WorldWideScience

Sample records for pax6 p1 promoter

  1. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina

    Directory of Open Access Journals (Sweden)

    Jack W Hickmott

    2016-01-01

    Full Text Available Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6 gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.

  2. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    Science.gov (United States)

    Hickmott, Jack W; Chen, Chih-Yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.

  3. Generation of H1 PAX6WT/EGFP reporter cells to purify PAX6 positive neural stem/progenitor cells.

    Science.gov (United States)

    Wu, Wei; Liu, Juli; Su, Zhenghui; Li, Zhonghao; Ma, Ning; Huang, Ke; Zhou, Tiancheng; Wang, Linli

    2018-08-25

    Neural conversion from human pluripotent cells (hPSCs) is a potential therapy to neurological disease in the future. However, this is still limited by efficiency and stability of existed protocols used for neural induction from hPSCs. To overcome this obstacle, we developed a reporter system to screen PAX6 + neural progenitor/stem cells using transcription activator like effector nuclease (TALEN). We found that knock-in 2 A-EGFP cassette into PAX6 exon of human embryonic stem cells H1 with TALEN-based homology recombination could establish PAX6 WT/EGFP H1 reporter cell line fast and efficiently. This reporter cell line could differentiate into PAX6 and EGFP double positive neural progenitor/stem cells (NPCs/NSCs) after neural induction. Those PAX6 WT/EGFP NPCs could be purified, expanded and specified to post-mitotic neurons in vitro efficiently. With this reporter cell line, we also screened out 1 NPC-specific microRNA, hsa-miR-99a-5p, and 3 ESCs-enriched miRNAs, hsa-miR-302c-5p, hsa-miR-512-3p and hsa-miR-518 b. In conclusion, the TALEN-based neural stem cell screening system is safe and efficient and could help researcher to acquire adequate and pure neural progenitor cells for further application. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Positive autoregulation of the transcription factor Pax6 in response to increased levels of either of its major isoforms, Pax6 or Pax6(5a, in cultured cells

    Directory of Open Access Journals (Sweden)

    Mason John O

    2006-05-01

    Full Text Available Abstract Background Pax6 is a transcription factor essential for normal development of the eyes and nervous system. It has two major isoforms, Pax6 and Pax6(5a, and the ratios between their expression levels vary within narrow limits. We tested the effects of overexpressing either one or other isoform on endogenous Pax6 expression levels in Neuro2A and NIH3T3 cells. Results We found that both isoforms caused an up-regulation of endogenous Pax6 expression in cells with (Neuro2A or without (NIH3T3 constitutive Pax6 expression. Western blots showed that cells stably transfected with constructs expressing either Pax6 or Pax6(5a contained raised levels of both Pax6 and Pax6(5a. Quantitative RT-PCR confirmed an increase in levels of Pax6(5a mRNA in cells containing Pax6-expressing constructs and an increase in levels of Pax6 mRNA in cells containing Pax6(5a-expressing constructs. The fact that the introduction of constructs expressing only one isoform increased the cellular levels of not only that isoform but also the other indicates that activation of the endogenous Pax6 locus occurred. The ratio between the levels of the two isoforms was maintained close to physiological values. The overexpression of either isoform in neuroblastoma (Neuro2A cell lines also promoted morphological change and an increase in β-III-tubulin expression, indicating an increase in neurogenesis. Conclusion Our results demonstrate that Pax6 can up-regulate production of Pax6 protein from an entire intact endogenous Pax6 locus in its genomic environment. This adds to previous studies showing that Pax6 can up-regulate reporter expression driven by isolated Pax6 regulatory elements. Furthermore, our results suggest that an important function of positive feedback might be to stabilise the relative levels of Pax6 and Pax6(5a.

  5. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    International Nuclear Information System (INIS)

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-01-01

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: ► Nicotine-induced StAR inhibition in two human adrenal cell models. ► Nicotine-induced single CpG site methylation in StAR promoter. ► Persistent StAR inhibition and single CpG methylation after nicotine termination. ► Single CpG methylation located at Pax6 binding motif regulates St

  6. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Chen, Man; Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Cheng, Huaiyan [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Yan, You-E [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Feng, Ying-Hong, E-mail: yhfeng@usuhs.edu [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  7. Pax6 represses androgen receptor-mediated transactivation by inhibiting recruitment of the coactivator SPBP.

    Directory of Open Access Journals (Sweden)

    Julianne Elvenes

    Full Text Available The androgen receptor (AR has a central role in development and maintenance of the male reproductive system and in the etiology of prostate cancer. The transcription factor Pax6 has recently been reported to act as a repressor of AR and to be hypermethylated in prostate cancer cells. SPBP is a transcriptional regulator that previously has been shown to enhance the activity of Pax6. In this study we have identified SPBP to act as a transcriptional coactivator of AR. We also show that Pax6 inhibits SPBP-mediated enhancement of AR activity on the AR target gene probasin promoter, a repression that was partly reversed by increased expression of SPBP. Enhanced expression of Pax6 reduced the amount of SPBP associated with the probasin promoter when assayed by ChIP in HeLa cells. We mapped the interaction between both AR and SPBP, and AR and Pax6 to the DNA-binding domains of the involved proteins. Further binding studies revealed that Pax6 and SPBP compete for binding to AR. These results suggest that Pax6 represses AR activity by displacing and/or inhibiting recruitment of coactivators to AR target promoters. Understanding the mechanism for inhibition of AR coactivators can give rise to molecular targeted drugs for treatment of prostate cancer.

  8. Pax6 interacts with Iba1 and shows age-associated alterations in brain of aging mice.

    Science.gov (United States)

    Maurya, Shashank Kumar; Mishra, Rajnikant

    2017-07-01

    The Pax6, a transcriptional regulator and multifunctional protein, has been found critical for neurogenesis, neuro-degeneration, mental retardation, neuroendocrine tumors, glioblastoma and astrocytomas. The age-associated alteration in the expression of Pax6 in neuron and glia has also been observed in the immunologically privileged brain. Therefore, it is presumed that Pax6 may modulate brain immunity by activation of microglia either directly interacting with genes or proteins of microglia or indirectly though inflammation associated with neurodegeneration. This report describes evaluation of expression, co-localization and interactions of Pax6 with Ionized binding protein1 (Iba1) in brain of aging mice by Immunohistochemistry, Chromatin Immuno-precipitation (ChIP) and Co-immunoprecipitation (Co-IP), respectively. The co-localization of Pax6 with Iba1 was observed in the cerebellum, cerebral cortex, hippocampus, midbrain and olfactory lobe. The Pax6 and Iba1 also interact physically. The age-dependent alteration in their expression and co-localization were also observed in mice. Results indicate Pax6-dependent activities of Iba1 in the remodelling of microglia during immunological surveillance of the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Carnitine palmitoyltransferase 1A (CPT1A): a transcriptional target of PAX3-FKHR and mediates PAX3-FKHR–dependent motility in alveolar rhabdomyosarcoma cells

    International Nuclear Information System (INIS)

    Liu, Lingling; Wang, Yong-Dong; Wu, Jing; Cui, Jimmy; Chen, Taosheng

    2012-01-01

    Alveolar rhabdomyosarcoma (ARMS) has a high propensity to metastasize, leading to its aggressiveness and a poor survival rate among those with the disease. More than 80% of aggressive ARMSs harbor a PAX3-FKHR fusion transcription factor, which regulates cell migration and promotes metastasis, most likely by regulating the fusion protein’s transcriptional targets. Therefore, identifying druggable transcription targets of PAX3-FKHR that are also downstream effectors of PAX3-FKHR–mediated cell migration and metastasis may lead to novel therapeutic approaches for treating ARMS. To identify genes whose expression is directly affected by the level of PAX3-FKHR in an ARMS cellular-context, we first developed an ARMS cell line in which PAX3-FKHR is stably down-regulated, and showed that stably downregulating PAX3-FKHR in ARMS cells significantly decreased the cells’ motility. We used microarray analysis to identify genes whose expression level decreased when PAX3-FKHR was downregulated. We used mutational analysis, promoter reporter assays, and electrophoretic mobility shift assays to determine whether PAX3-FKHR binds to the promoter region of the target gene. We used siRNA and pharmacologic inhibitor to downregulate the target gene of PAX3-FKHR and investigated the effect of such downregulation on cell motility. We found that when PAX3-FKHR was downregulated, the expression of carnitine palmitoyltransferase 1A (CPT1A) decreased. We showed that PAX3-FKHR binds to a paired-domain binding-site in the CPT1A promoter region, indicating that CPT1A is a novel transcriptional target of PAX3-FKHR. Furthermore, downregulating CPT1A decreased cell motility in ARMS cells, indicating that CPT1A is a downstream effector of PAX3-FKHR–mediated cell migration and metastasis. Taken together, we have identified CPT1A as a novel transcriptional target of PAX3-FKHR and revealed the novel function of CPT1A in promoting cell motility. CPT1A may represent a novel therapeutic target for

  10. Heterozygous defects in PAX6 gene and congenital hypopituitarism.

    Science.gov (United States)

    Takagi, Masaki; Nagasaki, Keisuke; Fujiwara, Ikuma; Ishii, Tomohiro; Amano, Naoko; Asakura, Yumi; Muroya, Koji; Hasegawa, Yukihiro; Adachi, Masanori; Hasegawa, Tomonobu

    2015-01-01

    The prevalence of congenital hypopituitarism (CH) attributable to known transcription factor mutations appears to be rare and other causative genes for CH remain to be identified. Due to the sporadic occurrence of CH, de novo chromosomal rearrangements could be one of the molecular mechanisms participating in its etiology, especially in syndromic cases. To identify the role of copy number variations (CNVs) in the etiology of CH and to identify novel genes implicated in CH. We enrolled 88 (syndromic: 30; non-syndromic: 58) Japanese CH patients. We performed an array comparative genomic hybridization screening in the 30 syndromic CH patients. For all the 88 patients, we analyzed PAX6 by PCR-based sequencing. We identified one heterozygous 310-kb deletion of the PAX6 enhancer region in one patient showing isolated GH deficiency (IGHD), cleft palate, and optic disc cupping. We also identified one heterozygous 6.5-Mb deletion encompassing OTX2 in a patient with bilateral anophthalmia and multiple pituitary hormone deficiency. We identified a novel PAX6 mutation, namely p.N116S in one non-syndromic CH patient showing IGHD. The p.N116S PAX6 was associated with an impairment of the transactivation capacities of the PAX6-binding elements. This study showed that heterozygous PAX6 mutations are associated with CH patients. PAX6 mutations may be associated with diverse clinical features ranging from severely impaired ocular and pituitary development to apparently normal phenotype. Overall, this study identified causative CNVs with a possible role in the etiology of CH in <10% of syndromic CH patients. © 2015 European Society of Endocrinology.

  11. A developmental transcriptomic analysis of Pax1 and Pax9 in embryonic intervertebral disc development

    Directory of Open Access Journals (Sweden)

    V. Sivakamasundari

    2017-02-01

    Full Text Available Pax1 and Pax9 play redundant, synergistic functions in the patterning and differentiation of the sclerotomal cells that give rise to the vertebral bodies and intervertebral discs (IVD of the axial skeleton. They are conserved in mice and humans, whereby mutation/deficiency of human PAX1/PAX9 has been associated with kyphoscoliosis. By combining cell-type-specific transcriptome and ChIP-sequencing data, we identified the roles of Pax1/Pax9 in cell proliferation, cartilage development and collagen fibrillogenesis, which are vital in early IVD morphogenesis. Pax1 is up-regulated in the absence of Pax9, while Pax9 is unaffected by the loss of Pax1/Pax9. We identified the targets compensated by a single- or double-copy of Pax9. They positively regulate many of the cartilage genes known to be regulated by Sox5/Sox6/Sox9 and are connected to Sox5/Sox6 by a negative feedback loop. Pax1/Pax9 are intertwined with BMP and TGF-B pathways and we propose they initiate expression of chondrogenic genes during early IVD differentiation and subsequently become restricted to the outer annulus by the negative feedback mechanism. Our findings highlight how early IVD development is regulated spatio-temporally and have implications for understanding kyphoscoliosis.

  12. Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene.

    Science.gov (United States)

    Feiner, Nathalie; Meyer, Axel; Kuraku, Shigehiro

    2014-06-19

    The members of the paired box (Pax) family regulate key developmental pathways in many metazoans as tissue-specific transcription factors. Vertebrate genomes typically possess nine Pax genes (Pax1-9), which are derived from four proto-Pax genes in the vertebrate ancestor that were later expanded through the so-called two-round (2R) whole-genome duplication. A recent study proposed that pax6a genes of a subset of teleost fishes (namely, acanthopterygians) are remnants of a paralog generated in the 2R genome duplication, to be renamed pax6.3, and reported one more group of vertebrate Pax genes (Pax6.2), most closely related to the Pax4/6 class. We propose to designate this new member Pax10 instead and reconstruct the evolutionary history of the Pax4/6/10 class with solid phylogenetic evidence. Our synteny analysis showed that Pax4, -6, and -10 originated in the 2R genome duplications early in vertebrate evolution. The phylogenetic analyses of relationships between teleost pax6a and other Pax4, -6, and -10 genes, however, do not support the proposed hypothesis of an ancient origin of the acanthopterygian pax6a genes in the 2R genome duplication. Instead, we confirmed the traditional scenario that the acanthopterygian pax6a is derived from the more recent teleost-specific genome duplication. Notably, Pax6 is present in all vertebrates surveyed to date, whereas Pax4 and -10 were lost multiple times in independent vertebrate lineages, likely because of their restricted expression patterns: Among Pax6-positive domains, Pax10 has retained expression in the adult retina alone, which we documented through in situ hybridization and quantitative reverse transcription polymerase chain reaction experiments on zebrafish, Xenopus, and anole lizard. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Pax6- and Six3-mediated induction of lens cell fate in mouse and human ES cells.

    Directory of Open Access Journals (Sweden)

    Raymond M Anchan

    Full Text Available Embryonic stem (ES cells provide a potentially useful in vitro model for the study of in vivo tissue differentiation. We used mouse and human ES cells to investigate whether the lens regulatory genes Pax6 and Six3 could induce lens cell fate in vitro. To help assess the onset of lens differentiation, we derived a new mES cell line (Pax6-GFP mES that expresses a GFP reporter under the control of the Pax6 P0 promoter and lens ectoderm enhancer. Pax6 or Six3 expression vectors were introduced into mES or hES cells by transfection or lentiviral infection and the differentiating ES cells analyzed for lens marker expression. Transfection of mES cells with Pax6 or Six3 but not with other genes induced the expression of lens cell markers and up-regulated GFP reporter expression in Pax6-GFP mES cells by 3 days post-transfection. By 7 days post-transfection, mES cell cultures exhibited a>10-fold increase over controls in the number of colonies expressing γA-crystallin, a lens fiber cell differentiation marker. RT-PCR and immunostaining revealed induction of additional lens epithelial or fiber cell differentiation markers including Foxe3, Prox1, α- and β-crystallins, and Tdrd7. Moreover, γA-crystallin- or Prox1-expressing lentoid bodies formed by 30 days in culture. In hES cells, Pax6 or Six3 lentiviral vectors also induced lens marker expression. mES cells that express lens markers reside close to but are distinct from the Pax6 or Six3 transduced cells, suggesting that the latter induce nearby undifferentiated ES cells to adopt a lens fate by non-cell autonomous mechanisms. In sum, we describe a novel mES cell GFP reporter line that is useful for monitoring induction of lens fate, and demonstrate that Pax6 or Six3 is sufficient to induce ES cells to adopt a lens fate, potentially via non-cell autonomous mechanisms. These findings should facilitate investigations of lens development.

  14. Coop-Seq Analysis Demonstrates that Sox2 Evokes Latent Specificities in the DNA Recognition by Pax6.

    Science.gov (United States)

    Hu, Caizhen; Malik, Vikas; Chang, Yiming Kenny; Veerapandian, Veeramohan; Srivastava, Yogesh; Huang, Yong-Heng; Hou, Linlin; Cojocaru, Vlad; Stormo, Gary D; Jauch, Ralf

    2017-11-24

    Sox2 and Pax6 co-regulate genes in neural lineages and the lens by forming a ternary complex likely facilitated allosterically through DNA. We used the quantitative and scalable cooperativity-by-sequencing (Coop-seq) approach to interrogate Sox2/Pax6 dimerization on a DNA library where five positions of the Pax6 half-site were randomized yielding 1024 cooperativity factors. Consensus positions normally required for the high-affinity DNA binding by Pax6 need to be mutated for effective dimerization with Sox2. Out of the five randomized bases, a 5' thymidine is present in most of the top ranking elements. However, this thymidine maps to a region outside of the Pax half site and is not expected to directly interact with Pax6 in known binding modes suggesting structural reconfigurations. Re-analysis of ChIP-seq data identified several genomic regions where the cooperativity promoting sequence pattern is co-bound by Sox2 and Pax6. A highly conserved Sox2/Pax6 bound site near the Sprouty2 locus was verified to promote cooperative dimerization designating Sprouty2 as a potential target reliant on Sox2/Pax6 cooperativity in several neural cell types. Collectively, the functional interplay of Sox2 and Pax6 demands the relaxation of high-affinity binding sites and is enabled by alternative DNA sequences. We conclude that this binding mode evolved to warrant that a subset of target genes is only regulated in the presence of suitable partner factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. PAX6 can substitute for LHX2 and override NFIA-induced ...

    Indian Academy of Sciences (India)

    Veena Kinare

    2018-01-24

    Jan 24, 2018 ... versus glial cell fate in the developing hippocampus, and therefore, ... promoting and maintaining radial glial progenitor fate ... expression of Pax6 has a similar effect in suppressing NFIA- ... pulse length, * 1.0 s pulse interval]. Paddle electrodes. (5 mm diameter) were used to deliver the electrical pulses.

  16. Pax3 stimulates p53 ubiquitination and degradation independent of transcription.

    Directory of Open Access Journals (Sweden)

    Xiao Dan Wang

    Full Text Available Pax3 is a developmental transcription factor that is required for neural tube and neural crest development. We previously showed that inactivating the p53 tumor suppressor protein prevents neural tube and cardiac neural crest defects in Pax3-mutant mouse embryos. This demonstrates that Pax3 regulates these processes by blocking p53 function. Here we investigated the mechanism by which Pax3 blocks p53 function.We employed murine embryonic stem cell (ESC-derived neuronal precursors as a cell culture model of embryonic neuroepithelium or neural crest. Pax3 reduced p53 protein stability, but had no effect on p53 mRNA levels or the rate of p53 synthesis. Full length Pax3 as well as fragments that contained either the DNA-binding paired box or the homeodomain, expressed as GST or FLAG fusion proteins, physically associated with p53 and Mdm2 both in vitro and in vivo. In contrast, Splotch Pax3, which causes neural tube and neural crest defects in homozygous embryos, bound weakly, or not at all, to p53 or Mdm2. The paired domain and homeodomain each stimulated Mdm2-mediated ubiquitination of p53 and p53 degradation in the absence of the Pax3 transcription regulatory domains, whereas Splotch Pax3 did not stimulate p53 ubiquitination or degradation.Pax3 inactivates p53 function by stimulating its ubiquitination and degradation. This process utilizes the Pax3 paired domain and homeodomain but is independent of DNA-binding and transcription regulation. Because inactivating p53 is the only required Pax3 function during neural tube closure and cardiac neural crest development, and inactivating p53 does not require Pax3-dependent transcription regulation, this indicates that Pax3 is not required to function as a transcription factor during neural tube closure and cardiac neural crest development. These findings further suggest novel explanations for PAX3 functions in human diseases, such as in neural crest-derived cancers and Waardenburg syndrome types 1 and 3.

  17. Pax6 downregulation mediates abnormal lineage commitment of the ocular surface epithelium in aqueous-deficient dry eye disease.

    Directory of Open Access Journals (Sweden)

    Ying Ting Chen

    Full Text Available Keratinizing squamous metaplasia (SQM of the ocular surface is a blinding consequence of systemic autoimmune disease and there is no cure. Ocular SQM is traditionally viewed as an adaptive tissue response during chronic keratoconjunctivitis sicca (KCS that provokes pathological keratinization of the corneal epithelium and fibrosis of the corneal stroma. Recently, we established the autoimmune regulator-knockout (Aire KO mouse as a model of autoimmune KCS and identified an essential role for autoreactive CD4+ T cells in SQM pathogenesis. In subsequent studies, we noted the down-regulation of paired box gene 6 (Pax6 in both human patients with chronic KCS associated with Sjögren's syndrome and Aire KO mice. Pax6 encodes a pleiotropic transcription factor guiding eye morphogenesis during development. While the postnatal function of Pax6 is largely unknown, we hypothesized that its role in maintaining ocular surface homeostasis was disrupted in the inflamed eye and that loss of Pax6 played a functional role in the initiation and progression of SQM. Adoptive transfer of autoreactive T cells from Aire KO mice to immunodeficient recipients confirmed CD4+ T cells as the principal downstream effectors promoting Pax6 downregulation in Aire KO mice. CD4+ T cells required local signaling via Interleukin-1 receptor (IL-1R1 to provoke Pax6 loss, which prompted a switch from corneal-specific cytokeratin, CK12, to epidermal-specific CK10. The functional role of Pax6 loss in SQM pathogenesis was indicated by the reversal of SQM and restoration of ocular surface homeostasis following forced expression of Pax6 in corneal epithelial cells using adenovirus. Thus, tissue-restricted restoration of Pax6 prevented aberrant epidermal-lineage commitment suggesting adjuvant Pax6 gene therapy may represent a novel therapeutic approach to prevent SQM in patients with chronic inflammatory diseases of the ocular surface.

  18. Developmental and daily expression of the Pax4 and Pax6 homeobox genes in the rat retina: localization of Pax4 in photoreceptor cells

    DEFF Research Database (Denmark)

    Rath, Martin F; Bailey, Michael J; Kim, Jong-So

    2009-01-01

    Pax4 is a homeobox gene encoding Pax4, a transcription factor that is essential for embryonic development of the endocrine pancreas. In the pancreas, Pax4 counters the effects of the related transcription factor, Pax6, which is known to be essential for eye morphogenesis. In this study, we have...... in the foetal eye. Histological analysis revealed that Pax4 mRNA is exclusively expressed in the retinal photoreceptors, whereas Pax6 mRNA and protein are present in the inner nuclear layer and in the ganglion cell layer of the mature retina. In the adult retina, Pax4 transcripts exhibit a diurnal rhythm...

  19. Expression and clinical significance of Pax6 gene in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Hai-Dong Huang

    2013-07-01

    Full Text Available AIM: To discuss the expression and clinical significance of Pax6 gene in retinoblastoma(Rb. METHODS: Totally 15 cases of fresh Rb organizations were selected as observation group and 15 normal retinal organizations as control group. Western-Blot and reverse transcriptase polymerase chain reaction(RT-PCRmethods were used to detect Pax6 protein and Pax6 mRNA expressions of the normal retina organizations and Rb organizations. At the same time, Western Blot method was used to detect the Pax6 gene downstream MATH5 and BRN3b differentiation gene protein level expression. After the comparison between two groups, the expression and clinical significance of Pax6 gene in Rb were discussed. RESULTS: In the observation group, average value of mRNA expression of Pax6 gene was 0.99±0.03; average value of Pax6 gene protein expression was 2.07±0.15; average value of BRN3b protein expression was 0.195±0.016; average value of MATH5 protein expression was 0.190±0.031. They were significantly higher than the control group, and the differences were statistically significant(PCONCLUSION: Abnormal expression of Pax6 gene is likely to accelerate the occurrence of Rb.

  20. Somatic drivers of B-ALL in a model of ETV6-RUNX1; Pax5+/− leukemia

    International Nuclear Information System (INIS)

    Weyden, Louise van der; Giotopoulos, George; Wong, Kim; Rust, Alistair G.; Robles-Espinoza, Carla Daniela; Osaki, Hikari; Huntly, Brian J.; Adams, David J.

    2015-01-01

    B-cell precursor acute lymphoblastic leukemia (B-ALL) is amongst the leading causes of childhood cancer-related mortality. Its most common chromosomal aberration is the ETV6-RUNX1 fusion gene, with ~25 % of ETV6-RUNX1 patients also carrying PAX5 alterations. We have recreated this mutation background by inter-crossing Etv6-RUNX1 (Etv6 RUNX1-SB ) and Pax5 +/− mice and performed an in vivo analysis to find driver genes using Sleeping Beauty transposon-mediated mutagenesis and also exome sequencing. Combination of Etv6-RUNX1 and Pax5 +/− alleles generated a transplantable B220 + CD19+ B-ALL with a significant disease incidence. RNA-seq analysis showed a gene expression pattern consistent with arrest at the pre-B stage. Analysis of the transposon common insertion sites identified genes involved in B-cell development (Zfp423) and the JAK/STAT signaling pathway (Jak1, Stat5 and Il2rb), while exome sequencing revealed somatic hotspot mutations in Jak1 and Jak3 at residues analogous to those mutated in human leukemias, and also mutation of Trp53. Powerful synergies exists in our model suggesting STAT pathway activation and mutation of Trp53 are potent drivers of B-ALL in the context of Etv6-RUNX1;Pax5 +/− . The online version of this article (doi:10.1186/s12885-015-1586-1) contains supplementary material, which is available to authorized users

  1. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis.

    Directory of Open Access Journals (Sweden)

    Stephen N Sansom

    2009-06-01

    Full Text Available Neural stem cell self-renewal, neurogenesis, and cell fate determination are processes that control the generation of specific classes of neurons at the correct place and time. The transcription factor Pax6 is essential for neural stem cell proliferation, multipotency, and neurogenesis in many regions of the central nervous system, including the cerebral cortex. We used Pax6 as an entry point to define the cellular networks controlling neural stem cell self-renewal and neurogenesis in stem cells of the developing mouse cerebral cortex. We identified the genomic binding locations of Pax6 in neocortical stem cells during normal development and ascertained the functional significance of genes that we found to be regulated by Pax6, finding that Pax6 positively and directly regulates cohorts of genes that promote neural stem cell self-renewal, basal progenitor cell genesis, and neurogenesis. Notably, we defined a core network regulating neocortical stem cell decision-making in which Pax6 interacts with three other regulators of neurogenesis, Neurog2, Ascl1, and Hes1. Analyses of the biological function of Pax6 in neural stem cells through phenotypic analyses of Pax6 gain- and loss-of-function mutant cortices demonstrated that the Pax6-regulated networks operating in neural stem cells are highly dosage sensitive. Increasing Pax6 levels drives the system towards neurogenesis and basal progenitor cell genesis by increasing expression of a cohort of basal progenitor cell determinants, including the key transcription factor Eomes/Tbr2, and thus towards neurogenesis at the expense of self-renewal. Removing Pax6 reduces cortical stem cell self-renewal by decreasing expression of key cell cycle regulators, resulting in excess early neurogenesis. We find that the relative levels of Pax6, Hes1, and Neurog2 are key determinants of a dynamic network that controls whether neural stem cells self-renew, generate cortical neurons, or generate basal progenitor cells

  2. Genetic Analysis of 'PAX6-Negative' Individuals with Aniridia or Gillespie Syndrome

    DEFF Research Database (Denmark)

    Ansari, Morad; Rainger, Jacqueline; Hanson, Isabel M

    2016-01-01

    We report molecular genetic analysis of 42 affected individuals referred with a diagnosis of aniridia who previously screened as negative for intragenic PAX6 mutations. Of these 42, the diagnoses were 31 individuals with aniridia and 11 individuals referred with a diagnosis of Gillespie syndrome......) to PAX6 and one within a gene desert 5' (telomeric) to PITX2. Sequence analysis of the FOXC1 and PITX2 coding regions identified two plausibly pathogenic de novo FOXC1 missense mutations (p.Pro79Thr and p.Leu101Pro). No intragenic mutations were detected in PITX2. FISH mapping in an individual...... with Gillespie-like syndrome with an apparently balanced X;11 reciprocal translocation revealed disruption of a gene at each breakpoint: ARHGAP6 on the X chromosome and PHF21A on chromosome 11. In the other individuals with Gillespie syndrome no mutations were identified in either of these genes, or in HCCS...

  3. Tandem duplication of 11p12-p13 in a child with borderline development delay and eye abnormalities: dose effect of the PAX6 gene product?

    NARCIS (Netherlands)

    Aalfs, C. M.; Fantes, J. A.; Wenniger-Prick, L. J.; Sluijter, S.; Hennekam, R. C.; van Heyningen, V.; Hoovers, J. M.

    1997-01-01

    We report on a girl with a duplication of chromosome band 11p12-->13, which includes the Wilms tumor gene (WT1) and the aniridia gene (PAX6). The girl had borderline developmental delay, mild facial anomalies, and eye abnormalities. Eye findings were also present in most of the 11 other published

  4. Spontaneous and radiation-induced leukemogenesis of the mouse small eye mutant, Pax6Sey3H

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Satoh, Kenichi; Yoshida, Kazuko; Senba, Kei; Nakagata, Naomi; Peters, J.; Cattanach, B.M.

    2004-01-01

    Allelic loss on the chromosome 2 is associated with radiation-induced murine acute myeloid leukemia. However, the gene, which contributes mainly to the leukemogenesis has not yet been identified. Expecting any predisposition to acute myeloid leukemia, we performed a radiation leukemogenesis experiment with Pax6 SeY3H , one of the small eye mutants carrying a congenital hemizygosity of the chromosome 2 middle region. A deletion mapping of Pax6 SeY3H with 50 sequence-tagged site (STS) markers indicated that the deleted segment extended between the 106.00 and 111.47 Mb site from the centromere with a length of 5.47 Mb. In the deleted segment, 6 known and 17 novel genes were located. Pax6 SeY3H mutants that crossed back into C3H/He did not develop myeloid leukemia spontaneously, but they did when exposed to gamma-rays. The final incidence of myeloid leukemia in mutants (25.8%) was as high as that in normal sibs (21.4%). Survival curves of leukemia-bearing mutants shifted toward the left (p=0.043 by the Log rank test). F1 hybrids of Pax6 SeY3H with JF1 were less susceptible to radiation than Pax6 SeY3H onto C3H/He in regard to survival (p=0.003 and p<0.00001 for mutants and normal sibs, respectively, by a test of the difference between two proportions). Congenital deletion of the 5.47 Mb segment at the middle region on chromosome 2 alone did not trigger myeloid stem cells to expand clonally in vivo; however, the deletion shortcut the latency of radiation-induced myeloid leukemia. (author)

  5. PAX6 gene variations associated with aniridia in south India

    Directory of Open Access Journals (Sweden)

    Shashikant Shetty

    2004-04-01

    Full Text Available Abstract Background Mutations in the transcription factor gene PAX6 have been shown to be the cause of the aniridia phenotype. The purpose of this study was to analyze patients with aniridia to uncover PAX6 gene mutations in south Indian population. Methods Total genomic DNA was isolated from peripheral blood of twenty-eight members of six clinically diagnosed aniridia families and 60 normal healthy controls. The coding exons of the human PAX6 gene were amplified by PCR and allele specific variations were detected by single strand conformation polymorphism (SSCP followed by automated sequencing. Results The sequencing results revealed novel PAX6 mutations in three patients with sporadic aniridia: c.715ins5, [c.1201delA; c.1239A>G] and c.901delA. Two previously reported nonsense mutations were also found: c.482C>A, c.830G>A. A neutral polymorphism was detected (IVS9-12C>T at the boundary of intron 9 and exon 10. The two nonsense mutations found in the coding region of human PAX6 gene are reported for the first time in the south Indian population. Conclusion The genetic analysis confirms that haploinsuffiency of the PAX6 gene causes the classic aniridia phenotype. Most of the point mutations detected in our study results in stop codons. Here we add three novel PAX6 gene mutations in south Indian population to the existing spectrum of mutations, which is not a well-studied ethnic group. Our study supports the hypothesis that a mutation in the PAX6 gene correlates with expression of aniridia.

  6. Diagnostic impact of anterior segment angiography of limbal stem cell insufficiency in PAX6-related aniridia.

    Science.gov (United States)

    Käsmann-Kellner, Barbara; Latta, Lorenz; Fries, Fabian N; Viestenz, Arne; Seitz, Berthold

    2018-04-01

    PAX6 is a master gene of ocular development and postnatal ocular equilibrium. Congenital aniridia is the hallmark of PAX6 gene haploinsufficiency (Chr. 11 p. 13), but PAX6-associated aniridia is a profound, progressive pan-ocular developmental disorder often leading to blindness. There is congenital visual impairment with advancing loss of vision mainly due to secondary glaucoma and to corneal blindness caused by limbal stem cell insufficiency (LSCI). LSCI leads to ARK (aniridia-related keratopathy), which typically develops in four stages. Incipient LSCI with vessels starting to grow into the cornea can be imaged by fluorescein anterior segment angiography, which enables fine vessels to be more easily detected than by routine slit lamp examination, especially in patients with nystagmus. Thus, clinical stage 1 ARK is often diagnosed at stage 2 by angiography. Corneal neovascularizations often start at the 12 and 6 positions and subsequently progress circumferentially, not at the 3 and 9 positions as previously believed. Anterior segment angiography can provide an easily standardizable tool for monitoring progress, treatment-induced regress or stabilization of ARK. Especially in children, angiography could be used to monitor new treatment regimens for reducing LSCI. Angiography could enable treatment to begin earlier to preserve corneal hemostasis. In addition, the fact that vascularization often starts at the subpalpebral 6 and 12 positions as opposed to the 3 and 9 positions raises more questions concerning factors that promote LSCI and related corneal injuries. Clin. Anat. 31:392-397, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  7. Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases

    Science.gov (United States)

    Li, W; Chen, Y-T; Hayashida, Y; Blanco, G; Kheirkah, A; He, H; Chen, S-Y; Liu, C-Y; Tseng, SCG

    2010-01-01

    Pax6 is the universal master control gene for eye morphogenesis. Other than retina and lens, Pax6 also expressed in the ocular surface epithelium from early gestation until the postnatal stage, in which little is known about the function of Pax6. In this study, corneal pannus tissues from patients with ocular surface diseases such as Stevens–Johnson syndrome (SJS), chemical burn, aniridia and recurrent pterygium were investigated. Our results showed that normal ocular surface epithelial cells expressed Pax6. However, corneal pannus epithelial cells from the above patients showed a decline or absence of Pax6 expression, accompanied by a decline or absence of K12 keratin but an increase of K10 keratin and filaggrin expression. Pannus basal epithelial cells maintained nuclear p63 expression and showed activated proliferation, evidenced by positive Ki67 and K16 keratin staining. On 3T3 fibroblast feeder layers, Pax6 immunostaining was negative in clones generated from epithelial cells harvested from corneal pannus from SJS or aniridia, but positive in those from the normal limbal epithelium; whereas western blots showed that some epithelial clones expanded from pannus retained Pax6 expression. Transient transfection of an adenoviral vector carrying EGFP–Pax6 transgenes into these Pax6− clones increased both Pax6 and K12 keratin expression. These results indicate that Pax6 helps to maintain the normal corneal epithelial phenotype postnatally, and that down-regulation of Pax6 is associated with abnormal epidermal differentiation in severe ocular surface diseases. Reintroduction of activation of the Pax6 gene might be useful in treating squamous metaplasia of the ocular surface epithelium. PMID:18027901

  8. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Directory of Open Access Journals (Sweden)

    Jeffery Glen

    2008-05-01

    Full Text Available Abstract Background The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6Sey/Sey and are abnormally small in Pax6Sey/+ mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results Eyes form in PAX77+/+ embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77+/+ retinae produce a normal range of cell types, including retinal ganglion cells (RGCs. At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77+/+ embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6Sey/+, Pax6+/+, PAX77+ and PAX77+/+ showed that (1 the total number of RGC axons projected by the retina and (2 the proportions that are sorted into the ipsilateral and

  9. 11p Microdeletion including WT1 but not PAX6, presenting with cataract, mental retardation, genital abnormalities and seizures: a case report

    Directory of Open Access Journals (Sweden)

    Baekgaard Peter

    2009-02-01

    Full Text Available Abstract WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities and mental retardation and Potocki-Shaffer syndrome are rare contiguous gene deletion syndromes caused by deletions of the 11p14-p12 chromosome region. We present a patient with mental retardation, unilateral cataract, bilateral ptosis, genital abnormalities, seizures and a dysmorphic face. Cytogenetic analysis showed a deletion on 11p that was further characterized using FISH and MLPA analyses. The deletion (11p13-p12 located in the area between the deletions associated with the WAGR and Potocki-Shaffer syndromes had a maximum size of 8.5 Mb and encompasses 44 genes. Deletion of WT1 explains the genital abnormalities observed. As PAX6 was intact the cataract observed cannot be explained by a deletion of this gene. Seizures have been described in Potocki-Shaffer syndrome while mental retardation has been described in both WAGR and Potocki-Shaffer syndrome. Characterization of this patient contributes further to elucidate the function of the genes in the 11p14-p12 chromosome region.

  10. PAX8 Expression in Solitary Fibrous Tumor: A Potential Diagnostic Pitfall.

    Science.gov (United States)

    Ullman, David; Gordetsky, Jennifer; Siegal, Gene P; Prieto-Granada, Carlos N; Wei, Shi; Stevens, Todd M

    2017-07-26

    PAX8 is used as a diagnostic aid in classifying retroperitoneal (RP) spindle cell tumors. PAX8 positivity in a spindled RP tumor is typically associated with sarcomatoid renal cell carcinoma (SRCC). However, PAX8 expression in solitary fibrous tumor (SFT), a tumor not uncommon to the RP, has not been extensively studied. We investigated the expression of PAX8 in SFTs and other spindle cell RP tumors. We collected 30 SFT, 23 SRCC, 11 gastrointestinal stromal tumors, 2 synovial sarcomas, 6 dedifferentiated liposarcomas (DDLS), 4 well differentiated liposarcomas (WDLS), and select other tumors. We identified nuclear PAX8 expression in 13 of 30 (43%) SFT, 0 of 6 (0%) DDLS, and 1 of 4 (25%) WDLS. Twenty-eight of 30 (93%) SFT, 0 of 23 (0%) SRCC, 2 of 6 (33%) DDLS, and 1 of 4 (25%) WDLS showed nuclear STAT6 expression. All gastrointestinal stromal tumors were negative for both PAX8 and STAT6. Of the 13 SFT showing PAX8 expression, 8 showed diffuse expression and 5 expressed PAX8 focally. Extrapleural SFTs were more likely to express PAX8 compared with pleural SFTs (10/13; 77% vs. 3/17; 18%, respectively; P=0.00117). Twenty of 23 (87%) SRCC expressed PAX8; the sarcomatoid component of all 23 SRCC was negative for STAT6. Of the other spindle cell tumors studied, 1 of 2 synovial sarcomas and 1 of 2 histiocytic sarcomas showed PAX8 expression. Pathologists should be aware of the potential pitfall of the relatively frequent expression of PAX8 by SFT and STAT6 expression in liposarcoma. PAX8 expression by a spindle cell lesion of RP would not allow distinction between SFT, SRCC, or sclerosing liposarcoma by itself. A STAT6/PAX8 phenotype excludes SRCC.

  11. Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma.

    Science.gov (United States)

    Deml, Brett; Reis, Linda M; Lemyre, Emmanuelle; Clark, Robin D; Kariminejad, Ariana; Semina, Elena V

    2016-04-01

    Anophthalmia and microphthalmia (A/M) are developmental ocular malformations defined as the complete absence or reduction in size of the eye. A/M is a highly heterogeneous disorder with SOX2 and FOXE3 playing major roles in dominant and recessive pedigrees, respectively; however, the majority of cases lack a genetic etiology. We analyzed 28 probands affected with A/M spectrum (without mutations in SOX2/FOXE3) by whole-exome sequencing. Analysis of 83 known A/M factors identified pathogenic/likely pathogenic variants in PAX6, OTX2 and NDP in three patients. A novel heterozygous likely pathogenic variant in PAX6, c.767T>C, p.(Val256Ala), was identified in two brothers with bilateral microphthalmia, coloboma, primary aphakia, iris hypoplasia, sclerocornea and congenital glaucoma; the unaffected mother appears to be a mosaic carrier. While A/M has been reported as a rare feature, this is the first report of congenital primary aphakia in association with PAX6 and the identified allele represents the first variant in the PAX6 homeodomain to be associated with A/M. A novel pathogenic variant in OTX2, c.651delC, p.(Thr218Hisfs*76), in a patient with syndromic bilateral anophthalmia and a hemizygous pathogenic variant in NDP, c.293 C>T, p.(Pro98Leu), in two brothers with isolated bilateral microphthalmia and sclerocornea were also identified. Pathogenic/likely pathogenic variants were not discovered in the 25 remaining A/M cases. This study underscores the utility of whole-exome sequencing for identification of causative mutations in highly variable ocular phenotypes as well as the extreme genetic heterogeneity of A/M conditions.

  12. SOX2, OTX2 and PAX6 analysis in subjects with anophthalmia and microphthalmia.

    Science.gov (United States)

    Mauri, Lucia; Franzoni, Alessandra; Scarcello, Manuela; Sala, Stefano; Garavelli, Livia; Modugno, Alessandra; Grammatico, Paola; Patrosso, Maria Cristina; Piozzi, Elena; Del Longo, Alessandra; Gesu, Giovanni P; Manfredini, Emanuela; Primignani, Paola; Damante, Giuseppe; Penco, Silvana

    2015-02-01

    Anophthalmia (A) and microphthalmia (M) are rare developmental anomalies that have significant effects on visual activity. In fraction of A/M subjects, single genetic defects have been identified as causative. In this study we analysed 65 Italian A/M patients, 21 of whom are syndromic, for mutations in SOX2, OTX2 and PAX6 genes. In syndromic patients the presence of genome imbalances through array CGH was also investigated. No mutations were found for OTX2 and PAX6 genes. Three causative SOX2 mutations were found in subjects with syndromic A. In a subject with syndromic signs and monolateral M, two de novo 6.26 Mb and 1.37 Mb deletions in 4q13.2q13.3 have been identified. A SOX2 missense (p.Ala161Ser) mutation was found in 1 out of 39 a subject with non-syndromic monolateral M. Alanine at position 161 is conserved along phylogeny and the p.Ala161Ser mutation is estimated pathogenic by in silico analysis. However, this mutation was also present in the unaffected patient's daughter. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Generation of Pax6-IRES-EGFP knock-in mouse via the cloning-free CRISPR/Cas9 system to reliably visualize neurodevelopmental dynamics.

    Science.gov (United States)

    Inoue, Yukiko U; Morimoto, Yuki; Hoshino, Mikio; Inoue, Takayoshi

    2018-07-01

    Pax6 encodes a transcription factor that plays pivotal roles in eye development, early brain patterning, neocortical arealization, and so forth. Visualization of Pax6 expression dynamics in these events could offer numerous advantages to neurodevelopmental studies. While CRISPR/Cas9 system has dramatically accelerated one-step generation of knock-out mouse, establishment of gene-cassette knock-in mouse via zygote injection has been considered insufficient due to its low efficiency. Recently, an improved CRISPR/Cas9 system for effective gene-cassette knock-in has been reported, where the native form of guide RNAs (crRNA and tracrRNA) assembled with recombinant Cas9 protein are directly delivered into mouse fertilized eggs. Here we apply this strategy to insert IRES-EGFP-pA cassette into Pax6 locus and achieve efficient targeted insertions of the 1.8 kb reporter gene. In Pax6-IRES-EGFP mouse we have generated, EGFP-positive cells reside in the eyes and cerebellum as endogenous Pax6 expressing cells at postnatal day 2. At the early embryonic stages when the embryos are transparent, EGFP-positive regions can be easily identified without PCR-based genotyping, precisely recapitulating the endogenous Pax6 expression patterns. Remarkably, at E12.5, the graded expression patterns of Pax6 in the developing neocortex now become recognizable in our knock-in mice, serving a sufficiently sensitive and useful tool to precisely visualize neurodevelopmental processes. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  14. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma

    International Nuclear Information System (INIS)

    Shahi, Mehdi H; Afzal, Mohammad; Sinha, Subrata; Eberhart, Charles G; Rey, Juan A; Fan, Xing; Castresana, Javier S

    2010-01-01

    The Sonic hedgehog (Shh) signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR) to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63%) and primary astrocytoma tumor samples (32%), but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes

  15. Giant Subependymoma Developed in a Patient with Aniridia: Analyses of PAX6 and Tumor-relevant Genes

    Science.gov (United States)

    Maekawa, Motoko; Fujisawa, Hironori; Iwayama, Yoshimi; Tamase, Akira; Toyota, Tomoko; Osumi, Noriko; Yoshikawa, Takeo

    2010-01-01

    We observed an unusually large subependymoma in a female patient with congenital aniridia. To analyze the genetic mechanisms of tumorigenesis, we first examined the paired box 6 (PAX6) gene using both tumor tissue and peripheral lymphocytes. Tumor suppressor activity has been proposed for PAX6 in gliomas, in addition to its well-known role in the eye development. Using genomic quantitative PCR and loss of heterozygosity analysis, we identified hemizygous deletions in the 5′-region of PAX6. In lymphocytes, the deletion within PAX6 spanned from between exons 6 and 7 to the 5′-upstream region of the gene, but did not reach the upstream gene, RNC1, which is reported to be associated with tumors. The subependymoma had an additional de novo deletion spanning from the intron 4 to intron 6 of PAX6, although we could not completely determine whether these two deletions are on the same chromosome or not. We also examined other potentially relevant tumor suppressor genes: PTEN, TP53 and SOX2. However, we detected no exonic mutations or deletions in these genes. Collectively, we speculate that the defect in PAX6 may have contributed to the extremely large size of the subependymoma, due to a loss of tumor suppressor activity in glial cell lineage. PMID:20500513

  16. Isolation and expression of a Pax-6 gene in the regenerating and intact Planarian Dugesia(G)tigrina

    Science.gov (United States)

    Callaerts, P.; Munoz-Marmol, A. M.; Glardon, S.; Castillo, E.; Sun, H.; Li, W.-H.; Gehring, W. J.; Salo, E.

    1999-01-01

    The Pax-6 gene encodes a transcription factor containing both a paired and a homeodomain and is highly conserved among Metazoa. In both vertebrates and invertebrates, Pax-6 is required for eye morphogenesis, development of parts of the central nervous system, and, in some phyla, for the development of olfactory sense organs. Ectopic expression of Pax-6 from insects, mammals, cephalopods, and ascidians induces ectopic eyes in Drosophila, suggesting that Pax-6 may be a universal master control gene for eye morphogenesis. Platyhelminthes are an ancient phylum, originating from the base of spiralian protostomes, that bear primitive eyes, consisting of a group of rhabdomeric photoreceptor cells enclosed in a cup of pigment cells. The analysis of Pax-6 and its expression pattern should provide insights into the ancestral function of Pax-6 in eye morphogenesis. We have identified the Pax-6 gene of the planarian Dugesia(G)tigrina (Platyhelminthes; Turbellaria; Tricladida). This gene shares significant sequence identity and conserved genomic organization with Pax-6 proteins from other phyla. Phylogenetic analysis indicates that it clusters with the other Pax-6 genes, but in the most basal position. DtPax-6 is expressed as a single transcript in both regenerating and fully grown eyes, and electron microscopy studies show strong expression in the perykarion of both photoreceptor and pigment cells. Very low levels of expression also are detectable in other body regions. Because a bona fide Pax-6 homolog so far has not been detected in diploblastic animals, we speculate that Pax-6 may be typical for triploblasts and that the appearance of additional Pax genes may have coincided with increasingly complex body plans. PMID:9892672

  17. PAX3 mutations and clinical characteristics in Chinese patients with Waardenburg syndrome type 1

    Science.gov (United States)

    Wang, Juan; Li, Shiqiang; Xiao, Xueshan; Wang, Panfeng; Guo, Xiangming

    2010-01-01

    Purpose To detect paired box gene 3 (PAX3) mutations and associated phenotypes in Chinese patients with Waardenburg syndrome type 1 (WS1). Methods Five unrelated families with suspected WS1 were selected from our Genomic DNA Repository for Hereditary Eye Diseases. The coding and adjacent intronic regions of PAX3 were amplified by polymerase chain reaction and the amplicons were then analyzed by cycle sequencing. Variations detected were further evaluated in available family members as well as one hundred controls with heteroduplex-single strand conformational polymorphism (heteroduplex-SSCP) analysis and/or clone sequencing. Results Three novel and two known mutations in PAX3 were detected in five patients, respectively: c.567_586+17del (p.Asp189_Gln505delinsGluGlyGlyAlaLeuAlaGly), c.456_459dupTTCC (p.Ile154PhefsX162), c.795_800delCTGGTT (p.Trp266_Phe267del), c.799T>A (p.Phe267Ile), and c.667C>T (p.Arg223X). Two novel mutations proved to be de novo as their parents did not carry the mutations. All five patients with PAX3 mutations had dystopia canthorum and different iris color and fundi between their two eyes. However, none had white forelock, skin hypopigmentation, and deafness. Conclusions Our findings expand the frequency and spectrum of PAX3 mutations and ethnic-related phenotypes in Chinese patients with WS1. De novo mutations in PAX3 have not been reported before. PMID:20664692

  18. PAX3 mutations and clinical characteristics in Chinese patients with Waardenburg syndrome type 1.

    Science.gov (United States)

    Wang, Juan; Li, Shiqiang; Xiao, Xueshan; Wang, Panfeng; Guo, Xiangming; Zhang, Qingjiong

    2010-06-22

    To detect paired box gene 3 (PAX3) mutations and associated phenotypes in Chinese patients with Waardenburg syndrome type 1 (WS1). Five unrelated families with suspected WS1 were selected from our Genomic DNA Repository for Hereditary Eye Diseases. The coding and adjacent intronic regions of PAX3 were amplified by polymerase chain reaction and the amplicons were then analyzed by cycle sequencing. Variations detected were further evaluated in available family members as well as one hundred controls with heteroduplex-single strand conformational polymorphism (heteroduplex-SSCP) analysis and/or clone sequencing. Three novel and two known mutations in PAX3 were detected in five patients, respectively: c.567_586+17del (p.Asp189_Gln505delinsGluGlyGlyAlaLeuAlaGly), c.456_459dupTTCC (p.Ile154PhefsX162), c.795_800delCTGGTT (p.Trp266_Phe267del), c.799T>A (p.Phe267Ile), and c.667C>T (p.Arg223X). Two novel mutations proved to be de novo as their parents did not carry the mutations. All five patients with PAX3 mutations had dystopia canthorum and different iris color and fundi between their two eyes. However, none had white forelock, skin hypopigmentation, and deafness. Our findings expand the frequency and spectrum of PAX3 mutations and ethnic-related phenotypes in Chinese patients with WS1. De novo mutations in PAX3 have not been reported before.

  19. Characterization of P1 promoter activity of the β-galactoside α2,6 ...

    Indian Academy of Sciences (India)

    2012-04-05

    Apr 5, 2012 ... The level of β-galactoside α2,6-sialyltransferase I (ST6Gal I) mRNA, encoded by the gene siat1, is increased in malignant tissues. Expression is regulated by different promotersP1, P2 and P3 – generating three mRNA isoforms. H, X and YZ. In cervical cancer tissue the mRNA isoform H, which results ...

  20. Onecut1 and Onecut2 transcription factors operate downstream of Pax6 to regulate horizontal cell development

    Czech Academy of Sciences Publication Activity Database

    Klímová, Lucie; Antošová, Barbora; Kuželová, Andrea; Strnad, Hynek; Kozmik, Zbyněk

    2015-01-01

    Roč. 402, č. 1 (2015), s. 48-60 ISSN 0012-1606 R&D Projects: GA ČR GAP305/11/2198; GA ČR GA15-23675S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : Pax6 * Onecut * Retina * Horizontal cell Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.155, year: 2015

  1. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma

    Directory of Open Access Journals (Sweden)

    Eberhart Charles G

    2010-11-01

    Full Text Available Abstract Background The Sonic hedgehog (Shh signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. Methods We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Results Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63% and primary astrocytoma tumor samples (32%, but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Conclusions Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes.

  2. Pax2/5/8 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain

    Czech Academy of Sciences Publication Activity Database

    Fabian, Peter; Kozmiková, Iryna; Kozmik, Zbyněk; Pantzartzi, Chrysoula

    2015-01-01

    Roč. 6, Jul 2 (2015) ISSN 1664-8021 R&D Projects: GA MŠk LH12047; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : Pax homologs * splicing * vertebrate evolution Subject RIV: EB - Genetics ; Molecular Biology

  3. A new gestational diabetes mellitus model: hyperglycemia-induced eye malformation via inhibition of Pax6 in the chick embryo

    Directory of Open Access Journals (Sweden)

    Shi-Jie Zhang

    2016-02-01

    Full Text Available Gestational diabetes mellitus (GDM is one of the leading causes of fetal malformations. However, few models have been developed to study the underlying mechanisms of GDM-induced fetal eye malformation. In this study, a high concentration of glucose (0.2 mmol per egg was injected into the air sac of chick embryos on embryo development day (EDD 1 to develop a hyperglycemia model. Results showed that 47.3% of embryonic eye malformation happened on EDD 5. In this model, the key genes regulating eye development, Pax6, Six3 and Otx2, were downregulated by hyperglycemia. Among these genes, the expression of Pax6 was the most vulnerable to hyperglycemia, being suppressed by 70%. A reduction in Pax6 gene expression induced eye malformation in chick embryos. However, increased expression of Pax6 in chick embryos could rescue hyperglycemia-induced eye malformation. Hyperglycemia stimulated O-linked N-acetylglucosaminylation, which caused oxidative stress in chick embryos. Pax6 was found to be vulnerable to free radicals, but the antioxidant edaravone could restore Pax6 expression and reverse eye malformation. These results illustrated a successful establishment of a new chick embryo model to study the molecular mechanism of hyperglycemia-induced eye malformation. The suppression of the Pax6 gene is probably mediated by oxidative stress and could be a crucial target for the therapy of GDM-induced embryonic eye malformation.

  4. A new gestational diabetes mellitus model: hyperglycemia-induced eye malformation via inhibition of Pax6 in the chick embryo.

    Science.gov (United States)

    Zhang, Shi-Jie; Li, Yi-Fang; Tan, Rui-Rong; Tsoi, Bun; Huang, Wen-Shan; Huang, Yi-Hua; Tang, Xiao-Long; Hu, Dan; Yao, Nan; Yang, Xuesong; Kurihara, Hiroshi; Wang, Qi; He, Rong-Rong

    2016-02-01

    Gestational diabetes mellitus (GDM) is one of the leading causes of fetal malformations. However, few models have been developed to study the underlying mechanisms of GDM-induced fetal eye malformation. In this study, a high concentration of glucose (0.2 mmol per egg) was injected into the air sac of chick embryos on embryo development day (EDD) 1 to develop a hyperglycemia model. Results showed that 47.3% of embryonic eye malformation happened on EDD 5. In this model, the key genes regulating eye development, Pax6, Six3 and Otx2, were downregulated by hyperglycemia. Among these genes, the expression of Pax6 was the most vulnerable to hyperglycemia, being suppressed by 70%. A reduction in Pax6 gene expression induced eye malformation in chick embryos. However, increased expression of Pax6 in chick embryos could rescue hyperglycemia-induced eye malformation. Hyperglycemia stimulated O-linked N-acetylglucosaminylation, which caused oxidative stress in chick embryos. Pax6 was found to be vulnerable to free radicals, but the antioxidant edaravone could restore Pax6 expression and reverse eye malformation. These results illustrated a successful establishment of a new chick embryo model to study the molecular mechanism of hyperglycemia-induced eye malformation. The suppression of the Pax6 gene is probably mediated by oxidative stress and could be a crucial target for the therapy of GDM-induced embryonic eye malformation. © 2016. Published by The Company of Biologists Ltd.

  5. Effects of light and covering behavior on PAX6 expression in the sea urchin Strongylocentrotus intermedius.

    Directory of Open Access Journals (Sweden)

    Chong Zhao

    Full Text Available We studied the diel expression pattern of PAX6 (a structural gene that is commonly involved in the eye development and photoreception of eye forming animals and the effects of light and covering behavior on PAX6 expression in the sea urchin Strongylocentrotus intermedius. We confirmed that aphotic condition significantly reduced covering behavior in S. intermedius. The diel expression pattern of PAX6 was significantly different in S. intermedius under photic and aphotic conditions. The gene expression of PAX6 significantly deceased in covered S. intermedius both under natural light and in darkness. The present finding provides valuable insight into the probable link between covering and PAX6 expression of sea urchins. Further studies are required to investigate the detailed expression network of light detection involved genes in order to fully reveal the molecular mechanism of the light-induced covering behavior of sea urchins.

  6. Stage-dependent requirement of neuroretinal Pax6 for lens and retina development

    Czech Academy of Sciences Publication Activity Database

    Klímová, Lucie; Kozmik, Zbyněk

    2014-01-01

    Roč. 141, č. 6 (2014), s. 1292-1302 ISSN 0950-1991 R&D Projects: GA ČR GAP305/11/2198; GA AV ČR IAA500520908; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : Pax6 * Retinal progenitor * mRx-Cre * Lens induction Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.462, year: 2014

  7. Effect of Qingguang'an II on expression of PAX6, Ngn1 and Ngn2 mRNA of rats with chronic high intraocular pressure

    Directory of Open Access Journals (Sweden)

    Ya-Sha Zhou

    2017-09-01

    Full Text Available AIM: To remark the effect of Qingguang'an II on expression of PAX6, Ngn1, and Ngn2 mRNA of rats with chronic high intraocular pressure. METHODS: Totally 40 male SD rats were randomly divided into 6 groups, that was: A: blank group, B: model group, C: Qingguang'an II low dose group, D: Qingguang'an II moderate dose group, E: Qingguang'an II high dose group, F: Yimaikang disket group. B, C, D, E, F groups of experimental rats were established the model of chronic high intraocular pressure(IOPby cauterizing of superficial scleral vein. Animal model was established successfully by using monitoring IOP consistently keep above 25mmHg for 8wk as cut-off criterion. Tissues of Eyes were obtained after intragastric administration for 2wk and 4wk. The expressions of PAX6, Ngn1, and Ngn2 mRNA were investigated by Real-time PCR. RESULTS: At the time-point of 2wk, PAX6, Ngn1, and Ngn2 mRNA in group B were statistically expressed in lower level comparing with other groups(PPPP>0.05. CONCLUSION: In summar, Qingguang'an II and Yimaikang disket can remarkably increase the expressions of PAX6, Ngn1, and Ngn2, which suggest protecting the optic nerve of rats caused by chronic high IOP. What's more, this study indicated that, in the protection of optic nerve of rats with chronic high IOP, the high dose of Qingguang'an II at the time-point of 4wk was the better choice.

  8. Proanthocyanidins Prevent High Glucose-Induced Eye Malformation by Restoring Pax6 Expression in Chick Embryo

    Directory of Open Access Journals (Sweden)

    Rui-Rong Tan

    2015-08-01

    Full Text Available Gestational diabetes mellitus (GDM is one of the leading causes of offspring malformations, in which eye malformation is an important disease. It has raised demand for therapy to improve fetal outcomes. In this study, we used chick embryo to establish a GDM model to study the protective effects of proanthocyanidins on eye development. Chick embryos were exposed to high glucose (0.2 mmol/egg on embryo development day (EDD 1. Proanthocyanidins (1 and 10 nmol/egg were injected into the air sac on EDD 0. Results showed that both dosages of proanthocyanidins could prevent the eye malformation and rescue the high glucose-induced oxidative stress significantly, which the similar effects were showed in edaravone. However, proanthocyanidins could not decrease the glucose concentration of embryo eye. Moreover, the key genes regulating eye development, Pax6, was down-regulated by high glucose. Proanthocyanidins could restore the suppressed expression of Pax6. These results indicated proanthocyanidins might be a promising natural agent to prevent high glucose-induced eye malformation by restoring Pax6 expression.

  9. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Aumercier, Marc [IRI, CNRS USR 3078, Université de Lille-Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq Cedex (France); Mukhopadhyay, Gauranga [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Tyagi, Rakesh K., E-mail: rktyagi@yahoo.com [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India)

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  10. Evaluation of Pax6 mutant rat as a model for autism.

    Directory of Open Access Journals (Sweden)

    Toshiko Umeda

    Full Text Available Autism is a highly variable brain developmental disorder and has a strong genetic basis. Pax6 is a pivotal player in brain development and maintenance. It is expressed in embryonic and adult neural stem cells, in astrocytes in the entire central nervous system, and in neurons in the olfactory bulb, amygdala, thalamus, and cerebellum, functioning in highly context-dependent manners. We have recently reported that Pax6 heterozygous mutant (rSey(2/+ rats with a spontaneous mutation in the Pax6 gene, show impaired prepulse inhibition (PPI. In the present study, we further examined behaviors of rSey(2/+ rats and revealed that they exhibited abnormality in social interaction (more aggression and withdrawal in addition to impairment in rearing activity and in fear-conditioned memory. Ultrasonic vocalization (USV in rSey(2+ rat pups was normal in male but abnormal in female. Moreover, treatment with clozapine successfully recovered the defects in sensorimotor gating function, but not in fear-conditioned memory. Taken together with our prior human genetic data and results in other literatures, rSey(2/+ rats likely have some phenotypic components of autism.

  11. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1.

    Science.gov (United States)

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism.

  12. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1

    OpenAIRE

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism.

  13. PAX-FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: a children's oncology group report.

    Science.gov (United States)

    Skapek, Stephen X; Anderson, James; Barr, Frederic G; Bridge, Julia A; Gastier-Foster, Julie M; Parham, David M; Rudzinski, Erin R; Triche, Timothy; Hawkins, Douglas S

    2013-09-01

    Rhabdomyosarcoma (RMS) is divided into two major histological subtypes: alveolar (ARMS) and embryonal (ERMS), with most ARMS expressing one of two oncogenic genes fusing PAX3 or PAX7 with FOXO1 (P3F and P7F, respectively). The Children's Oncology Group (COG) carried out a multi-institutional clinical trial to evaluate the prognostic value of PAX-FOXO1 fusion status. Study participants were treated on COG protocol D9803 for intermediate risk ARMS or ERMS using multi-agent chemotherapy, radiotherapy, and surgery. Central diagnostic pathology review and molecular testing for fusion genes were carried out on prospectively collected specimens. Event-free (EFS) and overall survival (OS) at 5 years were correlated with histological subtype and PAX-FOXO1 status. Of 616 eligible D9803 enrollees, 434 cases had adequate clinical, molecular, and pathology data for definitive classification as ERMS, ARMS P3F+ or P7F+, or ARMSn (without detectable fusion). EFS was worse for those with ARMS P3F+ (54%) and P7F+ (65%) than those with ERMS (77%; P < 0.001). EFS for ARMSn and ERMS were not statistically different (90% vs. 77%, P = 0.15). ARMS P3F+ had poorer OS (64%) than ARMS P7F+ (87%), ARMSn (89%), and ERMS (82%; P = 0.006). ARMSn has an outcome similar to ERMS and superior EFS compared to ARMS with either P3F or P7F, when given therapy designed for children with intermediate risk RMS. This prospective analysis supports incorporation of PAX-FOXO1 fusion status into risk stratification and treatment allocation. Copyright © 2013 Wiley Periodicals, Inc.

  14. Molecular cloning and functional characterization of two forms of Pax8 in the rainbow trout, Oncorhynchus mykiss

    Science.gov (United States)

    Katagiri, Nobuto; Uemae, Youji; Sakamoto, Joe; Hidaka, Yoshie; Susa, Takao; Kato, Yukio; Kimura, Shioko; Suzuki, Masakazu

    2014-01-01

    We have identified two distinct Pax8 (a and b) mRNAs from the thyroid gland of the rainbow trout (Oncorhynchus mykiss), which seemed to be generated by alternative splicing. Both Pax8a and Pax8b proteins were predicted to possess the paired domain, octapeptide, and partial homeodomain, while Pax8b lacked the carboxy-terminal portion due to an insertion in the coding region of the mRNA. RT-PCR analysis showed each of Pax8a and Pax8b mRNAs to be abundantly expressed in the thyroid and kidney. In situ hybridization histochemistry further detected the expression of Pax8 mRNA in the epithelial cells of the thyroid follicles of the adult trout and in the thyroid primordial cells of the embryo. The functional properties of Pax8a and Pax8b were investigated by dual luciferase assay. The transcriptional regulation by the rat thyroid peroxidase (TPO) promoter was found to be increased by Pax8a, but not by Pax8b. Pax8a further showed synergistic transcriptional activity with rat Nkx2-1 for the human TPO upstream region including the enhancer and promoter. On the other hand, Pax8b decreased the synergistic activity of Pax8a and Nkx2-1. Electrophoretic mobility shift assay additionally indicated that not only Pax8a but also Pax8b can bind to the TPO promoter and enhancer, implying that the inhibitory effect of Pax8b might result from the lack of the functional carboxy-terminal portion. Collectively, the results suggest that for the trout thyroid gland, Pax8a may directly increase TPO gene expression in cooperation with Nkx2-1 while Pax8b may work as a non-activating competitor for the TPO transcription. PMID:24380675

  15. Novel PAX3 mutations causing Waardenburg syndrome type 1 in Tunisian patients.

    Science.gov (United States)

    Trabelsi, Mediha; Nouira, Malek; Maazoul, Faouzi; Kraoua, Lilia; Meddeb, Rim; Ouertani, Ines; Chelly, Imen; Benoit, Valérie; Besbes, Ghazi; Mrad, Ridha

    2017-12-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disease characterized by a clinical and genetic variability. WS is classified into four types depending on the presence or absence of additional symptoms: WS1, WS2, WS3 and WS4. Type 1 and 3 are mostly caused by PAX3 mutations, while type 2 and type 4 are genetically heterogeneous. The aims of this study are to confirm the diagnostic of WS1 by the sequencing of PAX3 gene and to evaluate the genotype phenotype correlation. A clinical classification was established for 14 patients WS, as proposed by the Waardenburg Consortium, and noted a predominance of type 1 and type 2 with 6 patients WS1, 7 patients WS2 and 1 patient WS3. A significant inter and intra-familial clinical heterogeneity was also observed. A sequencing of PAX3 gene in the 6 patients WS1 confirmed the diagnosis in 4 of them by revealing three novel mutations that modify two functional domains of the protein: the c.942delC; the c.933_936dupTTAC and the c.164delTCCGCCACA. These three variations are most likely responsible for the phenotype, however their pathogenic effects need to be confirmed by functional studies. The MLPA analysis of the 2 patients who were sequence negative for PAX3 gene revealed, in one of them, a heterozygous deletion of exons 5 to 9 confirming the WS1 diagnosis. Both clinical and molecular approaches led to the conclusion that there is a lack of genotype-phenotype correlation in WS1, an element that must be taken into account in genetic counseling. The absence of PAX3 mutation in one patient WS1 highlights the fact that the clinical classification is sometimes insufficient to distinguish WS1 from other types WS hence the interest of sequencing the other WS genes in this patient. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1

    Science.gov (United States)

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism. PMID:27081571

  17. Housing system influences abundance of Pax3 and Pax7 in postnatal chicken skeletal muscles.

    Science.gov (United States)

    Yin, H D; Li, D Y; Zhang, L; Yang, M Y; Zhao, X L; Wang, Y; Liu, Y P; Zhu, Q

    2014-06-01

    Paired box (Pax) proteins 3 and 7 are associated with activation of muscle satellite cells and play a major role in hyperplastic and hypertrophic growth in postnatal skeletal muscle fibers. The objective of this study was to evaluate the effect of housing system on abundance of Pax3 and Pax7 in postnatal chicken skeletal muscles. At 42 d, 1,200 chickens with similar BW were randomly assigned to cage, pen, and free-range group. The mRNA abundance was measured in pectoralis major and thigh muscle at d 56, 70, and 84, and the protein expression was quantified at d 84. Increases in mRNA abundance of PAX3 and PAX7 with age were less pronounced in caged system chickens than in pen and free-range chickens from d 56 to 84, and free-range chickens showed a more pronounced increase in gene expression with age compared with penned chickens. At d 84, quantities of PAX3 and PAX7 mRNA and protein were highest in both pectoralis major and thigh muscle of chickens raised in the free-range group, lowest in penned chickens, and intermediate in caged chickens (P system may influence muscle fiber muscle accretion by coordinating the expression of Pax3 and Pax7 in adult chicken skeletal muscles. Poultry Science Association Inc.

  18. Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients.

    Science.gov (United States)

    Nakayama, Takuya; Fisher, Marilyn; Nakajima, Keisuke; Odeleye, Akinleye O; Zimmerman, Keith B; Fish, Margaret B; Yaoita, Yoshio; Chojnowski, Jena L; Lauderdale, James D; Netland, Peter A; Grainger, Robert M

    2015-12-15

    Mutations in the Pax6 gene cause ocular defects in both vertebrate and invertebrate animal species, and the disease aniridia in humans. Despite extensive experimentation on this gene in multiple species, including humans, we still do not understand the earliest effects on development mediated by this gene. This prompted us to develop pax6 mutant lines in Xenopus tropicalis taking advantage of the utility of the Xenopus system for examining early development and in addition to establish a model for studying the human disease aniridia in an accessible lower vertebrate. We have generated mutants in pax6 by using Transcription Activator-Like Effector Nuclease (TALEN) constructs for gene editing in X. tropicalis. Embryos with putative null mutations show severe eye abnormalities and changes in brain development, as assessed by changes in morphology and gene expression. One gene that we found is downregulated very early in development in these pax6 mutants is myc, a gene involved in pluripotency and progenitor cell maintenance and likely a mediator of some key pax6 functions in the embryo. Changes in gene expression in the developing brain and pancreas reflect other important functions of pax6 during development. In mutations with partial loss of pax6 function eye development is initially relatively normal but froglets show an underdeveloped iris, similar to the classic phenotype (aniridia) seen in human patients with PAX6 mutations. Other eye abnormalities observed in these froglets, including cataracts and corneal defects, are also common in human aniridia. The frog model thus allows us to examine the earliest deficits in eye formation as a result of pax6 lesions, and provides a useful model for understanding the developmental basis for the aniridia phenotype seen in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. PAX-FOXO1 Fusion Status Drives Unfavorable Outcome for Children With Rhabdomyosarcoma: A Children’s Oncology Group Report

    Science.gov (United States)

    Skapek, Stephen X.; Anderson, James; Barr, Frederic G.; Bridge, Julia A.; Gastier-Foster, Julie M.; Parham, David M.; Rudzinski, Erin R.; Triche, Timothy; Hawkins, Douglas S.

    2015-01-01

    Background Rhabdomyosarcoma (RMS) is divided into two major histological subtypes: alveolar (ARMS) and embryonal (ERMS), with most ARMS expressing one of two oncogenic genes fusing PAX3 or PAX7 with FOXO1 (P3F and P7F, respectively). The Children’s Oncology Group (COG) carried out a multi-institutional clinical trial to evaluate the prognostic value of PAX-FOXO1 fusion status. Methods Study participants were treated on COG protocol D9803 for intermediate risk ARMS or ERMS using multi-agent chemotherapy, radiotherapy, and surgery. Central diagnostic pathology review and molecular testing for fusion genes were carried out on prospectively collected specimens. Event-free (EFS) and overall survival (OS) at 5 years were correlated with histological subtype and PAX-FOXO1 status. Results Of 616 eligible D9803 enrollees, 434 cases had adequate clinical, molecular, and pathology data for definitive classification as ERMS, ARMS P3F+ or P7F+, or ARMSn (without detectable fusion). EFS was worse for those with ARMS P3F+ (54%) and P7F+ (65%) than those with ERMS (77%; P < 0.001). EFS for ARMSn and ERMS were not statistically different (90% vs. 77%, P = 0.15). ARMS P3F+had poorer OS (64%) than ARMS P7F+ (87%), ARMSn (89%), and ERMS (82%; P = 0.006). Conclusions ARMSn has an outcome similar to ERMS and superior EFS compared to ARMS with either P3F or P7F, when given therapy designed for children with intermediate risk RMS. This prospective analysis supports incorporation of PAX-FOXO1 fusion status into risk stratification and treatment allocation. PMID:23526739

  20. DNA-mediated cooperativity facilitates the co-selection of cryptic enhancer sequences by SOX2 and PAX6 transcription factors.

    Science.gov (United States)

    Narasimhan, Kamesh; Pillay, Shubhadra; Huang, Yong-Heng; Jayabal, Sriram; Udayasuryan, Barath; Veerapandian, Veeramohan; Kolatkar, Prasanna; Cojocaru, Vlad; Pervushin, Konstantin; Jauch, Ralf

    2015-02-18

    Sox2 and Pax6 are transcription factors that direct cell fate decision during neurogenesis, yet the mechanism behind how they cooperate on enhancer DNA elements and regulate gene expression is unclear. By systematically interrogating Sox2 and Pax6 interaction on minimal enhancer elements, we found that cooperative DNA recognition relies on combinatorial nucleotide switches and precisely spaced, but cryptic composite DNA motifs. Surprisingly, all tested Sox and Pax paralogs have the capacity to cooperate on such enhancer elements. NMR and molecular modeling reveal very few direct protein-protein interactions between Sox2 and Pax6, suggesting that cooperative binding is mediated by allosteric interactions propagating through DNA structure. Furthermore, we detected and validated several novel sites in the human genome targeted cooperatively by Sox2 and Pax6. Collectively, we demonstrate that Sox-Pax partnerships have the potential to substantially alter DNA target specificities and likely enable the pleiotropic and context-specific action of these cell-lineage specifiers. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. The formation of an aberrant PAX5 transcript in a patient with mixed phenotype acute leukemia harboring der(9t(7;9(q11.2;p13

    Directory of Open Access Journals (Sweden)

    Jun Amaki

    2016-01-01

    Full Text Available We experienced the case of a 56-year-old male with B-lymphoid/myeloid lineage mixed phenotype acute leukemia (MPAL. A cytogenetic analysis of the patient's bone marrow revealed a complex karyotype, including der(9t(7;9(q11.2;p13. We identified an aberrant PAX5 transcript, including the exons 1A to 5 and the contiguous intron 5/6 sequence using the 3′ rapid amplification of cDNA ends-polymerase chain reaction method, and confirmed their expression in the leukemic cells. Our case suggests that der(9t(7;9(q11.2;p13 can cause the truncation of the PAX5 transcript, which is supposed to contribute to the generation of MPAL, in addition to three previously reported types of PAX5 fusion.

  2. The Optimedin gene is a downstream target of Pax6

    Czech Academy of Sciences Publication Activity Database

    Grinchuk, O.; Kozmik, Zbyněk; Wu, X.; Tomarev, S.

    2005-01-01

    Roč. 280, č. 42 (2005), s. 35228-35237 ISSN 0021-9258 R&D Projects: GA ČR GA204/04/1358 Institutional research plan: CEZ:AV0Z50520514 Keywords : Pax6 * optimedin * promotor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.854, year: 2005

  3. Identification and functional analysis of a novel mutation in the PAX3 gene associated with Waardenburg syndrome type I.

    Science.gov (United States)

    Niu, Zhijie; Li, Jiada; Tang, Fen; Sun, Jie; Wang, Xueping; Jiang, Lu; Mei, Lingyun; Chen, Hongsheng; Liu, Yalan; Cai, Xinzhang; Feng, Yong; He, Chufeng

    2018-02-05

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant genetic disorder of neural crest cells (NCC) characterized by congenital sensorineural hearing loss, dystopia canthorum, and abnormal iris pigmentation. WS1 is due to loss-of-function mutations in paired box gene 3 (PAX3). Here, we identified a novel PAX3 mutation (c.808C>G, p.R270G) in a three-generation Chinese family with WS1, and then analyzed its in vitro activities. The R270G PAX3 retained nuclear distribution and normal DNA-binding ability; however, it failed to activate MITF promoter, suggesting that haploinsufficiency may be the underlying mechanism for the mild WS1 phenotype of the study family. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    Science.gov (United States)

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (Pinsulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  5. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions

    Directory of Open Access Journals (Sweden)

    Ruiz-Llorente Sergio

    2012-04-01

    Full Text Available Abstract Background The transcription factor Pax8 is essential for the differentiation of thyroid cells. However, there are few data on genes transcriptionally regulated by Pax8 other than thyroid-related genes. To better understand the role of Pax8 in the biology of thyroid cells, we obtained transcriptional profiles of Pax8-silenced PCCl3 thyroid cells using whole genome expression arrays and integrated these signals with global cis-regulatory sequencing studies performed by ChIP-Seq analysis Results Exhaustive analysis of Pax8 immunoprecipitated peaks demonstrated preferential binding to intragenic regions and CpG-enriched islands, which suggests a role of Pax8 in transcriptional regulation of orphan CpG regions. In addition, ChIP-Seq allowed us to identify Pax8 partners, including proteins involved in tertiary DNA structure (CTCF and chromatin remodeling (Sp1, and these direct transcriptional interactions were confirmed in vivo. Moreover, both factors modulate Pax8-dependent transcriptional activation of the sodium iodide symporter (Nis gene promoter. We ultimately combined putative and novel Pax8 binding sites with actual target gene expression regulation to define Pax8-dependent genes. Functional classification suggests that Pax8-regulated genes may be directly involved in important processes of thyroid cell function such as cell proliferation and differentiation, apoptosis, cell polarity, motion and adhesion, and a plethora of DNA/protein-related processes. Conclusion Our study provides novel insights into the role of Pax8 in thyroid biology, exerted through transcriptional regulation of important genes involved in critical thyrocyte processes. In addition, we found new transcriptional partners of Pax8, which functionally cooperate with Pax8 in the regulation of thyroid gene transcription. Besides, our data demonstrate preferential location of Pax8 in non-promoter CpG regions. These data point to an orphan CpG island-mediated mechanism

  6. Hypermethylated ZNF582 and PAX1 genes in mouth rinse samples as biomarkers for oral dysplasia and oral cancer detection.

