially these genes underwent a substantial variability among the genes evaluated in the present work. Individually, TBP gene was more stable when compared with other genes analyzed and the combination of TBP and HPRT-1 was even more stable. These results evidence the importance of appropriate validation of reference genes before performing qPCR experiments. Besides, our data will contribute with researchers that work analyzing the role of ADSCs in glioma microenvironment through gene expression. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events.

    Science.gov (United States)

    Demeke, Tigst; Eng, Monika

    2018-05-01

    Droplet digital PCR (ddPCR) has been used for absolute quantification of genetically engineered (GE) events. Absolute quantification of GE events by duplex ddPCR requires the use of appropriate primers and probes for target and reference gene sequences in order to accurately determine the amount of GE materials. Single copy reference genes are generally preferred for absolute quantification of GE events by ddPCR. Study has not been conducted on a comparison of reference genes for absolute quantification of GE canola events by ddPCR. The suitability of four endogenous reference sequences ( HMG-I/Y , FatA(A), CruA and Ccf) for absolute quantification of GE canola events by ddPCR was investigated. The effect of DNA extraction methods and DNA quality on the assessment of reference gene copy numbers was also investigated. ddPCR results were affected by the use of single vs. two copy reference genes. The single copy, FatA(A), reference gene was found to be stable and suitable for absolute quantification of GE canola events by ddPCR. For the copy numbers measured, the HMG-I/Y reference gene was less consistent than FatA(A) reference gene. The expected ddPCR values were underestimated when CruA and Ccf (two copy endogenous Cruciferin sequences) were used because of high number of copies. It is important to make an adjustment if two copy reference genes are used for ddPCR in order to obtain accurate results. On the other hand, real-time quantitative PCR results were not affected by the use of single vs. two copy reference genes.

  1. Molecular cloning, polymorphisms, and expression analysis of the RERG gene in indigenous Chinese goats.

    Science.gov (United States)

    Sui, M X; Wang, H H; Wang, Z W

    2015-11-24

    The current study aimed to investigate the coding sequence, polymorphisms, and expression of the RERG gene in indigenous Chinese goats. cDNA of RERG, obtained through reverse transcription PCR was analyzed using bioinformatic techniques. Polymorphisms in the exon regions of the RERG gene were identified and their associations with growth traits in three varieties of indigenous Chinese goats were investigated. Expression of the RERG gene in three goat breeds of the same age was detected using real-time quantitative PCR. The results revealed that the cDNA of RERG, which contained a complete open reading frame of 20-620 bp, was 629 bp in length. The associated accession numbers in GenBank are JN672576, JQ917222, and JN580309 for the QianBei Ma goat, the GuiZhou white goat, and the GuiZhou black goat, respectively. Four consistent SNP sites were found in the exon regions of the RERG gene for the three goat breeds. mRNA expression of the RERG gene differed between different tissues in adult goats of same age. The highest expression was observed in lung and spleen tissues, while the lowest expression was recorded in thymus gland tissue. In addition, the expression of the RERG gene in the muscle of Guizhou white goat, GuiZhou black goat, and QianBei Ma goat decreased sequentially. Our results lay the foundations for further investigation into the role of the RERG gene in goat growth traits.

  2. Differential expression gene profiling in human lymphocyte after 6 h irradiated

    International Nuclear Information System (INIS)

    Li Jianguo; Qin Xiujun; Zhang Wei; Xu Chaoqi; Li Weibin; Dang Xuhong; Zuo Yahui

    2011-01-01

    Objective: To provide the evidence of health damage for the staff irradiated from the gene level. Methods: The study analyzed the differential transcriptional profile of normal human lymphocyte and human lymphocyte irradiated with 0.1 Gy, 0.2 Gy, 0.5 Gy, 1.0 Gy by whole genome chip after 6 h irradiated. Results: The results showed that there were 1177 differentially expressed genes with 0.1 Gy after 6 h irradiation, and there were 1922 differentially expressed genes with 0.2 Gy after 6 h irradiation, and there were 492 differentially expressed genes with 0.5 Gy after 6 h irradiation, 2615 differentially expressed genes with 1.0 Gy after 6 h irradiation, 114 differentially expressed genes in 4 dose points after 6 h irradiation. RT-PCR results indicated that the relative quantity's result of EGR1, HLA-DMB and TAIAP1 was consistent with gene chip data. Conclusion: The study found many significant different genes in human lymphocyte with different doses after 6 h irradiation, which will provide a basis for the further radiation-different-genes and the mechanism of radiation damage. (authors)

  3. Beta-Glucan Synthase Gene Expression in Pleurotus sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Nie, H.J.

    2016-01-01

    Pleurotus sp. is a popular edible mushroom, containing various functional component, in particular, Beta-glucan. Beta-glucans is a part of glucan family of polysaccharides and supposedly contribute to medicinal and nutritional value of Pleurotus.sp. In order to understand the distribution of Beta-glucan in Pleurotus.sp, the Beta-glucan synthase gene expression was determined and compared in different part of Pleurotus, namely mycelium, stripe and cap. The Pleurotus.sp RNA was extracted using commercial kit, employing Tissuelyser ll (Qiagen, USA) to disrupt the cell walls. Then the RNA was quantified by Nano drop (Thermo Fisher, USA) and visualized using denaturing agarose gel. RNA with good OD 260.280 reading (∼2.0) was chosen and converted to cDNA. Using Laccase synthase gene as home keeping gene, Beta-glucan synthase gene expression was quantified using CFX 96 Real Time PCR detection system (Biorad, USA). Preliminary result shows that Beta-glucan synthase was relatively expressed the most in stripe, followed by mycelium and barely in cap. (author)

  4. Establishment and in-house validation of stem-loop RT PCR method for MicroRNA398 expression analysis

    Directory of Open Access Journals (Sweden)

    Timotijević Gordana S.

    2015-01-01

    Full Text Available MicroRNAs (miRNAs belong to the class of small non-coding RNAs which have important roles throughout development as well as in plant response to diverse environmental stresses. Some of plant miRNAs are essential for regulation and maintenance of nutritive homeostasis when nutrients are in excess or shortage comparing to optimal concentration for certain plant species. Better understanding of miRNAs functions implies development of efficient technology for profiling their gene expression. We set out to establish validate the methodology for miRNA gene expression analysis in cucumber grown under suboptimal mineral nutrient regimes, including iron deficiency. Reverse transcription by “stem-loop” primers in combination with Real time PCR method is one of potential approaches for quantification of miRNA gene expression. In this paper we presented a method for “stem loop” primer design specific for miR398, as well as reaction optimization and determination of Real time PCR efficiency. Proving the accuracy of this method was imperative as “stem loop” RT which consider separate transcription of target and endogenous control. The method was verified by comparison of the obtained data with results of miR398 expression achieved using a commercial kit based on simultaneous conversion of all RNAs in cDNAs. [Projekat Ministarstva nauke Republike Srbije, br. 173005 i br. ON-173028

  5. Temporal changes in gene expression in the liver of male plaice (Pleuronectes platessa) in response to exposure to ethynyl oestradiol analysed by macroarray and Real-Time PCR

    International Nuclear Information System (INIS)

    Brown, Margaret; Robinson, Craig; Davies, Ian M.; Moffat, Colin F.; Redshaw, John; Craft, John A.

    2004-01-01

    Suppression subtractive hybridisation (SSH) was used to generate cDNA libraries representing genes differentially-expressed in liver from male plaice (Pleuronectes platessa) exposed to ethynyl oestradiol (EE2). BLAST analysis and alignments of the clones with database sequence suggested at least three vitellogenin (VTG) genes and three zona radiata protein (ZRP) genes were represented. Clones with unique sequence (62 up-, 13 down-regulated) were arrayed as probes on nylon membranes to investigate temporal expression of oestrogen-responsive genes in experimental animals. Arrays were hybridised with radiolabelled cDNAs prepared from hepatic mRNA from animals treated with EE2 for various times upto 21 days and from treated animals transferred to clean water for upto a further 31 days. By day 21 of treatment 11 out of 17 probes from unidentified genes, 21/22 VTG, 13/14 ZRP, 2/2 liver aspartic proteinase (LAP) and 8/10 other gene sequences were induced by EE2 exposure. Of the down-regulated sequences, only three showed significant, decreased expression and these encode cytochrome b and two with cryptic functions. Based on the pattern of temporal response the up-regulated probes fell into two classes. Pattern A reached maximum expression by day 16 of exposure and then declined prior to removal of EE2 at 21 days. Pattern B genes reached maximal expression between day 16 and 22, declining only after removal of EE2. Independent investigation of the expression patterns of selected probes using quantitative Real-Time PCR reproduced the distinctive patterns. The results indicate a previously unrecognised mechanism for oestrogenic toxicity in which there is a selective down-regulation of some egg proteins, potentially diminishing the quality of eggs and this may contribute to reproductive failure described elsewhere

  6. Identification of reference genes and validation for gene expression studies in diverse axolotl (Ambystoma mexicanum) tissues.

    Science.gov (United States)

    Guelke, Eileen; Bucan, Vesna; Liebsch, Christina; Lazaridis, Andrea; Radtke, Christine; Vogt, Peter M; Reimers, Kerstin

    2015-04-10

    For the precise quantitative RT-PCR normalization a set of valid reference genes is obligatory. Moreover have to be taken into concern the experimental conditions as they bias the regulation of reference genes. Up till now, no reference targets have been described for the axolotl (Ambystoma mexicanum). In a search in the public database SalSite for genetic information of the axolotl we identified fourteen presumptive reference genes, eleven of which were further tested for their gene expression stability. This study characterizes the expressional patterns of 11 putative endogenous control genes during axolotl limb regeneration and in an axolotl tissue panel. All 11 reference genes showed variable expression. Strikingly, ACTB was to be found most stable expressed in all comparative tissue groups, so we reason it to be suitable for all different kinds of axolotl tissue-type investigations. Moreover do we suggest GAPDH and RPLP0 as suitable for certain axolotl tissue analysis. When it comes to axolotl limb regeneration, a validated pair of reference genes is ODC and RPLP0. With these findings, new insights into axolotl gene expression profiling might be gained. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    Science.gov (United States)

    Cai, Jing; Li, Tao; Huang, Bangxing; Cheng, Henghui; Ding, Hui; Dong, Weihong; Xiao, Man; Liu, Ling; Wang, Zehua

    2014-01-01

    Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  8. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    Directory of Open Access Journals (Sweden)

    Jing Cai

    Full Text Available Quantitative real-time PCR (qPCR is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD, an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA and nonparametric (Kruskal-Wallis tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  9. Effects of brachytherapy on gene expressions of elastin and elastase

    International Nuclear Information System (INIS)

    Li Junming; Zhou Jingqun; Hu Bin; Li Shuguo

    2004-01-01

    Objective: To study the effects of brachytherapy on the gene expressions of elastin and elastase in cultured rat vascular smooth muscle cells (VSMCs). Methods: Rat VSMCs cultured in DMEM containing 10% FBS were irradiated by 60 Co γ-rays at 0, 7, 14, 28 Gy respectively. Then mRNA levels of elastin and elastase were determined by reverse transcription competitive PCR(RT-PCR). Results: Brachytherapy inhibited the expressions of elastase. Elastase mRNA decreased 25.3% and 50.1% in VSMC irradiated with 14, 28 Gy, respectively (P<0.05). The elastin mRNA level increased 80.7% and 102.3% in VSMC irradiated with 14, 25 Gy, respectively (P<0.05). Conclusion: Brachytherapy inhabits the expressions of elastase and increased elastin in VSMC cells

  10. Temperature and Development Impacts on Housekeeping Gene Expression in Cowpea Aphid, Aphis craccivora (Hemiptera: Aphidiae.

    Directory of Open Access Journals (Sweden)

    Chunxiao Yang

    Full Text Available Quantitative real-time PCR (qRT-PCR is a powerful technique to quantify gene expression. To standardize gene expression studies and obtain more accurate qRT-PCR analysis, normalization relative to consistently expressed housekeeping genes (HKGs is required. In this study, ten candidate HKGs including elongation factor 1 α (EF1A, ribosomal protein L11 (RPL11, ribosomal protein L14 (RPL14, ribosomal protein S8 (RPS8, ribosomal protein S23 (RPS23, NADH-ubiquinone oxidoreductase (NADH, vacuolar-type H+-ATPase (ATPase, heat shock protein 70 (HSP70, 18S ribosomal RNA (18S, and 12S ribosomal RNA (12S from the cowpea aphid, Aphis craccivora Koch were selected. Four algorithms, geNorm, Normfinder, BestKeeper, and the ΔCt method were employed to evaluate the expression profiles of these HKGs as endogenous controls across different developmental stages and temperature regimes. Based on RefFinder, which integrates all four analytical algorithms to compare and rank the candidate HKGs, RPS8, RPL14, and RPL11 were the three most stable HKGs across different developmental stages and temperature conditions. This study is the first step to establish a standardized qRT-PCR analysis in A. craccivora following the MIQE guideline. Results from this study lay a foundation for the genomics and functional genomics research in this sap-sucking insect pest with substantial economic impact.

  11. Identification and validation of reference genes for qRT-PCR studies of the obligate aphid pathogenic fungus Pandora neoaphidis during different developmental stages

    OpenAIRE

    Zhang, Shutao; Chen, Chun; Xie, Tingna; Ye, Sudan

    2017-01-01

    The selection of stable reference genes is a critical step for the accurate quantification of gene expression. To identify and validate the reference genes in Pandora neoaphidis-an obligate aphid pathogenic fungus-the expression of 13classical candidate reference genes were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction(qPCR) at four developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae). Four statistical algorithms, inc...

  12. Stability evaluation of reference genes for real-time PCR in zebrafish (Danio rerio) exposed to cadmium chloride and subsequently infected by bacteria Aeromonas hydrophila

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Xingping; Wang, Lan, E-mail: lanwang@sxu.edu.cn; Zhang, Zuobing, E-mail: zbzhang@sxu.edu.cn

    2016-01-15

    Highlights: • Cd exposure affects the stability of reference genes for real-time PCR in zebrafish. • Reference genes present different stability in the five tissues (spleen, kidney, liver, gills and intestine) of zebrafish after Cd exposure. • Bacterial infection further affects the stability of reference genes in Cd-treated zebrafish. - Abstract: Environmental and occupational cadmium (Cd) toxicity is a global concern, and the model organism zebrafish is an ideal species to investigate Cd toxicity. Among various detecting techniques, quantitative real-time PCR (qPCR) is a sensitive and efficient tool. Stable reference genes are critical for relative qPCR analysis. However, accumulated evidence shows that conventional reference genes can vary significantly under different experimental setups. Here we evaluated the stability of eight candidate reference genes of zebrafish with or without exposure to different concentrations of Cd. The results showed that the best four suitable reference genes in the five selected organs were: (1) spleen: β-actin > gapdh > ef1α > rpl13α; (2) kidney: rplp2 > rpl7 > β-actin > ef1α; (3) liver: rpl7 > rpl13α > β-actin > ef1α; (4) gills: rplp2 > gapdh > rnf7 > ef1α; (5) intestine: ef1α > rnf7 > rplp2 > rpl13α. Moreover, we further assessed the expression stability of the four reference genes for Cd immunotoxicology studies in zebrafish. The expression profiles showed that ef1α in spleen and kidney, rpl13a in liver and rplp2 in intestine were the most suitable reference genes at 12 h and 9 days after the injection with Aeromonas hydrophila following Cd exposure. In gills, the expression of gapdh was more stable than ef1α after 9 days of bacteria challenge while ef1α showed a higher stability than gapdh at 12 h after bacteria injection. In conclusion, this study has demonstrated that different tissues of zebrafish have different suitable reference genes after Cd exposure and the subsequently pathogenic insults for qPCR

  13. Reference gene selection for molecular studies of dormancy in wild oat (Avena fatua L. caryopses by RT-qPCR method.

    Directory of Open Access Journals (Sweden)

    Izabela Ruduś

    Full Text Available Molecular studies of primary and secondary dormancy in Avena fatua L., a serious weed of cereal and other crops, are intended to reveal the species-specific details of underlying molecular mechanisms which in turn may be useable in weed management. Among others, quantitative real-time PCR (RT-qPCR data of comparative gene expression analysis may give some insight into the involvement of particular wild oat genes in dormancy release, maintenance or induction by unfavorable conditions. To assure obtaining biologically significant results using this method, the expression stability of selected candidate reference genes in different data subsets was evaluated using four statistical algorithms i.e. geNorm, NormFinder, Best Keeper and ΔCt method. Although some discrepancies in their ranking outputs were noticed, evidently two ubiquitin-conjugating enzyme homologs, AfUBC1 and AfUBC2, as well as one homolog of glyceraldehyde 3-phosphate dehydrogenase AfGAPDH1 and TATA-binding protein AfTBP2 appeared as more stably expressed than AfEF1a (translation elongation factor 1α, AfGAPDH2 or the least stable α-tubulin homolog AfTUA1 in caryopses and seedlings of A. fatua. Gene expression analysis of a dormancy-related wild oat transcription factor VIVIPAROUS1 (AfVP1 allowed for a validation of candidate reference genes performance. Based on the obtained results it can be recommended that the normalization factor calculated as a geometric mean of Cq values of AfUBC1, AfUBC2 and AfGAPDH1 would be optimal for RT-qPCR results normalization in the experiments comprising A. fatua caryopses of different dormancy status.

  14. Reference gene selection for molecular studies of dormancy in wild oat (Avena fatua L.) caryopses by RT-qPCR method.

    Science.gov (United States)

    Ruduś, Izabela; Kępczyński, Jan

    2018-01-01

    Molecular studies of primary and secondary dormancy in Avena fatua L., a serious weed of cereal and other crops, are intended to reveal the species-specific details of underlying molecular mechanisms which in turn may be useable in weed management. Among others, quantitative real-time PCR (RT-qPCR) data of comparative gene expression analysis may give some insight into the involvement of particular wild oat genes in dormancy release, maintenance or induction by unfavorable conditions. To assure obtaining biologically significant results using this method, the expression stability of selected candidate reference genes in different data subsets was evaluated using four statistical algorithms i.e. geNorm, NormFinder, Best Keeper and ΔCt method. Although some discrepancies in their ranking outputs were noticed, evidently two ubiquitin-conjugating enzyme homologs, AfUBC1 and AfUBC2, as well as one homolog of glyceraldehyde 3-phosphate dehydrogenase AfGAPDH1 and TATA-binding protein AfTBP2 appeared as more stably expressed than AfEF1a (translation elongation factor 1α), AfGAPDH2 or the least stable α-tubulin homolog AfTUA1 in caryopses and seedlings of A. fatua. Gene expression analysis of a dormancy-related wild oat transcription factor VIVIPAROUS1 (AfVP1) allowed for a validation of candidate reference genes performance. Based on the obtained results it can be recommended that the normalization factor calculated as a geometric mean of Cq values of AfUBC1, AfUBC2 and AfGAPDH1 would be optimal for RT-qPCR results normalization in the experiments comprising A. fatua caryopses of different dormancy status.

  15. Expression stability and selection of optimal reference genes for gene expression normalization in early life stage rainbow trout exposed to cadmium and copper.