    Science.gov (United States)

    Cheng, Shih-Jung; Chang, Chi-Feng; Ko, Hui-Hsin; Lee, Jang-Jaer; Chen, Hsin-Ming; Wang, Huei-Jen; Lin, Hsiao-Shan; Chiang, Chun-Pin

    2018-02-01

    Effective biomarkers for oral cancer screening are important for early diagnosis and treatment of oral cancer. Oral epithelial cell samples collected by mouth rinse were obtained from 65 normal control subjects, 108 patients with oral potentially malignant disorders, and 94 patients with oral squamous cell carcinoma (OSCC). Methylation levels of zinc-finger protein 582 (ZNF582) and paired-box 1 (PAX1) genes were quantified by real-time methylation-specific polymerase chain reaction after bisulfite conversion. An abrupt increase in methylated ZNF582 (ZNF582 m ) and PAX1 (PAX1 m ) levels and positive rates from mild dysplasia to moderate/severe dysplasia, indicating that both ZNF582 m and PAX1 m are effective biomarkers for differentiating moderate dysplasia or worse (MODY+) oral lesions. When ZNF582 m /PAX1 m tests were used for identifying MODY+ oral lesions, the sensitivity, specificity, and odds ratio (OR) were 0.65/0.64, 0.75/0.82, and 5.6/8.0, respectively. Hypermethylated ZNF582 and PAX1 genes in oral epithelial cells collected by mouth rinse are effective biomarkers for the detection of oral dysplasia and oral cancer. © 2017 Wiley Periodicals, Inc.

  7. Value of PAX1 Methylation Analysis by MS-HRM in the Triage of Atypical Squamous Cells of Undetermined Significance.

    Science.gov (United States)

    Li, Shi-Rong; Wang, Zhen-Ming; Wang, Yu-Hui; Wang, Xi-Bo; Zhao, Jian-Qiang; Xue, Hai-Bin; Jiang, Fu-Guo

    2015-01-01

    Detection of cervical high grade lesions in patients with atypical squamous cells of undetermined significance (ASCUS) is still a challenge. Our study tested the efficacy of the paired boxed gene 1 (PAX1) methylation analysis by methylation-sensitive high-resolution melting (MS-HRM) in the detection of high grade lesions in ASCUS and compared performance with the hybrid capture 2 (HC2) human papillomavirus (HPV) test. A total of 463 consecutive ASCUS women from primary screening were selected. Their cervical scrapings were collected and assessed by PAX1 methylation analysis (MS-HRM) and high-risk HPV-DNA test (HC2). All patients with ASCUS were admitted to colposcopy and cervical biopsies. The Chi- square test was used to test the differences of PAX1 methylation or HPV infection between groups. The specificity, sensitivity, and accuracy for detecting CIN2 + lesions were: 95.6%, 82.4%, and 94.6%, respectively, for the PAX1 MS-HRM test; and 59.7%, 64.7%, and 60.0% for the HC2 HPV test. The PAX1 methylation analysis by MS-HRM demonstrated a better performance than the high-risk HPV-DNA test for the detection of high grade lesions (CIN2 +) in ASCUS cases. This approach could screen out the majority of low grade cases of ASCUS, and thus reduce the referral rate to colposcopy.

  8. Suppression of Pax2 attenuates allodynia and hyperalgesia through ET-1-ETAR-NFAT5 signaling in a rat model of neuropathic pain.

    Science.gov (United States)

    Tai, Lydia Wai; Pan, Zhiqiang; Sun, Liting; Li, Haobo; Gu, Pan; Wong, Stanley Sau Ching; Chung, Sookja K; Cheung, Chi Wai

    2018-05-27

    Endothelin-1 (ET-1) and its receptors (ETAR/ETBR) emerge to be a key signaling axis in neuropathic pain processing and are recognized as new therapeutic targets. Yet, little is known on the functional regulation of ET-1 axis during neuropathic pain. Bioinformatics analysis indicated that paired box gene 2 (Pax2) or nuclear factor of activated T-cells 5 (NFAT5), two transcription factors involved in the modulation of neurotransmission, may regulate ET-1. Therefore, we hypothesized that ET-1 axis may be regulated by Pax2 or NFAT5 in the development of neuropathic pain. After partial sciatic nerve ligation (pSNL), rats displayed allodynia and hyperalgesia, which was associated with increased mRNA and protein expressions of spinal Pax2, NFAT5, and mRNA levels of ET-1 and ETAR, but not ETBR. Knockdown of Pax2 or NFAT5 with siRNA, or inhibition of ETAR with BQ-123 attenuated pSNL-induced pain-like behaviors. At molecular level, Pax2 siRNA, but not NFAT5 siRNA, downregulated ET-1 and ETAR, while ETAR inhibitor reduced NFAT5, indicating Pax2 in the upstream of ET-1 axis with NFAT5 in the downstream. Further, suppression of Pax2 (inhibiting ET-1) or impairment of ET-1 signaling (inhibition of ETAR and/or decrease of NFAT5) deactivated mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, supporting the significance of functional regulation of ET-1 axis in neuropathic pain signaling. These findings demonstrate that Pax2 targeting ET-1-ETAR-NFAT5 is a novel regulatory mechanism underlying neuropathic pain. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Genetic interaction between Pax6 and β-catenin in the developing retinal pigment epithelium

    Czech Academy of Sciences Publication Activity Database

    Fujimura, Naoko; Klímová, Lucie; Antošová, Barbora; Smolíková, Jana; Machoň, Ondřej; Kozmik, Zbyněk

    2015-01-01

    Roč. 225, č. 2 (2015), s. 121-128 ISSN 0949-944X R&D Projects: GA ČR GAP305/11/2198; GA ČR GAP305/10/2141; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LK11214 Institutional support: RVO:68378050 Keywords : Pax6 * beta-Catenin * Retina * Pigmentation * Transdifferentiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.508, year: 2015

  10. Genetic analysis of PAX3 for diagnosis of Waardenburg syndrome type I.

    Science.gov (United States)

    Matsunaga, Tatsuo; Mutai, Hideki; Namba, Kazunori; Morita, Noriko; Masuda, Sawako

    2013-04-01

    PAX3 genetic analysis increased the diagnostic accuracy for Waardenburg syndrome type I (WS1). Analysis of the three-dimensional (3D) structure of PAX3 helped verify the pathogenicity of a missense mutation, and multiple ligation-dependent probe amplification (MLPA) analysis of PAX3 increased the sensitivity of genetic diagnosis in patients with WS1. Clinical diagnosis of WS1 is often difficult in individual patients with isolated, mild, or non-specific symptoms. The objective of the present study was to facilitate the accurate diagnosis of WS1 through genetic analysis of PAX3 and to expand the spectrum of known PAX3 mutations. In two Japanese families with WS1, we conducted a clinical evaluation of symptoms and genetic analysis, which involved direct sequencing, MLPA analysis, quantitative PCR of PAX3, and analysis of the predicted 3D structure of PAX3. The normal-hearing control group comprised 92 subjects who had normal hearing according to pure tone audiometry. In one family, direct sequencing of PAX3 identified a heterozygous mutation, p.I59F. Analysis of PAX3 3D structures indicated that this mutation distorted the DNA-binding site of PAX3. In the other family, MLPA analysis and subsequent quantitative PCR detected a large, heterozygous deletion spanning 1759-2554 kb that eliminated 12-18 genes including a whole PAX3 gene.

  11. Transcriptional activity of Pax3 is co-activated by TAZ

    International Nuclear Information System (INIS)

    Murakami, Masao; Tominaga, Junji; Makita, Ryosuke; Uchijima, Yasunobu; Kurihara, Yukiko; Nakagawa, Osamu; Asano, Tomoichiro; Kurihara, Hiroki

    2006-01-01

    Pax3 is a transcription factor which functions in embryonic development and human diseases. In a yeast two-hybrid screen with full-length Pax3 as bait, we isolated a clone encoding transcriptional co-activator with PDZ-binding motif (TAZ) from an E10.5 mouse embryo cDNA library. Co-immunoprecipitation and nuclear co-localization of TAZ with Pax3 suggest that their association is functionally relevant. In situ hybridization revealed TAZ and Pax3 expression to partially overlap in the paraxial mesoderm, limb buds, and the neural tube. In C2C12 myoblast cells and NIH3T3 cells, TAZ enhanced the transcriptional activity of Pax3 on artificial and microphthalmia-associated transcription factor promoter-luciferase constructs, suggesting that TAZ can function as a co-activator of Pax3. Functional interaction between Pax3 and TAZ may provide a clue to clarifying the mechanism by which Pax3 serves as a transcriptional activator during embryogenesis

  12. A spontaneous and novel Pax3 mutant mouse that models Waardenburg syndrome and neural tube defects.

    Science.gov (United States)

    Ohnishi, Tetsuo; Miura, Ikuo; Ohba, Hisako; Shimamoto, Chie; Iwayama, Yoshimi; Wakana, Shigeharu; Yoshikawa, Takeo

    2017-04-05

    Genes responsible for reduced pigmentation phenotypes in rodents are associated with human developmental defects, such as Waardenburg syndrome, where patients display congenital deafness along with various abnormalities mostly related to neural crest development deficiency. In this study, we identified a spontaneous mutant mouse line Rwa, which displays variable white spots on mouse bellies and white digits and tail, on a C57BL/6N genetic background. Curly tail and spina bifida were also observed, although at a lower penetrance. These phenotypes were dominantly inherited by offspring. We searched for the genetic mechanism of the observed phenotypes. We harnessed a rapid mouse gene mapping system newly developed in our laboratories to identify a responsible gene. We detected a region within chromosome 1 as a probable locus for the causal mutation. Dense mapping using interval markers narrowed the locus down to a 670-kbp region, containing four genes including Pax3, a gene known to be implicated in the types I and III Waardenburg syndrome. Extensive mutation screening of Pax3 detected an 841-bp deletion, spanning the promoter region and intron 1 of the gene. The defective allele of Pax3, named Pax3 Rwa , lacked the first coding exon and co-segregated perfectly with the phenotypes, confirming its causal nature. The genetic background of Rwa mice is almost identical to that of inbred C57BL/6N. These results highlight Pax3 Rwa mice as a beneficial tool for analyzing biological processes involving Pax3, in particular the development and migration of neural crest cells and melanocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Myostatin signals through Pax7 to regulate satellite cell self-renewal

    International Nuclear Information System (INIS)

    McFarlane, Craig; Hennebry, Alex; Thomas, Mark; Plummer, Erin; Ling, Nicholas; Sharma, Mridula; Kambadur, Ravi

    2008-01-01

    Myostatin, a Transforming Growth Factor-beta (TGF-β) super-family member, has previously been shown to negatively regulate satellite cell activation and self-renewal. However, to date the mechanism behind Myostatin function in satellite cell biology is not known. Here we show that Myostatin signals via a Pax7-dependent mechanism to regulate satellite cell self-renewal. While excess Myostatin inhibited Pax7 expression via ERK1/2 signaling, an increase in Pax7 expression was observed following both genetic inactivation and functional antagonism of Myostatin. As a result, we show that either blocking or inactivating Myostatin enhances the partitioning of the fusion-incompetent self-renewed satellite cell lineage (high Pax7 expression, low MyoD expression) from the pool of actively proliferating myogenic precursor cells. Consistent with this result, over-expression of Pax7 in C2C12 myogenic cells resulted in increased self-renewal through a mechanism which slowed both myogenic proliferation and differentiation. Taken together, these results suggest that increased expression of Pax7 promotes satellite cell self-renewal, and furthermore Myostatin may control the process of satellite cell self-renewal through regulation of Pax7. Thus we speculate that, in addition to the intrinsic factors (such as Pax7), extrinsic factors both positive and negative in nature, will play a major role in determining the stemness of skeletal muscle satellite cells

  14. PAX1 methylation analysis by MS-HRM is useful in triage of high-grade squamous intraepithelial lesions.

    Science.gov (United States)

    Wang, Zhen-Ming

    2014-01-01

    This study is aimed to investigate the role of paired boxed gene 1 (PAX1) methylation analysis by methylation- sensitive high-resolution melting (MS-HRM) in the detection of high grade lesions in atypical squamous cells cannot exclude high-grade squamous intraepithelial lesion (ASC-H) and compared its performance with the Hybrid Capture 2 (HC2) human papillomavirus (HPV) test. In our study, 130 cases with a diagnosis of ASC-H from the cervical cytological screening by Thinprep cytologic test (TCT) technique were selected for triage. Their cervical scrapings were collected and evaluated by using PAX1 methylation analysis (MS-HRM) and high-risk HPV DNA test (HC2), followed by colposcopy and cervical biopsy. Chi-square test were used to test the differences of PAX1 methylation or HPV infection between groups. In the detection of CIN2+, the sensitivity, specificity, the PPV, NPV and the accuracy of PAX1 MS-HRM assay and high-risk HPV (HR-HPV) tests were respectively 80.6% vs 67.7%, 94.9% vs 54.5%, 83.3%, vs 31.8%, 94.0% vs 84.4%, and 91.5% vs 57.7%. The PAX1 MS-HRM assay proved superior to HR-HPV testing in the detection of high grade lesions (CIN2+) in ASC-H. This approach could screen out the majority of high grade lesion cases of ASC-H, and thus could reduce the referral rate to colposcopy.

  15. Penetrance of eye defects in mice heterozygous for mutation of Gli3 is enhanced by heterozygous mutation of Pax6

    Directory of Open Access Journals (Sweden)

    Price David J

    2006-10-01

    Full Text Available Abstract Background Knowledge of the consequences of heterozygous mutations of developmentally important genes is important for understanding human genetic disorders. The Gli3 gene encodes a zinc finger transcription factor and homozygous loss-of-function mutations of Gli3 are lethal. Humans heterozygous for mutations in this gene suffer Greig cephalopolysyndactyly or Pallister-Hall syndromes, in which limb defects are prominent, and mice heterozygous for similar mutations have extra digits. Here we examined whether eye development, which is abnormal in mice lacking functional Gli3, is defective in Gli3+/- mice. Results We showed that Gli3 is expressed in the developing eye but that Gli3+/- mice have only very subtle eye defects. We then generated mice compound heterozygous for mutations in both Gli3 and Pax6, which encodes another developmentally important transcription factor known to be crucial for eye development. Pax6+/-; Gli3+/- eyes were compared to the eyes of wild-type, Pax6+/- or Gli3+/- siblings. They exhibited a range of abnormalities of the retina, iris, lens and cornea that was more extensive than in single Gli3+/- or Pax6+/- mutants or than would be predicted by addition of their phenotypes. Conclusion These findings indicate that heterozygous mutations of Gli3 can impact on eye development. The importance of a normal Gli3 gene dosage becomes greater in the absence of a normal Pax6 gene dosage, suggesting that the two genes co-operate during eye morphogenesis.

  16. Pαx6 expression in postmitotic neurons mediates the growth of axons in response to SFRP1.

    Directory of Open Access Journals (Sweden)

    Alvaro Sebastián-Serrano

    Full Text Available During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs, dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity.

  17. The orphan nuclear receptor Tlx regulates Pax2 and is essential for vision.

    Science.gov (United States)

    Yu, R T; Chiang, M Y; Tanabe, T; Kobayashi, M; Yasuda, K; Evans, R M; Umesono, K

    2000-03-14

    Although the development of the vertebrate eye is well described, the number of transcription factors known to be key to this process is still limited. The localized expression of the orphan nuclear receptor Tlx in the optic cup and discrete parts of the central nervous system suggested the possible role of Tlx in the formation or function of these structures. Analyses of Tlx targeted mice revealed that, in addition to the central nervous system cortical defects, lack of Tlx function results in progressive retinal and optic nerve degeneration with associated blindness. An extensive screen of Tlx-positive and Tlx-negative P19 neural precursors identified Pax2 as a candidate target gene. This identification is significant, because Pax2 is known to be involved in retinal development in both the human and the mouse eye. We find that Pax2 is a direct target and that the Tlx binding site in its promoter is conserved between mouse and human. These studies show that Tlx is a key component of retinal development and vision and an upstream regulator of the Pax2 signaling cascade.

  18. Angiotensin II up-regulates PAX2 oncogene expression and activity in prostate cancer via the angiotensin II type I receptor.

    Science.gov (United States)

    Bose, Sudeep K; Gibson, Willietta; Giri, Shailendra; Nath, Narender; Donald, Carlton D

    2009-09-01

    Paired homeobox 2 gene (PAX2) is a transcriptional regulator, aberrantly expressed in prostate cancer cells and its down-regulation promotes cell death in these cells. The molecular mechanisms of tumor progression by PAX2 over-expression are still unclear. However, it has been reported that angiotensin-II (A-II) induces cell growth in prostate cancer via A-II type 1 receptor (AT1R) and is mediated by the phosphorylation of mitogen activated protein kinase (MAPK) as well as signal transducer and activator of transcription 3 (STAT3). Here we have demonstrated that A-II up-regulates PAX2 expression in prostate epithelial cells and prostate cancer cell lines resulting in increased cell growth. Furthermore, AT1R receptor antagonist losartan was shown to inhibit A-II induced PAX2 expression in prostate cancer. Moreover, analysis using pharmacological inhibitors against MEK1/2, ERK1/2, JAK-II, and phospho-STAT3 demonstrated that AT1R-mediated stimulatory effect of A-II on PAX2 expression was regulated in part by the phosphorylation of ERK1/2, JAK II, and STAT3 pathways. In addition, we have showed that down-regulation of PAX2 by an AT1R antagonist as well as JAK-II and STAT3 inhibitors suppress prostate cancer cell growth. Collectively, these findings show for the first time that the renin-angiotensin system (RAS) may promote prostate tumorigenesis via up-regulation of PAX2 expression. Therefore, PAX2 may be a novel therapeutic target for the treatment of carcinomas such as prostate cancer via the down-regulation of its expression by targeting the AT1R signaling pathways.

  19. TRAF6 promotes myogenic differentiation via the TAK1/p38 mitogen-activated protein kinase and Akt pathways.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available p38 mitogen-activated protein kinase (MAPK is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways.

  20. The role of Msx1 and Pax9 in pathogenetic mechanisms of tooth agenesis

    Directory of Open Access Journals (Sweden)

    Yani Corvianindya Rahayu

    2009-09-01

    Full Text Available Background: Tooth agenesis is one of the most common developmental anomalies in human, which one or a few teeth are absent because they have never formed, may cause cosmetic or occlusal harm, while severe agenesis which are relatively rare require clinical attention to support and maintain the dental function. Molecular studies have demonstrated that tooth development is under strict genetic control. Purpose: This article want to review the genetic regulating that are responsible for tooth agenesis especially the role of Msx1 and Pax9 in pathogenetic mechanisms of tooth agenesis. Review: Tooth agenesis is a consequence of a qualitatively or quantitatively impaired function of genetic networks, which regulate tooth development. Mutations in Msx1 and Pax9 genes are dominant for tooth agenesis in humans. The Pax9 gene, which codes for a paired domain-containing transcription factor that plays an essential role in the development of mammal dentition, has been associated with selective tooth agenesis in humans and mice. Conclusion: Reduced amount of functional Msx1 or Pax9 protein in the tooth forming cells is able to cause severe and selective tooth agenesis. There are differences in the frequency of agenesis of specific teeth associated with the defects in Msx1 and defects in Pax9.

  1. Spatiotemporal distribution of PAX6 and MEIS2 expression and total cell numbers in the ganglionic eminence in the early developing human forebrain

    DEFF Research Database (Denmark)

    Larsen, Karen B; Lutterodt, Melissa C; Laursen, Henning

    2010-01-01

    The development of the human neocortex is a complex and highly regulated process involving a time-related expression of many transcription factors including the homeobox genes Pax6 and Meis2. During early development, Pax6 is expressed in nuclei of radial glia cells in the neocortical proliferative...... in the same time window. We demonstrate by in situ hybridization and immunohistochemistry that the two homeobox genes are expressed during early fetal brain development in humans. PAX6 mRNA and protein were located in the proliferative zones of the neocortex and in single cells in the cortical preplate at 7...... in the proliferative zones of the human fetal neocortex and a higher expression of MEIS2 than PAX6 was observed in these areas at 9 fetal weeks. Further, MEIS2 was expressed at a very high level in the developing ganglionic eminence and at a more moderate level in the cortical plate....

  2. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II.

    Science.gov (United States)

    Zhang, Hua; Chen, Hongsheng; Luo, Hunjin; An, Jing; Sun, Lin; Mei, Lingyun; He, Chufeng; Jiang, Lu; Jiang, Wen; Xia, Kun; Li, Jia-Da; Feng, Yong

    2012-03-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. PAX3 and SOX10 are two transcription factors that can activate the expression of microphthalmia-associated transcription factor (MITF), a critical transcription factor for melanocyte development. Mutations of PAX3 are associated with WS1 and WS3, while mutations of SOX10 cause WS2 and WS4. Recently, we identified some novel WS-associated mutations in PAX3 and SOX10 in a cohort of Chinese WS patients. Here, we further identified an E248fsX30 SOX10 mutation in a family of WS2. We analyzed the subcellular distribution, expression and in vitro activity of two PAX3 mutations (p.H80D, p.H186fsX5) and four SOX10 mutations (p.E248fsX30, p.G37fsX58, p.G38fsX69 and p.R43X). Except H80D PAX3, which retained partial activity, the other mutants were unable to activate MITF promoter. The H80D PAX3 and E248fsX30 SOX10 were localized in the nucleus as wild type (WT) proteins, whereas the other mutant proteins were distributed in both cytoplasm and nucleus. Furthermore, E248fsX30 SOX10 protein retained the DNA-binding activity and showed dominant-negative effect on WT SOX10. However, E248fsX30 SOX10 protein seems to decay faster than the WT one, which may underlie the mild WS2 phenotype caused by this mutation.

  3. Role of PAX8 in the regulation of MET and RON receptor tyrosine kinases in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Kanteti, Rajani; El-Hashani, Essam; Dhanasingh, Immanuel; Tretiakova, Maria; Husain, Aliya N; Sharma, Sherven; Sharma, Jay; Vokes, Everett E; Salgia, Ravi

    2014-01-01

    Non-small cell lung cancers (NSCLC) are highly heterogeneous at the molecular level and comprise 75% of all lung tumors. We have previously shown that the receptor tyrosine kinase (RTK) MET frequently suffers gain-of-function mutations that significantly promote lung tumorigenesis. Subsequent studies from our lab also revealed that PAX5 transcription factor is preferentially expressed in small cell lung cancer (SCLC) and promotes MET transcription. PAX8, however, is also expressed in NSCLC cell lines. We therefore investigated the role of PAX8 in NSCLC. Using IHC analysis, PAX8 protein expression was determined in archival NSCLC tumor tissues (n = 254). In order to study the effects of PAX8 knockdown on NSCLC cellular functions such as apoptosis and motility, siRNA against PAX8 was used. Confocal fluorescence microscopy was used to monitor the localization of MET, RON and PAX8. The combinatorial effect of PAX8 knockdown and MET inhibition using SU11274 was investigated in NSCLC cell viability assay. Relative levels of PAX8 protein were elevated (≥ + 2 on a scale of 0–3) in adenocarcinoma (58/94), large cell carcinoma (50/85), squamous cell carcinoma (28/47), and metastatic NSCLC (17/28; lymph node). Utilizing early progenitors isolated from NSCLC cell lines and fresh tumor tissues, we observed robust overexpression of PAX8, MET, and RON. PAX8 knockdown A549 cells revealed abrogated PAX8 expression with a concomitant loss in MET and the related RON kinase expression. A dramatic colocalization between the active form of MET (also RON) and PAX8 upon challenging A549 cells with HGF was visualized. A similar colocalization of MET and EGL5 (PAX8 ortholog) proteins was found in embryos of C. elegans. Most importantly, knockdown of PAX8 in A549 cells resulted in enhanced apoptosis (~6 fold) and decreased cell motility (~45%), thereby making PAX8 a potential therapeutic target. However, the combinatorial approach of PAX8 knockdown and treatment with MET inhibitor, SU

  4. Identification of promoter polymorphisms in the cytochrome P450 CYP6AY1 linked with insecticide resistance in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Pang, R; Li, Y; Dong, Y; Liang, Z; Zhang, Y; Zhang, W

    2014-12-01

    Imidacloprid resistance in the brown planthopper, Nilaparvata lugens, is primarily the result of the over-expression of cytochrome P450 monooxygenases. Here, a field-collected strain of N. lugens was shown to be highly resistant to both imidacloprid and buprofezin. Insecticide exposure and quantitative real-time PCR revealed that its resistance was mainly associated with a cytochrome P450 gene, CYP6AY1. CYP6AY1 is known to metabolize imidacloprid but its effect on buprofezin is unclear. In the 5'-untranslated region of CYP6AY1, a novel alternative splicing was detected. After a 1990-bp promoter region was cloned, its basal luciferase activity was assessed. Furthermore, genotyping studies identified 12 variations in the promoter region that discriminated between the field-collected and control strain. Finally, survival bioassays revealed a single nucleotide polymorphism and an insertion-deletion polymorphism linked to buprofezin and imidacloprid resistance. Mutagenesis of these sites enhanced the promoter activity of CYP6AY1. These results suggest that promoter polymorphisms may affect P450-mediated multiple insecticide resistance of pests. © 2014 The Royal Entomological Society.

  5. PAX5α and PAX5β mRNA expression in breast Cancer: Relation to ...

    African Journals Online (AJOL)

    Background: Many studies evaluated the role of paired box gene 5 (PAX5) in breast cancer. However, few investigated PAX5α and PAX5β isoforms individually. Objective: The aim of the present study is to evaluate mRNA expression of PAX5α and PAX5β in breast cancer and assessing their underlying pathological roles ...

  6. Pax7 lineage contributions to the mammalian neural crest.

    Directory of Open Access Journals (Sweden)

    Barbara Murdoch

    Full Text Available Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Here we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.These results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development.

  7. Targeting pancreatic expressed PAX genes for the treatment of diabetes mellitus and pancreatic neuroendocrine tumors.

    Science.gov (United States)

    Martin-Montalvo, Alejandro; Lorenzo, Petra I; López-Noriega, Livia; Gauthier, Benoit R

    2017-01-01

    Four members of the PAX family, PAX2, PAX4, PAX6 and PAX8 are known to be expressed in the pancreas. Accumulated evidences indicate that several pancreatic expressed PAX genes play a significant role in pancreatic development/functionality and alterations in these genes are involved in the pathogenesis of pancreatic diseases. Areas covered: In this review, we summarize the ongoing research related to pancreatic PAX genes in diabetes mellitus and pancreatic neuroendocrine tumors. We dissect the current knowledge at different levels; from mechanistic studies in cell lines performed to understand the molecular processes controlled by pancreatic PAX genes, to in vivo studies using rodent models that over-express or lack specific PAX genes. Finally, we describe human studies associating variants on pancreatic-expressed PAX genes with pancreatic diseases. Expert opinion: Based on the current literature, we propose that future interventions to treat pancreatic neuroendocrine tumors and diabetes mellitus could be developed via the modulation of PAX4 and/or PAX6 regulated pathways.

  8. Level of PAX5 in differential diagnosis of non-Hodgkin′s lymphoma

    Directory of Open Access Journals (Sweden)

    Brij Bharti

    2016-01-01

    Full Text Available Background & objectives: The PAX5, a paired box transcription factor and B-cell activator protein (BSAP, activates B-cell commitment genes and represses non-B-cell lineage genes. About 14 transcript variants of PAX5 have been observed in human. Any alteration in its expression pattern leads to lymphogenesis or associated diseases and carcinogenesis in non-lymphoid tissues. Its mechanisms of function in pathophysiology of non-Hodgkin′s lymphoma (NHL are unclear. This study was intended to explore influence of PAX5 in cascade of NHL pathogenesis and diagnosis. Methods: Samples of 65 patients were evaluated by immunohistochemical staining for cellular localization of PAX5, CD19, CD3, cABL, p53, Ras and Raf and by TUNEL assay, RNA-isolation and reverse transcriptase (RT-PCR, w0 estern blot analysis, and lactate dehydrogenase (LDH specific staining. Results: B-cell type NHL patients were positive for PAX5, p53, Ras, CD19, Raf and CD3. All of them showed TUNEL-positive cells. The differential expression pattern of PAX5, CD19, p53, CD3, Zap700 , HIF 1α, Ras, Raf and MAPK (mitogen-activated protein kinase at the levels of transcripts and proteins was observed. The LDH assay showed modulation of LDH4 and LDH5 isoforms in the lymph nodes of NHL patients. Interpretation & conclusions: The histological observations suggested that the patients represent diverse cases of NHL like mature B-cell type, mature T-cell type and high grade diffuse B-cell type NHL. The findings indicate that patients with NHL may also be analyzed for status of PAX5, CD19 and ZAP70, and their transcriptional and post-translational variants for the differential diagnosis of NHL and therapy.

  9. TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis

    Science.gov (United States)

    Hindi, Sajedah M.; Kumar, Ashok

    2015-01-01

    Satellite cells are a stem cell population within adult muscle and are responsible for myofiber regeneration upon injury. Satellite cell dysfunction has been shown to underlie the loss of skeletal muscle mass in many acquired and genetic muscle disorders. The transcription factor paired box-protein-7 (PAX7) is indispensable for supplementing the reservoir of satellite cells and driving regeneration in normal and diseased muscle. TNF receptor–associated factor 6 (TRAF6) is an adaptor protein and an E3 ubiquitin ligase that mediates the activation of multiple cell signaling pathways in a context-dependent manner. Here, we demonstrated that TRAF6-mediated signaling is critical for homeostasis of satellite cells and their function during regenerative myogenesis. Selective deletion of Traf6 in satellite cells of adult mice led to profound muscle regeneration defects and dramatically reduced levels of PAX7 and late myogenesis markers. TRAF6 was required for the activation of MAPKs ERK1/2 and JNK1/2, which in turn activated the transcription factor c-JUN, which binds the Pax7 promoter and augments Pax7 expression. Moreover, TRAF6/c-JUN signaling repressed the levels of the microRNAs miR-1 and miR-206, which promote differentiation, to maintain PAX7 levels in satellite cells. We also determined that satellite cell–specific deletion of Traf6 exaggerates the dystrophic phenotype in the mdx (a mouse model of Duchenne muscular dystrophy) mouse by blunting the regeneration of injured myofibers. Collectively, our study reveals an essential role for TRAF6 in satellite stem cell function. PMID:26619121

  10. Expression quantitative trait loci for PAX8 contributes to the prognosis of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Shijie Ma

    Full Text Available Paired-box family member PAX8 encodes a transcription factor that has a role in cell differentiation and cell growth and may participate in the prognosis of hepatocellular carcinoma (HCC. By bioinformatics analysis, we identified several single nucleotide polymorphisms (SNPs within a newly identified long non-coding RNA (lncRNA AC016683.6 as expression quantitative trait loci (eQTLs for PAX8. Hence, we hypothesized that PAX8eQTLs in lncRNA AC016683.6 may influence the HCC prognosis. We then performed a case-only study to assess the association between the two SNPs as well as the prognosis of HCC in 331 HBV-positive HCC patients without surgical treatment. Cox proportional hazard models were used for survival analysis with adjustments for the age, gender, smoking status, drinking status, Barcelona-Clinic Liver Cancer (BCLC stage, and chemotherapy or TACE (transcatheter hepatic arterial chemoembolization status. We found that the G allele of rs1110839 and the T allele of rs4848320 in PAX8was significantly associated with a better prognosis compared with the T allele of rs1110839 and the C allele of rs4848320 (adjusted HR = 0.74, 95% CI = 0.61-0.91, P = 0.004 for rs1110839 and adjusted HR = 0.71, 95% CI = 0.54-0.94, P = 0.015 for rs4848320 in the additive model. Furthermore, the combined effect of the variant genotypes for these two SNPs was more prominent in patients with the BCLC-C stage orpatients with chemotherapy or TACE. Although the exact biological function remains to be explored, our findings suggest a possible association of PAX8eQTLs in lncRNA AC016683.6 with the HCC prognosis inthe Chinese population. Further large and functional studies are needed to confirm our findings.

  11. Crystallization and preliminary X-ray diffraction analysis of the Pax9 paired domain bound to a DC5 enhancer DNA element.

    Science.gov (United States)

    Narasimhan, Kamesh; Hilbig, Antonia; Udayasuryan, Barath; Jayabal, Sriram; Kolatkar, Prasanna R; Jauch, Ralf

    2014-10-01

    Pax genes belong to a family of metazoan transcription factors that are known to play a critical role in eye, ear, kidney and neural development. The mammalian Pax family of transcription factors is characterized by a ∼128-amino-acid DNA-binding paired domain that makes sequence-specific contacts with DNA. The diversity in Pax gene activities emerges from complex modes of interaction with enhancer regions and heterodimerization with multiple interaction partners. Based on in vitro optimal binding-site selection studies and enhancer identification assays, it has been suggested that Pax proteins may recognize and bind their target DNA elements with different binding modes/topologies, however this hypothesis has not yet been structurally explored. One of the most extensively studied DNA target elements of the Pax6 paired domain is the eye-lens specific DC5 (δ-crystallin) enhancer element. In order to shed light on Pax6-DC5 DNA interactions, the related paired-domain prototype Pax9 was crystallized with the minimal δ-crystallin DC5 enhancer element and preliminary X-ray diffraction analysis was attempted. A 3.0 Å resolution native data set was collected at the National Synchrotron Light Source (NSLS), Brookhaven from crystals grown in a solution consisting of 10%(w/v) PEG 20K, 20%(v/v) PEG 550 MME, 0.03 M NaNO3, 0.03 M Na2HPO4, 0.03 M NH2SO4, 0.1 M MES/imidazole pH 6.5. The data set was indexed and merged in space group C2221, with unit-cell parameters a = 75.74, b = 165.59, c = 70.14 Å, α = β = γ = 90°. The solvent content in the unit cell is consistent with the presence of one Pax9 paired domain bound to duplex DNA in the asymmetric unit.

  12. Crystallization and preliminary X-ray diffraction analysis of the Pax9 paired domain bound to a DC5 enhancer DNA element

    Science.gov (United States)

    Narasimhan, Kamesh; Hilbig, Antonia; Udayasuryan, Barath; Jayabal, Sriram; Kolatkar, Prasanna R.; Jauch, Ralf

    2014-01-01

    Pax genes belong to a family of metazoan transcription factors that are known to play a critical role in eye, ear, kidney and neural development. The mammalian Pax family of transcription factors is characterized by a ∼128-amino-acid DNA-binding paired domain that makes sequence-specific contacts with DNA. The diversity in Pax gene activities emerges from complex modes of interaction with enhancer regions and heterodimerization with multiple interaction partners. Based on in vitro optimal binding-site selection studies and enhancer identification assays, it has been suggested that Pax proteins may recognize and bind their target DNA elements with different binding modes/topologies, however this hypothesis has not yet been structurally explored. One of the most extensively studied DNA target elements of the Pax6 paired domain is the eye-lens specific DC5 (δ-crystallin) enhancer element. In order to shed light on Pax6–DC5 DNA interactions, the related paired-domain prototype Pax9 was crystallized with the minimal δ-crystallin DC5 enhancer element and preliminary X-ray diffraction analysis was attempted. A 3.0 Å resolution native data set was collected at the National Synchrotron Light Source (NSLS), Brookhaven from crystals grown in a solution consisting of 10%(w/v) PEG 20K, 20%(v/v) PEG 550 MME, 0.03 M NaNO3, 0.03 M Na2HPO4, 0.03 M NH2SO4, 0.1 M MES/imidazole pH 6.5. The data set was indexed and merged in space group C2221, with unit-cell parameters a = 75.74, b = 165.59, c = 70.14 Å, α = β = γ = 90°. The solvent content in the unit cell is consistent with the presence of one Pax9 paired domain bound to duplex DNA in the asymmetric unit. PMID:25286939

  13. PAX3-FOXO1: Zooming in on an "undruggable" target.

    Science.gov (United States)

    Wachtel, Marco; Schäfer, Beat W

    2018-06-01

    Driver oncogenes are prime targets for therapy in tumors many of which, including leukemias and sarcomas, express recurrent fusion transcription factors. One specific example for such a cancer type is alveolar rhabdomyosarcoma, which is associated in the majority of cases with the fusion protein PAX3-FOXO1. Since fusion transcription factors are challenging targets for development of small molecule inhibitors, indirect inhibitory strategies for this type of oncogenes represent a more promising approach. One can envision strategies at different molecular levels including upstream modifiers and activators, epigenetic and transcriptional co-regulators, and downstream effector targets. In this review, we will discuss the current knowledge regarding potential therapeutic targets that might contribute to indirect interference with PAX3-FOXO1 activity in alveolar rhabdomyosarcoma at the different molecular levels and extrapolate these findings to fusion transcription factors in general. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon.

    Science.gov (United States)

    Stenman, Jan; Yu, Ruth T; Evans, Ronald M; Campbell, Kenneth

    2003-03-01

    We have examined the role of Tlx, an orphan nuclear receptor, in dorsal-ventral patterning of the mouse telencephalon. Tlx is expressed broadly in the ventricular zone, with the exception of the dorsomedial and ventromedial regions. The expression spans the pallio-subpallial boundary, which separates the dorsal (i.e. pallium) and ventral (i.e. subpallium) telencephalon. Despite being expressed on both sides of the pallio-subpallial boundary, Tlx homozygous mutants display alterations in the development of this boundary. These alterations include a dorsal shift in the expression limits of certain genes that abut at the pallio-subpallial boundary as well as the abnormal formation of the radial glial palisade that normally marks this boundary. The Tlx mutant phenotype is similar to, but less severe than, that seen in Small eye (i.e. Pax6) mutants. Interestingly, removal of one allele of Pax6 on the homozygous Tlx mutant background significantly worsens the phenotype. Thus Tlx and Pax6 cooperate genetically to regulate the establishment of the pallio-subpallial boundary. The patterning defects in the Tlx mutant telencephalon result in a loss of region-specific gene expression in the ventral-most pallial region. This correlates well with the malformation of the lateral and basolateral amygdala in Tlx mutants, both of which have been suggested to derive from ventral portions of the pallium.

  15. The Role of the PAX8/PPARγ Fusion Oncogene in Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Kimberly A. Placzkowski

    2008-01-01

    Full Text Available Thyroid cancer is uncommon and exhibits relatively low mortality rates. However, a subset of patients experience inexorable growth, metastatic spread, and mortality. Unfortunately, for these patients, there have been few significant advances in treatment during the last 50 years. While substantial advances have been made in recent years about the molecular genetic events underlying papillary thyroid cancer, the more aggressive follicular thyroid cancer remains poorly understood. The recent discovery of the PAX8/PPARγ translocation in follicular thyroid carcinoma has promoted progress in the role of PPARγ as a tumor suppressor and potential therapeutic target. The PAX8/PPARγ fusion gene appears to be an oncogene. It is most often expressed in follicular carcinomas and exerts a dominant-negative effect on wild-type PPARγ, and stimulates transcription of PAX8-responsive promoters. PPARγ agonists have shown promising results in vitro, although very few studies have been conducted to assess the clinical impact of these agents.

  16. Mutations in MITF and PAX3 Cause “Splashed White” and Other White Spotting Phenotypes in Horses

    Science.gov (United States)

    Blatter, Marlis; Brooks, Samantha A.; Burger, Dominik; Drögemüller, Cord; Gerber, Vincent; Henke, Diana; Janda, Jozef; Jude, Rony; Magdesian, K. Gary; Matthews, Jacqueline M.; Poncet, Pierre-André; Svansson, Vilhjálmur; Tozaki, Teruaki; Wilkinson-White, Lorna; Penedo, M. Cecilia T.; Rieder, Stefan; Leeb, Tosso

    2012-01-01

    During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The “splashed white” pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes. PMID:22511888

  17. Mutation of the PAX6 gene in a sporadic patient with atypical aniridia

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Li, Y.; Traboulsi, E.I. [Wilmer Eye Institute, Baltimore, MD (United States)] [and others

    1994-09-01

    A 28 year-old man presented with poor vision since childhood and gradual further decline of several years duration. His visual acuity measures 20/200 OD with -11.50 + 0.50 x 150 and 20/100 OS with -12.25 + 0.25 x 35. He had a fine nystagmus. His visual fields were full. There was a circumferential pannus with areas of corneal stromal opacification. The iris was hypoplastic with atypical colobomatous defects. The lenses had scattered cortical opacities. The intraocular pressures were normal. The optic nerves had cup disk ratios of 0.6 OU. The family history was negative for similar defects. A diagnosis of aniridia was made and blood was drawn for analysis of the PAX6 gene. PCR amplification of exon 5 showed heterozygous fragments with one allele being larger than normal. Direct DNA sequencing of the individual heterozygous allele showed a 41 base pair insertion at nucleotide 483 in exon 5 of the paired domain. This frameshift mutation changed codon 71 to a stop codon. The diagnosis of aniridia was confirmed in this atypical patient, who will need to be monitored for his high risk of glaucoma. The risk of developing Wilms` tumor in patients with mutations within the aniridia gene is presumably negligible since the neighboring Wilms` tumor gene is unaffected. The identification of intragenic mutations of the PAX6 gene in patients with sporadic aniridia modifies the management of such patients because of recognition of the increased risk of glaucoma and by reducing the necessity for frequent monitoring for the presence of Wilms` tumor.

  18. Lens morphogenesis is dependent on Pax6-mediated inhibition of the canonical Wnt/beta-catenin signaling in the lens surface ectoderm

    Czech Academy of Sciences Publication Activity Database

    Machoň, Ondřej; Krešlová, Jana; Růžičková, Jana; Vacík, Tomáš; Klímová, Lucie; Fujimura, Naoko; Láchová, Jitka; Kozmik, Zbyněk

    2010-01-01

    Roč. 48, č. 2 (2010), s. 86-95 ISSN 1526-954X R&D Projects: GA ČR GA204/08/1618; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : Wnt , Pax6 * lens * eye Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.395, year: 2010

  19. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation.

    Science.gov (United States)

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-07-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.

  20. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors.

    Directory of Open Access Journals (Sweden)

    Natalia González

    Full Text Available Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (reacquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate.

  1. PAX5О± and PAX5ОІ mRNA expression in breast Cancer: Relation ...

    African Journals Online (AJOL)

    Manal Basyouni Ahmed

    mRNA expression of PAX5a and PAX5b in breast cancer and assessing their underlying pathological roles through ... the molecular alterations that contribute to disease initiation and ... ring growth and survival of cancer cells [3]. PAX5 is ..... and CA15-3 are prognostic parameters for different molecular subtypes of · breast ...

  2. Inhibitor of DNA binding 1 (Id1) induces differentiation and proliferation of mouse embryonic carcinoma P19CL6 cells

    International Nuclear Information System (INIS)

    Meng, Qingzhen; Jia, Zhuqing; Wang, Weiping; Li, Binhong; Ma, Kangtao; Zhou, Chunyan

    2011-01-01

    Highlights: → Id1 was upregulated during the cardiac differentiation process of P19CL6 cells. → Id1 upregulated expression of cardiac specific genes Gata4, α-MHC and ISL1. → Id1 promoted proliferation of P19CL6 cells. → Overexpression of Id1 increased activity of TOP flash. → Wnt3a or LiCl treatment promoted Id1 expression in P19CL6 cells. -- Abstract: The inhibitor of DNA binding (Id) family of genes encodes negative regulators of basic helix-loop-helix transcription factors and has been implicated in such diverse cellular processes as differentiation, proliferation, apoptosis and migration. Id knockout mouse embryos display multiple cardiac defects but the specific role of Id1 in cardiac differentiation is unclear. In the present study, we investigated the function of Id1 in DMSO-induced P19CL6 cells, a widely-accepted cell model of cardiac differentiation. We found that Id1 was upregulated during the cardiac differentiation of P19CL6 cells. The expression of cardiac specific marker genes, Gata4, α-MHC and ISL1, was upregulated in P19CL6 cells stably transfected with Id1 (P19CL6-Id1) during cardiac differentiation. The overexpression of Id1 reduced the number of cells in G1 phase and increased the cell population in G2, M and S phases, while knockdown of Id1 increased the number of cells in G1 phase from 48.6 ± 2.51% to 62.2 ± 1.52% at day 0 of cardiac induction, and from 52.5 ± 3.41% to 63.7 ± 1.02% at day 3 after cardiac induction, indicating that Id1 promoted proliferation of P19CL6 cells. Luciferase assays showed that the activity of TOP flash was higher in P19CL6-Id1 cells than wildtype P19CL6 cells, while Id1 expression was also upregulated in P19CL6 cells treated with Wnt3a or LiCl. This indicates that there may be positive feedback between Id1 and Wnt signaling which plays an important role in cardiac differentiation.

  3. PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine.

    Science.gov (United States)

    Xu, Guanlong; Zhang, Xuxiao; Liu, Qinfang; Bing, Guoxia; Hu, Zhe; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua; Sun, Yipeng

    2017-08-01

    Previous studies have identified a functional role of PA-X for influenza viruses in mice and avian species; however, its role in swine remains unknown. Toward this, we constructed PA-X deficient virus (Sw-FS) in the background of a Triple-reassortment (TR) H1N2 swine influenza virus (SIV) to assess the impact of PA-X in viral virulence in pigs. Expression of PA-X in TR H1N2 SIV enhanced viral replication and host protein synthesis shutoff, and inhibited the mRNA levels of type I IFNs and proinflammatory cytokines in porcine cells. A delay of proinflammatory responses was observed in lungs of pigs infected by wild type SIV (Sw-WT) compared to Sw-FS. Furthermore, Sw-WT virus replicated and transmitted more efficiently than Sw-FS in pigs. These results highlight the importance of PA-X in the moderation of virulence and immune responses of TR SIV in swine, which indicated that PA-X is a pro-virulence factor in TR SIV in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Parallel, Asynchronous Executive (PAX): System concepts, facilities, and architecture

    Science.gov (United States)

    Jones, W. H.

    1983-01-01

    The Parallel, Asynchronous Executive (PAX) is a software operating system simulation that allows many computers to work on a single problem at the same time. PAX is currently implemented on a UNIVAC 1100/42 computer system. Independent UNIVAC runstreams are used to simulate independent computers. Data are shared among independent UNIVAC runstreams through shared mass-storage files. PAX has achieved the following: (1) applied several computing processes simultaneously to a single, logically unified problem; (2) resolved most parallel processor conflicts by careful work assignment; (3) resolved by means of worker requests to PAX all conflicts not resolved by work assignment; (4) provided fault isolation and recovery mechanisms to meet the problems of an actual parallel, asynchronous processing machine. Additionally, one real-life problem has been constructed for the PAX environment. This is CASPER, a collection of aerodynamic and structural dynamic problem simulation routines. CASPER is not discussed in this report except to provide examples of parallel-processing techniques.

  5. PAX6 aniridia syndrome: clinics, genetics, and therapeutics.

    Science.gov (United States)

    Lim, Hyun Taek; Kim, Dae Hee; Kim, Hyuna

    2017-09-01

    Aniridia is a rare and panocular disorder affecting most of the ocular structures which may have significant impact on vision. The purpose of this review is to describe the clinical features, genetics, and therapeutic options for this disease and to provide an update of current knowledge and latest research findings. Aside from the ocular features, a variety of associated systemic abnormalities, including hormonal, metabolic, gastrointestinal, genitourinary, and neurologic pathologies have been reported in children with aniridia. Although mutations in PAX6 are a major cause of aniridia, genetic defects in nearby genes, such as TRIM44 or ELP4, have also been reported to cause aniridia. Recent improvement in genetic testing technique will help more rapid and precise diagnosis for aniridia. A promising therapeutic approach called nonsense suppression therapy has been introduced and successfully used in an animal model. Aniridia is a challenging disease. The progressive nature of this condition and its potential complications require continuous and life-long ophthalmologic care. Genetic diagnosis for aniridia is important for establishing definitive molecular characterization as well as identifying individuals at high risk for Wilms tumor. Recent advancement in understanding the genetic pathogenesis of this disease offers promise for the approaches to treatment.

  6. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  7. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Polycomb group (PcG) proteins and Pax6 cooperate to inhibit in vivo reprogramming of the developing Drosophila eye.

    Science.gov (United States)

    Zhu, Jinjin; Ordway, Alison J; Weber, Lena; Buddika, Kasun; Kumar, Justin P

    2018-04-04

    How different cells and tissues commit to and determine their fates has been a central question in developmental biology since the seminal embryological experiments conducted by Wilhelm Roux and Hans Driesch in sea urchins and frogs. Here, we demonstrate that Polycomb group (PcG) proteins maintain Drosophila eye specification by suppressing the activation of alternative fate choices. The loss of PcG in the developing eye results in a cellular reprogramming event in which the eye is redirected to a wing fate. This fate transformation occurs with either the individual loss of Polycomb proteins or the simultaneous reduction of the Pleiohomeotic repressive complex and Pax6. Interestingly, the requirement for retinal selector genes is limited to Pax6, as the removal of more downstream members does not lead to the eye-wing transformation. We also show that distinct PcG complexes are required during different developmental windows throughout eye formation. These findings build on earlier observations that the eye can be reprogrammed to initiate head epidermis, antennal and leg development. © 2018. Published by The Company of Biologists Ltd.

  9. Recurrent PAX3-MAML3 Fusion in Biphenotypic Sinonasal Sarcoma

    Science.gov (United States)

    Wang, Xiaoke; Bledsoe, Krista L.; Graham, Rondell P.; Asmann, Yan W.; Viswanatha, David S.; Lewis, Jean E.; Lewis, Jason T.; Chou, Margaret M.; Yaszemski, Michael J.; Jen, Jin; Westendorf, Jennifer J.; Oliveira, André M.

    2014-01-01

    Biphenotypic sinonasal sarcoma (SNS) is a newly described tumor of the nasal and paranasal areas. Herein, we report the novel recurring chromosomal translocation t(2;4)(q35;q31.1) in SNS. The translocation results in the formation of the fusion protein PAX3-MAML3, which is a potent transcriptional activator of PAX3 response elements. The SNS phenotype is characterized by aberrant expression of genes involved in neuroectodermal and myogenic differentiation, which closely simulates the developmental roles of PAX3. PMID:24859338

  10. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells

    DEFF Research Database (Denmark)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe

    2009-01-01

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell......-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However......, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell...

  11. PF-4708671, a specific inhibitor of p70 ribosomal S6 kinase 1, activates Nrf2 by promoting p62-dependent autophagic degradation of Keap1

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Su [Severance Biomedical Science Institute (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Dong Hoon [Department of Life Science and Ewha Research Center for Systems Biology (Korea, Republic of); The Research Center for Cell Homeostasis, Ewha Womans University, Seoul 127-750 (Korea, Republic of); Lee, Da Hyun [Severance Biomedical Science Institute (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Bae, Soo Han, E-mail: soohanbae@yuhs.ac [Severance Biomedical Science Institute (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-10-23

    p70 ribosomal S6 kinase 1 (S6K1) is an important serine/threonine kinase and downstream target of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. PF-4708671 is a specific inhibitor of S6K1, and prevents S6K1-mediated phosphorylation of the S6 protein. PF-4708671 treatment often leads to apoptotic cell death. However, the protective mechanism against PF-4708671-induced cell death has not been elucidated. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway is essential for protecting cells against oxidative stress. p62, an adaptor protein in the autophagic process, enhances Nrf2 activation through the impairment of Keap1 activity. In this study, we showed that PF-4708671 induces autophagic Keap1 degradation-mediated Nrf2 activation in p62-dependent manner. Furthermore, p62-dependent Nrf2 activation plays a crucial role in protecting cells from PF-4708671-mediated apoptosis. - Highlights: • PF-4708671, a S6K1-specific inhibitor, prevents S6K1-mediated S6 phosphorylation. • However, PF-4708671 treatment often leads to apoptotic cell death. • Protective mechanism against PF-4708671-induced cell death remains to be elucidated. • PF-4708671 induced p62-dependent, autophagic Keap1 degradation-mediated Nrf2 activation. • p62-dependent Nrf2 activation protects cells from PF-4708671-mediated apoptosis.

  12. CLDN6 promotes chemoresistance through GSTP1 in human breast cancer

    Directory of Open Access Journals (Sweden)

    Minlan Yang

    2017-11-01

    Full Text Available Abstract Background Claudin-6 (CLDN6, a member of CLDN family and a key component of tight junction, has been reported to function as a tumor suppressor in breast cancer. However, whether CLDN6 plays any role in breast cancer chemoresistance remains unclear. In this study, we investigated the role of CLDN6 in the acquisition of chemoresistance in breast cancer cells. Methods We manipulated the expression of CLDN6 in MCF-7 and MCF-7/MDR cells with lv-CLDN6 and CLDN6-shRNA and investigated whether CLDN6 manipulation lead to different susceptibilities to several chemotherapeutic agents in these cells. The cytotoxicity of adriamycin (ADM, 5-fluorouracil (5-FU, and cisplatin (DDP was tested by cck-8 assay. Cell death was determined by DAPI nuclear staining. The enzyme activity of glutanthione S-transferase-p1 (GSTP1 was detected by a GST activity kit. Then lv-GSTP1 and GSTP1-shRNA plasmids were constructed to investigate the potential of GSTP1 in regulating chemoresistance of breast cancer. The TP53-shRNA was adopted to explore the regulation mechanism of GSTP1. Finally, immunohistochemistry was used to explore the relationship between CLDN6 and GSTP1 expression in breast cancer tissues. Results Silencing CLDN6 increased the cytotoxicity of ADM, 5-FU, and DDP in MCF-7/MDR cells. Whereas overexpression of CLDN6 in MCF-7, the parental cell line of MCF-7/MDR expressing low level of CLDN6, increased the resistance to the above drugs. GSTP1 was upregulated in CLDN6-overexpressed MCF-7 cells. RNAi –mediated silencing of CLDN6 downregulated both GSTP1 expression and GST enzyme activity in MCF-7/MDR cells. Overexpresssion of GSTP1 in CLDN6 silenced MCF-7/MDR cells restored chemoresistance, whereas silencing GSTP1 reduced the chemoresistance due to ectopic overexpressed of CLDN6 in MCF-7 cells. These observations were also repeated in TNBC cells Hs578t. We further confirmed that CLDN6 interacted with p53 and promoted translocation of p53 from nucleus to

  13. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells.

    Science.gov (United States)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed

    2009-08-07

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.

  14. Hemizygous Le-Cre Transgenic Mice Have Severe Eye Abnormalities on Some Genetic Backgrounds in the Absence of LoxP Sites

    Science.gov (United States)

    Dorà, Natalie J.; Collinson, J. Martin; Hill, Robert E.; West, John D.

    2014-01-01

    Eye phenotypes were investigated in Le-CreTg/−; Pax6fl/+ mice, which were expected to show tissue-specific reduction of Pax6 in surface ectoderm derivatives. To provide a better comparison with our previous studies of Pax6+/− eye phenotypes, hemizygous Le-CreTg/− and heterozygous Pax6fl/+mice were crossed onto the CBA/Ca genetic background. After the Le-Cre transgene had been backcrossed to CBA/Ca for seven generations, significant eye abnormalities occurred in some hemizygous Le-CreTg/−; Pax6+/+ controls (without a floxed Pax6fl allele) as well as experimental Le-CreTg/−; Pax6fl/+ mice. However, no abnormalities were seen in Le-Cre−/−; Pax6fl/+ or Le-Cre−/−; Pax6+/+ controls (without the Le-Cre transgene). The severity and frequency of the eye abnormalities in Le-CreTg/−; Pax6+/+ control mice diminished after backcrossing Le-CreTg/− mice to the original FVB/N strain for two generations, showing that the effect was reversible. This genetic background effect suggests that the eye abnormalities are a consequence of an interaction between the Le-Cre transgene and alleles of unknown modifier genes present in certain genetic backgrounds. The abnormalities were also ameliorated by introducing additional Pax6 gene copies on a CBA/Ca background, suggesting involvement of Pax6 depletion in Le-CreTg/−; Pax6+/+ mice rather than direct action of Cre recombinase on cryptic pseudo-loxP sites. One possibility is that expression of Cre recombinase from the Pax6-Le regulatory sequences in the Le-Cre transgene depletes cofactors required for endogenous Pax6 gene expression. Our observation that eye abnormalities can occur in hemizygous Le-CreTg/−; Pax6+/+ mice, in the absence of a floxed allele, demonstrates the importance of including all the relevant genetic controls in Cre-loxP experiments. PMID:25272013

  15. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene.

    Science.gov (United States)

    Rezanejad, Habib; Soheili, Zahra-Soheila; Haddad, Farhang; Matin, Maryam M; Samiei, Shahram; Manafi, Ali; Ahmadieh, Hamid

    2014-04-01

    The neural retina is subjected to various degenerative conditions. Regenerative stem-cell-based therapy holds great promise for treating severe retinal degeneration diseases, although many drawbacks remain to be overcome. One important problem is to gain authentically differentiated cells for replacement. Paired box 6 protein (5a) (PAX6 (5a)) is a highly conserved master control gene that has an essential role in the development of the vertebrate visual system. Human adipose-tissue-derived stem cell (hADSC) isolation was performed by using fat tissues and was confirmed by the differentiation potential of the cells into adipocytes and osteocytes and by their surface marker profile. The coding region of the human PAX6 (5a) gene isoform was cloned and lentiviral particles were propagated in HEK293T. The differentiation of hADSCs into retinal cells was characterized by morphological characteristics, quantitative real-time reverse transcription plus the polymerase chain reaction (qPCR) and immunocytochemistry (ICC) for some retinal cell-specific and retinal pigmented epithelial (RPE) cell-specific markers. hADSCs were successfully isolated. Flow cytometric analysis of surface markers indicated the high purity (~97 %) of isolated hADSCs. After 30 h of post-transduction, cells gradually showed the characteristic morphology of neuronal cells and small axon-like processes emerged. qPCR and ICC confirmed the differentiation of some neural retinal cells and RPE cells. Thus, PAX6 (5a) transcription factor expression, together with medium supplemented with fibronectin, is able to induce the differentiation of hADSCs into retinal progenitors, RPE cells and photoreceptors.

  16. Nonsense mutations in the PAX3 gene cause Waardenburg syndrome type I in two Chinese patients.

    Science.gov (United States)

    Yang, Shu-Zhi; Cao, Ju-Yang; Zhang, Rui-Ning; Liu, Li-Xian; Liu, Xin; Zhang, Xin; Kang, Dong-Yang; Li, Mei; Han, Dong-Yi; Yuan, Hui-Jun; Yang, Wei-Yan

    2007-01-05

    Waardenburg syndrome type I (WS1) is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmental abnormalities of the eye, hair and skin, and dystopia canthorum. The gene mainly responsible for WS1 is PAX3 which is involved in melanocytic development and survival. Mutations of PAX3 have been reported in familiar or sporadic patients with WS1 in several populations of the world except Chinese. In order to explore the genetic background of Chinese WS1 patients, a mutation screening of PAX3 gene was carried out in four WS1 pedigrees. A questionnaire survey and comprehensive clinical examination were conducted in four Chinese pedigrees of WS1. Genomic DNA from each patient and their family members was extracted and exons of PAX3 were amplified by PCR. PCR fragments were ethanol-purified and sequenced in both directions on an ABI_Prism 3100 DNA sequencer with the BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sequences were obtained and aligned to the wild type sequence of PAX3 with the GeneTool program. Two nonsense PAX3 mutations have been found in the study population. One is heterozygous for a novel nonsense mutation S209X. The other is heterozygous for a previously reported mutation in European population R223X. Both mutations create stop codons leading to truncation of the PAX3 protein. This is the first demonstration of PAX3 mutations in Chinese WS1 patients and one of the few examples of an identical mutation of PAX3 occurred in different populations.

  17. Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan

    2017-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors...... (TFs) critical to somatic tumorigenesis. METHODS: All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery...... to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P

  18. A novel mutation of PAX3 in a Chinese family with Waardenburg syndrome.

    Science.gov (United States)

    Qin, Wei; Shu, Anli; Qian, Xueqing; Gao, Jianjun; Xing, Qinghe; Zhang, Juan; Zheng, Yonglan; Li, Xingwang; Li, Sheng; Feng, Guoyin; He, Lin

    2006-08-28

    The molecular characterization of 34 members of a Chinese family, with 22 members in four generations, affected with Waardenburg syndrome (WS1). A detailed family history and clinical data were collected. A genome-wide scan by two-point linkage analysis using more than 400 microsatellite markers in combination with haplotype analysis was performed. Mutation screening was carried out in the candidate gene by sequencing of amplified products. A maximum two-point lod score of 6.53 at theta = 0.00 was obtained with marker D2S2248. Haplotype analysis placed the WS1 locus to a 45.74 cM region between D2S117 and D2S206, in close proximity to the PAX3 gene on chromosome 2q35. Mutation screening in PAX3 identified a 701T > C mutation which converted a highly conserved Leu to Pro. This nucleotide alteration was neither seen in unaffected members of the family nor found in 50 unrelated control subjects. The present study identified a novel 701T > C mutation in PAX3. The mutation observed in this family highlights the phenotypic heterogeneity of the disorder.

  19. Small-molecule Wnt agonists correct cleft palates in Pax9 mutant mice in utero.

    Science.gov (United States)

    Jia, Shihai; Zhou, Jing; Fanelli, Christopher; Wee, Yinshen; Bonds, John; Schneider, Pascal; Mues, Gabriele; D'Souza, Rena N

    2017-10-15

    Clefts of the palate and/or lip are among the most common human craniofacial malformations and involve multiple genetic and environmental factors. Defects can only be corrected surgically and require complex life-long treatments. Our studies utilized the well-characterized Pax9 -/- mouse model with a consistent cleft palate phenotype to test small-molecule Wnt agonist therapies. We show that the absence of Pax9 alters the expression of Wnt pathway genes including Dkk1 and Dkk2 , proven antagonists of Wnt signaling. The functional interactions between Pax9 and Dkk1 are shown by the genetic rescue of secondary palate clefts in Pax9 -/- Dkk1 f/+ ;Wnt1Cre embryos. The controlled intravenous delivery of small-molecule Wnt agonists (Dkk inhibitors) into pregnant Pax9 +/- mice restored Wnt signaling and led to the growth and fusion of palatal shelves, as marked by an increase in cell proliferation and osteogenesis in utero , while other organ defects were not corrected. This work underscores the importance of Pax9-dependent Wnt signaling in palatogenesis and suggests that this functional upstream molecular relationship can be exploited for the development of therapies for human cleft palates that arise from single-gene disorders. © 2017. Published by The Company of Biologists Ltd.

  20. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Chang; Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Kim, Byung J. [U.S. Army Engineer Research and Development Center, Champaign, IL 61826-9005 (United States); Oh, Seok-Young, E-mail: quartzoh@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2011-08-30

    Highlights: {yields} Ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. {yields} DNAN is identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. {yields} Iron treatment not only removes energetic compounds but also eliminates the toxic constituents that inhibit the subsequent microbial process. - Abstract: US Army and the Department of Defense (DoD) facilities generate perchlorate (ClO{sub 4}{sup -}) from munitions manufacturing and demilitarization processes. Ammonium perchlorate is one of the main constituents in Army's new main charge melt-pour energetic, PAX-21. In addition to ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. In order to evaluate microbial perchlorate reduction as a practical option for the treatment of perchlorate in PAX-21 wastewater, we conducted biodegradation experiments using glucose as the primary sources of electrons and carbon. Batch experiments showed that negligible perchlorate was removed in microbial reactors containing PAX-21 wastewater while control bottles containing seed bacteria and glucose rapidly and completely removed perchlorate. These results suggested that the constituents in PAX-21 wastewater may be toxic to perchlorate reducing bacteria. A series of batch toxicity test was conducted to identify the toxic constituents in PAX-21 and DNAN was identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. It was hypothesized that pretreatment of PAX-21 by zero-valent iron granules will transform toxic constituents in PAX-21 wastewater to non-toxic products. We observed complete reduction of DNAN to 2,4-diaminoanisole (DAAN) and RDX to formaldehyde in abiotic iron reduction study. After a 3-day acclimation period, perchlorate in iron-treated PAX-21

  1. A novel mutation in PAX3 associated with Waardenburg syndrome type I in a Chinese family.

    Science.gov (United States)

    Xiao, Yun; Luo, Jianfen; Zhang, Fengguo; Li, Jianfeng; Han, Yuechen; Zhang, Daogong; Wang, Mingming; Ma, Yalin; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-01-01

    The novel compound heterozygous mutation in PAX3 was the key genetic reason for WS1 in this family, which was useful to the molecular diagnosis of WS1. Screening the pathogenic mutations in a four generation Chinese family with Waardenburg syndrome type I (WS1). WS1 was diagnosed in a 4-year-old boy according to the Waardenburg syndrome Consortium criteria. The detailed family history revealed four affected members in the family. Routine clinical, audiological examination, and ophthalmologic evaluation were performed on four affected and 10 healthy members in this family. The genetic analysis was conducted, including the targeted next-generation sequencing of 127 known deafness genes combined with Sanger sequencing, TA clone and bioinformatic analysis. A novel compound heterozygous mutation c.[169_170insC;172_174delAAG] (p.His57ProfsX55) was identified in PAX3, which was co-segregated with WS1 in the Chinese family. This mutation was absent in the unaffected family members and 200 ethnicity-matched controls. The phylogenetic analysis and three-dimensional (3D) modeling of Pax3 protein further confirmed that the novel compound heterozygous mutation was pathogenic.

  2. Spontaneous Physical Activity Downregulates Pax7 in Cancer Cachexia

    Directory of Open Access Journals (Sweden)

    Dario Coletti

    2016-01-01

    Full Text Available Emerging evidence suggests that the muscle microenvironment plays a prominent role in cancer cachexia. We recently showed that NF-kB-induced Pax7 overexpression impairs the myogenic potential of muscle precursors in cachectic mice, suggesting that lowering Pax7 expression may be beneficial in cancer cachexia. We evaluated the muscle regenerative potential after acute injury in C26 colon carcinoma tumor-bearing mice and healthy controls. Our analyses confirmed that the delayed muscle regeneration observed in muscles form tumor-bearing mice was associated with a persistent local inflammation and Pax7 overexpression. Physical activity is known to exert positive effects on cachectic muscles. However, the mechanism by which a moderate voluntary exercise ameliorates muscle wasting is not fully elucidated. To verify if physical activity affects Pax7 expression, we hosted control and C26-bearing mice in wheel-equipped cages and we found that voluntary wheel running downregulated Pax7 expression in muscles from tumor-bearing mice. As expected, downregulation of Pax7 expression was associated with a rescue of muscle mass and fiber size. Our findings shed light on the molecular basis of the beneficial effect exerted by a moderate physical exercise on muscle stem cells in cancer cachexia. Furthermore, we propose voluntary exercise as a physiological tool to counteract the overexpression of Pax7 observed in cancer cachexia.

  3. Quasimolecular emission near the Xe(5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance lines induced by collisions with He atoms

    Science.gov (United States)

    Alekseeva, O. S.; Devdariani, A. Z.; Grigorian, G. M.; Lednev, M. G.; Zagrebin, A. L.

    2017-02-01

    This study is devoted to the theoretical investigation of the quasimolecular emission of Xe*-He and Kr*-He collision pairs near the Xe (5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance atomic lines. The potential curves of the quasimolecules Xe(5p 56s) + He and Kr(4p 55s) + He have been obtained with the use of the effective Hamiltonian and pseudopotential methods. Based on these potential curves the processes of quasimolecular emission of Xe*+He and Kr*+He mixtures have been considered and the spectral distributions I(ħΔω) of photons emitted have been obtained in the framework of quasistatic approximation.

  4. S1P lyase in thymic perivascular spaces promotes egress of mature thymocytes via up-regulation of S1P receptor 1.

    Science.gov (United States)

    Maeda, Yasuhiro; Yagi, Hideki; Takemoto, Kana; Utsumi, Hiroyuki; Fukunari, Atsushi; Sugahara, Kunio; Masuko, Takashi; Chiba, Kenji

    2014-05-01

    Sphingosine 1-phosphate (S1P) and S1P receptor 1 (S1P1) play an important role in the egress of mature CD4 or CD8 single-positive (SP) thymocytes from the thymus. Fingolimod hydrochloride (FTY720), an S1P1 functional antagonist, induced significant accumulation of CD62L(high)CD69(low) mature SP thymocytes in the thymic medulla. Immunohistochemical staining using anti-S1P1 antibody revealed that S1P1 is predominantly expressed on thymocytes in the thymic medulla and is strongly down-regulated even at 3h after FTY720 administration. 2-Acetyl-4-tetrahydroxybutylimidazole (THI), an S1P lyase inhibitor, also induced accumulation of mature SP thymocytes in the thymic medulla with an enlargement of the perivascular spaces (PVS). At 6h after THI administration, S1P1-expressing thymocytes reduced partially as if to form clusters and hardly existed in the proximity of CD31-expressing blood vessels in the thymic medulla, suggesting S1P lyase expression in the cells constructing thymic medullary PVS. To determine the cells expressing S1P lyase in the thymus, we newly established a mAb (YK19-2) specific for mouse S1P lyase. Immunohistochemical staining with YK19-2 revealed that S1P lyase is predominantly expressed in non-lymphoid thymic stromal cells in the thymic medulla. In the thymic medullary PVS, S1P lyase was expressed in ER-TR7-positive cells (reticular fibroblasts and pericytes) and CD31-positive vascular endothelial cells. Our findings suggest that S1P lyase expressed in the thymic medullary PVS keeps the tissue S1P concentration low around the vessels and promotes thymic egress via up-regulation of S1P1.

  5. PAX7 Targets, CD54, Integrin α9β1, and SDC2, Allow Isolation of Human ESC/iPSC-Derived Myogenic Progenitors

    Directory of Open Access Journals (Sweden)

    Alessandro Magli

    2017-06-01

    Full Text Available Pluripotent stem (PS-cell-derived cell types hold promise for treating degenerative diseases. However, PS cell differentiation is intrinsically heterogeneous; therefore, clinical translation requires the development of practical methods for isolating progenitors from unwanted and potentially teratogenic cells. Muscle-regenerating progenitors can be derived through transient PAX7 expression. To better understand the biology, and to discover potential markers for these cells, here we investigate PAX7 genomic targets and transcriptional changes in human cells undergoing PAX7-mediated myogenic commitment. We identify CD54, integrin α9β1, and Syndecan2 (SDC2 as surface markers on PAX7-induced myogenic progenitors. We show that these markers allow for the isolation of myogenic progenitors using both fluorescent- and CGMP-compatible magnetic-based sorting technologies and that CD54+α9β1+SDC2+ cells contribute to long-term muscle regeneration in vivo. These findings represent a critical step toward enabling the translation of PS-cell-based therapies for muscle diseases.

  6. Genome-wide screening identifies Plasmodium chabaudi-induced modifications of DNA methylation status of Tlr1 and Tlr6 gene promoters in liver, but not spleen, of female C57BL/6 mice.

    Science.gov (United States)

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel Azeem S; Delic, Denis; Santourlidis, Simeon; Wunderlich, Frank

    2013-11-01

    Epigenetic reprogramming of host genes via DNA methylation is increasingly recognized as critical for the outcome of diverse infectious diseases, but information for malaria is not yet available. Here, we investigate the effect of blood-stage malaria of Plasmodium chabaudi on the DNA methylation status of host gene promoters on a genome-wide scale using methylated DNA immunoprecipitation and Nimblegen microarrays containing 2,000 bp oligonucleotide features that were split into -1,500 to -500 bp Ups promoters and -500 to +500 bp Cor promoters, relative to the transcription site, for evaluation of differential DNA methylation. Gene expression was analyzed by Agilent and Affymetrix microarray technology. Challenging of female C57BL/6 mice with 10(6) P. chabaudi-infected erythrocytes resulted in a self-healing outcome of infections with peak parasitemia on day 8 p.i. These infections induced organ-specific modifications of DNA methylation of gene promoters. Among the 17,354 features on Nimblegen arrays, only seven gene promoters were identified to be hypermethylated in the spleen, whereas the liver exhibited 109 hyper- and 67 hypomethylated promoters at peak parasitemia in comparison with non-infected mice. Among the identified genes with differentially methylated Cor-promoters, only the 7 genes Pigr, Ncf1, Klkb1, Emr1, Ndufb11, and Tlr6 in the liver and Apol6 in the spleen were detected to have significantly changed their expression. Remarkably, the Cor promoter of the toll-like receptor Tlr6 became hypomethylated and Tlr6 expression increased by 3.4-fold during infection. Concomitantly, the Ups promoter of the Tlr1 was hypermethylated, but Tlr1 expression also increased by 11.3-fold. TLR6 and TLR1 are known as auxillary receptors to form heterodimers with TLR2 in plasma membranes of macrophages, which recognize different pathogen-associated molecular patterns (PAMPs), as, e.g., intact 3-acyl and sn-2-lyso-acyl glycosylphosphatidylinositols of P. falciparum

  7. Electronic structure of f1 actinide complexes. Pt. 3. Quasi-relativistic density functional calculations of the optical transition energies of PaX62-(X=F,Cl,Br,I)

    International Nuclear Information System (INIS)

    Kaltsoyannis, N.

    1998-01-01

    For pt.II see J. Organomet. Chem., vol.528, p.19, 1997. The four f→f transition energies of the single 5f-based electron of PaX 6 2- (X=F, Cl, Br, I) have been calculated using quasi-relativistic local density functional theory. Excellent agreement ( -1 ) between theory and experiment is obtained for PaCl 6 2- , PaBr 6 2- and PaI 6 2- by variation of the value of α in the Xα exchange-only functional. In contrast, more sophisticated calculational methods including non-local corrections fail to reproduce the experiments well. The PaF 6 2- results are less impressive (up to 1000 cm -1 discrepancy), possibly due to non-aufbau orbital occupations for certain values of α. The values of α employed lie in the range 0.79-0.85, somewhat higher than the most widely used value of 0.7. The theoretical basis for using such values is discussed. (orig.)

  8. Signals of Ezh2, Src, and Akt Involve in Myostatin-Pax7 Pathways Regulating the Myogenic Fate Determination during the Sheep Myoblast Proliferation and Differentiation

    Science.gov (United States)

    Li, Li; Liu, Ruizao; Zhang, Li; Zhao, Fuping; Lu, Jian; Zhang, Xiaoning; Du, Lixin

    2015-01-01

    Myostatin and Pax7 have been well documented individually, however, the mechanism by which Myostatin regulates Pax7 is seldom reported. Here, based on muscle transcriptome analysis in Texel (Myostatin mutant) and Ujumqin (wild type) sheep across the five fetal stages, we constructed and examined the Myostatin-Pax7 pathways in muscle. Then we validated the signals by RNAi in the proliferating and differentiating sheep myoblasts in vitro at mRNA, protein, and cell morphological levels. We reveal that Myostatin signals to Pax7 at least through Ezh2, Src, and Akt during the sheep myoblast proliferation and differentiation. Other signals such as p38MAPK, mTOR, Erk1/2, Wnt, Bmp2, Smad, Tgfb1, and p21 are most probably involved in the Myostatin-affected myogenic events. Myostatin knockdown significantly reduces the counts of nucleus and myotube, but not the fusion index of myoblasts during cell differentiation. In addition, findings also indicate that Myostatin is required for normal myogenic differentiation of the sheep myoblasts, which is different from the C2C12 myoblasts. We expand the regulatory network of Myostatin-Pax7 pathways and first illustrate that Myostatin as a global regulator participates in the epigenetic events involved in myogenesis, which contributes to understand the molecular mechanism of Myostatin in regulation of myogenesis. PMID:25811841

  9. BMP7 and SHH regulate Pax2 in mouse retinal astrocytes by relieving TLX repression.

    Science.gov (United States)

    Sehgal, Rachna; Sheibani, Nader; Rhodes, Simon J; Belecky Adams, Teri L

    2009-08-15

    Pax2 is essential for development of the neural tube, urogenital system, optic vesicle, optic cup and optic tract. In the eye, Pax2 deficiency is associated with coloboma, a loss of astrocytes in the optic nerve and retina, and abnormal axonal pathfinding of the ganglion cell axons at the optic chiasm. Thus, appropriate expression of Pax2 is essential for astrocyte determination and differentiation. Although BMP7 and SHH have been shown to regulate Pax2 expression, the molecular mechanism by which this regulation occurs is not well understood. In this study, we determined that BMP7 and SHH activate Pax2 expression in mouse retinal astrocyte precursors in vitro. SHH appeared to play a dual role in Pax2 regulation; 1) SHH may regulate BMP7 expression, and 2) the SHH pathway cooperates with the BMP pathway to regulate Pax2 expression. BMP and SHH pathway members can interact separately or together with TLX, a repressor protein in the tailless transcription factor family. Here we show that the interaction of both pathways with TLX relieves the repression of Pax2 expression in mouse retinal astrocytes. Together these data reveal a new mechanism for the cooperative actions of signaling pathways in astrocyte determination and differentiation and suggest interactions of regulatory pathways that are applicable to other developmental programs.