    Science.gov (United States)

    Shekh, Kamran; Tang, Song; Niyogi, Som; Hecker, Markus

    2017-09-01

    Gene expression analysis represents a powerful approach to characterize the specific mechanisms by which contaminants interact with organisms. One of the key considerations when conducting gene expression analyses using quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the selection of appropriate reference genes, which is often overlooked. Specifically, to reach meaningful conclusions when using relative quantification approaches, expression levels of reference genes must be highly stable and cannot vary as a function of experimental conditions. However, to date, information on the stability of commonly used reference genes across developmental stages, tissues and after exposure to contaminants such as metals is lacking for many vertebrate species including teleost fish. Therefore, in this study, we assessed the stability of expression of 8 reference gene candidates in the gills and skin of three different early life-stages of rainbow trout after acute exposure (24h) to two metals, cadmium (Cd) and copper (Cu) using qPCR. Candidate housekeeping genes were: beta actin (b-actin), DNA directed RNA polymerase II subunit I (DRP2), elongation factor-1 alpha (EF1a), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PD), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein L8 (RPL8), and 18S ribosomal RNA (18S). Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method were employed to systematically evaluate the expression stability of these candidate genes under control and exposed conditions as well as across three different life-stages. Finally, stability of genes was ranked by taking geometric means of the ranks established by the different methods. Stability of reference genes was ranked in the following order (from lower to higher stability): HPRT

  16. Altered choroid plexus gene expression in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Cortney Ann Turner

    2014-04-01

    Full Text Available Given the emergent interest in biomarkers for mood disorders, we assessed gene expression in the choroid plexus, the region that produces cerebrospinal fluid (CSF, in individuals with major depressive disorder (MDD. Genes that are expressed in the choroid plexus (CP can be secreted into the CSF and may be potential biomarker candidates. Given that we have previously shown that fibroblast growth factor family members are differentially expressed in post-mortem brain of subjects with MDD and the CP is a known source of growth factors in the brain, we posed the question whether growth factor dysregulation would be found in the CP of subjects with MDD. We performed laser capture microscopy of the choroid plexus at the level of the hippocampus in subjects with MDD and psychiatrically normal controls. We then extracted, amplified, labeled and hybridized the cRNA to Illumina BeadChips to assess gene expression. In controls, the most highly abundant known transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts in controls encode ribosomal proteins. Using BeadStudio software, we identified 169 transcripts differentially expressed (p< 0.05 between control and MDD samples. Using pathway analysis we noted that the top network altered in subjects with MDD included multiple members of the transforming growth factor-beta (TGFβ pathway. Quantitative real-time PCR (qRT-PCR confirmed downregulation of several transcripts that interact with the extracellular matrix in subjects with MDD. These results suggest that there may be an altered cytoskeleton in the choroid plexus in MDD subjects that may lead to a disrupted blood-CSF-brain barrier.

  17. [Detecting HB-1 Expression Level in Bone Marrow of Acute Leukemia Patients by Real-Time Fluorescence Quantitative RT-PCR].

    Science.gov (United States)

    Wang, Qing-Yun; Li, Yuan; Ji, Li; Liang, Ze-Yin; Liu, Wei; Ren, Han-Yun; Qiu, Zhi-Xiang

    2018-02-01

    To investigate the expression level of HB-1 gene in patients with acute lymphoblastic leukemia (ALL) and the significance of HB-1 gene in monitoring of minimal residual disease (MRD). The method of real-time fluorescence quantitative RT-PCR (Taqman probe) was established to detect the expression levels of HB-1 gene; then the sensitivity, specificity and repeatability of this assay were evaluated and verified. The HB-1 gene expression levels in bone marrow of 183 cases of ALL, 70 cases of acute myeloid leukemias (AML), 52 cases of non-malignant hematologic diseases and 24 healthy hematopoietic stem cell donors were detected. The correlation of HB-1 level with diagnosis and relapse was analyzed by detecting bone marrow samples of 33 B-ALL. The sensitivity of this assay reached the 10 -4 level. The coefficient of variation for inter-batch and inter-tube of HB-1 were 6.79% and 4.80%, respectively. It was found that HB-1 gene specifically expressed in acute B lymphoblastic leukemia. The median expression levels of HB-1 gene in newly diagnosed and relapsed B-ALL patients were statistically significantly higher than those in ALL in complete remission(CR), newly diagnosed T-ALL, newly diagnosed AML, non-malignant hematologic diseases, and healthy hematopoietic stem cell donors(33.0% vs 0.68%, 0.07%, 0.02%, 0.58% and 0, respectively) (P0.05). The expression level of HB-1 gene declined sharply when B-ALL patients reached complete remission (0-7.99%, with median level 0.68%), but increased when relapsed (7.69%, 8.08% and 484.0% in 3 relapsed samples), which was in accordance with results of flow cytometry. HB-1 gene specifically expressed in acute B lymphoblastic leukemia cells. The established real-time fluorescence quantitative RT-PCR assay shows good sensitivity, specificity and repeatability, thus, can be used as a biological marker in the clinical detection, monitoring MRD and predicting of early relapse for B-ALL patients.

  18. Synergistic interactions of biotic and abiotic environmental stressors on gene expression.

    Science.gov (United States)

    Altshuler, Ianina; McLeod, Anne M; Colbourne, John K; Yan, Norman D; Cristescu, Melania E

    2015-03-01

    Understanding the response of organisms to multiple stressors is critical for predicting if populations can adapt to rapid environmental change. Natural and anthropogenic stressors often interact, complicating general predictions. In this study, we examined the interactive and cumulative effects of two common environmental stressors, lowered calcium concentration, an anthropogenic stressor, and predator presence, a natural stressor, on the water flea Daphnia pulex. We analyzed expression changes of five genes involved in calcium homeostasis - cuticle proteins (Cutie, Icp2), calbindin (Calb), and calcium pump and channel (Serca and Ip3R) - using real-time quantitative PCR (RT-qPCR) in a full factorial experiment. We observed strong synergistic interactions between low calcium concentration and predator presence. While the Ip3R gene was not affected by the stressors, the other four genes were affected in their transcriptional levels by the combination of the stressors. Transcriptional patterns of genes that code for cuticle proteins (Cutie and Icp2) and a sarcoplasmic calcium pump (Serca) only responded to the combination of stressors, changing their relative expression levels in a synergistic response, while a calcium-binding protein (Calb) responded to low calcium stress and the combination of both stressors. The expression pattern of these genes (Cutie, Icp2, and Serca) were nonlinear, yet they were dose dependent across the calcium gradient. Multiple stressors can have complex, often unexpected effects on ecosystems. This study demonstrates that the dominant interaction for the set of tested genes appears to be synergism. We argue that gene expression patterns can be used to understand and predict the type of interaction expected when organisms are exposed simultaneously to natural and anthropogenic stressors.

  19. Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum.

    Science.gov (United States)

    Steindorff, Andrei Stecca; Ramada, Marcelo Henrique Soller; Coelho, Alexandre Siqueira Guedes; Miller, Robert Neil Gerard; Pappas, Georgios Joannis; Ulhoa, Cirano José; Noronha, Eliane Ferreira

    2014-03-18

    The species of T. harzianum are well known for their biocontrol activity against plant pathogens. However, few studies have been conducted to further our understanding of its role as a biological control agent against S. sclerotiorum, a pathogen involved in several crop diseases around the world. In this study, we have used RNA-seq and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum gene expression during growth on cell wall of S. sclerotiorum (SSCW) or glucose. RT-qPCR was also used to examine genes potentially involved in biocontrol, during confrontation between T. harzianum and S. sclerotiorum. Data obtained from six RNA-seq libraries were aligned onto the T. harzianum CBS 226.95 reference genome and compared after annotation using the Blast2GO suite. A total of 297 differentially expressed genes were found in mycelia grown for 12, 24 and 36 h under the two different conditions: supplemented with glucose or SSCW. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on SSCW or glucose. We identified various genes of biotechnological value encoding proteins with functions such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. To validate the expression profile, RT-qPCR was performed using 20 randomly chosen genes. RT-qPCR expression profiles were in complete agreement with the RNA-Seq data for 17 of the genes evaluated. The other three showed differences at one or two growth times. During the confrontation assay, some genes were up-regulated during and after contact, as shown in the presence of SSCW which is commonly used as a model to mimic this interaction. The present study is the first initiative to use RNA-seq for identification of differentially expressed genes in T. harzianum strain TR274, in response to the phytopathogenic fungus S. sclerotiorum. It provides insights into the mechanisms of

  20. Differential expression analysis of boron transporters and some stress-related genes in response to 24-epibrassinolide and boron by semi-quantitative RT-PCR in Arabidopsis thaliana (L. Heynh

    Directory of Open Access Journals (Sweden)

    Surgun Yonca

    2016-01-01

    Full Text Available Plant steroidal hormones, brassinosteroids (BRs, promote plant developmental processes and enhance tolerance to several abiotic stresses including high boron (B stress. To examine the possible role of BR in high B-induced stress at the transcriptional level, we investigated the response of B transporter genes (BOR1-4, high B-induced genes (MATE, Hsp-like, BR-induced genes (Hsp70-4, Hsp90-1 and other stress-related genes (LTI/COR78, LEA4-5 upon exogenous treatments of 24-epibrassinolide (EBL on Arabidopsis thaliana (L. Heynh exposed to high concentrations of boric acid (BA using semi-quantitative RT-PCR. BA treatments led to down regulation of BOR1 and BOR3 genes in leaf and root tissues and higher concentration of EBL further decreased expression of these genes in roots. The expression of high B-induced genes was observed to be upregulated by 1 μM EBL treatment under high B stress in both tissues of the seedlings. The upregulation of BR-induced genes were clearly evident in root tissues co-treated with 1 μM EBL and BA as compared to BA alone. Higher concentration of EBL was found to be more effective in increasing expression of LTI/COR78 gene in root and LEA4-5 gene in shoot tissues. To our knowledge, this is the first report how exogenous application of EBL modulates high B stress responses at molecular level in model plant Arabidopsis thaliana.

  1. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR.

    Science.gov (United States)

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR.

  2. [Knockdown of dopamine receptor D2 upregulates the expression of adiogenic genes in mouse primary mesencephalic neurons].

    Science.gov (United States)

    Ding, Jiaqi; Chen, Xiaoli; Lin, Jiaji; Zhu, Junling; Li, Zhuyi

    2018-01-01

    Objective To study the effects of dopamine receptor D2 (DRD2) on the adipogenesis genes in mouse primary mesencephalic neurons. Methods The lentiviral vectors which expressed specific shRNA targeting DRD2 were constructed to decrease DRD2 expression in mouse primary mesencephalic neurons. High throughput sequencing (HTS) analysis was used to investigate gene expression changes between the DRD2 knock-down group and the negative control group. Real-time quantitative PCR (qRT-PCR) and Western blot analysis were applied to verify the differently expressed genes. Fatty acids were measured by fatty acid detection kit. Results DRD2 expression was effectively down-regulated in mouse primary mesencephalic neurons by lentiviral vectors. HTS revealed adipogenesis genes were significantly up-regulated after DRD2 down-regulation, mainly including delta(14)-sterol reductase, acetyl-coenzyme A synthetase, insulin-induced gene 1 protein and especially stearoyl-coenzyme A desaturase 1 (SCD1, 4-fold upregulated). The qRT-PCR and Western blot analysis verified that SCD1 was upregulated 2.6 folds and 2 folds respectively by lentiviral DRD2-shRNA vectors. Moreover, the SCD1-related free fatty acids were significantly more increased than the negative control group. Conclusion DRD2 in primary mesencephalic neurons had a significant regulative effect on the adipogenesis genes. The up-regulation of SCD1 can accelerate the conversion of saturated fatty acids to monounsaturated fatty acids and prevent the damage of lipid toxicity to cells.

  3. NBL1 and anillin (ANLN genes over-expression in pancreatic carcinoma.

    Directory of Open Access Journals (Sweden)

    Dariusz Lange

    2009-12-01

    Full Text Available The aim of the study was to analyze the gene expression profile of pancreatic cancer to derive novel molecular markers of this malignancy. The snap-frozen or RNA-later preserved samples of 18 pancreatic adenocarcinomas, 5 chronic pancreatitis cases and 6 specimens of grossly normal pancreas were used for microarray analysis by HG-U133 Plus 2.0 oligonucleotide Affymetrix arrays. Validation was carried out by real-time quantitative PCR (Q-PCR in the set of 66 samples: 31 of pancreatic cancer, 14 of chronic pancreatitis and 21 of macroscopically unchanged pancreas. By Principal Component Analysis of the microarray data we found a very consistent expression pattern of normal samples and a less homogenous one in chronic pancreatitis. By supervised comparison (corrected p-value 0.001 we observed 11094 probesets differentiating between cancer and normal samples, while only seventy six probesets were significant for difference between cancer and chronic pancreatitis. The only gene occurring within the best 10 genes in both comparisons was S100 calcium binding protein P (S100P, already indicated for its utility as pancreatic cancer marker by earlier microarray-based studies. For validation we selected two genes which appeared as valuable candidates for molecular markers of pancreatic cancer: neuroblastoma, suppression of tumorigenicity 1 (NBL1 and anillin (ANLN. By Q-PCR, we confirmed statistically significant differences in these genes with a 9.5 fold-change difference between NBL1 expression in cancer/normal comparison and a relatively modest difference between cancer and pancreatitis. For ANLN even more distinct differences were observed (cancer/normal 19.8-fold, cancer/pancreatitis 4.0-fold. NBL1 and anillin are promising markers for pancreatic carcinoma molecular diagnostics.

  4. Accumulation of Flavonoid Glycosides and UFGT Gene Expression in Mulberry Leaves (Morus alba L.) before and after Frost.

    Science.gov (United States)

    Yu, Xiaofeng; Zhu, Yiling; Fan, Jingyi; Wang, Dujun; Gong, Xiaohui; Ouyang, Zhen

    2017-08-01

    In order to determine the molecular mechanism underlying the influence of frost on chemical changes in mulberry leaves, the UFGT activity, expression level, and accumulation of flavonoid glycosides in mulberry leaves (Morus alba L.) were studied. The expression of UFGT gene was investigated by quantitative real-time PCR (qRT-PCR) and the UFGT activity, accumulation of flavonoid glycosides was studied by high performance liquid chromatography. Then, the correlation between the expression level of UFGT, the UFGT activity, and the flavonoid glycosides accumulation with temperature was explored. The accumulation of isoquercitrin and astragalin is significantly positively correlated with UFGT gene expression and UFGT activity. On the contrary, the average temperature was significantly negatively correlated with the level of UFGT gene expression and UFGT activity. The results show that after frost, low temperature can induce the expression of UFGT gene in mulberry leaves, resulting in the accumulation of flavonoid glycosides. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  5. Molecular cloning and expression analysis of annexin A2 gene in sika deer antler tip

    Directory of Open Access Journals (Sweden)

    Yanling Xia

    2018-04-01

    Full Text Available Objective Molecular cloning and bioinformatics analysis of annexin A2 (ANXA2 gene in sika deer antler tip were conducted. The role of ANXA2 gene in the growth and development of the antler were analyzed initially. Methods The reverse transcriptase polymerase chain reaction (RT-PCR was used to clone the cDNA sequence of the ANXA2 gene from antler tip of sika deer (Cervus Nippon hortulorum and the bioinformatics methods were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the ANXA2 gene in different growth stages were examined by real time reverse transcriptase polymerase chain reaction (real time RT-PCR. Results The nucleotide sequence analysis revealed an open reading frame of 1,020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and isoelectric point 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus. Real time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the ANXA2 gene was the highest at metaphase (rapid growing period. Conclusion ANXA2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.

  6. Tissue- and cell-specific expression of metallothionein genes in cadmium- and copper-exposed mussels analyzed by in situ hybridization and RT-PCR

    International Nuclear Information System (INIS)

    Zorita, I.; Bilbao, E.; Schad, A.; Cancio, I.; Soto, M.; Cajaraville, M.P.

    2007-01-01

    Metallothioneins (MTs) are metal-inducible proteins that can be used as biomarkers of metal exposure. In mussels two families of MT isoforms (MT10 and MT20) have been characterized. In this study, mussels (Mytilus galloprovincialis) were exposed to 200 ppb Cd and 40 ppb Cu for 2 and 9 days to characterize the tissue and isoform specificity of metal-induced MT expression. Non-radioactive in situ hybridization demonstrated that both MT isoforms were mainly transcribed in digestive tubule epithelial cells, especially in basophilic cells. Weaker MT expression was detected in non-ciliated duct cells, stomach and gill epithelial cells, haemocytes, adipogranular cells, spermatic follicles and oocytes. RT-PCR resulted in cloning of a novel M. galloprovincialis isoform homologous to recently cloned Mytilus edulis intron-less MT10B isoform. In gills, Cd only affected MT10 gene expression after 2 days of exposure while increases in MT protein levels occurred at day 9. In the digestive gland, a marked increase of both isoforms, but especially of MT20, was accompanied by increased levels of MT proteins and basophilic cell volume density (Vv BAS ) after 2 and 9 days and of intralysosomal metal accumulation in digestive cells after 9 days. Conversely, although metal was accumulated in digestive cells lysosomes and the Vv BAS increased in Cu-exposed mussels, Cu exposure did not produce an increase of MT gene expression or MT protein levels. These data suggest that MTs are expressed in a tissue-, cell- and isoform-specific way in response to different metals

  7. Selection of reference genes for normalisation of real-time RT-PCR in brain-stem death injury in Ovis aries

    Directory of Open Access Journals (Sweden)

    Fraser John F

    2009-07-01

    Full Text Available Abstract Background Heart and lung transplantation is frequently the only therapeutic option for patients with end stage cardio respiratory disease. Organ donation post brain stem death (BSD is a pre-requisite, yet BSD itself causes such severe damage that many organs offered for donation are unusable, with lung being the organ most affected by BSD. In Australia and New Zealand, less than 50% of lungs offered for donation post BSD are suitable for transplantation, as compared with over 90% of kidneys, resulting in patients dying for lack of suitable lungs. Our group has developed a novel 24 h sheep BSD model to mimic the physiological milieu of the typical human organ donor. Characterisation of the gene expression changes associated with BSD is critical and will assist in determining the aetiology of lung damage post BSD. Real-time PCR is a highly sensitive method involving multiple steps from extraction to processing RNA so the choice of housekeeping genes is important in obtaining reliable results. Little information however, is available on the expression stability of reference genes in the sheep pulmonary artery and lung. We aimed to establish a set of stably expressed reference genes for use as a standard for analysis of gene expression changes in BSD. Results We evaluated the expression stability of 6 candidate normalisation genes (ACTB, GAPDH, HGPRT, PGK1, PPIA and RPLP0 using real time quantitative PCR. There was a wide range of Ct-values within each tissue for pulmonary artery (15–24 and lung (16–25 but the expression pattern for each gene was similar across the two tissues. After geNorm analysis, ACTB and PPIA were shown to be the most stably expressed in the pulmonary artery and ACTB and PGK1 in the lung tissue of BSD sheep. Conclusion Accurate normalisation is critical in obtaining reliable and reproducible results in gene expression studies. This study demonstrates tissue associated variability in the selection of these

  8. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis in Salvia hispanica.

    Directory of Open Access Journals (Sweden)

    Rahul Gopalam

    Full Text Available Quantitative real-time polymerase chain reaction (qRT-PCR has become the most popular choice for gene expression studies. For accurate expression analysis, it is pertinent to select a stable reference gene to normalize the data. It is now known that the expression of internal reference genes varies considerably during developmental stages and under different experimental conditions. For Salvia hispanica, an economically important oilseed crop, there are no reports of stable reference genes till date. In this study, we chose 13 candidate reference genes viz. Actin11 (ACT, Elongation factor 1-alpha (EF1-α, Eukaryotic translation initiation factor 3E (ETIF3E, alpha tubulin (α-TUB, beta tubulin (β-TUB, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, Cyclophilin (CYP, Clathrin adaptor complex (CAC, Serine/threonine-protein phosphatase 2A (PP2A, FtsH protease (FtsH, 18S ribosomal RNA (18S rRNA, S-adenosyl methionine decarboxylase (SAMDC and Rubisco activase (RCA and the expression levels of these genes were assessed in a diverse set of tissue samples representing vegetative stages, reproductive stages and various abiotic stress treatments. Two of the widely used softwares, geNorm and Normfinder were used to evaluate the expression stabilities of these 13 candidate reference genes under different conditions. Results showed that GAPDH and CYP expression remain stable throughout in the different abiotic stress treatments, CAC and PP2A expression were relatively stable under reproductive stages and α-TUB, PP2A and ETIF3E were found to be stably expressed in vegetative stages. Further, the expression levels of Diacylglycerol acyltransferase (DGAT1, a key enzyme in triacylglycerol synthesis was analyzed to confirm the validity of reference genes identified in the study. This is the first systematic study of selection of reference genes in S. hispanica, and will benefit future expression studies in this crop.

  9. The Orthology Clause in the Next Generation Sequencing Era: Novel Reference Genes Identified by RNA-seq in Humans Improve Normalization of Neonatal Equine Ovary RT-qPCR Data.