  10. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.

    Science.gov (United States)

    Ghazy, S E; Mahmoud, I A; Ragab, A H

    2006-01-01

    Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples.

  11. [PAX3 gene mutation analysis for two Waardenburg syndrome type Ⅰ families and their prenatal diagnosis].

    Science.gov (United States)

    Bai, Y; Liu, N; Kong, X D; Yan, J; Qin, Z B; Wang, B

    2016-12-07

    Objective: To analyze the mutations of PAX3 gene in two Waardenburg syndrome type Ⅰ (WS1) pedigrees and make prenatal diagnosis for the high-risk 18-week-old fetus. Methods: PAX3 gene was first analyzed by Sanger sequencing and multiplex ligation-dependent probe amplification(MLPA) for detecting pathogenic mutation of the probands of the two pedigrees. The mutations were confirmed by MLPA and Sanger in parents and unrelated healthy individuals.Prenatal genetic diagnosis for the high-risk fetus was performed by amniotic fluid cell after genotyping. Results: A heterozygous PAX3 gene gross deletion (E7 deletion) was identified in all patients from WS1-01 family, and not found in 20 healthy individuals.Prenatal diagnosis in WS1-01 family indicated that the fetus was normal. Molecular studies identified a novel deletion mutation c. 1385_1386delCT within the PAX3 gene in all affected WS1-02 family members, but in none of the unaffected relatives and 200 healthy individuals. Conclusions: PAX3 gene mutation is etiological for two WS1 families. Sanger sequencing plus MLPA is effective and accurate for making gene diagnosis and prenatal diagnosis.

  12. Transplantation of Allogeneic PW1pos/Pax7neg Interstitial Cells Enhance Endogenous Repair of Injured Porcine Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fiona C. Lewis, BSc, PhD

    2017-12-01

    Full Text Available Skeletal muscle-derived PW1pos/Pax7neg interstitial cells (PICs express and secrete a multitude of proregenerative growth factors and cytokines. Utilizing a porcine preclinical skeletal muscle injury model, delivery of allogeneic porcine PICs (pPICs significantly improved and accelerated myofiber regeneration and neocapillarization, compared with saline vehicle control-treated muscles. Allogeneic pPICs did not contribute to new myofibers or capillaries and were eliminated by the host immune system. In conclusion, allogeneic pPIC transplantation stimulated the endogenous stem cell pool to bring about enhanced autologous skeletal muscle repair and regeneration. This allogeneic cell approach is considered a cost-effective, easy to apply, and readily available regenerative therapeutic strategy.

  13. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family.

    Directory of Open Access Journals (Sweden)

    Vanessa Rodrigues Paixão-Côrtes

    Full Text Available Paired box (PAX genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory.

  14. Differentiation of Odontoblast-Like Cells From Mouse Induced Pluripotent Stem Cells by Pax9 and Bmp4 Transfection.

    Science.gov (United States)

    Seki, Daisuke; Takeshita, Nobuo; Oyanagi, Toshihito; Sasaki, Shutaro; Takano, Ikuko; Hasegawa, Masakazu; Takano-Yamamoto, Teruko

    2015-09-01

    The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can

  15. No association of the IRS1 and PAX4 genes with type I diabetes

    DEFF Research Database (Denmark)

    Bergholdt, R.; Brorsson, C.; Boehm, B.

    2009-01-01

    To reassess earlier suggested type I diabetes (T1D) associations of the insulin receptor substrate 1 (IRS1) and the paired domain 4 gene (PAX4) genes, the Type I Diabetes Genetics Consortium (T1DGC) evaluated single-nucleotide polymorphisms (SNPs) covering the two genomic regions. Sixteen SNPs we...... of tagging SNPs, more than one genotyping platform in high throughput studies, and sufficient power to draw solid conclusions in genetic studies of human complex diseases. Genes and Immunity (2009) 10, S49-S53; doi:10.1038/gene.2009.91 Udgivelsesdato: 2009/12...

  16. PAX2 regulates ADAM10 expression and mediates anchorage-independent cell growth of melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sophia Boyoung Lee

    Full Text Available PAX transcription factors play an important role during development and carcinogenesis. In this study, we investigated PAX2 protein levels in melanocytes and melanoma cells by Western Blot and immunofluorescence analysis and characterized the role of PAX2 in the pathogenesis of melanoma. In vitro we found weak PAX2 protein expression in keratinocytes and melanocytes. Compared to melanocytes increased PAX2 protein levels were detectable in melanoma cell lines. Interestingly, in tissue sections of melanoma patients nuclear PAX2 expression strongly correlated with nuclear atypia and the degree of prominent nucleoli, indicating an association of PAX2 with a more atypical cellular phenotype. In addition, with chromatin immunoprecipitation assay, PAX2 overexpression and PAX2 siRNA we present compelling evidence that PAX2 can regulate ADAM10 expression, a metalloproteinase known to play important roles in melanoma metastasis. In human tissue samples we found co-expression of PAX2 and ADAM10 in melanocytes of benign nevi and in melanoma cells of patients with malignant melanoma. Importantly, the downregulation of PAX2 by specific siRNA inhibited the anchorage independent cell growth and decreased the migratory and invasive capacity of melanoma cells. Furthermore, the downregulation of PAX2 abrogated the chemoresistance of melanoma cells against cisplatin, indicating that PAX2 expression mediates cell survival and plays important roles during melanoma progression.

  17. Characterisation of the Mucor circinelloides regulated promoter gpd1P

    DEFF Research Database (Denmark)

    Larsen, G.G.; Appel, K.F.; Wolff, A.M.

    2004-01-01

    The promoter of the Mucor circinelloides gpd1 gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd1P) was recently cloned and used for the production of recombinant proteins, such as the Aspergillus niger glucose oxidase 1 (GOX). This represents the first example of the application...

  18. Bcl6 promotes osteoblastogenesis through Stat1 inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Fujie, Atsuhiro; Funayama, Atsushi; Miyauchi, Yoshiteru [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Sato, Yuiko [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kobayashi, Tami [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Integrated Bone Metabolism and Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kanagawa, Hiroya; Katsuyama, Eri; Hao, Wu; Tando, Toshimi; Watanabe, Ryuichi [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Morita, Mayu [Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Miyamoto, Kana; Kanaji, Arihiko; Morioka, Hideo; Matsumoto, Morio; Toyama, Yoshiaki [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Miyamoto, Takeshi, E-mail: miyamoto@z5.keio.jp [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Integrated Bone Metabolism and Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2015-02-13

    Bone mass is tightly controlled by a balance between osteoclast and osteoblast activities. Although these cell types mature via different pathways, some factors reportedly regulate differentiation of both. Here, in a search for factors governing osteoblastogenesis but also expressed in osteoclasts to control both cell types by one molecule, we identified B cell lymphoma 6 (Bcl6) as one of those factors and show that it promotes osteoblast differentiation. Bcl6 was previously shown to negatively regulate osteoclastogenesis. We report that lack of Bcl6 results in significant inhibition of osteoblastogensis in vivo and in vitro and in defects in secondary ossification center formation in vivo. Signal transducer and activator of transcription 1 (Stat1) reportedly attenuates osteoblast differentiation by inhibiting nuclear translocation of runt-related transcription factor 2 (Runx2), which is essential for osteoblast differentiation. We found that lack of Bcl6 resulted in significant elevation of Stat1 mRNA and protein expression in osteoblasts and showed that Stat1 is a direct target of Bcl6 using a chromatin immune-precipitation assay. Mice lacking both Bcl6 and Stat1 (DKO) exhibited significant rescue of bone mass and osteoblastic parameters as well as partial rescue of secondary ossification center formation compared with Bcl6-deficient mice in vivo. Altered osteoblastogenesis in Bcl6-deficient cells was also restored in DKO in vitro. Thus, Bcl6 plays crucial roles in regulating both osteoblast activation and osteoclast inhibition. - Highlights: • Bcl6 is required for osteoblast differentiation. • Bcl6{sup −/−} mice exhibited altered osteoblastogenesis and reduced bone mass in vivo and in vitro. • We identified Stat1 as a direct target of Bcl6 in osteoblasts. • Bcl6 and Stat1 doubly deficient mice exhibited rescued bone phenotypes compared with Bcl6{sup −/−} mice.

  19. Rb1 loss modifies but does not initiate alveolar rhabdomyosarcoma

    Science.gov (United States)

    2013-01-01

    Background Alveolar rhabdomyosarcoma (aRMS) is a myogenic childhood sarcoma frequently associated with a translocation-mediated fusion gene, Pax3:Foxo1a. Methods We investigated the complementary role of Rb1 loss in aRMS tumor initiation and progression using conditional mouse models. Results Rb1 loss was not a necessary and sufficient mutational event for rhabdomyosarcomagenesis, nor a strong cooperative initiating mutation. Instead, Rb1 loss was a modifier of progression and increased anaplasia and pleomorphism. Whereas Pax3:Foxo1a expression was unaltered, biomarkers of aRMS versus embryonal rhabdomyosarcoma were both increased, questioning whether these diagnostic markers are reliable in the context of Rb1 loss. Genome-wide gene expression in Pax3:Foxo1a,Rb1 tumors more closely approximated aRMS than embryonal rhabdomyosarcoma. Intrinsic loss of pRb function in aRMS was evidenced by insensitivity to a Cdk4/6 inhibitor regardless of whether Rb1 was intact or null. This loss of function could be attributed to low baseline Rb1, pRb and phospho-pRb expression in aRMS tumors for which the Rb1 locus was intact. Pax3:Foxo1a RNA interference did not increase pRb or improve Cdk inhibitor sensitivity. Human aRMS shared the feature of low and/or heterogeneous tumor cell pRb expression. Conclusions Rb1 loss from an already low pRb baseline is a significant disease modifier, raising the possibility that some cases of pleomorphic rhabdomyosarcoma may in fact be Pax3:Foxo1a-expressing aRMS with Rb1 or pRb loss of function. PMID:24274149

  20. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders.

    Science.gov (United States)

    Yoshizaki, Kaichi; Furuse, Tamio; Kimura, Ryuichi; Tucci, Valter; Kaneda, Hideki; Wakana, Shigeharu; Osumi, Noriko

    2016-01-01

    Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.

  1. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders.

    Directory of Open Access Journals (Sweden)

    Kaichi Yoshizaki

    Full Text Available Neurodevelopmental disorders such as autism spectrum disorder (ASD and attention deficit and hyperactivity disorder (ADHD have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.

  2. A familial pericentric inversion of chromosome 11 associated with a microdeletion of 163 kb and microduplication of 288 kb at 11p13 and 11q22.3 without aniridia or eye anomalies.

    Science.gov (United States)

    Balay, Lara; Totten, Ellen; Okada, Luna; Zell, Sidney; Ticho, Benjamin; Israel, Jeannette; Kogan, Jillene

    2016-01-01

    Interstitial deletions of 11p13 involving MPPED2, DCDC5, DCDC1, DNAJC24, IMMP1L, and ELP4 are previously reported to have downstream transcriptional effects on the expression of PAX6, due to a downstream regulatory region (DRR). Currently, no clear genotype-phenotype correlations have been established allowing for conclusive information regarding the exact location of the PAX6 DRR, though its location has been approximated in mouse models to be within the Elp4 gene. Of the clinical reports currently published examining patients with intact PAX6 genes but harboring deletions identified in genes downstream of PAX6, 100% indicate phenotypes which include aniridia, whereas approximately half report additional eye deformities, autism, or intellectual disability. In this clinical report, we present a 12-year-old male patient, his brother, and mother with pericentric inversions of chromosome 11 associated with submicroscopic interstitial deletions of 11p13 and duplications of 11q22.3. The inversions were identified by standard cytogenetic analysis; microarray and FISH detected the chromosomal imbalance. The patient's phenotype includes intellectual disability, speech abnormalities, and autistic behaviors, but interestingly neither the patient, his brother, nor mother have aniridia or other eye anomalies. To the best of our knowledge, these findings in three family members represent the only reported cases with 11p13 deletions downstream of PAX6 not demonstrating phenotypic characteristics of aniridia or abnormal eye development. Although none of the deleted genes are obvious candidates for the patient's phenotype, the absence of aniridia in the presence of this deletion in all three family members further delineates the location of the DRR for PAX6. © 2015 Wiley Periodicals, Inc.

  3. Identifying activated T cells in reconstituted RAG deficient mice using retrovirally transduced Pax5 deficient pro-B cells.

    Directory of Open Access Journals (Sweden)

    Nadesan Gajendran

    Full Text Available Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP and a far-red fluorescent protein from Heteractis crispa (HcRed. LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deficient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells.

  4. Gold nanoparticles regulate the blimp1/pax5 pathway and enhance antibody secretion in B-cells

    International Nuclear Information System (INIS)

    Lee, Chia-Hui; Syu, Shih-Han; Steven Huang, G; Chen, Yu-Shiun; Chen, Wen Liang; Hussain, Saber M; Aleksandrovich Onischuk, Andrei

    2014-01-01

    Nanoparticles are potential threats to human health and the environment; however, their medical applications as drug carriers targeting cancer cells bring hope to contemporary cancer therapy. As a model drug carrier, gold nanoparticles (GNPs) have been investigated extensively for in vivo toxicity. The effect of GNPs on the immune system, however, has rarely been examined. Antibody-secreting cells were treated with GNPs with diameters ranging from 2 to 50 nm. The GNPs enhanced IgG secretion in a size-dependent manner, with a peak of efficacy at 10 nm. The immune-stimulatory effect reached a maximum at 12 h after treatment but returned to control levels 24 h after treatment. This enhancing effect was validated ex vivo using B-cells isolated from mouse spleen. Evidence from RT-PCR and western blot experiments indicates that GNP-treatment upregulated B-lymphocyte-induced maturation protein 1 (blimp1) and downregulated paired box 5 (pax5). Immunostaining for blimp1 and pax5 in B-cells confirmed that the GNPs stimulated IgG secretion through the blimp1/pax5 pathway. The immunization of mice using peptide-conjugated GNPs indicated that the GNPs were capable of enhancing humoral immunity in a size-dependent manner. This effect was consistent with the bio-distribution of the GNPs in mouse spleen. In conclusion, in vitro, ex vivo, and in vivo evidence supports our hypothesis that GNPs enhance humoral immunity in mouse. The effect on the immune system should be taken into account if nanoparticles are used as carriers for drug delivery. In addition to their toxicity, the immune-stimulatory activity of nanoparticles could play an important role in human health and could have an environmental impact. (paper)

  5. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila

    Science.gov (United States)

    Hoopfer, Eric D; Jung, Yonil; Inagaki, Hidehiko K; Rubin, Gerald M; Anderson, David J

    2015-01-01

    How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1 interneurons, previously thought to exclusively control male courtship, were sufficient to promote fighting. Optogenetic experiments indicated that P1 activation could promote aggression at a threshold below that required for wing extension. P1 activation in the absence of wing extension triggered persistent aggression via an internal state that could endure for minutes. High-frequency P1 activation promoted wing extension and suppressed aggression during photostimulation, whereas aggression resumed and wing extension was inhibited following photostimulation offset. Thus, P1 neuron activation promotes a latent, internal state that facilitates aggression and courtship, and controls the overt expression of these social behaviors in a threshold-dependent, inverse manner. DOI: http://dx.doi.org/10.7554/eLife.11346.001 PMID:26714106

  6. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    Gao Xiaodong; Song Lujun; Shen Kuntang; Wang Hongshan; Niu Weixin; Qin Xinyu

    2008-01-01

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU + insulin - PDX-1 + cells, Ngn3 + cells and insulin + glucagon + cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34 + cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  7. Real-time colorimetric detection of DNA methylation of the PAX1 gene in cervical scrapings for cervical cancer screening with thiol-labeled PCR primers and gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Huang J

    2016-10-01

    Full Text Available Jin Huang,1,2 Yu-Ligh Liou,1,2 Ya-Nan Kang,3 Zhi-Rong Tan,1,2 Ming-Jing Peng,1,2 Hong-Hao Zhou1,2 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 2Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 3Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China Background: DNA methylation can induce carcinogenesis by silencing key tumor suppressor genes. Analysis of aberrant methylation of tumor suppressor genes can be used as a prognostic and predictive biomarker for cancer. In this study, we propose a colorimetric method for the detection of DNA methylation of the paired box gene 1 (PAX1 gene in cervical scrapings obtained from 42 patients who underwent cervical colposcopic biopsy. Methods: A thiolated methylation-specific polymerase chain reaction (MSP primer was used to generate MSP products labeled with the thiol group at one end. After bisulfite conversion and MSP amplification, the unmodified gold nanoparticles (AuNPs were placed in a reaction tube and NaCl was added to induce aggregation of bare AuNPs without generating polymerase chain reaction products. After salt addition, the color of AuNPs remained red in the methylated PAX1 gene samples because of binding to the MSP-amplified products. By contrast, the color of the AuNP colloid solution changed from red to blue in the non-methylated PAX1 gene samples because of aggregation of AuNPs in the absence of the MSP-amplified products. Furthermore, PAX1 methylation was quantitatively detected in cervical scrapings of patients with varied pathological degrees of cervical cancer. Conventional quantitative MSP (qMSP was also performed for comparison. Results: The two methods showed a significant correlation of the methylation frequency of the PAX1 gene in cervical scrapings with severity of cervical cancer (n=42, P<0.05. The results of the

  8. Promoter polymorphisms of ST3GAL4 and ST6GAL1 genes and associations with risk of premalignant and malignant lesions of the cervix.

    Science.gov (United States)

    Rivera-Juarez, Maria de Los Angeles; Rosas-Murrieta, Nora Hilda; Mendieta-Carmona, Victoriano; Hernandez-Pacheco, Raquel Esneidy; Zamora-Ginez, Irma; Rodea-Avila, Carlos; Apresa-Garcia, Teresa; Garay-Villar, Onix; Aguilar-Lemarroy, Adriana; Jave-Suarez, Luis Felipe; Diaz-Orea, Maria Alicia; Milflores-Flores, Lorena; Reyes-Salinas, Juan Salvador; Ceja-Utrera, Francisco Javier; Vazquez-Zamora, Victor Javier; Vargas-Maldonado, Tomas; Reyes-Carmona, Sandra; Sosa-Jurado, Francisca; Santos-Lopez, Gerardo; Reyes-Leyva, Julio; Vallejo-Ruiz, Veronica

    2014-01-01

    Sialyltransferase gene expression is altered in several cancers, including examples in the cervix. Transcriptional regulation of the responsible genes depends on different promoters. We aimed to determine the association of single-nucleotide polymorphisms in the B3 promoter of the ST3GAL4 gene and the P1 promoter of the ST6GAL1 gene with cervical premalignant lesions or cervical cancer. A blood sample and/or cervical scrapes were obtained from 104 women with normal cytology, 154 with premalignant lesions and 100 with cervical cancer. We also included 119 blood samples of random donors. The polymorphisms were identified by sequencing from PCR products. For the B3 promoter, a fragment of 506 bp (from nucleotide -408 to +98) was analyzed, and for the P1 promoter a 490 bp (-326 to +164) fragment. The polymorphism analysis showed that at SNP rs10893506, genotypes CC and CT of the ST3GAL4 B3 promoter were associated with the presence of premalignant lesions (OR=2.89; 95%CI 1.72-4.85) and cervical cancer (OR=2.23; 95%CI 1.27-3.91). We detected only one allele of each polymorphism in the ST6GAL1 P1 promoter. We did not detect any genetic variability in the P1 promoter region in our study population. Our results suggest that the rs10893506 polymorphism -22C/T may increase susceptibility to premalignant and malignant lesions of the cervix.

  9. Pax4 acts as a key player in pancreas development and plasticity.

    Science.gov (United States)

    Napolitano, Tiziana; Avolio, Fabio; Courtney, Monica; Vieira, Andhira; Druelle, Noémie; Ben-Othman, Nouha; Hadzic, Biljana; Navarro, Sergi; Collombat, Patrick

    2015-08-01

    The embryonic development of the pancreas is orchestrated by a complex and coordinated transcription factor network. Neurogenin3 (Neurog3) initiates the endocrine program by activating the expression of additional transcription factors driving survival, proliferation, maturation and lineage allocation of endocrine precursors. Among the direct targets of Neurog3, Pax4 appears as one of the key regulators of β-cell specification. Indeed, mice lacking Pax4 die a few days postpartum, as they develop severe hyperglycemia due to the absence of mature pancreatic β-cells. Pax4 also directly regulates the expression of Arx, a gene that plays a crucial role in α-cell specification. Comparative analysis of Pax4 and Arx mutants, as well as Arx/Pax4 double mutants, showed that islet subtype destiny is mainly directed by cross-repression of the Pax4 and Arx factors. Importantly, the ectopic expression of Pax4 in α-cells was found sufficient to induce their neogenesis and conversion into β-like cells, not only during development but also in adult rodents. Therefore, differentiated endocrine α-cells can be considered as a putative source for insulin-producing β-like cells. These findings have clearly widened our understanding regarding pancreatic development, but they also open new research avenues in the context of diabetes research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Characterization of Pax2 expression in the goldfish optic nerve head during retina regeneration.

    Directory of Open Access Journals (Sweden)

    Marta Parrilla

    Full Text Available The Pax2 transcription factor plays a crucial role in axon-guidance and astrocyte differentiation in the optic nerve head (ONH during vertebrate visual system development. However, little is known about its function during regeneration. The fish visual system is in continuous growth and can regenerate. Müller cells and astrocytes of the retina and ONH play an important role in these processes. We demonstrate that pax2a in goldfish is highly conserved and at least two pax2a transcripts are expressed in the optic nerve. Moreover, we show two different astrocyte populations in goldfish: Pax2(+ astrocytes located in the ONH and S100(+ astrocytes distributed throughout the retina and the ONH. After peripheral growth zone (PGZ cryolesion, both Pax2(+ and S100(+ astrocytes have different responses. At 7 days after injury the number of Pax2(+ cells is reduced and coincides with the absence of young axons. In contrast, there is an increase of S100(+ astrocytes in the retina surrounding the ONH and S100(+ processes in the ONH. At 15 days post injury, the PGZ starts to regenerate and the number of S100(+ astrocytes increases in this region. Moreover, the regenerating axons reach the ONH and the pax2a gene expression levels and the number of Pax2(+ cells increase. At the same time, S100(+/GFAP(+/GS(+ astrocytes located in the posterior ONH react strongly. In the course of the regeneration, Müller cell vitreal processes surrounding the ONH are primarily disorganized and later increase in number. During the whole regenerative process we detect a source of Pax2(+/PCNA(+ astrocytes surrounding the posterior ONH. We demonstrate that pax2a expression and the Pax2(+ astrocyte population in the ONH are modified during the PGZ regeneration, suggesting that they could play an important role in this process.

  11. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.

    Science.gov (United States)

    Li, C; Lan, Y; Krumlauf, R; Jiang, R

    2017-10-01

    Cleft palate is a common birth defect caused by disruption of palatogenesis during embryonic development. Although mutations disrupting components of the Wnt signaling pathway have been associated with cleft lip and palate in humans and mice, the mechanisms involving canonical Wnt signaling and its regulation in secondary palate development are not well understood. Here, we report that canonical Wnt signaling plays an important role in Pax9-mediated regulation of secondary palate development. We found that cleft palate pathogenesis in Pax9-deficient embryos is accompanied by significantly reduced expression of Axin2, an endogenous target of canonical Wnt signaling, in the developing palatal mesenchyme, particularly in the posterior regions of the palatal shelves. We found that expression of Dkk2, encoding a secreted Wnt antagonist, is significantly increased whereas the levels of active β-catenin protein, the essential transcriptional coactivator of canonical Wnt signaling, is significantly decreased in the posterior regions of the palatal shelves in embryonic day 13.5 Pax9-deficent embryos in comparison with control littermates. We show that small molecule-mediated inhibition of Dickkopf (DKK) activity in utero during palatal shelf morphogenesis partly rescued secondary palate development in Pax9-deficient embryos. Moreover, we found that genetic inactivation of Wise, which is expressed in the developing palatal shelves and encodes another secreted antagonist of canonical Wnt signaling, also rescued palate morphogenesis in Pax9-deficient mice. Furthermore, whereas Pax9 del/del embryos exhibit defects in palatal shelf elevation/reorientation and significant reduction in accumulation of hyaluronic acid-a high molecular extracellular matrix glycosaminoglycan implicated in playing an important role in palatal shelf elevation-80% of Pax9 del/del ;Wise -/- double-mutant mouse embryos exhibit rescued palatal shelf elevation/reorientation, accompanied by restored

  12. Methylation in the promoter regions of WT1, NKX6-1 and DBC1 genes in cervical cancer tissues of Uygur women in Xinjiang

    Directory of Open Access Journals (Sweden)

    Dan Wu

    Full Text Available Abstract This study aimed to explore: 1 DNA methylation in the promoter regions of Wilms tumor gene 1 (WT1, NK6 transcription factor related locus 1 gene (NKX6-1 and Deleted in bladder cancer 1 (DBC1 gene in cervical cancer tissues of Uygur women in Xinjiang, and 2 the correlation of gene methylation with the infection of HPV16/18 viruses. We detected HPV16/18 infection in 43 normal cervical tissues, 30 cervical intraepithelial neoplasia lesions (CIN and 48 cervical cancer tissues with polymerase chain reaction (PCR method. Methylation in the promoter regions of the WT1, NKX6-1 and DBC1 genes in the above-mentioned tissues was measured by methylation-specific PCR (MSP and cloning sequencing. The expression level of these three genes was measured by real-time PCR (qPCR in 10 methylation-positive cervical cancer tissues and 10 methylation-negative normal cervical tissues. We found that the infection of HPV16 in normal cervical tissues, CIN and cervical cancer tissues was 14.0, 36.7 and 66.7%, respectively. The infection of HPV18 was 0, 6.7 and 10.4%, respectively. The methylation rates of WT1, NKX6-1 and DBC1 genes were 7.0, 11.6 and 23.3% in normal cervical tissues, 36.7, 46.7 and 30.0% in CIN tissues, and 89.6, 77.1 and 85.4% in cervical cancer tissues. Furthermore, WT1, NKX6-1 and DBC1 genes were hypermethylated in the high-grade squamous intraepithelial lesion (CIN2, CIN3 and in the cervical cancer tissues with infection of HPV16/18 (both P< 0.05. The expression of WT1, NKX6-1 and DBC1 was significantly lower in the methylation-positive cervical cancer tissues than in methylation-negative normal cervical tissues. Our findings indicated that methylation in the promoter regions of WT1, NKX6-1 and DBC1 is correlated with cervical cancer tumorigenesis in Uygur women. The infection of HPV16/18 might be correlated with methylation in these genes. Gene inactivation caused by methylation might be related to the incidence and development of cervical

  13. Pharmacologic inhibition of S1P attenuates ATF6 expression, causes ER stress and contributes to apoptotic cell death.

    Science.gov (United States)

    Lebeau, Paul; Byun, Jae Hyun; Yousof, Tamana; Austin, Richard C

    2018-04-22

    Mammalian cells express unique transcription factors embedded in the endoplasmic reticulum (ER) membrane, such as the sterol regulatory element-binding proteins (SREBPs), that promote de novo lipogenesis. Upon their release from the ER, the SREBPs require proteolytic activation in the Golgi by site-1-protease (S1P). As such, inhibition of S1P, using compounds such as PF-429242 (PF), reduces cholesterol synthesis and may represent a new strategy for the management of dyslipidemia. In addition to the SREBPs, the unfolded protein response (UPR) transducer, known as the activating transcription factor 6 (ATF6), is another ER membrane-bound transcription factor that requires S1P-mediated activation. ATF6 regulates ER protein folding capacity by promoting the expression of ER chaperones such as the 78-kDa glucose-regulated protein (GRP78). ER-resident chaperones like GRP78 prevent and/or resolve ER polypeptide accumulation and subsequent ER stress-induced UPR activation by folding nascent polypeptides. Here we report that pharmacological inhibition of S1P reduced the expression of ATF6 and GRP78 and induced the activation of UPR transducers inositol-requiring enzyme-1α (IRE1α) and protein kinase RNA-like ER kinase (PERK). As a consequence, S1P inhibition also increased the susceptibility of cells to ER stress-induced cell death. Our findings suggest that S1P plays a crucial role in the regulation of ER folding capacity and also identifies a compensatory cross-talk between UPR transducers in order to maintain adequate ER chaperone expression and activity. Copyright © 2018. Published by Elsevier Inc.

  14. A novel mutation in the PAX3 gene causes Waardenburg syndrome type I in an Iranian family.

    Science.gov (United States)

    Jalilian, Nazanin; Tabatabaiefar, Mohammad Amin; Farhadi, Mohammad; Bahrami, Tayyeb; Noori-Daloii, Mohammad Reza

    2015-10-01

    Sensorineural hearing impairment (HI) is one of the most frequent congenital defects, with a prevalence of 1 in 500 among neonates. Although there are over 400 syndromes involving HI, most cases of HI are nonsyndromic (70%), 20% of which follow autosomal dominant mode of inheritance. Waardenburg syndrome (WS) ranks first among autosomal dominant syndromic forms of HI. WS is characterized by sensorineural hearing impairment, pigmentation abnormalities of hair and skin and hypoplastic blue eyes or heterochromia iridis. WS is subdivided into four major types, WS1-WS4. WS1 is diagnosed by the presence of dystopia canthorum and PAX3 is the only gene involved. This study aims to determine the pathogenic mutation in a large Iranian pedigree affected with WS1 in order to further confirm the clinical diagnosis. In the present study, a family segregating HI was ascertained in a genetic counseling center. Upon clinical inspection, white forelock, dystopia canthorum, broad high nasal root and synophrys, characteristic of WS1 were evident. In order to clarify the genetic etiology and confirm the clinical data, primers were designed to amplify exons and exon-intron boundaries of the responsible gene, PAX3 with 10 exons, followed by the Sanger DNA sequencing method. Genetic analysis of PAX3 revealed a novel mutation in PAX3 (c.1024_1040 del AGCACGATTCCTTCCAA). Our data provide genotype-phenotype correlation for the mutation in PAX3 and WS1 in the studied family, with implications for genetic counseling, which necessitates detailed clinical inspection of HI patients to distinguish syndromic HI from the more common non-syndromic cases. Our results reveal the value of phenotype-directed genetic analysis and could further expand the spectrum of PAX3 mutations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. The role of Pax genes in eye evolution

    Czech Academy of Sciences Publication Activity Database

    Kozmik, Zbyněk

    2008-01-01

    Roč. 75, 2-4 (2008), s. 335-339 ISSN 0361-9230 R&D Projects: GA AV ČR IAA500520604; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : eye * Pax * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.281, year: 2008

  16. Aberrant Pax-8 expression in well-differentiated papillary mesothelioma and malignant mesothelioma of the peritoneum: a clinicopathologic study.

    Science.gov (United States)

    Xing, Deyin; Banet, Natalie; Sharma, Rajni; Vang, Russell; Ronnett, Brigitte M; Illei, Peter B

    2018-02-01

    Serous ovarian neoplasms can overlap morphologically with peritoneal mesothelial proliferations, including well-differentiated papillary mesothelioma (WDPM) and malignant epithelioid mesothelioma (MM). Accurate histologic classification of these neoplasms is important for clinical management. The Pax-8 protein is commonly used for differentiating peritoneal MM from serous carcinoma, but the diagnostic value of Pax-8 for distinguishing WDPM from borderline or low-grade serous tumors is unknown. We used immunohistochemistry staining to assess Pax-8 expression in 33 WDPMs, 34 peritoneal MMs, 48 pleural MMs, 11 adenomatoid tumors, 5 peritoneal inclusion cysts, and 51 benign/reactive mesothelium specimens. Staining was noted in 20 WDPMs (61%), with 17 showing strong and diffuse nuclear staining and 3 patchy/focal staining. Calretinin was expressed in 33 cases (100%), whereas focal BerEP4 staining was noted in 2 of 29 cases (7%). In contrast, 4 peritoneal MM (12%) were Pax-8 positive (3 diffuse and 1 focal staining). All adenomatoid tumors and peritoneal inclusion cysts were negative for Pax-8. Of the 48 pleural MM cases, 2 (4%) showed focal weak to moderate nuclear labeling for Pax-8, and 2 cases (4%) of reactive mesothelium demonstrated focal and scattered Pax-8 staining. Pax-8 appears to be a useful marker for distinguishing MM from gynecologic malignancies but is not reliable for distinguishing WDPM from borderline or low-grade gynecologic lesions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    Directory of Open Access Journals (Sweden)

    Ralf Kist

    2014-10-01

    Full Text Available In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  18. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    Science.gov (United States)

    Kist, Ralf; Watson, Michelle; Crosier, Moira; Robinson, Max; Fuchs, Jennifer; Reichelt, Julia; Peters, Heiko

    2014-10-01

    In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  19. Identification of SNPs involved in regulating a novel alternative transcript of P450 CYP6ER1 in the brown planthopper.

    Science.gov (United States)

    Liang, Zhi-Kun; Pang, Rui; Dong, Yi; Sun, Zhong-Xiang; Ling, Yan; Zhang, Wen-Qing

    2017-04-29

    Cytochrome P450-mediated metabolic resistance is one of the major mechanisms involved in insecticide resistance. Although the up-regulation of cytochrome P450 plays a vital role in insecticide metabolism, the molecular basis for the transcriptional regulation of cytochrome P450 remains largely unknown. The P450 gene CYP6ER1, has been reported to confer imidacloprid resistance to the brown planthopper, Nilaparvata lugens. Here, we identified a novel alternative transcript of CYP6ER1 (transcript A2) that had different expression patterns between resistant and susceptible populations, and was more stable after insecticide induction. The promoter of this transcript was sequenced and multiple single nucleotide polymorphisms (SNPs) were detected in individuals from susceptible and resistant field-collected populations. Resistant alleles of four SNPs were found to significantly enhance the promoter activity of the CYP6ER1 transcript A2. Electrophoretic mobility shift assays (EMSAs) revealed that these SNPs might regulate the binding of transcription factors to the promoter. Our findings provide novel evidence regarding the transcriptional regulation of a metabolic resistance-related gene and may be useful to understand the resistance mechanism of N. lugens in the field. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  20. Cdt1p, through its interaction with Mcm6p, is required for the formation, nuclear accumulation and chromatin loading of the MCM complex.

    Science.gov (United States)

    Wu, Rentian; Wang, Jiafeng; Liang, Chun

    2012-01-01

    Regulation of DNA replication initiation is essential for the faithful inheritance of genetic information. Replication initiation is a multi-step process involving many factors including ORC, Cdt1p, Mcm2-7p and other proteins that bind to replication origins to form a pre-replicative complex (pre-RC). As a prerequisite for pre-RC assembly, Cdt1p and the Mcm2-7p heterohexameric complex accumulate in the nucleus in G1 phase in an interdependent manner in budding yeast. However, the nature of this interdependence is not clear, nor is it known whether Cdt1p is required for the assembly of the MCM complex. In this study, we provide the first evidence that Cdt1p, through its interaction with Mcm6p with the C-terminal regions of the two proteins, is crucial for the formation of the MCM complex in both the cytoplasm and nucleoplasm. We demonstrate that disruption of the interaction between Cdt1p and Mcm6p prevents the formation of the MCM complex, excludes Mcm2-7p from the nucleus, and inhibits pre-RC assembly and DNA replication. Our findings suggest a function for Cdt1p in promoting the assembly of the MCM complex and maintaining its integrity by interacting with Mcm6p.

  1. Recovery of NIS expression in thyroid cancer cells by overexpression of Pax8 gene

    International Nuclear Information System (INIS)

    Presta, Ivan; Filetti, Sebastiano; Russo, Diego; Arturi, Franco; Ferretti, Elisabetta; Mattei, Tiziana; Scarpelli, Daniela; Tosi, Emanuele; Scipioni, Angela; Celano, Marilena; Gulino, Alberto

    2005-01-01

    Recovery of iodide uptake in thyroid cancer cells by means of obtaining the functional expression of the sodium/iodide symporter (NIS) represents an innovative strategy for the treatment of poorly differentiated thyroid cancer. However, the NIS gene expression alone is not always sufficient to restore radioiodine concentration ability in these tumour cells. In this study, the anaplastic thyroid carcinoma ARO cells were stably transfected with a Pax8 gene expression vector. A quantitative RT-PCR was performed to assess the thyroid specific gene expression in selected clones. The presence of NIS protein was detected by Western blot and localized by immunofluorescence. A iodide uptake assay was also performed to verify the functional effect of NIS induction and differentiation switch. The clones overexpressing Pax8 showed the re-activation of several thyroid specific genes including NIS, Pendrin, Thyroglobulin, TPO and TTF1. In ARO-Pax8 clones NIS protein was also localized both in cell cytoplasm and membrane. Thus, the ability to uptake the radioiodine was partially restored, associated to a high rate of efflux. In addition, ARO cells expressing Pax8 presented a lower rate of cell growth. These finding demonstrate that induction of Pax8 expression may determine a re-differentiation of thyroid cancer cells, including a partial recovery of iodide uptake, fundamental requisite for a radioiodine-based therapeutic approach for thyroid tumours

  2. PAX2 is activated by estradiol in breast cancer cells of the luminal subgroup selectively, to confer a low invasive phenotype

    Science.gov (United States)

    2011-01-01

    Background Metastasis is the leading cause of death among breast cancer patients. Identifying key cellular factors controlling invasion and metastasis of breast cancer cells should pave the way to new therapeutic strategies efficiently interfering with the metastatic process. PAX2 (paired box 2) transcription factor is expressed by breast cancer cells in vivo and recently, it was shown to negatively regulate the expression of ERBB2 (erythroblastic leukemia viral oncogene homolog 2, HER-2/neu), a well-documented pro-invasive and pro-metastastic gene, in luminal/ERalpha-positive (ERα+) breast cancer cells. The objective of the present study was to investigate a putative role for PAX2 in the control of luminal breast cancer cells invasion, and to begin to characterize its regulation. Results PAX2 activity was higher in cell lines from luminal compared to non-luminal subtype, and activation of PAX2 by estradiol was selectively achieved in breast cancer cell lines of the luminal subtype. This process was blocked by ICI 182780 and could be antagonized by IGF-1. Knockdown of PAX2 in luminal MCF-7 cells completely abrogated estradiol-induced downregulation of ERBB2 and decrease of cell invasion, whereas overexpression of PAX2 in these cells enhanced estradiol effects on ERBB2 levels and cell invasion. Conclusions The study demonstrates that PAX2 activation by estradiol is selectively achieved in breast cancer cells of the luminal subtype, via ERα, and identifies IGF-1 as a negative regulator of PAX2 activity in these cells. Further, it reveals a new role for PAX2 in the maintenance of a low invasive behavior in luminal breast cancer cells upon exposure to estradiol, and shows that overexpression and activation of PAX2 in these cells is sufficient to reduce their invasive ability. PMID:22168360

  3. Esrrb directly binds to Gata6 promoter and regulates its expression with Dax1 and Ncoa3

    International Nuclear Information System (INIS)

    Uranishi, Kousuke; Akagi, Tadayuki; Koide, Hiroshi; Yokota, Takashi

    2016-01-01

    Estrogen-related receptor beta (Esrrb) is expressed in embryonic stem (ES) cells and is involved in self-renewal ability and pluripotency. Previously, we found that Dax1 is associated with Esrrb and represses its transcriptional activity. Further, the disruption of the Dax1–Esrrb interaction increases the expression of the extra-embryonic endoderm marker Gata6 in ES cells. Here, we investigated the influences of Esrrb and Dax1 on Gata6 expression. Esrrb overexpression in ES cells induced endogenous Gata6 mRNA and Gata6 promoter activity. In addition, the Gata6 promoter was found to contain the Esrrb recognition motifs ERRE1 and ERRE2, and the latter was the responsive element of Esrrb. Associations between ERRE2 and Esrrb were then confirmed by biotin DNA pulldown and chromatin immunoprecipitation assays. Subsequently, we showed that Esrrb activity at the Gata6 promoter was repressed by Dax1, and although Dax1 did not bind to ERRE2, it was associated with Esrrb, which directly binds to ERRE2. In addition, the transcriptional activity of Esrrb was enhanced by nuclear receptor co-activator 3 (Ncoa3), which has recently been shown to be a binding partner of Esrrb. Finally, we showed that Dax1 was associated with Ncoa3 and repressed its transcriptional activity. Taken together, the present study indicates that the Gata6 promoter is activated by Esrrb in association with Ncoa3, and Dax1 inhibited activities of Esrrb and Ncoa3, resulting maintenance of the undifferentiated status of ES cells. - Highlights: • Esrrb induced Gata6 expression in ES cells. • Gata6 promoter activity was enhanced by Esrrb, which was repressed by Dax1. • Dax1 associated with the Gata6 promoter via Esrrb. • Dax1 associated with Ncoa3 and repressed its transcriptional activity.

  4. Radiation susceptibility of the mouse smalleye mutants, Del(2)Sey3Hpax6 and Del(2)Sey4Hpax6, which delete the chromosome 2 middle regions

    International Nuclear Information System (INIS)

    Nitta, Y.; Hoshi, M.; Yoshida, K.; Yamate, J.; Peters, J.; Cattanach, B.M.

    2003-01-01

    Full text: LOH at the chromosome 2 middle regions is common in the radiation-induced mouse acute myeloid leukemia (AML). To identify the suppressor or the modifier gene of AML at this region, the mouse deletion mutants, Del(2)Sey3H pax6 and Del(2)Sey3H pax6 could be the good models, as they deleted the chromosome 2 middle regions hemizygously. The allele of the partially deleted chromosome 2 was paternally generated and maintained hemizygously. The exact deleted regions of the two mutants were mapped by the PCR-based detection of polymorphism of the STS markers. The length of the deletions was 3.01Mb and 10.11MB for Del(2)Sey3H pax6 and Del(2)Sey3H pax6 , respectively. For the induction of tumors, a radiation, 3.0Gy of Co-60 and a chemical carcinogen, N-methyl-N-nitrosourea were applied to the mutants. Their tumorigenicity was compared with those of control as well as normal sibs by the Kaplan-Meier analysis. Both mutants were found to predispose to small intestinal tumors. Intestinal tumors developed spontaneously with the incidence of 30%. The radiation and the chemical accelerated the malignancy and increased the incidence of the intestinal tumors. Radiation shortened the latency of AML development in the Del(2)Sey3H pax6 mutant but not in the Del(2)Sey3H pax6 . Spontaneous AML has not been observed, nor any increase in the incidence of induced AMLs. The commonly deleted region of the two mutants, the 3.01Mb region, must be critical for the development of tumors and the high susceptibility to radiation. The role of Pax6 gene should be considered in the intestinal tumorigenesis, as the Pax6 gene plays an important role in the pancreas development during the embryogenesis. The Wt1, a tumor suppressor gene, which is deleted hemizygously in these mutants as well. The screening of homozygous deletion has been started using the induced as well as spontaneously developed tumors

  5. Detection of satellite cells during skeletal muscle wound healing in rats: time-dependent expressions of Pax7 and MyoD in relation to wound age.

    Science.gov (United States)

    Tian, Zhi-Ling; Jiang, Shu-Kun; Zhang, Miao; Wang, Meng; Li, Jiao-Yong; Zhao, Rui; Wang, Lin-Lin; Li, Shan-Shan; Liu, Min; Zhang, Meng-Zhou; Guan, Da-Wei

    2016-01-01

    The study was focused on time-dependent expressions of paired-box transcription factor 7 (Pax7) and myoblast determination protein (MyoD) during skeletal muscle wound healing. An animal model of skeletal muscle contusion was established in 40 Sprague-Dawley male rats. Samples were taken at 1, 3, 5, 7, 9, 13, 17, and 21 days after injury, respectively (five rats in each posttraumatic interval). Five rats were employed as control. By morphometric analysis, the data based on the number of Pax7(+)/MyoD(-), Pax7(+)/MyoD(+), and Pax7(-)/MyoD(+) cells were highly correlated with the wound age. Pax7 and MyoD expressions were upregulated after injury by Western blot and quantitative real-time PCR assays. The relative quantity of Pax7 protein peaked at 5 days after injury, which was >1.13, and decreased thereafter. Similarly, the relative quantity of MyoD mRNA expression peaked at 3 days after injury, which was >2.59. The relative quantity of Pax7 protein >0.73 or mRNA expression >2.38 or the relative quantity of MyoD protein >1.33 suggested a wound age of 3 to 7 days. The relative quantity of MyoD mRNA expression >2.02 suggested a wound age of 1 to 7 days post-injury. In conclusion, the expressions of Pax7 and MyoD are upregulated in a time-dependent manner during skeletal muscle wound healing, suggesting that Pax7 and MyoD may be potential markers for wound age estimation in skeletal muscle.

  6. Generation and characterization of polyclonal antibodies specific to N-terminal extension of p85 isoform of ribosomal protein S6 kinase 1 (p85 S6K1

    Directory of Open Access Journals (Sweden)

    Savinska L. O.

    2015-08-01

    Full Text Available Aim. Generation of polyclonal antibodies specific to the ribosomal protein S6 kinase isoform – p85S6K1 and directed to the N-terminal (1–23 aa extension of p85S6K1. Methods. Animal immunization with synthetic (1–23 aa peptide, ELISA, Western blot, Immunoprecipitation, immunofluorescent analysis. Results. Polyclonal antibodies have been generated, which specifically recognize only p85 but not p70 isoform of S6K1 in western blot, immunoprecipitation and immunofluorescence analysis. Conclusions. The obtained antibodies can be recommended for studies on the p85S6K1 and other S6K1 isoforms possessing the N-terminal extension – the identification of binding protein partners, analysis of subcellular localization under different physiological conditions, elucidation of the signal transduction pathways involving different S6K1 isoforms.

  7. HMGB1-mediated DNA bending: Distinct roles in increasing p53 binding to DNA and the transactivation of p53-responsive gene promoters.

    Science.gov (United States)

    Štros, Michal; Kučírek, Martin; Sani, Soodabeh Abbasi; Polanská, Eva

    2018-03-01

    HMGB1 is a chromatin-associated protein that has been implicated in many important biological processes such as transcription, recombination, DNA repair, and genome stability. These functions include the enhancement of binding of a number of transcription factors, including the tumor suppressor protein p53, to their specific DNA-binding sites. HMGB1 is composed of two highly conserved HMG boxes, linked to an intrinsically disordered acidic C-terminal tail. Previous reports have suggested that the ability of HMGB1 to bend DNA may explain the in vitro HMGB1-mediated increase in sequence-specific DNA binding by p53. The aim of this study was to reinvestigate the importance of HMGB1-induced DNA bending in relationship to the ability of the protein to promote the specific binding of p53 to short DNA duplexes in vitro, and to transactivate two major p53-regulated human genes: Mdm2 and p21/WAF1. Using a number of HMGB1 mutants, we report that the HMGB1-mediated increase in sequence-specific p53 binding to DNA duplexes in vitro depends very little on HMGB1-mediated DNA bending. The presence of the acidic C-terminal tail of HMGB1 and/or the oxidation of the protein can reduce the HMGB1-mediated p53 binding. Interestingly, the induction of transactivation of p53-responsive gene promoters by HMGB1 requires both the ability of the protein to bend DNA and the acidic C-terminal tail, and is promoter-specific. We propose that the efficient transactivation of p53-responsive gene promoters by HMGB1 depends on complex events, rather than solely on the promotion of p53 binding to its DNA cognate sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. PAX3 gene deletion detected by microarray analysis in a girl with hearing loss.

    Science.gov (United States)

    Drozniewska, Malgorzata; Haus, Olga

    2014-01-01

    Deletions of the PAX3 gene have been rarely reported in the literature. Mutations of this gene are a common cause of Waardenburg syndrome type 1 and 3. We report a 16 year old female presenting hearing loss and normal intellectual development, without major features of Waardenburg syndrome type 1, and without family history of the syndrome. Her phenotype, however, overlaps with features of craniofacial-deafness-hand syndrome. Microarray analysis showed ~862 kb de novo deletion at 2q36.1 including PAX3. The above findings suggest that the rearrangement found in our patient appeared de novo and with high probability is a cause of her phenotype.

  9. Promoter characterization and genomic organization of the human X11β gene APBA2.

    LENUS (Irish Health Repository)

    Hao, Yan

    2012-02-15

    Overexpression of neuronal adaptor protein X11β has been shown to decrease the production of amyloid-β, a toxic peptide deposited in Alzheimer\\'s disease brains. Therefore, manipulation of the X11β level may represent a potential therapeutic strategy for Alzheimer\\'s disease. As X11β expression can be regulated at the transcription level, we determined the genomic organization and the promoter of the human X11β gene, amyloid β A4 precursor protein-binding family A member 2 (APBA2). By RNA ligase-mediated rapid amplification of cDNA ends, a single APBA2 transcription start site and the complete sequence of exon 1 were identified. The APBA2 promoter was located upstream of exon 1 and was more active in neurons. The core promoter contains several CpG dinucleotides, and was strongly suppressed by DNA methylation. In addition, mutagenesis analysis revealed a putative Pax5-binding site within the promoter. Together, APBA2 contains a potent neuronal promoter whose activity may be regulated by DNA methylation and Pax5.

  10. Does Metformin affect ER, PR, IGF-1R, β-catenin and PAX-2 expression in women with diabetes mellitus and endometrial cancer?

    Science.gov (United States)

    Markowska, Anna; Pawałowska, Monika; Filas, Violetta; Korski, Konstanty; Gryboś, Marian; Sajdak, Stefan; Olejek, Anita; Bednarek, Wiesława; Spiewankiewicz, Beata; Lubin, Jolanta; Markowska, Janina

    2013-12-05

    Diabetes mellitus, as a risk factor for endometrial cancer (EC), causes an increase in insulin and IGF-1 concentrations in the blood serum. The increase in insulin and IGF-1 are considered mitogenic factors contributory to cancer development. Studies suggest that metformin has preventive activity, decreasing mortality and the risk of neoplasms. Since estrogen (ER), progesterone (PR) and IGF-1 (IGF-1R) receptor expression and β-catenin and PAX-2 mutations are significant in the development of endometrial cancer, it was decided to study these factors in patients with endometrial cancer and type 2 diabetes mellitus (DM2), and to establish the effects of metformin on their expression. The expression of ER, PR, IGF-1R, β-catenin and PAX-2 have been immunohistochemically investigated in 86 type I endometrial cancer specimens. Patients were grouped according to the presence of DM2 and the type of hypoglycemic treatment administered. Comparing EC patients with DM2 and normal glycemic status, we found increased IGF-1R expression in women with DM2. A decrease in ER expression was noted in women with EC and DM2 receiving metformin as compared to women treated with insulin (p = 0.004). There was no statistically significant difference in PR, IGF-1R, β-catenin and PAX-2 expression among women receiving metformin and other hypoglycemic treatment. Although epidemiological studies suggest the beneficial role of metformin in many human cancers, there are still few studies confirming its favorable effect on endometrial cancer. Decreased ER expression in patients receiving metformin needs further research to allow evaluation of its clinical significance.

  11. Construction of recombinant adenovirus with Egr-1 promoter and Smad7 cDNA and study of the Egr-1 promoter's biological activity

    International Nuclear Information System (INIS)

    Cai Xuwei; Fu Xiaolong; Yang Jian; Song Houyan

    2005-01-01

    Objective: To construct a recombinant replication-defective adenovirus containing Egr-1 promoter and Smad7 cDNA, then to evaluate the biological activity of Egr-1 promoter. Methods: Based on Adeno- X TM expression system, CMV promoter of the pShuttle vector was replaced by Egr-1 promoter, and the Smad7 cDNA was subcloned into the MCS(multiple cloning site) of pShuttle. The recombinant pShuttle was then sub-cloned into the Adeno-X TM genome, which was transformed into E. coli to get recombinant Adeno-X TM plasmid DNA. The recombinant adenovirus was packaged and amplified in the transfected HEK293 cells before it was purified and tested for viral titer. The fibroblasts (3T6 cells) infected by the recombinant adenovirus were irradiated , and the activity of Egr-1 promoter was quantitively determined by the amount of Smad7 protein expressed in the 3T6 cells using Western blot. Results: Identified by restriction endonuclease analysis and PCR, the recombinant adenovirus containing Egr-1 promoter and Smad7 cDNA was constructed successfully, with a viral titer of 1.0 x 10 11 TCID 50 /ml. The expressed amount of Smad7 protein varied at different dose levels and different time points post-irradiation in the 3T6 cells infected with the recombinant adenovirus. The amount of Smad7 protein increased along with the rising of the irradiation dose, and remained at a high expression level from 8 Gy to 15 Gy. The amount of Smad7 protein started to increase at 2 hours post-irradiation, and maintained a relatively high level for the next 5 hours before it descended, which was not observed in the control 3T6 cells. Conclusions: With the aid of Adeno-X TM expression system and molecular cloning techniques, construction of recombinant adenovirus could be quick and efficient. The recombined Egr-1 promoter has the activity of regulating the expression of downstream Smad7 cDNA. The increase in Smad7 expression under control of Egr-1 promoter induced by ionizing radiation is time- and dose

  12. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Altered promoter methylation of PDK4, IL1 B, IL6, and TNF after Roux-en Y gastric bypass

    DEFF Research Database (Denmark)

    Kirchner, Henriette; Nylen, Carolina; Laber, Samantha

    2014-01-01

    methylation of selected promoter regions was measured in whole blood before and after VLCD. A subgroup of seven patients was studied 1–2 days and 12± 3 months after RYGB. Promoter methylation was measured using methylated DNA capture and quantitative real-time polymerase chain reaction (PCR). Results VLCD....... The objective of this study was to test whether promoter methylation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1 A), pyruvate dehydrogenase kinase isozyme-4 (PDK4), transcription factor A (TFAM), interleukin-1 beta (IL1 B), interleukin-6 (IL6) and tumor necrosis factor...... decreased promoter methylation of PPARGC1 A. Methylation of PPARGC1 A, TFAM, IL1 B, IL6, and TNF promoters was changed two days after RYGB. Similar changes were also seen on day one after cholecystectomy. Moreover, methylation increased in PDK4, IL1 B, IL6, and TNF promoters 12 months after RYGB. Conclusion...

  14. Lune/eye gone, a Pax-like protein, uses a partial paired domain and a homeodomain for DNA recognition.

    Science.gov (United States)

    Jun, S; Wallen, R V; Goriely, A; Kalionis, B; Desplan, C

    1998-11-10

    Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix-turn-helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes.

  15. Health Information in Pashto (Pax̌tō / پښتو )

    Science.gov (United States)

    ... and Well-Being 4 - Exercise - Pax̌tō / پښتو (Pashto) MP3 Siloam Family Health Center Healthy Numbers for Kids ... or More of Physical Activity - Pax̌tō / پښتو (Pashto) MP3 Minnesota Department of Health Birth Control Birth Control ...

  16. PAX7 mutation in a syndrome of failure to thrive, hypotonia, and global neurodevelopmental delay.

    Science.gov (United States)

    Proskorovski-Ohayon, Regina; Kadir, Rotem; Michalowski, Analia; Flusser, Hagit; Perez, Yonatan; Hershkovitz, Eli; Sivan, Sara; Birk, Ohad S

    2017-12-01

    PAX7 encodes a transcription factor essential in neural crest formation, myogenesis, and pituitary lineage specification. Pax7 null mice fail to thrive and exhibit muscle weakness, dying within 3 weeks. We describe a human autosomal-recessive syndrome, with failure to thrive, severe global developmental delay, microcephaly, axial hypotonia, pyramidal signs, dystonic postures, seizures, irritability, and self-mutilation. Aside from low blood carnitine levels, biochemical and metabolic screen was normal, with growth hormone deficiency in one patient. Electromyography was normal, with no specific findings in brain MRI/MRS yet nondemonstrable neuropituitary, a finding of unclear significance. Muscle biopsy showed unaffected overall organization of muscle fibers, yet positive fetal alpha myosin staining, suggesting regeneration. Homozygosity mapping with whole-exome sequencing identified a single disease-associated mutation in PAX7, segregating as expected in the kindred with no homozygosity in 200 ethnically matched controls. Transfection experiments showed that the PAX7 splice-site mutation putatively causes nonsense-mediated mRNA decay affecting onlyPAX7 isoform 3. This isoform, expressed specifically in brain, skeletal muscle and testes, is the sole Pax7 variant normally found in mice. The human muscle phenotype is in line with that in conditional Pax7 null mutant mice, where initial aberrant histological findings resolve postnatally through muscle regeneration. © 2017 Wiley Periodicals, Inc.

  17. Thioredoxin-1 promotes colorectal cancer invasion and metastasis through crosstalk with S100P.

    Science.gov (United States)

    Lin, Feiyan; Zhang, Peili; Zuo, Zhigui; Wang, Fule; Bi, Ruichun; Shang, Wenjing; Wu, Aihua; Ye, Ju; Li, Shaotang; Sun, Xuecheng; Wu, Jianbo; Jiang, Lei

    2017-08-10

    Thioredoxin-1 (Trx-1) is a small redox-regulating protein, which plays an important role in several cellular functions. Despite recent advances in understanding the biology of Trx-1, the role of Trx-1 and its underlying signaling mechanism in colorectal cancer (CRC) metastasis have not been extensively studied. In this study, we observed that Trx-1 expression is increased in CRC tissues compared to the paired non-cancerous tissues and is significantly correlated with clinical staging, lymph node metastasis and poor survival. Overexpression of Trx-1 enhanced CRC cell invasion and metastasis in vitro and in vivo. Conversely, suppression of Trx-1 expression decreased cell invasion and metastasis in vitro and in vivo. Moreover, Trx-1 activates S100P gene transcription. S100P, in turn, promotes Trx-1 expression and nuclear localization by upregulating p-ERK1/2 and downregulating TXNIP expression. Our finding provides new insight into the mechanism of Trx-1/S100P axis in the promotion of CRC metastasis, and suggests that the Trx-1/S100P axis and their related signaling pathways could be novel targets for the treatment of metastatic CRC. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Early secreted antigen ESAT-6 of Mycobacterium Tuberculosis promotes apoptosis of macrophages via targeting the microRNA155-SOCS1 interaction.

    Science.gov (United States)

    Yang, Shaojun; Li, Fake; Jia, Shuangrong; Zhang, Kejun; Jiang, Wenbing; Shang, Ya; Chang, Kai; Deng, Shaoli; Chen, Ming

    2015-01-01

    The early secreted antigenic target 6-kDa protein (ESAT-6) of Mycobacterium tuberculosis (Mtb) not only acts as a key player for virulence but also exhibits a strong immunotherapeutic potential against Mtb. However, little is known about the molecular basis for its potential in immunotherapy. The present study was designed to unravel the role of miRNA-155 in ESAT-6-mediated enhancement of host immunity and apoptosis in macrophages. Lentivirus-mediated miR-155 sponge and miR-155 and SOCS1 overexpression vectors were developed in macrophages. TLR2- or p65-specific siRNA knockdown was employed to silence TLR2 or p65. Quantitative polymerase chain reaction and western blotting analyses were performed to determine mRNA and protein expression levels, respectively. Macrophage apoptosis was analyzed by flow cytometry. ESAT-6 significantly increased miR-155 expression, which was dependent on TLR2/NF-κB activation in macrophages. Induced expression of miRNA-155 was required for the ESAT-6-mediated protective immune response and macrophage apoptosis. ESAT-6 promoted macrophage apoptosis by targeting the miR-155-SOCS1 pathway. The differential expression levels of TLR2, BIC, and SOCS1 were involved in regulating the immune response in human peripheral blood mononuclear cells of patients with active tuberculosis (TB) and latent TB (LTB). ESAT-6 promotes apoptosis of macrophages via targeting the miRNA155-SOCS1 interaction. © 2015 S. Karger AG, Basel.

  19. Early Secreted Antigen ESAT-6 of Mycobacterium Tuberculosis Promotes Apoptosis of Macrophages via Targeting the MicroRNA155-SOCS1 Interaction

    Directory of Open Access Journals (Sweden)

    Shaojun Yang

    2015-02-01

    Full Text Available Background: The early secreted antigenic target 6-kDa protein (ESAT-6 of Mycobacterium tuberculosis (Mtb not only acts as a key player for virulence but also exhibits a strong immunotherapeutic potential against Mtb. However, little is known about the molecular basis for its potential in immunotherapy. The present study was designed to unravel the role of miRNA-155 in ESAT-6-mediated enhancement of host immunity and apoptosis in macrophages. Methods: Lentivirus-mediated miR-155 sponge and miR-155 and SOCS1 overexpression vectors were developed in macrophages. TLR2- or p65-specific siRNA knockdown was employed to silence TLR2 or p65. Quantitative polymerase chain reaction and western blotting analyses were performed to determine mRNA and protein expression levels, respectively. Macrophage apoptosis was analyzed by flow cytometry. Results: ESAT-6 significantly increased miR-155 expression, which was dependent on TLR2/NF-κB activation in macrophages. Induced expression of miRNA-155 was required for the ESAT-6-mediated protective immune response and macrophage apoptosis. ESAT-6 promoted macrophage apoptosis by targeting the miR-155-SOCS1 pathway. The differential expression levels of TLR2, BIC, and SOCS1 were involved in regulating the immune response in human peripheral blood mononuclear cells of patients with active tuberculosis (TB and latent TB (LTB. Conclusion: ESAT-6 promotes apoptosis of macrophages via targeting the miRNA155-SOCS1 interaction.

  20. Angiogenic activity of Synadenium umbellatum Pax latex

    Directory of Open Access Journals (Sweden)

    PR. Melo-Reis

    Full Text Available Synadenium umbellatum Pax, popularly known as "cola-nota", is a medicinal plant that grows in tropical regions. Latex of this plant is used to treat various diseases such as diabetes mellitus, Hansen´s disease, tripanosomiases, leukemia and several malignant tumors. In the present study, the angiogenic activity of S. umbellatum latex was evaluated using the chick embryo chorioallantoic membrane (CAM assay. Results showed significant increase of the vascular net (p < 0.05 compared to the negative control (H2O. The histological analysis was in accordance with the results obtained. In conclusion, our data indicate that S. umbellatum latex, under the conditions of this research, presented angiogenic effect.

  1. 25-hydroxycholesterol promotes RANKL-induced osteoclastogenesis through coordinating NFATc1 and Sp1 complex in the transcription of miR-139-5p

    International Nuclear Information System (INIS)

    Zhang, Lishan; Lv, Yinping; Xian, Guozhe; Lin, Yanliang

    2017-01-01

    25-hydroxycholesterol (25-HC) is implicated in many processes, including lipid metabolism and the immune response. However, the role of 25-HC in RANKL-induced osteoclastogenesis remains largely unknown. Our results showed that 25-HC inhibited miR-139-5p expression in mouse bone marrow macrophages (BMMs) cultured in receptor activator of NF-κB ligand (RANKL) and monocyte macrophage colony-stimulating factor (M-CSF). Further investigation suggested that 25-HC promoted the expression of nuclear factor of activated T cell cytoplasmic 1 (NFATc1) and Sp1, especially in the presence of RANKL and M-CSF. Meanwhile, 25-HC induced nuclear translocation of NFATc1, resulting in the interaction between NFATc1 and Sp1 that was confirmed by co-immunoprecipitation. Chromatin immunoprecipitation assay indicated that Sp1 could bind to miR-139-5p promoter, but NFATc1 had no binding capacity. Although forming NFATc1/Sp1 complex increased its binding to miR-139-5p promoter, the complex inhibited the transcriptional activity of Sp1. Inhibition of NFATc1 increase the expression of miR-139-5p, which might be due to the release of free Sp1 that could bind to the promoter of miR-139-5p. Enforced expression of miR-139-5p impaired osteoclastogenesis induced by co-treatment with 25-HC and RANKL. These results suggested that 25-HC induced the interaction between NFATc1 and Sp1, reducing the level of free Sp1 to inhibit miR-139-5p expression and promote osteoclastogenesis. - Highlights: • 25-hydroxycholesterol inhibited miR-139-5p expression in bone marrow macrophages. • 25-hydroxycholesterol promoted the expression of NFATc1 and Sp1. • 25-hydroxycholesterol induced the interaction between NFATc1 and Sp1. • NFATc1/Sp1 complex inhibited the transcription of miR-139-5p. • MiR-139-5p impaired osteoclastogenesis induced by 25-hydroxycholesterol and RANKL.

  2. Human melanocytes form a PAX3-expressing melanocyte cluster on Matrigel by the cell migration process.

    Science.gov (United States)

    Choi, Hyunjung; Jin, Sun Hee; Han, Mi Hwa; Lee, Jinyoung; Ahn, Seyeon; Seong, Minjeong; Choi, Hyun; Han, Jiyeon; Cho, Eun-Gyung; Lee, Tae Ryong; Noh, Minsoo

    2014-10-01

    The interactions between human epidermal melanocytes and their cellular microenvironment are important in the regulation of human melanocyte functions or in their malignant transformation into melanoma. Although the basement membrane extracellular matrix (BM-ECM) is one of major melanocyte microenvironments, the effects of BM-ECM on the human melanocyte functions are not fully explained at a molecular level. This study was aimed to characterize the molecular and cellular interactions between normal human melanocytes (NHMs) and BM-ECM. We investigated cell culture models of normal human melanocytes or melanoma cells on three-dimensional (3D) Matrigel to understand the roles of the basement membrane microenvironment in human melanocyte functions. Melanogenesis and melanobast biomarker expression in both primary human melanocytes and melanoma cells on 3D Matrigel were evaluated. We found that NHMs migrated and formed reversible paired box 3 (PAX3) expressing cell clusters on three-dimensional (3D) Matrigel. The melanogenesis was significantly decreased in the PAX3 expressing cell cluster. The expression profile of PAX3, SOX10, and MITF in the melanocyte cluster on 3D Matrigel was similar to that of melanoblasts. Interestingly, PAX3 and SOX10 showed an inverse expression profile in NHMs, whereas the inverse expression pattern of PAX3 and SOX10 was disrupted in melanoma MNT1 and WM266-4 cells. The human melanocyte culture on 3D Matrigel provides an alternative model system to study functions of human melanoblasts. In addition, this system will contribute to the elucidation of PAX3-related tumorigenic mechanisms to understand human melanoma. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Molecular and clinical characterization of Waardenburg syndrome type I in an Iranian cohort with two novel PAX3 mutations.

    Science.gov (United States)

    Jalilian, Nazanin; Tabatabaiefar, Mohammad Amin; Farhadi, Mohammad; Bahrami, Tayeb; Emamdjomeh, Hesam; Noori-Daloii, Mohammad Reza

    2015-12-15

    Waardenburg syndrome (WS) is a disease of abnormal neural-crest derived melanocyte development characterized by hearing loss and pigmentary disturbances in hair, eyes and skin. WS is subdivided into four major types, WS1-WS4, where WS1 is recognized by the presence of dystopia canthorum, with PAX3 being the only known gene involved. This study aimed at investigating PAX3 mutations and clinical characteristics of WS1 in a group of Iranian patients. A total of 12 WS1 patients from four unrelated Iranian families were enrolled. Waardenburg consortium guidelines were used for WS1 diagnosis. A detailed family history was traced and a thorough clinical examination was performed for all participants. Furthermore, WS1 patients underwent screening for PAX3 mutations using PCR-sequencing. Dystopia canthorum, broad high nasal root and synophrys were observed in all patients. Early graying, hair discoloration, hypoplastic blue eyes (characteristic brilliant blue iris) and hearing loss were the most common features observed, while heterochromia iridis was the least frequently observed sign among the studied Iranian WS1 patients. Genetic analysis of PAX3 revealed four mutations including c.667C>T, c.784C>T, c.951delT and c.451+3A>C. Two of the four mutations reported here (c.951delT and c.451+3A>C) are being reported for the first time in this study. Our data provide insight into genotypic and phenotypic spectrum of WS1 in an Iranian series of patients. Our results expand the spectrum of PAX3 mutations and may have implications for the genetic counseling of WS in Iran. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop

    Science.gov (United States)

    Giladi, Nis David; Ziv-Av, Amotz; Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Ben-Asher, Hiba Waldman; deCarvalho, Ana; Mikkelsen, Tom; Poisson, Laila; Brodie, Chaya

    2015-01-01

    Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM. PMID:26267319

  5. Structural and functional studies of FKHR-PAX3, a reciprocal fusion gene of the t(2;13 chromosomal translocation in alveolar rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Qiande Hu

    Full Text Available Alveolar rhabdomyosarcoma (ARMS is an aggressive pediatric cancer of skeletal muscle. More than 70% of ARMS tumors carry balanced t(2;13 chromosomal translocation that leads to the production of two novel fusion genes, PAX3-FKHR and FKHR-PAX3. While the PAX3-FKHR gene has been intensely studied, the reciprocal FKHR-PAX3 gene has rarely been described. We report here the cloning and functional characterization of the FKHR-PAX3 gene as the first step towards a better understanding of its potential impact on ARMS biology. From RH30 ARMS cells, we detected and isolated three versions of FKHR-PAX3 cDNAs whose C-terminal sequences corresponded to PAX3c, PAX3d, and PAX3e isoforms. Unlike the nuclear-specific localization of PAX3-FKHR, the reciprocal FKHR-PAX3 proteins stayed predominantly in the cytoplasm. FKHR-PAX3 potently inhibited myogenesis in both non-transformed myoblast cells and ARMS cells. We showed that FKHR-PAX3 was not a classic oncogene but could act as a facilitator in oncogenic pathways by stabilizing PAX3-FKHR expression, enhancing cell proliferation, clonogenicity, anchorage-independent growth, and matrix adhesion in vitro, and accelerating the onset of tumor formation in xenograft mouse model in vivo. In addition to these pro-oncogenic behaviors, FKHR-PAX3 also negatively affected cell migration and invasion in vitro and lung metastasis in vivo. Taken together, these functional characteristics suggested that FKHR-PAX3 might have a critical role in the early stage of ARMS development.

  6. Natural selection and molecular evolution in primate PAX9 gene, a major determinant of tooth development.

    Science.gov (United States)

    Pereira, Tiago V; Salzano, Francisco M; Mostowska, Adrianna; Trzeciak, Wieslaw H; Ruiz-Linares, Andrés; Chies, José A B; Saavedra, Carmen; Nagamachi, Cleusa; Hurtado, Ana M; Hill, Kim; Castro-de-Guerra, Dinorah; Silva-Júnior, Wilson A; Bortolini, Maria-Cátira

    2006-04-11

    Large differences in relation to dental size, number, and morphology among and within modern human populations and between modern humans and other primate species have been observed. Molecular studies have demonstrated that tooth development is under strict genetic control, but, the genetic basis of primate tooth variation remains unknown. The PAX9 gene, which codes for a paired domain-containing transcription factor that plays an essential role in the development of mammal dentition, has been associated with selective tooth agenesis in humans and mice, which mainly involves the posterior teeth. To determine whether this gene is polymorphic in humans, we sequenced approximately 2.1 kb of the entire four-exon region (exons 1, 2, 3 and 4; 1,026 bp) and exon-intron (1.1 kb) boundaries of 86 individuals sampled from Asian, European, and Native American populations. We provided evidence that human PAX9 polymorphisms are limited to exon 3 only and furnished details about the distribution of a mutation there in 350 Polish subjects. To investigate the pattern of selective pressure on exon 3, we sequenced ortholog regions of this exon in four species of New World monkeys and one gorilla. In addition, orthologous sequences of PAX9 available in public databases were also analyzed. Although several differences were identified between humans and other species, our findings support the view that strong purifying selection is acting on PAX9. New World and Old World primate lineages may, however, have different degrees of restriction for changes in this DNA region.

  7. A PAX3 polymorphism (T315K) in a family exhibiting Waardenburg Syndrome type 2.

    Science.gov (United States)

    Wang, C; Kim, E; Attaie, A; Smith, T N; Wilcox, E R; Lalwani, A K

    1998-02-01

    Waardenburg Syndrome (WS) is an autosomal-dominant disorder phenotypically characterized by sensorineural hearing loss and pigmentary disturbances. Presence of dystopia canthorum is indicative of WS type 1 and results from defects in the PAX3 gene, whereas normally located medial canthi is characteristic of type 2 WS (WS2) and is associated with defects in the microphthalmia-associated transcription factor (MIFT) gene. Here a neutral polymorphism is reported in the PAX3 gene (T315K) in a family with WS2. Copyright 1998 Academic Press Limited

  8. Alignment creation in atomic ensembles by elastic electron scattering; the case of 138Ba(...6s6p 1P1) atoms

    International Nuclear Information System (INIS)

    Trajmar, S.; Kanik, I.; LeClair, L.R.; Khakoo, M.A.; Bray, I.; Fursa, D.; Csanak, G.

    1998-01-01

    We describe some of our results from a joint experimental and theoretical program concerning elastic electron scattering by 138 Ba(...6s6p 1 P 1 ) atoms. From the experimental results, we derived various scattering parameters and magnetic sublevel specific differential elastic scattering cross sections at impact energy (E 0 ) of 20.0 eV and at scattering angles (θ) of 10deg, 15deg, and 20deg. The same parameters and cross sections were calculated by the convergent close coupling (CCC) approximation and compared to the experimental results. An excellent agreement, found for the two sets of data, gave us confidence in the CCC method and allowed us to extend the angular and energy ranges for the purpose of generating integral elastic scattering cross sections needed for the deduction of the alignment creation cross sections. (J.P.N.)

  9. 35S Promoter Methylation in Kanamycin-Resistant Kalanchoe (Kalanchoe pinnata L.) Plants Expressing the Antimicrobial Peptide Cecropin P1 Transgene.

    Science.gov (United States)

    Shevchuk, T V; Zakharchenko, N S; Tarlachkov, S V; Furs, O V; Dyachenko, O V; Buryanov, Y I

    2016-09-01

    Transgenic kalanchoe plants (Kalanchoe pinnata L.) expressing the antimicrobial peptide cecropin P1 gene (cecP1) under the control of the 35S cauliflower mosaic virus 35S RNA promoter and the selective neomycin phosphotransferase II (nptII) gene under the control of the nopaline synthase gene promoter were studied. The 35S promoter methylation and the cecropin P1 biosynthesis levels were compared in plants growing on media with and without kanamycin. The low level of active 35S promoter methylation further decreases upon cultivation on kanamycin-containing medium, while cecropin P1 synthesis increases.

  10. Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice.

    Science.gov (United States)

    Murach, Kevin A; Confides, Amy L; Ho, Angel; Jackson, Janna R; Ghazala, Lina S; Peterson, Charlotte A; Dupont-Versteegden, Esther E

    2017-10-01

    Satellite cell depletion does not affect diaphragm adaptations to voluntary wheel running in young or aged mice. Satellite cell depletion early in life (4 months of age) has minimal effect on diaphragm phenotype by old age (24 months). Prolonged satellite cell depletion in the diaphragm does not result in excessive extracellular matrix accumulation, in contrast to what has been reported in hind limb muscles. Up-regulation of Pax3 mRNA+ cells after satellite cell depletion in young and aged mice suggests that Pax3+ cells may compensate for a loss of Pax7+ satellite cells in the diaphragm. Future investigations should focus on the role of Pax3+ cells in the diaphragm during adaptation to exercise and ageing. Satellite cell contribution to unstressed diaphragm is higher compared to hind limb muscles, which is probably attributable to constant activation of this muscle to drive ventilation. Whether satellite cell depletion negatively impacts diaphragm quantitative and qualitative characteristics under stressed conditions in young and aged mice is unknown. We therefore challenged the diaphragm with prolonged running activity in the presence and absence of Pax7+ satellite cells in young and aged mice using an inducible Pax7 CreER -R26R DTA model. Mice were vehicle (Veh, satellite cell-replete) or tamoxifen (Tam, satellite cell-depleted) treated at 4 months of age and were then allowed to run voluntarily at 6 months (young) and 22 months (aged). Age-matched, cage-dwelling, Veh- and Tam-treated mice without wheel access served as activity controls. Diaphragm muscles were analysed from young (8 months) and aged (24 months) mice. Satellite cell depletion did not alter diaphragm mean fibre cross-sectional area, fibre type distribution or extracellular matrix content in young or aged mice, regardless of running activity. Resting in vivo diaphragm function was also unaffected by satellite cell depletion. Myonuclear density was maintained in young satellite cell

  11. Effect of hydroxyurea on the promoter occupancy profiles of tumor suppressor p53 and p73

    Directory of Open Access Journals (Sweden)

    Lu Xin

    2009-06-01

    Full Text Available Abstract Background The p53 tumor suppressor and its related protein, p73, share a homologous DNA binding domain, and mouse genetics studies have suggested that they have overlapping as well as distinct biological functions. Both p53 and p73 are activated by genotoxic stress to regulate an array of cellular responses. Previous studies have suggested that p53 and p73 independently activate the cellular apoptotic program in response to cytotoxic drugs. The goal of this study was to compare the promoter-binding activity of p53 and p73 at steady state and after genotoxic stress induced by hydroxyurea. Results We employed chromatin immunoprecipitation, the NimbleGen promoter arrays and a model-based algorithm for promoter arrays to identify promoter sequences enriched in anti-p53 or anti-p73 immunoprecipitates, either before or after treatment with hydroxyurea, which increased the expression of both p53 and p73 in the human colon cancer cell line HCT116-3(6. We calculated a model-based algorithm for promoter array score for each promoter and found a significant correlation between the promoter occupancy profiles of p53 and p73. We also found that after hydroxyurea treatment, the p53-bound promoters were still bound by p73, but p73 became associated with additional promoters that that did not bind p53. In particular, we showed that hydroxyurea induces the binding of p73 but not p53 to the promoter of MLH3, which encodes a mismatch repair protein, and causes an up-regulation of the MLH3 mRNA. Conclusion These results suggest that hydroxyurea exerts differential effects on the promoter-binding functions of p53 and p73 and illustrate the power of model-based algorithm for promoter array in the analyses of promoter occupancy profiles of highly homologous transcription factors.

  12. Monogenic diabetes associated with PAX4 gene mutations (MODY9: first description in Russia

    Directory of Open Access Journals (Sweden)

    Natalya A. Zubkova

    2017-12-01

    Full Text Available Maturity-onset diabetes of the young (MODY is a heterogeneous group of disorders characterised by autosomal dominant type of inheritance and caused by genetic defects leading to dysfunction of pancreatic beta-cells. To date, at least 13 subtypes of MODY have been described in the literature, the most frequent of which are MODY types 1–3. MODY2 and MODY3 are the most prevalent subtypes, and were previously described in our country, Russia. Several cases of rare MODY subtypes were subsequently described in the Russian literature. The current report is the first in the Russian literature to present clinical and molecular genetic characteristics of two cases of another rare MODY subtype—MODY9. This type of MODY is associated with mutations in the PAX4 gene, which encodes transcription factor PAX4, one of the factors essential for pancreatic beta-cell differentiation. Molecular genetic analysis was performed using next-generation sequencing, a new method recently applied to verify monogenic diseases and, in particular, MODY. This study reports a novel mutation in the PAX4 gene in MODY patients.

  13. 5′UTR of the Neurogenic bHLH Nex1/MATH-2/NeuroD6 Gene Is Regulated by Two Distinct Promoters Through CRE and C/EBP Binding Sites

    Science.gov (United States)

    Uittenbogaard, Martine; Martinka, Debra L.; Johnson, Peter F.; Vinson, Charles; Chiaramello, Anne

    2009-01-01

    Expression of the bHLH transcription factor Nex1/MATH-2/NeuroD6, a member of the NeuroD subfamily, parallels overt neuronal differentiation and synaptogenesis during brain development. Our previous studies have shown that Nex1 is a critical effector of the NGF pathway and promotes neuronal differentiation and survival of PC12 cells in the absence of growth factors. In this study, we investigated the transcriptional regulation of the Nex1 gene during NGF-induced neuronal differentiation. We found that Nex1 expression is under the control of two conserved promoters, Nex1-P1 and Nex1-P2, located in two distinct non-coding exons. Both promoters are TATA-less with multiple transcription start sites, and are activated on NGF or cAMP exposure. Luciferase-reporter assays showed that the Nex1-P2 promoter activity is stronger than the Nex1-P1 promoter activity, which supports the previously reported differential expression levels of Nex1 transcripts throughout brain development. Using a combination of DNaseI footprinting, EMSA assays, and site-directed mutagenesis, we identified the essential regulatory elements within the first 2 kb of the Nex1 5′UTR. The Nex1-P1 promoter is mainly regulated by a conserved CRE element, whereas the Nex1-P2 promoter is under the control of a conserved C/EBP binding site. Overexpression of wild-type C/EBPβ resulted in increased Nex1-P2 promoter activity in NGF-differentiated PC12 cells. The fact that Nex1 is a target gene of C/EBPβ provides new insight into the C/EBP transcriptional cascade known to promote neurogenesis, while repressing gliogenesis. PMID:17075921

  14. Monomer-dimer control of the ColE1 P(cer) promoter.

    Science.gov (United States)

    Chatwin, H M; Summers, D K

    2001-11-01

    XerCD-mediated recombination at cer converts multimers of plasmid ColE1 to monomers, maximizing the number of independently segregating molecules and minimizing the frequency of plasmid loss. In addition to XerCD, recombination requires the accessory factors ArgR and PepA. The promoter P(cer), located centrally within cer, is also required for stable plasmid maintenance. P(cer) is active in plasmid multimers and directs transcription of a short RNA, Rcd, which appears to inhibit cell division. It has been proposed that Rcd is part of a checkpoint which ensures that multimer resolution is complete before the cell divides. This study has shown that ArgR does not act as a transcriptional repressor of P(cer) in plasmid monomers. P(cer) is unusual in that the -35 and -10 hexamers are separated by only 15 bp and this study has demonstrated that increasing this to a more conventional spacing results in elevated activity. An increase to 17 bp resulted in a 10- to 20-fold increase in activity, while smaller effects were seen when the spacer was increased to 16 bp or 18 bp. These observations are consistent with the hypothesis that P(cer) activation involves realignment of the -35 and -10 sequences within a recombinational synaptic complex. This predicts that a 17 bp spacer promoter derivative should be down-regulated by plasmid multimerization, and this is confirmed experimentally.

  15. The yeast cell fusion protein Prm1p requires covalent dimerization to promote membrane fusion.

    Directory of Open Access Journals (Sweden)

    Alex Engel

    2010-05-01

    Full Text Available Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion.

  16. Double heterozygous mutations of MITF and PAX3 result in Waardenburg syndrome with increased penetrance in pigmentary defects.

    Science.gov (United States)

    Yang, T; Li, X; Huang, Q; Li, L; Chai, Y; Sun, L; Wang, X; Zhu, Y; Wang, Z; Huang, Z; Li, Y; Wu, H

    2013-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentary defects of the hair, skin, and iris. Heterozygous mutations of MITF and its transactivator gene PAX3 are associated with Waardenburg syndrome type II (WS2) and type I (WS1), respectively. Most patients with MITF or PAX3 mutations, however, show variable penetrance of WS-associated phenotypes even within families segregating the same mutation, possibly mediated by genetic background or specific modifiers. In this study, we reported a rare Waardenburg syndrome simplex family in which a pair of WS parents gave birth to a child with double heterozygous mutations of MITF and PAX3. Compared to his parents who carried a single mutation in either MITF or PAX3, this child showed increased penetrance of pigmentary defects including white forelock, white eyebrows and eyelashes, and patchy facial depigmentation. This observation suggested that the expression level of MITF is closely correlated to the penetrance of WS, and variants in transcription regulator genes of MITF may modify the relevant clinical phenotypes. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  17. A PTIP-PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex

    DEFF Research Database (Denmark)

    Starnes, Linda M; Su, Dan; Pikkupeura, Laura M

    2016-01-01

    Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transacti...

  18. Promoter polymorphisms in two overlapping 6p25 genes implicate mitochondrial proteins in cognitive deficit in schizophrenia.

    LENUS (Irish Health Repository)

    Jablensky, A

    2011-10-04

    In a previous study, we detected a 6p25-p24 region linked to schizophrenia in families with high composite cognitive deficit (CD) scores, a quantitative trait integrating multiple cognitive measures. Association mapping of a 10 Mb interval identified a 260 kb region with a cluster of single-nucleotide polymorphisms (SNPs) significantly associated with CD scores and memory performance. The region contains two colocalising genes, LYRM4 and FARS2, both encoding mitochondrial proteins. The two tagging SNPs with strongest evidence of association were located around the overlapping putative promoters, with rs2224391 predicted to alter a transcription factor binding site (TFBS). Sequencing the promoter region identified 22 SNPs, many predicted to affect TFBSs, in a tight linkage disequilibrium block. Luciferase reporter assays confirmed promoter activity in the predicted promoter region, and demonstrated marked downregulation of expression in the LYRM4 direction under the haplotype comprising the minor alleles of promoter SNPs, which however is not driven by rs2224391. Experimental evidence from LYRM4 expression in lymphoblasts, gel-shift assays and modelling of DNA breathing dynamics pointed to two adjacent promoter SNPs, rs7752203-rs4141761, as the functional variants affecting expression. Their C-G alleles were associated with higher transcriptional activity and preferential binding of nuclear proteins, whereas the G-A combination had opposite effects and was associated with poor memory and high CD scores. LYRM4 is a eukaryote-specific component of the mitochondrial biogenesis of Fe-S clusters, essential cofactors in multiple processes, including oxidative phosphorylation. LYRM4 downregulation may be one of the mechanisms involved in inefficient oxidative phosphorylation and oxidative stress, increasingly recognised as contributors to schizophrenia pathogenesis.Molecular Psychiatry advance online publication, 4 October 2011; doi:10.1038\\/mp.2011.129.

  19. Identification of 6H1 as a P2Y purinoceptor: P2Y5.

    Science.gov (United States)

    Webb, T E; Kaplan, M G; Barnard, E A

    1996-02-06

    We have determined the identity of the orphan G-protein coupled receptor cDNA, 6H1, present in activated chicken T cells, as a subtype of P2Y purinoceptor. This identification is based on first on the degree of sequence identity shared with recently cloned members of the P2Y receptor family and second on the pharmacological profile. Upon transient expression in COS-7 cells the 6H1 receptor bound the radiolabel [35S]dATP alpha S specifically and with high affinity (Kd, 10 nM). This specific binding could be competitively displaced by a range of ligands active at P2 purinoceptors, with ATP being the most active (K (i)), 116 nM). Such competition studies have established the following rank order of activity: ATP ADP 2-methylthioATP alpha, beta-methylene ATP, UTP, thus confirming 6H1 as a member of the growing family of P2Y purinoceptors. As the fifth receptor of this type to be identified we suggest that it be named P2Y5.

  20. A family with unusual Waardenburg syndrome type I (WSI), cleft lip (palate), and Hirschsprung disease is not linked to PAX 3.

    Science.gov (United States)

    Pierpont, J W; St Jacques, D; Seaver, L H; Erickson, R P

    1995-03-01

    An unusual family with Waardenburg syndrome type 1 (WSI), cleft lip (palate), and Hirschsprung disease is not linked to the PAX 3 gene since there is an obligate crossover which has occurred between PAX 3 DNA markers and the disorder in this family. This family may also have anticipation of the WSI traits as the proband's grandmother is nonpenetrant, his mother has dystopia canthorum, and severe cleft lip (palate), while the proband has dystopia canthorum, severe cleft lip (palate), and Hirschsprung disease. Thus, a locus other than PAX 3 is implicated in this Waardenburg-like syndrome with Hirschsprung disease and cleft lip (palate).

  1. Building pathway graphs from BioPAX data in R.

    Science.gov (United States)

    Benis, Nirupama; Schokker, Dirkjan; Kramer, Frank; Smits, Mari A; Suarez-Diez, Maria

    2016-01-01

    Biological pathways are increasingly available in the BioPAX format which uses an RDF model for data storage. One can retrieve the information in this data model in the scripting language R using the package rBiopaxParser , which converts the BioPAX format to one readable in R. It also has a function to build a regulatory network from the pathway information. Here we describe an extension of this function. The new function allows the user to build graphs of entire pathways, including regulated as well as non-regulated elements, and therefore provides a maximum of information. This function is available as part of the rBiopaxParser distribution from Bioconductor.

  2. Conditional RNA interference achieved by Oct-1 POU/rtTA fusion protein activator and a modified TRE-mouse U6 promoter

    International Nuclear Information System (INIS)

    Fei Zhaoliang; Chen Zheng; Wang Zhugang; Fei Jian

    2007-01-01

    RNA interference (RNAi) is a powerful technique and is widely used to down-regulate expression of specific genes in cultured cells and in vivo. In this paper, we report our development of a new tetracycline-inducible RNAi expression using a modified TRE-mouse U6 promoter in which the distal sequence element (DSE) was replaced by the tetracycline-responsive element (TRE). The modified TRE-mouse U6 promoter can be activated by a Tet-on version tetracycline-regulated artificial activator rTetOct which was constructed by fusing the rtTA DNA binding domain with the Oct-1 POU activation domain. This rTetOct/TRE-U6 system was successfully applied to conditionally and reversibly down-regulate the expression of endogenous p53 gene in MCF7 cells, and the expression of β-defensin gene (mBin1b) either transiently expressed in COS7 cells or stably expressed in CHO cells

  3. LKM-1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P-450 monooxygenase.

    OpenAIRE

    Manns, M P; Griffin, K J; Sullivan, K F; Johnson, E F

    1991-01-01

    LKM-1 autoantibodies, which are associated with autoimmune chronic active hepatitis, recognize P450IID6, a cytochrome P-450 monooxygenase. The reactivities of 26 LKM-1 antisera were tested with a panel of deletion mutants of P450IID6 expressed in Escherichia coli. 22 sera recognize a 33-amino acid segment of P450IID6, and 11 of these recognize a shorter segment, DPAQPPRD. PAQPPR is also found in IE175 of herpes simplex virus type 1 (HSV-1). Antibodies for HSV-1 proteins were detected by ELISA...

  4. Using protein design algorithms to understand the molecular basis of disease caused by protein-DNA interactions: the Pax6 example

    DEFF Research Database (Denmark)

    Alibes, A.; Nadra, A.; De Masi, Federico

    2010-01-01

    diseases such as aniridia. The validity of FoldX to deal with protein-DNA interactions was demonstrated by showing that high levels of accuracy can be achieved for mutations affecting these interactions. Also we showed that protein-design algorithms can accurately reproduce experimental DNA-binding logos......Quite often a single or a combination of protein mutations is linked to specific diseases. However, distinguishing from sequence information which mutations have real effects in the protein's function is not trivial. Protein design tools are commonly used to explain mutations that affect protein...... stability, or protein-protein interaction, but not for mutations that could affect protein-DNA binding. Here, we used the protein design algorithm FoldX to model all known missense mutations in the paired box domain of Pax6, a highly conserved transcription factor involved in eye development and in several...

  5. Silencing of microRNA-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes by targeting FOXC1: miR-138 promotes cartilage degradation.

    Science.gov (United States)

    Yuan, Y; Zhang, G Q; Chai, W; Ni, M; Xu, C; Chen, J Y

    2016-10-01

    Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1. MiR-138-5p was significantly increased in OA cartilage and in chondrocytes in response to IL-1β-stimulation. Overexpression of miR-138-5p significantly increased the IL-1β-induced downregulation of COL2A1, ACAN, and GAGs, and increased the IL-1β-induced over expression of MMP-13.We found that FOXC1 is directly regulated by miR-138-5p. Additionally, co-transfection with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 resulted in higher levels of COL2A1, ACAN, and GAGs, but lower levels of MMP-13. miR-138-5p promotes IL-1β-induced cartilage degradation in human chondrocytes, possibly by targeting FOXC1.Cite this article: Y. Yuan, G. Q. Zhang, W. Chai,M. Ni, C. Xu, J

  6. Congenital Hypothyroidism Caused by a PAX8 Gene Mutation Manifested as Sodium/Iodide Symporter Gene Defect

    Directory of Open Access Journals (Sweden)

    Wakako Jo

    2010-01-01

    Full Text Available Loss-of-function mutations of the PAX8 gene are considered to mainly cause congenital hypothyroidism (CH due to thyroid hypoplasia. However, some patients with PAX8 mutation have demonstrated a normal-sized thyroid gland. Here we report a CH patient caused by a PAX8 mutation, which manifested as iodide transport defect (ITD. Hypothyroidism was detected by neonatal screening and L-thyroxine replacement was started immediately. Although 123I scintigraphy at 5 years of age showed that the thyroid gland was in the normal position and of small size, his iodide trapping was low. The ratio of the saliva/plasma radioactive iodide was low. He did not have goiter; however laboratory findings suggested that he had partial ITD. Gene analyses showed that the sodium/iodide symporter (NIS gene was normal; instead, a mutation in the PAX8 gene causing R31H substitution was identified. The present report demonstrates that individuals with defective PAX8 can have partial ITD, and thus genetic analysis is useful for differential diagnosis.

  7. Organizational requirements of the SaeR binding sites for a functional P1 promoter of the sae operon in Staphylococcus aureus.

    Science.gov (United States)

    Cho, Hoonsik; Jeong, Do-Won; Li, Chunling; Bae, Taeok

    2012-06-01

    In Staphylococcus aureus, the SaeRS two-component system controls the expression of multiple virulence factors. Of the two promoters in the sae operon, P1 is autoinduced and has two binding sites for the response regulator SaeR. In this study, we examined the organizational requirements of the SaeR binding sites in P1 for transcription activation. Mutational studies showed that both binding sites are essential for binding to phosphorylated SaeR (P-SaeR) and transcription activation. When the 21-bp distance between the centers of the two SaeR binding sites was altered to 26 bp, 31 bp, 36 bp, or 41 bp, only the 31-bp mutant retained approximately 40% of the original promoter activity. When the -1-bp spacing (i.e.,1-bp overlap) between the primary SaeR binding site and the -35 promoter region was altered, all mutant P1 promoters failed to initiate transcription; however, when the first nucleotide of the -35 region was changed from A to T, the mutants with 0-bp or 22-bp spacing showed detectable promoter activity. Although P-SaeR was essential for the binding of RNA polymerase to P1, it was not essential for the binding of the enzyme to the alpha-hemolysin promoter. When the nonoptimal spacing between promoter elements in P1 or the coagulase promoter was altered to the optimal spacing of 17 bp, both promoters failed to initiate transcription. These results suggest that SaeR binding sites are under rather strict organizational restrictions and provide clues for understanding the molecular mechanism of sae-mediated transcription activation.

  8. A splice-site mutation affecting the paired box of PAX3 in a three generation family with Waardenburg syndrome type I (WS1).

    Science.gov (United States)

    Attaie, A; Kim, E; Wilcox, E R; Lalwani, A K

    1997-06-01

    Waardenburg syndrome, an autosomal dominant disorder characterized by sensorineural hearing loss, pigmentary disturbances and other developmental defects, is the most frequent form of congenital deafness in humans. Mutations in the PAX3 gene, a transcription factor expressed during embryonic development, is associated with WS types I and III. Here we report the identification of a novel acceptor splice site mutation (86-2 A-->G) in the paired domain of the human PAX3 gene causing WS type I in a three generation family.

  9. Deletion of P2 promoter of GJB1 gene a cause of Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Kulshrestha, R; Burton-Jones, S; Antoniadi, T; Rogers, M; Jaunmuktane, Z; Brandner, S; Kiely, N; Manuel, R; Willis, T

    2017-08-01

    X-linked Charcot-Marie-Tooth disease (CMT) is the second most common cause of CMT, and is usually caused by mutations in the gap junction protein beta 1 (GJB1) gene. This gene has nerve specific P2 promoter that work synergistically with SOX10 and EGR2 genes to initiate transcription. Mutation in this region is known to cause Schwann cell dysfunction. A single large family of X linked peripheral neuropathy was identified in our practice. Next generation sequencing for targeted panel assay identified an upstream exon-splicing deletion identified extending from nucleotide c.-5413 to approximately - c.-49. This matches the sequence of 32 nucleotides at positions c.*218-*249 in the 3'UTR downstream of the GJB1 gene. The deleted fragment included the entire P2 promoter region. The deletion segregated with the disease. To our knowledge a deletion of the P2 promoter alone as a cause of CMT has not been reported previously. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. P1 promoter-driven HNF4α isoforms are specifically repressed by β-catenin signaling in colorectal cancer cells.

    Science.gov (United States)

    Babeu, Jean-Philippe; Jones, Christine; Geha, Sameh; Carrier, Julie C; Boudreau, François

    2018-06-13

    HNF4α is a key nuclear receptor for regulating gene expression in the gut. While both P1 and P2 isoform classes of HNF4α are expressed in colonic epithelium, specific inhibition of P1 isoforms is commonly found in colorectal cancer. Previous studies have suggested that P1 and P2 isoforms may regulate different cellular functions. Despite these advances, it remains unclear whether these isoform classes are functionally divergent in the context of human biology. Here, the consequences of specific inhibition of P1 or P2 isoform expression was measured in a human colorectal cancer cell transcriptome. Results indicate that P1 isoforms were specifically associated with the control of cell metabolism while P2 isoforms globally supported aberrant oncogenic signalization, promoting cancer cell survival and progression. P1 promoter-driven isoform expression was found to be repressed by β-catenin, one of the earliest oncogenic pathways to be activated during colon tumorigenesis. These findings identify a novel cascade by which the expression of P1 isoforms are rapidly shut down in the early stages of colon tumorigenesis, allowing a change in HNF4α-dependent transcriptome thereby promoting colorectal cancer progression. © 2018. Published by The Company of Biologists Ltd.

  11. The Р60-S6K1 isoform of ribosomal protein S6 kinase 1 is a product of alternative mRNA translation

    Directory of Open Access Journals (Sweden)

    I. V. Zaiets

    2018-07-01

    Full Text Available Ribosomal protein S6 kinase 1 (S6K1 is a well-known downstream effector of mTORC1 (mechanistic target of rapamycin complex 1 participating primarily in the regulation of cell growth and metabolism. Deregulation of mTOR/S6K1 signaling can promote numerous human pathologies, including cancer, neurodegeneration, cardiovascular disease, and metabolic disorders. As existing data suggest, the S6K1 gene encodes several protein isoforms, including p85-S6K1, p70-S6K1, and p60-S6K1. The two of these isoforms, p85-S6K1 and p70-S6K1, were extensively studied to date. The origin and functional significance of the p60-S6K1 isoform remains a mystery, however, it was suggested that the isoform could be a product of alternative S6K1 mRNA translation. Herein we report the generation of HEK-293 cells exclusively expressing p60-S6K1 as a result of CRISPR/Cas9-mediated inactivation of p85/p70-S6K1 translation. Moreover, the generated modified cells displayed the elevated level of p60-S6K1 expression compared to that in wild-type HEK-293 cells. Our data confirm an assumption that p60-S6K1 is alternatively translated, most probably, from the common for both p70- and p85-S6K1 mRNA transcript and reveal a link between p60-S6K1 expression and such cellular processes as cell proliferation and motility. In addition, our findings indicate that the p60-S6K1 isoform of S6K1 may undergo a mode of regulation distinct from p70- and p85-S6K1 due to the absence of mTOR-regulated p60-S6K1 phosphorylation at T389 that is important for S6K1 activation.

  12. Oncogenic S1P signalling in EBV-associated nasopharyngeal carcinoma activates AKT and promotes cell migration through S1P receptor 3.

    Science.gov (United States)

    Lee, Hui Min; Lo, Kwok-Wai; Wei, Wenbin; Tsao, Sai Wah; Chung, Grace Tin Yun; Ibrahim, Maha Hafez; Dawson, Christopher W; Murray, Paul G; Paterson, Ian C; Yap, Lee Fah

    2017-05-01

    Undifferentiated nasopharyngeal carcinoma (NPC) is a cancer with high metastatic potential that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the functional contribution of sphingosine-1-phosphate (S1P) signalling to the pathogenesis of NPC. We show that EBV infection or ectopic expression of the EBV-encoded latent genes (EBNA1, LMP1, and LMP2A) can up-regulate sphingosine kinase 1 (SPHK1), the key enzyme that produces S1P, in NPC cell lines. Exogenous addition of S1P promotes the migration of NPC cells through the activation of AKT; shRNA knockdown of SPHK1 resulted in a reduction in the levels of activated AKT and inhibition of cell migration. We also show that S1P receptor 3 (S1PR3) mRNA is overexpressed in EBV-positive NPC patient-derived xenografts and a subset of primary NPC tissues, and that knockdown of S1PR3 suppressed the activation of AKT and the S1P-induced migration of NPC cells. Taken together, our data point to a central role for EBV in mediating the oncogenic effects of S1P in NPC and identify S1P signalling as a potential therapeutic target in this disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Reciprocal occupancy of BCL6 and STAT5 on Growth Hormone target genes: contrasting transcriptional outcomes and promoter-specific roles of p300 and HDAC3.

    Science.gov (United States)

    Lin, Grace; LaPensee, Christopher R; Qin, Zhaohui S; Schwartz, Jessica

    2014-09-01

    Expression of the Growth Hormone (GH)-stimulated gene Socs2 (Suppressor of Cytokine Signaling 2) is mediated by the transcription activator STAT5 (Signal Transducer and Activator of Transcription 5) and the transcription repressor BCL6 (B-Cell Lymphoma 6). ChIP-Sequencing identified Cish (Cytokine-Inducible SH2-containing protein) and Bcl6 as having similar patterns of reciprocal occupancy by BCL6 and STAT5 in response to GH, though GH stimulates Cish and inhibits Bcl6 expression. The co-activator p300 occupied Socs2, Cish and Bcl6 promoters, and enhanced STAT5-mediated activation of Socs2 and Cish. In contrast, on Bcl6, p300 functioned as a repressor and inhibited in conjunction with STAT5 or BCL6. The co-repressor HDAC3 (Histone deacetylase 3) inhibited the Socs2, Cish and Bcl6 promoters in the presence of STAT5. Thus transcriptional outcomes on GH-regulated genes occupied by BCL6 and STAT5 are determined in a promoter-specific fashion by co-regulatory proteins which mediate the distinction between activating and repressive transcription factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Shah, S.; Schrader, K.A.; Waanders, E.; Timms, A.E.; Vijai, J.; Miething, C.; Wechsler, J.; Yang, J.; Hayes, J.; Klein, R.J.; Zhang, J.; Wei, L.; Wu, G.; Rusch, M.; Nagahawatte, P.; Ma, J; Chen, S.C.; Song, G.; Cheng, J.; Meyers, P.; Bhojwani, D.; Jhanwar, S.; Maslak, P.; Fleisher, M.; Littman, J.; Offit, L.; Rau-Murthy, R.; Fleischut, M.H.; Corines, M.; Murali, R.; Gao, X.; Manschreck, C.; Kitzing, T.; Murty, V.V.; Raimondi, S.C.; Kuiper, R.P.; Simons, A.; Schiffman, J.D.; Onel, K.; Plon, S.E.; Wheeler, D.A.; Ritter, D.; Ziegler, D.S.; Tucker, K.; Sutton, R.; Chenevix-Trench, G.; Li, J.; Huntsman, D.G.; Hansford, S.; Senz, J.; Walsh, T.; Lee (Helen Dowling Instituut), M. van der; Hahn, C.N.; Roberts, K.G.; King, M.C.; Lo, S.M.; Levine, R.L.; Viale, A.; Socci, N.D.; Nathanson, K.L.; Scott, H.S.; Daly, M.; Lipkin, S.M.; Lowe, S.W.; Downing, J.R.; Altshuler, D.; Sandlund, J.T.; Horwitz, M.S.; Mullighan, C.G.; Offit, K.

    2013-01-01

    Somatic alterations of the lymphoid transcription factor gene PAX5 (also known as BSAP) are a hallmark of B cell precursor acute lymphoblastic leukemia (B-ALL), but inherited mutations of PAX5 have not previously been described. Here we report a new heterozygous germline variant, c.547G>A

  15. Peculiarities of interaction of the p{sub z}-, π- electrons and the σ{sub p}-holes at the top 16 layers of HOPG

    Energy Technology Data Exchange (ETDEWEB)

    Dementjev, A.P., E-mail: demcarbon@yandex.ru; Ivanov, K.E.

    2017-03-31

    Graphical abstract: The formation of π-bands and σ{sub p}- holes as result of the p{sub z} → π transitions in 2–6 graphene layers HOPG. The valence band spectrum taken from Murday et al. (1981). - Abstract: The present work continues the analysis of results of Dementjev et al. (2015) in order to identify the interlayer interactions of the π-bands. Analysis of the N(E) C KVV Auger spectra of highly-ordered pyro-graphite showed the absence of the electron exchange between the π-bands in 16 layers. Since the π-bands are formed by the p{sub z} → π transitions, one can suggest that the π-band occupation at each graphene layer is formed by the p{sub z}-electrons of this layer. Since the p{sub z} electrons belong to the σ{sub p}-bands, the p{sub z} → π transitions in the σ{sub p}-bands in each of 2–6 graphene layers result in formation of holes H, whose concentration is equal to the concentration of electrons in the π-bands [H{sub i}] ≡ [π{sub i}]. This shows the origin of the ambipolar conductivity in graphene. The absence of the electronic interaction between the π-bands allows a suggestion that the interaction between top six graphene layers is due to the van der Waals electrostatic attractive forces. These forces promote the p{sub z} → π transitions in each of the 2–6 graphene layers and depend on the number of graphene layers above. The N(E) C KVV Auger spectra allow identification of number (16) of graphene layers and the π-band occupation at each of the layer. For the first time a specification of the van der Waals forces in HOPG was done.

  16. miR-21-3p is a positive regulator of L1CAM in several human carcinomas.

    Science.gov (United States)

    Doberstein, Kai; Bretz, Niko P; Schirmer, Uwe; Fiegl, Heidi; Blaheta, Roman; Breunig, Christian; Müller-Holzner, Elisabeth; Reimer, Dan; Zeimet, Alain G; Altevogt, Peter

    2014-11-28

    Expression of L1 cell adhesion molecule (L1CAM) occurs frequently in human cancers and is associated with poor prognosis in cancers such as ovarian, endometrial, breast, renal cell carcinoma and pancreatic ductal adenocarcinoma. L1CAM promotes cell motility, invasion, chemoresistance and metastasis formation. Elucidating genetic processes involved in the expression of L1CAM in cancers is of considerable importance. Transcription factors such as SLUG, β-catenin/TCF-LEF, PAX8 and VHL have been implicated in the re-activation of L1CAM in various types of cancers. There is increasing evidence that micro-RNAs can also have strong effects on gene expression. Here we have identified miR-21-3p as a positive regulator of L1CAM expression. Over-expression of miR-21-3p (miR-21*) but not the complementary sequence miR-21-5p (miR-21) could strongly augment L1CAM expression in renal, endometrial and ovarian carcinoma derived cell lines by an unknown mechanism involving transcriptional activation of the L1CAM gene. In patient cohorts from renal, endometrial and ovarian cancers we observed a strong positive correlation of L1CAM and miR-21-3p expressions. Although L1CAM alone was a reliable marker for overall and disease free survival, the combination of L1CAM and miR-21-3p expressions strongly enhanced the predictive power. Our findings shed new light on the complex regulation of L1CAM in cancers and advocate the use of L1CAM/miR-21-3p for diagnostic application. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis.

    Science.gov (United States)

    Zhu, Jie; Shi, Huirong; Liu, Huina; Wang, Xiaojuan; Li, Fengmei

    2017-09-12

    Increasing evidences showed that long non-coding RNAs (lncRNAs) play vital roles in tumor progression. Recent studies indicated that lncRNA TUG1 was upregulated and promoted tumor processes in several cancers. However, the expression and underlying mechanism of TUG1 in cervical cancer remain unclear. In the present study, we found that TUG1 expression was upregulated in cervical cancer tissues and correlated with advanced clinical features and poor overall survival. TUG1 knockdown suppressed cervical cancer cell growth and metastasis in vitro and tumor growth in vivo . In addition, our results indicated that TUG1 could act as an endogenous sponge by directly binding to miR-138-5p and suppressed miR-138-5p expression. Furthermore, we found that TUG1 could reverse the inhibitory effect of miR-138-5p on cervical cancer cells processes, which might be involved in the activation of SIRT1, a target gene of miR-138-5p, and activation of Wnt/β-catenin signaling pathway. Taken together, we elucidated that TUG1 might promote cervical cancer malignant progression via miR-138-5p-SIRT1-Wnt/β-catenin signaling pathway axis.

  18. p600 regulates spindle orientation in apical neural progenitors and contributes to neurogenesis in the developing neocortex

    Directory of Open Access Journals (Sweden)

    Camille Belzil

    2014-05-01

    Full Text Available Apical neural progenitors (aNPs drive neurogenesis by means of a program consisting of self-proliferative and neurogenic divisions. The balance between these two manners of division sustains the pool of apical progenitors into late neurogenesis, thereby ensuring their availability to populate the brain with terminal cell types. Using knockout and in utero electroporation mouse models, we report a key role for the microtubule-associated protein 600 (p600 in the regulation of spindle orientation in aNPs, a cellular event that has been associated with cell fate and neurogenesis. We find that p600 interacts directly with the neurogenic protein Ndel1 and that aNPs knockout for p600, depleted of p600 by shRNA or expressing a Ndel1-binding p600 fragment all display randomized spindle orientation. Depletion of p600 by shRNA or expression of the Ndel1-binding p600 fragment also results in a decreased number of Pax6-positive aNPs and an increased number of Tbr2-positive basal progenitors destined to become neurons. These Pax6-positive aNPs display a tilted mitotic spindle. In mice wherein p600 is ablated in progenitors, the production of neurons is significantly impaired and this defect is associated with microcephaly. We propose a working model in which p600 controls spindle orientation in aNPs and discuss its implication for neurogenesis.

  19. Sphingosine-1-phosphate promotes extravillous trophoblast cell invasion by activating MEK/ERK/MMP-2 signaling pathways via S1P/S1PR1 axis activation.

    Science.gov (United States)

    Yang, Weiwei; Li, Qinghua; Pan, Zhifang

    2014-01-01

    Successful placentation depends on the proper invasion of extravillous trophoblast (EVT) cells into maternal tissues. Previous reports demonstrated that S1P receptors are expressed in the EVT cells and S1P could regulate migration and function of trophoblast cells via S1P receptors. However, little is known about roles of S1P in the invasion of EVT cells. Our study was performed to investigate S1P effect on the invasion of EVT cells. We used the extravillous trophoblast cell line HTR8/SVneo cells to evaluate the effect. In vitro invasion assay was employed to determine the invasion of HTR8/SVneo cells induced by S1P. MMP-2 enzyme activity and relative level in the supernatants of HTR8/SVneo was assessed by gelatin zymography and western blot. Based on the above, siRNA and specific inhibitors were used for the intervention and study of potential signal pathways, and Real-time qPCR and western blot were used to test the mRNA and protein level of potential signal targets. We found that S1P could promote HTR8/SVneo cell invasion and upregulates activity and level of MMP-2. The promotion requires activation of MEK-ERK and is dependent on the axis of S1P/S1PR1. Our investigation of S1P may provide new insights into the molecular mechanisms of EVT invasion.

  20. MLH1 promoter methylation frequency in colorectal cancer patients and related clinicopathological and molecular features.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available To describe the frequency of MLH1 promoter methylation in colorectal cancer (CRC; to explore the associations between MLH1 promoter methylation and clinicopathological and molecular factors using a systematic review and meta-analysis.A literature search of the PubMed and Embase databases was conducted to identify relevant articles published up to September 7, 2012 that described the frequency of MLH1 promoter methylation or its associations with clinicopathological and molecular factors in CRC. The pooled frequency, odds ratio (OR and 95% confidence intervals (95% CI were calculated.The pooled frequency of MLH1 promoter methylation in unselected CRC was 20.3% (95% CI: 16.8-24.1%. They were 18.7% (95% CI: 14.7-23.6% and 16.4% (95% CI: 11.9-22.0% in sporadic and Lynch syndrome (LS CRC, respectively. Significant associations were observed between MLH1 promoter methylation and gender (pooled OR = 1.641, 95% CI: 1.215-2.215; P = 0.001, tumor location (pooled OR = 3.804, 95% CI: 2.715-5.329; P<0.001, tumor differentiation (pooled OR = 2.131, 95% CI: 1.464-3.102; P<0.001, MSI (OR: 27.096, 95% CI: 13.717-53.526; P<0.001. Significant associations were also observed between MLH1 promoter methylation and MLH1 protein expression, BRAF mutation (OR = 14.919 (95% CI: 6.427-34.631; P<0.001 and 9.419 (95% CI: 2.613-33.953; P = 0.001, respectively.The frequency of MLH1 promoter methylation in unselected CRC was 20.3%. They were 18.7% in sporadic CRC and 16.4% in LS CRC, respectively. MLH1 promoter methylation may be significantly associated with gender, tumor location, tumor differentiation, MSI, MLH1 protein expression, and BRAF mutation.

  1. Hair Growth Promoting and Anticancer Effects of p21-activated kinase 1 (PAK1 Inhibitors Isolated from Different Parts of Alpinia zerumbet

    Directory of Open Access Journals (Sweden)

    Nozomi Taira

    2017-01-01

    Full Text Available PAK1 (p21-activated kinase 1 is an emerging target for the treatment of hair loss (alopecia and cancer; therefore, the search for PAK1 blockers to treat these PAK1-dependent disorders has received much attention. In this study, we evaluated the anti-alopecia and anticancer effects of PAK1 inhibitors isolated from Alpinia zerumbet (alpinia in cell culture. The bioactive compounds isolated from alpinia were found to markedly promote hair cell growth. Kaempferol-3-O-β-d-glucuronide (KOG and labdadiene, two of the isolated compounds, increased the proliferation of human follicle dermal papilla cells by approximately 117%–180% and 132%–226%, respectively, at 10–100 μM. MTD (2,5-bis(1E,3E,5E-6-methoxyhexa-1,3,5-trien-1-yl-2,5-dihydrofuran and TMOQ ((E-2,2,3,3-tetramethyl-8-methylene-7-(oct-6-en-1-yloctahydro-1H-quinolizine showed growth-promoting activity around 164% and 139% at 10 μM, respectively. The hair cell proliferation induced by these compounds was significantly higher than that of minoxidil, a commercially available treatment for hair loss. Furthermore, the isolated compounds from alpinia exhibited anticancer activity against A549 lung cancer cells with IC50 in the range of 67–99 μM. Regarding the mechanism underlying their action, we hypothesized that the anti-alopecia and anticancer activities of these compounds could be attributed to the inhibition of the oncogenic/aging kinase PAK1.

  2. Cyclin E/Cdk2, P/CAF, and E1A regulate the transactivation of the c-myc promoter by FOXM1

    International Nuclear Information System (INIS)

    Wierstra, Inken; Alves, Juergen

    2008-01-01

    FOXM1c transactivates the c-myc promoter by binding directly to its TATA-boxes. The present study demonstrates that the transactivation of the c-myc promoter by FOXM1c is enhanced by the key proliferation signal cyclin E/Cdk2, but repressed by P/CAF and the adenoviral oncoprotein E1A. Furthermore, FOXM1c interacts with the coactivator and histone acetyltransferase P/CAF. This study shows that, on the c-myc-P1 TATA-box, FOXM1c does not function simply as normal transcription factor just binding to an unusual site. Moreover, the inhibitory N-terminus of FOXM1c does not inhibit its transrepression domain or its EDA. Others reported that a cyclin/Cdk-binding LXL-motif of the splice variant FoxM1b is required for its interaction with Cdk2, Cdk1, and p27, its phosphorylation by Cdk1 and its activation by Cdc25B. In contrast, we now demonstrate that this LXL-motif is not required for the activation of FOXM1c by cyclin D1/Cdk4, cyclin E/Cdk and cyclin A/Cdk2 or for the repression of FOXM1c by p27

  3. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    Science.gov (United States)

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Yu, Ting, E-mail: t.yu2@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi [Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu (Finland); Lang, Matti A., E-mail: m.lang@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Hakkola, Jukka, E-mail: Jukka.hakkola@oulu.fi [Institute of Biomedicine, Department of Pharmacology and Toxicology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu (Finland); Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region. • HNF4

  5. Carcass and non-carcass characteristics of sheep fed on cassava (Manihot pseudoglaziovii Pax & K. Hoffm.

    Directory of Open Access Journals (Sweden)

    Michel V Maciel

    2015-09-01

    Full Text Available Sheep production systems installed in the semi-arid region of Brazil depend on the forage support the 'caatinga' biome. This study aimed at evaluating the substitution of hybrid 'Tifton 85' (Cynodon spp. by cassava (Manihotpseudoglaziovii Pax & K. Hoffm. hay or silage on the components of sheep's' body weight. Twenty-four animals, with no defined breed, were used for the study, with an initial body weight of 19.77 ± 1.95 kg and an average age of 6-mo, being divided into three treatments ('Tifton 85' hay, cassava silage, and cassava hay. The animals were slaughtered at 56 d and all the body parts of the animals were weighed. Data were subjected to ANOVA and mean comparison test (P = 0.05. Means were superior (P 0.05 for body weight at slaughter and cold carcass weight, which had means of 28.10 and 12.38 kg, respectively. The hot carcass and leg yields showed values of 58% and 34%, respectively, and were not influenced (P > 0.05 by different forages. The constituents that were not components of the carcass, organs, offal, and by-products were not affected by the replacement of 'Tifton 85' hay by cassava hay or silage. Cassava hay or silage can replace 'Tifton 85' hay for feeding sheep in complete diets without compromising their body components' yields and weights.

  6. P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis

    Science.gov (United States)

    Müller, Tobias; Fay, Susanne; Vieira, Rodolfo Paula; Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Cemil Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Lazarowski, Eduardo R.; Blackburn, Michael R.; Idzko, Marco

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF. PMID:28878780

  7. P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Tobias Müller

    2017-08-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF.

  8. Increased expression of interleukin-6 (IL-6) gene transcript in relation to IL-6 promoter hypomethylation in gingival tissue from patients with chronic periodontitis.

    Science.gov (United States)

    Kobayashi, Tetsuo; Ishida, Kohei; Yoshie, Hiromasa

    2016-09-01

    DNA methylation of the cytokine genes may play a role in the pathogenesis of periodontitis. The aim of this study is to evaluate whether the alteration of interleukin-6 (IL-6) gene promoter methylation in the gingival tissue (GT) and peripheral blood (PB) is unique to chronic periodontitis (CP). DNA isolated from the GT and PB of 25 patients with (CP) and 20 healthy controls (H) was modified with sodium bisulfite and analyzed for IL-6 promoter methylation with direct sequencing. The levels of IL-6 mRNA and serum IL-6 protein were evaluated by a quantitative reverse transcription polymerase chain reaction and an enzyme-linked immunosorbent assay. The CP group showed that the overall methylation rates of IL-6 promoter that contained 19 cytosine-guanine dinucleotide (CpG) motifs were significantly decreased in GT in comparison to PB (p<0.001), which was significantly negatively correlated with the probing depth (p=0.003). The GT and PB of the H group displayed similar overall methylation rates. No significant difference was observed in the methylation rates at each CpG in GT in comparison to the PB in both groups. The levels of IL-6 mRNA in the GT and PB and serum IL-6 of the two groups were comparable. The ratio of IL-6 mRNA in the GT relative to the PB was significantly higher in the CP group than in the H group (p=0.03). The increased expression of IL-6 gene transcription may be related to IL-6 promoter hypomethylation in the GT from CP patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. PAX9 gene mutations and tooth agenesis: A review

    Czech Academy of Sciences Publication Activity Database

    Bonczek, Ondřej; Balcar, V. J.; Šerý, Omar

    2017-01-01

    Roč. 92, č. 5 (2017), s. 467-476 ISSN 0009-9163 Institutional support: RVO:67985904 Keywords : PAX9 * gene * hypodontia Subject RIV: FF - HEENT, Dentistry OBOR OECD: Dentistry, oral surgery and medicine Impact factor: 3.326, year: 2016

  10. Tumor-extrinsic discoidin domain receptor 1 promotes mammary tumor growth by regulating adipose stromal interleukin 6 production in mice.

    Science.gov (United States)

    Sun, Xiujie; Gupta, Kshama; Wu, Bogang; Zhang, Deyi; Yuan, Bin; Zhang, Xiaowen; Chiang, Huai-Chin; Zhang, Chi; Curiel, Tyler J; Bendeck, Michelle P; Hursting, Stephen; Hu, Yanfen; Li, Rong

    2018-02-23

    Discoidin domain receptor 1 (DDR1) is a collagen receptor that mediates cell communication with the extracellular matrix (ECM). Aberrant expression and activity of DDR1 in tumor cells are known to promote tumor growth. Although elevated DDR1 levels in the stroma of breast tumors are associated with poor patient outcome, a causal role for tumor-extrinsic DDR1 in cancer promotion remains unclear. Here we report that murine mammary tumor cells transplanted to syngeneic recipient mice in which Ddr1 has been knocked out (KO) grow less robustly than in WT mice. We also found that the tumor-associated stroma in Ddr1- KO mice exhibits reduced collagen deposition compared with the WT controls, supporting a role for stromal DDR1 in ECM remodeling of the tumor microenvironment. Furthermore, the stromal-vascular fraction (SVF) of Ddr1 knockout adipose tissue, which contains committed adipose stem/progenitor cells and preadipocytes, was impaired in its ability to stimulate tumor cell migration and invasion. Cytokine array-based screening identified interleukin 6 (IL-6) as a cytokine secreted by the SVF in a DDR1-dependent manner. SVF-produced IL-6 is important for SVF-stimulated tumor cell invasion in vitro , and, using antibody-based neutralization, we show that tumor promotion by IL-6 in vivo requires DDR1. In conclusion, our work demonstrates a previously unrecognized function of DDR1 in promoting tumor growth. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The effects of mixtures of potassium amyl xanthate (PAX and isopropyl ethyl thionocarbamate (IPETC collectors on grade and recovery in the froth flotation of a nickel sulfide ore

    Directory of Open Access Journals (Sweden)

    Westhein Maree

    2017-12-01

    Full Text Available Potassium amyl xanthate (PAX and sodium isobutyl xanthate (SIBX are commonly used collectors in both the bulk and selective froth flotation of sulfide ores. These thiol xanthate collectors are conventionally mixed together as well as with more selective thiol collectors such as dithiophosphates (DTP and dithiocarbamates (DTC, in order to improve selectivity. With deteriorating nickel sulfide ores, more selective collectors and collector mixtures are desired for the efficient extraction of nickel. Thionocarbamates (TC are another group of thiol collectors used for selective froth flotation of sulfide minerals. Thionocarbamates are especially used in the selective froth flotation of chalcopyrite over pyrite and galena, but little is known about its selectivity with regards to nickel. Thionocarbamates are also more stable over larger pH ranges in comparison to xanthates and they possess beneficial frothing properties. This study compared the effects of using potassium amyl xanthate (PAX, isopropyl ethyl thionocarbamate (IPETC, sodium isobutyl xanthate (SIBX and their mixtures in the froth flotation of a pentlandite ore. In the mixtures of PAX or SIBX with IPETC, the xanthate accounted for 95.5 mol% and for the PAX and SIBX mixture a 50:50 mixture was used. This study showed that the highest cumulative nickel grades were obtained with PAX, SIBX and there mixture. The highest cumulative nickel recoveries were obtained with IPETC and its mixtures with PAX and SIBX (50–62%. Keywords: Nickel sulfide, Xanthate, Thionocarbamate, Grade, Recovery

  12. Fatty acid composition of Dioscorea dumetorum (Pax) varieties ...

    African Journals Online (AJOL)

    The purpose of the present investigation was to study the fatty acid compositions of edible and wild Dioscorea dumetorum (Pax) varieties harvested from farms and forests of Ikot Akpanabia village in Akwa Ibom State, Nigeria in order to evaluate their nutritional and biochemical significance. Tubers were conveyed from farm ...

  13. MicroRNA-219-5p Promotes Tumor Growth and Metastasis of Hepatocellular Carcinoma by Regulating Cadherin 1

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-01-01

    Full Text Available MicroRNAs play significant roles in the development of cancer and may serve as promising therapeutic targets. In our previous work, miR-219-5p was identified as one of the important metastasis-related microRNAs in HCC. Here we demonstrated that miR-219-5p expression was elevated in HCC tissues and was associated with vascular invasion and dismal prognosis. In multivariate analysis, miR-219-5p was identified as an independent prognostic indicator for HCC patients. Functional mechanism analyses showed that miR-219-5p promoted HCC cell proliferation and invasion in in vitro, as well as in vivo, tumor growth and metastasis in nude mice models bearing human HCC tumors. In addition, cadherin 1 (CDH1 was revealed to be a downstream target of miR-219-5p in HCC cells. In conclusion, miR-219-5p promotes tumor growth and metastasis of HCC by regulating CDH1 and can serve as a prognostic marker for HCC patients.

  14. Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6

    Science.gov (United States)

    Lesser, Michael P.; Carleton, Karen L.; Böttger, Stefanie A.; Barry, Thomas M.; Walker, Charles W.

    2011-01-01

    All echinoderms have unique hydraulic structures called tube feet, known for their roles in light sensitivity, respiration, chemoreception and locomotion. In the green sea urchin, the most distal portion of these tube feet contain five ossicles arranged as a light collector with its concave surface facing towards the ambient light. These ossicles are perforated and lined with pigment cells that express a PAX6 protein that is universally involved in the development of eyes and sensory organs in other bilaterians. Polymerase chain reaction (PCR)-based sequencing and real time quantitative PCR (qPCR) also demonstrate the presence and differential expression of a rhabdomeric-like opsin within these tube feet. Morphologically, nerves that could serve to transmit information to the test innervate the tube feet, and the differential expression of opsin transcripts in the tube feet is inversely, and significantly, related to the amount of light that tube feet are exposed to depending on their location on the test. The expression of these genes, the differential expression of opsin based on light exposure and the unique morphological features at the distal portion of the tube foot strongly support the hypothesis that in addition to previously identified functional roles of tube feet they are also photosensory organs that detect and respond to changes in the underwater light field. PMID:21450733

  15. Synthesis and luminescent properties of Sr{sub 2}Gd{sub 6.8}Eu{sub 1.2}Si{sub 6(1−x)}P{sub 6x}O{sub 26} oxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Ishchenko, A.V., E-mail: a-v-i@mail.ru [Ural Federal University, 620002 Ekaterinburg (Russian Federation); Zuev, M.G. [Ural Federal University, 620002 Ekaterinburg (Russian Federation); Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg (Russian Federation); Vasin, A.A. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg (Russian Federation); Yagodin, V.V.; Viktorov, L.V.; Shulgin, B.V. [Ural Federal University, 620002 Ekaterinburg (Russian Federation)

    2016-01-15

    The solid solutions Sr{sub 2}Gd{sub 6.8}Eu{sub 1.2}Si{sub 6(1−x)}P{sub 6x}O{sub 26−δ} (where x=0–0.15 and δ is oxygen nonstoichiometry) were synthesized. The structural properties of the crystal lattice of the solid solutions and the peculiarities of Eu{sup 3+} and P{sup 5+} dopants substitution for matrix ions have been considered. The photo-, X-ray and pulsed cathode luminescence properties have been studied. It has been found that substitution of (SiO{sub 4}){sup 4−} by (PO{sub 4}){sup 3−} tetrahedron in Eu{sup 3+}-doped oxyapatites does not bring significant changes to bands structure Eu{sup 3+} in luminescence spectra under different excitation (UV, X-ray, pulse cathode beam). However, the increase of P{sup 5+} concentration in Sr{sub 2}Gd{sub 6.8}Eu{sub 1.2}Si{sub 6(1−x)}P{sub 6x}O{sub 26–δ} compounds leads to a decrease of integral intensity of Eu{sup 3+} luminescence bands due to local environment symmetry modifications and covalency degree changes. Two nonequivalent optical Eu{sup 3+} centers have been found. These compounds are of interest for efficient X-ray phosphors, display devices and LED engineering material creation. - Highlights: • The luminescence properties were studied upon UV, X-ray and pulse cathode beam. • P{sup 5+} doping of Sr{sub 2}Gd{sub 6.8}Eu{sub 1.2}Si{sub 6}O{sub 26} leads to luminescence intensity reduction. • At least two types of optical centers formed by Eu{sup 3+} ions were found. • The structural features of Sr{sub 2}Gd{sub 6.8}Eu{sub 1.2}Si{sub 6(1−x)}P{sub 6x}O{sub 26} were reported. • Partial replacement of Si by P does not change the Sr{sub 2}Gd{sub 6.8}Eu{sub 1.2}Si{sub 6}O{sub 26} structure.

  16. The Coordinated P53 and Estrogen Receptor Cis-Regulation at an FLT1 Promoter SNP Is Specific to Genotoxic Stress and Estrogenic Compound

    Science.gov (United States)

    Langen, Jan-Stephan; Schoenfelder, Gilbert; Resnick, Michael A.; Inga, Alberto

    2010-01-01

    Background Recently, we established that a C>T single nucleotide polymorphism (SNP) in the promoter of the VEGF receptor FLT1 gene generates a ½ site p53 response element (RE-T) that results in p53 responsiveness of the promoter. The transcriptional control required an estrogen receptor (ER) ½ site response element (ERE1) 225 nt upstream to the RE-T. Methodology/Principal Findings Here we report the identification of a second ER ½ site (ERE2) located 145 bp downstream of the RE-T and establish that both EREs can impact p53-mediated transactivation of FLT1-T in a manner that is cell type and ER level dependent. Gene reporter assays and ChIP experiments conducted in the breast cancer-derived MCF7 cells revealed that the ERE2 site was sufficient for p53-mediated ERα recruitment and transactivation of the FLT1-T promoter/reporter construct. Surprisingly, unlike the case for other p53 target promoters, p53-mediated transactivation of FLT1-T constructs or expression of the endogenous FLT1 gene, as well as binding of p53 and ER at the promoter constructs, was inducible by doxorubicin but not by 5-fluorouracil. Furthermore, ER activity at FLT1-T was differentially affected by ER ligands, compared to a control TFF1/pS2 ER target promoter. The p53-related transcription factors (TFs) p73 and p63 had no effect on FLT1 transactivation. Conclusions/Significance We establish a new dimension to the p53 master regulatory network where p53-mediated transcription from a ½ site RE can be determined by ER binding at one or more cis-acting EREs in manner that is dependent on level of ER protein, the type of ER ligand and the specific p53-inducing agent. PMID:20422012

  17. [Brd3 promotes IL-6 production via enhancing acetylase CBP recruitment and histone 3 acetylation within IL6 promoter].

    Science.gov (United States)

    Ren, Wenhui; Sun, Donghao; Wang, Chunmei; Li, Nan

    2016-10-01

    Objective To investigate the role of bromodomain containing 3 (Brd3) in LPS-triggered interleukin-6 (IL-6) production in macrophages and the underlying mechanism. Methods CRISPR-Cas9 technology was used to screen an RAW264.7 cell line with Brd3 knockout (Brd3 -/- ). The Brd3 -/- cells were used as an experimental group, and the parential cells expressing wide-type Brd3 as a control group. The IL-6 level in cell culture supernatant was detected by ELISA after 100 ng/mL LPS challenging. Effect of Brd3 knockout on the expression and activation of signal pathways involved in IL-6 expression, including the NF-κB and mitogen-activated protein kinase (MAPK) pathways were examined by Western blot analysis. Chromatin immunoprecipitation (ChIP) assay was used to evaluate the recruitment of acetylase CREB-binding protein (CBP) to IL6 gene promoter and the acetylation level of histone 3 within IL6 gene promoter. Results LPS treatment significantly downregulated Brd3 expression in mouse peritoneal macrophages. LPS-induced production of IL-6 was significantly inhibited in Brd3 -/- macrophages. The expressions and activation of signal molecules within NF-κB and MAPK pathways were barely affected. Brd3 knockout significantly decreased the recruitment of acetylase CBP to IL6 gene promoter, and the acetylation level of histone3 within IL6 gene promoter was also repressed. Conclusion Brd3 promotes LPS-triggered IL-6 production via promoting the recruitment of CBP to IL6 promoter and enhancing the acetylation level of histone 3 within IL6 promoter.

  18. Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development.

    Science.gov (United States)

    Alkobtawi, Mansour; Ray, Heather; Barriga, Elias H; Moreno, Mauricio; Kerney, Ryan; Monsoro-Burq, Anne-Helene; Saint-Jeannet, Jean-Pierre; Mayor, Roberto

    2018-03-06

    The neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies. Unfortunately, no such transgenic animals currently exist for the amphibians Xenopus laevis and tropicalis, key model systems for studying neural crest development. Here we describe the generation and characterization of two transgenic Xenopus laevis lines, Pax3-GFP and Sox10-GFP, in which GFP is expressed in the pre-migratory and migratory neural crest, respectively. We show that Pax3-GFP could be a powerful tool to study neural crest induction, whereas Sox10-GFP could be used in the study of neural crest migration in living embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Heterogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic(9;20)(p11-13;q11) show recurrent involvement of genes at 20q11.21.

    Science.gov (United States)

    An, Qian; Wright, Sarah L; Moorman, Anthony V; Parker, Helen; Griffiths, Mike; Ross, Fiona M; Davies, Teresa; Harrison, Christine J; Strefford, Jon C

    2009-08-01

    The dic(9;20)(p11-13;q11) is a recurrent chromosomal abnormality in patients with acute lymphoblastic leukemia. Although it results in loss of material from 9p and 20q, the molecular targets on both chromosomes have not been fully elucidated. From an initial cohort of 58 with acute lymphoblastic leukemia patients with this translocation, breakpoint mapping with fluorescence in situ hybridization on 26 of them revealed breakpoint heterogeneity of both chromosomes. PAX5 has been proposed to be the target gene on 9p, while for 20q, FISH analysis implicated the involvement of the ASXL1 gene, either by a breakpoint within (n=4) or centromeric (deletion, n=12) of the gene. Molecular copy-number counting, long-distance inverse PCR and direct sequence analysis identified six dic(9;20) breakpoint sequences. In addition to the three previously reported: PAX5-ASXL1, PAX5-C20ORF112 and PAX5-KIF3B; we identified three new ones in this study: sequences 3' of PAX5 disrupting ASXL1, and ZCCHC7 disrupted by sequences 3' of FRG1B and LOC1499503. This study provides insight into the breakpoint complexity underlying dicentric chromosomal formation in acute lymphoblastic leukemia and highlights putative target gene loci.

  20. MiR-338-5p Promotes Inflammatory Response of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via Targeting SPRY1.

    Science.gov (United States)

    Yang, Yan; Wang, Yanfeng; Liang, Qingwei; Yao, Lutian; Gu, Shizhong; Bai, Xizhuang

    2017-08-01

    Our purpose is to study the roles of microRNA-338-5p (miR-338-5p) on the proliferation, invasion, and inflammatory response of fibroblast-like synoviocytes (SFs) in rheumatoid arthritis patients by regulating SPRY1. The target relationship between miR-338-5p and SPRY1 was validated through luciferase reporter system. The expression of miR-338-5p and SPRY1 in synovial tissues and synovial cells were detected using RT-PCR and western blot. The mimics and inhibitors of miR-338-5p were transfected into SFs. MTT, Transwell, and ELISA assays were used to analyze cell proliferation, invasiveness, and the secreted extracellular pro-inflammatory cytokines (such as IL-1a, IL-6, COX2) levels of SFs. MiR-338-5p was highly expressed in rheumatoid arthritis tissues and cells, and directly down-regulated the expression of SPRY1 in the SFs of rheumatoid arthritis patients. Cell proliferation, invasiveness and the expression level of pro-inflammatory cytokines in synovial cells increased after the transfection of miR-338-5p mimics, while the proliferation, invasion and expression level of pro-inflammatory cytokines decreased after the transfection of miR-338-5p inhibitors. In conclusion,miR-338-5p promoted the proliferation, invasion and inflammatory reaction in SFs of rheumatoid arthritis by directly down-regulating SPRY1 expression. J. Cell. Biochem. 118: 2295-2301, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells.

    Science.gov (United States)

    Ashapkin, V V; Linkova, N S; Khavinson, V Kh; Vanyushin, B F

    2015-03-01

    Expression levels of genes encoding specific transcription factors and other functionally important proteins vary upon aging of pancreatic and bronchial epithelium cell cultures. The peptides KEDW and AEDL tissue-specifically affect gene expression in pancreatic and bronchial cell cultures, respectively. It is established in this work that the DNA methylation patterns of the PDX1, PAX6, NGN3, NKX2-1, and SCGB1A1 gene promoter regions change upon aging in pancreatic and bronchial cell cultures in correlation with variations in their expression levels. Thus, stable changes in gene expression upon aging of cell cultures could be caused by changes in their promoter methylation patterns. The methylation patterns of the PAX4 gene in pancreatic cells as well as those of the FOXA1, SCGB3A2, and SFTPA1 genes in bronchial cells do not change upon aging and are unaffected by peptides, whereas their expression levels change in both cases. The promoter region of the FOXA2 gene in pancreatic cells contains a small number of methylated CpG sites, their methylation levels being affected by cell culture aging and KEDW, though without any correlation with gene expression levels. The promoter region of the FOXA2 gene is completely unmethylated in bronchial cells irrespective of cell culture age and AEDL action. Changes in promoter methylation might be the cause of age- and peptide-induced variations in expression levels of the PDX1, PAX6, and NGN3 genes in pancreatic cells and NKX2-1 and SCGB1A1 genes in bronchial cells. Expression levels of the PAX4 and FOXA2 genes in pancreatic cells and FOXA1, FOXA2, SCGB3A2, and SFTPA1 genes in bronchial cells seem to be controlled by some other mechanisms.

  2. LncRNA SNHG6 is Associated with Poor Prognosis of Gastric Cancer and Promotes Cell Proliferation and EMT through Epigenetically Silencing p27 and Sponging miR-101-3p

    Directory of Open Access Journals (Sweden)

    Kai Yan

    2017-06-01

    SNHG6 acted as an oncogene in gastric cancer cells through regulating miR-101-3p/ZEB1 at a post-transcriptional level and silencing expression at a transcriptional level by recruiting enhancer of zeste homolog 2 (EZH2 to the promoter of p27. SNHG6 might serve as a candidate prognostic biomarker and a target for novel therapies of gastric cancer patients.

  3. Identification of a novel mutation in the paired domain of PAX3 in an Iranian family with waardenburg syndrome type I.

    Science.gov (United States)

    Sotirova, V N; Rezaie, T M; Khoshsorour, M M; Sarfarazi, M

    2000-03-01

    Waardenburg syndrome Type I (WS1) is an autosomal dominant disorder that has previously been associated with mutations in the PAX3 gene on the 2q35 region. In this study, we used an Iranian WS1 family with seven affected individuals in three generations. The phenotypic characteristics of the family include sensorineural deafness, dystopia canthorum, hypopigmented skin patches of the upper limbs, congenital white forelock, confluent white eyebrows, nonpigmented iris, poliosis, and hypopigmentation of the retina. Herein, we report a previously unidentified single-base substitution in exon II (C-->T at position 218) that results in a change of serine to leucine (S73L) in this family. This change was not observed in 100 chromosomes of healthy unrelated individuals. This mutation is within the PAX3 paired domain region, a structure that is highly conserved and implicated in DNA binding. This is the first identification of a PAX3 mutation for this phenotype in the Iranian population. This also provides additional confirmation for the involvement of this gene in the etiology of WS1.

  4. miR-30e-5p and miR-15a Synergistically Regulate Fatty Acid Metabolism in Goat Mammary Epithelial Cells via LRP6 and YAP1

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2016-11-01

    Full Text Available MicroRNA (miRNA regulates the expression of genes and influences a series of biological processes, including fatty acid metabolism. We screened the expression of miRNA in goat mammary glands during peak-lactation and non-lactating (“dry” periods, and performed an in vitro study with goat mammary epithelial cells (GMEC prior to sequencing analysis. Results illustrated that miR-30e-5p and miR-15a were highly expressed. Utilizing a luciferase reporter assay and Western blot, low-density lipoprotein receptor-related protein 6 (LRP6 and Yes associated protein 1 (YAP1 genes were demonstrated to be a target of miR-30e-5p and miR-15a in GMEC. Moreover, we demonstrated that the overexpression of miR-30e-5p and miR-15a in GMEC promoted fat metabolism while their knockdown impaired fat metabolism. These findings extend the discovery of a key role of miR-30e-5p and miR-15a in mediating adipocyte differentiation by suggesting a role in promoting milk fat synthesis. In conclusion, our findings indicate that miR-30e-5p, together with miR-15a, represses expression of LRP6 and promotes fat metabolism in GMEC. The data expanded our knowledge on the function of miRNAs in milk fat metabolism and synthesis in ruminant mammary cells.

  5. Building executable biological pathway models automatically from BioPAX

    NARCIS (Netherlands)

    Willemsen, Timo; Feenstra, Anton; Groth, Paul

    2013-01-01

    The amount of biological data exposed in semantic formats is steadily increasing. In particular, pathway information (a model of how molecules interact within a cell) from databases such as KEGG and WikiPathways are available in a standard RDF-based format BioPAX. However, these models are

  6. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway.

    Science.gov (United States)

    Kim, Hyoin; Sonn, Jong Kyung

    2016-09-01

    The small GTPase protein Rac1 is involved in a wide range of biological processes including cell differentiation. Previously, Rac1 was shown to promote chondrogenesis in micromass cultures of limb mesenchyme. However, the pathways mediating Rac1's role in chondrogenesis are not fully understood. This study aimed to explore the molecular mechanisms by which Rac1 regulates chondrogenic differentiation. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased as chondrogenesis proceeded in micromass cultures of chick wing bud mesenchyme. Inhibition of Rac1 with NSC23766, janus kinase 2 (JAK2) with AG490, or STAT3 with stattic inhibited chondrogenesis and reduced phosphorylation of STAT3. Conversely, overexpression of constitutively active Rac1 (Rac L61) increased phosphorylation of STAT3. Rac L61 expression resulted in increased expression of interleukin 6 (IL-6), and treatment with IL-6 increased phosphorylation of STAT3. NSC23766, AG490, and stattic prohibited cell aggregation, whereas expression of Rac L61 increased cell aggregation, which was reduced by stattic treatment. Our studies indicate that Rac1 induces STAT3 activation through expression and action of IL-6. Overexpression of Rac L61 increased expression of bone morphogenic protein 4 (BMP4). BMP4 promoted chondrogenesis, which was inhibited by K02288, an activin receptor-like kinase-2 inhibitor, and increased phosphorylation of p38 MAP kinase. Overexpression of Rac L61 also increased phosphorylation of p38 MAPK, which was reduced by K02288. These results suggest that Rac1 activates STAT3 by expression of IL-6, which in turn increases expression and activity of BMP4, leading to the promotion of chondrogenesis. © 2016 International Federation for Cell Biology.

  7. An epistatic interaction between the PAX8 and STK17B genes in papillary thyroid cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Iñigo Landa

    Full Text Available Papillary Thyroid Cancer (PTC is a heterogeneous and complex disease; susceptibility to PTC is influenced by the joint effects of multiple common, low-penetrance genes, although relatively few have been identified to date. Here we applied a rigorous combined approach to assess both the individual and epistatic contributions of genetic factors to PTC susceptibility, based on one of the largest series of thyroid cancer cases described to date. In addition to identifying the involvement of TSHR variation in classic PTC, our pioneer study of epistasis revealed a significant interaction between variants in STK17B and PAX8. The interaction was detected by MD-MBR (p = 0.00010 and confirmed by other methods, and then replicated in a second independent series of patients (MD-MBR p = 0.017. Furthermore, we demonstrated an inverse correlation between expression of PAX8 and STK17B in a set of cell lines derived from human thyroid carcinomas. Overall, our work sheds additional light on the genetic basis of thyroid cancer susceptibility, and suggests a new direction for the exploration of the inherited genetic contribution to disease using association studies.

  8. HTLV-1 tax stabilizes MCL-1 via TRAF6-dependent K63-linked polyubiquitination to promote cell survival and transformation.

    Directory of Open Access Journals (Sweden)

    Young Bong Choi

    2014-10-01

    Full Text Available The human T-cell leukemia virus type 1 (HTLV-1 Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner. Tax was found to promote the nondegradative lysine 63 (K63-linked polyubiquitination of MCL-1 that was dependent on the E3 ubiquitin ligase TRAF6 and the IKK complex. Tax interacted with and activated TRAF6, and triggered its mitochondrial localization, where it conjugated four carboxyl-terminal lysine residues of MCL-1 with K63-linked polyubiquitin chains, which stabilized and protected MCL-1 from genotoxic stress-induced degradation. TRAF6 and MCL-1 played essential roles in the survival of HTLV-1 transformed cells and the immortalization of primary T cells by HTLV-1. Therefore, K63-linked polyubiquitination represents a novel regulatory mechanism controlling MCL-1 stability that has been usurped by a viral oncogene to precipitate cell survival and transformation.

  9. HTLV-1 Tax Stabilizes MCL-1 via TRAF6-Dependent K63-Linked Polyubiquitination to Promote Cell Survival and Transformation

    Science.gov (United States)

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs) and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner. Tax was found to promote the nondegradative lysine 63 (K63)-linked polyubiquitination of MCL-1 that was dependent on the E3 ubiquitin ligase TRAF6 and the IKK complex. Tax interacted with and activated TRAF6, and triggered its mitochondrial localization, where it conjugated four carboxyl-terminal lysine residues of MCL-1 with K63-linked polyubiquitin chains, which stabilized and protected MCL-1 from genotoxic stress-induced degradation. TRAF6 and MCL-1 played essential roles in the survival of HTLV-1 transformed cells and the immortalization of primary T cells by HTLV-1. Therefore, K63-linked polyubiquitination represents a novel regulatory mechanism controlling MCL-1 stability that has been usurped by a viral oncogene to precipitate cell survival and transformation. PMID:25340740

  10. MicroRNA-876-5p inhibits epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma by targeting BCL6 corepressor like 1.

    Science.gov (United States)

    Xu, Qiuran; Zhu, Qiaojuan; Zhou, Zhenyu; Wang, Yufeng; Liu, Xin; Yin, Guozhi; Tong, Xiangmin; Tu, Kangsheng

    2018-07-01

    Our previous study has reported that BCL6 corepressor like 1 (BCORL1) plays an oncogenic role in hepatocellular carcinoma (HCC) via promoting epithelial-mesenchymal transition (EMT) and tumor metastasis. However, the regulation of BCORL1 mediated by microRNAs (miRNAs) remains poorly known. The analysis of our clinical samples indicated that BCORL1 expression was markedly higher in HCC tissues than that in tumor-adjacent normal tissues. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets revealed that high BCORL1 expression associated with high tumor grade, advanced tumor stage and poor survival of HCC patients. miR-875-5p expression was down-regulated and negatively correlated with BCORL1 mRNA expression in HCC tissues. Furthermore, miR-876-5p inversely regulated BCORL1 abundance in HCC cells by directly targeting the 3'-untranslated region (3'-UTR) of BCORL1. Ectopic expression of miR-876-5p suppressed cell migration and invasion in both HCCLM3 and MHCC97H cells. In accordance, miR-876-5p knockdown promoted the metastatic behaviors of Hep3B cells. Mechanistically, miR-876-5p suppressed the EMT progression of HCC cells. HCC tissues with high miR-876-5p level showed a higher E-cadherin staining compared to cases with low miR-876-5p level. Moreover, the repression of cell metastasis mediated by miR-876-5p was rescued by BCORL1 restoration in HCCLM3 cells. Notably, low miR-876-5p expression associated with venous infiltration, high tumor grade and advanced tumor stage. HCC patients with low miR-876-5p expression had a significant poorer overall survival and disease-free survival. To conclude, miR-876-5p inhibits EMT progression, migration and invasion of HCC cells by targeting BCORL1. Therefore, miR-876-5p/BCORL1 axis may represent as a novel therapeutic target for HCC treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. [Comparison of paired box genes 8 and 2 expression in epithelium tissues and the related tumors].

    Science.gov (United States)

    Song, Y; Huang, X; Shen, G H; Liu, X Y; Zhang, X

    2017-06-23

    Objective: To explore the expressional differences between paired box genes 2(Pax2) and 8 (Pax8) protein in different kinds of epitheliums and tumors, and to investigate the clinicopathologic significance. Methods: Expression levels of Pax2 and Pax8 protein were detected in 75 cases of different human epithelium tissues and 255 cases of different tumors on tissue microarray by immunohistochemistry. Results: Pax2 and Pax8 selectively expressed in different tissues. The positive rates of Pax8 protein expressed in the normal epithelium of the thyroid, urinary system and female reproductive system were 100% (2/2), 60.0% (3/5) and 76.9% (10/13), respectively. The positive rates of Pax2 expressed in the epithelium tissues of urinary system and the female reproductive system were 40.0% (2/5) and 38.5% (5/13) respectively. However, the expression of Pax2 protein was not detected in the normal thyroid epithelium. The positive rate of Pax8 protein expressing in the epithelium of reproductive system was significantly higher than that of Pax2 protein ( P <0.05). The tumors derived from different tissues also expressed different levels of protein Pax2 and Pax8. The positive rates of Pax8 in renal cell carcinoma, thyroid carcinoma and endometrial adenocarcinoma were 65.2% (15/23), 66.7% (10/15) and 80.0% (4/5), respectively. The positive rates of Pax2 in renal cell carcinoma, thyroid carcinoma and endometrial adenocarcinoma were 34.8% (8/23), 13.3% (2/15) and 20.0% (1/5), respectively. The positive rates of Pax8 protein expressed in renal cell carcinoma, thyroid carcinoma and endometrial adenocarcinoma were significantly higher than those of Pax2 protein ( P <0.05). The positive rates of Pax8 in ovarian serous carcinoma, endometrial carcinoma and clear cell carcinoma were 92.9% (26/28), 81.8% (9/11) and 82.4% (14/17), respectively. The positive rates of Pax2 in ovarian serous carcinoma, endometrial carcinoma and clear cell carcinoma were 28.6% (8/28), 9.1% (1/11) and 17.6% (3

  12. P450 reductase and cytochrome b5 interactions with cytochrome P450: Effects on house fly CYP6A1 catalysis

    OpenAIRE

    Murataliev, Marat B.; Guzov, Victor M.; Walker, F. Ann; Feyereisen, René

    2008-01-01

    The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylatio...

  13. Dark matter analysis of XENON100 data and cut development utilizing the novel PAX raw data processor

    Energy Technology Data Exchange (ETDEWEB)

    Wittweg, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, Muenster (Germany)

    2016-07-01

    The XENON100 experiment located at LNGS is aimed at the direct detection of weakly interacting massive particles (WIMPs). It utilizes an ultra-low background dual-phase xenon TPC which yields two separate scintillation signals that facilitate background discrimination and event selection. Limits on various interaction types have been published by the collaboration (Science 349 (2015) 6250, 851-854). In the analysis dark matter candidate events have to pass cuts with respect to data quality, consistency and physical features of the interaction. The former ones are implemented with regard to the used data processor's capabilities for noise discrimination and peak-finding. The Processor for Analyzing Xenon (PAX), developed for the XENON1T experiment, enhances these capabilities compared to XENON100. A greater robustness against noise and an increased peak-identification efficiency open up new opportunities for physically motivated cuts while rendering old ones obsolete. The poster will focus on the implementation of new cuts into the analysis chain. Both PAX and the xenon analysis will be introduced. A planned full-scale dark matter analysis of PAX-processed XENON100 data will be outlined.

  14. Energy-Transfer Kinetics for Xe (6p[1/2]0) Atoms in Kr, Ar, Ne, and He.

    Science.gov (United States)

    He, Shan; Liu, Dong; Li, Xueyang; Chu, Junzhi; Guo, Jingwei; Liu, Jinbo; Hu, Shu; Sang, Fengting; Jin, Yuqi

    2018-06-11

    The kinetic processes for the Xe (6p[1/2] 0 ) atoms in Kr, Ar, Ne, and He buffer gases were studied. We found that Kr, Ar, and Ne atoms can be used to switch the amplified spontaneous emission (ASE) channel from 3408 nm (6p[1/2] 0 -6s'[1/2] 1 ) to 3680 nm (5d[1/2] 1 -6p[1/2] 1 ), while Xe and He atoms do not show such a phenomenon. This ASE channel switch is mainly ascribed to the fast transfer of 6p[1/2] 0 → 5d[1/2] 1 . On the basis of the rate equations for two-state coupling (energy-transfer processes between the two states are very rapid), the reason why the ASE channel switch effect normally coincides with a double exponential decay of the spontaneous emission at 828 nm (6p[1/2] 0 -6s[3/2] 1 ) is explained. The actual situations in Xe, Ar, Ne, and He follow this rule. However, the strictly single exponential decay of the spontaneous emission at 828 nm and strong ASE channel switch effect simultaneously emerge in Kr. This indicates that the transfer of 6p[1/2] 0 → 5d[1/2] 1 in Kr does not occur via two-state coupling, but via two steps of near-resonance collision through the 5s[3/2] 2 (Kr) state as the intermediate state (6p[1/2] 0 → 5s[3/2] 2 (Kr) → 5d[1/2] 1 ). In addition, we found Xe (6p[1/2] 0 ) atoms strongly tend to reach the 6p[3/2] 2 , 6p[3/2] 1 , and 6p[5/2] 2 states through the 5s[3/2] 2 (Kr) state as the intermediate state in Kr. The 5s[3/2] 2 (Kr) state plays a very important role in the energy-transfer kinetics for the Xe (6p[1/2] 0 ) atoms. Kr is probably an excellent buffer gas for laser systems based on Xe.