    Directory of Open Access Journals (Sweden)

    Dragos Scarlet

    Full Text Available Vertebrate evolution is accompanied by a substantial conservation of transcriptional programs with more than a third of unique orthologous genes showing constrained levels of expression. Moreover, there are genes and exons exhibiting excellent expression stability according to RNA-seq data across a panel of eighteen tissues including the ovary (Human Body Map 2.0.We hypothesized that orthologs of these exons would also be highly uniformly expressed across neonatal ovaries of the horse, which would render them appropriate reference genes (RGs for normalization of reverse transcription quantitative PCR (RT-qPCR data in this context. The expression stability of eleven novel RGs (C1orf43, CHMP2A, EMC7, GPI, PSMB2, PSMB4, RAB7A, REEP5, SNRPD3, VCP and VPS29 was assessed by RT-qPCR in ovaries of seven neonatal fillies and compared to that of the expressed repetitive element ERE-B, two universal (OAZ1 and RPS29 and four traditional RGs (ACTB, GAPDH, UBB and B2M. Expression stability analyzed with the software tool RefFinder top ranked the normalization factor constituted of the genes SNRPD3 and VCP, a gene pair that is not co-expressed according to COEXPRESdb and GeneMANIA. The traditional RGs GAPDH, B2M, ACTB and UBB were only ranked 3rd and 12th to 14th, respectively.The functional diversity of the novel RGs likely facilitates expression studies over a wide range of physiological and pathological contexts related to the neonatal equine ovary. In addition, this study augments the potential for RT-qPCR-based profiling of human samples by introducing seven new human RG assays (C1orf43, CHMP2A, EMC7, GPI, RAB7A, VPS29 and UBB.

  10. EVALUATION OF THE PROGNOSTIC VALUE OF nm23 GENE EXPRESSION IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    刘红; 毛慧生; 傅西林; 方志沂; 冯玉梅; 范宇; 李树玲

    2002-01-01

    Objective: To investigate the expression of nm23 gene and evaluate its prognostic value in breast cancer. Methods: nm23 expressions were detected in 101 breast cancer patients (group 1) by immunohistochemistry. RT-PCR and immunohistochemistry were used to measure expressions of nm23 gene in another 68 patients with breast cancer (group 2). Results: nm23 gene expression in group 1 was inversely associated with distant metastasis and lymph node metastasis (P<0.05). In 44 patients with negative lymph node, 9 cases progressed to distant metastasis, 7 of them (77.8%) showed low expression of nm23 gene (P<0.05). In 57 patients with positive lymph node, 24 our of 29 patients who had no distant metastasis (82.8%) expressed nm23 gene at high level (P<0.05). Meanwhile, there were 6 patients with distant metastasis in the group 2, all of thenm expressed nm23 gene mRNA at low level. Conclusion: The results showed that nm23 gene might play an independent role in predicting prognosis of breast cancer.

  11. Study of differential gene expression in human hepatocyte exposed to 50 cGy γ ray

    International Nuclear Information System (INIS)

    Wen Jianhua; Li Jianguo; Tian Huancheng; Li Yanling; Wang Xiaoli; Zuo Yanhui

    2008-01-01

    The study analyzed the differential transcriptional profile of the normal human hepatic cell and the human hepatic cell radiated with 50 cGy γ ray by gene chip technique. The results showed that there were 614 differentially expressed genes among 14 112 human genes analyzed, in which 521 genes were up-regulated and 93 genes down-regulated. These genes are associated with mitochondrial regulation, homo sapiens hepatitis A virus cellular receptor, tumor necrosis factor, cell cycle regulation, kinase and zinc finger protein etc. RT-PCR results indicated that up-regulated expression of gene HAVcr-1, HAVcr-2, MFTC, MOAP1 and down-regulated expression of gene TRIP12, DCN were consistent with gene chip data. (authors)

  12. Identification of reference genes for quantitative expression analysis of microRNAs and mRNAs in barley under various stress conditions.

    Directory of Open Access Journals (Sweden)

    Jannatul Ferdous

    Full Text Available For accurate and reliable gene expression analysis using quantitative real-time reverse transcription PCR (qPCR, the selection of appropriate reference genes as an internal control for normalization is crucial. We hypothesized that non-coding, small nucleolar RNAs (snoRNAswould be stably expressed in different barley varieties and under different experimental treatments,in different tissues and at different developmental stages of plant growth and therefore might prove to be suitable reference genes for expression analysis of both microRNAs (miRNAsand mRNAs. In this study, we examined the expression stability of ten candidate reference genes in six barley genotypes under five experimental stresses, drought, fungal infection,boron toxicity, nutrient deficiency and salinity. We compared four commonly used housekeeping genes; Actin (ACT, alpha-Tubulin (α-TUB, Glycolytic glyceraldehyde-3-phosphate dehydrogenase(GAPDH, ADP-ribosylation factor 1-like protein (ADP, four snoRNAs; (U18,U61, snoR14 and snoR23 and two microRNAs (miR168, miR159 as candidate reference genes. We found that ADP, snoR14 and snoR23 were ranked as the best of these candidates across diverse samples. Additionally, we found that miR168 was a suitable reference gene for expression analysis in barley. Finally, we validated the performance of our stable and unstable candidate reference genes for both mRNA and miRNA qPCR data normalization under different stress conditions and demonstrated the superiority of the stable candidates. Our data demonstrate the suitability of barley snoRNAs and miRNAs as potential reference genes form iRNA and mRNA qPCR data normalization under different stress treatments [corrected].

  13. Characterization of differential gene expression in adrenocortical tumors harboring beta-catenin (CTNNB1) mutations.

    Science.gov (United States)

    Durand, Julien; Lampron, Antoine; Mazzuco, Tania L; Chapman, Audrey; Bourdeau, Isabelle

    2011-07-01

    Mutations of β-catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and adrenocortical carcinomas (ACC). However, the target genes of β-catenin have not yet been identified in adrenocortical tumors. Our objective was to identify genes deregulated in adrenocortical tumors harboring CTNNB1 genetic alterations and nuclear accumulation of β-catenin. Microarray analysis identified a dataset of genes that were differently expressed between AA with CTNNB1 mutations and wild-type (WT) tumors. Within this dataset, the expression profiles of five genes were validated by real time-PCR (RT-PCR) in a cohort of 34 adrenocortical tissues (six AA and one ACC with CTNNB1 mutations, 13 AA and four ACC with WT CTNNB1, and 10 normal adrenal glands) and two human ACC cell lines. We then studied the effects of suppressing β-catenin transcriptional activity with the T-cell factor/β-catenin inhibitors PKF115-584 and PNU74654 on gene expression in H295R and SW13 cells. RT-PCR analysis confirmed the overexpression of ISM1, RALBP1, and PDE2A and the down-regulation of PHYHIP in five of six AA harboring CTNNB1 mutations compared with WT AA (n = 13) and normal adrenal glands (n = 10). RALBP1 and PDE2A overexpression was also confirmed at the protein level by Western blotting analysis in mutated tumors. ENC1 was specifically overexpressed in three of three AA harboring CTNNB1 point mutations. mRNA expression and protein levels of RALBP1, PDE2A, and ENC1 were decreased in a dose-dependent manner in H295R cells after treatment with PKF115-584 or PNU74654. This study identified candidate genes deregulated in CTNNB1-mutated adrenocortical tumors that may lead to a better understanding of the role of the Wnt-β-catenin pathway in adrenocortical tumorigenesis.

  14. Gene expression profiling leads to discovery of correlation of matrix metalloproteinase 11 and heparanase 2 in breast cancer progression

    International Nuclear Information System (INIS)

    Fu, Junjie; Khaybullin, Ravil; Zhang, Yanping; Xia, Amy; Qi, Xin

    2015-01-01

    In order to identify biomarkers involved in breast cancer, gene expression profiling was conducted using human breast cancer tissues. Total RNAs were extracted from 150 clinical patient tissues covering three breast cancer subtypes (Luminal A, Luminal B, and Triple negative) as well as normal tissues. The expression profiles of a total of 50,739 genes were established from a training set of 32 samples using the Agilent Sure Print G3 Human Gene Expression Microarray technology. Data were analyzed using Agilent Gene Spring GX 12.6 software. The expression of several genes was validated using real-time RT-qPCR. Data analysis with Agilent GeneSpring GX 12.6 software showed distinct expression patterns between cancer and normal tissue samples. A group of 28 promising genes were identified with ≥ 10-fold changes of expression level and p-values < 0.05. In particular, MMP11 and HPSE2 were closely examined due to the important roles they play in cancer cell growth and migration. Real-time RT-qPCR analyses of both training and testing sets validated the gene expression profiles of MMP11 and HPSE2. Our findings identified these 2 genes as a novel breast cancer biomarker gene set, which may facilitate the diagnosis and treatment in breast cancer clinical therapies

  15. The differential gene expression of key enzyme in the gibberellin pathway in the potato (solanum tuberosum) mutant

    International Nuclear Information System (INIS)

    Shi, J.B.; Ye, G.J.; Yang, Y.Z.; Wang, F.; Zhou, Y; Wang, J.

    2016-01-01

    In the present study, the expression patterns of the key genes in the gibberellin synthesis pathway in the potato dwarf mutant M4P-9 were detected using quantitative real-time PCR. Using Actin as an internal control, CPS1, KS, KO, GA20ox1, and GA2ox1, genes for key gibberellin synthesis enzymes, were evaluated, along with a gibberellin receptor gene. The standard curves were obtained from dilutions of PCR product; the correlation coefficient for Actin was 0.995, and those for the target genes varied from 0.994 to 1.000. The expression patterns of gibberellin pathway genes in different growth stages and tissues were calculated according to the method of Pfaffl. These genes showed expression patterns that varied based on growth stage and tissue type. The higher expression levels of CPS1 and GA2ox1 in roots, the lower expression levels of GA20ox1 in roots during tuber formation stage; as well as the increased expression of GA20ox1 and GA2ox1 genes in stems during the tuber formation stage, likely play key roles in the plant height phenotype in M4P-9 mutant materials. This article provides a basis for researching the mechanism of gibberellin synthesis in potato. (author)

  16. Real-time gene expression analysis in carp (Cyprinus carpio) skin: inflammatory responses to injury mimicking infection with ectoparasites

    NARCIS (Netherlands)

    Gonzalez, S.F.; Huising, M.O.; Stakauska, R.; Forlenza, M.; Verburg-van Kemenade, B.M.L.; Buchmann, K.; Nielsen, M.E.; Wiegertjes, G.F.

    2007-01-01

    We studied a predictive model of gene expression induced by mechanical injury of fish skin, to resolve the confounding effects on the immune system induced by injury and skin parasite-specific molecules. We applied real time quantitative PCR (RQ-PCR) to measure the expression of the pro-inflammatory

  17. GAD1 Gene Expression in Blood of Patients with First-Episode Psychosis.

    Directory of Open Access Journals (Sweden)

    Jie Yin Yee

    Full Text Available γ-Aminobutyric acid (GABA, the primary inhibitory neurotransmitter, has often been studied in relation to its role in the pathophysiology of schizophrenia. GABA is synthesized from glutamate by glutamic acid decarboxylase (GAD, derived from two genes, GAD1 and GAD2. GAD1 is expressed as both GAD67 and GAD25 mRNA transcripts with the former reported to have a lower expression level in schizophrenia compared to healthy controls and latter was reported to be predominantly expressed fetally, suggesting a role in developmental process. In this study, GAD67 and GAD25 mRNA levels were measured by quantitative PCR (qPCR in peripheral blood of subjects with first-episode psychosis (FEP and from healthy controls. We observed low GAD25 and GAD67 gene expression levels in human peripheral blood. There was no difference in GAD25 and GAD67 gene expression level, and GAD25/GAD67 ratio between patients with FEP and healthy controls. PANSS negative symptoms were associated with levels of GAD25 mRNA transcripts in patients with FEP. While the current study provides information on GAD25 and GAD67 mRNA transcript levels in whole blood of FEP patients, further correlation and validation work between brain regions, cerebrospinal fluid and peripheral blood expression profiling are required to provide a better understanding of GAD25 and GAD67.

  18. Disease gene characterization through large-scale co-expression analysis.

    Directory of Open Access Journals (Sweden)

    Allen Day

    2009-12-01

    Full Text Available In the post genome era, a major goal of biology is the identification of specific roles for individual genes. We report a new genomic tool for gene characterization, the UCLA Gene Expression Tool (UGET.Celsius, the largest co-normalized microarray dataset of Affymetrix based gene expression, was used to calculate the correlation between all possible gene pairs on all platforms, and generate stored indexes in a web searchable format. The size of Celsius makes UGET a powerful gene characterization tool. Using a small seed list of known cartilage-selective genes, UGET extended the list of known genes by identifying 32 new highly cartilage-selective genes. Of these, 7 of 10 tested were validated by qPCR including the novel cartilage-specific genes SDK2 and FLJ41170. In addition, we retrospectively tested UGET and other gene expression based prioritization tools to identify disease-causing genes within known linkage intervals. We first demonstrated this utility with UGET using genetically heterogeneous disorders such as Joubert syndrome, microcephaly, neuropsychiatric disorders and type 2 limb girdle muscular dystrophy (LGMD2 and then compared UGET to other gene expression based prioritization programs which use small but discrete and well annotated datasets. Finally, we observed a significantly higher gene correlation shared between genes in disease networks associated with similar complex or Mendelian disorders.UGET is an invaluable resource for a geneticist that permits the rapid inclusion of expression criteria from one to hundreds of genes in genomic intervals linked to disease. By using thousands of arrays UGET annotates and prioritizes genes better than other tools especially with rare tissue disorders or complex multi-tissue biological processes. This information can be critical in prioritization of candidate genes for sequence analysis.

  19. Clone and expression of human transferrin receptor gene: a marker gene for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Li; Liu Lizhi; Lv Yanchun; Liu Xuewen; Cui Chunyan; Wu Peihong; Liu Qicai; Ou Shanxing

    2007-01-01

    Objective: To clone human transferrin receptor (hTfR) gene and construct expression vector producing recombination protein. Methods: Human transferrin receptor gene cDNA was amplified by RT-PCR from human embryonic liver and lung tissue. Recombinant pcDNA3-hTfR and pEGFP-Cl-hTfR plasmids were constructed and confirmed by DNA sequencing. These plasmids were stably transfected into the HEK293 cells. The protein expression in vitro was confirmed by Western Blot. The efficiency of expression and the location of hTfR were also investigated by fluorescence microscopy and confocal fluorescence microscopy. Results: The full length cDNA of hTfR gene (2332 bp) was cloned and sequenced. The hTfR (190 000) was overexpressed in transfected HEK293 cells by Western blot analysis. Fluorescence micrographs displayed that the hTfR was expressed at high level and located predominantly in the cell surface. Conclusions: Human transferrin receptor (hTfR) gene has been successfully cloned and obtained high-level expression in HEK293 cells, and the recombination protein of hTfR distributed predominantly in the cell membrane. (authors)

  20. Assessing a new gene expression analysis technique for radiation biodosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Grainne; Kabacik, Sylwia; Finnon, Paul; Paillier, Francois; Bouffler, Simon [Cancer Genetics and Cytogenetics, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom); Badie, Christophe, E-mail: christophe.badie@hpa.org.uk [Cancer Genetics and Cytogenetics, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom)

    2011-09-15

    The response to any radiation accident or incident involving actual or potential ionising radiation exposure requires accurate and rapid assessment of the doses received by individuals. The techniques available today for biodosimetry purposes are not fully adapted to rapid high-throughput measurements of exposures in large numbers of individuals. A recently emerging technique is based on gene expression analysis, as there are a number of genes which are radiation responsive in a dose-dependent manner. The present work aimed to assess a new technique which allows the detection of the level of expression of up to 800 genes without need of enzymatic reactions. In order to do so, human peripheral blood was exposed ex vivo to a range of x-ray doses from 5 mGy to 4 Gy of x-rays and the transcriptional expression of five radiation-responsive genes PHPT1, PUMA, CCNG1, DDB2 and MDM2 was studied by both the nCounter Digital Analyzer and Multiplex Quantitative Real-Time Polymerase Chain Reaction (MQRT-PCR) as the benchmark technology. Results from both techniques showed good correlation for all genes with R{sup 2} values ranging between 0.8160 and 0.9754. The reproducibility of the nCounter Digital Analyzer was also assessed in independent biological replicates and proved to be good. Although the slopes of the correlation of results obtained by the techniques suggest that MQRT-PCR is more sensitive than the nCounter Digital Analyzer, the nCounter Digital Analyzer provides sensitive and reliable data on modifications in gene expression in human blood exposed to radiation without enzymatic amplification of RNA prior to analysis.

  1. Selection of reference genes in different myocardial regions of an in vivo ischemia/reperfusion rat model for normalization of antioxidant gene expression

    Directory of Open Access Journals (Sweden)

    Vesentini Nicoletta

    2012-02-01

    Full Text Available Abstract Background Changes in cardiac gene expression due to myocardial injury are usually assessed in whole heart tissue. However, as the heart is a heterogeneous system, spatial and temporal heterogeneity is expected in gene expression. Results In an ischemia/reperfusion (I/R rat model we evaluated gene expression of mitochondrial and cytoplasmatic superoxide dismutase (MnSod, Cu-ZnSod and thioredoxin reductase (trxr1 upon short (4 h and long (72 h reperfusion times in the right ventricle (RV, and in the ischemic/reperfused (IRR and the remote region (RR of the left ventricle. Gene expression was assessed by Real-time reverse-transcription quantitative PCR (RT-qPCR. In order to select most stable reference genes suitable for normalization purposes, in each myocardial region we tested nine putative reference genes by geNorm analysis. The genes investigated were: Actin beta (actb, Glyceraldehyde-3-P-dehydrogenase (gapdh, Ribosomal protein L13A (rpl13a, Tyrosine 3-monooxygenase (ywhaz, Beta-glucuronidase (gusb, Hypoxanthine guanine Phosphoribosyltransferase 1 (hprt, TATA binding box protein (tbp, Hydroxymethylbilane synthase (hmbs, Polyadenylate-binding protein 1 (papbn1. According to our findings, most stable reference genes in the RV and RR were hmbs/hprt and hmbs/tbp/hprt respectively. In the IRR, six reference genes were recommended for normalization purposes; however, in view of experimental feasibility limitations, target gene expression could be normalized against the three most stable reference genes (ywhaz/pabp/hmbs without loss of sensitivity. In all cases MnSod and Cu-ZnSod expression decreased upon long reperfusion, the former in all myocardial regions and the latter in IRR alone. trxr1 expression did not vary. Conclusions This study provides a validation of reference genes in the RV and in the anterior and posterior wall of the LV of cardiac ischemia/reperfusion model and shows that gene expression should be assessed separately in

  2. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Jørgensen, Claus Bøttcher; Cirera, Susanna

    2007-01-01

    -microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine phosphoribosyltransferase I (HPRT I), ribosomal protein L4 (RPL4), succinate dehydrogenase complex subunit A (SDHA), TATA box binding protein (TPB) and tyrosine 3-monooxygenase/tryptophan 5......-monooxygenase activation protein zeta polypeptide (YWHAZ). The stability of these reference genes in different pig tissues was investigated using the geNorm application. The range of expression stability in the genes analysed was (from the most stable to the least stable): ACTB/RPL4, TBP, HPRT, HMBS, YWHAZ...

  3. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility

    Directory of Open Access Journals (Sweden)

    Naessens Jan

    2009-05-01

    Full Text Available Abstract Background African animal trypanosomiasis (AAT caused by tsetse fly-transmitted protozoa of the genus Trypanosoma is a major constraint on livestock and agricultural production in Africa and is among the top ten global cattle diseases impacting on the poor. Here we show that a functional genomics approach can be used to identify temporal changes in host peripheral blood mononuclear cell (PBMC gene expression due to disease progression. We also show that major gene expression differences exist between cattle from trypanotolerant and trypanosusceptible breeds. Using bovine long oligonucleotide microarrays and real time quantitative reverse transcription PCR (qRT-PCR validation we analysed PBMC gene expression in naïve trypanotolerant and trypanosusceptible cattle experimentally challenged with Trypanosoma congolense across a 34-day infection time course. Results Trypanotolerant N'Dama cattle displayed a rapid and distinct transcriptional response to infection, with a ten-fold higher number of genes differentially expressed at day 14 post-infection compared to trypanosusceptible Boran cattle. These analyses identified coordinated temporal gene expression changes for both breeds in response to trypanosome infection. In addition, a panel of genes were identified that showed pronounced differences in gene expression between the two breeds, which may underlie the phenomena of trypanotolerance and trypanosusceptibility. Gene ontology (GO analysis demonstrate that the products of these genes may contribute to increased mitochondrial mRNA translational efficiency, a more pronounced B cell response, an elevated activation status and a heightened response to stress in trypanotolerant cattle. Conclusion This study has revealed an extensive and diverse range of cellular processes that are altered temporally in response to trypanosome infection in African cattle. Results indicate that the trypanotolerant N'Dama cattle respond more rapidly and with a

  4. [Blue-light induced expression of S-adenosy-L-homocysteine hydrolase-like gene in Mucor amphibiorum RCS1].

    Science.gov (United States)

    Gao, Ya; Wang, Shu; Fu, Mingjia; Zhong, Guolin

    2013-09-04

    To determine blue-light induced expression of S-adenosyl-L-homocysteine hydrolase-like (sahhl) gene in fungus Mucor amphibiorum RCS1. In the random process of PCR, a sequence of 555 bp was obtained from M. amphibiorum RCS1. The 555 bp sequence was labeled with digoxin to prepare the probe for northern hybridization. By northern hybridization, the transcription of sahhl gene was analyzed in M. amphibiorum RCS1 mycelia culture process from darkness to blue light to darkness. Simultaneously real-time PCR method was used to the sahhl gene expression analysis. Compared with the sequence of sahh gene from Homo sapiens, Mus musculus and some fungi species, a high homology of the 555 bp sequence was confirmed. Therefore, the preliminary confirmation has supported that the 555 bp sequence should be sahhl gene from M. amphibiorum RCS1. Under the dark pre-culture in 24 h, a large amounts of transcript of sahhl gene in the mycelia can be detected by northern hybridization and real-time PCR in the condition of 24 h blue light. But a large amounts of transcript of sahhl gene were not found in other detection for the dark pre-culture of 48 h, even though M. amphibiorum RCS1 mycelia were induced by blue light. Blue light can induce the expression of sahhl gene in the vigorous growth of M. amphibiorum RCS1 mycelia.

  5. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    Science.gov (United States)

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  6. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.

    Science.gov (United States)

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2016-01-15

    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Gene expression profiles of glucose toxicity-exposed islet microvascular endothelial cells.

    Science.gov (United States)

    Liu, Mingming; Lu, Wenbao; Hou, Qunxing; Wang, Bing; Sheng, Youming; Wu, Qingbin; Li, Bingwei; Liu, Xueting; Zhang, Xiaoyan; Li, Ailing; Zhang, Honggang; Xiu, Ruijuan

    2018-03-25

    Islet microcirculation is mainly composed by IMECs. The aim of the study was to investigate the differences in gene expression profiles of IMECs upon glucose toxicity exposure and insulin treatment. IMECs were treated with 5.6 mmol L -1 glucose, 35 mmol L -1 glucose, and 35 mmol L -1 glucose plus 10 -8  mol L -1 insulin, respectively. Gene expression profiles were determined by microarray and verified by qPCR. GO terms and KEGG analysis were performed to assess the potential roles of differentially expressed genes. The interaction and expression tendency of differentially expressed genes were analyzed by Path-Net algorithm. Compared with glucose toxicity-exposed IMECs, 1574 mRNAs in control group and 2870 mRNAs in insulin-treated IMECs were identified with differential expression, respectively. GO and KEGG pathway analysis revealed that these genes conferred roles in regulation of apoptosis, proliferation, migration, adhesion, and metabolic process etc. Additionally, MAPK signaling pathway and apoptosis were the dominant nodes in Path-Net. IMECs survival and function pathways were significantly changed, and the expression tendency of genes from euglycemia and glucose toxicity exposure to insulin treatment was revealed and enriched in 7 patterns. Our study provides a microcirculatory framework for gene expression profiles of glucose toxicity-exposed IMECs. © 2018 John Wiley & Sons Ltd.

  8. Validation and comparison of reference genes for qPCR normalization of celery (Apium graveolens at different development stages

    Directory of Open Access Journals (Sweden)

    Meng-Yao eLi

    2016-03-01

    Full Text Available A suitable reference gene is an important prerequisite for guarantying accurate and reliable results in qPCR analysis. Celery is one of the representative vegetable in Apiaceae and is widely cultivated and consumed in the world. However, no reports have been previously published concerning reference genes in celery. In this study, the expression stabilities of nine candidate reference genes in leaf blade and petiole at different development stages were evaluated using three statistics algorithms geNorm, NormFinder, and BestKeeper. Our results showed that TUB-B, TUB-A, and UBC were the most reference genes among all tested samples. GAPDH represented the maximum stability for most individual sample, while the UBQ displayed the minimum stability. To further validate the stability of reference genes, the expression pattern of AgAP2-2 was calculated by using the selected genes for normalization. In addition, the expression patterns of several development-related genes were studied using the selected reference gene. Our results will be beneficial for further studies on gene transcription in celery.

  9. [Construction of the eukaryotic recombinant vector and expression of the outer membrane protein LipL32 gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying

    2008-02-01

    To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.

  10. Validation of potential reference genes for qPCR in maize across abiotic stresses, hormone treatments, and tissue types.

    Directory of Open Access Journals (Sweden)

    Yueai Lin

    Full Text Available The reverse transcription quantitative polymerase chain reaction (RT-qPCR is a powerful and widely used technique for the measurement of gene expression. Reference genes, which serve as endogenous controls ensure that the results are accurate and reproducible, are vital for data normalization. To bolster the literature on reference gene selection in maize, ten candidate reference genes, including eight traditionally used internal control genes and two potential candidate genes from our microarray datasets, were evaluated for expression level in maize across abiotic stresses (cold, heat, salinity, and PEG, phytohormone treatments (abscisic acid, salicylic acid, jasmonic acid, ethylene, and gibberellins, and different tissue types. Three analytical software packages, geNorm, NormFinder, and Bestkeeper, were used to assess the stability of reference gene expression. The results revealed that elongation factor 1 alpha (EF1α, tubulin beta (β-TUB, cyclophilin (CYP, and eukaryotic initiation factor 4A (EIF4A were the most reliable reference genes for overall gene expression normalization in maize, while GRP (Glycine-rich RNA-binding protein, GLU1(beta-glucosidase, and UBQ9 (ubiquitin 9 were the least stable and most unsuitable genes. In addition, the suitability of EF1α, β-TUB, and their combination as reference genes was confirmed by validating the expression of WRKY50 in various samples. The current study indicates the appropriate reference genes for the urgent requirement of gene expression normalization in maize across certain abiotic stresses, hormones, and tissue types.

  11. Selection of reference genes for expression studies with fish myogenic cell cultures

    Directory of Open Access Journals (Sweden)

    Johnston Ian A

    2009-08-01

    Full Text Available Abstract Background Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.. The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation. Results Initial results showed several of the candidate genes exhibited stable expression throughout myogenic culture while Sdha was identified as the least stable gene. Further analysis with geNorm, Normfinder and Bestkeeper identified Ef1α, Hprt1, Ppia and RNApolII as stably expressed. Comparison of data normalised with the geometric average obtained from combinations of any three of these genes showed no significant differences, indicating that any combination of these genes is valid. Conclusion The geometric average of any three of Hprt1, Ef1α, Ppia and RNApolII is suitable for normalisation of gene expression data in primary myogenic cultures from Atlantic salmon.

  12. Selection of reference genes for expression studies with fish myogenic cell cultures.

    Science.gov (United States)

    Bower, Neil I; Johnston, Ian A

    2009-08-10

    Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.). The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation. Initial results showed several of the candidate genes exhibited stable expression throughout myogenic culture while Sdha was identified as the least stable gene. Further analysis with geNorm, Normfinder and Bestkeeper identified Ef1alpha, Hprt1, Ppia and RNApolII as stably expressed. Comparison of data normalised with the geometric average obtained from combinations of any three of these genes showed no significant differences, indicating that any combination of these genes is valid. The geometric average of any three of Hprt1, Ef1alpha, Ppia and RNApolII is suitable for normalisation of gene expression data in primary myogenic cultures from Atlantic salmon.

  13. Prostate cancer-associated gene expression alterations determined from needle biopsies.

    Science.gov (United States)

    Qian, David Z; Huang, Chung-Ying; O'Brien, Catherine A; Coleman, Ilsa M; Garzotto, Mark; True, Lawrence D; Higano, Celestia S; Vessella, Robert; Lange, Paul H; Nelson, Peter S; Beer, Tomasz M

    2009-05-01

    To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays composed of 6,200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative reverse transcription-PCR. Comparative analyses identified 954 transcript alterations associated with cancer (q transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of androgen receptor expression changes was noted. In exploratory analyses, androgen receptor down-regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation.

  14. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    Science.gov (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  15. Signaling pathway-focused gene expression profiling in pressure overloaded hearts

    Directory of Open Access Journals (Sweden)

    Marco Musumeci

    2011-01-01

    Full Text Available The β-blocker propranolol displays antihypertrophic and antifibrotic properties in the heart subjected to pressure overload. Yet the underlying mechanisms responsible for these important effects remain to be completely understood. The purpose of this study was to determine signaling pathway-focused gene expression profile associated with the antihypertrophic action of propranolol in pressure overloaded hearts. To address this question, a focused real-time PCR array was used to screen left ventricular RNA expression of 84 gene transcripts representative of 18 different signaling pathways in C57BL/6 mice subjected to transverse aortic constriction (TAC or sham surgery. On the surgery day, mice received either propranolol (80 mg/kg/day or vehicle for 14 days. TAC caused a 49% increase in the left ventricular weight-to-body weight (LVW/BW ratio without changing gene expression. Propranolol blunted LVW/BW ratio increase by approximately 50% while causing about a 3-fold increase in the expression of two genes, namely Brca1 and Cdkn2a, belonging to the TGF-beta and estrogen pathways, respectively. In conclusion, after 2 weeks of pressure overload, TAC hearts show a gene expression profile superimposable to that of sham hearts. Conversely, propranolol treatment is associated with an increased expression of genes which negatively regulate cell cycle progression. It remains to be established whether a mechanistic link between gene expression changes and the antihypertrophic action of propranolol occurs.

  16. Serial analysis of gene expression (SAGE) in rat liver regeneration

    International Nuclear Information System (INIS)

    Cimica, Velasco; Batusic, Danko; Haralanova-Ilieva, Borislava; Chen, Yonglong; Hollemann, Thomas; Pieler, Tomas; Ramadori, Giuliano

    2007-01-01

    We have applied serial analysis of gene expression for studying the molecular mechanism of the rat liver regeneration in the model of 70% partial hepatectomy. We generated three SAGE libraries from a normal control liver (NL library: 52,343 tags), from a sham control operated liver (Sham library: 51,028 tags), and from a regenerating liver (PH library: 53,061 tags). By SAGE bioinformatics analysis we identified 40 induced genes and 20 repressed genes during the liver regeneration. We verified temporal expression of such genes by real time PCR during the regeneration process and we characterized 13 induced genes and 3 repressed genes. We found connective tissue growth factor transcript and protein induced very early at 4 h after PH operation before hepatocytes proliferation is triggered. Our study suggests CTGF as a growth factor signaling mediator that could be involved directly in the mechanism of liver regeneration induction

  17. Identification of the MUC2 Promoter as a Strong Promoter for Intestinal Gene Expression through Generation of Transgenic Quail Expressing GFP in Gut Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Rachel M. Woodfint

    2017-01-01

    Full Text Available Identification of tissue- and stage-specific gene promoters is valuable for delineating the functional roles of specific genes in genetically engineered animals. Here, through the comparison of gene expression in different tissues by analysis of a microarray database, the intestinal specificity of mucin 2 (MUC2 expression was identified in mice and humans, and further confirmed in chickens by RT-PCR (reverse transcription-PCR analysis. An analysis of cis-acting elements in avian MUC2 gene promoters revealed conservation of binding sites, within a 2.9 kb proximal promoter region, for transcription factors such as caudal type homeobox 2 (CDX2, GATA binding protein 4 (GATA4, hepatocyte nuclear factor 4 α (HNF4A, and transcription factor 4 (TCF4 that are important for maintaining intestinal homeostasis and functional integrity. By generating transgenic quail, we demonstrated that the 2.9 kb chicken MUC2 promoter could drive green fluorescent protein (GFP reporter expression exclusively in the small intestine, large intestine, and ceca. Fluorescence image analysis further revealed GFP expression in intestine epithelial cells. The GFP expression was barely detectable in the embryonic intestine, but increased during post-hatch development. The spatiotemporal expression pattern of the reporter gene confirmed that the 2.9 kb MUC2 promoter could retain the regulatory element to drive expression of target genes in intestinal tissues after hatching. This new transgene expression system, using the MUC2 promoter, will provide a new method of overexpressing target genes to study gene function in the avian intestine.

  18. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    Science.gov (United States)

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.

  19. Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer

    International Nuclear Information System (INIS)

    Thangapazham, Rajesh; Saenz, Francisco; Katta, Shilpa; Mohamed, Ahmed A; Tan, Shyh-Han; Petrovics, Gyorgy; Srivastava, Shiv; Dobi, Albert

    2014-01-01

    In normal prostate epithelium the TMPRSS2 gene encoding a type II serine protease is directly regulated by male hormones through the androgen receptor. In prostate cancer ERG protooncogene frequently gains hormonal control by seizing gene regulatory elements of TMPRSS2 through genomic fusion events. Although, the androgenic activation of TMPRSS2 gene has been established, little is known about other elements that may interact with TMPRSS2 promoter sequences to modulate ERG expression in TMPRSS2-ERG gene fusion context. Comparative genomic analyses of the TMPRSS2 promoter upstream sequences and pathway analyses were performed by the Genomatix Software. NKX3.1 and ERG genes expressions were evaluated by immunoblot or by quantitative Real-Time PCR (qRT-PCR) assays in response to siRNA knockdown or heterologous expression. QRT-PCR assay was used for monitoring the gene expression levels of NKX3.1-regulated genes. Transcriptional regulatory function of NKX3.1 was assessed by luciferase assay. Recruitment of NKX3.1 to its cognate elements was monitored by Chromatin Immunoprecipitation assay. Comparative analysis of the TMPRSS2 promoter upstream sequences among different species revealed the conservation of binding sites for the androgen inducible NKX3.1 tumor suppressor. Defects of NKX3.1, such as, allelic loss, haploinsufficiency, attenuated expression or decreased protein stability represent established pathways in prostate tumorigenesis. We found that NKX3.1 directly binds to TMPRSS2 upstream sequences and negatively regulates the expression of the ERG protooncogene through the TMPRSS2-ERG gene fusion. These observations imply that the frequently noted loss-of-function of NKX3.1 cooperates with the activation of TMPRSS2-ERG fusions in prostate tumorigenesis

  20. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort.

    Directory of Open Access Journals (Sweden)

    Dave Singh

    Full Text Available Patients with chronic obstructive pulmonary disease (COPD who are defined as frequent exacerbators suffer with 2 or more exacerbations every year. The molecular mechanisms responsible for this phenotype are poorly understood. We investigated gene expression profile patterns associated with frequent exacerbations in sputum and blood cells in a well-characterised cohort. Samples from subjects from the ECLIPSE COPD cohort were used; sputum and blood samples from 138 subjects were used for microarray gene expression analysis, while blood samples from 438 subjects were used for polymerase chain reaction (PCR testing. Using microarray, 150 genes were differentially expressed in blood (>±1.5 fold change, p≤0.01 between frequent compared to non-exacerbators. In sputum cells, only 6 genes were differentially expressed. The differentially regulated genes in blood included downregulation of those involved in lymphocyte signalling and upregulation of pro-apoptotic signalling genes. Multivariate analysis of the microarray data followed by confirmatory PCR analysis identified 3 genes that predicted frequent exacerbations; B3GNT, LAF4 and ARHGEF10. The sensitivity and specificity of these 3 genes to predict the frequent exacerbator phenotype was 88% and 33% respectively. There are alterations in systemic immune function associated with frequent exacerbations; down-regulation of lymphocyte function and a shift towards pro-apoptosis mechanisms are apparent in patients with frequent exacerbations.

  1. ALP gene expression in cDNA samples from bone tissue engineering using a HA/TCP/Chitosan scaffold

    Science.gov (United States)

    Stephanie, N.; Katarina, H.; Amir, L. R.; Gunawan, H. A.

    2017-08-01

    This study examined the potential use of hydroxyapatite (HA)/tricalcium phosphate (TCP)/Chitosan as a bone tissue engineering scaffold. The potential for using HA/TCP/chitosan as a scaffold was analyzed by measuring expression of the ALP osteogenic gene in cDNA from bone biopsies from four Macaque nemestrina. Experimental conditions included control (untreated), treatment with HA/TCP 70:30, HA/TCP 50:50, and HA/TCP/chitosan. cDNA samples were measured quantitively with Real-Time PCR (qPCR) and semi-quantitively by gel electrophoresis. There were no significant differences in ALP gene expression between treatment subjects after two weeks, but the HA/TCP/chitosan treatment gave the highest level of expression after four weeks. The scaffold using the HA/TCP/chitosan combination induced a higher level of expression of the osteogenic gene ALP than did scaffold without chitosan.

  2. Reference gene selection for qRT-PCR assays in Stellera chamaejasme subjected to abiotic stresses and hormone treatments based on transcriptome datasets

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2018-04-01

    Full Text Available Background Stellera chamaejasme Linn, an important poisonous plant of the China grassland, is toxic to humans and livestock. The rapid expansion of S. chamaejasme has greatly damaged the grassland ecology and, consequently, seriously endangered the development of animal husbandry. To draft efficient prevention and control measures, it has become more urgent to carry out research on its adaptive and expansion mechanisms in different unfavorable habitats at the genetic level. Quantitative real-time polymerase chain reaction (qRT-PCR is a widely used technique for studying gene expression at the transcript level; however, qRT-PCR requires reference genes (RGs as endogenous controls for data normalization and only through appropriate RG selection and qRT-PCR can we guarantee the reliability and robustness of expression studies and RNA-seq data analysis. Unfortunately, little research on the selection of RGs for gene expression data normalization in S. chamaejasme has been reported. Method In this study, 10 candidate RGs namely, 18S, 60S, CYP, GAPCP1, GAPDH2, EF1B, MDH, SAND, TUA1, and TUA6, were singled out from the transcriptome database of S. chamaejasme, and their expression stability under three abiotic stresses (drought, cold, and salt and three hormone treatments (abscisic acid, ABA; gibberellin, GA; ethephon, ETH were estimated with the programs geNorm, NormFinder, and BestKeeper. Result Our results showed that GAPCP1 and EF1B were the best combination for the three abiotic stresses, whereas TUA6 and SAND, TUA1 and CYP, GAPDH2 and 60S were the best choices for ABA, GA, and ETH treatment, respectively. Moreover, GAPCP1 and 60S were assessed to be the best combination for all samples, and 18S was the least stable RG for use as an internal control in all of the experimental subsets. The expression patterns of two target genes (P5CS2 and GI further verified that the RGs that we selected were suitable for gene expression normalization. Discussion

  3. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    Science.gov (United States)

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  4. Light-Dependent Expression of Four Cryptic Archaeal Circadian Gene Homologs

    Directory of Open Access Journals (Sweden)

    Michael eManiscalco

    2014-03-01

    Full Text Available Circadian rhythms are important biological signals that have been found in almost all major groups of life from bacteria to man, yet it remains unclear if any members of the second major prokaryotic domain of life, the Archaea, also possess a biological clock. To investigate this question, we examined the regulation of four cyanobacterial-like circadian gene homologs present in the genome of the haloarchaeon Haloferax volcanii. These genes, designated cirA, cirB, cirC, and cirD, display similarity to the KaiC-family of cyanobacterial clock proteins, which act to regulate rhythmic gene expression and to control the timing of cell division. Quantitative RT-PCR analysis was used to examine the expression of each of the four cir genes in response to 12 h light/12 h dark cycles (LD 12:12 during balanced growth in H. volcanii. Our data reveal that there is an approximately two to sixteen-fold increase in cir gene expression when cells are shifted from light to constant darkness and this pattern of gene expression oscillates with the light conditions in a rhythmic manner. Targeted single- and double-gene knockouts in the H. volcanii cir genes results in disruption of light-dependent, rhythmic gene expression, although it does not lead to any significant effect on growth under these conditions. Restoration of light-dependent, rhythmic gene expression was demonstrated by introducing, in trans, a wild-type copy of individual cir genes into knockout strains. These results are noteworthy as this is the first attempt to characterize the transcriptional expression and regulation of the ubiquitous kaiC homologs found among archaeal genomes.