  15. Germinal mosaicism of PAX3 mutation caused Waardenburg syndrome type I.

    Science.gov (United States)

    Chen, Kaitian; Zhan, Yuan; Wu, Xuan; Zong, Ling; Jiang, Hongyan

    2018-01-01

    Waardenburg syndrome mutations are most often recurrent or de novo. The rate of familial recurrence is low and families with several affected children are extremely rare. In this study, we aimed to clarify the underlying hereditary cause of Waardenburg syndrome type I in two siblings in a Chinese family, with a mother affected by prelingual mild hearing loss and a father who was negative for clinical symptoms of Waardenburg syndrome and had a normal hearing threshold. Complete characteristic features of the family members were recorded and genetic sequencing and parent-child relationship analyses were performed. The two probands were found to share double mutations in the PAX3/GJB2 genes that caused concurrent hearing loss in Waardenburg syndrome type I. Their mother carried the GJB2 c.109G > A homozygous mutation; however, neither the novel PAX3 c.592delG mutation, nor the Waardenburg syndrome phenotype, was observed in either parent. These previously unreported digenic mutations in PAX3/GJB2 resulted in deafness associated with Waardenburg syndrome type I in this family. To our knowledge, this is the first report describing germinal mosaicism in Waardenburg syndrome. This concept is important because it complicates genetic counseling of this family regarding the risk of recurrence of the mutations in subsequent pregnancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.

    Science.gov (United States)

    Hinrichsen, Inga; Kemp, Matthias; Peveling-Oberhag, Jan; Passmann, Sandra; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-01

    Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

  17. Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.

    Directory of Open Access Journals (Sweden)

    Inga Hinrichsen

    Full Text Available Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV. However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16 in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

  18. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts

    International Nuclear Information System (INIS)

    Ohshimo, Shinichiro; Yokoyama, Akihito; Hattori, Noboru; Ishikawa, Nobuhisa; Hirasawa, Yutaka; Kohno, Nobuoki

    2005-01-01

    The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-β. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases

  19. Increased p50/p50 NF-κB Activation in Human Papillomavirus Type 6- or Type 11-Induced Laryngeal Papilloma Tissue

    Science.gov (United States)

    Vancurova, Ivana; Wu, Rong; Miskolci, Veronika; Sun, Shishinn

    2002-01-01

    We have observed elevated NF-κB DNA-binding activity in nuclear extracts from human papillomavirus type 6- and 11-infected laryngeal papilloma tissues. The predominant DNA-binding species is the p50/p50 homodimer. The elevated NF-κB activity could be correlated with a reduced level of cytoplasmic IκBβ and could be associated with the overexpression of p21CIP1/WAF1 in papilloma cells. Increased NF-κB activity and cytoplasmic accumulation of p21CIP1/WAF1 might counteract death-promoting effects elicited by overexpressed PTEN and reduced activation of Akt and STAT3 previously noted in these tissues. PMID:11773428

  20. Gas6 Promotes Inflammatory (CCR2hiCX3CR1lo) Monocyte Recruitment in Venous Thrombosis.

    Science.gov (United States)

    Laurance, Sandrine; Bertin, François-René; Ebrahimian, Talin; Kassim, Yusra; Rys, Ryan N; Lehoux, Stéphanie; Lemarié, Catherine A; Blostein, Mark D

    2017-07-01

    Coagulation and inflammation are inter-related. Gas6 (growth arrest-specific 6) promotes venous thrombosis and participates to inflammation through endothelial-innate immune cell interactions. Innate immune cells can provide the initiating stimulus for venous thrombus development. We hypothesize that Gas6 promotes monocyte recruitment during venous thrombosis. Deep venous thrombosis was induced in wild-type and Gas6-deficient (-/-) mice using 5% FeCl 3 and flow reduction in the inferior vena cava. Total monocyte depletion was achieved by injection of clodronate before deep venous thrombosis. Inflammatory monocytes were depleted using an anti-C-C chemokine receptor type 2 (CCR2) antibody. Similarly, injection of an anti-chemokine ligand 2 (CCL2) antibody induced CCL2 depletion. Flow cytometry and immunofluorescence were used to characterize the monocytes recruited to the thrombus. In vivo, absence of Gas6 was associated with a reduction of monocyte recruitment in both deep venous thrombosis models. Global monocyte depletion by clodronate leads to smaller thrombi in wild-type mice. Compared with wild type, the thrombi from Gas6 -/- mice contain less inflammatory (CCR2 hi CX 3 CR1 lo ) monocytes, consistent with a Gas6-dependent recruitment of this monocyte subset. Correspondingly, selective depletion of CCR2 hi CX 3 CR1 lo monocytes reduced the formation of venous thrombi in wild-type mice demonstrating a predominant role of the inflammatory monocytes in thrombosis. In vitro, the expression of both CCR2 and CCL2 were Gas6 dependent in monocytes and endothelial cells, respectively, impacting monocyte migration. Moreover, Gas6-dependent CCL2 expression and monocyte migration were mediated via JNK (c-Jun N-terminal kinase). This study demonstrates that Gas6 specifically promotes the recruitment of inflammatory CCR2 hi CX 3 CR1 lo monocytes through the regulation of both CCR2 and CCL2 during deep venous thrombosis. © 2017 American Heart Association, Inc.

  1. The Evaluation of IL6 and ESR1 Gene Polymorphisms in Primary Dysmenorrhea.

    Science.gov (United States)

    Ozsoy, Asker Zeki; Karakus, Nevin; Yigit, Serbulent; Cakmak, Bulent; Nacar, Mehmet Can; Yılmaz Dogru, Hatice

    2016-01-01

    Primary dysmenorrhea is the most common gynecological complaint with painful menstrual cramps in pelvis without any pathology. It affects about half of menstruating women, and it causes significant disruption in quality of life. We investigated the association between IL6 gene promoter and ESR1 gene XbaI and PvuII polymorphisms and primary dysmenorrhea. In this case-control study, 152 unrelated young women with primary dysmenorrhea and 150 unrelated healthy age-matched controls participated. Genomic DNA was isolated and IL6 and ESR1 gene polymorphisms were genotyped using PCR-based RFLP assay. The distribution of genotype and allele frequencies of IL6 gene promoter and ESR1 gene XbaI polymorphisms were not statistically different between patients and controls (p > 0.05). However, the genotype and allele frequencies of ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls (p = 0.009 and p = 0.021, respectively). Statistically significant associations were also observed between age and married status of primary dysmenorrhea patients and ESR1 gene PvuII polymorphism (p = 0.044 and p = 0.023, respectively). In combined genotype analyses, AG at ESR1 XbaI and TC at ESR1 PvuII loci encoded a p-value of 0.027. Thus, individuals who are heterozygote at both loci have a lower risk of developing primary dysmenorrhea. Our study suggests no strong association between IL6 gene promoter and ESR1 gene XbaI polymorphisms and primary dysmenorrhea in Turkish women. However, ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls. The potential association between ESR1 gene PvuII polymorphism and age and married status of dysmenorrhea patients deserves further consideration.

  2. Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation

    Directory of Open Access Journals (Sweden)

    Seaver Elaine C

    2012-04-01

    Full Text Available Abstract Background Annelids and arthropods each possess a segmented body. Whether this similarity represents an evolutionary convergence or inheritance from a common segmented ancestor is the subject of ongoing investigation. Methods To investigate whether annelids and arthropods share molecular components that control segmentation, we isolated orthologs of the Drosophila melanogaster pair-rule genes, runt, paired (Pax3/7 and eve, from the polychaete annelid Capitella teleta and used whole mount in situ hybridization to characterize their expression patterns. Results When segments first appear, expression of the single C. teleta runt ortholog is only detected in the brain. Later, Ct-runt is expressed in the ventral nerve cord, foregut and hindgut. Analysis of Pax genes in the C. teleta genome reveals the presence of a single Pax3/7 ortholog. Ct-Pax3/7 is initially detected in the mid-body prior to segmentation, but is restricted to two longitudinal bands in the ventral ectoderm. Each of the two C. teleta eve orthologs has a unique and complex expression pattern, although there is partial overlap in several tissues. Prior to and during segment formation, Ct-eve1 and Ct-eve2 are both expressed in the bilaterial pair of mesoteloblasts, while Ct-eve1 is expressed in the descendant mesodermal band cells. At later stages, Ct-eve2 is expressed in the central and peripheral nervous system, and in mesoderm along the dorsal midline. In late stage larvae and adults, Ct-eve1 and Ct-eve2 are expressed in the posterior growth zone. Conclusions C. teleta eve, Pax3/7 and runt homologs all have distinct expression patterns and share expression domains with homologs from other bilaterians. None of the pair-rule orthologs examined in C. teleta exhibit segmental or pair-rule stripes of expression in the ectoderm or mesoderm, consistent with an independent origin of segmentation between annelids and arthropods.

  3. Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo

    Czech Academy of Sciences Publication Activity Database

    Kozmik, Zbyněk; Holland, N. D.; Krešlová, Jana; Olivery, D.; Schubert, M.; Jonášová, Kristýna; Holland, L. Z.; Pestarino, M.; Benes, V.; Candiani, S.

    2007-01-01

    Roč. 306, č. 1 (2007), s. 143-159 ISSN 0012-1606 R&D Projects: GA AV ČR IAA500520604 Institutional research plan: CEZ:AV0Z50520514 Keywords : Pax * gene * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.714, year: 2007

  4. Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas.

    Science.gov (United States)

    La Perle, K M; Jhiang, S M; Capen, C C

    2000-08-01

    Papillary thyroid carcinomas in humans are associated with the ret/PTC oncogene and, following loss of p53 function, may progress to anaplastic carcinomas. Mice with thyroid-targeted expression of ret/PTC1 developed papillary thyroid carcinomas that were minimally invasive and did not metastasize. These mice were crossed with p53-/- mice to investigate whether loss of p53 would promote anaplasia and metastasis of ret/PTC1-induced thyroid tumors. The majority of p53-/- mice died or were euthanized by 17 weeks of age due to the development of thymic lymphomas, soft tissue sarcomas, and testicular teratomas. All ret/PTC1 mice developed thyroid carcinomas, but tumors in p53-/- mice were more anaplastic, larger in diameter, more invasive, and had a higher mitotic index than tumors in p53+/+ and p53+/- mice. Thyroid tumors did not metastasize in any of the experimental p53+/+ and p53+/- mice anaplasia and invasiveness of thyroid carcinomas.

  5. Association of PAX5 Expression with Clinical Outcome in Patients with TaT1 Transitional Cell Carcinoma of the Bladder

    Czech Academy of Sciences Publication Activity Database

    Babjuk, M.; Soukup, V.; Mareš, J.; Dušková, J.; Pecen, Ladislav; Pešl, M.; Pavlík, I.; Dvořáček, J.

    2006-01-01

    Roč. 67, č. 4 (2006), s. 756-761 ISSN 0090-4295 R&D Projects: GA MZd NR8095; GA MZd NR8934 Institutional research plan: CEZ:AV0Z10300504 Keywords : bladder carcinoma * PAX5 expression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.130, year: 2006

  6. Capparidaceae: Stuebelia Pax, sinónimo de Belencita Karsten

    Directory of Open Access Journals (Sweden)

    Dugand Armando

    1944-03-01

    Full Text Available El estudio de algunas Caparidáceas de Colombia me incito recientemente a examinar críticamente el género Relencita Karsten, descrito con una sola especie (B. Hagenii Karst. que crece en la costa del Mar Caribe, tanto en Venezuela como en Colombia. En la última recensión de las Caparidáceas, Pax y Hoffmann (en EngI. Pflanzenf. ed. 2, 17-b: 165 y 184. 1936 separan este género de Stuebelia Pax suponiendo que Stuebelia tiene ovario unilocular y Belencita bilocular.  Con todo, ladescripción original de Belencita Haqenii y del género Belencita así como la excelente ilustración que de esta planta ofrece Karsten, me han convencido de que se trata de la misma planta descrita en 1763 por Jacquin con el nombre Capparis nemorosa y que yo transferí en 1935 al género stuebelia. Por lo tanto se necesita hacer un cambio nomenclatural adscribiendo el epíteto nemorosa (1760-1763 al género Belencita (1857 descrito antes que Stuebelia (1887-1888.

  7. Investigation of PAX3/7-FKHR fusion genes and IGF2 gene expression in rhabdomyosarcoma tumors.

    Science.gov (United States)

    de Souza, Robson Ramos; Oliveira, Indhira Dias; Caran, Eliana Maria Monteiro; Alves, Maria Teresa de Seixas; Abib, Simone; Toledo, Silvia Regina Caminada

    2012-12-01

    The purpose of our study was to investigate the prevalence of the PAX3/7-FKHR fusion genes and quantify the IGF2 gene expression in rhabdomyosarcoma (RMS) samples. Soft tissue sarcomas account 5% of childhood cancers and 50% of them are RMS. Morphological evaluation of pediatric RMS has defined two histological subtypes, embryonal (ERMS) and alveolar (ARMS). Chromosomal analyses have demonstrated two translocations associated with ARMS, resulting in the PAX3/7-FKHR rearrangements. Reverse transcriptase-polymerase chain reaction (RT-PCR) is extremely useful in the diagnosis of ARMS positive for these rearrangements. Additionally, several studies have shown a significant involvement of IGF pathway in the pathogenesis of RMS. The presence of PAX3/7-FKHR gene fusions was studied in 25 RMS samples from patients attending the IOP-GRAACC/UNIFESP and three RMS cell lines by RT-PCR. IGF2 gene expression was quantified by qPCR and related with clinic pathological parameters. Of the 25 samples, nine (36%) were ARMS and 16 (64%) were ERMS. PAX3/7-FKHR gene fusions expression was detected in 56% of ARMS tumor samples. IGF2 overexpression was observed in 80% of samples and could indicate an important role of this pathway in RMS biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Genetic Variation among Major Human Geographic Groups Supports a Peculiar Evolutionary Trend in PAX9

    Science.gov (United States)

    Paixão-Côrtes, Vanessa R.; Meyer, Diogo; Pereira, Tiago V.; Mazières, Stéphane; Elion, Jacques; Krishnamoorthy, Rajagopal; Zago, Marco A.; Silva, Wilson A.; Salzano, Francisco M.; Bortolini, Maria Cátira

    2011-01-01

    A total of 172 persons from nine South Amerindian, three African and one Eskimo populations were studied in relation to the Paired box gene 9 (PAX9) exon 3 (138 base pairs) as well as its 5′and 3′flanking intronic segments (232 bp and 220 bp, respectively) and integrated with the information available for the same genetic region from individuals of different geographical origins. Nine mutations were scored in exon 3 and six in its flanking regions; four of them are new South American tribe-specific singletons. Exon3 nucleotide diversity is several orders of magnitude higher than its intronic regions. Additionally, a set of variants in the PAX9 and 101 other genes related with dentition can define at least some dental morphological differences between Sub-Saharan Africans and non-Africans, probably associated with adaptations after the modern human exodus from Africa. Exon 3 of PAX9 could be a good molecular example of how evolvability works. PMID:21298044

  9. Genetic variation among major human geographic groups supports a peculiar evolutionary trend in PAX9.

    Directory of Open Access Journals (Sweden)

    Vanessa R Paixão-Côrtes

    Full Text Available A total of 172 persons from nine South Amerindian, three African and one Eskimo populations were studied in relation to the Paired box gene 9 (PAX9 exon 3 (138 base pairs as well as its 5'and 3'flanking intronic segments (232 bp and 220 bp, respectively and integrated with the information available for the same genetic region from individuals of different geographical origins. Nine mutations were scored in exon 3 and six in its flanking regions; four of them are new South American tribe-specific singletons. Exon3 nucleotide diversity is several orders of magnitude higher than its intronic regions. Additionally, a set of variants in the PAX9 and 101 other genes related with dentition can define at least some dental morphological differences between Sub-Saharan Africans and non-Africans, probably associated with adaptations after the modern human exodus from Africa. Exon 3 of PAX9 could be a good molecular example of how evolvability works.

  10. Refined study of the interaction between HIV-1 p6 late domain and ALIX

    Directory of Open Access Journals (Sweden)

    Gerlier Denis

    2008-05-01

    Full Text Available Abstract The interaction between the HIV-1 p6 late budding domain and ALIX, a class E vacuolar protein sorting factor, was explored by using the yeast two-hybrid approach. We refined the ALIX binding site of p6 as being the leucine triplet repeat sequence (Lxx4 (LYPLTSLRSLFG. Intriguingly, the deletion of the C-terminal proline-rich region of ALIX prevented detectable binding to p6. In contrast, a four-amino acid deletion in the central hinge region of p6 increased its association with ALIX as shown by its ability to bind to ALIX lacking the proline rich domain. Finally, by using a random screening approach, the minimal ALIX391–510 fragment was found to specifically interact with this p6 deletion mutant. A parallel analysis of ALIX binding to the late domain p9 from EIAV revealed that p6 and p9, which exhibit distinct ALIX binding motives, likely bind differently to ALIX. Altogether, our data support a model where the C-terminal proline-rich domain of ALIX allows the access of its binding site to p6 by alleviating a conformational constraint resulting from the presence of the central p6 hinge.

  11. The 4p-5d, 6d and 4p-6s, 7s transitions of Mo IX

    International Nuclear Information System (INIS)

    Khatoon, S.; Chaghtai, M.S.Z.; Rahimullah, K.

    1979-01-01

    The transitions 4p-5d, 6d and 4p-6s, 7s have been studied for the first time in Mo IX. The authors have identified 42 4p-5d, 36 4p-6d, 22 4p-6s and 22 4p-7s transitions, establishing 16 4p 3 5d, 14 4p 3 6d and all the ten 4p 3 6s, 7s levels of the spectrum concerned. The ionization energy is estimated to be (1 323 700 +- 700)cm -1 or (164.11 +- 0.09)eV. The spectrum was recorded in sliding and open spark discharges with a 5 m grazing incidence spectrograph of Lund University (Sweden) from about 40 A to 440 A. (Auth.)

  12. APR-246/PRIMA-1Met Inhibits and Reverses Squamous Metaplasia in Human Conjunctival Epithelium.

    Science.gov (United States)

    Li, Jing; Li, Cheng; Wang, Guoliang; Liu, Zhen; Chen, Pei; Yang, Qichen; Dong, Nuo; Wu, Huping; Liu, Zuguo; Li, Wei

    2016-02-01

    Squamous metaplasia is a common pathologic condition in ocular surface diseases for which there is no therapeutic medication in clinic. In this study, we investigated the effect of a small molecule, APR-246/PRIMA-1(Met), on squamous metaplasia in human conjunctival epithelium. Human conjunctival explants were cultured for up to 12 days under airlifting conditions. Epithelial cell differentiation and proliferation were assessed by Cytokeratin 10 (K10), K14, K19, Pax6, MUC5AC, and p63 immunostaining patterns. β-catenin and TCF-4 immunofluorescent staining and real-time PCR characterized Wnt signaling pathway involvement. Pterygium clinical samples were cultured under airlifting conditions with or without APR-246 for 4 days. p63, K10, β-catenin, and TCF-4 expression in pterygial epithelium was determined by immunofluorescent staining and real-time PCR. Airlift conjunctival explants resulted in increased stratification and intrastromal epithelial invagination. Such pathology was accompanied by increases in K10, K14, and p63 expression, whereas K19 and Pax6 levels declined when compared to those in freshly isolated tissue. On the other hand, APR-246 reversed all of these declines in K10, K14, and p63 expression. Furthermore, K19 and Pax6 increased along with rises in goblet cell density. These effects of APR-246 were accompanied by near restoration of normal conjunctival epithelial histology. APR-246 also reversed squamous metaplasia in pterygial epithelium that had developed after 4 days in ex vivo culture. Reductions in squamous metaplasia induced by APR-246 suggest it may provide a novel therapeutic approach in different squamous metaplasia-associated ocular surface diseases.

  13. 11p Microdeletion including WT1 but not PAX6, presenting with cataract, mental retardation, genital abnormalities and seizures: a case report

    DEFF Research Database (Denmark)

    Almind, Gitte J; Brøndum-Nielsen, Karen; Bangsgaard, Regitze

    2009-01-01

    , bilateral ptosis, genital abnormalities, seizures and a dysmorphic face. Cytogenetic analysis showed a deletion on 11p that was further characterized using FISH and MLPA analyses. The deletion (11p13-p12) located in the area between the deletions associated with the WAGR and Potocki-Shaffer syndromes had...

  14. Ghrelin promotes human non-small cell lung cancer A549 cell proliferation through PI3K/Akt/mTOR/P70S6K and ERK signaling pathways.

    Science.gov (United States)

    Zhu, Jianhua; Yao, Jianfeng; Huang, Rongfu; Wang, Yueqin; Jia, Min; Huang, Yan

    2018-04-06

    Ghrelin is a gastric acyl-peptide that plays an important role in cell proliferation. In the present study, we explored the role of ghrelin in A549 cell proliferation and the possible molecular mechanisms. We found that ghrelin promotes A549 cell proliferation, knockdown of the growth hormone secretagogue receptor (GHSR) attenuated A549 cell proliferation caused by ghrelin. Ghrelin induced the rapid phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, ERK, mammalian target of rapamycin (mTOR) and P70S6K. PI3K inhibitor (LY 294002), ERK inhibitor (PD98059) and mTOR inhibitor (Rapamycin) inhibited ghrelin-induced A549 cell proliferation. Moreover, GHSR siRNA inhibited phosphorylation of PI3K, Akt, ERK, mTOR and P70S6K induced by ghrelin. Akt and mTOR/P70S6K phosphorylation was inhibited by LY 294002 but not by PD98059. These results indicate that ghrelin promotes A549 cell proliferation via GHSR-dependent PI3K/Akt/mTOR/P70S6K and ERK signaling pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Pregnane X receptor-dependent induction of the CYP3A4 gene by o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane.

    Science.gov (United States)

    Medina-Díaz, Irma M; Arteaga-Illán, Georgina; de León, Mario Bermudez; Cisneros, Bulmaro; Sierra-Santoyo, Adolfo; Vega, Libia; Gonzalez, Frank J; Elizondo, Guillermo

    2007-01-01

    CYP3A4, the predominant cytochrome P450 (P450) expressed in human liver and intestine, contributes to the metabolism of approximately half the drugs in clinical use today. CYP3A4 catalyzes the 6beta-hydroxylation of a number of steroid hormones and is involved in the bioactivation of environmental procarcinogens. The expression of CYP3A4 is affected by several stimuli, including environmental factors such as insecticides and pesticides. The o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) isomer of DDT comprises approximately 20% of technical grade DDT, which is an organochloride pesticide. We have recently shown that o,p'-DDT exposure increases CYP3A4 mRNA levels in HepG2 cells. To determine the mechanism by which o,p'-DDT induces CYP3A4 expression, transactivation and electrophoretic mobility shift assays were carried out, revealing that o,p'-DDT activates the CYP3A4 gene promoter through the pregnane X receptor (PXR). CYP3A4 gene promoter activation resulted in both an increase in CYP3A4 mRNA levels and an increase in the total CYP3A4 activity in HepG2 cells. We also observed induction of CYP3A4 and mouse Cyp3a11 mRNA in the intestine of CYP3A4-transgenic mice after exposure to 1 mg/kg o,p'-DDT. At higher doses, a decrease of CYP3A4 inducibility was observed together with an increase in levels of interleukin 6 mRNA, a proinflammatory cytokine that strongly represses CYP3A4 transcription. The present study indicates that regulation of other genes under PXR control may be altered by o,p'-DDT exposure.

  16. Molecular Characterization and Expression Analysis of S6K1 in Cashmere Goats (

    Directory of Open Access Journals (Sweden)

    Wu Manlin

    2013-08-01

    Full Text Available p70 ribosomal S6 kinase (p70S6K can integrate nutrient and growth factor signals to promote cell growth and survival. We report our molecular characterization of the complementary DNA (cDNA that encodes the goat p70S6K gene 40S ribosomal S6 kinase 1 (S6K1 (GenBank accession GU144017 and its 3′ noncoding sequence in Inner Mongolia Cashmere goats (Capra hircus. Goat S6K1 cDNA was 2,272 bp and include an open reading frame (ORF of 1,578 bp, corresponding to a polypeptide of 525 amino acids, and a 694-residue 3′ noncoding sequence with a polyadenylation signal at nucleotides 2,218 to 2,223. The relative abundance of S6K1 mRNA was measured by real-time PCR in 6 tissues, and p70S6K expression was examined by immunohistochemistry in heart and testis. The phosphorylation of p70S6K is regulated by mitogen-activated protein kinase (MAPK signaling in fetal fibroblasts.

  17. Controlled 1.1-1.6 μm luminescence in gold-free multi-stacked InAs/InP heterostructure nanowires.

    Science.gov (United States)

    Zhang, Guoqiang; Tateno, Kouta; Birowosuto, Muhammad Danang; Notomi, Masaya; Sogawa, Tetsuomi; Gotoh, Hideki

    2015-03-20

    We report controlled 1.1-1.6 μm luminescence in gold-free multi-stacked InAs/InP heterostructure nanowires (NWs). We realized the NWs by using an indium-particle-assisted vapor-liquid-solid synthesis approach. The growth temperature, as low as 320 °C, enables the formation of an atomically abrupt InP/InAs interface by supressing the diffusion and weakening the reservoir effect in the indium droplet. The low growth temperature also enables us to grow multi-stacked InAs/InP NWs in the axial direction without any growth on the NW side face. The high controllability of the growth technology ensures that the luminescence can be tailored by the thickness of InAs segment in InP NWs and cover the 1.3-1.5 μm telecommunication window range. By using the nanoscale-spatial-resolution technology combing cathodoluminescence with scanning electron microscopy, we directly correlated the site of different-thickness InAs segments with its luminescence property in a single NW and demonstrate the InAs-thickness-controlled energy of optical emission in 1.1-1.6 μm.

  18. Proconsuls and CINCs from the Roman Republic to the Republic of the United States of America: Lessons for the Pax Americana

    National Research Council Canada - National Science Library

    Bradford, Jeffrey

    2001-01-01

    Political and media pundits have labeled the current period of post Cold-War world order the Pax Americana, reminiscent of the Pax Romana that occurred from 27 to 180 AD, during the zenith of the Roman Empire...

  19. Analysis of polymorphisms in the promoter region and protein levels of interleukin-6 gene among gout patients.

    Science.gov (United States)

    Tsai, P-C; Chen, C-J; Lai, H-M; Chang, S-J

    2008-01-01

    To explore the associations between the polymorphisms and protein levels of interleukin-6 (IL-6) gene and gout disease. A total of 120 male gout patients and 184 healthy controls were enrolled. Each patient was matched with 1-2 gout-free controls by age within three years. Four polymorphisms in the promoter of IL-6 gene, including -597G/A, -572C/G, -373A(m)T(n), and -174G/C, and the IL-6 levels were analyzed. The clinical characteristics and biochemical markers in plasma were measured, including age of gout onset, duration of gout history, tophus number, gout attack frequency, uric acid, total cholesterol, triglycerides and creatinine. The mean IL-6 level for gout patients was 9.80 (+/-11.76 pg/ml) which showed no significant difference from the controls (7.06+/-7.58 pg/ml, p=0.230). When the IL-6 levels were dichotomized according to the median value (5 pg/ml), there were significantly higher proportions of the gout patients (59.66%) than controls (44%) with high IL-6 levels (OR=1.88, 95% CI=1.17-3.02, p=0.008). Unique genotype was found at polymorphisms -174G/C and -597G/A. Neither the polymorphisms -572C/G nor -373A(m)T(n) in the genotype or allele distributions showed a significant association related to clinical characteristics, biochemical markers, IL-6 levels or gout disease (all p>0.05). Those with gout disease have greater proportions of high IL-6 levels in plasma than controls, and there is no significant association between the four polymorphisms in the promoter region of IL-6 gene and gout disease.

  20. Functional characterization of Pol III U6 promoters for gene knockdown and knockout in Plutella xylostella.

    Science.gov (United States)

    Huang, Yuping; Wang, Yajun; Zeng, Baosheng; Liu, Zhaoxia; Xu, Xuejiao; Meng, Qian; Huang, Yongping; Yang, Guang; Vasseur, Liette; Gurr, Geoff M; You, Minsheng

    2017-10-01

    RNA polymerase type III (Pol-III) promoters such as U6 are commonly used to express small RNAs, including short hairpin RNAs (shRNAs) and single guide RNAs (sgRNAs). Functional U6 promoters are widely used in CRISPR systems, and their characterization can facilitate genome editing of non-model organisms. In the present study, six U6 small nuclear RNA (snRNA) promoters containing two conserved elements of a proximal sequence element (PSEA) and a TATA box, were identified and characterized in the diamondback moth (Plutella xylostella) genome. Relative efficiency of the U6 promoters to express shRNA induced EGFP knockdown was tested in a P. xylostella cell line, revealing that the PxU6:3 promoter had the strongest expression effect. Further work with the PxU6:3 promoter showed its efficacy in EGFP knockout using CRISPR/Cas9 system in the cells. The expression plasmids with versatile Pxabd-A gene specific sgRNA driven by the PxU6:3 promoter, combined with Cas9 mRNA, could induce mutagenesis at specific genomic loci in vivo. The phenotypes induced by sgRNA expression plasmids were similar to those done in vitro transcription sgRNAs. A plasmid with two tandem arranged PxU6:3:sgRNA expression cassettes targeting Pxabd-A loci was generated, which caused a 28,856 bp fragment deletion, suggesting that the multi-sgRNA expression plasmid can be used for multi-targeting. Our work indicates that U6 snRNA promoters can be used for functional studies of genes with the approach of reverse genetics in P. xylostella. These essential promoters also provide valuable potential for CRISPR-derived gene drive as a tactic for population control in this globally significant pest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. miR-148a-3p Mediates Notch Signaling to Promote the Differentiation and M1 Activation of Macrophages

    Directory of Open Access Journals (Sweden)

    Fei Huang

    2017-10-01

    Full Text Available The Notch pathway plays critical roles in the differentiation and polarized activation of macrophages; however, the downstream molecular mechanisms underlying Notch activity in macrophages remain elusive. Our previous study has identified a group of microRNAs that mediate Notch signaling to regulate macrophage activation and tumor-associated macrophages (TAMs. In this study, we demonstrated that miR-148a-3p functions as a novel downstream molecule of Notch signaling to promote the differentiation of monocytes into macrophages in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF. Meanwhile, miR-148a-3p promoted M1 and inhibited M2 polarization of macrophages upon Notch activation. Macrophages overexpressing miR-148a-3p exhibited enhanced ability to engulf and kill bacteria, which was mediated by excessive production of reactive oxygen species (ROS. Further studies using reporter assay and Western blotting identified Pten as a direct target gene of miR-148a-3p in macrophages. Macrophages overexpressing miR-148a-3p increased their ROS production through the PTEN/AKT pathway, likely to defend against bacterial invasion. Moreover, miR-148a-3p also enhanced M1 macrophage polarization and pro-inflammatory responses through PTEN/AKT-mediated upregulation of NF-κB signaling. In summary, our data establish a novel molecular mechanism by which Notch signaling promotes monocyte differentiation and M1 macrophage activation through miR-148a-3p, and suggest that miR-148a-3p-modified monocytes or macrophages are potential new tools for the treatment of inflammation-related diseases.

  2. Inactivation of p27kip1 Promoted Nonspecific Inflammation by Enhancing Macrophage Proliferation in Islet Transplantation.

    Science.gov (United States)

    Li, Yang; Ding, Xiaoming; Fan, Ping; Guo, Jian; Tian, Xiaohui; Feng, Xinshun; Zheng, Jin; Tian, Puxun; Ding, Chenguang; Xue, Wujun

    2016-11-01

    Islet transplantation suffers from low efficiency caused by nonspecific inflammation-induced graft loss after transplantation. This study reports increased islet loss and enhanced inflammatory response in p27-deficient mice (p27-/-) and proposes a possible mechanism. Compared with wild type, p27-/- mice showed more severe functional injury of islet, with increased serum levels of inflammatory cytokines IL-1 and TNF-α, inducing macrophage proliferation. Furthermore, the increased number, proapoptotic proteins, and nuclear factor-kappa b (NF-κB) phosphorylation status of the infiltrating macrophages were accompanied by increased TNF-α mRNA level of islet graft site in p27-/- mice. Moreover, in vitro, we found that macrophages were still activated and cocultured with islet and promoted islet loss even blocking the direct effect of TNF-α on islets. Malondialdehyde (MDA, an end product of lipid peroxidation) in islet and media were increased after cocultured with macrophages. p27 deficiency also increased macrophage proliferation and islet injury. Therefore, p27 inactivation promotes injury islet graft loss via the elevation of proliferation and inflammatory cytokines secretion in infiltrating macrophages which induced nonspecific inflammation independent of TNF-α/nuclear factor-kappa b pathway. This potentially represents a promising therapeutic target in improving islet graft survival.

  3. Growth-promoting effects of a seaweed concentrate at various pH and water hardness conditions

    Directory of Open Access Journals (Sweden)

    Georgina D. Arthur

    2013-11-01

    Full Text Available Kelpak® – a liquid seaweed concentrate made from the kelp Ecklonia maxima (Osbeck Papenfuss – is used as a natural biostimulant to promote rooting and improve yield in crops. Plant–soil environmental conditions and the chemistry of water used for irrigation may affect the efficiency of Kelpak. The effect of pH (pH 4.5, 6.5 and 8.5 and water hardness (200 mg/L and 400 mg/L Ca2+ on the growth-promoting ability of Kelpak was assessed using the mungbean rooting bioassay and in a pot trial with Swiss chard. Kelpak promoted rooting in all the treatments in the mungbean bioassay with maximum rooting generally achieved with 20% Kelpak. With 20% Kelpak, the addition of 200 mg/L and 400 mg/L Ca2+ decreased rooting at pH 4.5, increased rooting at pH 6.5 and did not affect rooting at pH 8.5. A similar trend was observed in the pot trial with Swiss chard: leaf and root (fresh weight and pigment content (chl a, chl b and carotenoids improved with the addition of 200 mg/L Ca2+ + 5% Kelpak at pH 6.5 or pH 8.5, while Kelpak was able to partially mask the negative effect of 200 mg/L Ca2+ at pH 4.5. These results suggest that while Kelpak is most effective in neutral pHs, it can be used to promote plant growth in a wide range of pH and water hardness conditions.

  4. Corrosion of carbon steel in the [P_1_4_6_6_6][Br] ionic liquid: The effects of γ-radiation and cover gas

    International Nuclear Information System (INIS)

    Morco, Ryan P.; Musa, Ahmed Y.; Momeni, Mojtaba; Wren, J.C.

    2016-01-01

    Highlights: • Carbon steel corrosion in non-aqueous ionic liquid ([P_1_4_6_6_6] [Br]) electrolyte. • Gamma-irradiation results to less corrosion, forming protective oxides. • Substantial corrosion is seen in the absence of gamma-radiation. • A corrosion mechanism is proposed for the observed results. - Abstract: The corrosion of carbon steel in the ionic liquid (IL) [P_1_4_6_6_6] [Br] was studied with the IL in contact with an inert (Ar) or oxidizing (air) cover gas in the presence and absence of γ-radiation. Significant corrosion was observed for the tests performed in the absence of γ-radiation while a protective oxide layer is formed in the presence of γ-radiation. The corrosion is attributed to the presence of impurity H_2O and O_2 dissolved in the IL, and a corrosion mechanism is proposed.

  5. A Clinical and Genetic Review of Aniridia

    Directory of Open Access Journals (Sweden)

    Reza Jafari

    2015-07-01

    Full Text Available Aniridia is a congenital pan-ocular, bilateral disorder. The term aniridia is a misleading misnomer, since at least a rudimentary iris is always present. Varied forms range from almost total absence to only mild hypoplasia of the iris. It is inherent in a number of syndromes, including Wilms tumor Aniridia-Genital anomalies-retardation (WAGR. Aniridia has been shown to be associated with mutations in the PAX6 gene, located on chromosome 11p13, telomeric to the Wilms’ tumor predisposition gene (WT1. The pair box gene 6 (PAX6 situated at 11p13 has been confirmed to be the leading gene associated with aniridia. The PAX6 mutation is present in individuals worldwide and has been studied in Indian, Malaysian, Chinese and Mexican families. Several categories of PAX6 mutations include: nonsense mutations, splicing mutations, frameshift mutations (deletion or insertion, in-frame insertion or deletion, missense mutations and run-on mutations. A novel de novo frameshift mutation in PAX6 most possibly occurred in the paternal gamete. Mutation in PAX6 brings about amino acid substitution for instance proline to glutamine. Deletion of 11p13 involves the PAX6 (aniridia locus and the adjacent WT1 (Wilms tumor locus. Haploinsufficiency at the PAX6 locus brings on aniridia, a pan-ocular eye condition characterized by iris hypoplasia and various other anterior and posterior eye defects, subtle hypogonadotropic hypogonadism and borderline Growth Hormone (GH deficiency. Aniridia may also be affiliated with retinal tears and detachments. Electroretinograms (ERGs done in aniridia illustrate definite retinal dysfunction. Other clinical aspects related to aniridia are ptosis with reduced levator function and anterior polar cataracts. The PAX6 gene mutation was also associated with early-onset diabetes mellitus and aniridia. Aniridia combined with zonular cataract and polydactyly was also described in a patient with Bardet-Biedl syndrome. Aniridia with sensorineural

  6. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    International Nuclear Information System (INIS)

    Liang Xin; Xu Ke; Xu Yufang; Liu Jianwen; Qian Xuhong

    2011-01-01

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report here that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P 2 promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research highlights: → B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. → B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. → B1 induced significant increase of p53 binding to Bcl-2 P 2 promoter TATA box.

  7. Intracellular pH and 42.00 C heat response of CHO cells cultured at pH 6.6

    International Nuclear Information System (INIS)

    Cook, J.A.; Fox, M.H.

    1987-01-01

    The authors previously reported that cells under chronic low pH (6.6) conditions have altered thermotolerance. They further characterized both the doubling time (t/sub d/) and the internal pH (pH/sub 1/) of CHO cells continuously cultured at pH 6.6 for times greater than one year. The following differences were noted: 1) A t/sub d/ of 16 hr compared to a t/sub d/ of 12 hr for cells at normal pH (7.3) and a t/sub d/ of 25 hr for the acute low pH cells (pH = 6.6; incubation time = 4 hr). 2) A pH/sub i/ 0.1-0.15 pH units > normal cells and 0.3 pH units > acute low pH cells. 3) Survival at 42.0 0 C which differed from both normal and acute low pH cells. The chronic culture was still quite sensitive to 42.0 0 C treatments during the first 5 hr, but developed tolerance at a higher level than cells under acute low pH conditions. The pH/sub i/ of the chronic culture responded to 42.0 0 C heating in a manner similar to that for acute low pH cells. Whether this culture represents a normal response to long term low pH exposure, or was the response of a mutant population is at the present unknown

  8. Psoriasis is not associated with IL-12p70/IL-12p40 production and IL12B promoter polymorphism

    DEFF Research Database (Denmark)

    Litjens, Nicolle H R; van der Plas, Mariena J A; Ravensbergen, Bep

    2004-01-01

    Psoriasis is a type-1 T cell-mediated, chronic inflammatory disease. Since interleukin (IL)-12p70 promotes the development of type-1 T cells, we investigated whether psoriasis is associated with an increased production of this cyctokine by blood cells. Results revealed that the production of IL-12p....... The frequencies of the various genotypes for the promoter region of the gene encoding IL-12p40 (IL12B) did not differ between psoriasis patients and controls. No association was observed between the various IL12B promoter genotypes and the LPS-stimulated production of IL-12p70 or IL-12p40 by blood cells. Together......, psoriasis is not associated with a promoter polymorphism in the IL12B gene nor with the production of IL-12p70 by LPS-stimulated blood cells....

  9. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p

    OpenAIRE

    Cao, Jiaqing; Han, Xinyou; Qi, Xin; Jin, Xiangyun; Li, Xiaolin

    2017-01-01

    lncRNA-TUG1 (Taurine upregulated 1) is up regulated and highly correlated with poor prognosis and disease status in osteosarcoma. TUG1 knockdown inhibits osteosarcoma cell proliferation, migration and invasion, and promotes apoptosis. However, its mechanism of action has not been well addressed. Growing evidence documented that lncRNA works as competing endogenous (ce)RNAs to modulate the expression and biological functions of miRNA. As a putative combining target of TUG1, miR-144-3p has been...

  10. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway.

    Science.gov (United States)

    Li, Wei-Hua; Qiu, Ying; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2015-01-01

    As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.

  11. Purine receptor P2Y_6 mediates cellular response to γ-ray-induced DNA damage

    International Nuclear Information System (INIS)

    Ide, Shunta; Nishimaki, Naoko; Tsukimoto, Mitsutoshi; Kojima, Shuji

    2014-01-01

    We previously showed that nucleotide P2 receptor agonists such as ATP and UTP amplify γ-ray-induced focus formation of phosphorylated histone H2A variant H2AX (γH2AX), which is considered to be an indicator of DNA damage so far, by activating purine P2Y_6 and P2Y_1_2 receptors. Therefore, we hypothesized that these P2 receptors play a role in inducing the repair response to γ-ray-induced DNA damage. In the present study, we tested this idea by using human lung cancer A549 cells. First, reverse-transcription polymerase chain reaction (RT-PCR) showed that P2Y_6 receptor is highly expressed in A549 cells, but P2Y_1_2 receptor is only weakly expressed. Next, colony formation assay revealed that P2Y_6 receptor antagonist MRS2578 markedly reduced the survival rate of γ-ray-exposed A549 cells. The survival rate was also significantly reduced in P2Y_6-knock-down cells, compared with scramble siRNA-transfected cells. Since it has reported that phosphorylation of ERK1/2 after activation of EGFR via P2Y_6 and P2Y_1_2 receptors is involved in the repair response to γ-ray-induced DNA damage, we next examined whether γ-ray-induced phosphorylation of ERK1/2 was also inhibited by MRS2578 in A549 cells. We found that it was. Taken together, these findings indicate that purinergic signaling through P2Y_6 receptor, followed by ERK1/2 activation, promotes the cellular repair response to γ-ray-induced DNA damage. (author)

  12. Binding of the cyclic AMP receptor protein of Escherichia coli and DNA bending at the P4 promoter of pBR322.

    Science.gov (United States)

    Brierley, I; Hoggett, J G

    1992-07-01

    The binding of the Escherichia coli cyclic AMP receptor protein (CRP) to its specific site on the P4 promoter of pBR322 has been studied by gel electrophoresis. Binding to the P4 site was about 40-50-fold weaker than to the principal CRP site on the lactose promoter at both low (0.01 M) and high (0.1 M) ionic strengths. CRP-induced bending at the P4 site was investigated from the mobilities of CRP bound to circularly permuted P4 fragments. The estimated bending angle, based on comparison with Zinkel & Crothers [(1990) Biopolymers 29, 29-38] A-tract bending standards, was found to be approximately 96 degrees, similar to that found for binding to the lac site. These observations suggest that there is not a simple relationship between strength of CRP binding and the extent of induced bending for different CRP sites. The apparent centre of bending in P4 is displaced about 6-8 bp away from the conserved TGTGA sequence and the P4 transcription start site.

  13. KDM6B Elicits Cell Apoptosis by Promoting Nuclear Translocation of FOXO1 in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jun Ma

    2015-08-01

    Full Text Available Background/Aims: Non-small cell lung carcinoma (NSCLC is the most common type of lung cancer and the cause of most cancer-related deaths. The molecular mechanisms that are involved in NSCLC development are currently not well understood. Accumulating evidence shows that histone demethylases play important roles in the regulation of pathological developmental processes in many diseases, including various types of cancers. Methods: Mitochondrial membrane potential assays, migration and invasion assays, caspase-3 and caspase-9 activity assays and western blot analysis were used in this research. Results: We found that overexpression of KDM6B, a demethylase that acts on histone H3 at lysine 27 (H3K27, inhibited cell growth by initiating mitochondria-dependent apoptosis and by attenuating the invasion-metastasis cascade in NSCLC cells. Moreover, our results showed that KDM6B directly interacted with FOXO1 and that overexpression of KDM6B promoted nuclear accumulation of FOXO1. The effects of KDM6B on cell apoptosis and metastasis were weakened by knockdown of FOXO1 expression. On the contrary, knocking down expression of KDM6B inhibited cell apoptosis and promoted cell growth by mitigating the nuclear translocation of FOXO1 in NSCLC cells. Conclusions: These findings suggest that KDM6B may act in a pro-apoptotic role in NSCLC by causing the nuclear translocation of FOXO1.

  14. Visualisation of BioPAX Networks using BioLayout Express3D [v1; ref status: indexed, http://f1000r.es/4j1

    Directory of Open Access Journals (Sweden)

    Derek W. Wright

    2014-10-01

    Full Text Available BioLayout Express3D is a network analysis tool designed for the visualisation and analysis of graphs derived from biological data. It has proved to be powerful in the analysis of gene expression data, biological pathways and in a range of other applications. In version 3.2 of the tool we have introduced the ability to import, merge and display pathways and protein interaction networks available in the BioPAX Level 3 standard exchange format. A graphical interface allows users to search for pathways or interaction data stored in the Pathway Commons database. Queries using either gene/protein or pathway names are made via the cPath2 client and users can also define the source and/or species of information that they wish to examine. Data matching a query are listed and individual records may be viewed in isolation or merged using an ‘Advanced’ query tab. A visualisation scheme has been defined by mapping BioPAX entity types to a range of glyphs. Graphs of these data can be viewed and explored within BioLayout as 2D or 3D graph layouts, where they can be edited and/or exported for visualisation and editing within other tools.

  15. Surgical wisdom and Genghis Khan's Pax Mongolica.

    Science.gov (United States)

    Köstenbauer, Jakob

    2017-03-01

    The unrivalled conquests of Genghis Khan (CE c.1162-1227) led to the establishment of the Greater Mongolian Empire. By 1279, the Mongol dynasty controlled a vast Empire which, for the first time in history, unified Europe and China via the famous Silk Road. The ensuing century of peace and stability is referred to by historians as the Pax Mongolica, which facilitated Europe's renaissance and remarkably contributed to the rise of modern medicine and surgery. Secondary sources from published literature, primary sources from manuscripts and illustrations courtesy of universities, museum libraries and archives. There is ample evidence detailing the Mongol Empire's power during the thirteenth century and the Silk Road's role as a vehicle of commercial, cultural and scientific exchange. Advances in medical knowledge and surgical skills were made in all parts of the Empire and exchanged from China to Constantinople and back. Prominent medical figures traversed these centres, and no doubt contributed to the spread of surgical science, including Rashid al-Din and Mansur Ibn Ilyas. Their works, it is argued, enriched the practice of surgery and may have indirectly ushered-in the rise of modern surgery in the early medical schools at Salerno, Bologna, Pavia, Oxford, Montpellier and Constantinople to name but a few. The blossoming and diversification of medical and surgical knowledge was an integral part of the great cultural exchange facilitated by the Pax Mongolica. This enhanced surgical practice in China, Persia and Arabia, while coinciding with the renaissance of surgical teaching in Europe. © 2017 Royal Australasian College of Surgeons.

  16. Rice black-streaked dwarf virus P6 self-interacts to form punctate, viroplasm-like structures in the cytoplasm and recruits viroplasm-associated protein P9-1

    Directory of Open Access Journals (Sweden)

    Yu Jialin

    2011-01-01

    Full Text Available Abstract Background Rice black-streaked dwarf virus (RBSDV, a member of the genus Fijivirus within the family Reoviridae, can infect several graminaceous plant species including rice, maize and wheat, and is transmitted by planthoppers. Although several RBSDV proteins have been studied in detail, functions of the nonstructural protein P6 are still largely unknown. Results In the current study, we employed yeast two-hybrid assays, bimolecular fluorescence complementation and subcellular localization experiments to show that P6 can self-interact to form punctate, cytoplasmic viroplasm-like structures (VLS when expressed alone in plant cells. The region from residues 395 to 659 is necessary for P6 self-interaction, whereas two polypeptides (residues 580-620 and 615-655 are involved in the subcellular localization of P6. Furthermore, P6 strongly interacts with the viroplasm-associated protein P9-1 and recruits P9-1 to localize in VLS. The P6 395-659 region is also important for the P6-P9-1 interaction, and deleting any region of P9-1 abolishes this heterologous interaction. Conclusions RBSDV P6 protein has an intrinsic ability to self-interact and forms VLS without other RBSDV proteins or RNAs. P6 recruits P9-1 to VLS by direct protein-protein interaction. This is the first report on the functionality of RBSDV P6 protein. P6 may be involved in the process of viroplasm nucleation and virus morphogenesis.

  17. Nucleus-associated phosphorylation of Ins(1,4,5)P3 to InsP6 in Dictyostelium

    NARCIS (Netherlands)

    Kaay, Jeroen van der; Wesseling, Jelle; Haastert, Peter J.M. van

    1995-01-01

    Although many cells contain large amounts of InsP(6), its metabolism and function is still largely unknown. In Dictyostelium lysates, the formation of InsP(6) by sequential phosphorylation of inositol via Ins(3,4,6)P-3 has been described [Stevens and Irvine (1990) Nature (London) 346, 580-583]; the

  18. Human Blood CD1c+ Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4+ T Cells.

    Science.gov (United States)

    Leal Rojas, Ingrid M; Mok, Wai-Hong; Pearson, Frances E; Minoda, Yoshihito; Kenna, Tony J; Barnard, Ross T; Radford, Kristen J

    2017-01-01

    Dendritic cells (DC) initiate the differentiation of CD4 + helper T cells into effector cells including Th1 and Th17 responses that play an important role in inflammation and autoimmune disease pathogenesis. In mice, Th1 and Th17 responses are regulated by different conventional (c) DC subsets, with cDC1 being the main producers of IL-12p70 and inducers of Th1 responses, while cDC2 produce IL-23 to promote Th17 responses. The role that human DC subsets play in memory CD4 + T cell activation is not known. This study investigated production of Th1 promoting cytokine IL-12p70, and Th17 promoting cytokines, IL-1β, IL-6, and IL-23, by human blood monocytes, CD1c + DC, CD141 + DC, and plasmacytoid DC and examined their ability to induce Th1 and Th17 responses in memory CD4 + T cells. Human CD1c + DC produced IL-12p70, IL-1β, IL-6, and IL-23 in response to R848 combined with LPS or poly I:C. CD141 + DC were also capable of producing IL-12p70 and IL-23 but were not as proficient as CD1c + DC. Activated CD1c + DC were endowed with the capacity to promote both Th1 and Th17 effector function in memory CD4 + T cells, characterized by high production of interferon-γ, IL-17A, IL-17F, IL-21, and IL-22. These findings support a role for CD1c + DC in autoimmune inflammation where Th1/Th17 responses play an important role in disease pathogenesis.

  19. SHP-1 is directly activated by the aryl hydrocarbon receptor and regulates BCL-6 in the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    Energy Technology Data Exchange (ETDEWEB)

    Phadnis-Moghe, Ashwini S.; Li, Jinpeng [Genetics Program, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Crawford, Robert B. [Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Kaminski, Norbert E., E-mail: kamins11@msu.edu [Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 (United States)

    2016-11-01

    The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a strong AHR agonist, causes significant suppression of human B cell activation and differentiation. The current studies describe the identification of Src homology phosphatase 1 (SHP-1) encoded by the gene PTPN6 as a putative regulator of TCDD-mediated suppression of B cell activation. Shp-1 was initially identified through a genome-wide analysis of AHR binding in mouse B cells in the presence of TCDD. The binding of AHR to the PTPN6 promoter was further confirmed using electrophoretic mobility shift assays in which, specific binding of AHR was detected at four putative DRE sites within PTPN6 promoter. Time-course measurements performed in human B cells highlighted a significant increase in SHP-1 mRNA and protein levels in the presence of TCDD. The changes in the protein levels of SHP-1 were also observed in a TCDD concentration-dependent manner. The increase in SHP-1 levels was also seen to occur due to a change in early signaling events in the presence of TCDD. We have shown that BCL-6 regulates B cell activation by repressing activation marker CD80 in the presence of TCDD. TCDD-treatment led to a significant increase in the double positive (SHP-1{sup hi} BCL-6{sup hi}) population. Interestingly, treatment of naïve human B cells with SHP-1 inhibitor decreased BCL-6 protein levels suggesting possible regulation of BCL-6 by SHP-1 for the first time. Collectively, these results suggest that SHP-1 is regulated by AHR in the presence of TCDD and may, in part through BCL-6, regulate TCDD-mediated suppression of human B cell activation. - Highlights: • SHP-1 encoded by the gene PTPN6 is directly activated by the AHR. • AHR binds to dioxin response elements within the SHP-1 promoter in a TCDD-inducible manner. • TCDD-mediated increase in SHP-1 levels is observed in primary human B cells. • Higher SHP-1 levels help in maintaining high BCL-6 levels in the presence of TCDD. • In

  20. Penta-acetyl geniposide-induced apoptosis involving transcription of NGF/p75 via MAPK-mediated AP-1 activation in C6 glioma cells

    International Nuclear Information System (INIS)

    Peng, C.-H.; Huang, C.-N.; Hsu, S.-P.; Wang, C.-J.

    2007-01-01

    We have demonstrated the herbal derivative penta-acetyl geniposide ((Ac) 5 GP) induces C6 glioma cell apoptosis through the critical sphingomyelinase (SMase)/nerve growth factor (NGF)/p75 and its downstream signals. It has been reported mitogen-activated protein kinase (MAPK) mediates NGF synthesis induced by SMase activation. In this study, ERK, p38 and JNK are shown to mediate (Ac) 5 GP-induced glioma cell apoptosis and elevation of NGF and p75. Treatment of PD98059 (ERK-specific inhibitor), SB203580 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) decreases the elevation of NGF and p75 mRNA induced by (Ac) 5 GP, indicating possible transcription regulation via MAPKs. The results of nuclear extract blotting and EMSA further confirm (Ac) 5 GP maximally increases AP-1 and NF-κB DNA binding at 6 h. Inhibition of ERK, p38 and JNK block the activation of AP-1 and NF-κB, suggesting these MAPKs are involved in (Ac) 5 GP-induced transcription regulation. We thereby used RT-PCR to analyze cells treated with (Ac) 5 GP, with or without AP-1 or NF-κB inhibitors. AP-1 inhibitor NDGA decreases NGF/p75 and expression of FasL and caspase 3 induced by (Ac) 5 GP, suggesting the importance of AP-1 in mediating NGF/p75 and their downstream apoptotic signals. However, FasL and caspase 3 do not change with the NF-κB inhibitor PDTC; NF-κB might be linked to other cellular events. Overall, we demonstrate that MAPK mediates (Ac) 5 GP-induced activation of AP-1, promoting the transcription of NGF/p75 and downstream apoptotic signals. These results further highlight the potential therapeutic effects of (Ac) 5 GP in chemoprevention or as an anti-tumor agent

  1. MDM2 SNP309 promoter polymorphism and p53 mutations in urinary bladder carcinoma stage T1

    Directory of Open Access Journals (Sweden)

    Olsson Hans

    2013-01-01

    Full Text Available Abstract Background Urinary bladder carcinoma stage T1 is an unpredictable disease that in some cases has a good prognosis with only local or no recurrence, but in others can appear as a more aggressive tumor with progression to more advanced stages. The aim here was to investigate stage T1 tumors regarding MDM2 promoter SNP309 polymorphism, mutations in the p53 gene, and expression of p53 and p16 measured by immunohistochemistry, and subsequently relate these changes to tumor recurrence and progression. We examined a cohort of patients with primary stage T1 urothelial carcinoma of the bladder and their tumors. Methods After re-evaluation of the original slides and exclusions, the study population comprised 141 patients, all with primary stage T1 urothelial carcinoma of the bladder. The hospital records were screened for clinical parameters and information concerning presence of histologically proven recurrence and progression. The paraffin-embedded tumor material was evaluated by immunohistochemistry. Any mutations found in the p53 gene were studied by single-strand conformation analysis and Sanger sequencing. The MDM2 SNP309 polymorphism was investigated by pyrosequencing. Multivariate analyses concerning association with prognosis were performed, and Kaplan-Meier analysis was conducted for a combination of changes and time to progression. Results Of the 141 patients, 82 had at least one MDM2 SNP309 G allele, and 53 had a mutation in the p53 gene, but neither of those anomalies was associated with a worse prognosis. A mutation in the p53 gene was associated with immunohistochemically visualized p53 protein expression at a cut-off value of 50%. In the group with p53 mutation Kaplan-Meier analysis showed higher rate of progression and shorter time to progression in patients with immunohistochemically abnormal p16 expression compared to them with normal p16 expression (p = 0.038. Conclusions MDM2 SNP309 promoter polymorphism and mutations in

  2. Transcriptional regulation of the p73 gene, a member of the p53 family, by early growth response-1 (Egr-1)

    International Nuclear Information System (INIS)

    Lee, Sang-Wang; Kim, Eun-Joo; Um, Soo-Jong

    2007-01-01

    To elucidate the regulatory mechanism of p73 gene expression, we analyzed the human p73 promoter and found three putative Egr-1-binding sites located upstream of exon 1 (-1728, -321, and -38). The Egr-1 responsiveness of these sites was analyzed by transient transfection assays using 5'- and 3'-serial truncations of the p73 promoter, subcloned in a CAT reporter vector. The functional significance of the region was further confirmed by an electrophoretic mobility shift assay using the Egr-1 protein synthesized in vitro and a [ 32 P]-labeled middle site sequence, followed by competition with unlabeled wild-type or mutant oligonucleotides and supershift assays using an anti-Egr-1 antibody. When induced by either the nitric oxide donor NOC-18 or the PPARγ agonist troglitazone, Egr-1 bound to the p73 promoter, as assessed by chromatin immunoprecipitation assays, accompanied by increased expression of p73. MTT assays revealed that cell growth was significantly inhibited on treating the cells with troglitazone. Overall, our results provide direct evidence that Egr-1 positively regulated p73 expression by binding to its promoter in vivo, consistent with Egr-1 and p73 being involved in p53-independent tumor suppression

  3. Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines

    International Nuclear Information System (INIS)

    Mameli, Giuseppe; Astone, Vito; Khalili, Kamel; Serra, Caterina; Sawaya, Bassel E.; Dolei, Antonina

    2007-01-01

    Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1 promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNFα, interferon-γ, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-β is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNFα had the ability to activate the ERVWE1 promoter through an NF-κB-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNFα enhances the binding of the p65 subunit of NF-κB, to its cognate site within the promoter. The effect of TNFα is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNFα-mediated induction of syncytin-1 in multiple sclerosis

  4. IL-6 modulates hepatocyte proliferation via induction of HGF/p21cip1: Regulation by SOCS3

    International Nuclear Information System (INIS)

    Sun Rui; Jaruga, Barbara; Kulkarni, Shailin; Sun Haoyu; Gao Bin

    2005-01-01

    The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21 cip1 protein expression in primary mouse hepatocytes. Disruption of the p21 cip1 gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21 cip1 protein expression and a slightly stronger inhibition of cell proliferation in SOCS3 +/- mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3 +/- mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21 cip1 -dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration

  5. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Tasneem; Opie, Lionel H. [Hatter Cardiovascular Research Institute, Faculty of Health Sciences, University of Cape Town, Observatory 7925 (South Africa); Essop, M. Faadiel, E-mail: mfessop@sun.ac.za [Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600 (South Africa)

    2010-07-30

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.

  6. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1.

    Directory of Open Access Journals (Sweden)

    Sung Ho Yun

    Full Text Available Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs. Genome sequence analysis revealed that the large plasmid pLA1 present in N. pentaromativorans US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of N. pentaromativorans US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, N. pentaromativorans US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that N. pentaromativorans US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in N. pentaromativorans US6-1.

  7. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma

    Directory of Open Access Journals (Sweden)

    Skiriute Daina

    2012-06-01

    Full Text Available Abstract Background Methylation of promoter region is the major mechanism affecting gene expression in tumors. Recent methylome studies of brain tumors revealed a list of new epigenetically modified genes. Our aim was to study promoter methylation of newly identified epigenetically silenced genes together with already known epigenetic markers and evaluate its separate and concomitant role in glioblastoma genesis and patient outcome. Methods The methylation status of MGMT, CD81, GATA6, DR4, and CASP8 in 76 patients with primary glioblastomas was investigated. Methylation-specific PCR reaction was performed using bisulfite treated DNA. Evaluating glioblastoma patient survival time after operation, patient data and gene methylation effect on survival was estimated using survival analysis. Results The overwhelming majority (97.3% of tumors were methylated in at least one of five genes tested. In glioblastoma specimens gene methylation was observed as follows: MGMT in 51.3%, GATA6 in 68.4%, CD81 in 46.1%, DR4 in 41.3% and CASP8 in 56.8% of tumors. Methylation of MGMT was associated with younger patient age (p CASP8 with older (p MGMT methylation was significantly more frequent event in patient group who survived longer than 36 months after operation (p CASP8 was more frequent in patients who survived shorter than 36 months (p MGMT, GATA6 and CASP8 as independent predictors for glioblastoma patient outcome (p MGMT and GATA6 were independent predictors for patient survival in younger patients’ group, while there were no significant associations observed in older patients’ group when adjusted for therapy. Conclusions High methylation frequency of tested genes shows heterogeneity of glioblastoma epigenome and the importance of MGMT, GATA6 and CASP8 genes methylation in glioblastoma patient outcome.

  8. Sensitized fluorescence in thallium induced in collisions with Hg(6/sup 3/P/sub 1/) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M K; Czajkowski, M; Krause, L [Windsor Univ., Ontario (Canada). Dept. of Physics

    1978-07-01

    The transfer of excitation from excited mercury atoms to ground-state thallium atoms was investigated using techniques of sensitized fluorescence. A Hg-Tl vapor mixture contained in a quartz cell was irradiated with Hg 2537 A resonance radiation which caused the mercury atoms to become excited to the 6/sup 3/P/sub 1/ state. Subsequent collisions between the Hg(6/sup 3/P/sub 1/) and Tl(6/sup 2/Psub(1/2)) atoms resulted in the population of the 8/sup 2/Ssub(1/2), 6/sup 2/D, and 7/sup 2/Ssub(1/2) thallium states, whose decay gave rise to sensitized fluorescence of wavelengths 3231, 3520, 3776, and 5352 A. Intensity measurements on the sensitized fluorescence and on the Hg 2537 A resonance fluorescence, observed at right angles to the direction of excitation, yielded cross sections of 3.0, 0.3, and 0.05 A/sup 2/ for collisional excitation transfer from Hg(6/sup 3/P/sub 1/) to the 8/sup 2/Ssub(1/2), 6/sup 2/D, and 7/sup 2/Ssub(1/2) states in thallium, respectively. The results are fully consistent with previously determined cross sections for excitation transfer in other binary metallic vapor systems.

  9. MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes.

    Science.gov (United States)

    Lagunas-Martínez, Alfredo; García-Villa, Enrique; Arellano-Gaytán, Magaly; Contreras-Ochoa, Carla O; Dimas-González, Jisela; López-Arellano, María E; Madrid-Marina, Vicente; Gariglio, Patricio

    2017-01-01

    The E6 oncoprotein can interfere with the ability of infected cells to undergo programmed cell death through the proteolytic degradation of proapoptotic proteins such as p53, employing the proteasome pathway. Therefore, inactivation of the proteasome through MG132 should restore the activity of several proapoptotic proteins. We investigated whether in HPV16 E6-expressing keratinocytes (KE6 cells), the restoration of p53 levels mediated by MG132 and/or activation of the CD95 pathway through apoptosis antigen-1 (APO-1) antibody are responsible for the induction of apoptosis. We found that KE6 cells underwent apoptosis mainly after incubation for 24 h with MG132 alone or APO-1 plus MG132. Both treatments activated the extrinsic and intrinsic apoptosis pathways. Autophagy was also activated, principally by APO-1 plus MG132. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in the elevation of p53 protein levels and its phosphorylation in Ser46 and Ser20; the p53 protein was localized mainly at nucleus after treatment with MG132 or APO-1 plus MG132. In addition, induction of its transcriptional target genes such as p21, Bax and TP53INP was observed 3 and 6 h after treatment. Also, LC3 mRNA was induced after 3 and 6 h, which correlates with lipidation of LC3B protein and induction of autophagy. Finally, using pifithrin alpha we observed a decrease in apoptosis induced by MG132, and by APO-1 plus MG132, suggesting that restoration of APO-1 sensitivity occurs in part through an increase in both the levels and the activity of p53. The use of small molecules to inhibit the proteasome pathway might permit the activation of cell death, providing new opportunities for CC treatment.

  10. Overexpression of Pax5 is not sufficient for neoplastic transformation of mouse neuroectoderm

    Czech Academy of Sciences Publication Activity Database

    Steinbach, P. J.; Kozmik, Zbyněk; Pfeffer, P.; Aguzzi, A.

    2001-01-01

    Roč. 93, č. 4 (2001), s. 459-467 ISSN 0020-7136 Institutional research plan: CEZ:AV0Z5052915 Keywords : Pax5 * retrovirus * transgenic mice Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.233, year: 2001

  11. Analysis of RTEL1 and PCDHGB6 promoter methylation in circulating-free DNA of lung cancer patients using liquid biopsy: A pilot study.

    Science.gov (United States)

    Powrózek, Tomasz; Krawczyk, Paweł; Kuźnar-Kamińska, Barbara; Batura-Gabryel, Halina; Milanowski, Janusz

    2016-08-01

    Analysis of epigenetic alterations such as methylation of circulating-free DNA (cf-DNA) expression significantly broadened perspectives of lung cancer (LC) screening. Moreover, methylation of tumor suppressor genes may be analyzed with non-invasive manner in patients' blood samples (liquid biopsy), what underline necessity of detailed investigation of tumor cf-DNA. The purpose of current study was to assess methylation of RTEL1 and PCDHGB6 promoter regions in cf-DNA of 70 LC patients and 80 healthy individuals using qMSP-PCR technique. Methylation status of both genes has not been investigated in cf-DNA of LC patients before. PCDHGB6 promoter methylation was found in 41.4% of LC patients and in 1.3% of healthy individuals, whereas promoter of RTEL1 was found methylated in 51.4% of LC patients and in 8.8% of healthy individuals. Combined analysis of two markers improved test sensitivity up to 62.9% and specificity up to 90% with area under the curve (AUC) in receiver operating curve (ROC) of 0.755. The evaluation of RTEL1 and PCDHGB6 promoter methylation may be an useful tool for non-invasive diagnosis of LC in liquid biopsy.

  12. FISH studies in a girl with sporadic aniridia and an apparently balanced de novo t(11;13)(p13;q33) translocation detect a microdeletion involving the WAGR region

    OpenAIRE

    J.C. Llerena Jr.; J.C. Cabral de Almeida; E. Bastos; J.A. Crolla

    2000-01-01

    Conventional cytogenetic studies on a female infant with sporadic aniridia revealed what appeared to be a balanced de novo t(11;13) (p13;q33) translocation. Fluorescence in situ hybridization (FISH) investigations, however, detected the presence of a cryptic 11p13p14 deletion which included the WAGR region and involved approximately 7.5 Mb of DNA, including the PAX6 and WT1 genes. These results account for the patient's aniridia, and place her at high risk for developing Wilms' tumour. The ab...

  13. "Avaliação do envolvimento dos genes PAX8 e rTSH no hipotireoidismo congênito em pacientes com disgenesia tireoidiana"

    OpenAIRE

    Denise Perone

    2005-01-01

    Estudamos 32 crianças com HC devido à agenesia ou ectopia tireoideana para mutações no PAX8 e 30 crianças com hipoplasia da tireóide para mutações no rTSH. Todos os exons de ambos os genes foram amplificados a partir do DNA genômico, seguido por seqüenciamento direto. Encontramos, em dois pacientes com ectopia, duas alterações no gene PAX8, uma no promotor, e outra no exon um. Os outros indivíduos estudados apresentaram as seqüências codificáveis dos genes PAX8 e rTSH normais. Em relação ao c...

  14. Regulation of the CD56 promoter and its association with proliferation, anti-apoptosis and clinical factors in multiple myeloma

    DEFF Research Database (Denmark)

    Damgaard, Tina; Knudsen, Lene M; Dahl, Inger Marie S

    2009-01-01

    the regulation of the CD56 promoter in relation to typical clinical factors. We used qPCR and FACS to measure the expression levels of CD56, and potential regulatory factors in patients with MM and related these with MM progression/prognosis. The transcription factors BTBD3, Pax5, RUNX1 and MMSET were positively...... associated with CD56 expression, as was CYCLIN D1, which is involved in disease progression, anti-apoptosis and proliferation. RUNX1 was negatively associated with the survival of stem-cell transplanted patients. Our findings propose four potential activators of the CD56 promoter and for CD56 to be involved...

  15. Datin, a yeast poly(dA:dT)-binding protein, behaves as an activator of the wild-type ILV1 promoter and interacts synergistically with Reb1p

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Remacle, J E; Kielland-Brandt, Morten

    1998-01-01

    A cis-acting element required for GCN4-independent basal-level transcription of ILV1 was previously identified in our laboratories as a binding site for the REB1 protein (Reb1p). Further deletion analysis of the ILV1 promoter region identified a second element also required for GCN4-independent...... basal-level ILV1 expression. This second element is an A.T-rich tract (26 As out of 32 nucleotides) situated 15 bp downstream of the Reb1p-binding site. Deletion of both the Reblp site and the poly(dA:dT) element totally eliminates basal activity of the ILV1 promoter. We show that the two elements act...... synergistically to control ILV1 expression and that the synergistic effect is distance dependent. We demonstrate that (i) datin (Dat1p), the only known poly (dA:dT)-binding protein in yeast, specifically binds to the ILV1 poly(dA:dT) element in vitro; (ii) Dat1p functions as a trans-activating factor in the ILV1...

  16. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag.

    Science.gov (United States)

    Friedrich, Melanie; Setz, Christian; Hahn, Friedrich; Matthaei, Alina; Fraedrich, Kirsten; Rauch, Pia; Henklein, Petra; Traxdorf, Maximilian; Fossen, Torgils; Schubert, Ulrich

    2016-04-25

    The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (L-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.

  17. IGFBP3 Promoter Methylation in Colorectal Cancer: Relationship with Microsatellite Instability, CpG Island Methylator Phenotype, p53

    Directory of Open Access Journals (Sweden)

    Takako Kawasaki

    2007-12-01

    Full Text Available Insulin-like growth factor binding protein 3 (IGFBP3, which is induced by wild-type p53, regulates IGF and interacts with the TGF-β pathway. IGFBP3 promoter methylation may occur in colorectal cancer with or without the CpG island methylator phenotype (CIMP, which is associated with microsatellite instability (MSI and TGFBR2 mutation. We examined the relationship between IGFBP3 methylation, p53 expression, CIMP and MSI in 902 population-based colorectal cancers. Utilizing real-time PCR (MethyLight, we quantified promoter methylation in IGFBP3 and eight other CIMP-high-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1. IGFBP3 methylation was far more frequent in non-MSI-high CIMP-high tumors (85% = 35/41 than in MSI-high CIMPhigh (49% = 44/90, P < .0001, MSI-high non-CIMP-high (17% = 6/36, P < .0001, non-MSI-high non-CIMP-high tumors (22% = 152/680, P < .0001. Among CIMPhigh tumors, the inverse relationship between MSI and IGFBP3 methylation persisted in p53-negative tumors (P < .0001, but not in p53-positive tumors. IGFBP3 methylation was associated inversely with TGFBR2 mutation in MSI-high non-CIMP-high tumors (P = .02. In conclusion, IGFBP3 methylation is inversely associated with MSI in CIMP-high colorectal cancers, this relationship is limited to p53-negative tumors. Our data suggest complex relationship between global genomic/epigenomic phenomena (such as MSI/ CIMP, single molecular events (e.g., IGFBP3 methylation, TP53 mutation, TGFBR2 mutation, the related pathways.

  18. The Putative PAX8/PPARγ Fusion Oncoprotein Exhibits Partial Tumor Suppressor Activity through Up-Regulation of Micro-RNA-122 and Dominant-Negative PPARγ Activity.

    Science.gov (United States)

    Reddi, Honey V; Madde, Pranathi; Milosevic, Dragana; Hackbarth, Jennifer S; Algeciras-Schimnich, Alicia; McIver, Bryan; Grebe, Stefan K G; Eberhardt, Norman L

    2011-01-01

    In vitro studies have demonstrated that the PAX8/PPARγ fusion protein (PPFP), which occurs frequently in follicular thyroid carcinomas (FTC), exhibits oncogenic activity. However, paradoxically, a meta-analysis of extant tumor outcome studies indicates that 68% of FTC-expressing PPFP are minimally invasive compared to only 32% of those lacking PPFP (χ(2) = 6.86, P = 0.008), suggesting that PPFP favorably impacts FTC outcomes. In studies designed to distinguish benign thyroid neoplasms from thyroid carcinomas, the previously identified tumor suppressor miR-122, a major liver micro-RNA (miR) that is decreased in hepatocellular carcinoma, was increased 8.9-fold (P negative PPARγ mutant in WRO cells was less effective than PPFP at inhibiting xenograft tumor progression (1.8-fold [P negative PPARγ activity. Up-regulation of miR-122 negatively regulates ADAM-17, a known downstream target, in thyroid cells, suggesting an antiangiogenic mechanism in thyroid carcinoma. This latter inference is directly supported by reduced CD-31 expression in WRO xenografts expressing PPFP, miR-122, and DN-PPARγ. We conclude that, in addition to its apparent oncogenic potential in vitro, PPFP exhibits paradoxical tumor suppressor activity in vivo, mediated by multiple mechanisms including up-regulation of miR-122 and dominant-negative inhibition of PPARγ activity.

  19. Observation of the strongest 5s2 5p6 5d-(5s2 5p5 5d6s+5s25p6 7p) transitions in Au XI to Bi XV ions

    International Nuclear Information System (INIS)

    Churilov, S.S.; Joshi, Y.N.

    2001-01-01

    The spectra of gold till bismuth were studied in the 90-135 A region. Nine most intense lines belonging to the 5s 2 5p 6 5d-5s 2 5p 5 5d6s array were identified in Au XI to Bi XV ions. The 5s 2 5p 6 7p 2 P 3/2,1/2 levels in Au XI and the 5s 2 5p 6 7p 2 P 3/2 level in Hg XII were also identified. The observed wavelengths and intensities agree quite well with the Hartree-Fock calculations. (orig.)

  20. Role of IL-1β, IL-6 and TNF-α cytokines and TNF-α promoter variability in Plasmodium vivax infection during pregnancy in endemic population of Jharkhand, India.

    Science.gov (United States)

    Singh, Krishn Pratap; Shakeel, Shayan; Naskar, Namrata; Bharti, Aakanksha; Kaul, Asha; Anwar, Shadab; Kumari, Shweta; Kumar, Amod; Singh, Jiv Kant; Kumari, Nutan; Gupta, Birendra Kumar; Manna, Purwa; Roy, Vishwaprakash; Lata, Sneh; Singh, Om P; Sinha, Manoranjan Prasad; Sharma, Ajay Kumar; Sohail, Mohammad

    2018-05-01

    The combinatorial effects of Plasmodium infection, perturbation of inflammatory responses and the dichotomic role of TNF promoter polymorphism has potential clinical and physiological relevance during pregnancy. This coordinated orchestration instigated us to investigate the circulating level of inflammatory cytokines (IL-1β, TNF-α and IL-6) employing ELISA in a stratified group of samples and the plausible genetic association of TNF-α -308 G/A using PCR-RFLP/sequencing during Plasmodium vivax infection in pregnancy. We observed significantly elevated concentrations of IL-1β were observed, followed by IL-6 and TNF-α in women with malaria (WWM) and in malaria in pregnancy (MIP). Further, elevated IL-1β, followed by TNF-α and IL-6 were detected in the non-infected pregnancy group. The differential dynamics of inflammatory cytokine concentration during each trimester of pregnancy with and without P. vivax infection were detected. For the first time, a high level of IL-6 was observed in the first trimester of MIP and high IL-1β in healthy pregnancies. In the second trimester, however, we observed a high level of IL-1β in the MIP group compared to a sustained high level of IL-1β in the healthy pregnancy group. In the third trimester, high IL-1β was sustained in the MIP group and healthy pregnancies acquired a high TNF-α level. The genotypic distribution for the TNF-α promoter -308 G/A position was observed to be nonsignificant and mildly associated during MIP (OR = 1.4) and in WWM (OR = 1.2). Moreover, based on genotypic distribution, we observed a well-correlated and significantly elevated TNF-α concentration in the mutant homozygote genotype (AA; p = 0.001) followed by heterozygotes (GA; p = 0.0001) and ancestral genotypes (GG; p = 0.0001) in both MIP and WWM subjects. The observation of elevated IL-1β and IL-6 in MIP and TNF-α in WWM may be regarded as a prognostic inflammatory marker of infection and pregnancy. Most particularly

  1. Determination of the effective radiative lifetimes of the 6 3P1 atomic mercury level in low-pressure mercury discharges

    International Nuclear Information System (INIS)

    van de Weijer, P.; Cremers, R.M.M.