  5. Effects of Bifidobacterium breve on inflammatory gene expression in neonatal and weaning rat intestine.

    Science.gov (United States)

    Ohtsuka, Yoshikazu; Ikegami, Takako; Izumi, Hirohisa; Namura, Mariko; Ikeda, Tomomi; Ikuse, Tamaki; Baba, Yosuke; Kudo, Takahiro; Suzuki, Ryuyo; Shimizu, Toshiaki

    2012-01-01

    To examine the immune-modulatory effects of probiotics during early infancy, Bifidobacterium breve M-16V (B. breve) was administered to rat pups during the newborn or weaning period, and the expression of inflammatory genes was investigated using a cDNA microarray and real-time PCR. After B. breve administration, significant increases in the numbers of Bifidobacterium in both the cecum and colon were confirmed during the newborn period. The numbers of upregulated and downregulated genes were greater during the weaning period than in the newborn period and were greatest in the colon, with fewer genes altered in the small intestine and the fewest in the spleen. The expression of inflammation-related genes, including lipoprotein lipase (Lpl), glutathione peroxidase 2 (Gpx2), and lipopolysaccharide-binding protein (Lbp), was significantly reduced in the colon during the newborn period. In weaning rat pups, the expression of CD3d, a cell surface receptor-linked signaling molecule, was significantly enhanced in the colon; however, the expression of co-stimulatory molecules was not enhanced. Our findings support a possible role for B. breve in mediating anti-inflammatory and antiallergic reactions by modulating the expression of inflammatory molecules during the newborn period and by regulating the expression of co-stimulatory molecules during the weaning period. Gene expression in the intestine was investigated after feeding 5 × 10(8) cfu of B. breve every day to the F344/Du rat from days 1 to 14 (newborn group) and from days 21 to 34 (weaning group). mRNA was extracted from intestine, and the expression of inflammatory gene was analyzed by microarray and real-time PCR.

  6. Decentral gene expression analysis: analytical validation of the Endopredict genomic multianalyte breast cancer prognosis test

    Directory of Open Access Journals (Sweden)

    Kronenwett Ralf

    2012-10-01

    Full Text Available Abstract Background EndoPredict (EP is a clinically validated multianalyte gene expression test to predict distant metastasis in ER-positive, HER2-negative breast cancer treated with endocrine therapy alone. The test is based on the combined analysis of 12 genes in formalin-fixed, paraffin-embedded (FFPE tissue by reverse transcription-quantitative real-time PCR (RT-qPCR. Recently, it was shown that EP is feasible for reliable decentralized assessment of gene expression. The aim of this study was the analytical validation of the performance characteristics of the assay and its verification in a molecular-pathological routine laboratory. Methods Gene expression values to calculate the EP score were assayed by one-step RT-qPCR using RNA from FFPE tumor tissue. Limit of blank, limit of detection, linear range, and PCR efficiency were assessed for each of the 12 PCR assays using serial samples dilutions. Different breast cancer samples were used to evaluate RNA input range, precision and inter-laboratory variability. Results PCR assays were linear up to Cq values between 35.1 and 37.2. Amplification efficiencies ranged from 75% to 101%. The RNA input range without considerable change of the EP score was between 0.16 and 18.5 ng/μl. Analysis of precision (variation of day, day time, instrument, operator, reagent lots resulted in a total noise (standard deviation of 0.16 EP score units on a scale from 0 to 15. The major part of the total noise (SD 0.14 was caused by the replicate-to-replicate noise of the PCR assays (repeatability and was not associated with different operating conditions (reproducibility. Performance characteristics established in the manufacturer’s laboratory were verified in a routine molecular pathology laboratory. Comparison of 10 tumor samples analyzed in two different laboratories showed a Pearson coefficient of 0.995 and a mean deviation of 0.15 score units. Conclusions The EP test showed reproducible performance

  7. Decentral gene expression analysis: analytical validation of the Endopredict genomic multianalyte breast cancer prognosis test

    International Nuclear Information System (INIS)

    Kronenwett, Ralf; Brase, Jan C; Weber, Karsten E; Fisch, Karin; Müller, Berit M; Schmidt, Marcus; Filipits, Martin; Dubsky, Peter; Petry, Christoph; Dietel, Manfred; Denkert, Carsten; Bohmann, Kerstin; Prinzler, Judith; Sinn, Bruno V; Haufe, Franziska; Roth, Claudia; Averdick, Manuela; Ropers, Tanja; Windbergs, Claudia

    2012-01-01

    EndoPredict (EP) is a clinically validated multianalyte gene expression test to predict distant metastasis in ER-positive, HER2-negative breast cancer treated with endocrine therapy alone. The test is based on the combined analysis of 12 genes in formalin-fixed, paraffin-embedded (FFPE) tissue by reverse transcription-quantitative real-time PCR (RT-qPCR). Recently, it was shown that EP is feasible for reliable decentralized assessment of gene expression. The aim of this study was the analytical validation of the performance characteristics of the assay and its verification in a molecular-pathological routine laboratory. Gene expression values to calculate the EP score were assayed by one-step RT-qPCR using RNA from FFPE tumor tissue. Limit of blank, limit of detection, linear range, and PCR efficiency were assessed for each of the 12 PCR assays using serial samples dilutions. Different breast cancer samples were used to evaluate RNA input range, precision and inter-laboratory variability. PCR assays were linear up to C q values between 35.1 and 37.2. Amplification efficiencies ranged from 75% to 101%. The RNA input range without considerable change of the EP score was between 0.16 and 18.5 ng/μl. Analysis of precision (variation of day, day time, instrument, operator, reagent lots) resulted in a total noise (standard deviation) of 0.16 EP score units on a scale from 0 to 15. The major part of the total noise (SD 0.14) was caused by the replicate-to-replicate noise of the PCR assays (repeatability) and was not associated with different operating conditions (reproducibility). Performance characteristics established in the manufacturer’s laboratory were verified in a routine molecular pathology laboratory. Comparison of 10 tumor samples analyzed in two different laboratories showed a Pearson coefficient of 0.995 and a mean deviation of 0.15 score units. The EP test showed reproducible performance characteristics with good precision and negligible laboratory

  8. Detection and characterization of recombinant DNA expressing vip3A-type insecticidal gene in GMOs--standard single, multiplex and construct-specific PCR assays.

    Science.gov (United States)

    Singh, Chandra K; Ojha, Abhishek; Bhatanagar, Raj K; Kachru, Devendra N

    2008-01-01

    Vegetative insecticidal protein (Vip), a unique class of insecticidal protein, is now part of transgenic plants for conferring resistance against lepidopteron pests. In order to address the imminent regulatory need for detection and labeling of vip3A carrying genetically modified (GM) products, we have developed a standard single PCR and a multiplex PCR assay. As far as we are aware, this is the first report on PCR-based detection of a vip3A-type gene (vip-s) in transgenic cotton and tobacco. Our assay involves amplification of a 284-bp region of the vip-s gene. This assay can possibly detect as many as 20 natural wild-type isolates bearing a vip3A-like gene and two synthetic genes of vip3A in transgenic plants. The limit of detection as established by our assay for GM trait (vip-s) is 0.1%. Spiking with nontarget DNA originating from diverse plant sources had no inhibitory effect on vip-s detection. Since autoclaving of vip-s bearing GM leaf samples showed no deterioration/interference in detection efficacy, the assay seems to be suitable for processed food products as well. The vip-s amplicon identity was reconfirmed by restriction endonuclease assay. The primer set for vip-s was equally effective in a multiplex PCR assay format (duplex, triplex and quadruplex), used in conjunction with the primer sets for the npt-II selectable marker gene, Cauliflower mosaic virus 35S promoter and nopaline synthetase terminator, enabling concurrent detection of the transgene, regulatory sequences and marker gene. Further, the entire transgene construct was amplified using the forward primer of the promoter and the reverse primer of the terminator. The resultant amplicon served as a template for nested PCR to confirm the construct integrity. The method is suitable for screening any vip3A-carrying GM plant and food. The availability of a reliable PCR assay method prior to commercial release of vip3A-based transgenic crops and food would facilitate rapid and efficient regulatory

  9. Effects of Assisted Reproduction Technology on Placental Imprinted Gene Expression

    Science.gov (United States)

    Katagiri, Yukiko; Aoki, Chizu; Tamaki-Ishihara, Yuko; Fukuda, Yusuke; Kitamura, Mamoru; Matsue, Yoichi; So, Akiko; Morita, Mineto

    2010-01-01

    We used placental tissue to compare the imprinted gene expression of IGF2, H19, KCNQ1OT1, and CDKN1C of singletons conceived via assisted reproduction technology (ART) with that of spontaneously conceived (SC) singletons. Of 989 singletons examined (ART n = 65; SC n = 924), neonatal weight was significantly lower (P < .001) in the ART group than in the SC group, but placental weight showed no significant difference. Gene expression analyzed by real-time PCR was similar for both groups with appropriate-for-date (AFD) birth weight. H19 expression was suppressed in fetal growth retardation (FGR) cases in the ART and SC groups compared with AFD cases (P < .02 and P < .05, resp.). In contrast, CDKN1C expression was suppressed in FGR cases in the ART group (P < .01), while KCNQ1OT1 expression was hyperexpressed in FGR cases in the SC group (P < .05). As imprinted gene expression patterns differed between the ART and SC groups, we speculate that ART modifies epigenetic status even though the possibilities always exist. PMID:20706653

  10. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  11. A Toolbox for Quantitative Gene Expression in Varroa destructor: RNA Degradation in Field Samples and Systematic Analysis of Reference Gene Stability.

    Directory of Open Access Journals (Sweden)

    Ewan M Campbell

    Full Text Available Varroa destructor is the major pest of Apis mellifera and contributes to the global honey bee health crisis threatening food security. Developing new control strategies to combat Varroa will require the application of molecular biology, including gene expression studies by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR. Both high quality RNA samples and suitable stable internal reference genes are required for accurate gene expression studies. In this study, ten candidate genes (succinate dehydrogenase (SDHA, NADH dehydrogenase (NADH, large ribsosmal subunit, TATA-binding protein, glyceraldehyde-3-phosphate dehydrogenase, 18S rRNA (18S, heat-shock protein 90 (HSP90, cyclophilin, α-tubulin, actin, were evaluated for their suitability as normalization genes using the geNorm, Normfinder, BestKeeper, and comparative ΔCq algorithims. Our study proposes the use of no more than two of the four most stable reference genes (NADH, 18S, SDHA and HSP90 in Varroa gene expression studies. These four genes remain stable in phoretic and reproductive stage Varroa and are unaffected by Deformed wing virus load. When used for determining changes in vitellogenin gene expression, the signal-to-noise ratio (SNR for the relatively unstable genes actin and α-tubulin was much lower than for the stable gene combinations (NADH + HSP90 +18S; NADH + HSP90; or NADH. Using both electropherograms and RT-qPCR for short and long amplicons as quality controls, we demonstrate that high quality RNA can be recovered from Varroa up to 10 days later stored at ambient temperature if collected into RNAlater and provided the body is pierced. This protocol allows the exchange of Varroa samples between international collaborators and field sample collectors without requiring frozen collection or shipping. Our results make important contributions to gene expression studies in Varroa by proposing a validated sampling protocol to obtain high quality Varroa

  12. Effect of MLH1 -93G>A on gene expression in patients with colorectal cancer.

    Science.gov (United States)

    Funck, Alexandre; Santos, Juliana C; Silva-Fernandes, Isabelle J L; Rabenhorst, Silvia H B; Martinez, Carlos A R; Ribeiro, Marcelo L

    2014-09-01

    The DNA repair machinery plays a key role in maintaining genomic stability by preventing the emergence of mutations. Furthermore, the -93G>A polymorphism in the MLH1 gene has been associated with an increased risk of developing colorectal cancer. Therefore, the aim of this study was to examine the expression pattern and effect of this polymorphism in normal and tumour samples from patients with colorectal cancer. The MLH1 -93G>A (rs1800734) polymorphism was detected by PCR-RFLP in 49 cases of colorectal cancer. MLH1 expression was investigated using real-time quantitative PCR. The results indicate a significant decrease in MLH1 expression in tumour samples compared to their normal counterparts. The MLH1 gene was also significantly repressed in samples from patients who had some degree of tumour invasion into other organs. Similarly, those patients who were in a more advanced tumour stage (TNM III and IV) exhibited a significant reduction in MLH1 gene expression. Finally, the mutant genotype AA of MLH1 was associated with a significant decrease in the expression of this gene. This finding suggests that this polymorphism could increase the risk of developing colorectal cancer by a defective mismatch repair system, particularly through the loss of MLH1 expression in an allele-specific manner.

  13. [Gene clone and expression of Barx1 in different tooth of the mini-pig at embryonic day 40].

    Science.gov (United States)

    Zhang, Ying; Yin, Ji-rong; Yang, Kai

    2012-10-01

    To partially clone and compare the quantitative expression of tooth development-related gene Barx1 in different teeth of the mini-pig embryo at embryonic day 40, and to investigate the relationship between Barx1 spatial quantitative expression and tooth morphogenesis. The mini-pig Barx1 genes was partially cloned and the mRNA sequences of human Barx1 genes was aligned with expressed sequence tags (EST) of pig by basic local alignment search tool (BLAST), which were assembled with DNAman v5.2.2. With designed primers, Barx1 was partially cloned in use of reverse transcription polymerase chain reaction (PCR), and tested by BLAST with all the species in NCBI database and confirmed as one part of target gene. Laser capture microdissection was used to collect tooth samples from frozen sections which were prepared before in -80°C freezer. Real-time PCR was carried out to analyze quantitative expression in different teeth. Partial mini-pig Barx1 gene of 698 bp was cloned. Real-time PCR showed that, glyceraldehyde-3-phosphate dehydrogenase used as loading control, the figures of 2(-ΔCT) of lower deciduous incisor, canine, the third premolar and molar were 0.000 249, 0.000 715, 0.026 096 and 0.112 656, respectively. There was a trend of increasing expression from anterior to posterior teeth. Barx1 gene could be related to the number or differentiation of tooth cusps.

  14. DNA methylation and gene expression of HIF3A

    DEFF Research Database (Denmark)

    Main, Ailsa Maria; Gillberg, Linn; Jacobsen, Anna Louisa

    2016-01-01

    from 48 families, from whom we had SAT and muscle biopsies. DNA methylation of four CpG sites in the HIF3A promoter was analyzed in the blood and SAT by pyrosequencing, and HIF3A gene expression was analyzed in SAT and muscle by qPCR. An index of whole-body insulin sensitivity was estimated from oral...... individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. METHODS: We studied 137 first-degree relatives of type 2 diabetes (T2D) patients...... glucose tolerance tests. RESULTS: BMI was associated with HIF3A methylation at one CpG site in the blood, and there was a positive association between the blood and SAT methylation levels at a different CpG site within the individuals. The SAT methylation level did not correlate with HIF3A gene expression...

  15. Scarless and sequential gene modification in Pseudomonas using PCR product flanked by short homology regions

    Directory of Open Access Journals (Sweden)

    Liang Rubing

    2010-08-01

    Full Text Available Abstract Background The lambda Red recombination system has been used to inactivate chromosomal genes in various bacteria and fungi. The procedure consists of electroporating a polymerase chain reaction (PCR fragment containing antibiotic cassette flanked by homology regions to the target locus into a strain that can express the lambda Red proteins (Gam, Bet, Exo. Results Here a scarless gene modification strategy based on the Red recombination system has been developed to modify Pseudomonas genome DNA via sequential deletion of multiple targets. This process was mediated by plasmid pRKaraRed encoding the Red proteins regulated by PBAD promoter, which was functional in P. aeruginosa as well as in other bacteria. First the target gene was substituted for the sacB-bla cassette flanked by short homology regions (50 bp, and then this marker gene cassette could be replaced by the PCR fragment flanking itself, generating target-deleted genome without any remnants and no change happened to the surrounding region. Twenty genes involved in the synthesis and regulation pathways of the phenazine derivate, pyocyanin, were modified, including one single-point mutation and deletion of two large operons. The recombination efficiencies ranged from 88% to 98%. Multiple-gene modification was also achieved, generating a triple-gene deletion strain PCA (PAO1, ΔphzHΔphzMΔphzS, which could produce another phenazine derivate, phenazine-1-carboxylic acid (PCA, efficiently and exclusively. Conclusions This lambda Red-based technique can be used to generate scarless and sequential gene modification mutants of P. aeruginosa efficiently, using one-step PCR product flanked by short homology regions. Single-point mutation, scarless deletion of genes can be achieved easily in less than three days. This method may give a new way to construct genetically modified P. aeruginosa strains more efficiently and advance the regulatory network study of this organism.

  16. [Prokaryotic expression and histological localization of the Taenia solium CDC37 gene].

    Science.gov (United States)

    Huang, Jiang; Li, Bo; Dai, Jia-Lin; Zhang, Ai-Hua

    2013-02-01

    To express Taenia solium gene encoding cell division cycle 37 protein (TsCDC37) and investigate its antigenicity and localization in adults of Taenia solium. The complete coding sequence of TsCDC37 was amplified by PCR based on the recombinant plasmid clone from the cDNA library of adult Taenia solium. The PCR product was cloned into a prokaryotic expression vector pET-28a (+). The recombinant expression plasmid was identified by PCR, double endonuclease digestion and sequencing. The recombinant plasmid was transformed into E. coli BL21/DE3 and followed by expression of the protein induced by IPTG. The mice were immunized subcutaneously with purified recombinant TsCDC37 formulated in Freund's adjuvant. The antigenicity of the recombinant protein was examined by Western blotting. The localization of TsCDC37 in adult worms was demonstrated by immunofluorescent technique. The recombinant expression vector was constructed successfully. The recombinant protein was about M(r) 52 000, it was then purified and specifically recognized by immuno sera of SD rats and sera from patients infected with Taenia solium, Taenia saginata or Taenia asiatica. The immunofluorescence assay revealed that TsCDC37 located at the tegument of T. solium adult and the eggs. TsCDC37 gene has been expressed with immunoreactivity. The recombinant protein is mainly expressed in tegument and egg, and is a common antigen of the three human taenia cestodes.

  17. Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility gene sets through network analysis.

    Science.gov (United States)

    Kaur, Surleen; Archer, Kellie J; Devi, M Gouri; Kriplani, Alka; Strauss, Jerome F; Singh, Rita

    2012-10-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous, genetically complex, endocrine disorder of uncertain etiology in women. Our aim was to compare the gene expression profiles in stimulated granulosa cells of PCOS women with and without insulin resistance vs. matched controls. This study included 12 normal ovulatory women (controls), 12 women with PCOS without evidence for insulin resistance (PCOS non-IR), and 16 women with insulin resistance (PCOS-IR) undergoing in vitro fertilization. Granulosa cell gene expression profiling was accomplished using Affymetrix Human Genome-U133 arrays. Differentially expressed genes were classified according to gene ontology using ingenuity pathway analysis tools. Microarray results for selected genes were confirmed by real-time quantitative PCR. A total of 211 genes were differentially expressed in PCOS non-IR and PCOS-IR granulosa cells (fold change≥1.5; P≤0.001) vs. matched controls. Diabetes mellitus and inflammation genes were significantly increased in PCOS-IR patients. Real-time quantitative PCR confirmed higher expression of NCF2 (2.13-fold), TCF7L2 (1.92-fold), and SERPINA1 (5.35-fold). Increased expression of inflammation genes ITGAX (3.68-fold) and TAB2 (1.86-fold) was confirmed in PCOS non-IR. Different cardiometabolic disease genes were differentially expressed in the two groups. Decreased expression of CAV1 (-3.58-fold) in PCOS non-IR and SPARC (-1.88-fold) in PCOS-IR was confirmed. Differential expression of genes involved in TGF-β signaling (IGF2R, increased; and HAS2, decreased), and oxidative stress (TXNIP, increased) was confirmed in both groups. Microarray analysis demonstrated differential expression of genes linked to diabetes mellitus, inflammation, cardiovascular diseases, and infertility in the granulosa cells of PCOS women with and without insulin resistance. Because these dysregulated genes are also involved in oxidative stress, lipid metabolism, and insulin signaling, we hypothesize that these

  18. Genome-Wide Identification of the Alba Gene Family in Plants and Stress-Responsive Expression of the Rice Alba Genes.