    1984-01-01

    Experiments are described in which low-pressure mercury, mercury-argon and mercury-krypton discharges were irradiated with a dye laser pulse at 365.5 nm, thus exciting mercury atoms from the metastable 6 3 P 2 level to the 6 3 D 2 level. The 6 3 D 2 level decays radiatively to the 6 P levels. By recording the time dependence of the overpopulation in the 6 3 P 1 and the 6 1 P 1 level at the fluorescence signals at 254 nm and 185 nm, respectively, the effective radiative lifetime of these levels were determined. The effective radiative lifetime of the 6 3 P 1 level was measured in the k 0 R regime 0.1-500. The 6 1 P 1 lifetime was determined for the following discharge conditions: tube diameter 10-36 mm, mercury density 7.10 18 -2.10 21 m -3 , and noble gas pressure 0, 130, 400 Pa

  2. p53 mutations promote proteasomal activity.

    Science.gov (United States)

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  3. Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis

    Energy Technology Data Exchange (ETDEWEB)

    Koeberl, Martina; White, Richard A.; Erschen, Sabine; Spanberger, Nora; El-Arabi, Tarek F.; Jansson, Janet K.; Berg, Gabriele

    2015-08-13

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activities against plant pathogenic fungi, bacteria and nematodes, consists of a single 3.9 Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.

  4. Pax2-Islet1 Transgenic Mice Are Hyperactive and Have Altered Cerebellar Foliation

    Czech Academy of Sciences Publication Activity Database

    Bohuslavová, Romana; Dodd, Nicole; Mácová, Iva; Chumak, Tetyana; Horák, Martin; Syka, Josef; Fritzsch, B.; Pavlínková, Gabriela

    2017-01-01

    Roč. 54, č. 2 (2017), s. 1352-1368 ISSN 0893-7648 R&D Projects: GA ČR(CZ) GA13-07996S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0020 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:86652036 ; RVO:68378041 ; RVO:67985823 Keywords : Islet1 transcription factor * Cerebellum * Vestibular system Subject RIV: FH - Neurology; FH - Neurology (UEM-P); FH - Neurology (FGU-C) OBOR OECD: Neuroscience s (including psychophysiology; Neuroscience s (including psychophysiology (FGU-C); Developmental biology (UEM-P) Impact factor: 6.190, year: 2016

  5. Polymorphisms in promoter sequences of MDM2, p53, and p16INK4a genes in normal Japanese individuals

    Directory of Open Access Journals (Sweden)

    Yasuhito Ohsaka

    2010-01-01

    Full Text Available Research has been conducted to identify sequence polymorphisms of gene promoter regions in patients and control subjects, including normal individuals, and to determine the influence of these polymorphisms on transcriptional regulation in cells that express wild-type or mutant p53. In this study we isolated genomic DNA from whole blood of healthy Japanese individuals and sequenced the promoter regions of the MDM2, p53, and p16INK4a genes. We identified polymorphisms comprising 3 nucleotide substitutions at exon 1 and intron 1 regions of the MDM2 gene and 1 nucleotide insertion at a poly(C nucleotide position in the p53 gene. The Japanese individuals also exhibited p16INK4a polymorphisms at several positions, including position -191. Reporter gene analysis by using luciferase revealed that the polymorphisms of MDM2, p53, and p16INK4a differentially altered luciferase activities in several cell lines, including the Colo320DM, U251, and T98G cell lines expressing mutant p53. Our results indicate that the promoter sequences of these genes differ among normal Japanese individuals and that polymorphisms can alter gene transcription activity.

  6. TUG1 promotes osteosarcoma tumorigenesis by upregulating EZH2 expression via miR-144-3p.

    Science.gov (United States)

    Cao, Jiaqing; Han, Xinyou; Qi, Xin; Jin, Xiangyun; Li, Xiaolin

    2017-10-01

    lncRNA-TUG1 (Taurine upregulated 1) is up-regulated and highly correlated with poor prognosis and disease status in osteosarcoma. TUG1 knockdown inhibits osteosarcoma cell proliferation, migration and invasion, and promotes apoptosis. However, its mechanism of action has not been well addressed. Growing evidence documented that lncRNA works as competing endogenous (ce)RNAs to modulate the expression and biological functions of miRNA. As a putative combining target of TUG1, miR-144-3p has been associated with the progress of osteosarcoma. To verify whether TUG1 functions through regulating miR-144-3p, the expression levels of TUG1 and miR-144-3p in osteosarcoma tissues and cell lines were determined. TUG1 was upregulated in osteosarcoma tissues and cell lines, and negatively correlated with miR-144-3p. TUG1 knockdown induced miR-144-3p expression in MG63 and U2OS cell lines. Results from dual luciferase reporter assay, RNA-binding protein immuno-precipitation (RIP) and applied biotin-avidin pull-down system confirmed TUG1 regulated miR-144-3p expression through direct binding. EZH2, a verified target of miR-144-3p was upregulated in osteosarcoma tissues and negatively correlated with miR-144-3p. EZH2 was negatively regulated by miR-144-3p and positively regulated by TUG1. Gain-and loss-of-function experiments were performed to analyze the role of TUG1, miR-144-3p and EZH2 in the migration and EMT of osteosarcoma cells. EZH2 over-expression partly abolished TUG1 knockdown or miR-144-3p overexpression induced inhibition of migration and EMT in osteosarcoma cells. In addition, TUG1 knockdown represses the activation of Wnt/β-catenin pathway, which was reversed by EZH2 over-expression. The activator of Wnt/β-catenin pathway LiCl could partially block the TUG1-knockdown induced osteosarcoma cell migration and EMT inhibition. In conclusion, our results showed that TUG1 plays an important role in osteosarcoma development through miRNA-144-3p/EZH2/Wnt/β-catenin pathway.

  7. Sulforaphane inhibits CYP1A1 activity and promotes genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058 (China); Zhuang, Shulin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058 (China); Zhang, Chao; Dai, Heping [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 (China); Liu, Weiping, E-mail: wliu@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058 (China)

    2013-06-15

    Increasing environmental pollution by carcinogens such as some of persistent organic pollutants (POPs) has prompted growing interest in searching for chemopreventive compounds which are readily obtainable. Sulforaphane (SFN) is isolated from cruciferous vegetables and has the potentials to reduce carcinogenesis through various pathways. In this study, we studied the effects of SFN on CYP1A1 activity and genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that SFN inhibited TCDD-induced CYP1A1 activity in H4IIE cells by directly inhibiting CYP1A1 activity, probably through binding to aryl hydrocarbon receptor and/or CYP1A1 revealed by molecular docking. However, SFN promoted TCDD-induced DNA damage in yeast cells and reduced the viability of initiated yeast cells. Besides, it is surprising that SFN also failed to reduce genotoxicity induced by other genotoxic reagents which possess different mechanisms to lead to DNA damage. Currently, it is difficult to predict whether SFN has the potentials to reduce the risk of TCDD based on the conflicting observations in the study. Therefore, further studies should be urgent to reveal the function and mechanism of SFN in the stress of such POPs on human health. - Highlights: • Sulforaphane inhibited TCDD-induced CYP1A1 activity in H4IIE cells. • Sulforaphane may bind to aryl hydrocarbon receptor and/or CYP1A1. • Sulforaphane promoted TCDD-induced DNA damage in yeast cells. • Sulforaphane may promote DNA damage by DNA strand breaks or DNA alkylation.

  8. BnaA.bZIP1 Negatively Regulates a Novel Small Peptide Gene, BnaC.SP6, Involved in Pollen Activity

    Directory of Open Access Journals (Sweden)

    Xuanpeng Wang

    2017-12-01

    Full Text Available Small peptides secreted to the extracellular matrix control many aspects of the plant’s physiological activities which were identified in Arabidopsis thaliana, called ATSPs. Here, we isolated and characterized the small peptide gene Bna.SP6 from Brassica napus. The BnaC.SP6 promoter was cloned and identified. Promoter deletion analysis suggested that the -447 to -375 and -210 to -135 regions are crucial for the silique septum and pollen expression of BnaC.SP6, respectively. Furthermore, the minimal promoter region of p158 (-210 to -52 was sufficient for driving gene expression specifically in pollen and highly conserved in Brassica species. In addition, BnaA.bZIP1 was predominantly expressed in anthers where BnaC.SP6 was also expressed, and was localized to the nuclei. BnaA.bZIP1 possessed transcriptional activation activity in yeast and protoplast system. It could specifically bind to the C-box in p158 in vitro, and negatively regulate p158 activity in vivo. BnaA.bZIP1 functions as a transcriptional repressor of BnaC.SP6 in pollen activity. These results provide novel insight into the transcriptional regulation of BnaC.SP6 in pollen activity and the pollen/anther-specific promoter regions of BnaC.SP6 may have their potential agricultural application for new male sterility line generation.

  9. Promotion of hepatic preneoplastic lesions in male B6C3F1 mice by unleaded gasoline.

    Science.gov (United States)

    Standeven, A M; Wolf, D C; Goldsworthy, T L

    1995-01-01

    In previous studies, unleaded gasoline (UG) vapor was found to be a liver tumor promoter and hepatocarcinogen in female mice, but UG was not a hepatocarcinogen in male mice. However, UG vapor had similar transient mitogenic effects in nonlesioned liver of both male and female mice under the conditions of the cancer bioassay. We used an initiation-promotion protocol to determine whether UG vapor acts as a liver tumor promoter in male mice and to examine proliferative effects that may be critical to tumor development. Twelve-day-old male B6C3F1 mice were injected with N-nitrosodiethylamine (DEN; 5 mg/kg, intraperitoneally) or vehicle. Starting at 5-7 weeks of age, mice were exposed by inhalation 6 hr/day, 5 days/week for 16 weeks to 0 or 2046 ppm of PS-6 blend UG. UG treatment caused a significant 2.3-fold increase in the number of macroscopic hepatic masses in DEN-initiated mice, whereas no macroscopic masses were observed in non-initiated mice. Altered hepatic foci (AHF), which were predominantly basophilic in phenotype, were found almost exclusively in DEN-initiated mice. UG treatment significantly increased both the mean volume (threefold) and the volume fraction (twofold) of the AHF without increasing the number of AHF per unit area. UG also induced hepatic pentoxyresorufin-O-dealkylase (PROD) activity, a marker of CYP2B, by more than 12-fold over control with or without DEN cotreatment. To study hepatocyte proliferative effects of UG, we treated mice with 5-bromo-2'-deoxyuridine (BrdU) via osmotic pump for 3 days before necropsy and measured hepatocyte BrdU labeling index (LI) in AHF and nonlesioned liver.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:7588481

  10. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Jiang, Yue; Jing, Yi; He, Jun; Rojanasakul, Yon; Liu, Ling-Zhi; Jiang, Bing-Hua

    2011-01-01

    Highlights: ► Chronic exposure to arsenite induces cell proliferation and transformation. ► Arsenite-induced transformation increases ROS production and downstream signalings. ► Inhibition of ROS levels via catalase reduces arsenite-induced cell transformation. ► Interruption of AKT, ERK, or p70S6K1 inhibits arsenite-induced cell transformation. -- Abstract: Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.

  11. Expression of Bmi-1, P16, and CD44v6 in Uterine Cervical Carcinoma and Its Clinical Significance

    International Nuclear Information System (INIS)

    Weng, Mei-ying; Li, Lin; Feng, Shu-ying; Hong, Shun-jia

    2012-01-01

    Bmi-1, a putative proto-oncogene, is a core member of the polycomb gene family, which is expressed in many human tumors. The p16 protein negatively regulated cell proliferation, whereas CD44v6 is associated with proliferation as an important protein. Additionally, CD44v6 is an important nuclear antigen closely correlated to tumor metastasis. The present study aims to investigate the expression and significance of Bmi-1, p16, and CD44v6 in uterine cervical carcinoma (UCC). A total of 62 UCC, 30 cervical neoplasic, and 20 normal cervical mucosal tissues were used in the current study. The expression of Bmi-1, p16, and CD44v6 in these tissues was determined using immunohistochemical assay. The relationships among the expression of these indices, the clinicopathologic features of UCC, and the survival rate of UCC patients were also discussed. The correlation between Bmi-1 protein expression and p16 or CD44v6 protein in UCC was analyzed. The expression of Bmi-1, p16, and CD44v6 was significantly high in cervical carcinoma compared with that in the cervical neoplasia and normal colorectal mucosa (P<0.05). The over-expression of Bmi-1 protein in UCC was apparently related to the distant metastasis (P<0.01) and the tumor, nodes and metastasis-classification, i.e. the TNM staging, World Health Organization (P<0.05). Nevertheless, the positive expression of p16 protein in UCC was not significantly associated with the clinicopathologic features (P>0.05). The Kaplan–Meier survival analysis showed that the over-expression of Bmi-1 significantly decreased the survival rate of UCC patients (P<0.05). A strong correlation indicated that there was statistical significance between the expression of Bmi-1 and CD44V6 proteins in UCC (r=0.419, P=0.001). The over-expression of Bmi-1 and CD44v6 protein closely correlate to the tumorigenesis, metastasis, and prognosis of UCC. Bmi-1 and CD44v6 may be used to predict the prognosis of cervical carcinoma. Bmi-1 may indirectly regulate the

  12. Haplotype defined by the MLH1-93G/A polymorphism is associated with MLH1 promoter hypermethylation in sporadic colorectal cancers.

    Science.gov (United States)

    Miyakura, Yasuyuki; Tahara, Makiko; Lefor, Alan T; Yasuda, Yoshikazu; Sugano, Kokichi

    2014-11-24

    Methylation of the MLH1 promoter region has been suggested to be a major mechanism of gene inactivation in sporadic microsatellite instability-positive (MSI-H) colorectal cancers (CRCs). Recently, single-nucleotide polymorphism (SNP) in the MLH1 promoter region (MLH1-93G/A; rs1800734) has been proposed to be associated with MLH1 promoter methylation, loss of MLH1 protein expression and MSI-H tumors. We examined the association of MLH1-93G/A and six other SNPs surrounding MLH1-93G/A with the methylation status in 210 consecutive sporadic CRCs in Japanese patients. Methylation of the MLH1 promoter region was evaluated by Na-bisulfite polymerase chain reaction (PCR)/single-strand conformation polymorphism (SSCP) analysis. The genotype frequencies of SNPs located in the 54-kb region surrounding the MLH1-93G/A SNP were examined by SSCP analysis. Methylation of the MLH1 promoter region was observed in 28.6% (60/210) of sporadic CRCs. The proportions of MLH1-93G/A genotypes A/A, A/G and G/G were 26% (n=54), 51% (n=108) and 23% (n=48), respectively, and they were significantly associated with the methylation status (p=0.01). There were no significant associations between genotype frequency of the six other SNPs and methylation status. The A-allele of MLH1-93G/A was more common in cases with methylation than the G-allele (p=0.0094), especially in females (p=0.0067). In logistic regression, the A/A genotype of the MLH1-93G/A SNP was shown to be the most significant risk factor for methylation of the MLH1 promoter region (odds ratio 2.82, p=0.003). Furthermore, a haplotype of the A-allele of rs2276807 located -47 kb upstream from the MLH1-93G/A SNP and the A-allele of MLH1-93G/A SNP was significantly associated with MLH1 promoter methylation. These results indicate that individuals, and particularly females, carrying the A-allele at the MLH1-93G/A SNP, especially in association with the A-allele of rs2276807, may harbor an increased risk of methylation of the MLH1 promoter

  13. Cytochrome P450-mediated metabolism of tumour promoters modifies the inhibition of intercellular communication: a modified assay for tumour promotion

    DEFF Research Database (Denmark)

    Vang, Ole; Wallin, H.; Doehmer, J.

    1993-01-01

    The role of metabolism of tumour promoters on the inhibition of intercellular communication was investigated in a modified V79 metabolic cooperation system. V79 cells, which stably express different rat cytochrome P450 enzymes (CYP1A1, CYP1A2 or CYP2B1), were used in the metabolic cooperation assay...... B1 and 4-nitrobiphenyl, did not inhibit metabolic cooperation in either V79 cells expressing or cells not expressing cytochrome P450. We conclude that cytochrome P450-associated metabolism plays an important role in the inhibition of gap junctional intercellular communication of some tumour...... promoters. The modified metabolic cooperation assay presented here is valuable for detecting some inhibitory chemicals which have been 'false negative' in previous assays for gap junctional intercellular communication. The assay also discloses that cytochrome P450 metabolism alters intercellular...

  14. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Science.gov (United States)

    Khan, Meraj A.; Philip, Lijy M.; Cheung, Guillaume; Vadakepeedika, Shawn; Grasemann, Hartmut; Sweezey, Neil; Palaniyar, Nades

    2018-01-01

    Neutrophils migrating from the blood (pH 7.35–7.45) into the surrounding tissues encounter changes in extracellular pH (pHe) conditions. Upon activation of NADPH oxidase 2 (Nox), neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi). Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET) formation (NETosis) is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS) and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units) increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements). Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging) during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs). In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots) and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative)-, and Staphylococcus aureus (Gram-positive)-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM) increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  15. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Directory of Open Access Journals (Sweden)

    Meraj A. Khan

    2018-02-01

    Full Text Available Neutrophils migrating from the blood (pH 7.35–7.45 into the surrounding tissues encounter changes in extracellular pH (pHe conditions. Upon activation of NADPH oxidase 2 (Nox, neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi. Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET formation (NETosis is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements. Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs. In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative-, and Staphylococcus aureus (Gram-positive-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  16. Can commercialization of NTFPs alleviate poverty? A case study of Ricinodendron heudelotii (Baill. Pierre ex Pax. kernel marketing in Cameroon

    Directory of Open Access Journals (Sweden)

    Patrick Van Damme

    2011-06-01

    Full Text Available Ricinodendron heudelotii (Baill. Pierre ex Pax. kernel (njansang commercialization has been promoted by the World Agroforestry Centre (ICRAF in project villages in Cameroon with the aim to alleviate poverty for small-scale farmers. We evaluated to what extent development interventions improved the financial situation of households by comparing project and control households. The financial importance of njansang to household livelihoods between 2005 and 2010 was investigated through semi-structured questionnaires with retrospective questions, focus group discussions, interviews and wealth-ranking exercises. The importance of njansang increased strongly in the entire study region and the increase was significantly larger in project households. Moreover, absolute numbers of income from njansang commercialization as well as relative importance of njansang in total cash income, increased significantly more in project households (p < 0.05. Although the lower wealth class households could increase their income through njansang trade, the upper wealth class households benefited more from the projects' interventions. Group sales as conducted in project villages did not lead to significantly higher prices and should be reconsidered. Hence, promotion of njansang had a positive effect on total cash income and can still be improved. The corporative actors for njansang commercialization are encouraged to adapt their strategies to ensure that also the lower wealth class households benefit from the conducted project interventions. In this respect, frequent project monitoring and impact analysis are important tools to accomplish this adaptation.

  17. Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes.

    Science.gov (United States)

    Yamamoto, A M; Mura, C; De Lemos-Chiarandini, C; Krishnamoorthy, R; Alvarez, F

    1993-06-01

    LKM1 autoantibody, directed against P450IID6, is accepted as a marker of a particular type of autoimmune hepatitis, but its role in the pathogenesis of the disease is controversial. Localization of P450IID6 on the cell surface of rat hepatocytes was previously reported, suggesting that membrane-bound P450IID6 could be the target of LKM1 antibodies, thus allowing immune lysis of hepatocytes. The objective of the present study was to determine, using various methods, the cell localization of P450IID6 in human and rat hepatocytes. Incubation of rat and human hepatocytes with LKM1-positive serum showed slight, if any, cell membrane staining using immunofluorescence, immunoperoxidase and immunoelectron microscopic studies. No staining of the plasma membrane of human hepatocytes was observed when incubations were carried out with immunoaffinity-purified antibody directed against peptide 254-271, the main epitope of P450IID6 recognized by all LKM1 sera tested. Chinese hamster ovary cells, transfected with the complete P450IID6 cDNA and incubated with the supernatant from a B cell lymphoblastoid cell line prepared with the lymphocytes of a LKM1-positive patient, did not show any staining of the cell surface by immunofluorescence. Incubation of rat microsomal fraction vesicles with LKM1-positive serum, followed by protein A-gold immunoelectron microscopy, displayed a staining of almost all vesicles, confirming that P450IID6 is present on the cytoplasmic side of the microsomal membrane, which makes it unable to be expressed on the cell surface even if it were transported from the endoplasmic reticulum (ER). Sulpho NHS Biotin labelling of rat hepatocyte cell membranes did not show the presence of a 50-kD molecule that could have reacted with LKM1 antibody. DNA sequencing of exon 1 of the CYP2D6 gene of a patient positive for LKM1 antibody did not show any difference from that of the normal published sequence of the gene. This does not favour an alteration of the NH2 terminal

  18. IL6 gene promoter polymorphisms and type 2 diabetes

    DEFF Research Database (Denmark)

    Huth, Cornelia; Heid, Iris M; Vollmert, Caren

    2006-01-01

    Several lines of evidence indicate a causal role of the cytokine interleukin (IL)-6 in the development of type 2 diabetes in humans. Two common polymorphisms in the promoter of the IL-6 encoding gene IL6, -174G>C (rs1800795) and -573G>C (rs1800796), have been investigated for association with type...... 2 diabetes in numerous studies but with results that have been largely equivocal. To clarify the relationship between the two IL6 variants and type 2 diabetes, we analyzed individual data on >20,000 participants from 21 published and unpublished studies. Collected data represent eight different...... countries, making this the largest association analysis for type 2 diabetes reported to date. The GC and CC genotypes of IL6 -174G>C were associated with a decreased risk of type 2 diabetes (odds ratio 0.91, P = 0.037), corresponding to a risk modification of nearly 9%. No evidence for association was found...

  19. Dynamic interaction of p220NPAT and CBP/p300 promotes S-phase entry

    International Nuclear Information System (INIS)

    Wang, Aiyan; Ikura, Tsuyoshi; Eto, Kazuhiro; Ota, Masato S.

    2004-01-01

    Cajal bodies contain cyclin E/cdk2 and the substrate p220 NPAT to regulate the transcription of histones, which is essential for cell proliferation, however, recent mouse knockout studies indicate that cyclin E and cdk2 are dispensable for these events. Because the CBP/p300 histone acetyltransferase are also known to be involved in cell proliferation, we examined the molecular and functional interactions of p220 NPAT with the CBP/p300 at the G1/S boundary as cell cycle regulators. The subnuclear localization of p220 NPAT and CBP/p300 proteins showed that their foci partially overlapped in a cell cycle dependent manner. Overexpression of p220 NPAT and CBP/p300 cooperatively enhanced G1/S transition and DNA synthesis even without cdk2 phosphorylation site. Finally, molecular alignment analysis indicated that p220 NPAT contains several potential substrate sites for CBP/p300. Overall, our findings demonstrate that p220 NPAT and CBP/p300 form a transient complex at the G1/S boundary to play cooperative roles to promote the S-phase entry

  20. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.

    Science.gov (United States)

    Saffert, Paul; Enenkel, Cordula; Wendler, Petra

    2017-01-01

    Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80-150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.

  1. Optical frequency measurements of 6s 2S1/2-6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb

    International Nuclear Information System (INIS)

    Gerginov, V.; Tanner, C.E.; Diddams, S.; Bartels, A.; Hollberg, L.

    2004-01-01

    Optical frequencies of the hyperfine components of the D 2 line in 133 Cs are determined using high-resolution spectroscopy and a femtosecond laser frequency comb. A narrow-linewidth probe laser excites the 6s 2 S 1/2 (F=3,4)→6p 2 P 3/2 (F=2,3,4,5) transition in a highly collimated atomic beam. Fluorescence spectra are taken by scanning the laser frequency over the excited-state hyperfine structure. The laser optical frequency is referenced to a Cs fountain clock via a reference laser and a femtosecond laser frequency comb. A retroreflected laser beam is used to estimate and minimize the Doppler shift due to misalignment between the probe laser and the atomic beam. We achieve an angular resolution on the order of 5x10 -6 rad. The final uncertainties (∼±5 kHz) in the frequencies of the optical transitions are a factor of 20 better than previous results [T. Udem et al., Phys. Rev. A 62, 031801 (2000).]. We find the centroid of the 6s 2 S 1/2 →6p 2 P 3/2 transition to be f D2 =351 725 718.4744(51) MHz

  2. Individual and School Organizational Factors that Influence Implementation of the PAX Good Behavior Game Intervention.

    Science.gov (United States)

    Domitrovich, Celene E; Pas, Elise T; Bradshaw, Catherine P; Becker, Kimberly D; Keperling, Jennifer P; Embry, Dennis D; Ialongo, Nicholas

    2015-11-01

    Evidence-based interventions are being disseminated broadly in schools across the USA, but the implementation levels achieved in community settings vary considerably. The current study examined the extent to which teacher and school factors were associated with implementation dosage and quality of the PAX Good Behavior Game (PAX GBG), a universal classroom-based preventive intervention designed to improve student social-emotional competence and behavior. Specifically, dosage (i.e., number of games and duration of games) across the school year and quality (i.e., how well the game is delivered) of PAX GBG implementation across four time points in a school year were examined. Hierarchical linear modeling was used to examine the association between teacher-level factors (e.g., demographics, self-reports of personal resources, attitudes toward the intervention, and workplace perceptions) and longitudinal implementation data. We also accounted for school-level factors, including demographic characteristics of the students and ratings of the schools' organizational health. Findings indicated that only a few teacher-level factors were significantly related to variation in implementation. Teacher perceptions (e.g., fit with teaching style, emotional exhaustion) were generally related to dosage, whereas demographic factors (e.g., teachers' age) were related to quality. These findings highlight the importance of school contextual and proximal teacher factors on the implementation of classroom-based programs.

  3. NGX6 gene mediated by promoter methylation as a potential molecular marker in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Shen Shourong

    2010-04-01

    Full Text Available Abstract Background Nasopharyngeal carcinoma associated gene 6 (NGX6 is down-regulated in most colon cancer cell lines and tumor tissues when compared with their normal tissue samples. As a novel suppress tumor gene, it could inhibit colon cancer cell growth and cell cycle progression. However, little is known about the transcriptional mechanisms controlling NGX6 gene expression. Recent findings suggest that epigenetic inactivation of multiple tumor suppressor genes plays an important role in the tumorigenesis of colorectal carcinoma (CRC. In this study, we explored the role of DNA methylation in regulation of NGX6 transcription. Methods In the present study, we cloned the NGX6 promoter with characteristics of a CpG island by luciferase reporter assay. Then, the CpG methylation status around the NGX6 promoter region in colon cancer cell lines and colorectal tumor tissues was examined by methylation-specific PCR and bisulfite DNA sequencing. Finally, 5-Aza-2'-deoxycytidine (5-Aza-dC treatment was used to confirm the correlation between NGX6 promoter methylation and its gene inactivation. Results The sequence spanning positions -157 to +276 was identified as the NGX6 promoter, in which no canonical TATA boxes were found, while two CAAT boxes and GC boxes were discovered. Methylation status was observed more frequently in 40 colorectal cancer samples than in 40 adjacent normal mucosa samples (18/40 versus 7/40; P Conclusions Down-regulation of NGX6 gene is related to the promoter methylation. DNA methylation of NGX6 promoter might be a potential molecular marker for diagnosis or prognosis, or serve as a therapeutic target.

  4. Association between PI3K/Akt/mTOR/p70S6K signaling pathway and hepatic fibrosis

    Directory of Open Access Journals (Sweden)

    WU Changhui

    2015-11-01

    Full Text Available Phosphoinositide 3-kinase (PI3K/protein kinase-B (AkT/mammalian target of rapamycin (mTOR/70-kDa ribosomal protein S6 kinase (p70S6K, PI3K/Akt/mTOR/p70S6K, is an important signaling pathway in the life activities of cells, and it plays an important role in promoting the growth, proliferation, invasion, and anti-apoptosis of cells and promoting angiogenesis. It was clarified that the PI3K/Akt/mTOR/p70S6K signaling pathway is involved in regulating the activities of hepatic stellate cell(HSC, thus influencing the development and progression of hepatic fibrosis. Analysis demonstrated that blocking any target of the PI3K/Akt/mTOR/p70S6K signaling pathway can inhibit the activation and proliferation of HSC, promote the apoptosis of HSC, inhibit the extracellular matrix secretion from HSC, and delay the progression of hepatic fibrosis. Blocking the pathway is expected to be a treatment strategy for hepatic fibrosis.

  5. Promoter methylation of RASSF1A and DAPK and mutations of K-ras, p53, and EGFR in lung tumors from smokers and never-smokers

    International Nuclear Information System (INIS)

    Liu, Yang; Gao, Weimin; Siegfried, Jill M; Weissfeld, Joel L; Luketich, James D; Keohavong, Phouthone

    2007-01-01

    Epidemiological studies indicate that some characteristics of lung cancer among never-smokers significantly differ from those of smokers. Aberrant promoter methylation and mutations in some oncogenes and tumor suppressor genes are frequent in lung tumors from smokers but rare in those from never-smokers. In this study, we analyzed promoter methylation in the ras-association domain isoform A (RASSF1A) and the death-associated protein kinase (DAPK) genes in lung tumors from patients with primarily non-small cell lung cancer (NSCLC) from the Western Pennsylvania region. We compare the results with the smoking status of the patients and the mutation status of the K-ras, p53, and EGFR genes determined previously on these same lung tumors. Promoter methylation of the RASSF1A and DAPK genes was analyzed by using a modified two-stage methylation-specific PCR. Data on mutations of K-ras, p53, and EGFR were obtained from our previous studies. The RASSF1A gene promoter methylation was found in tumors from 46.7% (57/122) of the patients and was not significantly different between smokers and never-smokers, but was associated significantly in multiple variable analysis with tumor histology (p = 0.031) and marginally with tumor stage (p = 0.063). The DAPK gene promoter methylation frequency in these tumors was 32.8% (40/122) and did not differ according to the patients' smoking status, tumor histology, or tumor stage. Multivariate analysis adjusted for age, gender, smoking status, tumor histology and stage showed that the frequency of promoter methylation of the RASSF1A or DAPK genes did not correlate with the frequency of mutations of the K-ras, p53, and EGFR gene. Our results showed that RASSF1A and DAPK genes' promoter methylation occurred frequently in lung tumors, although the prevalence of this alteration in these genes was not associated with the smoking status of the patients or the occurrence of mutations in the K-ras, p53 and EGFR genes, suggesting each of

  6. Transcription factor FOXO1 promotes cell migration toward exogenous ATP via controlling P2Y1 receptor expression in lymphatic endothelial cells.

    Science.gov (United States)

    Niimi, Kenta; Ueda, Mizuha; Fukumoto, Moe; Kohara, Misaki; Sawano, Toshinori; Tsuchihashi, Ryo; Shibata, Satoshi; Inagaki, Shinobu; Furuyama, Tatsuo

    2017-08-05

    Sprouting migration of lymphatic endothelial cell (LEC) is a pivotal step in lymphangiogenic process. However, its molecular mechanism remains unclear including effective migratory attractants. Meanwhile, forkhead transcription factor FOXO1 highly expresses in LEC nuclei, but its significance in LEC migratory activity has not been researched. In this study, we investigated function of FOXO1 transcription factor associated with LEC migration toward exogenous ATP which has recently gathered attentions as a cell migratory attractant. The transwell membrane assay indicated that LECs migrated toward exogenous ATP, which was impaired by FOXO1 knockdown. RT-PCR analysis showed that P2Y1, a purinergic receptor, expression was markedly reduced by FOXO1 knockdown in LECs. Moreover, P2Y1 blockage impaired LEC migration toward exogenous ATP. Western blot analysis revealed that Akt phosphorylation contributed to FOXO1-dependent LEC migration toward exogenous ATP and its blockage affected LEC migratory activity. Furthermore, luciferase reporter assay and ChIP assay suggested that FOXO1 directly bound to a conserved binding site in P2RY1 promoter and regulated its activity. These results indicated that FOXO1 serves a pivotal role in LEC migration toward exogenous ATP via direct transcriptional regulation of P2Y1 receptor. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Draft Genome Sequence of the Plant Growth–Promoting Pseudomonas punonensis Strain D1-6 Isolated from the Desert Plant Erodium hirtum in Jordan

    KAUST Repository

    Lafi, Feras Fawzi

    2017-01-13

    Pseudomonas punonensis strain D1-6 was isolated from roots of the desert plant Erodium hirtum, near the Dead Sea in Jordan. The genome of strain D1-6 reveals several key plant growth-promoting and herbicide-resistance genes, indicating a possible specialized role for this endophyte.

  8. Draft Genome Sequence of the Plant Growth–Promoting Pseudomonas punonensis Strain D1-6 Isolated from the Desert Plant Erodium hirtum in Jordan

    KAUST Repository

    Lafi, Feras Fawzi; AL Bladi, Maha Lafi Saleh; Salem, Nida M.; Al-Banna, Luma; Alam, Intikhab; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2017-01-01

    Pseudomonas punonensis strain D1-6 was isolated from roots of the desert plant Erodium hirtum, near the Dead Sea in Jordan. The genome of strain D1-6 reveals several key plant growth-promoting and herbicide-resistance genes, indicating a possible specialized role for this endophyte.

  9. Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep

    Science.gov (United States)

    Liu, Kai; Kim, Juhyun; Kim, Dong Won; Zhang, Yi Stephanie; Bao, Hechen; Denaxa, Myrto; Lim, Szu-Aun; Kim, Eileen; Liu, Chang; Wickersham, Ian R.; Pachnis, Vassilis; Hattar, Samer; Song, Juan; Brown, Solange P.; Blackshaw, Seth

    2017-01-01

    Multiple populations of wake-promoting neurons have been characterized in mammals, but few sleep-promoting neurons have been identified1. Wake-promoting cell types include hypocretin and GABA (γ-aminobutyric-acid)-releasing neurons of the lateral hypothalamus, which promote the transition to wakefulness from non-rapid eye movement (NREM) and rapid eye movement (REM) sleep2,3. Here we show that a subset of GABAergic neurons in the mouse ventral zona incerta, which express the LIM homeodomain factor Lhx6 and are activated by sleep pressure, both directly inhibit wake-active hypocretin and GABAergic cells in the lateral hypothalamus and receive inputs from multiple sleep–wake-regulating neurons. Conditional deletion of Lhx6 from the developing diencephalon leads to decreases in both NREM and REM sleep. Furthermore, selective activation and inhibition of Lhx6-positive neurons in the ventral zona incerta bidirectionally regulate sleep time in adult mice, in part through hypocretin-dependent mechanisms. These studies identify a GABAergic subpopulation of neurons in the ventral zona incerta that promote sleep. PMID:28847002

  10. Initiation of proteolysis of yeast fructose-1,6-bisphosphatase by pH-control of adenylate cyclase

    International Nuclear Information System (INIS)

    Holzer, H.; Purwin, C.; Pohlig, G.; Scheffers, W.A.; Nicolay, K.

    1986-01-01

    Addition of fermentable sugars or uncouplers such as CCCP to resting yeast cells grown on glucose initiates phosphorylation of fructose-1,6-bisphosphatase (FBPase). There is good evidence that phosphorylation marks FBPase for proteolytic degradation. 31 P-NMR measurements of the cytosolic pH of yeast cells demonstrated a decrease of the cytosolic pH from 7.0 to 6.5 after addition of glucose or CCCP to starved yeast. Activity of adenylate cyclase in permeabilized yeast cells increases 2-3-fold when the pH is lowered from 7.0 to 6.5. It is concluded that pH controlled activation of adenylate cyclase causes the previously described increase in cyclic AMP which leads to phosphorylation of FBPase and finally to proteolysis of FBPase

  11. Prognostic Significance of Promoter DNA Hypermethylation of cysteine dioxygenase 1 (CDO1 Gene in Primary Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Naoko Minatani

    Full Text Available Using pharmacological unmasking microarray, we identified promoter DNA methylation of cysteine dioxygenase 1 (CDO1 gene in human cancer. In this study, we assessed the clinicopathological significance of CDO1 methylation in primary breast cancer (BC with no prior chemotherapy. The CDO1 DNA methylation was quantified by TaqMan methylation specific PCR (Q-MSP in 7 BC cell lines and 172 primary BC patients with no prior chemotherapy. Promoter DNA of the CDO1 gene was hypermethylated in 6 BC cell lines except SK-BR3, and CDO1 gene expression was all silenced at mRNA level in the 7 BC cell lines. Quantification of CDO1 methylation was developed using Q-MSP, and assessed in primary BC. Among the clinicopathologic factors, CDO1 methylation level was not statistically significantly associated with any prognostic factors. The log-rank plot analysis elucidated that the higher methylation the tumors harbored, the poorer prognosis the patients exhibited. Using the median value of 58.0 as a cut-off one, disease specific survival in BC patients with CDO1 hypermethylation showed significantly poorer prognosis than those with hypomethylation (p = 0.004. Multivariate Cox proportional hazards model identified that CDO1 hypermethylation was prognostic factor as well as Ki-67 and hormone receptor status. The most intriguingly, CDO1 hypermethylation was of robust prognostic relevance in triple negative BC (p = 0.007. Promoter DNA methylation of CDO1 gene was robust prognostic indicator in primary BC patients with no prior chemotherapy. Prognostic relevance of the CDO1 promoter DNA methylation is worthy of being paid attention in triple negative BC cancer.

  12. Identification and characterization of an alternative promoter of the human PGC-1{alpha} gene

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Toyo; Inagaki, Kenjiro [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Noguchi, Tetsuya, E-mail: noguchi@med.kobe-u.ac.jp [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Sakai, Mashito; Ogawa, Wataru; Hosooka, Tetsuya [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Iguchi, Haruhisa; Watanabe, Eijiro; Matsuki, Yasushi; Hiramatsu, Ryuji [Genomic Science Laboratories, DainipponSumitomo Pharma Co. Ltd., 4-2-1 Takatsukasa, Takarazuka 665-8555 (Japan); Kasuga, Masato [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655 (Japan)

    2009-04-17

    The transcriptional regulator peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1{alpha} expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1{alpha} transcript (designated PGC-1{alpha}-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1{alpha}-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca{sup 2+}- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated protein kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1{alpha}-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1{alpha} expression in contracting muscle.

  13. Identification and characterization of an alternative promoter of the human PGC-1α gene

    International Nuclear Information System (INIS)

    Yoshioka, Toyo; Inagaki, Kenjiro; Noguchi, Tetsuya; Sakai, Mashito; Ogawa, Wataru; Hosooka, Tetsuya; Iguchi, Haruhisa; Watanabe, Eijiro; Matsuki, Yasushi; Hiramatsu, Ryuji; Kasuga, Masato

    2009-01-01

    The transcriptional regulator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1α expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1α transcript (designated PGC-1α-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1α-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca 2+ - and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated protein kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1α-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1α expression in contracting muscle.

  14. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Li, Q S; Meng, F Y; Zhao, Y H; Jin, C L; Tian, J; Yi, X J

    2017-08-01

    This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing. Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p. Plasma miR-214-5p was highly expressed in patients with bone fracture compared with HCs after fracture (p extracellular matrix (ECM) formation of osteoblastic MC3T3-E1 cells by targeting COL4A1. Cite this article: Q. S. Li, F. Y. Meng, Y. H. Zhao, C. L. Jin, J. Tian, X. J. Yi. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res 2017;6:464-471. DOI: 10.1302/2046-3758.68.BJR-2016-0208.R2. © 2017 Yi et al.

  15. Correlation between Waardenburg syndrome phenotype and genotype in a population of individuals with identified PAX3 mutations.

    Science.gov (United States)

    DeStefano, A L; Cupples, L A; Arnos, K S; Asher, J H; Baldwin, C T; Blanton, S; Carey, M L; da Silva, E O; Friedman, T B; Greenberg, J; Lalwani, A K; Milunsky, A; Nance, W E; Pandya, A; Ramesar, R S; Read, A P; Tassabejhi, M; Wilcox, E R; Farrer, L A

    1998-05-01

    Waardenburg syndrome (WS) type 1 is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmentary abnormalities of the eye, hair, and skin, and dystopia canthorum. The phenotype is variable and affected individuals may exhibit only one or a combination of several of the associated features. To assess the relationship between phenotype and gene defect, clinical and genotype data on 48 families (271 WS individuals) collected by members of the Waardenburg Consortium were pooled. Forty-two unique mutations in the PAX3 gene, previously identified in these families, were grouped in five mutation categories: amino acid (AA) substitution in the paired domain, AA substitution in the homeodomain, deletion of the Ser-Thr-Pro-rich region, deletion of the homeodomain and the Ser-Thr-Pro-rich region, and deletion of the entire gene. These mutation classes are based on the structure of the PAX3 gene and were chosen to group mutations predicted to have similar defects in the gene product. Association between mutation class and the presence of hearing loss, eye pigment abnormality, skin hypopigmentation, or white forelock was evaluated using generalized estimating equations, which allowed for incorporation of a correlation structure that accounts for potential similarity among members of the same family. Odds for the presence of eye pigment abnormality, white forelock, and skin hypopigmentation were 2, 8, and 5 times greater, respectively, for individuals with deletions of the homeodomain and the Pro-Ser-Thr-rich region compared to individuals with an AA substitution in the homeodomain. Odds ratios that differ significantly from 1.0 for these traits may indicate that the gene products resulting from different classes of mutations act differently in the expression of WS. Although a suggestive association was detected for hearing loss with an odds ratio of 2.6 for AA substitution in the paired domain compared with AA substitution in the homeodomain, this odds

  16. SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch

    Energy Technology Data Exchange (ETDEWEB)

    Genethliou, Nicholas; Panayiotou, Elena [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Panayi, Helen; Orford, Michael; Mean, Richard; Lapathitis, George; Gill, Herman; Raoof, Sahir [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Gasperi, Rita De; Elder, Gregory [James J. Peters VA Medical Center, Research and Development (3F22), 130 West Kingsbridge Road, Bronx, NY 10468 (United States); Kessaris, Nicoletta; Richardson, William D. [Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Malas, Stavros, E-mail: smalas@cing.ac.cy [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2009-12-25

    During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial ({Nu}/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss of Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.

  17. Heat shock protein 70 promotes coxsackievirus B3 translation initiation and elongation via Akt-mTORC1 pathway depending on activation of p70S6K and Cdc2.

    Science.gov (United States)

    Wang, Fengping; Qiu, Ye; Zhang, Huifang M; Hanson, Paul; Ye, Xin; Zhao, Guangze; Xie, Ronald; Tong, Lei; Yang, Decheng

    2017-07-01

    We previously demonstrated that coxsackievirus B3 (CVB3) infection upregulated heat shock protein 70 (Hsp70) and promoted CVB3 multiplication. Here, we report the underlying mechanism by which Hsp70 enhances viral RNA translation. By using an Hsp70-overexpressing cell line infected with CVB3, we found that Hsp70 enhanced CVB3 VP1 translation at two stages. First, Hsp70 induced upregulation of VP1 translation at the initiation stage via upregulation of internal ribosome entry site trans-acting factor lupus autoantigen protein and activation of eIF4E binding protein 1, a cap-dependent translation suppressor. Second, we found that Hsp70 increased CVB3 VP1 translation by enhancing translation elongation. This was mediated by the Akt-mammalian target of rapamycin complex 1 signal cascade, which led to the activation of eukaryotic elongation factor 2 via p70S6K- and cell division cycle protein 2 homolog (Cdc2)-mediated phosphorylation and inactivation of eukaryotic elongation factor 2 kinase. We also determined the position of Cdc2 in this signal pathway, indicating that Cdc2 is regulated by mammalian target of rapamycin complex 1. This signal transduction pathway was validated using a number of specific pharmacological inhibitors, short interfering RNAs (siRNAs) and a dominant negative Akt plasmid. Because Hsp70 is a central component of the cellular network of molecular chaperones enhancing viral replication, these data may provide new strategies to limit this viral infection. © 2017 John Wiley & Sons Ltd.

  18. Identification and characterization of the human SOX6 promoter

    International Nuclear Information System (INIS)

    Ikeda, Toshiyuki; Saito, Taku; Ushita, Masahiro; Yano, Fumiko; Kan, Akinori; Itaka, Keiji; Moro, Toru; Nakamura, Kozo; Kawaguchi, Hiroshi; Chung, Ung-il

    2007-01-01

    The present study attempted to identify and characterize the embryonic promoter of Sox6, a determinant regulator of chondrogenic differentiation. A common transcription start region for human and mouse Sox6 was initially identified, which contained a highly conserved sequence, A-box. Tandem repeats of A-box had a strong transcriptional activity both at the basal level and in response to Sox9. Cells carrying the 4xA-box-DsRed2 reporter fluoresced only upon chondrogenic differentiation. The 46-bp core enhancer region (CES6) was then identified in the 3' half of A-box, within which a C/EBP-binding motif was identified. Overexpressed C/EBPβ activated the Sox6 promoter, and mutant 4xCES6 constructs lacking the C/EBP motif lost their basal activity. CES6 and nuclear extracts formed a specific complex, which was supershifted by anti-C/EBPβ antibody, and in vitro translated C/EBPβ specifically bound to CES6. Thus, we successfully identified the Sox6 promoter and its core enhancer and characterized the interactions with regulatory transcription factors

  19. Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly

    Directory of Open Access Journals (Sweden)

    Solbak Sara MØ

    2011-02-01

    Full Text Available Abstract Background The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L- domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX, is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6. Results Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site. Conclusions Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively

  20. The antagonism between MCT-1 and p53 affects the tumorigenic outcomes

    Directory of Open Access Journals (Sweden)

    Lin Tai-Du

    2010-12-01

    Full Text Available Abstract Background MCT-1 oncoprotein accelerates p53 protein degradation via a proteosome pathway. Synergistic promotion of the xenograft tumorigenicity has been demonstrated in circumstance of p53 loss alongside MCT-1 overexpression. However, the molecular regulation between MCT-1 and p53 in tumor development remains ambiguous. We speculate that MCT-1 may counteract p53 through the diverse mechanisms that determine the tumorigenic outcomes. Results MCT-1 has now identified as a novel target gene of p53 transcriptional regulation. MCT-1 promoter region contains the response elements reactive with wild-type p53 but not mutant p53. Functional p53 suppresses MCT-1 promoter activity and MCT-1 mRNA stability. In a negative feedback regulation, constitutively expressed MCT-1 decreases p53 promoter function and p53 mRNA stability. The apoptotic events are also significantly prevented by oncogenic MCT-1 in a p53-dependent or a p53-independent fashion, according to the genotoxic mechanism. Moreover, oncogenic MCT-1 promotes the tumorigenicity in mice xenografts of p53-null and p53-positive lung cancer cells. In support of the tumor growth are irrepressible by p53 reactivation in vivo, the inhibitors of p53 (MDM2, Pirh2, and Cop1 are constantly stimulated by MCT-1 oncoprotein. Conclusions The oppositions between MCT-1 and p53 are firstly confirmed at multistage processes that include transcription control, mRNA metabolism, and protein expression. MCT-1 oncogenicity can overcome p53 function that persistently advances the tumor development.

  1. A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent

    Directory of Open Access Journals (Sweden)

    Stefanie eKnappe

    2015-08-01

    Full Text Available Muscle regeneration in vertebrates occurs by the activation of quiescent progenitor cells that express pax7 and replace and repair damaged fibers. We have developed a mechanical injury paradigm in zebrafish to determine whether developmental stage and injury size affect the regeneration dynamics of damaged muscle. We found that both small, focal injuries and large injuries affecting the entire myotome lead to the expression of myf5 and myogenin. Their expression was prolonged in older larvae, indicating a slower process of regeneration. We characterized the endogenous behavior of a population of muscle-resident Pax7-expressing cells using a pax7a:eGFP transgenic line and found that GFP+ cell migration in the myotome dramatically declined between 5 and 7 days post fertilization (dpf. Following a small injury, we observed that GFP+ cells responded by extending processes, before migrating to the injured fibers. Furthermore, these cells responded more rapidly to injury in 4dpf larvae compared to 7dpf. Interestingly, we did not see GFP+ fibers after repair of small injuries, indicating that pax7a-expressing cells did not contribute to fiber formation in this injury context. On the contrary, numerous GFP+ fibers could be observed after a large single myotome injury. Both injury models were accompanied by an increased number of proliferating GFP+ cells, which was more pronounced in larvae injured at 4dpf than 7dpf, This indicates intriguing developmental differences, even at these relatively early ages. Our data also suggests an interesting disparity in the role that pax7a-expressing muscle progenitor cells play during muscle regeneration, which may reflect the extent of muscle damage.

  2. Photoelectrochemical solar energy conversion based on blend of poly(3-hexylthiophene (P3HT and 1-(3-methoxycarbonyl propyl-1-phenyl [6,6]C61 (PCBM

    Directory of Open Access Journals (Sweden)

    Teketel Yohannes

    2012-08-01

    Full Text Available A solid-state photoelectrochemical solar energy conversion device based on blend of poly(3-hexylthiophene (P3HT and 1-(3-methoxycarbonylpropyl-1-phenyl[6,6]C61 (PCBM, and an amorphous poly(ethylene oxide complexed with I3-/I- redox couple has been constructed and characterized. The photoelectrochemical performance parameters of the device were compared with pure P3HT and P3HT:C60 blend solid-state photoelectrochemical cell. The current density-voltage characteristics in the dark and under white light illumination and photocurrent spectra for front and backside illuminations have been studied. An open-circuit voltage of 140 mV and a short-circuit current density of 28.4 μA/cm2 at light intensity of 100 mW/cm2; IPCE% of 1.52% for front side illumination (ITO|PEDOT and IPCE% of 0.17% for backside illumination (ITO|P3HT:PCBM at a wavelength of 510 nm were obtained. The dependence of the short-circuit current density and an open-circuit voltage on the light intensity and time have also been studied.DOI: http://dx.doi.org/10.4314/bcse.v26i2.12

  3. STICS, SCOUTs and p53 signatures; a new language for pelvic serous carcinogenesis.

    Science.gov (United States)

    Mehra, Karishma; Mehrad, Mitra; Ning, Geng; Drapkin, Ronny; McKeon, Frank D; Xian, Wa; Crum, Christopher P

    2011-01-01

    The events leading to the most common and most lethal ovarian carcinoma - high grade serous carcinoma - have been poorly understood. However, the detailed pathologic study of asymptomatic women with germ-line BRCA 1 or BRCA2 (BCRA+) mutations has unearthed an early malignancy, serous tubal intraepithelial carcinomas (STIC), which has linked many peritoneal and ovarian serous carcinomas to the fimbria. The distinction between high-grade serous and endometrioid carcinomas continues to narrow, with shared alterations in expression of pTEN, PAX2 and p53. Moreover, the discovery of clonal alterations in p53 in benign tubal epithelium, - p53 signatures - has established a foundation for a serous cancer precursor in the fimbria. We have expanded this concept to include a generic secretory cell outgrowth (SCOUT) in the fallopian tube that is associated with altered PAX2 expression. As the repertoire of gene alterations is expanded and its link to serous carcinogenesis clarified, a cogent pathway to high-grade Mullerian carcinomas will emerge. This will challenge conventional thinking about ovarian carcinogenesis but will provide a new template for studies of ovarian cancer prevention.

  4. Identification of the 15FRFG domain in HIV-1 Gag p6 essential for Vpr packaging into the virion

    Directory of Open Access Journals (Sweden)

    Zhu Henghu

    2004-09-01

    Full Text Available Abstract The auxiliary regulatory protein Vpr of HIV-1 is packaged in the virion through interaction with the Gag C-terminal p6 domain. Virion packaging of Vpr is critical for Vpr to exert functions in the HIV-1 life cycle. Previous studies suggest that Vpr interacts with a (Lxx4 domain in p6 for virion packaging. In the present study, mutational analysis of HIV-1 Gag p6 domain was performed in the context of the HIV-1 genome to examine the effect on virion packaging of Vpr. Surprisingly, Ala substitutions for Leu44 and Phe45 in the (Lxx4 domain or deletion of the whole (Lxx4 domain (amino acid #35–52 of the Gag p6 domain did not affect Vpr virion packaging. Vpr virion packaging was normal when amino acid #1–23 of the Gag p6 domain was preserved. Most importantly, Ala substitutions for Phe15, Arg16 and Phe17 in the context of amino acid #1–23 of the Gag p6 domain abolished Vpr virion packaging. Single Ala substitutions for Phe15 and Phe17 also abolished Vpr virion packaging, whereas Ala substitution for Arg16 had no effect. Our studies have revealed a novel signal sequence for Vpr packaging into the HIV-1 virion. The 15FRFG domain in p6 resembles the FxFG repeat sequences commonly found in proteins of the nuclear pore complex. These results have provided novel insights into the process of virion packaging of Vpr and suggest for the first time that Vpr may recognize the FxFG domain for both virion packaging and association with nuclear pores.

  5. Mechanisms of the p(He 6,He 5)d, p(He 6,α)t and p(He 6,t)α reactions

    International Nuclear Information System (INIS)

    Heiberg-Andersen, Henning

    2002-07-01

    This work was devoted to nucleon induced transfer reactions having the potential to probe the sub-cluster structures of the benchmark halo nucleus He 6, without the question marks the necessarily omitted exchange effects tend to put behind the CRC results when both collision partners are composite systems. Still, the exchange complications entered the analysis in an ironic way: The high Q-value of the p(He 6,α)t and p(He 6, t)α reactions caused sensitivity to the t - α optical potential at small radii, where the one-nucleon exchange effects are strongest. Since the attempt to throw them out of the extracted tau - α potential failed, it was necessary to extend the model space to avoid a too difficult modelling of the local equivalent t - α potential. By this step, all the complications originating from antisymmetrization within a larger model space entered the analysis. However, the persistent failures of the two-channel calculations of this and previous works can hardly be due to incorrect treatment of exchange effects only, so the loss of simplicity is probably illusory. Even at small angles, where the surface processes dominate, none of the two-channel calculations with various choices of t - α optical potentials managed to reproduce the p(He 6, α)t (p(He 6,t)α) data. This motivated inclusion of sequential transfers through the d + He 5 channel, where the sequential triton transfer process, included just for consistency in the coupling scheme of the four-channel calculation, turned out to be more influent than expected. The satisfactory reproduction of both the p(He 6, He 5)d and the p(He 6,α)t (p(He 6,t)α) data by the four-channel approach and the required re-normalization the real part of the p - He 6 optical potential are strong indications of substantial contributions from sequential transfer of the halo neutrons at this energy. The conclusions that can be drawn from this work are limited by the modest amount of available data. This limitation does

  6. Mechanisms of the p(He 6,He 5)d, p(He 6,{alpha})t and p(He 6,t){alpha} reactions

    Energy Technology Data Exchange (ETDEWEB)

    Heiberg-Andersen, Henning

    2002-07-01

    This work was devoted to nucleon induced transfer reactions having the potential to probe the sub-cluster structures of the benchmark halo nucleus He 6, without the question marks the necessarily omitted exchange effects tend to put behind the CRC results when both collision partners are composite systems. Still, the exchange complications entered the analysis in an ironic way: The high Q-value of the p(He 6,{alpha})t and p(He 6, t){alpha} reactions caused sensitivity to the t - {alpha} optical potential at small radii, where the one-nucleon exchange effects are strongest. Since the attempt to throw them out of the extracted tau - {alpha} potential failed, it was necessary to extend the model space to avoid a too difficult modelling of the local equivalent t - {alpha} potential. By this step, all the complications originating from antisymmetrization within a larger model space entered the analysis. However, the persistent failures of the two-channel calculations of this and previous works can hardly be due to incorrect treatment of exchange effects only, so the loss of simplicity is probably illusory. Even at small angles, where the surface processes dominate, none of the two-channel calculations with various choices of t - {alpha} optical potentials managed to reproduce the p(He 6, {alpha})t (p(He 6,t){alpha}) data. This motivated inclusion of sequential transfers through the d + He 5 channel, where the sequential triton transfer process, included just for consistency in the coupling scheme of the four-channel calculation, turned out to be more influent than expected. The satisfactory reproduction of both the p(He 6, He 5)d and the p(He 6,{alpha})t (p(He 6,t){alpha}) data by the four-channel approach and the required re-normalization the real part of the p - He 6 optical potential are strong indications of substantial contributions from sequential transfer of the halo neutrons at this energy. The conclusions that can be drawn from this work are limited by the

  7. In vitro differentiation of HT-29 M6 mucus-secreting colon cancer cells involves a trychostatin A and p27(KIP1)-inducible transcriptional program of gene expression.

    Science.gov (United States)

    Mayo, Clara; Lloreta, Josep; Real, Francisco X; Mayol, Xavier

    2007-07-01

    Tumor cell dedifferentiation-such as the loss of cell-to-cell adhesion in epithelial tumors-is associated with tumor progression. To better understand the mechanisms that maintain carcinoma cells in a differentiated state, we have dissected in vitro differentiation pathways in the mucus-secretor HT-29 M6 colon cancer cell line, which spontaneously differentiates in postconfluent cultures. By lowering the extracellular calcium concentration to levels that prevent intercellular adhesion and epithelial polarization, our results reveal that differentiation is calcium-dependent and involves: (i) a process of cell cycle exit to G(0) and (ii) the induction of a transcriptional program of differentiation gene expression (i.e., mucins MUC1 and MUC5AC, and the apical membrane peptidase DPPIV). In calcium-deprived, non-differentiated postconfluent cultures, differentiation gene promoters are repressed by a trichostatin A (TSA)-sensitive mechanism, indicating that loss of gene expression by dedifferentiation is driven by histone deacetylases (HDAC). Since TSA treatment or extracellular calcium restoration allow gene promoter activation to similar levels, we suggest that induction of differentiation is one mechanism of HDAC inhibitor antitumor action. Moreover, transcriptional de-repression can also be induced in non-differentiating culture conditions by overexpressing the cyclin-dependent kinase inhibitor p27(KIP1), which is normally induced during spontaneous differentiation. Since p27(KIP1) downregulation in colon cancer is associated with poor prognosis independently of tumor cell division rates, we propose that p27 (KIP1) may prevent tumor progression by, at least in part, enhancing the expression of some differentiation genes. Therefore, the HT-29 M6 model allows the identification of some basic mechanisms of cancer cell differentiation control, so far revealing HDAC and p27(KIP1) as key regulatory factors of differentiation gene expression.

  8. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea.

    Science.gov (United States)

    Fukushima, Takao; Katayama, Yoichi; Watanabe, Takao; Yoshino, Atsuo; Ogino, Akiyoshi; Ohta, Takashi; Komine, Chiaki

    2005-02-15

    In certain types of human cancers, transcriptional inactivation of hMLH1 by promoter hypermethylation plays a causal role in the loss of mismatch repair functions that modulate cytotoxic pathways in response to DNA-damaging agents. The aim of the present study was to investigate the role of promoter methylation of the hMLH1 gene in malignant astrocytomas. We examined the hMLH1 promoter methylation in a homogeneous cohort of patients with 41 malignant astrocytomas treated by 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea chemotherapy in combination with radiation and interferon therapy, and assessed the correlation of such methylation with clinical outcome. hMLH1 promoter methylation was found in 6 (15%) of the 41 newly diagnosed malignant astrocytomas. Hypermethylation of the hMLH1 promoter corresponded closely with a loss of immunohistochemical staining for hMLH1 protein (P = 0.0013). Patients with hMLH1-methylated tumors displayed a greater chance of responding to adjuvant therapy as compared with those with hMLH1-unmethylated tumors (P = 0.0150). The presence of hMLH1 hypermethylation was significantly associated with a longer progression-free survival on both univariate analysis (P = 0.0340) and multivariate analysis (P = 0.0161). The present study identified hMLH1 methylation status as a predictor of the clinical response of malignant astrocytomas to chloroethylnitrosourea-based adjuvant therapy. The findings obtained suggest that determination of the methylation status of hMLH1 could provide a potential basis for designing rational chemotherapeutic strategies, as well as for predicting prognosis.

  9. Weighted f-values, A-values, and line strengths for the E1 transitions among 3d6, 3d54s, and 3d54p levels of Fe III

    International Nuclear Information System (INIS)

    Deb, Narayan C.; Hibbert, Alan

    2009-01-01

    Weighted oscillator strengths, weighted radiative rates, and line strengths for all the E1 transitions between 285 fine-structure levels belonging to the 3d 6 , 3d 5 4s, and 3d 5 4p configurations of Fe III are presented, in ascending order of wavelength. Calculations have been undertaken using the general configuration interaction (CI) code CIV3. The large configuration set is constructed by allowing single and double replacements from any of 3d 6 , 3d 5 4s, 3d 5 4p, and 3d 5 4d configurations to nl orbitals with n≤5,l≤3 as well as 6p. Additional selective promotions from 3s and 3p subshells are also included in the CI expansions to incorporate the important correlation effects in the n=3 shell. Results of some strong transitions between levels of 3d 6 , 3d 5 4s, and 3d 5 4p configurations are also presented and compared with other available calculations. It is found that large disagreements occur in many transitions among the existing calculations

  10. Combination of Heavy-ion radiotherapy and p53-gene therapy by radio-sensitizing promoter for glioma

    International Nuclear Information System (INIS)

    Oga, Masaru; Koshikawa, Nobuko; Takenaga, Keizo; Iwadate, Yasuo; Nojima, Kumie

    2005-01-01

    In this study we have investigated the anti-tumor effect of the combination of heavy-ion radiotherapy, inducing p53-independent apoptosis, and p53-gene therapy, inducing p53-dependent apoptosis for glioma. To enhance the p53-dependent apoptosis, we chose the strategy to utilize the heavy-ion irradiation itself as a ''trigger'' by using radio-sensitizing promoter-E9ns-2/CMV chimeric promoter (Scott et al:2003) in p53-gene therapy. First, EGFP reporter gene with E9ns-2/CMV chimeric promoter was transfected in C6 rat glioma cell-line and the transfected-cell bulk was irradiated at dose of 3, 5, 10 Gy respectively with charged carbon particle (290 MeV/nucleon). The light upregulation of EGFP was observed in 24 hours after 5 Gy irradiation. On the basis of this result, p53 gene with E9ns-2/CMV chimeric promoter was transfected in p53-mutant U373MG human glioma cell-line and the transfected-cell bulk was irradiated at dose of 5 Gy. There was, however, no obvious p53-upregulation at any time-point, so far. Further investigation is needed to clarify the appropriate experimental system. (author)

  11. Photoionization of gallium at 3d-4p and 4s-np (n = 5,6) resonances

    International Nuclear Information System (INIS)

    Caldwell, C.D.; Krause, M.O.; Jimenez-Mier, J.

    1988-01-01

    The simplest atoms having nonspherical symmetry are those with a single p electron in a valence shell. Of these, the group IIIB elements are excellent examples. As such, they form test cases for photoionization from open-shell systems. Through photoelectron-spectroscopy techniques, we have examined both partial cross sections and angular-distribution parameters for autoionization corresponding to promotion of a 3d electron to the 4p shell of gallium. The resulting dp 2 configuration gives rise to a complicated multiplet structure across which the angular-distribution parameter varies considerably. We have also looked at the simpler structure resulting from promotion of one s electron to an np level, n = 5,6. For these cases, the multiplet structure is simpler, but the influence of the resonance on the cross section and the angular distribution is pronounced. For the 4s4p( 3 P)5p resonance we find a value of β = -1 at the cross-section minimum. No calculations have been performed for this system, so we attempt a qualitative interpretation of our results based on an angular-momentum-transfer analysis

  12. Interplay between Trx-1 and S100P promotes colorectal cancer cell epithelial-mesenchymal transition by up-regulating S100A4 through AKT activation.

    Science.gov (United States)

    Zuo, Zhigui; Zhang, Peili; Lin, Feiyan; Shang, Wenjing; Bi, Ruichun; Lu, Fengying; Wu, Jianbo; Jiang, Lei

    2018-04-01

    We previously reported a novel positive feedback loop between thioredoxin-1 (Trx-1) and S100P, which promotes the invasion and metastasis of colorectal cancer (CRC). However, the underlying molecular mechanisms remain poorly understood. In this study, we examined the roles of Trx-1 and S100P in CRC epithelial-to-mesenchymal transition (EMT) and their underlying mechanisms. We observed that knockdown of Trx-1 or S100P in SW620 cells inhibited EMT, whereas overexpression of Trx-1 or S100P in SW480 cells promoted EMT. Importantly, S100A4 and the phosphorylation of AKT were identified as potential downstream targets of Trx-1 and S100P in CRC cells. Silencing S100A4 or inhibition of AKT phosphorylation eliminated S100P- or Trx-1-mediated CRC cell EMT, migration and invasion. Moreover, inhibition of AKT activity reversed S100P- or Trx-1-induced S100A4 expression. The expression of S100A4 was higher in human CRC tissues compared with their normal counterpart tissues and was significantly correlated with lymph node metastasis and poor survival. The overexpression of S100A4 protein was also positively correlated with S100P or Trx-1 protein overexpression in our cohort of CRC tissues. In addition, overexpression of S100P reversed the Trx-1 knockdown-induced inhibition of S100A4 expression, EMT and migration and invasion in SW620 cells. The data suggest that interplay between Trx-1 and S100P promoted CRC EMT as well as migration and invasion by up-regulating S100A4 through AKT activation, thus providing further potential therapeutic targets for suppressing the EMT in metastatic CRC. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Association analysis of KIT, MITF, and PAX3 variants with white markings in Spanish horses.

    Science.gov (United States)

    Negro, S; Imsland, F; Valera, M; Molina, A; Solé, M; Andersson, L

    2017-06-01

    Several variants in the KIT, PAX3 and MITF genes have previously been associated with white markings in horses. In this study, we examined eight variants of these genes in 70 Menorca Purebred horses (PRMe, only black solid-coloured horses) and 70 Spanish Purebred horses (PRE, different coat colour patterns) that were scored for the extent of white markings. A maximum-likelihood chi-square test, logistic regression model and ridge regression analyses showed that a missense mutation (p.Arg682His) in KIT was associated with white facial markings (P horses. The relative contribution of this variant to white markings in PRMe horses was estimated at 47.6% (head) and 43.4% (total score). In PRE horses, this variant was also associated with hindlimb scores (P T intronic variant located 29.9 kb downstream from the transcription start site of the MITF gene was associated with less white markings on forelimbs (P horses, with a relative contribution of 63.9%, whereas in PRE horses this variant was associated with white facial markings (P horses, providing breeders with an opportunity to use genetic testing to aid in breeding for their desired level of white markings. © 2017 Stichting International Foundation for Animal Genetics.

  14. Exploring the ϒ (4 S ,5 S ,6 S )→hb(1 P )η hidden-bottom hadronic transitions

    Science.gov (United States)

    Zhang, Yawei; Li, Gang

    2018-01-01

    Recently, the Belle Collaboration has reported the measurement of the spin-flipping transition ϒ (4 S )→hb(1 P )η with an unexpectedly large branching ratio: B (ϒ (4 S )→hb(1 P )η )=(2.18 ±0.11 ±0.18 )×10-3 . Such a large branching fraction contradicts with the anticipated suppression for the spin flip. In this work, we examine the effects induced by intermediate bottomed meson loops and point out that these effects are significantly important. Using the effective Lagrangian approach (ELA), we find the experimental data on ϒ (4 S )→hb(1 P )η can be accommodated with the reasonable inputs. We then explore the decays ϒ (5 S ,6 S )→hb(1 P )η and find that these two channels also have sizable branching fractions. We also calculate these processes in the framework of nonrelativistic effective field theory (NREFT). For the decays ϒ (4 S )→hb(1 P )η , the NREFT results are at the same order of magnitude but smaller than the ELA results by a factor of 2 to 5. For the decays ϒ (5 S ,6 S )→hb(1 P )η , the NREFT results are smaller than the ELA results by approximately 1 order of magnitude. We suggest a future experiment Belle-II to search for the ϒ (5 S ,6 S )→hb(1 P )η decays, which will be helpful for understanding the transition mechanism.

  15. 1α,25 dihydroxi-vitamin D3 modulates CDK4 and CDK6 expression and localization

    International Nuclear Information System (INIS)

    Irazoqui, Ana P.; Heim, Nadia B.; Boland, Ricardo L.; Buitrago, Claudia G.

    2015-01-01

    We recently reported that the vitamin D receptor (VDR) and p38 MAPK participate in pro-differentiation events triggered by 1α,25(OH) 2 -vitamin D 3 [1,25D] in skeletal muscle cells. Specifically, our studies demonstrated that 1,25D promotes G0/G1 arrest of cells inducing cyclin D3 and cyclin dependent kinases inhibitors (CKIs) p21 Waf1/Cip1 and p27 Kip1 expression in a VDR and p38 MAPK dependent manner. In this work we present data indicating that cyclin-dependent kinases (CDKs) 4 and 6 also play a role in the mechanism by which 1,25D stimulates myogenesis. To investigate VDR involvement in hormone regulation of CDKs 4 and 6, we significantly reduced its expression by the use of a shRNA against mouse VDR, generating the skeletal muscle cell line C2C12-VDR. Investigation of changes in cellular cycle regulating proteins by immunoblotting showed that the VDR is involved in the 1,25D –induced CDKs 4 and 6 protein levels at 6 h of hormone treatment. CDK4 levels remains high during S phase peak and G0/G1 arrest while CDK6 expression decreases at 12 h and increases again al 24 h. The up-regulation of CDKs 4 and 6 by 1,25D (6 h) was abolished in C2C12 cells pre-treated with the ERK1/2 inhibitor, UO126. Moreover, CDKs 4 and 6 expression induced by the hormone nor was detected when α and β isoforms of p38 MAPK were inhibited by compound SB203580. Confocal images show that there is not co-localization between VDR and CDKs at 6 h of hormone treatment, however CDK4 and VDR co-localizates in nucleus after 12 h of 1,25D exposure. Of relevance, at this time 1,25D promotes CDK6 localization in a peri-nuclear ring. Our data demonstrate that the VDR, ERK1/2 and p38 MAPK are involved in the control of CDKs 4 and 6 by 1,25D in skeletal muscle cells sustaining the operation of a VDR and MAPKs –dependent mechanism in hormone modulation of myogenesis. - Highlights: • 1,25D modulates CDKs 4 and 6 expression in skeletal muscle cells. • CDK4 co-localizates with VDR after 1

  16. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.).

    Science.gov (United States)

    Li, Xiuxia; Li, Ran; Zhu, Bin; Gao, Xiwu; Liang, Pei

    2018-06-01

    The diamondback moth Plutella xylostella (L.) is the most widely distributed pest of cruciferous crops and has developed resistance to most commonly used insecticides, including chlorantraniliprole. Resistance to chlorantraniliprole is likely caused by mutations of the target, the ryanodine receptor, and/or mediated by an increase in detoxification enzyme activities. Although target-site resistance is documented in detail, resistance mediated by increased metabolism has rarely been reported. The activity of cytochrome P450 was significantly higher in two resistant P. xylostella populations than in a susceptible one. Among ten detected cytochrome P450 genes, CYP6BG1 was significantly overexpressed (over 80-fold) in a field-resistant population compared with expression in a susceptible one. Knockdown of CYP6BG1 by RNA interference dramatically reduced the 7-ethoxycoumarin-O-deethylase (7-ECOD) activity of P450 by 45.5% and increased the toxicity of chlorantraniliprole toward P. xylostella by 26.8% at 48 h postinjection of double-stranded RNA. By contrast, overexpression of CYP6BG1 in a transgenic Drosophila melanogaster line significantly decreased the toxicity of the insecticide to the transgenic flies. Overexpression of CYP6BG1 may contribute to chlorantraniliprole resistance in P. xylostella. Our findings will provide new insights into the mechanisms of resistance to diamide insecticides in other insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Risques, R A; Toyota, M; Capella, G; Moreno, V; Peinado, M A; Baylin, S B; Herman, J G

    2001-06-15

    Defects in DNA repair may be responsible for the genesis of mutations in key genes in cancer cells. The tumor suppressor gene p53 is commonly mutated in human cancer by missense point mutations, most of them G:C to A:T transitions. A recognized cause for this type of change is spontaneous deamination of the methylcytosine. However, the persistence of a premutagenic O(6)-methylguanine can also be invoked. This last lesion is removed in the normal cell by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). In many tumor types, epigenetic silencing of MGMT by promoter hypermethylation has been demonstrated and linked to the appearance of G to A mutations in the K-ras oncogene in colorectal tumors. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of p53 mutations, we studied 314 colorectal tumors for MGMT promoter hypermethylation and p53 mutational spectrum. Inactivation of MGMT by aberrant methylation was associated with the appearance of G:C to A:T transition mutations at p53 (Fischer's exact test, two-tailed; P = 0.01). Overall, MGMT methylated tumors displayed p53 transition mutations in 43 of 126 (34%) cases, whereas MGMT unmethylated tumors only showed G:C to A:T changes in 37 of 188 (19%) tumors. A more striking association was found in G:C to A:T transitions in non-CpG dinucleotides; 71% (12 of 17) of the total non-CpG transition mutations in p53 were observed in MGMT aberrantly methylated tumors (Fischer's exact test, two-tailed; P = 0.008). Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to G:C to A:T transition mutations in p53.

  18. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  19. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    International Nuclear Information System (INIS)

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-01-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1 −/− mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation

  20. In silico binding affinity studies of N-9 substituted 6-(4-(4-propoxyphenylpiperazin-1-yl-9H-purine derivatives-Target for P70-S6K1 & PI3K-δ kinases

    Directory of Open Access Journals (Sweden)

    Manjunath G. Sunagar

    2018-03-01

    Full Text Available P70-S6K1 & PI3K-δ kinases are identified to be involved in many physiological processes associated with cancer, therefore many of the inhibitors being designed to target these kinases are in clinical trials. In the current study we have exploited the N-9 substituted 6-(4-(4-propoxyphenyl piperazin-1-yl-9H-purine derivatives for their inhibitory properties with the above kinases. We have used an in silico docking study with seventeen purine derivatives for their binding affinity calculations. The binding affinities of these small molecules with P70-S6K1 & PI3K-δ were performed using AutoDock Vina. Among all the compounds, PP16 showed highest binding affinity of −14.7 kcal/mol with P70-S6K1 kinase & −17.2 kcal/mol with PI3K-δ kinases as compared to the molecules under clinical trials (PF-4708671 & IC-87114. Docking studies revealed that N-9 coumarine substituted purine derivative could be one of the potential ligands for the inhibition of P70-S6K1 & PI3K-δ kinases. Hence, this compound can be further investigated by in vitro and in vivo experiments for further validation.

  1. Association of a functional 17beta-estradiol sensitive IL6-174G/C promoter polymorphism with early-onset type 1 diabetes in females

    DEFF Research Database (Denmark)

    Kristiansen, Ole P; Nolsøe, Runa L; Larsen, Lykke

    2003-01-01

    The type 1 diabetes mellitus (T1DM) candidate gene SNP IL6-174G/C was genotyped in 253 Danish T1DM families (1129 individuals). TDT analysis demonstrated linkage in the presence of association between the IL6-174C allele and T1DM in the 416 T1DM offspring, P(tdt)=0.04. Gender conditioned TDT......DM versus non-T1DM females) excluded preferential meiotic segregation in females, P=4.6 x 10(-3), and demonstrated differences in the transmission patterns between female and male T1DM offspring, P=5.1 x 10(-3). The IL6-174 CC genotype was associated with younger age at onset of T1DM in females (P=0...

  2. Tungsten phosphanylarylthiolato complexes [W{PhP(2-SC6H4)2-kappa3S,S',P} 2] and [W{P(2-SC6H4)3-kappa4S,S',S",P}2]: synthesis, structures and redox chemistry.

    Science.gov (United States)

    Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie

    2008-09-14

    PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.