    Science.gov (United States)

    Verma, Jitendra Kumar; Wardhan, Vijay; Singh, Deepali; Chakraborty, Subhra; Chakraborty, Niranjan

    2018-03-28

    Architectural proteins play key roles in genome construction and regulate the expression of many genes, albeit the modulation of genome plasticity by these proteins is largely unknown. A critical screening of the architectural proteins in five crop species, viz., Oryza sativa , Zea mays , Sorghum bicolor , Cicer arietinum , and Vitis vinifera , and in the model plant Arabidopsis thaliana along with evolutionary relevant species such as Chlamydomonas reinhardtii , Physcomitrella patens , and Amborella trichopoda , revealed 9, 20, 10, 7, 7, 6, 1, 4, and 4 Alba (acetylation lowers binding affinity) genes, respectively. A phylogenetic analysis of the genes and of their counterparts in other plant species indicated evolutionary conservation and diversification. In each group, the structural components of the genes and motifs showed significant conservation. The chromosomal location of the Alba genes of rice ( OsAlba ), showed an unequal distribution on 8 of its 12 chromosomes. The expression profiles of the OsAlba genes indicated a distinct tissue-specific expression in the seedling, vegetative, and reproductive stages. The quantitative real-time PCR (qRT-PCR) analysis of the OsAlba genes confirmed their stress-inducible expression under multivariate environmental conditions and phytohormone treatments. The evaluation of the regulatory elements in 68 Alba genes from the 9 species studied led to the identification of conserved motifs and overlapping microRNA (miRNA) target sites, suggesting the conservation of their function in related proteins and a divergence in their biological roles across species. The 3D structure and the prediction of putative ligands and their binding sites for OsAlba proteins offered a key insight into the structure-function relationship. These results provide a comprehensive overview of the subtle genetic diversification of the OsAlba genes, which will help in elucidating their functional role in plants.

  19. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  20. Validation of Tuba1a as Appropriate Internal Control for Normalization of Gene Expression Analysis during Mouse Lung Development

    Directory of Open Access Journals (Sweden)

    Aditi Mehta

    2015-02-01

    Full Text Available The expression ratio between the analysed gene and an internal control gene is the most widely used normalization method for quantitative RT-PCR (qRT-PCR expression analysis. The ideal reference gene for a specific experiment is the one whose expression is not affected by the different experimental conditions tested. In this study, we validate the applicability of five commonly used reference genes during different stages of mouse lung development. The stability of expression of five different reference genes (Tuba1a, Actb Gapdh, Rn18S and Hist4h4 was calculated within five experimental groups using the statistical algorithm of geNorm software. Overall, Tuba1a showed the least variability in expression among the different stages of lung development, while Hist4h4 and Rn18S showed the maximum variability in their expression. Expression analysis of two lung specific markers, surfactant protein C (SftpC and Clara cell-specific 10 kDA protein (Scgb1a1, normalized to each of the five reference genes tested here, confirmed our results and showed that incorrect reference gene choice can lead to artefacts. Moreover, a combination of two internal controls for normalization of expression analysis during lung development will increase the accuracy and reliability of results.

  1. Profiling helper T cell subset gene expression in deer mice

    Directory of Open Access Journals (Sweden)

    Hjelle Brian

    2006-08-01

    Full Text Available Abstract Background Deer mice (Peromyscus maniculatus are the most common mammals in North America and are reservoirs for several zoonotic agents, including Sin Nombre virus (SNV, the principal etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in North America. Unlike human HCPS patients, SNV-infected deer mice show no overt pathological symptoms, despite the presence of virus in the lungs. A neutralizing IgG antibody response occurs, but the virus establishes a persistent infection. Limitations of detailed analysis of deer mouse immune responses to SNV are the lack of reagents and methods for evaluating such responses. Results We developed real-time PCR-based detection assays for several immune-related transcription factor and cytokine genes from deer mice that permit the profiling of CD4+ helper T cells, including markers of Th1 cells (T-bet, STAT4, IFNγ, TNF, LT, Th2 cells (GATA-3, STAT6, IL-4, IL-5 and regulatory T cells (Fox-p3, IL-10, TGFβ1. These assays compare the expression of in vitro antigen-stimulated and unstimulated T cells from individual deer mice. Conclusion We developed molecular methods for profiling immune gene expression in deer mice, including a multiplexed real-time PCR assay for assessing expression of several cytokine and transcription factor genes. These assays should be useful for characterizing the immune responses of experimentally- and naturally-infected deer mice.

  2. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  3. EXPRESSION OF ANTIVIRAL GENE ON TIGER SHRIMP Penaeus monodon AT DIFFERENT TISSUE AND BODY SIZE

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2012-12-01

    Full Text Available The role of tiger shrimp defense against invading pathogen on molecular level such antiviral gene expression is limited to be reported. Gene expression is a process which codes information of genes that is converted to the protein as a phenotype. Distribution of PmAV antivirus gene, that has been reported as an important gene on non-specific response immune, is needed to be observed to several organs/tissues and size of tiger shrimp. The aim of this study is to determine the distribution of gene antiviral expression at several organ/tissue and size of shrimp. The organs/tissues observed in this study were: gill, hepatopancres, muscle tissue, eyes, heart, stomach, gonad, and intestine. While the size of shrimp consisted of three groups, those are: (A 10-20 g/ind., (B 30-40 g/ind., and (C 60-70 g/ind. Analysis of antiviral gene expression was performed by RNA extraction, followed by the cDNA syntesis, and amplification of gene expression by semi-quantitative PCR. The result of PCR optimation showed the optimal concentration of cDNA and primer was 1 μL and 50 mol, respectively for PCR final volume of 25 μL. Antiviral gene was expressed on the hepatopancreas and stomach in percentage of 50.0% and 16.7%, respectively. While the highest percentage of individual expressing the antiviral gene was observed in the shrimp size of C (66.7%, followed by B (50.0% and A (16.7%. The result of study implied that the hepatopancreas has importantly involed in tiger shrimp defense mechanism on viral infection.

  4. Real-time gene expression analysis in carp (Cyprinus carpio L.) skin: Inflammatory responses to injury mimicking infection with ectoparasites

    NARCIS (Netherlands)

    Gonzalez, S.F.; Huising, M.O.; Stakauskas, R.; Forlenza, M.; Verburg-van Kemenade, B.M.L.; Buchmann, K.; Nielsen, M.E.; Wiegertjes, G.F.

    2007-01-01

    We studied a predictive model of gene expression induced by mechanical injury of fish skin, to resolve the confounding effects on the immune system induced by injury and skin parasite-specific molecules. We applied real time quantitative PCR (RQ-PCR) to measure the expression of the pro-inflammatory

  5. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling.

    Science.gov (United States)

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute; Blake, Jonathon; Schwager, Christian; Ansorge, Wilhelm; Nielsen, John E; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Leffers, Henrik

    2004-07-15

    Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly expressed in testicular CIS, including many never reported in testicular neoplasms. Expression was further verified by semiquantitative reverse transcription-PCR and in situ hybridization. Among the highest expressed genes were NANOG and POU5F1, and reverse transcription-PCR revealed possible changes in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported as unstable in cultured ESCs. The close similarity between CIS and ESCs explains the pluripotency of CIS. Moreover, the findings are consistent with an early prenatal origin of TGCTs and thus suggest that etiologic factors operating in utero are of primary importance for the incidence trends of TGCTs. Finally, some of the highly expressed genes identified in this study are promising candidates for new diagnostic markers for CIS and/or TGCTs.

  6. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome

    Directory of Open Access Journals (Sweden)

    Tai Dessmon

    2005-01-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS emerged in later February 2003, as a new epidemic form of life-threatening infection caused by a novel coronavirus. However, the immune-pathogenesis of SARS is poorly understood. To understand the host response to this pathogen, we investigated the gene expression profiles of peripheral blood mononuclear cells (PBMCs derived from SARS patients, and compared with healthy controls. Results The number of differentially expressed genes was found to be 186 under stringent filtering criteria of microarray data analysis. Several genes were highly up-regulated in patients with SARS, such as, the genes coding for Lactoferrin, S100A9 and Lipocalin 2. The real-time PCR method verified the results of the gene array analysis and showed that those genes that were up-regulated as determined by microarray analysis were also found to be comparatively up-regulated by real-time PCR analysis. Conclusions This differential gene expression profiling of PBMCs from patients with SARS strongly suggests that the response of SARS affected patients seems to be mainly an innate inflammatory response, rather than a specific immune response against a viral infection, as we observed a complete lack of cytokine genes usually triggered during a viral infection. Our study shows for the first time how the immune system responds to the SARS infection, and opens new possibilities for designing new diagnostics and treatments for this new life-threatening disease.

  7. Anaplasma phagocytophilum and Anaplasma marginale Elicit Different Gene Expression Responses in Cultured Tick Cells

    Directory of Open Access Journals (Sweden)

    Zorica Zivkovic

    2009-01-01

    Full Text Available The genus Anaplasma (Rickettsiales: Anaplasmataceae includes obligate tick-transmitted intracellular organisms, Anaplasma phagocytophilum and Anaplasma marginale that multiply in both vertebrate and tick host cells. Recently, we showed that A. marginale affects the expression of tick genes that are involved in tick survival and pathogen infection and multiplication. However, the gene expression profile in A. phagocytophilum-infected tick cells is currently poorly characterized. The objectives of this study were to characterize tick gene expression profile in Ixodes scapularis ticks and cultured ISE6 cells in response to infection with A. phagocypthilum and to compare tick gene expression responses in A. phagocytophilum- and A. marginale-infected tick cells by microarray and real-time RT-PCR analyses. The results of these studies demonstrated modulation of tick gene expression by A. phagocytophilum and provided evidence of different gene expression responses in tick cells infected with A. phagocytophilum and A. marginale. These differences in Anaplasma-tick interactions may reflect differences in pathogen life cycle in the tick cells.

  8. Gene expression of manganese superoxide dismutase in human glioma cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2010-02-01

    Full Text Available Aim This study analyze the MnSOD gene expression as endogenous antioxidant in human glioma cells compared with leucocyte cells as control.Methods MnSOD gene expression of 20 glioma patients was analyzed by measuring the relative expression of mRNA and enzyme activity of MnSOD in brain and leucocyte cells. The relative expression of mRNA MnSOD was determined by using quantitative Real Time RT-PCR and the enzyme activity of MnSOD using biochemical kit assay (xantine oxidase inhibition. Statistic analysis for mRNA and enzyme activity of MnSOD was performed using Kruskal Wallis test.Results mRNA of MnSOD in glioma cells of 70% sample was 0.015–0.627 lower, 10% was 1.002-1.059 and 20% was 1.409-6.915 higher than in leucocyte cells. Also the specific activity of MnSOD enzyme in glioma cells of 80% sample showed 0,064-0,506 lower and 20% sample was 1.249-2.718 higher than in leucocyte cells.Conclusion MnSOD gene expression in human glioma cells are significantly lower than its expression in leucocytes cells. (Med J Indones 2010; 19:21-5Keywords : MnSOD, glioma, gene expression

  9. IL-1 receptor antagonism and muscle gene expression in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Berchtold, L. A.; Larsen, C. M.; Vaag, A.

    2009-01-01

    ). To investigate the effects of IL-1Ra in insulin-sensitive tissue, gene expression levels in skeletal muscle from type 2 diabetic patients treated with IL-1Ra were analysed. Methods. Gene expression profiles in vastus lateralis muscle biopsies from five obese patients (BMI>27) were determined before and after 13......RT-PCR, were significantly altered when comparing the number of transcripts before and after treatment for each individual. Conclusion. Treatment with IL-1Ra did not significantly affect gene expression levels in skeletal muscle in this limited and selected sample of obese patients with type 2 diabetes. Larger...

  10. Identification of a Common Different Gene Expression Signature in Ischemic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Yana Li

    2018-01-01

    Full Text Available The molecular mechanisms underlying the development of ischemic cardiomyopathy (ICM remain poorly understood. Gene expression profiling is helpful to discover the molecular changes taking place in ICM. The aim of this study was to identify the genes that are significantly changed during the development of heart failure caused by ICM. The differentially expressed genes (DEGs were identified from 162 control samples and 227 ICM patients. PANTHER was used to perform gene ontology (GO, and Reactome for pathway enrichment analysis. A protein–protein interaction network was established using STRING and Cytoscape. A further validation was performed by real-time polymerase chain reaction (RT-PCR. A total of 255 common DEGs was found. Gene ontology, pathway enrichment, and protein–protein interaction analysis showed that nucleic acid-binding proteins, enzymes, and transcription factors accounted for a great part of the DEGs, while immune system signaling and cytokine signaling displayed the most significant changes. Furthermore, seven hub genes and nine transcription factors were identified. Interestingly, the top five upregulated DEGs were located on chromosome Y, and four of the top five downregulated DEGs were involved in immune and inflammation signaling. Further, the top DEGs were validated by RT-PCR in human samples. Our study explored the possible molecular mechanisms of heart failure caused by ischemic heart disease.

  11. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    Science.gov (United States)

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that

  12. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    Directory of Open Access Journals (Sweden)

    Barvkar Vitthal T

    2012-05-01

    Full Text Available Abstract Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L. is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N. Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST, microarray data and reverse transcription quantitative real time PCR (RT-qPCR. Seventy-three per cent of these genes (100 out of 137 showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot

  13. LPL gene expression is associated with poor prognosis in CLL and closely related to NOTCH1 mutations

    DEFF Research Database (Denmark)

    Kristensen, Louise; Kielsgaard Kristensen, Thomas; Abildgaard, Niels

    2016-01-01

    these markers. AIM: To evaluate LPL gene expression together with the well-established prognostic markers of CLL and investigate correlations with more recently identified prognostic markers, NOTCH1 and TP53 mutations. METHODS: On 149 patients LPL gene expression was analyzed by real-time RT-PCR. Exon 34...... of NOTCH1 was PCR amplified and directly sequenced. RESULTS: LPL gene expression could be measured as a categorical variable (LPL+/LPL-) and was associated with time to treatment (p... and new prognostic markers, 3 out of 4 patients, who received treatment within 24 months after diagnosis, were LPL+ (p=0.03). There was a strong correlation between NOTCH1 mutation and LPL+ (p=0.005). The unfavorable prognosis of LPL+ was maintained in CLL with wild-type NOTCH1. CONCLUSIONS: NOTCH1...

  14. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley (Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli.

    Science.gov (United States)

    Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley ( GAPDH, ACTIN, eIF-4 α, SAND, UBC, TIP41, EF-1 α, and TUB ) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1 α and TUB were the most stable genes for abiotic stresses, whereas EF-1 α, GAPDH , and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1 α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley.

  15. Suitable reference genes for accurate gene expression analysis in parsley (Petroselinum crispum for abiotic stresses and hormone stimuli

    Directory of Open Access Journals (Sweden)

    Meng-Yao Li

    2016-09-01

    Full Text Available Parsley is one of the most important vegetable in Apiaceae family and widely used in food industry, medicinal and cosmetic. The recent studies in parsley are mainly focus on chemical composition, further research involving the analysis of the gene functions and expressions will be required. qPCR is a powerful method for detecting very low quantities of target transcript levels and widely used for gene expression studies. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, three software geNorm, NormFinder, and BestKeeper were used to evaluate the expression stabilities of eight candidate reference genes (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB under various conditions including abiotic stresses (heat, cold, salt, and drought and hormone stimuli treatments (GA, SA, MeJA, and ABA. The results showed that EF-1α and TUB were identified as the most stable genes for abiotic stresses, while EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes across all the tested samples, while UBC was the least stable one. The expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study provides a guideline for selection the suitable reference genes in gene expression in parsley.

  16. Expression of the tumor suppressor genes NF2, 4.1B, and TSLC1 in canine meningiomas.

    Science.gov (United States)

    Dickinson, P J; Surace, E I; Cambell, M; Higgins, R J; Leutenegger, C M; Bollen, A W; LeCouteur, R A; Gutmann, D H

    2009-09-01

    Meningiomas are common primary brain tumors in dogs; however, little is known about the molecular genetic mechanisms involved in their tumorigenesis. Several tumor suppressor genes have been implicated in meningioma pathogenesis in humans, including the neurofibromatosis 2 (NF2), protein 4.1B (4.1 B), and tumor suppressor in lung cancer-1 (TSLC1) genes. We investigated the expression of these tumor suppressor genes in a series of spontaneous canine meningiomas using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) (NF2; n = 25) and western blotting (NF2/merlin, 4.1B, TSLC1; n = 30). Decreased expression of 4.1B and TSLC1 expression on western blotting was seen in 6/30 (20%) and in 15/30 (50%) tumors, respectively, with 18/30 (60%) of meningiomas having decreased or absent expression of one or both proteins. NF2 gene expression assessed by western blotting and RT-PCR varied considerably between individual tumors. Complete loss of NF2 protein on western blotting was not seen, unlike 4.1B and TSLC1. Incidence of TSLC1 abnormalities was similar to that seen in human meningiomas, while perturbation of NF2 and 4.1B appeared to be less common than reported for human tumors. No association was observed between tumor grade, subtype, or location and tumor suppressor gene expression based on western blot or RT-PCR. These results suggest that loss of these tumor suppressor genes is a frequent occurrence in canine meningiomas and may be an early event in tumorigenesis in some cases. In addition, it is likely that other, as yet unidentified, genes play an important role in canine meningioma formation and growth.

  17. PCR cloning of Polyhydroxybutyrate Synthase Gene (phbC) from Aeromonashydrophila

    International Nuclear Information System (INIS)

    Enan, M. R.; Bashandy, S.A.

    2006-01-01

    Plastic wastes are considered to be severe environmental contaminantscausing waste disposal problems. Widespread use of biodegradable plastics isone of the solutions, but it is limited by high production cost. A polymerasechain reaction (PCR) protocol was developed for the specific for the specificdetection and isolation of full-length gene coding for polyhydroxybutyrate(PBH). (PCR) strategy using (PHB) primers resulted in the amplification of(DNA) fragments with the expected size from all isolated bacteria (PBH)synthase gene was cloned directly from Aeromonas hydrophila genome for thefirst time. The clonec fragment was named (phbCAh) gene exhibits similarly to(PHB) synthase genes of Alcaligenes latus and Pseudomonas oleovorans (97%),Alcaligenes sp. (81%) and Comamonas acidovorans (84%). (author)

  18. Gene expression disruptions of organism versus organ in Drosophila species hybrids.

    Directory of Open Access Journals (Sweden)

    Daniel J Catron

    2008-08-01

    Full Text Available Hybrid dysfunctions, such as sterility, may result in part from disruptions in the regulation of gene expression. Studies of hybrids within the Drosophila simulans clade have reported genes expressed above or below the expression observed in their parent species, and such misexpression is associated with male sterility in multigenerational backcross hybrids. However, these studies often examined whole bodies rather than testes or had limited replication using less-sensitive but global techniques. Here, we use a new RNA isolation technique to re-examine hybrid gene expression disruptions in both testes and whole bodies from single Drosophila males by real-time quantitative RT-PCR. We find two early-spermatogenesis transcripts are underexpressed in hybrid whole-bodies but not in assays of testes alone, while two late-spermatogenesis transcripts seem to be underexpressed in both whole-bodies and testes alone. Although the number of transcripts surveyed is limited, these results provide some support for a previous hypothesis that the spermatogenesis pathway in these sterile hybrids may be disrupted sometime after the expression of the early meiotic arrest genes.

  19. Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor.

    Science.gov (United States)

    Jia, Xiwei; Zou, Zhihua; Wang, Guodong; Wang, Shuhong; Wang, Yilei; Zhang, Ziping

    2011-10-01

    In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes. Published by Elsevier Ltd.

  20. Differential Gene Expression Profile in the Rat Caudal Vestibular Nucleus is Associated with Individual Differences in Motion Sickness Susceptibility.