  3. Overexpression of p42.3 promotes cell growth and tumorigenicity in hepatocellular carcinoma

    Science.gov (United States)

    Sun, Wei; Dong, Wei-Wei; Mao, Lin-Lin; Li, Wen-Mei; Cui, Jian-Tao; Xing, Rui; Lu, You-Yong

    2013-01-01

    AIM: To investigate the association of p42.3 expression with clinicopathological characteristics and the biological function of p42.3 in human hepatocellular carcinoma (HCC). METHODS: We used reverse transcription-polymerase chain reaction (RT-PCR), quantitative real-time RT-PCR and western blotting to detect p42.3 mRNA and protein expression in hepatic cell lines. We examined primary HCC samples and matched adjacent normal tissue by immunohistochemistry to investigate the correlation between p42.3 expression and clinicopathological features. HepG2 cells were transfected with a pIRES2-EGFP-p42.3 expression vector to examine the function of the p42.3 gene. Transfected cells were analyzed for their viability and malignant transformation abilities by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, and tumorigenicity assay in nude mice. RESULTS: p42.3 is differentially expressed in primary HCC tumors and cell lines. Approximately 69.6% (96/138) of cells were p42.3-positive in hepatic tumor tissues, while 30.7% (35/114) were p42.3-positive in tumor-adjacent normal tissues. Clinicopathological characteristics of the HCC specimens revealed a significant correlation between p42.3 expression and tumor differentiation (P = 0.031). However, p42.3 positivity was not related to tumor tumor-node-metastasis classification, hepatitis B virus status, or hepatoma type. Regarding p42.3 overexpression in stably transfected HepG2 cells, we discovered significant enhancement of cancer cell growth and colony formation in vitro, and significantly enhanced tumorigenicity in nude mice. Western blot analysis of cell cycle proteins revealed that enhanced p42.3 levels promote upregulation of proliferating cell nuclear antigen, cyclin B1 and mitotic arrest deficient 2. CONCLUSION: p42.3 promotes tumorigenicity and tumor growth in HCC and may be a potential target for future clinical cancer therapeutics. PMID:23704824

  4. Arsenite promotes centrosome abnormalities under a p53 compromised status induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    International Nuclear Information System (INIS)

    Liao, W.-T.; Yu, H.-S.; Lin Pinpin; Chang, Louis W.

    2010-01-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus an interaction between arsenite and cigarette smoking in lung carcinogenesis was suspected. In the present study, we investigated the interactions of a tobacco-specific carcinogen 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) and arsenite on lung cell transformation. BEAS-2B, an immortalized human lung epithelial cell line, was selected to test the centrosomal abnormalities and colony formation by NNK and arsenite. We found that NNK, alone, could enhance BEAS-2B cell growth at 1-5 μM. Under NNK exposure, arsenite was able to increase centrosomal abnormality as compared with NNK or arsenite treatment alone. NNK treatment could also reduce arsenite-induced G2/M cell cycle arrest and apoptosis, these cellular effects were found to be correlated with p53 dysfunction. Increased anchorage-independent growth (colony formation) of BEAS-2B cells cotreated with NNK and arsenite was also observed in soft agar. Our present investigation demonstrated that NNK could provide a p53 compromised status. Arsenite would act specifically on this p53 compromised status to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenite under tobacco-specific carcinogen co-exposure.

  5. STAT6 expression in glioblastoma promotes invasive growth

    Directory of Open Access Journals (Sweden)

    Silva Corinne M

    2011-05-01

    -type. There was some variation among the different shRNA- silenced clones, but all had a reduction in 3H-Thymidine uptake ranging from 35%- 70% in U-1242MG and 40- 50% in U-87MG cells. Additionally, STAT6- depleted cells were less invasive than controls in our in vitro transmembrane invasion assay. Invasiveness was decreased by 25-40% and 30-75% in U-1242MG and U-87MG cells, respectively. The microarray analysis identified matrix metalloproteinase 1 (MMP-1 and urokinase Plasminogen activator (uPA as potential STA6 target genes involved in the promotion of GBM cell invasion. In a Kaplan-Meier survival curve based on Rembrandt 1 gene expression microarray and clinical data, there was a significant difference in survival (P Conclusions Taken together, these findings suggest a role for STAT6 in enhancing cell proliferation and invasion in GBM, which may explain why up-regulation of STAT6 correlates with shorter survival times in glioma patients. This report thus identifies STAT6 as a new and potentially promising therapeutic target.

  6. The effects of platelet gel on cultured human retinal pigment epithelial (hRPE cells

    Directory of Open Access Journals (Sweden)

    Sahar Balagholi

    2017-11-01

    Full Text Available The positive role of platelet gel (PG in tissue regeneration is well known, however, other characteristics of PG still remain to be determined. We investigated cellular and molecular changes in cultured human retinal pigment epithelial (hRPE cells when treated with different concentrations of PG named PG1, PG2, and PG3. hRPE cells were isolated from donor eyes of two newborn children, within 24 hours after their death. The cells were treated with three concentrations of PG for 7 days: 3 × 104/ml (PG1, 6 × 104/ml (PG2, and 9 × 104/ml (PG3. Fetal bovine serum was used as a control. Immunocytochemistry was performed with anti-RPE65 (H-85, anti-Cytokeratin 8/18 (NCL-5D3, and anti-PAX6 antibody. We used MTT assay to determine cell viability. Gene expressions of PAX6, MMP2, RPE65, ACTA2, MKI67, MMP9, and KDR were analyzed using real-time PCR. A significant increase in viability was observed for PG3-treated cells compared to control (p = 0.044 and compared to PG1 group (p = 0.027, on day 7. Cellular elongation together with dendritiform extensions were observed in PG-treated cells on days 1 and 3, while epithelioid morphology was observed on day 7. All cells were immunoreactive for RPE65, cytokeratin 8/18, and PAX6. No significant change was observed in the expression of MKI67 and PAX6, but the expressions of MMP2, MMP9, ACTA2, and KDR were significantly higher in PG2-treated cells compared to controls (p < 0.05. Our results indicate that increased concentration of PG and extended exposure time have positive effects on viability of hRPE cells. PG may be useful for hRPE cell encapsulation in retinal cell replacement therapy.

  7. t(6;11) renal cell carcinoma (RCC): expanded immunohistochemical profile emphasizing novel RCC markers and report of 10 new genetically confirmed cases.

    Science.gov (United States)

    Smith, Nathaniel E; Illei, Peter B; Allaf, Mohamed; Gonzalez, Nilda; Morris, Kerry; Hicks, Jessica; Demarzo, Angelo; Reuter, Victor E; Amin, Mahul B; Epstein, Jonathan I; Netto, George J; Argani, Pedram

    2014-05-01

    Renal cell carcinomas (RCCs) harboring the t(6;11)(p21;q12) translocation were first described in 2001 and recently recognized by the 2013 International Society of Urological Pathology Vancouver Classification of Renal Neoplasia. Although these RCCs are known to label for melanocytic markers HMB45 and Melan A and the cysteine protease cathepsin K by immunohistochemistry (IHC), a comprehensive IHC profile has not been reported. We report 10 new t(6;11) RCCs, all confirmed by break-apart TFEB fluorescence in situ hybridization. A tissue microarray containing 6 of these cases and 7 other previously reported t(6;11) RCCs was constructed and immunolabeled for 21 different antigens. Additional whole sections of t(6;11) RCC were labeled with selected IHC markers. t(6;11) RCC labeled diffusely and consistently for cathepsin K and Melan A (13 of 13 cases) and almost always at least focally for HMB45 (12 of 13 cases). They labeled frequently for PAX8 (14 of 23 cases), CD117 (10 of 14 cases), and vimentin (9 of 13 cases). A majority of cases labeled at least focally for cytokeratin Cam5.2 (8 of 13 cases) and CD10 and RCC marker antigen (10 of 14 cases each). In contrast to a prior study's findings, only a minority of cases labeled for Ksp-cadherin (3 of 19 cases). The median H score (product of intensity score and percentage labeling) for phosphorylated S6, a marker of mTOR pathway activation, was 101, which is high relative to most other RCC subtypes. In summary, IHC labeling for PAX8, Cam5.2, CD10, and RCC marker antigen supports classification of the t(6;11) RCC as carcinomas despite frequent negativity for broad-spectrum cytokeratins and EMA. Labeling for PAX8 distinguishes the t(6;11) RCC from epithelioid angiomyolipoma, which otherwise shares a similar immunoprofile. CD117 labeling is more frequent in the t(6;11) RCC compared with the related Xp11 translocation RCC. Increased pS6 expression suggests a possible molecular target for the uncommon t(6;11) RCCs that

  8. t(6;11) Renal Cell Carcinoma (RCC) Expanded Immunohistochemical Profile Emphasizing Novel RCC Markers and Report of 10 New Genetically Confirmed Cases

    Science.gov (United States)

    Smith, Nathaniel E.; Illei, Peter B.; Allaf, Mohamed; Gonzalez, Nilda; Morris, Kerry; Hicks, Jessica; DeMarzo, Angelo; Reuter, Victor E.; Amin, Mahul B.; Epstein, Jonathan I.; Netto, George J.; Argani, Pedram

    2015-01-01

    Renal cell carcinomas (RCCs) harboring the t(6;11)(p21;q12) translocation were first described in 2001 and recently recognized by the 2013 International Society of Uro-logical Pathology Vancouver Classification of Renal Neoplasia. Although these RCCs are known to label for melanocytic markers HMB45 and Melan A and the cysteine protease cath-epsin K by immunohistochemistry (IHC), a comprehensive IHC profile has not been reported. We report 10 new t(6;11) RCCs, all confirmed by break-apart TFEB fluorescence in situ hybridization. A tissue microarray containing 6 of these cases and 7 other previously reported t(6;11) RCCs was constructed and immunolabeled for 21 different antigens. Additional whole sections of t(6;11) RCC were labeled with selected IHC markers. t(6;11) RCC labeled diffusely and consistently for cathepsin K and Melan A (13 of 13 cases) and almost always at least focally for HMB45 (12 of 13 cases). They labeled frequently for PAX8 (14 of 23 cases), CD117 (10 of 14 cases), and vimentin (9 of 13 cases). A majority of cases labeled at least focally for cytokeratin Cam5.2 (8 of 13 cases) and CD10 and RCC marker antigen (10 of 14 cases each). In contrast to a prior study's findings, only a minority of cases labeled for Ksp-cadherin (3 of 19 cases). The median H score (product of intensity score and percentage labeling) for phosphorylated S6, a marker of mTOR pathway activation, was 101, which is high relative to most other RCC subtypes. In summary, IHC labeling for PAX8, Cam5.2, CD10, and RCC marker antigen supports classification of the t(6;11) RCC as carcinomas despite frequent negativity for broad-spectrum cytokeratins and EMA. Labeling for PAX8 distinguishes the t(6;11) RCC from epithelioid angiomyolipoma, which otherwise shares a similar immunoprofile. CD117 labeling is more frequent in the t(6;11) RCC compared with the related Xp11 translocation RCC. Increased pS6 expression suggests a possible molecular target for the uncommon t(6;11) RCCs that

  9. The Coagulant Type Influence on Removal Efficiency of 5- and 6-Ring Pahs During Water Coagulation Process

    Directory of Open Access Journals (Sweden)

    Nowacka Anna

    2014-12-01

    Full Text Available The article presents results on investigation of the removal efficiency of selected 5- and 6-ring polycyclic aromatic hydrocarbons (benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[j]fluoranthene, benzo[g,h,i]perylene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene from water during coagulation and sedimentation process. Two pre-hydrolyzed aluminum coagulants: PAX XL 19H and FLOKOR 105V were chosen for research. Process was carried out at optimum process parameters: rapid-mixing - 3 min at the rotational speed of 200 rpm, slow mixing - 10 min at 30 rpm, sedimentation - 60 min. The removal effectiveness was dependant on coagulant type and its composition. Better results in the removal of 5-and 6-ring PAHs were obtained after application of FLOKOR 105V (lower aluminum content than after using PAX XL 19H.

  10. miR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwei; Xu, Jing, E-mail: xujingdoc@163.com

    2016-04-22

    miR-140-5p is down-regulated in patients with pulmonary arterial hypertension (PAH) and experimental models of PAH, and inhibits hypoxia-mediated pulmonary artery smooth muscle cell (PASMC) proliferation in vitro. Delivery of synthetic miR-140-5p prevents and treats established, experimental PAH. DNA methyltransferase 1 (Dnmt1) is up-regulated in PAH associated human PASMCs (HPASMCs), which promotes the development of PAH by hypermethylation of CpG islands within the promoter for superoxide dismutase 2 (SOD2) and down-regulating SOD2 expression. We searched for miR-140-5p targets using TargetScan, PicTar and MiRanda tools, and found that Dnmt1 is a potential target of miR-140-5p. Based on these findings, we speculated that miR-140-5p might target Dnmt1 and regulate SOD2 expression to regulate hypoxia-mediated HPASMC proliferation, apoptosis and differentiation. We detected the expression of miR-140-5p, Dnmt1 and SOD2 by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays, respectively, and found down-regulation of miR-140-5p and SOD2 and up-regulation of Dnmt1 exist in PAH tissues and hypoxia-mediated HPASMCs. Cell proliferation, apoptosis and differentiation detection showed that miR-140-5p inhibits proliferation and promotes apoptosis and differentiation of HPASMCs in hypoxia, while the effect of Dnmt1 on hypoxia-mediated HPASMCs is reversed. Luciferase assay confirmed that miR-140-5p targets Dnmt1 directly. An inverse correlation is also found between miR-140-5p and Dnmt1 in HPASMCs. In addition, we further investigated whether miR-140-5p and Dnmt1 regulate HPASMC proliferation, apoptosis and differentiation by regulating SOD2 expression, and the results confirmed our speculation. Taken together, these results indicated that miR-140-5p at least partly targets Dnmt1 and regulates SOD2 expression to inhibit proliferation and promote apoptosis and differentiation of HPASMCs in hypoxia. - Highlights: • miR-140-5p and SOD2 are down

  11. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner.

    Science.gov (United States)

    Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro

    2016-03-04

    Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.

    Science.gov (United States)

    Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S

    1994-10-25

    DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstream contact suppresses open complex formation at galP1 at lower temperatures. In ternary RNA polymerase-CRP-galP1 complexes, alpha appears to make direct contact with Activating Region 1 in CRP. DNAase I footprinting has been used to detect and quantify interactions between purified alpha and CRP bound at galP1.

  13. AVPR1a and SLC6A4 Gene Polymorphisms Are Associated with Creative Dance Performance.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Dancing, which is integrally related to music, likely has its origins close to the birth of Homo sapiens, and throughout our history, dancing has been universally practiced in all societies. We hypothesized that there are differences among individuals in aptitude, propensity, and need for dancing that may partially be based on differences in common genetic polymorphisms. Identifying such differences may lead to an understanding of the neurobiological basis of one of mankind's most universal and appealing behavioral traits-dancing. In the current study, 85 current performing dancers and their parents were genotyped for the serotonin transporter (SLC6A4: promoter region HTTLPR and intron 2 VNTR and the arginine vasopressin receptor 1a (AVPR1a: promoter microsatellites RS1 and RS3. We also genotyped 91 competitive athletes and a group of nondancers/nonathletes (n = 872 subjects from 414 families. Dancers scored higher on the Tellegen Absorption Scale, a questionnaire that correlates positively with spirituality and altered states of consciousness, as well as the Reward Dependence factor in Cloninger's Tridimensional Personality Questionnaire, a measure of need for social contact and openness to communication. Highly significant differences in AVPR1a haplotype frequencies (RS1 and RS3, especially when conditional on both SLC6A4 polymorphisms (HTTLPR and VNTR, were observed between dancers and athletes using the UNPHASED program package (Cocaphase: likelihood ratio test [LRS] = 89.23, p = 0.000044. Similar results were obtained when dancers were compared to nondancers/nonathletes (Cocaphase: LRS = 92.76, p = 0.000024. These results were confirmed using a robust family-based test (Tdtphase: LRS = 46.64, p = 0.010. Association was also observed between Tellegen Absorption Scale scores and AVPR1a (Qtdtphase: global chi-square = 26.53, p = 0.047, SLC6A4 haplotypes (Qtdtphase: chi-square = 2.363, p = 0.018, and AVPR1a conditional on SCL6A4 (Tdtphase: LRS

  14. AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance.

    Directory of Open Access Journals (Sweden)

    Rachel Bachner-Melman

    2005-09-01

    Full Text Available Dancing, which is integrally related to music, likely has its origins close to the birth of Homo sapiens, and throughout our history, dancing has been universally practiced in all societies. We hypothesized that there are differences among individuals in aptitude, propensity, and need for dancing that may partially be based on differences in common genetic polymorphisms. Identifying such differences may lead to an understanding of the neurobiological basis of one of mankind's most universal and appealing behavioral traits--dancing. In the current study, 85 current performing dancers and their parents were genotyped for the serotonin transporter (SLC6A4: promoter region HTTLPR and intron 2 VNTR and the arginine vasopressin receptor 1a (AVPR1a: promoter microsatellites RS1 and RS3. We also genotyped 91 competitive athletes and a group of nondancers/nonathletes (n = 872 subjects from 414 families. Dancers scored higher on the Tellegen Absorption Scale, a questionnaire that correlates positively with spirituality and altered states of consciousness, as well as the Reward Dependence factor in Cloninger's Tridimensional Personality Questionnaire, a measure of need for social contact and openness to communication. Highly significant differences in AVPR1a haplotype frequencies (RS1 and RS3, especially when conditional on both SLC6A4 polymorphisms (HTTLPR and VNTR, were observed between dancers and athletes using the UNPHASED program package (Cocaphase: likelihood ratio test [LRS] = 89.23, p = 0.000044. Similar results were obtained when dancers were compared to nondancers/nonathletes (Cocaphase: LRS = 92.76, p = 0.000024. These results were confirmed using a robust family-based test (Tdtphase: LRS = 46.64, p = 0.010. Association was also observed between Tellegen Absorption Scale scores and AVPR1a (Qtdtphase: global chi-square = 26.53, p = 0.047, SLC6A4 haplotypes (Qtdtphase: chi-square = 2.363, p = 0.018, and AVPR1a conditional on SCL6A4 (Tdtphase: LRS

  15. Solution structure of the Equine Infectious Anemia Virus p9 protein: a rationalization of its different ALIX binding requirements compared to the analogous HIV-p6 protein

    Directory of Open Access Journals (Sweden)

    Henklein Peter

    2009-12-01

    Full Text Available Abstract Background The equine infection anemia virus (EIAV p9 Gag protein contains the late (L- domain required for efficient virus release of nascent virions from the cell membrane of infected cell. Results In the present study the p9 protein and N- and C-terminal fragments (residues 1-21 and 22-51, respectively were chemically synthesized and used for structural analyses. Circular dichroism and 1H-NMR spectroscopy provide the first molecular insight into the secondary structure and folding of this 51-amino acid protein under different solution conditions. Qualitative 1H-chemical shift and NOE data indicate that in a pure aqueous environment p9 favors an unstructured state. In its most structured state under hydrophobic conditions, p9 adopts a stable helical structure within the C-terminus. Quantitative NOE data further revealed that this α-helix extends from Ser-27 to Ser-48, while the N-terminal residues remain unstructured. The structural elements identified for p9 differ substantially from that of the functional homologous HIV-1 p6 protein. Conclusions These structural differences are discussed in the context of the different types of L-domains regulating distinct cellular pathways in virus budding. EIAV p9 mediates virus release by recruiting the ALG2-interacting protein X (ALIX via the YPDL-motif to the site of virus budding, the counterpart of the YPXnL-motif found in p6. However, p6 contains an additional PTAP L-domain that promotes HIV-1 release by binding to the tumor susceptibility gene 101 (Tsg101. The notion that structures found in p9 differ form that of p6 further support the idea that different mechanisms regulate binding of ALIX to primary versus secondary L-domains types.

  16. PMK-1 p38 MAPK promotes cadmium stress resistance, the expression of SKN-1/Nrf and DAF-16 target genes, and protein biosynthesis in Caenorhabditis elegans.

    Science.gov (United States)

    Keshet, Alex; Mertenskötter, Ansgar; Winter, Sarah A; Brinkmann, Vanessa; Dölling, Ramona; Paul, Rüdiger J

    2017-12-01

    The mechanisms of cadmium (Cd) resistance are complex and not sufficiently understood. The present study, therefore, aimed at assessing the roles of important components of stress-signaling pathways and of ABC transporters under severe Cd stress in Caenorhabditis elegans. Survival assays on mutant and control animals revealed a significant promotion of Cd resistance by the PMK-1 p38 MAP kinase, the transcription factor DAF-16/FoxO, and the ABC transporter MRP-1. Transcriptome profiling by RNA-Seq on wild type and a pmk-1 mutant under control and Cd stress conditions revealed, inter alia, a PMK-1-dependent promotion of gene expression for the translational machinery. PMK-1 also promoted the expression of target genes of the transcription factors SKN-1/Nrf and DAF-16 in Cd-stressed animals, which included genes for molecular chaperones or immune proteins. Gene expression studies by qRT-PCR confirmed the positive effects of PMK-1 on DAF-16 activity under Cd stress and revealed negative effects of DAF-16 on the expression of genes for MRP-1 and DAF-15/raptor. Additional studies on pmk-1 RNAi-treated wild type and mutant strains provided further information on the effects of PMK-1 on SKN-1 and DAF-16, which resulted in a model of these relationships. The results of this study demonstrate a central role of PMK-1 for the processing of cellular responses to abiotic and biotic stressors, with the promoting effects of PMK-1 on Cd resistance mostly mediated by the transcription factors SKN-1 and DAF-16.

  17. Prognostic role of APC and RASSF1A promoter methylation status in cell free circulating DNA of operable gastric cancer patients.

    Science.gov (United States)

    Balgkouranidou, I; Matthaios, D; Karayiannakis, A; Bolanaki, H; Michailidis, P; Xenidis, N; Amarantidis, K; Chelis, L; Trypsianis, G; Chatzaki, E; Lianidou, E S; Kakolyris, S

    2015-08-01

    Gastric carcinogenesis is a multistep process including not only genetic mutations but also epigenetic alterations. The best known and more frequent epigenetic alteration is DNA methylation affecting tumor suppressor genes that may be involved in various carcinogenetic pathways. The aim of the present study was to investigate the methylation status of APC promoter 1A and RASSF1A promoter in cell free DNA of operable gastric cancer patients. Using methylation specific PCR, we examined the methylation status of APC promoter 1A and RASSF1A promoter in 73 blood samples obtained from patients with gastric cancer. APC and RASSF1A promoters were found to be methylated in 61 (83.6%) and 50 (68.5%) of the 73 gastric cancer samples examined, but in none of the healthy control samples (p APC promoter and elevated CEA (p = 0.033) as well as CA-19.9 (p = 0.032) levels, was noticed. The Kaplan-Meier estimates of survival, significantly favored patients with a non-methylated APC promoter status (p = 0.008). No other significant correlations between APC and RASSF1A methylation status and different tumor variables examined was observed. Serum RASSF1A and APC promoter hypermethylation is a frequent epigenetic event in patients with early operable gastric cancer. The observed correlations between APC promoter methylation status and survival as well as between a hypermethylated RASSF1A promoter and nodal positivity may be indicative of a prognostic role for those genes in early operable gastric cancer. Additional studies, in a larger cohort of patients are required to further explore whether these findings could serve as potential molecular biomarkers of survival and/or response to specific treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Promoter-region hypermethylation and expression downregulation of Yy1 (Yin yang 1) in preneoplastic liver lesions in a thioacetamide rat hepatocarcinogenesis model

    International Nuclear Information System (INIS)

    Abe, Hajime; Ogawa, Takashi; Wang, Liyun; Kimura, Masayuki; Tanaka, Takeshi; Morita, Reiko; Yoshida, Toshinori; Shibutani, Makoto

    2014-01-01

    Thioacetamide (TAA) has been used to develop a rodent model for hepatocarcinogenesis. To determine the genes with epigenetic modifications in early hepatocarcinogenesis, we did a genome-wide scan for hypermethylated promoter regions using CpG island microarrays in TAA-promoted rat liver tissue. Eight genes were selected based on the microarray profile; of these, Yy1 and Wdr45b were confirmed to be hypermethylated by methylation-specific polymerase chain reaction (PCR) and pyrosequencing and downregulated by real-time reverse transcription PCR. Non-neoplastic liver cells had nuclear Yy1 immunoreactivity, while preneoplastic foci with glutathione S-transferase placental form (GST-P) immunoreactivity had decreased Yy1 immunoreactivity. The incidence of these foci was proportional to the dose of TAA administered. Co-expression analysis of gene products downstream of Yy1 revealed increased nuclear phospho-c-Myc + foci as well as nuclear and cytoplasmic p21 Cip1+ foci in Yy1 − or GST-P + foci in response to TAA-promotion dose. Although the absolute number of cells was low, the incidence of death receptor 5 − foci was increased in Yy1 − foci in proportion to the TAA dose. Yy1 − /GST-P + foci revealed a higher number of proliferating cell nuclear antigen (PCNA)-immunoreactive cells than Yy1 + /GST-P + foci, while cleaved caspase-3 + cells were unchanged between Yy1 – /GST-P + and Yy1 + /GST-P + foci. In the case of Wdr45b, most GST-P + foci were Wdr45b – and were not increased by TAA promotion. These results suggest involvement of Yy1 in the epigenetic gene regulation at the early stages of TAA promoted cell proliferation and concomitant cell cycle arrest in preneoplastic lesions. - Highlights: • Epigenetically downregulated genes were searched in TAA-promnoted rat livers. • Yy1 and Wdr45b showed promoter-region hypermethylation and mRNA downregulation. • TAA promoted increase of preneoplastic Yy1 – /GST-P + foci showing high proliferation. • TAA

  19. 27 CFR 6.96 - Consumer promotions.

    Science.gov (United States)

    2010-04-01

    ... OF THE TREASURY LIQUORS âTIED-HOUSEâ Exceptions § 6.96 Consumer promotions. (a) Coupons. The act by an industry member of furnishing to consumers coupons which are redeemable at a retail establishment... such coupons; and (2) An industry member may not reimburse a retailer for more than the face value of...

  20. 1α,25 dihydroxi-vitamin D{sub 3} modulates CDK4 and CDK6 expression and localization

    Energy Technology Data Exchange (ETDEWEB)

    Irazoqui, Ana P.; Heim, Nadia B.; Boland, Ricardo L.; Buitrago, Claudia G., E-mail: cbuitrag@criba.edu.ar

    2015-03-27

    We recently reported that the vitamin D receptor (VDR) and p38 MAPK participate in pro-differentiation events triggered by 1α,25(OH){sub 2}-vitamin D{sub 3} [1,25D] in skeletal muscle cells. Specifically, our studies demonstrated that 1,25D promotes G0/G1 arrest of cells inducing cyclin D3 and cyclin dependent kinases inhibitors (CKIs) p21{sup Waf1/Cip1} and p27{sup Kip1} expression in a VDR and p38 MAPK dependent manner. In this work we present data indicating that cyclin-dependent kinases (CDKs) 4 and 6 also play a role in the mechanism by which 1,25D stimulates myogenesis. To investigate VDR involvement in hormone regulation of CDKs 4 and 6, we significantly reduced its expression by the use of a shRNA against mouse VDR, generating the skeletal muscle cell line C2C12-VDR. Investigation of changes in cellular cycle regulating proteins by immunoblotting showed that the VDR is involved in the 1,25D –induced CDKs 4 and 6 protein levels at 6 h of hormone treatment. CDK4 levels remains high during S phase peak and G0/G1 arrest while CDK6 expression decreases at 12 h and increases again al 24 h. The up-regulation of CDKs 4 and 6 by 1,25D (6 h) was abolished in C2C12 cells pre-treated with the ERK1/2 inhibitor, UO126. Moreover, CDKs 4 and 6 expression induced by the hormone nor was detected when α and β isoforms of p38 MAPK were inhibited by compound SB203580. Confocal images show that there is not co-localization between VDR and CDKs at 6 h of hormone treatment, however CDK4 and VDR co-localizates in nucleus after 12 h of 1,25D exposure. Of relevance, at this time 1,25D promotes CDK6 localization in a peri-nuclear ring. Our data demonstrate that the VDR, ERK1/2 and p38 MAPK are involved in the control of CDKs 4 and 6 by 1,25D in skeletal muscle cells sustaining the operation of a VDR and MAPKs –dependent mechanism in hormone modulation of myogenesis. - Highlights: • 1,25D modulates CDKs 4 and 6 expression in skeletal muscle cells. • CDK4 co

  1. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells

    Directory of Open Access Journals (Sweden)

    Saikali Melody

    2012-07-01

    Full Text Available Abstract Background Sesquiterpene lactones (SL are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan isolated from Achillea falcata and salograviolide A (Sal A isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. Methods The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. Results β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. Conclusions These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to

  2. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells.

    Science.gov (United States)

    Saikali, Melody; Ghantous, Akram; Halawi, Racha; Talhouk, Salma N; Saliba, Najat A; Darwiche, Nadine

    2012-07-09

    Sesquiterpene lactones (SL) are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan) isolated from Achillea falcata and salograviolide A (Sal A) isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to the Middle East may provide opportunities for complementary

  3. Differential SLC1A2 Promoter Methylation in Bipolar Disorder With or Without Addiction

    Directory of Open Access Journals (Sweden)

    Yun-Fang Jia

    2017-07-01

    Full Text Available While downregulation of excitatory amino acid transporter 2 (EAAT2, the main transporter removing glutamate from the synapse, has been recognized in bipolar disorder (BD, the underlying mechanisms of downregulation have not been elucidated. BD is influenced by environmental factors, which may, via epigenetic modulation of gene expression, differentially affect illness presentation. This study thus focused on epigenetic DNA methylation regulation of SLC1A2, encoding for EAAT2, in BD with variable environmental influences of addiction. High resolution melting PCR (HRM-PCR and thymine–adenine (TA cloning with sequence analysis were conducted to examine methylation of the promoter region of the SLC1A2. DNA was isolated from blood samples drawn from BD patients (N = 150 with or without addiction to alcohol, nicotine, or food, defined as binge eating, and matched controls (N = 32. In comparison to controls, the SLC1A2 promoter region was hypermethylated in BD without addiction but was hypomethylated in BD with addiction. After adjusting for age and sex, the association of methylation levels with nicotine addiction (p = 0.0009 and binge eating (p = 0.0002 remained significant. Consistent with HRM-PCR, direct sequencing revealed increased methylation in CpG site 6 in BD, but decreased methylation in three CpG sites (6, 48, 156 in BD with alcohol and nicotine addictions. These results suggest that individual point methylation within the SLC1A2 promoter region may be modified by exogenous addiction and may have a potential for developing clinically valuable epigenetic biomarkers for BD diagnosis and monitoring.

  4. PPARγ agonists upregulate sphingosine 1-phosphate (S1P) receptor 1 expression, which in turn reduces S1P-induced [Ca(2+)]i increases in renal mesangial cells.

    Science.gov (United States)

    Koch, Alexander; Völzke, Anja; Puff, Bianca; Blankenbach, Kira; Meyer Zu Heringdorf, Dagmar; Huwiler, Andrea; Pfeilschifter, Josef

    2013-11-01

    We previously identified peroxisome proliferator-activated receptor gamma (PPARγ) agonists (thiazolidinediones, TZDs) as modulators of the sphingolipid metabolism in renal mesangial cells. TZDs upregulated sphingosine kinase 1 (SK-1) and increased the formation of intracellular sphingosine 1-phosphate (S1P), which in turn reduced the expression of pro-fibrotic connective tissue growth factor. Since S1P also acts as extracellular ligand at specific S1P receptors (S1PR, S1P1-5), we investigated here the effect of TZDs on S1PR expression in mesangial cells and evaluated the functional consequences by measuring S1P-induced increases in intracellular free Ca(2+) concentration ([Ca(2+)]i). Treatment with two different TZDs, troglitazone and rosiglitazone, enhanced S1P1 mRNA and protein expression in rat mesangial cells, whereas S1P2-5 expression levels were not altered. Upregulation of S1P1 mRNA upon TZD treatment was also detected in human mesangial cells and mouse glomeruli. PPARγ antagonism and promoter studies revealed that the TZD-dependent S1P1 mRNA induction involved a functional PPAR response element in the S1P1 promoter. Pharmacological approaches disclosed that S1P-induced [Ca(2+)]i increases in rat mesangial cells were predominantly mediated by S1P2 and S1P3. Interestingly, the transcriptional upregulation of S1P1 by TZDs resulted in a reduction of S1P-induced [Ca(2+)]i increases, which was reversed by the S1P1/3 antagonist VPC-23019, the protein kinase C (PKC) inhibitor PKC-412, and by S1P1 siRNA. These data suggest that PPARγ-dependent upregulation of S1P1 leads to an inhibition of S1P-induced Ca(2+) signaling in a PKC-dependent manner. Overall, these results reveal that TZDs not only modulate intracellular S1P levels but also regulate S1PR signaling by increasing S1P1 expression in mesangial cells. © 2013.

  5. Waardenburg syndrome type 3 (Klein-Waardenburg syndrome) segregating with a heterozygous deletion in the paired box domain of PAX3: a simple variant or a true syndrome?

    Science.gov (United States)

    Tekin, M; Bodurtha, J N; Nance, W E; Pandya, A

    2001-10-01

    Klein-Waardenburg syndrome or Waardenburg syndrome type 3 (WS-III; MIM 148820) is characterized by the presence of musculoskeletal abnormalities in association with clinical features of Waardenburg syndrome type 1 (WS-I). Since the description of the first patient in 1947 (D. Klein, Arch Klaus Stift Vererb Forsch 1947: 22: 336-342), a few cases have been reported. Only occasional families have demonstrated autosomal-dominant inheritance of WS-III. In a previous report, a missense mutation in the paired domain of the PAX3 gene has been described in a family with dominant segregation of WS-III. In this report, we present a second family (mother and son) with typical clinical findings of WS-III segregating with a heterozygous 13-bp deletion in the paired domain of the PAX3 gene. Although homozygosity or compound heterozygosity has also been documented in patients with severe limb involvement, a consistent genotype-phenotype correlation for limb abnormalities associated with heterozygous PAX3 mutations has not previously been apparent. Heterozygous mutations could either reflect a unique dominant-negative effect or possibly the contribution of other unlinked genetic modifiers in determining the phenotype.

  6. Novel PAX9 gene polymorphisms and mutations and susceptibility to tooth agenesis in the Czech population

    Czech Academy of Sciences Publication Activity Database

    Hloušková, A.; Bonczek, Ondřej; Izakovičová Hollá, L.; Lochman, J.; Šoukalová, J.; Štembírek, Jan; Míšek, Ivan; Černochová, P.; Krejčí, P.; Vaněk, J.; Šerý, Omar

    2015-01-01

    Roč. 36, č. 5 (2015), s. 101-106 ISSN 0172-780X R&D Projects: GA MZd(CZ) NT11420 Institutional support: RVO:67985904 Keywords : odontogenesis * tooth agenesis * PAX9 gene Subject RIV: FF - HEENT, Dentistry Impact factor: 0.946, year: 2015

  7. IL-6 Impairs Myogenic Differentiation by Downmodulation of p90RSK/eEF2 and mTOR/p70S6K Axes, without Affecting AKT Activity

    Directory of Open Access Journals (Sweden)

    Michele Pelosi

    2014-01-01

    Full Text Available IL-6 is a multifaceted pleiotropic cytokine, which is produced by a variety of cell types and targets different cells and tissues. In physiological conditions, IL-6 can be locally and transiently produced by skeletal muscle and plays an important role in muscle homeostasis. Circulating IL-6 levels are normally very low or undetectable but are dramatically increased in several pathologic conditions. In this study, we aimed to define the potential molecular mechanisms underlying the effects of IL-6 on myogenic program. We explored the molecular mechanisms through which exogenous IL-6, or the conditioned medium from the murine C-26 adenocarcinoma cells (a cellular model that secretes high levels of IL-6 and induces cancer cachexia in mice, interferes with the myogenic program. Our study revealed that IL-6 induces the activation of the Stat3 signaling and promotes the downmodulation of the p90RSK/eEF2 and mTOR/p70S6K axes, while it does not affect the activation of AKT. We thus identified potential molecular mediators of the inhibitory effects of IL-6 on myogenic program.

  8. Hypoxia-induced invadopodia formation involves activation of NHE-1 by the p90 ribosomal S6 kinase (p90RSK.

    Directory of Open Access Journals (Sweden)

    Fabrice Lucien

    Full Text Available The hypoxic and acidic microenvironments in tumors are strongly associated with malignant progression and metastasis, and have thus become a central issue in tumor physiology and cancer treatment. Despite this, the molecular links between acidic pH- and hypoxia-mediated cell invasion/metastasis remain mostly unresolved. One of the mechanisms that tumor cells use for tissue invasion is the generation of invadopodia, which are actin-rich invasive plasma membrane protrusions that degrade the extracellular matrix. Here, we show that hypoxia stimulates the formation of invadopodia as well as the invasive ability of cancer cells. Inhibition or shRNA-based depletion of the Na(+/H(+ exchanger NHE-1, along with intracellular pH monitoring by live-cell imaging, revealed that invadopodia formation is associated with alterations in cellular pH homeostasis, an event that involves activation of the Na(+/H(+ exchange rate by NHE-1. Further characterization indicates that hypoxia triggered the activation of the p90 ribosomal S6 kinase (p90 RSK, which resulted in invadopodia formation and site-specific phosphorylation and activation of NHE-1. This study reveals an unsuspected role of p90RSK in tumor cell invasion and establishes p90RS kinase as a link between hypoxia and the acidic microenvironment of tumors.

  9. Functional Analysis of Promoter Region from Eel Cytochrome P450 1A1 Gene in Transgenic Medaka.

    Science.gov (United States)

    Ogino; Itakura; Kato; Aoki; Sato

    1999-07-01

    : Transcription of the CYP1A1 genes in mammals and fish is stimulated by polyaromatic hydrocarbons. DNA sequencing analysis revealed that CYP1A1 gene in eel (Anguilla japonica) contains two kinds of putative cis-acting regulatory elements, XRE (xenobiotic-responsive element) and ERE (estrogen-responsive element). XRE is known as the enhancer that is responsible for the inducibility of the genes of CYP1A1 and some other drug-metabolizing enzymes. In the eel CYP1A1 gene, XRE motifs are distributed as follows: five times in the region from -2136 to -1125 bp, XRE(-6) to (-2); once in the proximal basal promoter region, XRE(-1); and once in the first intron, XRE(+1). The region between XRE(-2) and XRE(-1) contains three ERE motifs. To investigate the function of the cis-acting regulatory elements in the eel CYP1A1 gene, recombinant plasmids prepared with its 5' upstream sequence and the structural gene for luciferase were microinjected into fertilized eggs of medaka at the one-cell stage. Hatched fry were treated with 3-methylcholanthrene, and the transcription efficiency was assayed using competitive polymerase chain reaction analysis. Deletion of the region containing the five XREs, XRE(-6) to XRE(-2), and the point mutation of XRE(-1) reduced the inducible expressions by 75% and 56%, respectively, showing apparent dependency of the drug induction on the XREs. Constitutive expression, however, was not significantly affected by deletion or disruption of the XREs. When the region between XRE(-2) and XRE(-1) containing no XREs but three ERE motifs was internally deleted, the inducible expression and the constitutive expression were reduced by 88% and 75%, respectively. Replacement of this region with a partial fragment of eel CYP1A1 complementary DNA, with slight alteration of the distance between the five XREs and XRE(-1), reduced the inducible expression and the constitutive expression by 91% and 60%, respectively. These results strongly suggest that not only XRE but

  10. Identification of a Novel De Novo Variant in the PAX3 Gene in Waardenburg Syndrome by Diagnostic Exome Sequencing: The First Molecular Diagnosis in Korea.

    Science.gov (United States)

    Jang, Mi-Ae; Lee, Taeheon; Lee, Junnam; Cho, Eun-Hae; Ki, Chang-Seok

    2015-05-01

    Waardenburg syndrome (WS) is a clinically and genetically heterogeneous hereditary auditory pigmentary disorder characterized by congenital sensorineural hearing loss and iris discoloration. Many genes have been linked to WS, including PAX3, MITF, SNAI2, EDNRB, EDN3, and SOX10, and many additional genes have been associated with disorders with phenotypic overlap with WS. To screen all possible genes associated with WS and congenital deafness simultaneously, we performed diagnostic exome sequencing (DES) in a male patient with clinical features consistent with WS. Using DES, we identified a novel missense variant (c.220C>G; p.Arg74Gly) in exon 2 of the PAX3 gene in the patient. Further analysis by Sanger sequencing of the patient and his parents revealed a de novo occurrence of the variant. Our findings show that DES can be a useful tool for the identification of pathogenic gene variants in WS patients and for differentiation between WS and similar disorders. To the best of our knowledge, this is the first report of genetically confirmed WS in Korea.

  11. STAT6 expression in glioblastoma promotes invasive growth

    International Nuclear Information System (INIS)

    Merk, Barbara C; Owens, Jennifer L; Lopes, Maria-Beatriz S; Silva, Corinne M; Hussaini, Isa M

    2011-01-01

    different shRNA- silenced clones, but all had a reduction in 3 H-Thymidine uptake ranging from 35%- 70% in U-1242MG and 40- 50% in U-87MG cells. Additionally, STAT6- depleted cells were less invasive than controls in our in vitro transmembrane invasion assay. Invasiveness was decreased by 25-40% and 30-75% in U-1242MG and U-87MG cells, respectively. The microarray analysis identified matrix metalloproteinase 1 (MMP-1) and urokinase Plasminogen activator (uPA) as potential STA6 target genes involved in the promotion of GBM cell invasion. In a Kaplan-Meier survival curve based on Rembrandt [1] gene expression microarray and clinical data, there was a significant difference in survival (P < 0.05) between glioma patients with up- and down-regulated STAT6. Decreased STAT6 expression correlated with longer survival times. In two subsets of patients with either grade IV tumors (GBM) or Grade II/III astrocytomas, there was a similar trend that however did not reach statistical significance. Taken together, these findings suggest a role for STAT6 in enhancing cell proliferation and invasion in GBM, which may explain why up-regulation of STAT6 correlates with shorter survival times in glioma patients. This report thus identifies STAT6 as a new and potentially promising therapeutic target

  12. Sphingosine 1-Phosphate (S1P) Carrier-dependent Regulation of Endothelial Barrier

    Science.gov (United States)

    Wilkerson, Brent A.; Grass, G. Daniel; Wing, Shane B.; Argraves, W. Scott; Argraves, Kelley M.

    2012-01-01

    Sphingosine 1-phosphate (S1P) is a blood-borne lysosphingolipid that acts to promote endothelial cell (EC) barrier function. In plasma, S1P is associated with both high density lipoproteins (HDL) and albumin, but it is not known whether the carriers impart different effects on S1P signaling. Here we establish that HDL-S1P sustains EC barrier longer than albumin-S1P. We showed that the sustained barrier effects of HDL-S1P are dependent on signaling by the S1P receptor, S1P1, and involve persistent activation of Akt and endothelial NOS (eNOS), as well as activity of the downstream NO target, soluble guanylate cyclase (sGC). Total S1P1 protein levels were found to be higher in response to HDL-S1P treatment as compared with albumin-S1P, and this effect was not associated with increased S1P1 mRNA or dependent on de novo protein synthesis. Several pieces of evidence indicate that long term EC barrier enhancement activity of HDL-S1P is due to specific effects on S1P1 trafficking. First, the rate of S1P1 degradation, which is proteasome-mediated, was slower in HDL-S1P-treated cells as compared with cells treated with albumin-S1P. Second, the long term barrier-promoting effects of HDL-S1P were abrogated by treatment with the recycling blocker, monensin. Finally, cell surface levels of S1P1 and levels of S1P1 in caveolin-enriched microdomains were higher after treatment with HDL-S1P as compared with albumin-S1P. Together, the findings reveal S1P carrier-specific effects on S1P1 and point to HDL as the physiological mediator of sustained S1P1-PI3K-Akt-eNOS-sGC-dependent EC barrier function. PMID:23135269

  13. Cloning and characterization of the human integrin β6 gene promoter.

    Directory of Open Access Journals (Sweden)

    Mingyan Xu

    Full Text Available The integrin β6 (ITGB6 gene, which encodes the limiting subunit of the integrin αvβ6 heterodimer, plays an important role in wound healing and carcinogenesis. The mechanism underlying ITGB6 regulation, including the identification of DNA elements and cognate transcription factors responsible for basic transcription of human ITGB6 gene, remains unknown. This report describes the cloning and characterization of the human ITGB6 promoter. Using 5'-RACE (rapid amplification of cDNA ends analysis, the transcriptional initiation site was identified. Promoter deletion analysis identified and functionally validated a TATA box located in the region -24 to -18 base pairs upstream of the ITGB6 promoter. The regulatory elements for transcription of the ITGB6 gene were predominantly located -289 to -150 from the ITGB6 promoter and contained putative binding sites for transcription factors such as STAT3 and C/EBPα. Using chromatin immunoprecipitation assays, this study has demonstrated, for the first time, that transcription factors STAT3 and C/EBPα are involved in the positive regulation of ITGB6 transcription in oral squamous cell carcinoma cells. These findings have important implications for unraveling the mechanism of abnormal ITGB6 activation in tissue remodeling and tumorigenesis.

  14. The N-Linked Outer Chain Mannans and the Dfg5p and Dcw1p Endo-α-1,6-Mannanases Are Needed for Incorporation of Candida albicans Glycoproteins into the Cell Wall

    Science.gov (United States)

    Ao, Jie; Chinnici, Jennifer L.; Maddi, Abhiram

    2015-01-01

    A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix. PMID:26048011

  15. Error-prone bypass of O6-methylguanine by DNA polymerase of Pseudomonas aeruginosa phage PaP1.

    Science.gov (United States)

    Gu, Shiling; Xiong, Jingyuan; Shi, Ying; You, Jia; Zou, Zhenyu; Liu, Xiaoying; Zhang, Huidong

    2017-09-01

    O 6 -Methylguanine (O 6 -MeG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, generally leads to G:C to A:T mutagenesis. To study DNA replication encountering O 6 -MeG by the DNA polymerase (gp90) of P. aeruginosa phage PaP1, we analyzed steady-state and pre-steady-state kinetics of nucleotide incorporation opposite O 6 -MeG by gp90 exo - . O 6 -MeG partially inhibited full-length extension by gp90 exo - . O 6 -MeG greatly reduces dNTP incorporation efficiency, resulting in 67-fold preferential error-prone incorporation of dTTP than dCTP. Gp90 exo - extends beyond T:O 6 -MeG 2-fold more efficiently than C:O 6 -MeG. Incorporation of dCTP opposite G and incorporation of dCTP or dTTP opposite O 6 -MeG show fast burst phases. The pre-steady-state incorporation efficiency (k pol /K d,dNTP ) is decreased in the order of dCTP:G>dTTP:O 6 -MeG>dCTP:O 6 -MeG. The presence of O 6 -MeG at template does not affect the binding affinity of polymerase to DNA but it weakened their binding in the presence of dCTP and Mg 2+ . Misincorporation of dTTP opposite O 6 -MeG further weakens the binding affinity of polymerase to DNA. The priority of dTTP incorporation opposite O 6 -MeG is originated from the fact that dTTP can induce a faster conformational change step and a faster chemical step than dCTP. This study reveals that gp90 bypasses O 6 -MeG in an error-prone manner and provides further understanding in DNA replication encountering mutagenic alkylation DNA damage for P. aeruginosa phage PaP1. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The effect of UGT1A1 promoter polymorphism in the development of hyperbilirubinemia and cholelithiasis in hemoglobinopathy patients.

    Directory of Open Access Journals (Sweden)

    Suad AlFadhli

    Full Text Available Present study was aimed to explore the effect of (TAn UGT1A1 gene promoter polymorphism on bilirubin metabolism, bilirubinaemia, predisposition to cholelithiasis and subsequent cholecystectomy, in Sickle-Cell Anemia (SCA and beta-Thalasemia major (bTH in Kuwaiti subjects compared to other population. This polymorphism was analyzed and correlated to total bilirubin and cholelithiasis in 270 age, gender, ethnically matched subjects (92 bTH, 116 SCA and 62 Controls using PCR, dHPLC, fragment analysis and direct sequencing. Four genotypes of UGT1A1 were detected in this study (TA6/6, TA6/7, TA6/8 and TA7/7. (TA6/8 was found only in four individuals; hence it was not included in the analysis. There was a statistically significant association of genotypes with serum total bilirubin levels in both bTH and SCA groups (p<0.001. Subjects with (TA7/7 had the highest total serum bilirubin level (178.7 ± 3.5 µmole/l. A significant association was observed between allele (TA7 and cholelithiasis development (p = 0.0001. The 40%, 67.5% and 100% of SCA with (TA6/6, (TA6/7 and (TA7/7 respectively developed cholelithiasis and were subsequently cholecystectomized. Our results confirm UGT1A1 (TA7 allele as one of the factors accounting for the hyperbilirubinemia and cholelithiasis observed in SCA and bTH.

  17. Sp1/3 and NF-1 mediate basal transcription of the human P2X1 gene in megakaryoblastic MEG-01 cells

    Directory of Open Access Journals (Sweden)

    Ennion Steven J

    2006-03-01

    Full Text Available Abstract Background P2X1 receptors play an important role in platelet function as they can induce shape change, granule centralization and are also involved in thrombus formation. As platelets have no nuclei, the level of P2X1 expression depends on transcriptional regulation in megakaryocytes, the platelet precursor cell. Since nothing is known about the molecular mechanisms regulating megakaryocytic P2X1 expression, this study aimed to identify and functionally characterize the P2X1 core promoter utilized in the human megakaryoblastic cell line MEG-01. Results In order to identify cis-acting elements involved in the transcriptional regulation of P2X1 expression, the ability of 4.7 kb P2X1 upstream sequence to drive luciferase reporter gene expression was tested. Low promoter activity was detected in proliferating MEG-01 cells. This activity increased 20-fold after phorbol-12-myristate-13-acetate (PMA induced differentiation. A transcription start site was detected 365 bp upstream of the start codon by primer extension. Deletion analysis of reporter constructs indicated a core promoter located within the region -68 to +149 bp that contained two Sp1 sites (named Sp1a and Sp1b and an NF-1 site. Individual mutations of Sp1b or NF-1 binding sites severely reduced promoter activity whereas triple mutation of Sp1a, Sp1b and NF-1 sites completely abolished promoter activity in both untreated and PMA treated cells. Sp1/3 and NF-1 proteins were shown to bind their respective sites by EMSA and interaction of Sp1/3, NF-1 and TFIIB with the endogenous P2X1 core promoter in MEG-01 cells was demonstrated by chromatin immunoprecipitation. Alignment of P2X1 genes from human, chimp, rat, mouse and dog revealed consensus Sp1a, Sp1b and NF-1 binding sites in equivalent positions thereby demonstrating evolutionary conservation of these functionally important sites. Conclusion This study has identified and characterized the P2X1 promoter utilized in MEG-01 cells and

  18. Tet1 and Tet2 maintain mesenchymal stem cell homeostasis via demethylation of the P2rX7 promoter.

    Science.gov (United States)

    Yang, Ruili; Yu, Tingting; Kou, Xiaoxing; Gao, Xiang; Chen, Chider; Liu, Dawei; Zhou, Yanheng; Shi, Songtao

    2018-06-01

    Ten-eleven translocation (Tet) family-mediated DNA oxidation represents an epigenetic modification capable of converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), which regulates various biological processes. However, it is unknown whether Tet family affects mesenchymal stem cells (MSCs) or the skeletal system. Here we show that depletion of Tet1 and Tet2 results in impaired self-renewal and differentiation of bone marrow MSCs (BMMSCs) and a significant osteopenia phenotype. Tet1 and Tet2 deficiency reduces demethylation of the P2rX7 promoter and downregulates exosome release, leading to intracellular accumulation of miR-297a-5p, miR-297b-5p, and miR-297c-5p. These miRNAs inhibit Runx2 signaling to impair BMMSC function. We show that overexpression of P2rX7 rescues the impaired BMMSCs and osteoporotic phenotype in Tet1 and Tet2 double knockout mice. These results indicate that Tet1 and Tet2 play a critical role in maintaining BMMSC and bone homeostasis through demethylation of P2rX7 to control exosome and miRNA release. This Tet/P2rX7/Runx2 cascade may serve as a target for the development of novel therapies for osteopenia disorders.

  19. p27Kip1 Modulates Axonal Transport by Regulating α-Tubulin Acetyltransferase 1 Stability

    Directory of Open Access Journals (Sweden)

    Giovanni Morelli

    2018-05-01

    Full Text Available Summary: The protein p27Kip1 plays roles that extend beyond cell-cycle regulation during cerebral cortex development, such as the regulation of neuronal migration and neurite branching via signaling pathways that converge on the actin and microtubule cytoskeletons. Microtubule-dependent transport is essential for the maturation of neurons and the establishment of neuronal connectivity though synapse formation and maintenance. Here, we show that p27Kip1 controls the transport of vesicles and organelles along the axon of mice cortical projection neurons in vitro. Moreover, suppression of the p27Kip1 ortholog, dacapo, in Drosophila melanogaster disrupts axonal transport in vivo, leading to the reduction of locomotor activity in third instar larvae and adult flies. At the molecular level, p27Kip1 stabilizes the α-tubulin acetyltransferase 1, thereby promoting the acetylation of microtubules, a post-translational modification required for proper axonal transport. : Morelli et al. report that p27Kip1/Dacapo modulates the acetylation of microtubules in axons via stabilization of ATAT1, the main α-tubulin acetyltransferase. Its conditional loss leads to the reduction of bidirectional axonal transport of vesicles and mitochondria in vitro in mice and in vivo in Drosophila. Keywords: p27Kip1, dacapo, acetylation, axonal transport, ATAT1, alpha-tubulin, HDAC6, Drosophila, mouse, cerebral cortex

  20. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens

    OpenAIRE

    Pang, Rui; Chen, Meng; Liang, Zhikun; Yue, Xiangzhao; Ge, Hu; Zhang, Wenqing

    2016-01-01

    The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat bod...

  1. Liver Tumor Promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Dependent on the Aryl Hydrocarbon Receptor and TNF/IL-1 Receptors

    Science.gov (United States)

    Kennedy, Gregory D.; Nukaya, Manabu; Moran, Susan M.; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S.; Pitot, Henry C.; Drinkwater, Norman R.; Bradfield, Christopher A.

    2014-01-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn (“dioxin”). To this end, we first employed congenic mice homozygous for either the Ahrb1 or Ahrd alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by “interleukin-1 (IL-1)-like” inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the “IL-1-like” cytokines. PMID:24718703

  2. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana-propagated Plum pox virus C isolates to either host.

    Science.gov (United States)

    Calvo, María; Malinowski, Tadeusz; García, Juan Antonio

    2014-02-01

    Plum pox virus (PPV) C is one of the less common PPV strains and specifically infects cherry trees in nature. Making use of two PPV-C isolates that display different pathogenicity features, i.e., SwCMp, which had been adapted to Nicotiana species, and BY101, which had been isolated from cherry rootstock L2 (Prunus lannesiana) and propagated only in cherry species, we have generated two infective full-length cDNA clones in order to determine which viral factors are involved in the adaptation to each host. According to our results, the C-P3(PIPO)/6K1/N-CI (cylindrical inclusion) region contains overlapping but not coincident viral determinants involved in symptoms development, local viral amplification, and systemic movement capacity. Amino acid changes in this region promoting the adaptation to N. benthamiana or P. avium have trade-off effects in the alternative host. In both cases, adaptation can be achieved through single amino acid changes in the NIapro protease recognition motif between 6K1 and CI or in nearby sequences. Thus, we hypothesize that the potyvirus polyprotein processing could depend on specific host factors and the adaptation of PPV-C isolates to particular hosts relies on a fine regulation of the proteolytic cleavage of the 6K1-CI junction.

  3. Interleukin 1 beta promoter polymorphism is associated with keratoconus in a Japanese population.

    Science.gov (United States)

    Mikami, Takenori; Meguro, Akira; Teshigawara, Takeshi; Takeuchi, Masaki; Uemoto, Riyo; Kawagoe, Tatsukata; Nomura, Eiichi; Asukata, Yuri; Ishioka, Misaki; Iwasaki, Miki; Fukagawa, Kazumi; Konomi, Kenji; Shimazaki, Jun; Nishida, Teruo; Mizuki, Nobuhisa

    2013-01-01

    Polymorphisms in the interleukin 1 alpha (IL1A) and IL1B gene regions were previously associated with keratoconus in a Korean population. In the present study, we investigated whether the IL1A and IL1B polymorphisms are associated with keratoconus in a Japanese population. A total of 169 Japanese patients with keratoconus and 390 Japanese healthy controls were recruited. We genotyped one IL1A single nucleotide polymorphism (SNP; rs2071376) and two IL1B SNPs (rs1143627 and rs16944) to compare the frequencies of alleles, genotypes, and haplotypes between cases and controls. Statistically significant association was observed for rs1143627 (-31 T>C) in the IL1B promoter region; the T allele of rs1143627 was associated with an increased risk of keratoconus (p=0.014, corrected p value [pc]=0.043, odds ratio=1.38). The C allele of rs16944 (-511 C>T) in the IL1B promoter region had a 1.33-fold increased risk of keratoconus, although this increase did not reach statistical significance (p=0.033, pc=0.098). The TT genotype of rs1143627 was weakly associated with an increased risk of keratoconus (p=0.033, pc=0.099, odds ratio=1.52). However, no significant differences were found in the allele and genotype frequencies between the cases and controls for rs2071376 in IL1A. Regarding haplotypic diversity, the haplotype created by the T allele of rs1143627 and C allele of rs16944 was associated with a 1.72-fold increased risk of keratoconus (p=4.0×10(-5), pc=1.6×10(-4)). Our results replicate associations reported recently in a Korean population. Thus, IL1B may play an important role in the development of keratoconus through genetic polymorphisms.

  4. Common variants on 2p16.1, 6p22.1 and 10q24.32 are associated with schizophrenia in Han Chinese population.

    Science.gov (United States)

    Yu, H; Yan, H; Li, J; Li, Z; Zhang, X; Ma, Y; Mei, L; Liu, C; Cai, L; Wang, Q; Zhang, F; Iwata, N; Ikeda, M; Wang, L; Lu, T; Li, M; Xu, H; Wu, X; Liu, B; Yang, J; Li, K; Lv, L; Ma, X; Wang, C; Li, L; Yang, F; Jiang, T; Shi, Y; Li, T; Zhang, D; Yue, W

    2017-07-01

    Many schizophrenia susceptibility loci have been identified through genome-wide association studies (GWASs) in European populations. However, until recently, schizophrenia GWASs in non-European populations were limited to small sample sizes and have yielded few loci associated with schizophrenia. To identify genetic risk variations for schizophrenia in the Han Chinese population, we performed a two-stage GWAS of schizophrenia comprising 4384 cases and 5770 controls, followed by independent replications of 13 single-nucleotide polymorphisms in an additional 4339 schizophrenia cases and 7043 controls of Han Chinese ancestry. Furthermore, we conducted additional analyses based on the results in the discovery stage. The combined analysis confirmed evidence of genome-wide significant associations in the Han Chinese population for three loci, at 2p16.1 (rs1051061, in an exon of VRK2, P=1.14 × 10 -12 , odds ratio (OR)=1.17), 6p22.1 (rs115070292 in an intron of GABBR1, P=4.96 × 10 -10 , OR=0.77) and 10q24.32 (rs10883795 in an intron of AS3MT, P=7.94 × 10 -10 , OR=0.87; rs10883765 at an intron of ARL3, P=3.06 × 10 -9 , OR=0.87). The polygenic risk score based on Psychiatric Genomics Consortium schizophrenia GWAS data modestly predicted case-control status in the Chinese population (Nagelkerke R 2 : 1.7% ~5.7%). Our pathway analysis suggested that neurological biological pathways such as GABAergic signaling, dopaminergic signaling, cell adhesion molecules and myelination pathways are involved in schizophrenia. These findings provide new insights into the pathogenesis of schizophrenia in the Han Chinese population. Further studies are needed to establish the biological context and potential clinical utility of these findings.

  5. A promoter within the E6 ORF of human papillomavirus type 16 contributes to the expression of the E7 oncoprotein from a monocistronic mRNA

    DEFF Research Database (Denmark)

    Glahder, Jacob-Andreas Harald; Hansen, Christina N; Vinther, Jeppe

    2003-01-01

    RNA that encodes E7 as the first open reading frame (ORF) has been identified. We recently identified a transcription initiation site within the E6 ORF of HPV-16 at nt 542. In the present study we have characterized the P542 promoter, which putatively controls monocistronic expression of E7. The monocistronic m...... from nt 226 to 409. Furthermore, the translation initiation of E7 is most abundant from the monocistronic mRNA. We have also shown that the P542 promoter is downregulated by the transcription factor activator protein 4 (AP-4) and the differentiation-dependent factor hSkn-1a, both binding downstream...... of the transcription initiation site. In conclusion, we have found that P542 is a relatively weak promoter compared with P97 and may be downregulated in differentiated epithelial cells....

  6. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway.

    Science.gov (United States)

    Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan

    2016-04-07

    Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised.

  7. Bioinformatic analysis of Msx1 and Msx2 involved in craniofacial development.

    Science.gov (United States)

    Dai, Jiewen; Mou, Zhifang; Shen, Shunyao; Dong, Yuefu; Yang, Tong; Shen, Steve Guofang

    2014-01-01

    Msx1 and Msx2 were revealed to be candidate genes for some craniofacial deformities, such as cleft lip with/without cleft palate (CL/P) and craniosynostosis. Many other genes were demonstrated to have a cross-talk with MSX genes in causing these defects. However, there is no systematic evaluation for these MSX gene-related factors. In this study, we performed systematic bioinformatic analysis for MSX genes by combining using GeneDecks, DAVID, and STRING database, and the results showed that there were numerous genes related to MSX genes, such as Irf6, TP63, Dlx2, Dlx5, Pax3, Pax9, Bmp4, Tgf-beta2, and Tgf-beta3 that have been demonstrated to be involved in CL/P, and Fgfr2, Fgfr1, Fgfr3, and Twist1 that were involved in craniosynostosis. Many of these genes could be enriched into different gene groups involved in different signaling ways, different craniofacial deformities, and different biological process. These findings could make us analyze the function of MSX gens in a gene network. In addition, our findings showed that Sumo, a novel gene whose polymorphisms were demonstrated to be associated with nonsyndromic CL/P by genome-wide association study, has protein-protein interaction with MSX1, which may offer us an alternative method to perform bioinformatic analysis for genes found by genome-wide association study and can make us predict the disrupted protein function due to the mutation in a gene DNA sequence. These findings may guide us to perform further functional studies in the future.

  8. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Yuan, Yang; Wang, Weixing; Li, Huizhong; Yu, Yongwei; Tao, Jin; Huang, Shengdong; Zeng, Zhiyong

    2015-01-01

    Previous study showed that mitochondrial ND6 (mitND6) gene missense mutation resulted in NADH dehydrogenase deficiency and was associated with tumor metastasis in several mouse tumor cell lines. In the present study, we investigated the possible role of mitND6 gene nonsense and missense mutations in the metastasis of human lung adenocarcinoma. The presence of mitND6 gene mutations was screened by DNA sequencing of tumor tissues from 87 primary lung adenocarcinoma patients and the correlation of the mutations with the clinical features was analyzed. In addition, we constructed cytoplasmic hybrid cells with denucleared primary lung adenocarcinoma cell as the mitochondria donor and mitochondria depleted lung adenocarcinoma A549 cell as the nuclear donor. Using these cells, we studied the effects of mitND6 gene nonsense and missense mutations on cell migration and invasion through wounding healing and matrigel-coated transwell assay. The effects of mitND6 gene mutations on NADH dehydrogenase activity and ROS production were analyzed by spectrophotometry and flow cytometry. mitND6 gene nonsense and missense mutations were detected in 11 of 87 lung adenocarcinoma specimens and was correlated with the clinical features including age, pathological grade, tumor stage, lymph node metastasis and survival rate. Moreover, A549 cell containing mitND6 gene nonsense and missense mutation exhibited significantly lower activity of NADH dehydrogenase, higher level of ROS, higher capacity of cell migration and invasion, and higher pAKT and pERK1/ERK2 expression level than cells with the wild type mitND6 gene. In addition, NADH dehydrogenase inhibitor rotenone was found to significantly promote the migration and invasion of A549 cells. Our data suggest that mitND6 gene nonsense and missense mutation might promote cell migration and invasion in lung adenocarcinoma, probably by NADH dehydrogenase deficiency induced over-production of ROS

  9. D-6-Deoxy-myo-inositol 1,3,4,5-tetrakisphosphate, a mimic of D-myo-inositol 1,3,4,5-tetrakisphosphate: biological activity and pH-dependent conformational properties

    International Nuclear Information System (INIS)

    Horne, Graeme; Maechling, Clarisse; Fleig, Andrea; Hirata, Masato; Penner, Reinhold; Spiess, Bernard; Potter, Barry V.L.

    2004-01-01

    D-6-Deoxy-myo-inositol 1,3,4,5-tetrakisphosphate [D-6-deoxy-Ins(1,3,4,5)P 4 ] 3 is a novel deoxygenated analogue of D-myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P 4 ] 2, a central and enigmatic molecule in the polyphosphoinositide pathway of cellular signalling. D-6-Deoxy-Ins(1,3,4,5)P 4 is a moderate inhibitor of Ins(1,4,5)P 3 5-phosphatase [1.8 μM] compared to Ins(1,3,4,5)P 4 [0.15 μM] and similar to that of L-Ins(1,3,4,5)P 4 [1.8 μM]. In displacement of [ 3 H] Ins(1,4,5)P 3 from the rat cerebellar Ins(1,4,5)P 3 receptor, while slightly weaker [IC 50 =800 nM] than that of D-Ins(1,3,4,5)P 4 [IC 50 =220 nM], 3 is less markedly different and again similar to that of L-Ins(1,3,4,5)P 4 [IC 50 =660 nM]. 3 is an activator of I CRAC when inward currents are measured in RBL-2H3-M1 cells using patch-clamp electrophysiological techniques with a facilitation curve different to that of Ins(1,3,4,5)P 4 . Physicochemical properties were studied by potentiometric 31 P and 1 H NMR titrations and were similar to those of Ins(1,3,4,5)P 4 apart from the observation of a biphasic titration curve for the P1 phosphate group. A novel vicinal phosphate charge-induced conformational change of the inositol ring above pH 10 was observed for D-6-deoxy-Ins(1,3,4,5)P 4 that would normally be hindered because of the central stabilising role played by the 6-OH group in Ins(1,3,4,5)P 4 . We conclude that the 6-OH group in Ins(1,3,4,5)P 4 is crucial for its physicochemical behaviour and biological properties of this key inositol phosphate

  10. FISH studies in a girl with sporadic aniridia and an apparently balanced de novo t(11;13(p13;q33 translocation detect a microdeletion involving the WAGR region

    Directory of Open Access Journals (Sweden)

    J.C. Llerena Jr.

    2000-09-01

    Full Text Available Conventional cytogenetic studies on a female infant with sporadic aniridia revealed what appeared to be a balanced de novo t(11;13 (p13;q33 translocation. Fluorescence in situ hybridization (FISH investigations, however, detected the presence of a cryptic 11p13p14 deletion which included the WAGR region and involved approximately 7.5 Mb of DNA, including the PAX6 and WT1 genes. These results account for the patient's aniridia, and place her at high risk for developing Wilms' tumour. The absence of mental retardation in the patient suggests that the position of the distal breakpoint may also help to refine the mental retardation locus in the WAGR contiguous gene syndrome (Wilms', aniridia, genital anomalies and mental retardation.O estudo citogenético convencional em uma menina com aniridia esporádica resultou em uma aparente translocação balanceada t(11;13(p13;q33 de novo. Entretanto, o estudo citogenético pela hibridação in situ fluorescente (FISH detectou a presença de uma deleção críptica 11p13p14, incluindo a região WAGR e envolvendo aproximadamente 7.5 Mb de DNA, deletando os genes PAX6 e WT1. Estes resultados correlacionam-se com o quadro clínico da paciente e a coloca em alto risco de desenvolver tumor de Wilms. A ausência de retardo mental na paciente indica que a posição distal do ponto de quebra poderá refinar o mapeamento do locus retardo mental na síndrome de genes contíguos WAGR (Wilms, aniridia, anomalias genitais e retardo mental.

  11. Interferon-α regulates glutaminase 1 promoter through STAT1 phosphorylation: relevance to HIV-1 associated neurocognitive disorders.

    Directory of Open Access Journals (Sweden)

    Lixia Zhao

    Full Text Available HIV-1 associated neurocognitive disorders (HAND develop during progressive HIV-1 infection and affect up to 50% of infected individuals. Activated microglia and macrophages are critical cell populations that are involved in the pathogenesis of HAND, which is specifically related to the production and release of various soluble neurotoxic factors including glutamate. In the central nervous system (CNS, glutamate is typically derived from glutamine by mitochondrial enzyme glutaminase. Our previous study has shown that glutaminase is upregulated in HIV-1 infected monocyte-derived-macrophages (MDM and microglia. However, how HIV-1 leads to glutaminase upregulation, or how glutaminase expression is regulated in general, remains unclear. In this study, using a dual-luciferase reporter assay system, we demonstrated that interferon (IFN α specifically activated the glutaminase 1 (GLS1 promoter. Furthermore, IFN-α treatment increased signal transducer and activator of transcription 1 (STAT1 phosphorylation and glutaminase mRNA and protein levels. IFN-α stimulation of GLS1 promoter activity correlated to STAT1 phosphorylation and was reduced by fludarabine, a chemical that inhibits STAT1 phosphorylation. Interestingly, STAT1 was found to directly bind to the GLS1 promoter in MDM, an effect that was dependent on STAT1 phosphorylation and significantly enhanced by IFN-α treatment. More importantly, HIV-1 infection increased STAT1 phosphorylation and STAT1 binding to the GLS1 promoter, which was associated with increased glutamate levels. The clinical relevance of these findings was further corroborated with investigation of post-mortem brain tissues. The glutaminase C (GAC, one isoform of GLS1 mRNA levels in HIV associated-dementia (HAD individuals correlate with STAT1 (p<0.01, IFN-α (p<0.05 and IFN-β (p<0.01. Together, these data indicate that both HIV-1 infection and IFN-α treatment increase glutaminase expression through STAT1 phosphorylation and

  12. TAF6delta controls apoptosis and gene expression in the absence of p53.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Wilhelm

    Full Text Available BACKGROUND: Life and death decisions of metazoan cells hinge on the balance between the expression of pro- versus anti-apoptotic gene products. The general RNA polymerase II transcription factor, TFIID, plays a central role in the regulation of gene expression through its core promoter recognition and co-activator functions. The core TFIID subunit TAF6 acts in vitro as an essential co-activator of transcription for the p53 tumor suppressor protein. We previously identified a splice variant of TAF6, termed TAF6delta that can be induced during apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the impact of TAF6delta on cell death and gene expression, we have employed modified antisense oligonucleotides to enforce expression of endogenous TAF6delta. The induction of endogenous TAF6delta triggered apoptosis in tumor cell lines, including cells devoid of p53. Microarray experiments revealed that TAF6delta activates gene expression independently of cellular p53 status. CONCLUSIONS: Our data define TAF6delta as a pivotal node in a signaling pathway that controls gene expression programs and apoptosis in the absence of p53.

  13. GRIM-19 disrupts E6/E6AP complex to rescue p53 and induce apoptosis in cervical cancers.

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    Full Text Available BACKGROUND: Our previous studies showed a down-regulation of GRIM-19 in primary human cervical cancers, and restoration of GRIM-19 induced tumor regression. The induction of tumor suppressor protein p53 ubiquitination and degradation by E6 oncoportein of high risk-HPV through forming a stable complex with E6AP is considered as a critical mechanism for cervical tumor development. The aims of this study were to determine the potential role of GRIM-19 in rescuing p53 protein and inducing cervical cancer cell apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The protein levels of GRIM-19 and p53 were detected in normal cervical tissues from 45 patients who underwent hysterectomy for reasons other than neoplasias of either the cervix or endometrium, and cervical cancer tissues from 60 patients with non-metastatic squamous epithelial carcinomas. Coimmunoprecipitation and GST pull-down assay were performed to examine the interaction of GRIM-19 with 18E6 and E6AP in vivo and in vitro respectively. The competition of 18E6 with E6AP in binding GRIM-19 by performing competition pull-down assays was designed to examine the disruption of E6/E6AP complex by GRIM-19. The augment of E6AP ubiquitination by GRIM-19 was detected in vivo and in vitro ubiquitination assay. The effects of GRIM-19-dependent p53 accumulation on cell proliferation, cell cycle, apoptosis were explored by MTT, flow cytometry and transmission electron microscopy respectively. The tumor suppression was detected by xenograft mouse model. CONCLUSION/SIGNIFICANCE: The levels of GRIM-19 and p53 were concurrently down regulated in cervical cancers. The restoration of GRIM-19 can induce ubiquitination and degradation of E6AP, and disrupt the E6/E6AP complex through the interaction of N-terminus of GRIM-19 with both E6 and E6AP, which protected p53 from degradation and promoted cell apoptosis. Tumor xenograft studies also revealed the suppression of p53 degradation in presence of GRIM-19. These data

  14. 2,2,3,3,5,5,6,6-Octa-p-tolyl-1,4-dioxa-2,3,5,6-tetragermacyclohexane dichloromethane disolvate

    Directory of Open Access Journals (Sweden)

    Monika L. Amadoruge

    2009-09-01

    Full Text Available The title compound, C56H56Ge4O2·2CH2Cl2 or Tol8Ge4O2·2CH2Cl2 (Tol = p-CH3C6H4, was obtained serendipitously during the attempted synthesis of a branched oligogermane from Tol3GeNMe2 and PhGeH3. The molecule contains an inversion center in the middle of the Ge4O2 ring which is in a chair conformation. The Ge—Ge bond distance is 2.4418 (5 Å and the Ge—O bond distances are 1.790 (2 and 1.785 (2 Å. The torsion angles within the Ge4O2 ring are −56.7 (1 and 56.1 (1° for the Ge—Ge—O—Ge angles and −43.9 (1° for the O—Ge—Ge—O angle.

  15. Novel cytochrome P450 (CYP6D1) and voltage sensitive sodium channel (Vssc) alleles of the house fly (Musca domestica) and their roles in pyrethroid resistance.

    Science.gov (United States)

    Pan, Jing; Yang, Chan; Liu, Yan; Gao, Qi; Li, Mei; Qiu, Xinghui

    2018-04-01

    The house fly Musca domestica is an important disease vector. Point mutation-mediated target-site insensitivity of the voltage sensitive sodium channel (VSSC) and increased detoxification mediated by cytochrome P450 (CYP6D1) overexpression have been characterized as two major mechanisms of pyrethroid resistance. In this study, genetic mutations in the Vssc and CYP6D1 genes and their contribution to pyrethroid resistance were investigated. Twelve lines of house flies homozygous for four genotypes were established. House flies carrying the VSSC 1014F mutation and overexpressing CYP6D1 had higher resistance to pyrethroids than those carrying 1014F alone. The presence of the 15-bp insert in the promoter region of the CYP6D1 gene did not necessarily result in a significant increase in CYP6D1 mRNA and pyrethroid resistance levels. A novel Vssc allele carrying two mutations (G1924D and G2004S) in combination with the classic 1014F and a novel CYP6D1 allele that is very similar to CYP6D1v1 were identified in Chinese house flies. This work demonstrates the effect of genetic mutations in CYP6D1 and Vssc on the susceptibility of house flies to pyrethroids, and verifies that 15-bp insert-containing CYP6D1 alleles have a single origin. These findings offer insights into the evolution of insecticide resistance and have implications for house fly control. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Association between polymorphisms at promoters of XRCC5 and XRCC6 genes and risk of breast cancer.

    Science.gov (United States)

    Rajaei, Mehrdad; Saadat, Iraj; Omidvari, Shahpour; Saadat, Mostafa

    2014-04-01

    Variation in DNA repair genes is one of the mechanisms that may lead to variation in DNA repair capacity. Ku, a heterodimeric DNA-binding complex, is directly involved in repair of DNA double-strand breaks. Ku consists of two subunits, Ku70 and Ku80, which are encoded by the XRCC6 and XRCC5 genes, respectively. In the present study, we investigated whether common genetic variant in variable number of tandem repeats (VNTR) XRCC5 and T-991C XRCC6 was associated with an altered risk of breast cancer. The present study included 407 females with breast cancer and 395 age frequency-matched controls which were randomly selected from the healthy female blood donors. The XRCC5 and XRCC6 polymorphisms were determined using PCR-based methods. For XRCC5 polymorphism, in comparison with the 1R/1R genotype, the 0R/0R genotype increased breast cancer risk (OR 9.55, 95%CI 1.19-76.64, P = 0.034). The 1R/3R genotype compared with 1R/1R genotype decreased the risk of breast cancer (Fisher's exact test P = 0.015). There was no association between T-991C polymorphism of XRCC6 and breast cancer risk. Mean of age at diagnosis of breast cancer for 0, 1, 2, 3, and >4 repeat in XRCC5 were 39.2, 41.9, 44.3, 45.8, and 47.3 years, respectively. The Kaplan-Meier survival analysis revealed that the number of repeat was associated with age at diagnosis of breast cancer (log rank statistic = 13.90, df = 4, P = 0.008). The findings of the present study revealed that either breast cancer risk or age at diagnosis of breast cancer was associated with the VNTR polymorphism at promoter region of XRCC5.