    Directory of Open Access Journals (Sweden)

    Jun-Qin Wang

    Full Text Available To identify differentially expressed genes associated with motion sickness (MS susceptibility in the rat caudal vestibular nucleus.We identified MS susceptible (MSS and insusceptible (inMSS rats by quantifying rotation-induced MS symptoms: defecation and spontaneous locomotion activity. Microarray analysis was used to screen differentially expressed genes in the caudal vestibular nucleus (CVN after rotation. Plasma stress hormones were identified by radioimmunoassay. Candidate genes were selected by bioinformatics analysis and the microarray results were verified by real-time quantitative-PCR (RT-qPCR methods. By using Elvax implantation, receptor antagonists or recombinant adenovirus targeting the candidate genes were applied to the CVN to evaluate their contribution to MS susceptibility variability. Validity of gene expression manipulation was verified by RT-qPCR and western blot analysis.A total of 304 transcripts were differentially expressed in the MSS group compared with the inMSS group. RT-qPCR analysis verified the expression pattern of candidate genes, including nicotinic cholinergic receptor (nAchR α3 subunit, 5-hydroxytryptamine receptor 4 (5-HT4R, tachykinin neurokinin-1 (NK1R, γ-aminobutyric acid A receptor (GABAAR α6 subunit, olfactory receptor 81 (Olr81 and homology 2 domain-containing transforming protein 1 (Shc1. In MSS animals, the nAchR antagonist mecamylamine significantly alleviated rotation-induced MS symptoms and the plasma β-endorphin response. The NK1R antagonist CP99994 and Olr81 knock-down were effective for the defecation response, while the 5-HT4R antagonist RS39604 and Shc1 over-expression showed no therapeutic effect. In inMSS animals, rotation-induced changes in spontaneous locomotion activity and the plasma β-endorphin level occurred in the presence of the GABAAR antagonist gabazine.Our findings suggested that the variability of the CVN gene expression profile after motion stimulation might be a putative

  1. Expression stability of two housekeeping genes (18S rRNA and G3PDH) during in vitro maturation of follicular oocytes in buffalo (Bubalus bubalis).

    Science.gov (United States)

    Aswal, Ajay Pal Singh; Raghav, Sarvesh; De, Sachinandan; Thakur, Manish; Goswami, Surender Lal; Datta, Tirtha Kumar

    2008-01-15

    The present study was undertaken to evaluate the expression stability of two housekeeping genes (HKGs), 18S rRNA and G3PDH during in vitro maturation (IVM) of oocytes in buffalo, which qualifies their use as internal controls for valid qRT-PCR estimation of other oocyte transcripts. A semi quantitative RT-PCR system was used with optimised qRT-PCR parameters at exponential PCR cycle for evaluation of temporal expression pattern of these genes over 24 h of IVM. 18S rRNA was found more stable in its expression pattern than G3PDH.

  2. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  3. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  4. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: A systematic expression analysis

    International Nuclear Information System (INIS)

    Hamm, Alexander; Knuechel, Ruth; Dahl, Edgar; Veeck, Juergen; Bektas, Nuran; Wild, Peter J; Hartmann, Arndt; Heindrichs, Uwe; Kristiansen, Glen; Werbowetski-Ogilvie, Tamra; Del Maestro, Rolando

    2008-01-01

    The inter-alpha-trypsin inhibitors (ITI) are a family of plasma protease inhibitors, assembled from a light chain – bikunin, encoded by AMBP – and five homologous heavy chains (encoded by ITIH1, ITIH2, ITIH3, ITIH4, and ITIH5), contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis. We systematically investigated differential gene expression of the ITIH gene family, as well as AMBP and the interacting partner TNFAIP6 in 13 different human tumor entities (of breast, endometrium, ovary, cervix, stomach, small intestine, colon, rectum, lung, thyroid, prostate, kidney, and pancreas) using cDNA dot blot analysis (Cancer Profiling Array, CPA), semiquantitative RT-PCR and immunohistochemistry. We found that ITIH genes are clearly downregulated in multiple human solid tumors, including breast, colon and lung cancer. Thus, ITIH genes may represent a family of putative tumor suppressor genes that should be analyzed in greater detail in the future. For an initial detailed analysis we chose ITIH2 expression in human breast cancer. Loss of ITIH2 expression in 70% of cases (n = 50, CPA) could be confirmed by real-time PCR in an additional set of breast cancers (n = 36). Next we studied ITIH2 expression on the protein level by analyzing a comprehensive tissue micro array including 185 invasive breast cancer specimens. We found a strong correlation (p < 0.001) between ITIH2 expression and estrogen receptor (ER) expression indicating that ER may be involved in the regulation of this ECM molecule. Altogether, this is the first systematic analysis on the differential expression of ITIH genes in human cancer, showing frequent downregulation that may be associated with initiation and/or progression of these malignancies

  5. Characterization of D-myo-inositol 3-phosphate synthase gene expression in two soybean low phytate mutants

    International Nuclear Information System (INIS)

    Yuan Fengjie; Dong Dekun; Li Baiquan; Yu Xiaomin; Fu Xujun; Zhu Danhua; Zhu Shenlong; Yang Qinghua

    2013-01-01

    1D-myo-inositol 3-phosphate synthase (MIPS) gene plays a significant role in phytic acid biosynthesis. In this study, we used two low phytic acid mutants Gm-lpa-TW-1, Gm-lpa-ZC-2 and their respective wild type parents Taiwan75 and Zhechun No.3 to analyze the expression pattern and characterization of MIPS1 gene. The results showed that there was a common expression pattern of MIPS1 in soybean developing seeds. Expression was weak as detected by RT-PCR in initial stage, increased in the following stages, and the peak expression was appeared in 22 day after flowering (DAF). The expression of MIPS1 gene of non-seed tissues in mutant Gm-lpa-TW-1 and its wildtype Taiwan75 was very weak. In the developing seeds, the MIPS1 expression by qRT-PCR revealed a significant reduction in 22 DAF in mutant Gm-lpa-TW-1 as compared with the wildtype. Similarly, the expression of MIPS1 gene in non-seed tissue of Zhenchun No.3 and Gm-lpa-ZC-2 was very weak. However, stronger expression in developing seeds of the mutant Gm-lpa-ZC-2 than Zhechun No.3 was found. We concluded that the MIPS1 gene expression in the developing seed exhibited an up-regulation pattern in mutant Gm-lpa-ZC-2, but a down-regulation pattern in the mutant Gm-lpa-TW-1. (authors)

  6. Real-time PCR detection of aldoxime dehydratase genes in nitrile-degrading microorganisms.

    Science.gov (United States)

    Dooley-Cullinane, Tríona Marie; O'Reilly, Catherine; Coffey, Lee

    2017-02-01

    Aldoxime dehydratase catalyses the conversion of aldoximes to their corresponding nitriles. Utilization of the aldoxime-nitrile metabolising enzyme pathway can facilitate the move towards a greener chemistry. In this work, a real-time PCR assay was developed for the detection of aldoxime dehydratase genes in aldoxime/nitrile metabolising microorganisms which have been purified from environmental sources. A conventional PCR assay was also designed allowing gene confirmation via sequencing. Aldoxime dehydratase genes were identified in 30 microorganisms across 11 genera including some not previously shown to harbour the gene. The assay displayed a limit of detection of 1 pg/μL DNA or 7 CFU/reaction. This real-time PCR assay should prove valuable in the high-throughput screening of micro-organisms for novel aldoxime dehydratase genes towards pharmaceutical and industrial applications.

  7. Dynamics of Protein Phosphatase Gene Expression in Corbicula fluminea Exposed to Microcystin-LR and to Toxic Microcystis aeruginosa Cells

    Directory of Open Access Journals (Sweden)

    Vitor Vasconcelos

    2011-12-01

    Full Text Available This study investigated the in vivo effects of microcystins on gene expression of several phosphoprotein phosphatases (PPP in the freshwater clam Corbicula fluminea with two different exposure scenarios. Clams were exposed for 96 h to 5 µg L−1 of dissolved microcystin-LR and the relative changes of gene expression of three different types of PPP (PPP1, 2 and 4 were analyzed by quantitative real-time PCR. The results showed a significant induction of PPP2 gene expression in the visceral mass. In contrast, the cyanotoxin did not cause any significant changes on PPP1 and PPP4 gene expression. Based on these results, we studied alterations in transcriptional patterns in parallel with enzymatic activity of C. fluminea for PPP2, induced by a Microcystis aeruginosa toxic strain (1 × 105 cells cm−3 during 96 h. The relative changes of gene expression and enzyme activity in visceral mass were analyzed by quantitative real-time PCR and colorimetric assays respectively. The clams exhibited a significant reduction of PPP2 activity with a concomitant enhancement of gene expression. Considering all the results we can conclude that the exposure to an ecologically relevant concentration of pure or intracellular microcystins (-LR promoted an in vivo effect on PPP2 gene expression in C. fluminea.

  8. Expression studies of the obesity candidate gene FTO in pig

    DEFF Research Database (Denmark)

    Madsen, Majbritt Busk; Birck, Malene Muusfeldt; Fredholm, Merete

    2010-01-01

    Obesity is an increasing problem worldwide and research on candidate genes in good animal models is highly needed. The pig is an excellent model as its metabolism, organ size, and eating habits resemble that of humans. The present study is focused on the characterization of the fat mass and obesity...... associated gene (FTO) in pig. This gene has recently been associated with increased body mass index in several human populations. To establish information on the expression profile of FTO in the pig we performed quantitative PCR in a panel of adult pig tissues and in tissues sampled at different...... and cerebellum). Additionally, in order to see the involvement of the FTO gene in obesity, the changes in expression level were investigated in a nutritional study in brain of Gottingen minipigs under a high cholesterol diet. Significantly higher (P

  9. On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie

    2015-01-01

    NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of

  10. Expression of the genes dual oxidase 2, lipocalin 2 and regenerating islet-derived 1 alpha in Crohn's disease

    DEFF Research Database (Denmark)

    Csillag, C.; Nielsen, O.H.; Vainer, Ben

    2007-01-01

    colonoscopically from 33 CD patients and from 17 control subjects. All controls and 10 CD patients were medication-free at the time of colonoscopy. The Human Genome U133 Plus 2.0 GeneChip Array was used for gene profiling. Hybridization data were analysed with dChip software. Results were confirmed by real......-time reverse transcriptase polymerase chain reaction (RT-PCR). Protein product expression of selected genes was assessed by immunohistochemistry using the Envision+ visualization technique. RESULTS: The expression profile was not homogeneous with the statistical cut-point settings applied. In comparison......, fold change 3.9), codes for a mitogenic protein; this could not be confirmed by RT-PCR. Medication-free patients had no differentially expressed genes as compared with controls. Immunohistochemistry indicated that these proteins were produced by epithelial cells (REG1A, LCN2) and leucocytes (DUOX2...

  11. Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids.

    Science.gov (United States)

    Sundararajan, Vignesh; Civetta, Alberto

    2011-01-01

    Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.

  12. Gene expression profiles reveal key genes for early diagnosis and treatment of adamantinomatous craniopharyngioma.

    Science.gov (United States)

    Yang, Jun; Hou, Ziming; Wang, Changjiang; Wang, Hao; Zhang, Hongbing

    2018-04-23

    Adamantinomatous craniopharyngioma (ACP) is an aggressive brain tumor that occurs predominantly in the pediatric population. Conventional diagnosis method and standard therapy cannot treat ACPs effectively. In this paper, we aimed to identify key genes for ACP early diagnosis and treatment. Datasets GSE94349 and GSE68015 were obtained from Gene Expression Omnibus database. Consensus clustering was applied to discover the gene clusters in the expression data of GSE94349 and functional enrichment analysis was performed on gene set in each cluster. The protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes, and hubs were selected. Support vector machine (SVM) model was built based on the signature genes identified from enrichment analysis and PPI network. Dataset GSE94349 was used for training and testing, and GSE68015 was used for validation. Besides, RT-qPCR analysis was performed to analyze the expression of signature genes in ACP samples compared with normal controls. Seven gene clusters were discovered in the differentially expressed genes identified from GSE94349 dataset. Enrichment analysis of each cluster identified 25 pathways that highly associated with ACP. PPI network was built and 46 hubs were determined. Twenty-five pathway-related genes that overlapped with the hubs in PPI network were used as signatures to establish the SVM diagnosis model for ACP. The prediction accuracy of SVM model for training, testing, and validation data were 94, 85, and 74%, respectively. The expression of CDH1, CCL2, ITGA2, COL8A1, COL6A2, and COL6A3 were significantly upregulated in ACP tumor samples, while CAMK2A, RIMS1, NEFL, SYT1, and STX1A were significantly downregulated, which were consistent with the differentially expressed gene analysis. SVM model is a promising classification tool for screening and early diagnosis of ACP. The ACP-related pathways and signature genes will advance our knowledge of ACP pathogenesis

  13. Quantitation of apolipoprotein epsilon gene expression by competitive polymerase chain reaction in a patient with familial apolipoprotein E deficiency.

    Science.gov (United States)

    Dobmeyer, J M; Rexin, M; Dobmeyer, T S; Klein, S A; Rossol, R; Feussner, G

    1998-06-22

    A simple method of obtaining semiquantitative and reliable data on apolipoprotein (apo) sigma gene expression is described. We detected apo sigma specific sequences by reverse transcription (rT)-PCR. For quantitative measurement, an apo sigma DNA standard was produced allowing the development of a competitive PCR-method. The efficiency of RNA extraction and cDNA synthesis was controlled by quantitation of a housekeeping gene (glyceraldehyde-3-phosphatedehydrogenase, G3PDH) in separate reactions. To imitate a defined induction of apo sigma gene expression, serial twofold dilutions of total RNA were reversely transcribed and the respective cDNAs used to perform a competitive apo sigma and G3PDH PCR. The change in apo sigma cDNA and G3PDH cDNA was 1.7-2.3-fold with an expected value of 2.0-fold. Standard deviations in three independently performed experiments were within a range of < 15% of the mean, indicating low intra-assay variation and high reproducibility. To illustrate this method, apo sigma gene expression was measured in a patient with complete lack of functional active apo E in comparison to healthy controls. The method presented here might be valuable in assessment of apo sigma gene expression in human disease.

  14. Expression and Association of SCD Gene Polymorphisms and Fatty Acid Compositions in Chicken Cross

    Directory of Open Access Journals (Sweden)

    A. Furqon

    2017-12-01

    Full Text Available Stearoyl-CoA desaturase (SCD is an integral membrane protein of endoplasmic reticulum (ER that catalyzes the rate limiting step in the monounsaturated fatty acids from saturated fatty acids. Selection for fatty acids traits based on molecular marker assisted selection is needed to increase a value of chicken meat. This study was designed to analyze expression and associations of SCD gene polymorphisms with fatty acid traits in F2 kampung-broiler chicken cross. A total of 62 F2 kampung-broiler chicken cross (29 males and 33 females were used in this study. Fatty acid traits were measured at 26 weeks of age. Samples were divided into two groups based on fatty acid traits (the highest and the lowest. Primers in exon 2 region were designed from the genomic chicken sequence. The SNP g.37284A>G was detected and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method was then used to genotype. The expression of SCD gene was analyzed using quantitative real time PCR (qRT-PCR. The result showed that there were three genotypes (AA, AG, and GG found in this study. The SCD|AciI polymorphism was significantly associated with palmitoleic acid (C16:1, fatty acids total and saturated fatty acid in 26 weeks old of F2 kampung-broiler chicken cross (P<0.05. The SCD gene was expressed for polyunsaturated fatty acids in liver tissue in two groups of chickens. In conclusion, the SCD gene could be a candidate gene that affects fatty acids traits in F2 kampung-broiler chicken cross.

  15. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Cloning and expression analysis of two dehydrodolichyl diphosphate synthase genes from Tripterygium wilfordii

    Directory of Open Access Journals (Sweden)

    Lin-Hui Gao

    2018-01-01

    Full Text Available Objective: To clone and investigate two dehydrodolichyl diphosphate synthase genes of Tripterygium wilfordii by bioinformatics and tissue expression analysis. Materials and Methods: According to the T. wifordii transcriptome database, specific primers were designed to clone the TwDHDDS1 and TwDHDDS2 genes via PCR. Based on the cloned sequences, protein structure prediction, multiple sequence alignment and phylogenetic tree construction were performed. The expression levels of the genes in different tissues of T. wilfordii were measured by real-time quantitative PCR. Results: The TwDHDDS1 gene encompassed a 873 bp open reading frame (ORF and encoded a protein of 290 amino acids. The calculated molecular weight of the translated protein was about 33.46 kDa, and the theoretical isoelectric point (pI was 8.67. The TwDHDDS2 encompassed a 768 bp ORF, encoding a protein of 255 amino acids with a calculated molecular weight of about 21.19 kDa, and a theoretical isoelectric point (pI of 7.72. Plant tissue expression analysis indicated that TwDHDDS1 and TwDHDDS2 both have relatively ubiquitous expression in all sampled organ tissues, but showed the highest transcription levels in the stems. Conclusions: The results of this study provide a basis for further functional studies of TwDHDDS1 and TwDHDDS2. Most importantly, these genes are promising genetic targets for the regulation of the biosynthetic pathways of important bioactive terpenoids such as triptolide.

  17. Application of disease-associated differentially expressed genes – Mining for functional candidate genes for mastitis resistance in cattle

    Directory of Open Access Journals (Sweden)

    Schwerin Manfred

    2003-06-01

    Full Text Available Abstract In this study the mRNA differential display method was applied to identify mastitis-associated expressed DNA sequences based on different expression patterns in mammary gland samples of non-infected and infected udder quarters of a cow. In total, 704 different cDNA bands were displayed in both udder samples. Five hundred-and-thirty two bands, (75.6% were differentially displayed. Ninety prominent cDNA bands were isolated, re-amplified, cloned and sequenced resulting in 87 different sequences. Amongst the 19 expressed sequence tags showing a similarity with previously described genes, the majority of these sequences exhibited homology to protein kinase encoding genes (26.3%, to genes involved in the regulation of gene expression (26.3%, to growth and differentiation factor encoding genes (21.0% and to immune response or inflammation marker encoding genes (21.0%. These sequences were shown to have mastitis-associated expression in the udder samples of animals with and without clinical mastitis by quantitative RT-PCR. They were mapped physically using a bovine-hamster somatic cell hybrid panel and a 5000 rad bovine whole genome radiation hybrid panel. According to their localization in QTL regions based on an established integrated marker/gene-map and their disease-associated expression, four genes (AHCY, PRKDC, HNRPU, OSTF1 were suggested as potentially involved in mastitis defense.

  18. Alteration in gene expression profile and oncogenicity of esophageal squamous cell carcinoma by RIZ1 upregulation.

    Science.gov (United States)

    Dong, Shang-Wen; Li, Dong; Xu, Cong; Sun, Pei; Wang, Yuan-Guo; Zhang, Peng

    2013-10-07

    To investigate the effect of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) upregulation in gene expression profile and oncogenicity of human esophageal squamous cell carcinoma (ESCC) cell line TE13. TE13 cells were transfected with pcDNA3.1(+)/RIZ1 and pcDNA3.1(+). Changes in gene expression profile were screened and the microarray results were confirmed by reverse transcription-polymerase chain reaction (RT-PCR). Nude mice were inoculated with TE13 cells to establish ESCC xenografts. After two weeks, the inoculated mice were randomly divided into three groups. Tumors were injected with normal saline, transfection reagent pcDNA3.1(+) and transfection reagent pcDNA3.1(+)/RIZ1, respectively. Tumor development was quantified, and changes in gene expression of RIZ1 transfected tumors were detected by RT-PCR and Western blotting. DNA microarray data showed that RIZ1 transfection induced widespread changes in gene expression profile of cell line TE13, with 960 genes upregulated and 1163 downregulated. Treatment of tumor xenografts with RIZ1 recombinant plasmid significantly inhibited tumor growth, decreased tumor size, and increased expression of RIZ1 mRNA compared to control groups. The changes in gene expression profile were also observed in vivo after RIZ1 transfection. Most of the differentially expressed genes were associated with cell development, supervision of viral replication, lymphocyte costimulatory and immune system development in esophageal cells. RIZ1 gene may be involved in multiple cancer pathways, such as cytokine receptor interaction and transforming growth factor beta signaling. The development and progression of esophageal cancer are related to the inactivation of RIZ1. Virus infection may also be an important factor.

  19. In vitro effects of triiodothyronine on gene expression in mouse trophoblast cells.

    Science.gov (United States)

    Silva, J F; Ocarino, N M; Serakides, R

    2015-01-01

    The objective of the present study was to evaluate the effects of different doses of T3 (10(-4) M, 10(-7) M, 10(-9) M) on the in vitro gene expression of Tpbp, Prl3b1, VEGF, PGF, PL-1, and INFy in mouse trophoblast cells by real-time RT-PCR. Doses of 10(-7) and 10(-9) M T3 increased the mRNA levels of Tpbp, Pl3b1, VEGF, PGF, INFy and PL-1. In contrast, the dose of 10(-4) M reduced the gene expression of PL-1 and VEGF. T3 affected the gene expression of differentiation, hormonal, immune and angiogenic factors in mouse trophoblast cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Heterologous Reconstitution of the Intact Geodin Gene Cluster in Aspergillus nidulans through a Simple and Versatile PCR Based Approach

    DEFF Research Database (Denmark)

    Nielsen, Morten Thrane; Nielsen, Jakob Blæsbjerg; Anyaogu, Dianna Chinyere

    2013-01-01

    was transferred in a two step procedure to an expression platform in A. nidulans. The individual cluster fragments were generated by PCR and assembled via efficient USER fusion prior to ransformation and integration via re-iterative gene targeting. A total of 13 open reading frames contained in 25 kb of DNA were...... of solid methodology for genetic manipulation of most species severely hampers pathway haracterization. Here we present a simple PCR based approach for heterologous reconstitution of intact gene clusters. Specifically, the putative gene cluster responsible for geodin production from Aspergillus terreus...... successfully transferred between the two species enabling geodin synthesis in A. nidulans. Subsequently, functions of three genes in the cluster were validated by genetic and chemical analyses. Specifically, ATEG_08451 (gedC) encodes a polyketide synthase, ATEG_08453 (gedR) encodes a transcription factor...

  1. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  2. Distinct lithium-induced gene expression effects in lymphoblastoid cell lines from patients with bipolar disorder.

    Science.gov (United States)

    Fries, Gabriel R; Colpo, Gabriela D; Monroy-Jaramillo, Nancy; Zhao, Junfei; Zhao, Zhongming; Arnold, Jodi G; Bowden, Charles L; Walss-Bass, Consuelo

    2017-11-01

    Lithium is the most commonly prescribed medication for the treatment of bipolar disorder (BD), yet the mechanisms underlying its beneficial effects are still unclear. We aimed to compare the effects of lithium treatment in lymphoblastoid cell lines (LCLs) from BD patients and controls. LCLs were generated from sixty-two BD patients (based on DSM-IV) and seventeen healthy controls matched for age, sex, and ethnicity. Patients were recruited from outpatient clinics from February 2012 to October 2014. LCLs were treated with 1mM lithium for 7 days followed by microarray gene expression assay and validation by real-time quantitative PCR. Baseline differences between groups, as well as differences between vehicle- and lithium-treated cells within each group were analyzed. The biological significance of differentially expressed genes was examined by pathway enrichment analysis. No significant differences in baseline gene expression (adjusted p-value < 0.05) were detected between groups. Lithium treatment of LCLs from controls did not lead to any significant differences. However, lithium altered the expression of 236 genes in LCLs from patients; those genes were enriched for signaling pathways related to apoptosis. Among those genes, the alterations in the expression of PIK3CG, SERP1 and UPP1 were validated by real-time PCR. A significant correlation was also found between circadian functioning and CEBPG and FGF2 expression levels. In summary, our results suggest that lithium treatment induces expression changes in genes associated with the apoptosis pathway in BD LCLs. The more pronounced effects of lithium in patients compared to controls suggest a disease-specific effect of this drug. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  3. Metallothionein gene expression in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Deeksha Pal

    2014-01-01

    Full Text Available Introduction: Metallothioneins (MTs are a group of low-molecular weight, cysteine-rich proteins. In general, MT is known to modulate three fundamental processes: (1 the release of gaseous mediators such as hydroxyl radical or nitric oxide, (2 apoptosis and (3 the binding and exchange of heavy metals such as zinc, cadmium or copper. Previous studies have shown a positive correlation between the expression of MT with invasion, metastasis and poor prognosis in various cancers. Most of the previous studies primarily used immunohistochemistry to analyze localization of MT in renal cell carcinoma (RCC. No information is available on the gene expression of MT2A isoform in different types and grades of RCC. Materials and Methods: In the present study, total RNA was isolated from 38 histopathologically confirmed cases of RCC of different types and grades. Corresponding adjacent normal renal parenchyma was taken as control. Real-time polymerase chain reaction (RT PCR analysis was done for the MT2A gene expression using b-actin as an internal control. All statistical calculations were performed using SPSS software. Results: The MT2A gene expression was found to be significantly increased (P < 0.01 in clear cell RCC in comparison with the adjacent normal renal parenchyma. The expression of MT2A was two to three-fold higher in sarcomatoid RCC, whereas there was no change in papillary and collecting duct RCC. MT2A gene expression was significantly higher in lower grade (grades I and II, P < 0.05, while no change was observed in high-grade tumor (grade III and IV in comparison to adjacent normal renal tissue. Conclusion: The first report of the expression of MT2A in different types and grades of RCC and also these data further support the role of MT2A in tumorigenesis.

  4. Cloning of a Recombinant Plasmid Encoding Thiol-Specific Antioxidant Antigen (TSA) Gene of Leishmania majorand Expression in the Chinese Hamster Ovary Cell Line.

    Science.gov (United States)

    Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi

    2012-01-01

    TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.

  5. Detection of coding genes for enterotoxins in Bacillus cereus by PCR and their products by BCET-RPLA and ELISA Assay

    Directory of Open Access Journals (Sweden)

    Marcela Vyletělová

    2010-01-01

    Full Text Available Determination of enterotoxin production, diarrhoeal and emetic gene identification was studied in 41 Bacillus cereus strains isolated from raw cows’ and raw goats’ milk, pasteurized milk, dairy products during technological processing and from dairy plant equipment. Presence of enterotoxins was detected by BCET-RPLA (HBL and ELISA immunoassay (NHE. Gene identification (nheA, nheB, nheC, hblA, hblC, hblD, bceT, cytK-1, cytK-2, entFM and ces was achieved by means of PCR. Enterotoxin HBL was detected in 32 strains, enterotoxin NHE in all 41 strains. Presence of all three genes nheA, nheB and nheC was confirmed in 40 strains and genes hblA, hblC and hblD in 29 strains. Comparison of used methods was as follow: 1 BCET-RPLA (which detects L2 component and PCR (positive or negative all three hblA, hblC and hblD gene detection were identical in 30 (73%; 2 ELISA (NheA and PCR (all three nheC, nheB and nheA gene expression were identical in 40 (98% cases isolated strains.

  6. Comparison of global brain gene expression profiles between inbred long-sleep and inbred short-sleep mice by high-density gene array hybridization.

    Science.gov (United States)

    Xu, Y; Ehringer, M; Yang, F; Sikela, J M

    2001-06-01

    Inbred long-sleep (ILS) and short-sleep (ISS) mice show significant central nervous system-mediated differences in sleep time for sedative dose of ethanol and are frequently used as a rodent model for ethanol sensitivity. In this study, we have used complementary DNA (cDNA) array hybridization methodology to identify genes that are differentially expressed between the brains of ILS and ISS mice. To carry out this analysis, we used both the gene discovery array (GDA) and the Mouse GEM 1 Microarray. GDA consists of 18,378 nonredundant mouse cDNA clones on a single nylon filter. Complex probes were prepared from total brain mRNA of ILS or ISS mice by using reverse transcription and 33P labeling. The labeled probes were hybridized in parallel to the gene array filters. Data from GDA experiments were analyzed with SQL-Plus and Oracle 8. The GEM microarray includes 8,730 sequence-verified clones on a glass chip. Two fluorescently labeled probes were used to hybridize a microarray simultaneously. Data from GEM experiments were analyzed by using the GEMTools software package (Incyte). Differentially expressed genes identified from each method were confirmed by relative quantitative reverse transcription-polymerase chain reaction (RT-PCR). A total of 41 genes or expressed sequence tags (ESTs) display significant expression level differences between brains of ILS and ISS mice after GDA, GEM1 hybridization, and quantitative RT-PCR confirmation. Among them, 18 clones were expressed higher in ILS mice, and 23 clones were expressed higher in ISS mice. The individual gene or EST's function and mapping information have been analyzed. This study identified 41 genes that are differentially expressed between brains of ILS and ISS mice. Some of them may have biological relevance in mediation of phenotypic variation between ILS and ISS mice for ethanol sensitivity. This study also demonstrates that parallel gene expression comparison with high-density cDNA arrays is a rapid and

  7. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    International Nuclear Information System (INIS)

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  8. DNA Methylation and Gene Expression Profiling of Ewing Sarcoma Primary Tumors Reveal Genes That Are Potential Targets of Epigenetic Inactivation

    Directory of Open Access Journals (Sweden)

    Nikul Patel

    2012-01-01

    Full Text Available The role of aberrant DNA methylation in Ewing sarcoma is not completely understood. The methylation status of 503 genes in 52 formalin-fixed paraffin-embedded EWS tumors and 3 EWS cell lines was compared to human mesenchymal stem cell primary cultures (hMSCs using bead chip methylation analysis. Relative expression of methylated genes was assessed in 5-Aza-2-deoxycytidine-(5-AZA-treated EWS cell lines and in a cohort of primary EWS samples and hMSCs by gene expression and quantitative RT-PCR. 129 genes demonstrated statistically significant hypermethylation in EWS tumors compared to hMSCs. Thirty-six genes were profoundly methylated in EWS and unmethylated in hMSCs. 5-AZA treatment of EWS cell lines resulted in upregulation of expression of hundreds of genes including 162 that were increased by at least 2-fold. The expression of 19 of 36 candidate hypermethylated genes was increased following 5-AZA. Analysis of gene expression from an independent cohort of tumors confirmed decreased expression of six of nineteen hypermethylated genes (AXL, COL1A1, CYP1B1, LYN, SERPINE1, and VCAN. Comparing gene expression and DNA methylation analyses proved to be an effective way to identify genes epigenetically regulated in EWS. Further investigation is ongoing to elucidate the role of these epigenetic alterations in EWS pathogenesis.

  9. Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress.

    Science.gov (United States)

    Dmitriev, Alexey A; Kudryavtseva, Anna V; Krasnov, George S; Koroban, Nadezhda V; Speranskaya, Anna S; Krinitsina, Anastasia A; Belenikin, Maxim S; Snezhkina, Anastasiya V; Sadritdinova, Asiya F; Kishlyan, Natalya V; Rozhmina, Tatiana A; Yurkevich, Olga Yu; Muravenko, Olga V; Bolsheva, Nadezhda L; Melnikova, Nataliya V

    2016-11-16

    Cultivated flax (Linum usitatissimum L.) is widely used for production of textile, food, chemical and pharmaceutical products. However, various stresses decrease flax production. Search for genes, which are involved in stress response, is necessary for breeding of adaptive cultivars. Imbalanced concentration of nutrient elements in soil decrease flax yields and also results in heritable changes in some flax lines. The appearance of Linum Insertion Sequence 1 (LIS-1) is the most studied modification. However, LIS-1 function is still unclear. High-throughput sequencing of transcriptome of flax plants grown under normal (N), phosphate deficient (P), and nutrient excess (NPK) conditions was carried out using Illumina platform. The assembly of transcriptome was performed, and a total of 34924, 33797, and 33698 unique transcripts for N, P, and NPK sequencing libraries were identified, respectively. We have not revealed any LIS-1 derived mRNA in our sequencing data. The analysis of high-throughput sequencing data allowed us to identify genes with potentially differential expression under imbalanced nutrition. For further investigation with qPCR, 15 genes were chosen and their expression levels were evaluated in the extended sampling of 31 flax plants. Significant expression alterations were revealed for genes encoding WRKY and JAZ protein families under P and NPK conditions. Moreover, the alterations of WRKY family genes differed depending on LIS-1 presence in flax plant genome. Besides, we revealed slight and LIS-1 independent mRNA level changes of KRP2 and ING1 genes, which are adjacent to LIS-1, under nutrition stress. Differentially expressed genes were identified in flax plants, which were grown under phosphate deficiency and excess nutrition, on the basis of high-throughput sequencing and qPCR data. We showed that WRKY and JAS gene families participate in flax response to imbalanced nutrient content in soil. Besides, we have not identified any mRNA, which could be

  10. Gene expression profiling of flax (Linum usitatissimum L. under edaphic stress

    Directory of Open Access Journals (Sweden)

    Alexey A. Dmitriev

    2016-11-01

    Full Text Available Abstract Background Cultivated flax (Linum usitatissimum L. is widely used for production of textile, food, chemical and pharmaceutical products. However, various stresses decrease flax production. Search for genes, which are involved in stress response, is necessary for breeding of adaptive cultivars. Imbalanced concentration of nutrient elements in soil decrease flax yields and also results in heritable changes in some flax lines. The appearance of Linum Insertion Sequence 1 (LIS-1 is the most studied modification. However, LIS-1 function is still unclear. Results High-throughput sequencing of transcriptome of flax plants grown under normal (N, phosphate deficient (P, and nutrient excess (NPK conditions was carried out using Illumina platform. The assembly of transcriptome was performed, and a total of 34924, 33797, and 33698 unique transcripts for N, P, and NPK sequencing libraries were identified, respectively. We have not revealed any LIS-1 derived mRNA in our sequencing data. The analysis of high-throughput sequencing data allowed us to identify genes with potentially differential expression under imbalanced nutrition. For further investigation with qPCR, 15 genes were chosen and their expression levels were evaluated in the extended sampling of 31 flax plants. Significant expression alterations were revealed for genes encoding WRKY and JAZ protein families under P and NPK conditions. Moreover, the alterations of WRKY family genes differed depending on LIS-1 presence in flax plant genome. Besides, we revealed slight and LIS-1 independent mRNA level changes of KRP2 and ING1 genes, which are adjacent to LIS-1, under nutrition stress. Conclusions Differentially expressed genes were identified in flax plants, which were grown under phosphate deficiency and excess nutrition, on the basis of high-throughput sequencing and qPCR data. We showed that WRKY and JAS gene families participate in flax response to imbalanced nutrient content in soil

  11. Temporal expression pattern of genes during the period of sex differentiation in human embryonic gonads

    DEFF Research Database (Denmark)

    Mamsen, Linn S; Ernst, Emil H; Borup, Rehannah

    2017-01-01

    The precise timing and sequence of changes in expression of key genes and proteins during human sex-differentiation and onset of steroidogenesis was evaluated by whole-genome expression in 67 first trimester human embryonic and fetal ovaries and testis and confirmed by qPCR and immunohistochemistry...... (IHC). SRY/SOX9 expression initiated in testis around day 40 pc, followed by initiation of AMH and steroidogenic genes required for androgen production at day 53 pc. In ovaries, gene expression of RSPO1, LIN28, FOXL2, WNT2B, and ETV5, were significantly higher than in testis, whereas GLI1...... was significantly higher in testis than ovaries. Gene expression was confirmed by IHC for GAGE, SOX9, AMH, CYP17A1, LIN28, WNT2B, ETV5 and GLI1. Gene expression was not associated with the maternal smoking habits. Collectively, a precise temporal determination of changes in expression of key genes involved in human...

  12. Differential gene expression underlying ovarian phenotype determination in honey bee, Apis mellifera L., caste development.

    Science.gov (United States)

    Lago, Denyse Cavalcante; Humann, Fernanda Carvalho; Barchuk, Angel Roberto; Abraham, Kuruvilla Joseph; Hartfelder, Klaus

    2016-12-01

    Adult honey bee queens and workers drastically differ in ovary size. This adult ovary phenotype difference becomes established during the final larval instar, when massive programmed cell death leads to the degeneration of 95-99% of the ovariole anlagen in workers. The higher juvenile hormone (JH) levels in queen larvae protect the ovaries against such degeneration. To gain insights into the molecular architecture underlying this divergence critical for adult caste fate and worker sterility, we performed a microarray analysis on fourth and early fifth instar queen and worker ovaries. For the fourth instar we found nine differentially expressed genes (DEGs) with log 2 FC > 1.0, but this number increased to 56 in early fifth-instar ovaries. We selected 15 DEGs for quantitative PCR (RT-qPCR) analysis. Nine differed significantly by the variables caste and/or development. Interestingly, genes with enzyme functions were higher expressed in workers, while those related to transcription and signaling had higher transcript levels in queens. For the RT-qPCR confirmed genes we analyzed their response to JH. This revealed a significant up-regulation for two genes, a short chain dehydrogenase reductase (sdr) and a heat shock protein 90 (hsp90). Five other genes, including hsp60 and hexamerin 70b (hex70b), were significantly down-regulated by JH. The sdr gene had previously come up as differentially expressed in other transcriptome analyses on honey bee larvae and heat shock proteins are frequently involved in insect hormone responses, this making them interesting candidates for further functional assays. Copyright © 2016. Published by Elsevier Ltd.

  13. Study of formation of green eggshell color in ducks through global gene expression.

    Science.gov (United States)

    Xu, Fa Qiong; Li, Ang; Lan, Jing Jing; Wang, Yue Ming; Yan, Mei Jiao; Lian, Sen Yang; Wu, Xu

    2018-01-01

    The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC) transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC) supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated) with ABCG2 (up-regulated) and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.

  14. Study of formation of green eggshell color in ducks through global gene expression.

    Directory of Open Access Journals (Sweden)

    Fa Qiong Xu

    Full Text Available The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated with ABCG2 (up-regulated and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.

  15. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Science.gov (United States)

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  16. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  17. MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect.

    Science.gov (United States)

    Chai, Hui; Yan, Zhaoyuan; Huang, Ke; Jiang, Yuanqing; Zhang, Lin

    2018-02-01

    This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.

  18. Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes

    Directory of Open Access Journals (Sweden)

    Christopher A. Aoki

    2006-01-01

    Full Text Available Primary sclerosing cholangitis (PSC is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA from peripheral blood mononuclear cells (PBMC was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6 and membrane-spanning 4-domains, subfamily A (ms4a were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5 was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated.

  19. Elasmobranch qPCR reference genes: a case study of hypoxia preconditioned epaulette sharks

    Directory of Open Access Journals (Sweden)

    Ashton Kevin J

    2010-04-01

    Full Text Available Abstract Background Elasmobranch fishes are an ancient group of vertebrates which have high potential as model species for research into evolutionary physiology and genomics. However, no comparative studies have established suitable reference genes for quantitative PCR (qPCR in elasmobranchs for any physiological conditions. Oxygen availability has been a major force shaping the physiological evolution of vertebrates, especially fishes. Here we examined the suitability of 9 reference candidates from various functional categories after a single hypoxic insult or after hypoxia preconditioning in epaulette shark (Hemiscyllium ocellatum. Results Epaulette sharks were caught and exposed to hypoxia. Tissues were collected from 10 controls, 10 individuals with single hypoxic insult and 10 individuals with hypoxia preconditioning (8 hypoxic insults, 12 hours apart. We produced sequence information for reference gene candidates and monitored mRNA expression levels in four tissues: cerebellum, heart, gill and eye. The stability of the genes was examined with analysis of variance, geNorm and NormFinder. The best ranking genes in our study were eukaryotic translation elongation factor 1 beta (eef1b, ubiquitin (ubq and polymerase (RNA II (DNA directed polypeptide F (polr2f. The performance of the ribosomal protein L6 (rpl6 was tissue-dependent. Notably, in one tissue the analysis of variance indicated statistically significant differences between treatments for genes that were ranked as the most stable candidates by reference gene software. Conclusions Our results indicate that eef1b and ubq are generally the most suitable reference genes for the conditions and tissues in the present epaulette shark studies. These genes could also be potential reference gene candidates for other physiological studies examining stress in elasmobranchs. The results emphasise the importance of inter-group variation in reference gene evaluation.

  20. Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis.

    Science.gov (United States)

    Chen, Chun; Xie, Tingna; Ye, Sudan; Jensen, Annette Bruun; Eilenberg, Jørgen

    2016-01-01

    The selection of suitable reference genes is crucial for accurate quantification of gene expression and can add to our understanding of host-pathogen interactions. To identify suitable reference genes in Pandora neoaphidis, an obligate aphid pathogenic fungus, the expression of three traditional candidate genes including 18S rRNA(18S), 28S rRNA(28S) and elongation factor 1 alpha-like protein (EF1), were measured by quantitative polymerase chain reaction at different developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae), and under different nutritional conditions. We calculated the expression stability of candidate reference genes using four algorithms including geNorm, NormFinder, BestKeeper and Delta Ct. The analysis results revealed that the comprehensive ranking of candidate reference genes from the most stable to the least stable was 18S (1.189), 28S (1.414) and EF1 (3). The 18S was, therefore, the most suitable reference gene for real-time RT-PCR analysis of gene expression under all conditions. These results will support further studies on gene expression in P. neoaphidis. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.