  17. A novel functional polymorphism in the Cdc6 promoter is associated with the risk for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Xiong Xingdong; Fang Jianhong; Qiu Fuen; Zhao Jing; Cheng Jiasen; Yuan Yunfei; Li Shengping; Zhuang Shimei

    2008-01-01

    Cdc6 is essential for DNA replication and its deregulation is involved in carcinogenesis. To date, the biological significance of the polymorphism in Cdc6 promoter is still unknown. In this study, we aimed to evaluate the influence of the Cdc6 -515A>G polymorphism (rs4134994) on the individual's susceptibility to cancer and on the function of Cdc6. The Cdc6 -515A>G polymorphism was genotyped in 387 hepatocellular carcinoma (HCC) and 389 age- and sex-matched healthy subjects. The association between the genotypes and the risk for HCC was then estimated by unconditional logistic regression analysis with adjustment for age, sex and HBV status. Compared with the AA homozygotes, the homozygous GG genotype (adjusted OR = 0.36, 95% confidence interval (CI) = 0.18-0.72, P = 0.004) or the combined AG/GG genotypes (adjusted OR = 0.56, 95% CI = 0.36-0.86, P = 0.008) were statistically significantly associated with the reduced risk for HCC. Moreover, the analysis using luciferase reporter system showed that the G-allelic Cdc6 promoter displayed a decreased transcriptional activity compared with the A-allelic one. These results indicate that the individuals with G allele may have reduced Cdc6 expression and are therefore in reduced risk for HCC. Further investigation using electrophoretic mobility shift assay (EMSA) revealed that the G allele had a stronger binding strength to nuclear protein(s) which might function as negative regulator(s) for Cdc6 transcription. Our findings suggest that the -515A>G polymorphism may affect the Cdc6 promoter binding affinity with nuclear protein(s) and in turn the Cdc6 expression, which consequently modulates the individual's susceptibility to HCC

  18. Expression profiling of O6 methylguanine-DNA-methyl transferase in prolactinomas: a correlative study of promoter methylation and pathological features in 136 cases

    International Nuclear Information System (INIS)

    Jiang, Xiao-Bing; Hu, Bin; He, Dong-Sheng; Mao, Zhi-Gang; Wang, Xin; Song, Bing-Bing; Zhu, Yong-Hong; Wang, Hai-Jun

    2015-01-01

    Low-level expression of O 6 methylguanine-DNA-methyl transferase (MGMT) prolactinomas has been noted previously in case reports, although what modulates MGMT expression remains unclear. This study therefore aimed to delineate the factors regulating MGMT expression in prolactinomas. We retrospectively reviewed 136 prolactinoma patients who were treated in our center between January 2000 and September 2013. Expression of MGMT, Ki-67, and p53 protein were examined by immunohistochemical staining, and MGMT promoter methylation evaluated with methylation-specific PCR. MGMT immunopositivity was <25 % in 106/136 tumor specimens (77.94 %). MGMT immunoexpression was positively correlated with age (r = 0.251, p = 0.003), but inversely correlated with p53 staining (r = −0.153, p = 0.021). Moreover, reduced MGMT expression was more frequent in atypical prolactinomas (p = 0.044). Methylated MGMT promoter was confirmed in 10/46 specimens (21.7 %), all of which had low level or absent MGMT staining. Both p53 protein (r = −0.33, p = 0.025) and promoter methylation (r = −0.331, p = 0.025) were negatively associated with MGMT expression. Multivariate logistic analysis indicated that age (odds ratio [OR] = 1.127. 95 % confidence interval [CI] 1.027–1.236, p = 0.012) and p53 (OR = 0.116. 95 % CI 0.018–0.761, p = 0.025) staining were independent determents of MGMT expression. The majority of prolactinomas, especially atypical prolactinomas, showed low-level or no MGMT immunoexpression, providing a rationale for the utility of temozolomide as an alternative to managing prolactinomas. In summary, epigenetic and transcriptional regulation are involved in silencing MGMT expression

  19. Detección de mutaciones en los genes PAX3 y MITF en pacientes colombianos con Síndrome Waardenburg

    Directory of Open Access Journals (Sweden)

    N. Gélvez

    2001-07-01

    Full Text Available Identificar las mutaciones en los genes PAX3 y MITF, responsables del Síndrome de Waardenburg en Colombia, determinar su frecuencia y establecer la correlación genotipo-fenotipo.

  20. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation.

    Science.gov (United States)

    Tsai, Hsing-Chuan; Han, May H

    2016-07-01

    Sphingosine-1-phosphate (S1P) and S1P receptors (S1PR) are ubiquitously expressed. S1P-S1PR signaling has been well characterized in immune trafficking and activation in innate and adaptive immune systems. However, the full extent of its involvement in the pathogenesis of autoimmune diseases is not well understood. FTY720 (fingolimod), a non-selective S1PR modulator, significantly decreased annualized relapse rates in relapsing-remitting multiple sclerosis (MS). FTY720, which primarily targets S1P receptor 1 as a functional antagonist, arrests lymphocyte egress from secondary lymphoid tissues and reduces neuroinflammation in the central nervous system (CNS). Recent studies suggest that FTY720 also decreases astrogliosis and promotes oligodendrocyte differentiation within the CNS and may have therapeutic benefit to prevent brain atrophy. Since S1P signaling is involved in multiple immune functions, therapies targeting S1P axis may be applicable to treat autoimmune diseases other than MS. Currently, over a dozen selective S1PR and S1P pathway modulators with potentially superior therapeutic efficacy and better side-effect profiles are in the pipeline of drug development. Furthermore, newly characterized molecules such as apolipoprotein M (ApoM) (S1P chaperon) and SPNS2 (S1P transporter) are also potential targets for treatment of autoimmune diseases. Finally, the application of therapies targeting S1P and S1P signaling pathways may be expanded to treat several other immune-mediated disorders (such as post-infectious diseases, post-stroke and post-stroke dementia) and inflammatory conditions beyond their application in primary autoimmune diseases.

  1. CGI-99 promotes breast cancer metastasis via autocrine interleukin-6 signaling.

    Science.gov (United States)

    Lin, C; Liao, W; Jian, Y; Peng, Y; Zhang, X; Ye, L; Cui, Y; Wang, B; Wu, X; Xiong, Z; Wu, S; Li, J; Wang, X; Song, L

    2017-06-29

    Metastatic relapse remains largely incurable and a major challenge of clinical management in breast cancer, but the underlying mechanisms are poorly understood. Herein, we report that CGI-99 is overexpressed in breast cancer tissues from patients with metastatic recurrence within 5 years. High CGI-99 significantly predicts poorer 5-year metastasis-free patient survival. We find that CGI-99 increases breast cancer stem cell properties, and potentiates efficient tumor lung colonization and outgrowth in vivo. Furthermore, we demonstrate that CGI-99 activates the autocrine interleukin-6 (IL-6)/STAT3 signaling by increasing the accumulation and activity of RNA polymerase II and p300 cofactor at the proximal promoter of IL-6. Importantly, delivery of the IL-6-receptor humanized monoclonal antibody tocilizumab robustly abrogates CGI-99-induced metastasis in vivo. Finally, we find that high levels of CGI-99 are significantly correlated with STAT3 hyperactivation in breast cancer patients. These findings reveal a potential mechanism for constitutive activation of autocrine IL-6/STAT3 signaling and may suggest a novel target for clinical intervention in breast cancer.

  2. Tumour MLH1 promoter region methylation testing is an effective prescreen for Lynch Syndrome (HNPCC).

    Science.gov (United States)

    Newton, K; Jorgensen, N M; Wallace, A J; Buchanan, D D; Lalloo, F; McMahon, R F T; Hill, J; Evans, D G

    2014-12-01

    Lynch syndrome (LS) patients have DNA mismatch repair deficiency and up to 80% lifetime risk of colorectal cancer (CRC). Screening of mutation carriers reduces CRC incidence and mortality. Selection for constitutional mutation testing relies on family history (Amsterdam and Bethesda Guidelines) and tumour-derived biomarkers. Initial biomarker analysis uses mismatch repair protein immunohistochemistry and microsatellite instability. Abnormalities in either identify mismatch repair deficiency but do not differentiate sporadic epigenetic defects, due to MLH1 promoter region methylation (13% of CRCs) from LS (4% of CRCs). A diagnostic biomarker capable of making this distinction would be valuable. This study compared two biomarkers in tumours with mismatch repair deficiency; quantification of methylation of the MLH1 promoter region using a novel assay and BRAF c.1799T>A, p.(Val600Glu) mutation status in the identification of constitutional mutations. Tumour DNA was extracted (formalin fixed, paraffin embedded, FFPE tissue) and pyrosequencing used to test for MLH1 promoter methylation and presence of the BRAF c.1799T>A, p.(Val600Glu) mutation 71 CRCs from individuals with pathogenic MLH1 mutations and 73 CRCs with sporadic MLH1 loss. Specificity and sensitivity was compared. Unmethylated MLH1 promoter: sensitivity 94.4% (95% CI 86.2% to 98.4%), specificity 87.7% (95% CI 77.9% to 94.2%), Wild-type BRAF (codon 600): sensitivity 65.8% (95% CI 53.7% to 76.5%), specificity 98.6% (95% CI 92.4% to 100.0%) for the identification of those with pathogenic MLH1 mutations. Quantitative MLH1 promoter region methylation using pyrosequencing is superior to BRAF codon 600 mutation status in identifying constitutional mutations in mismatch repair deficient tumours. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. NF-{kappa}B p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Gao [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yeh, P Y [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China); Lu, Y -S [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan, ROC (China); Chang, W C [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Kuo, M -L [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Cheng, A -L [Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan (China); National Center of Excellence for Clinical Trial and Research, National Taiwan University, Hospital, Taipei, Taiwan (China); Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10016, Taiwan (China)], E-mail: alcheng@ntu.edu.tw

    2008-11-14

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-{kappa}B controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-{kappa}B activity in response to TNF-{alpha}, an abundance of basal and TNF-{alpha}-induced NF-{kappa}B-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a {kappa}B site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells.

  4. NF-κB p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Gao Ming; Yeh, P.Y.; Lu, Y.-S.; Chang, W.C.; Kuo, M.-L.; Cheng, A.-L.

    2008-01-01

    Lung adenocarcinoma Cl1-5 cells were selected from parental Cl1-0 cells based on their high metastatic potential. In a previous study, CRMP-1, an invasion suppressor gene, was shown to be suppressed in Cl1-5 cells. However, the regulation of CRMP-1 expression has not been explored. In this study, we showed nuclear factor-κB controls CRMP-1 expression. The electromobility shift assay showed that while Cl1-0 cells exhibited low NF-κB activity in response to TNF-α, an abundance of basal and TNF-α-induced NF-κB-DNA complex was detected in Cl1-5 cells. Supershift-coupled EMSA and Western blotting of nuclear proteins, however, revealed p50 protein, but not classic p65/p50 heterodimer in the complex. ChIP and EMSA demonstrated that p50 binds to a κB site residing between -1753 and -1743 of the CRMP-1 promoter region. Transfection of antisense p50 gene into Cl1-5 cells increased the CRMP-1 protein level and decreased the invasive activity of Cl1-5 cells

  5. Hes1 Directly Controls Cell Proliferation through the Transcriptional Repression of p27Kip1

    Science.gov (United States)

    Murata, Kaoru; Hattori, Masakazu; Hirai, Norihito; Shinozuka, Yoriko; Hirata, Hiromi; Kageyama, Ryoichiro; Sakai, Toshiyuki; Minato, Nagahiro

    2005-01-01

    A transcriptional regulator, Hes1, plays crucial roles in the control of differentiation and proliferation of neuronal, endocrine, and T-lymphocyte progenitors during development. Mechanisms for the regulation of cell proliferation by Hes1, however, remain to be verified. In embryonic carcinoma cells, endogenous Hes1 expression was repressed by retinoic acid in concord with enhanced p27Kip1 expression and cell cycle arrest. Conversely, conditional expression of a moderate but not maximal level of Hes1 in HeLa cells by a tetracycline-inducible system resulted in reduced p27Kip1 expression, which was attributed to decreased basal transcript rather than enhanced proteasomal degradation, with concomitant increases in the growth rate and saturation density. Hes1 induction repressed the promoter activity of a 5′ flanking basal enhancer region of p27Kip1 gene in a manner dependent on Hes1 expression levels, and this was mediated by its binding to class C sites in the promoter region. Finally, hypoplastic fetal thymi, as well as livers and brains of Hes1-deficient mice, showed significantly increased p27Kip1 transcripts compared with those of control littermates. These results have suggested that Hes1 directly contributes to the promotion of progenitor cell proliferation through transcriptional repression of a cyclin-dependent kinase inhibitor, p27Kip1. PMID:15870295

  6. Co-existence of t(6;13)(p21;q14.1) and trisomy 12 in chronic lymphocytic leukemia.

    Science.gov (United States)

    de Oliveira, Fábio Morato; de Figueiredo Pontes, Lorena Lobo; Bassi, Sarah Cristina; Dalmazzo, Leandro Felipe Figueiredo; Falcão, Roberto Passetto

    2012-06-01

    We report a case of a 57-year-old man diagnosed with chronic lymphocytic leukemia (CLL) and presence of a rare t(6;13)(p21;q14.1) in association with an extra copy of chromosome 12. Classical cytogenetic analysis using the immunostimulatory combination of DSP30 and IL-2 showed the karyotype 47,XY,t(6;13)(p21;q14.1), +12 in 75% of the metaphase cells. Spectral karyotype analysis (SKY) confirmed the abnormality previously seen by G-banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 12 probe performed on peripheral blood cells without any stimulant agent showed trisomy of chromosome 12 in 67% of analyzed cells (134/200). To the best of our knowledge, the association of t(6;13)(p21;q14.1) and +12 in CLL has never been described. The prognostic significance of these new findings in CLL remains to be elucidated. However, the patient has been followed up since 2009 without any therapeutic intervention and has so far remained stable.

  7. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas.

    Science.gov (United States)

    Felsberg, Jörg; Thon, Niklas; Eigenbrod, Sabina; Hentschel, Bettina; Sabel, Michael C; Westphal, Manfred; Schackert, Gabriele; Kreth, Friedrich Wilhelm; Pietsch, Torsten; Löffler, Markus; Weller, Michael; Reifenberger, Guido; Tonn, Jörg C

    2011-08-01

    Epigenetic silencing of the O(6) -methylguanine-DNA methyltransferase (MGMT) gene promoter is associated with prolonged survival in glioblastoma patients treated with temozolomide (TMZ). We investigated whether glioblastoma recurrence is associated with changes in the promoter methylation status and the expression of MGMT and the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 in pairs of primary and recurrent glioblastomas of 80 patients, including 64 patients treated with radiotherapy and TMZ after the first operation. Among the primary tumors, the MGMT promoter was methylated in 31 patients and unmethylated in 49 patients. In 71 patients (89%), the MGMT promoter methylation status of the primary tumor was retained at recurrence. MGMT promoter methylation, but not MGMT protein expression, was associated with longer progression-free survival, overall survival and postrecurrence survival (PRS). Moreover, PRS was increased under salvage chemotherapy. Investigation of primary and recurrent glioblastomas of 43 patients did not identify promoter methylation in any of the four MMR genes. However, recurrent glioblastomas demonstrated significantly lower MSH2, MSH6 and PMS2 protein expression as detected by immunohistochemistry. In conclusion, reduced expression of MMR proteins, but not changes in MGMT promoter methylation, is characteristic of glioblastomas recurring after the current standards of care. Copyright © 2011 UICC.

  8. The Histone Lysine Demethylase JMJD3/KDM6B Is Recruited to p53 Bound Promoters and Enhancer Elements in a p53 Dependent Manner

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Rappsilber, Juri

    2014-01-01

    linked to the regulation of different biological processes such as differentiation of embryonic stem cells, inflammatory responses in macrophages, and induction of cellular senescence via regulation of the INK4A-ARF locus. Here we show here that JMJD3 interacts with the tumour suppressor protein p53. We...... find that the interaction is dependent on the p53 tetramerization domain. Following DNA damage, JMJD3 is transcriptionally upregulated and by performing genome-wide mapping of JMJD3, we demonstrate that it binds genes involved in basic cellular processes, as well as genes regulating cell cycle......, response to stress and apoptosis. Moreover, we find that JMJD3 binding sites show significant overlap with p53 bound promoters and enhancer elements. The binding of JMJD3 to p53 target sites is increased in response to DNA damage, and we demonstrate that the recruitment of JMJD3 to these sites is dependent...

  9. Function of the EGR-1/TIS8 radiation inducible promoter in a minimal HSV-1 amplicon system

    International Nuclear Information System (INIS)

    Spear, M.A.; Sakamoto, K.M.; Herrlinger, U.; Pechan, P.; Breakefield, X.O.

    1997-01-01

    Purpose: To evaluate function of the EGR-1/TIS8 promoter region in minimal HSV-1 amplicon system in order to determine the feasibility of using the system to regulate vector replication with radiation. Materials and Methods: A 600-base pair 5' upstream region of the EGR-1 promoter linked to chloramphenicol acetyltransferase (CAT) was recombined into a minimal HSV-1 amplicon vector system (pONEC). pONEC or a control plasmid was transfected into U87 glioma cells using the Lipofectamine method. Thirty-six hours later one aliquot of cells from each transfection was irradiated to a dose of 20 Gy and another identical aliquot served as a control. CAT activity was assayed 8 hours after irradiation. Results: pONEC transfected cells irradiated with 20 Gy demonstrated 2.0 fold increase in CAT activity compared to non-irradiated cells. Cells transfected with control plasmid showed no change in CAT activity. Unirradiated pONEC cells had CAT activity 1.3 times those transfected with control plasmid. Conclusion: We have previously created HSV-1 gene therapy amplicon vector systems which allow virus-amplicon interdependent replication, with the intent of regulating replication. The above data demonstrates that a minimal amplicon system will allow radiation dependent regulation by the EGR-1 promoter, thus indicating the possibility of using this system to regulate onsite, spatially and temporally regulated vector production. Baseline CAT activity was higher and relative induction lower than other reported expression constructs, which raises concern for the ability of the system to produce a differential in transcription levels sufficient for this purpose. This is possibly the result of residual promoter/enhancer elements remaining in the HSV-1 sequences. We are attempting to create constructs lacking these elements. Addition of secondary promoter sequences may also be of use. We are also currently evaluating the efficacy of the putative IEX-1 radiation inducible promoter region in

  10. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk

    Science.gov (United States)

    Broderick, Peter; Chen, Bowang; Johnson, David C; Försti, Asta; Vijayakrishnan, Jayaram; Migliorini, Gabriele; Dobbins, Sara E; Holroyd, Amy; Hose, Dirk; Walker, Brian A; Davies, Faith E; Gregory, Walter A; Jackson, Graham H; Irving, Julie A; Pratt, Guy; Fegan, Chris; Fenton, James AL; Neben, Kai; Hoffmann, Per; Nöthen, Markus M; Mühleisen, Thomas W; Eisele, Lewin; Ross, Fiona M; Straka, Christian; Einsele, Hermann; Langer, Christian; Dörner, Elisabeth; Allan, James M; Jauch, Anna; Morgan, Gareth J; Hemminki, Kari; Houlston, Richard S; Goldschmidt, Hartmut

    2016-01-01

    To identify variants for multiple myeloma risk, we conducted a genome-wide association study with validation in additional series totaling 4,692 cases and 10,990 controls. We identified four risk loci at 3q26.2 (rs10936599, P=8.70x10-14), 6p21.33 (rs2285803, PSORS1C2; P= 9.67x10-11), 17p11.2 (rs4273077, TNFRSF13B; P=7.67x10-9) and 22q13.1 (rs877529, CBX7; P=7.63x10-16). These data provide further evidence for genetic susceptibility to this B-cell hematological malignancy and insight into the biological basis of predisposition. PMID:23955597

  11. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens.

    Science.gov (United States)

    Pang, Rui; Chen, Meng; Liang, Zhikun; Yue, Xiangzhao; Ge, Hu; Zhang, Wenqing

    2016-10-10

    The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat body and midgut. RNA interference (RNAi) of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster both suggested that the expression of CYP6ER1 is sufficient to confer imidacloprid resistance. Furthermore, we analyzed the interaction of imidacloprid and CYP6ER1 monooxygenase by using dynamic simulations and molecular docking. We found that Nitrogen atoms in the heterocycle of the imidacloprid molecule may bind to iron atoms in the center of the homology model of CYP6ER1 via 4,5-dihedro-1H-imidazole. This finding contributes to a better understanding of how CYP6ER1 takes part in the insecticide metabolism.

  12. Interferon-β induced microRNA-129-5p down-regulates HPV-18 E6 and E7 viral gene expression by targeting SP1 in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Jiarong Zhang

    Full Text Available Infection by human papillomavirus (HPV can cause cervical intraepithelial neoplasia (CIN and cancer. Down-regulation of E6 and E7 expression may be responsible for the positive clinical outcomes observed with IFN treatment, but the molecular basis has not been well determined. As miRNAs play an important role in HPV induced cervical carcinogenesis, we hypothesize that IFN-β can regulate the expressions of specific miRNAs in cervical cancer cells, and that these miRNAs can mediate E6 and E7 expression, thus modulate their oncogenic potential. In this study, we found that miR-129-5p to be a candidate IFN-β inducible miRNA. MiR-129-5p levels gradually decrease with the development of cervical intraepithelial lesions. Manipulation of miR-129-5p expression in Hela cells modulates HPV-18 E6 and E7 viral gene expression. Exogenous miR-129-5p inhibits cell proliferation in Hela cells, promotes apoptosis and blocks cell cycle progression in Hela cells. SP1 is a direct target of miR-129-5p in Hela cells. This study is the first report of a cellular miRNA with anti-HPV activity and provides new insights into regulatory mechanisms between the HPV and the IFN system in host cells at the miRNA level.

  13. Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: promotion of the morphological development of midbrain dopaminergic neurons.

    Science.gov (United States)

    Collins, Louise M; O'Keeffe, Gerard W; Long-Smith, Caitriona M; Wyatt, Sean L; Sullivan, Aideen M; Toulouse, André; Nolan, Yvonne M

    2013-06-01

    A greater understanding of the mechanisms that promote the survival and growth of dopaminergic neurons is essential for the advancement of cell replacement therapies for Parkinson's disease (PD). Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Here, we show that MKP-1 is expressed in dopaminergic neurons cultured from E14 rat ventral mesencephalon (VM). When dopaminergic neurons were transfected to overexpress MKP-1, they displayed a more complex morphology than their control counterparts in vitro. Specifically, MKP-1-transfection induced significant increases in neurite length and branching with a maximum increase observed in primary branches. We demonstrate that inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in vitro is mediated by p38 and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. We further show that overexpression of MKP-1 in dopaminergic neurons contributes to neuroprotection against the effects of 6-OHDA. Collectively, we report that MKP-1 can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Thus, we propose that strategies aimed at augmenting MKP-1 expression or activity may be beneficial in protecting dopaminergic neurons and may provide potential therapeutic approaches for PD.

  14. The study on Egr-1 promoter which is radioactive promoter

    International Nuclear Information System (INIS)

    Zhang Chunzhi; Guo Yang; Lv Zhonghong

    2006-01-01

    Radiogenetic therapy is a heated reaseach on oncotherapy. Early growth response gene-1 (Egr-1) gene promoter is a probably means in radiogenetic therapy. The article review studying on Egr-1 gene promoter and constructing regulating gene expressing system by radiation-inducible Egr-1 gene promoter. (authors)

  15. The P450 CYP6Z1 confers carbamate/pyrethroid cross-resistance in a major African malaria vector beside a novel carbamate-insensitive N485I acetylcholinesterase-1 mutation.

    Science.gov (United States)

    Ibrahim, Sulaiman S; Ndula, Miranda; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2016-07-01

    Carbamates are increasingly used for vector control notably in areas with pyrethroid resistance. However, a cross-resistance between these insecticides in major malaria vectors such as Anopheles funestus could severely limit available resistance management options. Unfortunately, the molecular basis of such cross-resistance remains uncharacterized in An. funestus, preventing effective resistance management. Here, using a genomewide transcription profiling, we revealed that metabolic resistance through upregulation of cytochrome P450 genes is driving carbamate resistance. The P450s CYP6P9a, CYP6P9b and CYP6Z1 were the most upregulated detoxification genes in the multiple resistant mosquitoes. However, in silico docking simulations predicted CYP6Z1 to metabolize both pyrethroids and carbamates, whereas CYP6P9a and CYP6P9b were predicted to metabolize only the pyrethroids. Using recombinant enzyme metabolism and inhibition assays, we demonstrated that CYP6Z1 metabolizes bendiocarb and pyrethroids, whereas CYP6P9a and CYP6P9b metabolize only the pyrethroids. Other upregulated gene families in resistant mosquitoes included several cuticular protein genes suggesting a possible reduced penetration resistance mechanism. Investigation of the target-site resistance in acetylcholinesterase 1 (ace-1) gene detected and established the association between the new N485I mutation and bendiocarb resistance (odds ratio 7.3; P resistance and improve the design of effective resistance management strategies to control this malaria vector. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  16. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I).

    OpenAIRE

    Hoth, C F; Milunsky, A; Lipsky, N; Sheffer, R; Clarren, S K; Baldwin, C T

    1993-01-01

    Waardenburg syndrome type I (WS-I) is an autosomal dominant disorder characterized by sensorineural hearing loss, dystopia canthorum, pigmentary disturbances, and other developmental defects. Klein-Waardenburg syndrome (WS-III) is a disorder with many of the same characteristics as WS-I and includes musculoskeletal abnormalities. We have recently reported the identification and characterization of one of the first gene defects, in the human PAX3 gene, which causes WS-I. PAX3 is a DNA-binding ...

  17. Preparation of 6,6,1',1',6',6'-hexadeutero sucrose.

    Science.gov (United States)

    Gouy, Marie-Hélène; Danel, Mathieu; Gayral, Maud; Bouchu, Alain; Queneau, Yves

    2007-11-05

    The preparation of 6,6,1',1',6',6'-hexadeutero sucrose is reported. The synthesis is based on a triple oxidation of a protected sucrose 6,1',6'-triol to the corresponding 6,1',6'-tricarboxylic acid or ester, followed by reduction with lithium aluminium deuteride. This triple oxidation could be achieved either using cat. TEMPO-NaOCl (to the acid) or PDC-Ac(2)O-t-BuOH (to the t-butyl carboxylic ester).

  18. Combination of heavy-ion radiotherapy and p53-gene therapy by radio- and hypoxia-sensitizing promoter for glioma

    International Nuclear Information System (INIS)

    Oga, Masaru; Koshikawa, Nobuko; Takenaga, Keizo; Iwadate, Yasuo; Nojima, Kumie

    2006-01-01

    In this study we have started to investigate the anti-tumor effect of the combination of heavy-ion radiotherapy, inducing p53-independent apoptosis, and p53-gene therapy, inducing p53-dependent apoptosis for glioma. To enhance the p53-dependent apoptosis, we chose the strategy to utilize the heavy-ion irradiation itself as a ''trigger'' by using radio-sensitizing E 9ns-2 /cytomegalovirus (CMV) chimeric promoter (Scott et al: 2003) in p53-gene therapy. Our study in the first year, however, suggested the uselessness of E 9ns-2 /CMV chimeric promoter. Then we applied E 9ns-2 /Epo5/CMV-radio and hypoxia-sensitizing chimeric promoter to amplify p53 gene exopression. P53 gene with E 9ns2 /Epo5/CMV chimeric promoter was transfected in p53-mutant U373MG human glioma cell-line and the transfected-cell bulk was irradiated at dose of 1 Gy of high linear energy transfer (LET)-carbon ion beam or low-LET X-ray under various hypoxic conditions. The result suggested the possible role of 1 Gy of high LET-carbon ion beam as a ''useful trigger'' to enhance a selective anti-tumor effect toward glioma under hypoxic condition through amplification of p53 gene expression. (author)

  19. Poxviral protein A52 stimulates p38 mitogen-activated protein kinase (MAPK) activation by causing tumor necrosis factor receptor-associated factor 6 (TRAF6) self-association leading to transforming growth factor β-activated kinase 1 (TAK1) recruitment.

    Science.gov (United States)

    Stack, Julianne; Hurst, Tara P; Flannery, Sinead M; Brennan, Kiva; Rupp, Sebastian; Oda, Shun-ichiro; Khan, Amir R; Bowie, Andrew G

    2013-11-22

    Vaccinia virus encodes a number of proteins that inhibit and manipulate innate immune signaling pathways that also have a role in virulence. These include A52, a protein shown to inhibit IL-1- and Toll-like receptor-stimulated NFκB activation, via interaction with interleukin-1 receptor-associated kinase 2 (IRAK2). Interestingly, A52 was also found to activate p38 MAPK and thus enhance Toll-like receptor-dependent IL-10 induction, which was TRAF6-dependent, but the manner in which A52 manipulates TRAF6 to stimulate p38 activation was unclear. Here, we show that A52 has a non-canonical TRAF6-binding motif that is essential for TRAF6 binding and p38 activation but dispensable for NFκB inhibition and IRAK2 interaction. Wild-type A52, but not a mutant defective in p38 activation and TRAF6 binding (F154A), caused TRAF6 oligomerization and subsequent TRAF6-TAK1 association. The crystal structure of A52 shows that it adopts a Bcl2-like fold and exists as a dimer in solution. Residue Met-65 was identified as being located in the A52 dimer interface, and consistent with that, A52-M65E was impaired in its ability to dimerize. A52-M65E although capable of interacting with TRAF6, was unable to cause either TRAF6 self-association, induce the TRAF6-TAK1 association, or activate p38 MAPK. The results suggest that an A52 dimer causes TRAF6 self-association, leading to TAK1 recruitment and p38 activation. This reveals a molecular mechanism whereby poxviruses manipulate TRAF6 to activate MAPKs (which can be proviral) without stimulating antiviral NFκB activation.

  20. Histone deacetylase 3 represses p15INK4b and p21WAF1/cip1 transcription by interacting with Sp1

    International Nuclear Information System (INIS)

    Huang Weifeng; Tan Dapeng; Wang Xiuli; Han Songyan; Tan Jiang; Zhao Yanmei; Lu Jun; Huang Baiqu

    2006-01-01

    Histone deacetylase 3 (HDAC3) has been implicated to play roles in governing cell proliferation. Here we demonstrated that the overexpression of HDAC3 repressed transcription of p15 INK4b and p21 WAF1/cip1 genes in 293T cells, and that the recruitment of HDAC3 to the promoter regions of these genes was critical to this repression. We also showed that HDAC3 repressed GAL4-Sp1 transcriptional activity, and that Sp1 was co-immunoprecipitated with FLAG-tagged HDAC3. We conclude that HDAC3 can repress p15 INK4b and p21 WAF1/cip1 transcription by interacting with Sp1. Furthermore, knockdown of HDAC3 by RNAi up-regulated the transcriptional expression of p15 INK4b , but not that of p21 WAF1/cip1 , implicating the different roles of HDAC3 in repression of p15 INK4b and p21 WAF1/cip1 transcription. Data from this study indicate that the inhibition of p15 INK4b and p21 WAF1/cip1 may be one of the mechanisms by which HDAC3 participates in cell cycle regulation and oncogenesis

  1. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors.

    Science.gov (United States)

    Ahuja, Richa; Kumar, Vijay

    2017-07-01

    RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation. © 2017 Federation of European Biochemical Societies.

  2. CENPA overexpression promotes genome instability in pRb-depleted human cells

    Directory of Open Access Journals (Sweden)

    Lentini Laura

    2009-12-01

    Full Text Available Abstract Background Aneuploidy is a hallmark of most human cancers that arises as a consequence of chromosomal instability and it is frequently associated with centrosome amplification. Functional inactivation of the Retinoblastoma protein (pRb has been indicated as a cause promoting chromosomal instability as well centrosome amplification. However, the underlying molecular mechanism still remains to be clarified. Results Here we show that pRb depletion both in wild type and p53 knockout HCT116 cells was associated with the presence of multipolar spindles, anaphase bridges, lagging chromosomes and micronuclei harbouring whole chromosomes. In addition aneuploidy caused by pRb acute loss was not affected by p53 loss. Quantitative real-time RT-PCR showed that pRB depletion altered expression of genes involved in centrosome duplication, kinetochore assembly and in the Spindle Assembly Checkpoint (SAC. However, despite MAD2 up-regulation pRb-depleted cells seemed to have a functional SAC since they arrested in mitosis after treatments with mitotic poisons. Moreover pRb-depleted HCT116 cells showed BRCA1 overexpression that seemed responsible for MAD2 up-regulation. Post-transcriptional silencing of CENPA by RNA interference, resulting in CENP-A protein levels similar to those present in control cells greatly reduced aneuploid cell numbers in pRb-depleted cells. Conclusion Altogether our findings indicate a novel aspect of pRb acute loss that promotes aneuploidy mainly by inducing CENPA overexpression that in turn might induce micronuclei by affecting the correct attachment of spindle microtubules to kinetochores.

  3. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1.

    Science.gov (United States)

    Ding, Zhiping; Wen, Yucong; Yang, Baojun; Zhang, Yixi; Liu, Shuhua; Liu, Zewen; Han, Zhaojun

    2013-11-01

    Imidacloprid is a key insecticide extensively used for control of Nilaparvata lugens, and its resistance had been reported both in the laboratory selected strains and field populations. A target site mutation Y151S in two nicotinic acetylcholine receptor subunits and enhanced oxidative detoxification have been identified in the laboratory resistant strain, contributing importantly to imidacloprid resistance in N. lugens. To date, however, imidacloprid resistance in field population is primarily attributable to enhanced oxidative detoxification by over-expressed P450 monooxygenases. A resistant strain (Res), originally collected from a field population and continuously selected in laboratory with imidacloprid for more than 40 generations, had 180.8-fold resistance to imidacloprid, compared to a susceptible strain (Sus). Expression of different putative P450 genes at mRNA levels was detected and compared between Res and Sus strains, and six genes were found expressed significantly higher in Res strain than in Sus strain. CYP6AY1 was found to be the most different expressed P450 gene and its mRNA level in Res strain was 17.9 times of that in Sus strain. By expressing in E. coli cells, CYP6AY1 was found to metabolize imidacloprid efficiently with initial velocity calculated of 0.851 ± 0.073 pmol/min/pmol P450. When CYP6AY1 mRNA levels in Res strain was reduced by RNA interference, imidacloprid susceptibility was recovered. In four field populations with different resistance levels, high levels of CYP6AY1 transcript were also found. In vitro and in vivo studies provided evidences that the over-expression of CYP6AY1 was one of the key factors contributing to imidacloprid resistance in the laboratory selected strain Res, which might also be the important mechanism for imidacloprid resistance in field populations, when the target site mutation was not prevalent at present. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Immuno-modulatory activity of Ganoderma lucidum-derived polysacharide on human monocytoid dendritic cells pulsed with Der p 1 allergen

    Directory of Open Access Journals (Sweden)

    Lo Shih-Yen

    2011-05-01

    Full Text Available Abstract Background Ganoderma lucidum-derived polysaccharide (PS-G can rapidly and effectively promote the activation and maturation of immature dendritic cells (DCs, suggesting that PS-G possesses the capacity to regulate immune responses. This study aimed to clarify the immunologic effect of PS-G on monocyte-derived dendritic cells (MD-DCs from asthmatic children allergic to house dust mites. The MD-DCs were stimulated for 24 h with the related allergen, Der p 1, in the presence or absence of PS-G. Cell surface markers and phagocytic capacity were assessed by FACS analysis, and key polarizing cytokines (IL-12 p40, IL-12 p70, IL-6, IL-23, and IL-10 were quantified. The subsequent regulatory effect of pulsed MD-DCs on naïve T cells was evaluated by determining the T-cell cytokine profile. Results PS-G induced the maturation of MD-DCs and decreased phagocytic capacity, even if pulsed with Der p 1. After incubation with PS-G and Der p 1, MD-DCs produced higher amounts of IL-12 p70, IL-12 p40, IL-6, IL-23, and IL10 than Der p 1-pulsed DCs. Furthermore, type 1 helper T (Th1 cell cytokine (INF-γ production was highly increased when naïve autologous T cells were co-cultured with Der p 1-pulsed MD-DCs. Naïve T cells stimulated by MD-DCs pulsed with Der p 1 failed to produce proliferation of T-cells, whereas the addition of PS-G to Der p 1 induced a significant proliferation of T-cells similar to that observed with PS-G alone. Conclusion The presence of PS-G in an allergen pulse promoted allergic MD-DCs to produce IL-12 p70, IL-12 p40, IL-6, IL-23, and IL-10, and exerted an effect on shifting the immune balance towards Th1 in children with allergic asthma.

  5. Inhibition of p70S6K1 Activation by Pdcd4 Overcomes the Resistance to an IGF-1R/IR Inhibitor in Colon Carcinoma Cells.

    Science.gov (United States)

    Zhang, Yan; Wang, Qing; Chen, Li; Yang, Hsin-Sheng

    2015-03-01

    Agents targeting insulin-like growth factor 1 receptor (IGF-1R) are being actively examined in clinical trials. Although there has been some initial success of single-agent targeting IGF-1R, attempts in later studies failed because of resistance. This study aimed to understand the effects of programmed cell death 4 (Pdcd4) on the chemosensitivity of the IGF-1R inhibitor OSI-906 in colorectal cancer cells and the mechanism underlying this impact. Using OSI-906-resistant and -sensitive colorectal cancer cells, we found that the Pdcd4 level directly correlates with cell chemosensitivity to OSI-906. In addition, tumors derived from Pdcd4 knockdown cells resist the growth inhibitory effect of OSI-906 in a colorectal cancer xenograft mouse model. Moreover, Pdcd4 enhances the antiproliferative effect of OSI-906 in resistant cells through suppression of p70S6K1 activation. Knockdown of p70S6K1, but not p70S6K2, significantly increases the chemosensitivity of OSI-906 in cultured colorectal cancer cells. Furthermore, the combination of OSI-906 and PF-4708671, a p70S6K1 inhibitor, efficiently suppresses the growth of OSI-906-resistant colon tumor cells in vitro and in vivo. Taken together, activation of p70S6K1 that is inhibited by Pdcd4 is essential for resistance to the IGF-1R inhibitor in colon tumor cells, and the combinational treatment of OSI-906 and PF-4708671 results in enhanced antiproliferation effects in colorectal cancer cells in vitro and in vivo, providing a novel venue to overcome the resistance to the IGF-1R inhibitor in treating colorectal cancer. ©2015 American Association for Cancer Research.

  6. Sphingosine 1-Phosphate (S1P) Receptors 1 and 2 Coordinately Induce Mesenchymal Cell Migration through S1P Activation of Complementary Kinase Pathways*

    Science.gov (United States)

    Quint, Patrick; Ruan, Ming; Pederson, Larry; Kassem, Moustapha; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo

    2013-01-01

    Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways. PMID:23300082

  7. Promoter Variation and Expression Levels of Inflammatory Genes IL1A, IL1B, IL6 and TNF in Blood of Spinocerebellar Ataxia Type 3 (SCA3) Patients.

    Science.gov (United States)

    Raposo, Mafalda; Bettencourt, Conceição; Ramos, Amanda; Kazachkova, Nadiya; Vasconcelos, João; Kay, Teresa; Bruges-Armas, Jácome; Lima, Manuela

    2017-03-01

    Age at onset in spinocerebellar ataxia type 3 (SCA3/MJD) is incompletely explained by the size of the CAG tract at the ATXN3 gene, implying the existence of genetic modifiers. A role of inflammation in SCA3 has been postulated, involving altered cytokines levels; promoter variants leading to alterations in cytokines expression could influence onset. Using blood from 86 SCA3 patients and 106 controls, this work aimed to analyse promoter variation of four cytokines (IL1A, IL1B, IL6 and TNF) and to investigate the association between variants detected and their transcript levels, evaluated by quantitative PCR. Moreover, the effect of APOE isoforms, known to modulate cytokines, was investigated. Correlations between cytokine variants and onset were tested; the cumulative modifier effects of cytokines and APOE were analysed. Patients carrying the IL6*C allele had a significant earlier onset (4 years in average) than patients carrying the G allele, in agreement with lower mRNA levels produced by IL6*C carriers. The presence of APOE*ɛ2 allele seems to anticipate onset in average 10 years in patients carrying the IL6*C allele; a larger number of patients will be needed to confirm this result. These results highlight the pertinence of conducting further research on the role of cytokines as SCA3 modulators, pointing to the presence of shared mechanisms involving IL6 and APOE.

  8. ATM Mediates pRB Function To Control DNMT1 Protein Stability and DNA Methylation

    Science.gov (United States)

    Suzuki, Misa; Hayashi, Naoyuki; Kobayashi, Masahiko; Sasaki, Nobunari; Nishiuchi, Takumi; Doki, Yuichiro; Okamoto, Takahiro; Kohno, Susumu; Muranaka, Hayato; Kitajima, Shunsuke; Yamamoto, Ken-ichi

    2013-01-01

    The retinoblastoma tumor suppressor gene (RB) product has been implicated in epigenetic control of gene expression owing to its ability to physically bind to many chromatin modifiers. However, the biological and clinical significance of this activity was not well elucidated. To address this, we performed genetic and epigenetic analyses in an Rb-deficient mouse thyroid C cell tumor model. Here we report that the genetic interaction of Rb and ATM regulates DNMT1 protein stability and hence controls the DNA methylation status in the promoters of at least the Ink4a, Shc2, FoxO6, and Noggin genes. Furthermore, we demonstrate that inactivation of pRB promotes Tip60 (acetyltransferase)-dependent ATM activation; allows activated ATM to physically bind to DNMT1, forming a complex with Tip60 and UHRF1 (E3 ligase); and consequently accelerates DNMT1 ubiquitination driven by Tip60-dependent acetylation. Our results indicate that inactivation of the pRB pathway in coordination with aberration in the DNA damage response deregulates DNMT1 stability, leading to an abnormal DNA methylation pattern and malignant progression. PMID:23754744

  9. The Effects of Lycopene on the Methylation of the GSTP1 Promoter and Global Methylation in Prostatic Cancer Cell Lines PC3 and LNCaP

    Directory of Open Access Journals (Sweden)

    Li-Juan Fu

    2014-01-01

    Full Text Available DNA (cytosine-5- methylation silencing of GSTP1 function occurs in prostate adenocarcinoma (PCa. Previous studies have shown that there is an inverse relationship between dietary lycopene intake and the risk of PCa. However, it is unknown whether lycopene reactivates the tumor suppressor gene glutathioneS-transferase-π (GSTP1 by demethylation of the hypermethylated CpGs that act to silence the GSTP1 promoter. Here, we demonstrated that lycopene treatment significantly decreased the methylation levels of the GSTP1 promoter and increased the mRNA and protein levels of GSTP1 in an androgen-independent PC-3 cell line. In contrast, lycopene treatment did not demethylate the GSTP1 promoter or increase GSTP1 expression in the androgen-dependent LNCaP cell line. DNA methyltransferase (DNMT 3A protein levels were downregulated in PC-3 cells following lycopene treatment; however, DNMT1 and DNMT3B levels were unchanged. Furthermore, the long interspersed element (LINE-1 and short interspersed element ALU were not demethylated when treated by lycopene. In LNCaP cells, lycopene treatment did not affect any detected DNMT protein expression, and the methylation levels of LINE-1 and ALU were decreased. These results indicated that the protective effect of lycopene on the prostate is different between androgen-dependent and androgen-independent derived PCa cells. Further, in vivo studies should be conducted to confirm these promising results and to evaluate the potential role of lycopene in the protection of the prostate.

  10. Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Oliveira, Edna Maria Morais; Mansure, José João; Bon, Elba Pinto da Silva

    2005-04-01

    In Saccharomyces cerevisiae, sensing and signalling pathways regulate gene expression in response to quality of carbon and nitrogen sources. One such system, the target of rapamycin (Tor) proteins, senses nutrients and uses the GATA activators Gln3p and Nil1p to regulate translation in response to low-quality carbon and nitrogen. The signal transduction, triggered in response to nitrogen nutrition that is sensed by the Tor proteins, operates via a regulatory pathway involving the cytoplasmic factor Ure2p. When carbon and nitrogen are abundant, the phosphorylated Ure2p anchors the also phosphorylated Gln3p and Nil1p in the cytoplasm. Upon a shift from high- to low-quality nitrogen or treatment with rapamycin all three proteins are dephosphorylated, causing Gln3p and Nil1p to enter the nucleus and promote transcription. The genes that code for yeast periplasmic enzymes with nutritional roles would be obvious targets for regulation by the sensing and signalling pathways that respond to quality of carbon and nitrogen sources. Indeed, previous results from our laboratory had shown that the GATA factors Gln3p, Nil1p, Dal80p, Nil2p and also the protein Ure2 regulate the expression of asparaginase II, coded by ASP3. We also had observed that the activity levels of the also periplasmic invertase, coded by SUC2, were 6-fold lower in ure2 mutant cells in comparison to wild-type cells collected at stationary phase. These results suggested similarities between the signalling pathways regulating the expression of ASP3 and SUC2. In the present work we showed that invertase levels displayed by the single nil1 and gln3 and by the double gln3nil1 mutant cells, cultivated in a sucrose-ammonium medium and collected at the exponential phase, were 6-, 10- and 60-fold higher, respectively, in comparison to their wild-type counterparts. RT-PCR data of SUC2 expression in the double-mutant cells indicated a 10-fold increase in the mRNA(SUC2) levels.

  11. Tumour MLH1 promoter region methylation testing is an effective pre-screen for Lynch Syndrome (HNPCC)

    Science.gov (United States)

    Newton, K; Jorgensen, NM; Wallace, AJ; Buchanan, DD; Lalloo, F; McMahon, RFT; Hill, J; Evans, DG

    2016-01-01

    Background & Aims Lynch syndrome patients have DNA mismatch repair deficiency and up to 80% life-time risk of colorectal cancer. Screening of mutation carriers reduces colorectal cancer incidence and mortality. Selection for constitutional mutation testing relies on family history (Amsterdam and Bethesda Guidelines) and tumour derived biomarkers. Initial biomarker analysis uses mismatch repair protein immunohistochemistry and microsatellite instability. Abnormalities in either identify mismatch repair deficiency but do not differentiate sporadic epigenetic defects, due to MLH1 promoter region methylation (13% of CRCs) from Lynch Syndrome (4% of CRCs). A diagnostic biomarker capable of making this distinction would be valuable. This study compared two biomarkers in tumours with mismatch repair deficiency; quantification of methylation of the MLH1 promoter region using a novel assay and BRAF c.1799T>A, p.(Val600Glu) mutation status in the identification of constitutional mutations. Methods Tumour DNA was extracted (FFPE tissue) and pyrosequencing used to test for MLH1 promoter methylation and presence of the BRAF c.1799T>A, p.(Val600Glu) mutation 71 CRCs from individuals with pathogenic MLH1 mutations and 73 CRCs with sporadic MLH1 loss. Specificity and sensitivity was compared. Findings Unmethylated MLH1 promoter: sensitivity 94.4% (95% CI 86.2–98.4%), specificity 87.7% (95% CI 77.9–94.2%), Wild-type BRAF (codon 600): sensitivity 65.8% (95% CI 53.7–76.5%), specificity 98.6% (95% CI 92.4–100.0%) for the identification of those with pathogenic MLH1 mutations. Conclusions Quantitative MLH1 promoter region methylation using pyrosequencing is superior to BRAF codon 600 mutation status in identifying constitutional mutations in mismatch repair deficient tumours. PMID:25280751

  12. HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) promotes regeneration and suppresses fibrosis in the liver.

    Science.gov (United States)

    Ding, Bi-Sen; Liu, Catherine H; Sun, Yue; Chen, Yutian; Swendeman, Steven L; Jung, Bongnam; Chavez, Deebly; Cao, Zhongwei; Christoffersen, Christina; Nielsen, Lars Bo; Schwab, Susan R; Rafii, Shahin; Hla, Timothy

    2016-12-22

    Regeneration of hepatic sinusoidal vasculature is essential for non-fibrotic liver regrowth and restoration of its metabolic capacity. However, little is known about how this specialized vascular niche is regenerated. Here we show that activation of endothelial sphingosine-1-phosphate receptor-1 (S1P 1 ) by its natural ligand bound to HDL (HDL-S1P) induces liver regeneration and curtails fibrosis. In mice lacking HDL-S1P, liver regeneration after partial hepatectomy was impeded and associated with aberrant vascular remodeling, thrombosis and peri-sinusoidal fibrosis. Notably, this "maladaptive repair" phenotype was recapitulated in mice that lack S1P 1 in the endothelium. Reciprocally, enhanced plasma levels of HDL-S1P or administration of SEW2871, a pharmacological agonist specific for S1P 1 enhanced regeneration of metabolically functional vasculature and alleviated fibrosis in mouse chronic injury and cholestasis models. This study shows that natural and pharmacological ligands modulate endothelial S1P 1 to stimulate liver regeneration and inhibit fibrosis, suggesting that activation of this pathway may be a novel therapeutic strategy for liver fibrosis.

  13. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kotani Hidehito

    2009-07-01

    Full Text Available Abstract Background The Hedgehog (HH pathway promotes tumorigenesis in a diversity of cancers. Activation of the HH signaling pathway is caused by overexpression of HH ligands or mutations in the components of the HH/GLI1 cascade, which lead to increased transactivation of GLI transcription factors. Although negative kinase regulators that antagonize the activity of GLI transcription factors have been reported, including GSK3β, PKA and CK1s, little is known regarding positive kinase regulators that are suitable for use on cancer therapeutic targets. The present study attempted to identify kinases whose silencing inhibits HH/GLI signalling in non-small cell lung cancer (NSCLC. Results To find positive kinase regulators in the HH pathway, kinome-wide siRNA screening was performed in a NSCLC cell line, A549, harboring the GLI regulatory reporter gene. This showed that p70S6K2-silencing remarkably reduced GLI reporter gene activity. The decrease in the activity of the HH pathway caused by p70S6K2-inhibition was accompanied by significant reduction in cell viability. We next investigated the mechanism for p70S6K2-mediated inhibition of GLI1 transcription by hypothesizing that GSK3β, a negative regulator of the HH pathway, is activated upon p70S6K2-silencing. We found that phosphorylated-GSK3β (Ser9 was reduced by p70S6K2-silencing, causing a decreased level of GLI1 protein. Finally, to further confirm the involvement of p70S6K2 in GLI1 signaling, down-regulation in GLI-mediated transcription by PI3KCA-inhibition was confirmed, establishing the pivotal role of the PI3K/p70S6K2 pathway in GLI1 cascade regulation. Conclusion We report herein that inhibition of p70S6K2, known as a downstream effector of the PI3K pathway, remarkably decreases GLI-mediated transactivation in NSCLC by reducing phosphorylated-GSK3β followed by GLI1 degradation. These results infer that p70S6K2 is a potential therapeutic target for NSCLC with hyperactivated HH/GLI pathway.

  14. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    Science.gov (United States)

    Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change. PMID:26086659

  15. Preclinical evaluation of [{sup 18}F]2FNQ1P as the first fluorinated serotonin 5-HT{sub 6} radioligand for PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Guillaume [Universite Claude Bernard Lyon 1, CNRS INSERM, Lyon Neuroscience Research Center, Lyon (France); Hospices Civils de Lyon, Lyon (France); Colomb, Julie [Universite Claude Bernard Lyon 1, CNRS, Institute of Chemistry and Biochemistry, Villeurbanne (France); Sgambato-Faure, Veronique; Tremblay, Leon [Universite Claude Bernard Lyon 1, CNRS, Cognitive Neuroscience Center, Bron (France); Billard, Thierry [Universite Claude Bernard Lyon 1, CNRS, Institute of Chemistry and Biochemistry, Villeurbanne (France); CERMEP-Imaging Platform, Groupement Hospitalier Est, Lyon (France); Zimmer, Luc [Universite Claude Bernard Lyon 1, CNRS INSERM, Lyon Neuroscience Research Center, Lyon (France); Hospices Civils de Lyon, Lyon (France); CERMEP-Imaging Platform, Groupement Hospitalier Est, Lyon (France)

    2014-10-21

    Brain serotonin 6 receptor (5-HT{sub 6}) is one of the most recently identified serotonin receptors. It is a potent therapeutic target for psychiatric and neurological diseases, e.g. schizophrenia and Alzheimer's disease. Since no specific fluorinated radioligand has yet been successfully used to study this receptor by positron emission tomography (PET) neuroimaging, the objective of the present study was to study the first 5-HT{sub 6} {sup 18}F-labelled radiotracer. 2FNQ1P, inspired by the quinolone core of a previous radiotracer candidate, GSK215083, was selected according its 5-HT{sub 6} affinity and selectivity and was radiolabelled by {sup 18}F nucleophilic substitution. The cerebral distribution of [{sup 18}F]2FNQ1P was studied in vivo in rats, cats and macaque monkeys. The chemical and radiochemical purities of [{sup 18}F]2FNQ1P were >98 %. In rats, in vitro competition with the 5-HT{sub 6} antagonist, SB258585, revealed that the radioligand was displaced dose dependently. Rat microPET studies showed low brain uptake of [{sup 18}F]2FNQ1P, reversed by the P-glycoprotein inhibitor, cyclosporin. On the contrary, PET scans in cats showed good brain penetration and specific striatal binding blocked after pretreatment with unlabelled 2FNQ1P. PET scans in macaque monkeys confirmed high specific binding in both cortical and subcortical regions, specifically decreased by pretreatment with the 5-HT{sub 6} receptor antagonist, SB258585. 2FNQ1P was initially selected because of its suitable characteristics for 5-HT{sub 6} receptor probing in vitro in terms of affinity and specificity. Although in vivo imaging in rats cannot be considered as predictive of the clinical characteristics of the radiotracer, [{sup 18}F]2FNQ1P appeared to be a suitable 5-HT{sub 6} PET tracer in feline and primate models. These preclinical results encourage us to pursue the clinical development of this first fluorinated 5-HT{sub 6} PET radiotracer. (orig.)

  16. Infection with E1B-mutant adenovirus stabilizes p53 but blocks p53 acetylation and activity through E1A

    DEFF Research Database (Denmark)

    Savelyeva, I.; Dobbelstein, M.

    2011-01-01

    to the suppression of p21 transcription. Depending on the E1A conserved region 3, E1B-defective adenovirus impaired the ability of the transcription factor Sp1 to bind the p21 promoter. Moreover, the amino terminal region of E1A, binding the acetyl transferases p300 and CREB-binding protein, blocked p53 K382...... accumulation of p53, without obvious defects in p53 localization, phosphorylation, conformation and oligomerization. Nonetheless, p53 completely failed to induce its target genes in this scenario, for example, p21/CDKN1A, Mdm2 and PUMA. Two regions of the E1A gene products independently contributed...... acetylation in infected cells. Mutating either of these E1A regions, in addition to E1B, partially restored p21 mRNA levels. Our findings argue that adenovirus attenuates p53-mediated p21 induction, through at least two E1B-independent mechanisms. Other virus species and cancer cells may employ analogous...

  17. Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65.

    Science.gov (United States)

    Morais, I M C; Cordeiro, A L; Teixeira, G S; Domingues, V S; Nardi, R M D; Monteiro, A S; Alves, R J; Siqueira, E P; Santos, V L

    2017-09-19

    Lactobacillus species produce biosurfactants that can contribute to the bacteria's ability to prevent microbial infections associated with urogenital and gastrointestinal tracts and the skin. Here, we described the biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri P 65 . The biosurfactants produced by L. jensenii P 6A and L. gasseri P 65 reduced the water surface tension from 72 to 43.2 mN m -1 and 42.5 mN m -1 as their concentration increased up to the critical micelle concentration (CMC) values of 7.1 and 8.58 mg mL -1 , respectively. Maximum emulsifying activity was obtained at concentrations of 1 and 5 mg mL -1 for the P 6A and P 65 strains, respectively. The Fourier transform infrared spectroscopy data revealed that the biomolecules consist of a mixture of carbohydrates, lipids and proteins. The gas chromatography-mass spectrum analysis of L. jensenii P 6A biosurfactant showed a major peak for 14-methypentadecanoic acid, which was the main fatty acid present in the biomolecule; conversely, eicosanoic acid dominated the biosurfactant produced by L. gasseri P 65 . Although both biosurfactants contain different percentages of the sugars galactose, glucose and ribose; rhamnose was only detected in the biomolecule produced by L. jensenii P 6A . Emulsifying activities were stable after a 60-min incubation at 100 °C, at pH 2-10, and after the addition of potassium chloride and sodium bicarbonate, but not in the presence of sodium chloride. The biomolecules showed antimicrobial activity against clinical isolates of Escherichia coli and Candida albicans, with MIC values of 16 µg mL -1 , and against Staphylococcus saprophyticus, Enterobacter aerogenes and Klebsiella pneumoniae at 128 µg mL -1 . The biosurfactants also disrupted preformed biofilms of microorganisms at varying concentrations, being more efficient against E. aerogenes (64%) (P 6A biosurfactant), and E. coli (46

  18. P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance.

    Science.gov (United States)

    Loll-Krippleber, Raphael; Brown, Grant W

    2017-09-15

    mRNA-processing (P-) bodies are cytoplasmic granules that form in eukaryotic cells in response to numerous stresses to serve as sites of degradation and storage of mRNAs. Functional P-bodies are critical for the DNA replication stress response in yeast, yet the repertoire of P-body targets and the mechanisms by which P-bodies promote replication stress resistance are unknown. In this study we identify the complete complement of mRNA targets of P-bodies during replication stress induced by hydroxyurea treatment. The key P-body protein Lsm1 controls the abundance of HHT1, ACF4, ARL3, TMA16, RRS1 and YOX1 mRNAs to prevent their toxic accumulation during replication stress. Accumulation of YOX1 mRNA causes aberrant downregulation of a network of genes critical for DNA replication stress resistance and leads to toxic acetaldehyde accumulation. Our data reveal the scope and the targets of regulation by P-body proteins during the DNA replication stress response.P-bodies form in response to stress and act as sites of mRNA storage and degradation. Here the authors identify the mRNA targets of P-bodies during DNA replication stress, and show that P-body proteins act to prevent toxic accumulation of these target transcripts.

  19. Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation.

    Science.gov (United States)

    Vendetti, Frank P; Leibowitz, Brian J; Barnes, Jennifer; Schamus, Sandy; Kiesel, Brian F; Abberbock, Shira; Conrads, Thomas; Clump, David Andy; Cadogan, Elaine; O'Connor, Mark J; Yu, Jian; Beumer, Jan H; Bakkenist, Christopher J

    2017-02-01

    We show that ATM kinase inhibition using AZ31 prior to 9 or 9.25 Gy total body irradiation (TBI) reduced median time to moribund in mice to 8 days. ATR kinase inhibition using AZD6738 prior to TBI did not reduce median time to moribund. The striking finding associated with ATM inhibition prior to TBI was increased crypt loss within the intestine epithelium. ATM inhibition reduced upregulation of p21, an inhibitor of cyclin-dependent kinases, and blocked G1 arrest after TBI thereby increasing the number of S phase cells in crypts in wild-type but not Cdkn1a(p21 CIP/WAF1 )-/- mice. In contrast, ATR inhibition increased upregulation of p21 after TBI. Thus, ATM activity is essential for p21-dependent arrest while ATR inhibition may potentiate arrest in crypt cells after TBI. Nevertheless, ATM inhibition reduced median time to moribund in Cdkn1a(p21 CIP/WAF1 )-/- mice after TBI. ATM inhibition also increased cell death in crypts at 4 h in Cdkn1a(p21 CIP/WAF1 )-/-, earlier than at 24 h in wild-type mice after TBI. In contrast, ATR inhibition decreased cell death in crypts in Cdkn1a(p21 CIP/WAF1 )-/- mice at 4 h after TBI. We conclude that ATM activity is essential for p21-dependent and p21-independent mechanisms that radioprotect intestinal crypts and that ATM inhibition promotes GI syndrome after TBI.

  20. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling

    NARCIS (Netherlands)

    Budry, L.; Balsalobre, A.; Gauthier, Y.; Khetchoumian, K.; L'Honore, A.; Vallette-Kasic, S.; Brue, T; Figarella-Branger, D.; Meij, B.P.; Drouin, J.

    2012-01-01

    Genes Dev. 2012 Oct 15;26(20):2299-310. doi: 10.1101/gad.200436.112. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling. Budry L, Balsalobre A, Gauthier Y, Khetchoumian K, L'honoré A, Vallette S, Brue T, Figarella-Branger D, Meij B,

  1. Interleukin-6 mediates epithelial-stromal interactions and promotes gastric tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Hiroto Kinoshita

    Full Text Available Interleukin-6 (IL-6 is a pleiotropic cytokine that affects various functions, including tumor development. Although the importance of IL-6 in gastric cancer has been documented in experimental and clinical studies, the mechanism by which IL-6 promotes gastric cancer remains unclear. In this study, we investigated the role of IL-6 in the epithelial-stromal interaction in gastric tumorigenesis. Immunohistochemical analysis of human gastritis, gastric adenoma, and gastric cancer tissues revealed that IL-6 was frequently detected in the stroma. IL-6-positive cells in the stroma showed positive staining for the fibroblast marker α-smooth muscle actin, suggesting that stromal fibroblasts produce IL-6. We compared IL-6 knockout (IL-6(-/- mice with wild-type (WT mice in a model of gastric tumorigenesis induced by the chemical carcinogen N-methyl-N-nitrosourea. The stromal fibroblasts expressed IL-6 in tumors from WT mice. Gastric tumorigenesis was attenuated in IL-6(-/- mice, compared with WT mice. Impaired tumor development in IL-6(-/- mice was correlated with the decreased activation of STAT3, a factor associated with gastric cancer cell proliferation. In vitro, when gastric cancer cell line was co-cultured with primary human gastric fibroblast, STAT3-related genes including COX-2 and iNOS were induced in gastric cancer cells and this response was attenuated with neutralizing anti-IL-6 receptor antibody. IL-6 production from fibroblasts was increased when fibroblasts were cultured in the presence of gastric cancer cell-conditioned media. IL-6 production from fibroblasts was suppressed by an interleukin-1 (IL-1 receptor antagonist and siRNA inhibition of IL-1α in the fibroblasts. IL-1α mRNA and protein were increased in fibroblast lysate, suggesting that cell-associated IL-1α in fibroblasts may be involved. Our results suggest the importance of IL-6 mediated stromal-epithelial cell interaction in gastric tumorigenesis.

  2. qnrA6 genetic environment and quinolone resistance conferred on Proteus mirabilis.

    Science.gov (United States)

    Jayol, Aurélie; Janvier, Frédéric; Guillard, Thomas; Chau, Françoise; Mérens, Audrey; Robert, Jérôme; Fantin, Bruno; Berçot, Béatrice; Cambau, Emmanuelle

    2016-04-01

    To determine the genetic location and environment of the qnrA6 gene in Proteus mirabilis PS16 where it was first described and to characterize the quinolone resistance qnrA6 confers. Transformation experiments and Southern blotting were performed for plasmid and genomic DNA of P. mirabilis PS16 to determine the qnrA6 location. Combinatorial PCRs with primers in qnrA6 and genes usually surrounding qnrA genes were used to determine the genetic environment. The qnrA6 coding region, including or not the promoter region, was cloned into vectors pTOPO and pBR322 and the MICs of six quinolones were measured for transformants of Escherichia coli TOP10 and P. mirabilis ATCC 29906 Rif(R). qnrA6 was shown to be chromosomally encoded in P. mirabilis PS16 and its genetic environment was 81%-87% similar to that of qnrA2 in the Shewanella algae chromosome. The 5138 bp region up- and downstream of qnrA6 contained an IS10 sequence surrounded by two ISCR1. This resulted in qnrA6 being displaced 1.9 kb from its native promoter but supplied a promoter present in ISCR1. qnrA6 cloned into pTOPO and pBR322 conferred a 4-32-fold increase in fluoroquinolone MICs when expressed in E. coli but only 2-3-fold in P. mirabilis. When including the promoter region, a further increase in resistance was observed in both species, reaching MIC values above clinical breakpoints for only P. mirabilis. qnrA6 is the first chromosomally located qnrA gene described in Enterobacteriaceae. The quinolone resistance conferred by qnrA6 depends on the proximity of an efficient promoter and the host strain where it is expressed. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Inverse correlation between promoter strength and excision activity in class 1 integrons.

    Directory of Open Access Journals (Sweden)

    Thomas Jové

    2010-01-01

    Full Text Available Class 1 integrons are widespread genetic elements that allow bacteria to capture and express gene cassettes that are usually promoterless. These integrons play a major role in the dissemination of antibiotic resistance among Gram-negative bacteria. They typically consist of a gene (intI encoding an integrase (that catalyzes the gene cassette movement by site-specific recombination, a recombination site (attI1, and a promoter (Pc responsible for the expression of inserted gene cassettes. The Pc promoter can occasionally be combined with a second promoter designated P2, and several Pc variants with different strengths have been described, although their relative distribution is not known. The Pc promoter in class 1 integrons is located within the intI1 coding sequence. The Pc polymorphism affects the amino acid sequence of IntI1 and the effect of this feature on the integrase recombination activity has not previously been investigated. We therefore conducted an extensive in silico study of class 1 integron sequences in order to assess the distribution of Pc variants. We also measured these promoters' strength by means of transcriptional reporter gene fusion experiments and estimated the excision and integration activities of the different IntI1 variants. We found that there are currently 13 Pc variants, leading to 10 IntI1 variants, that have a highly uneven distribution. There are five main Pc-P2 combinations, corresponding to five promoter strengths, and three main integrases displaying similar integration activity but very different excision efficiency. Promoter strength correlates with integrase excision activity: the weaker the promoter, the stronger the integrase. The tight relationship between the aptitude of class 1 integrons to recombine cassettes and express gene cassettes may be a key to understanding the short-term evolution of integrons. Dissemination of integron-driven drug resistance is therefore more complex than previously thought.

  4. FOXN1: a master regulator gene of thymic epithelial development programme

    Directory of Open Access Journals (Sweden)

    Rosa eRomano

    2013-07-01

    Full Text Available T cell ontogeny is a sophisticated process, which takes place within the thymus through a series of well-defined discrete stages. The process requires a proper lympho-stromal interaction. In particular, cortical and medullary thymic epithelial cells (cTECs, mTECs drive T cell differentiation, education and selection processes, while the thymocyte-dependent signals allow TECs to maturate and provide an appropriate thymic microenvironment. Alterations in genes implicated in thymus organogenesis, including Tbx1, Pax1, Pax3, Pax9, Hoxa3, Eya1 and Six1, affect this well-orchestrated process, leading to disruption of thymic architecture. Of note, in both human and mice, the primordial TECs are yet unable to fully support T cell development and only after the transcriptional activation of the Forkhead-box n1 (FOXN1 gene in the thymic epithelium this essential function is acquired. FOXN1 is a master regulator in the TEC lineage specification in that it down-stream promotes transcription of genes, which, in turn, regulate TECs differentiation. In particular, FOXN1 mainly regulates TEC patterning in the fetal stage and TEC homeostasis in the postnatal thymus. An inborn null mutation in FOXN1 leads to Nude/SCID phenotype in mouse, rat and humans. In Foxn1-/- nude animals, initial formation of the primordial organ is arrested and the primordium is not colonized by hematopoietic precursors, causing a severe primary T cell immunodeficiency. In humans, the Nude/SCID phenotype is characterized by congenital alopecia of the scalp, eyebrows, and eyelashes, nail dystrophy and a severe T cell immunodeficiency, inherited as an autosomal recessive disorder. Aim of this review is to summarize all the scientific information so far available to better characterize the pivotal role of the master regulator FOXN1 transcription factor in the TEC lineage specifications and functionality.

  5. Promoting Resilience in Stress Management for Parents (PRISM-P): An intervention for caregivers of youth with serious illness.

    Science.gov (United States)

    Yi-Frazier, Joyce P; Fladeboe, Kaitlyn; Klein, Victoria; Eaton, Lauren; Wharton, Claire; McCauley, Elizabeth; Rosenberg, Abby R

    2017-09-01

    It is well-known that parental stress and coping impacts the well-being of children with serious illness. The current study aimed to evaluate the feasibility and satisfaction of a novel resilience promoting intervention, the Promoting Resilience in Stress Management Intervention for Parents (PRISM-P) among parents of adolescents and young adults with Type 1 diabetes or cancer. Secondary analyses explored the effect of the PRISM-P on parent-reported resilience and distress. The PRISM-P includes 4 short skills-based modules, delivered in either 2 or 4 separate, individual sessions. English-speaking parents of adolescents with cancer or Type 1 diabetes were eligible. Feasibility was conservatively defined as a completion rate of 80%; satisfaction was qualitatively evaluated based upon parent feedback regarding intervention content, timing, and format. Resilience and distress were assessed pre- and postintervention with the Connor Davidson Resilience Scale and the Kessler-6 Psychological Distress Scale. Twelve of 24 caregivers of youth with diabetes (50%) and 13 of 15 caregivers of youth with cancer (87%) agreed to participate. Nine of 12 (75%) and 9 of 13 (64%) completed all PRISM-P modules, respectively. Among those who completed the intervention, qualitative satisfaction was high. Parent-reported resilience and distress scores improved after the intervention. Effect sizes for both groups indicated a moderate intervention effect. Ultimately, the PRISM-P intervention was well accepted and impactful among parents who completed it. However, attrition rates were higher than anticipated, suggesting alternative or less time-intensive formats may be more feasible. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. [4,6-Dimethyl­pyrimidine-2(1H)-thione-κS]iodidobis(triphenyl­phosphane-κP)copper(I)

    Science.gov (United States)

    Pakawatchai, Chaveng; Wattanakanjana, Yupa; Choto, Patcharanan; Nimthong, Ruthairat

    2012-01-01

    In the mononuclear title complex, [CuI(C6H8N2S)(C18H15P)2], the CuI ion is in a slightly distorted tetra­hedral coordination geometry formed by two P atoms from two triphenyl­phosphane ligands, one S atom from a 4,6-dimethyl­pyrimidine-2(1H)-thione ligand and one iodide ion. There is an intra­molecular N—H⋯I hydrogen bond. In the crystal, π–π stacking inter­actions [centroid–centroid distance = 3.594 (1) Å] are observed. PMID:22719327

  7. The role of Tre6P and SnRK1 in maize early kernel development and events leading to stress-induced kernel abortion.

    Science.gov (United States)

    Bledsoe, Samuel W; Henry, Clémence; Griffiths, Cara A; Paul, Matthew J; Feil, Regina; Lunn, John E; Stitt, Mark; Lagrimini, L Mark

    2017-04-12

    Drought stress during flowering is a major contributor to yield loss in maize. Genetic and biotechnological improvement in yield sustainability requires an understanding of the mechanisms underpinning yield loss. Sucrose starvation has been proposed as the cause for kernel abortion; however, potential targets for genetic improvement have not been identified. Field and greenhouse drought studies with maize are expensive and it can be difficult to reproduce results; therefore, an in vitro kernel culture method is presented as a proxy for drought stress occurring at the time of flowering in maize (3 days after pollination). This method is used to focus on the effects of drought on kernel metabolism, and the role of trehalose 6-phosphate (Tre6P) and the sucrose non-fermenting-1-related kinase (SnRK1) as potential regulators of this response. A precipitous drop in Tre6P is observed during the first two hours after removing the kernels from the plant, and the resulting changes in transcript abundance are indicative of an activation of SnRK1, and an immediate shift from anabolism to catabolism. Once Tre6P levels are depleted to below 1 nmol∙g -1 FW in the kernel, SnRK1 remained active throughout the 96 h experiment, regardless of the presence or absence of sucrose in the medium. Recovery on sucrose enriched medium results in the restoration of sucrose synthesis and glycolysis. Biosynthetic processes including the citric acid cycle and protein and starch synthesis are inhibited by excision, and do not recover even after the re-addition of sucrose. It is also observed that excision induces the transcription of the sugar transporters SUT1 and SWEET1, the sucrose hydrolyzing enzymes CELL WALL INVERTASE 2 (INCW2) and SUCROSE SYNTHASE 1 (SUSY1), the class II TREHALOSE PHOSPHATE SYNTHASES (TPS), TREHALASE (TRE), and TREHALOSE PHOSPHATE PHOSPHATASE (ZmTPPA.3), previously shown to enhance drought tolerance (Nuccio et al., Nat Biotechnol (October 2014):1-13, 2015). The impact

  8. Analysis of the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) gene and promoter in Hodgkin's disease isolates

    DEFF Research Database (Denmark)

    Sandvej, K; Andresen, B S; Zhou, X G

    2000-01-01

    AIMS: To study the distribution of Epstein-Barr virus (EBV) variants containing mutations in the latent membrane protein 1 (LMP-1) oncogene and promoter in EBV associated Hodgkin's disease and infectious mononucleosis compared with previous findings in asymptomatic EBV carriers. METHODS: Sequence...... analysis of the EBV LMP-1 promoter and gene in isolates from Danish patients with Hodgkin's disease (n = 61) and infectious mononucleosis (n = 10). RESULTS: Viruses (previously designated group D) that contain two mutations in the activating transcription factor/cAMP response element (ATF/CRE) in the LMP-1...... promoter, which are known to decrease promoter activity greatly, were significantly less frequent in Hodgkin's disease than in both infectious mononucleosis (p = 0.0081) and asymptomatic EBV carriers (p = 0.0084). In some cases, the LMP-1 gene contained mutations in a recently identified cytotoxic T cell...

  9. Purification and characterization of lignin peroxidases from Penicillium decumbens P6

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.S.; Yuan, H.L.; Wang, H.X.; Chen, W.X. [China Agricultural University, Beijing (China). College of Biological Science

    2005-06-01

    Peroxidases are essential enzymes in biodegradation of lignin and lignite which have been investigated intensively in the white-rot fungi. This is the first report of purification and characterization of lignin peroxidase from Penicillium sp. P6 as lignite degradation fungus. The results indicated that the lignin peroxidase of Penicillium decumbens P6 had physical and chemical properties and a N-terminal amino acid sequence different from the lignin peroxidases of white-rot fungi. The lignin peroxidase was isolated from a liquid culture of P. decumbens P6. This enzyme had a molecular weight of 46.3 KDa in SDS-PAGE and exhibited greater activity, temperature stability and wider pH range than those previously reported. The isolation procedure involved (NH{sub 4}){sub 2}SO{sub 4} precipitation, ion-exchange chromatography on DEAE-cellulose and CM-cellulose, gel filtration on Sephadex G-100, and non-denaturing, discontinuous polyacrylamide gel electrophoresis. The K{sub m} and V{sub max} values of this enzyme using veratryl alcohol as substrate were 0.565 mmol L{sup -1} and 0.088 mmol (mg protein){sup -1} min{sup -1} respectively. The optimum pH of P6 lignin peroxidase was 4.0, and 70.6% of the relative activity was remained at pH 9.0. The optimum temperature of the enzyme was 45{sup o}C.

  10. Spectral analysis of 5s25p2(6p+6d+7s) configurations of Ba VI

    International Nuclear Information System (INIS)

    Sharma, M.K.; Tauheed, A.; Rahimullah, K.

    2014-01-01

    The sixth spectrum of barium (Ba VI) has been investigated with the aid of experimental recordings made on a 3-m normal incidence vacuum spectrograph of Antigonish laboratory (Canada) in the wavelength region 300–2080 Å using triggered spark as an excitation source. The spectral analysis has been extended considerably to include new configuration the 5s 2 5p 2 6p in odd parity matrix and the 5s 2 5p 2 6d and 5s 2 5p 2 7s configurations in even parity matrix. Previously reported levels of the ground configuration (5s 2 5p 3 ) and three lowest excited configurations the 5s5p 4 , 5s 2 5p 2 5d and 5s 2 5p 2 6s have been confirmed and the two unknown levels of the 5s 2 5p 2 5d configuration with J=9/2, have now been established through the identification of transitions from the 5s 2 5p 2 6p levels. All twenty one levels of the 5s 2 5p 2 6p configuration and twenty nine levels out of thirty six of the 5s 2 5p 2 6d and 5s 2 5p 2 7s configurations have now been established. Hartree–Fock calculations involving configuration interactions support the analyses. The accuracy of our wavelength measurement is ±0.005 Å for sharp lines. - Highlights: • The spectrum of Ba was recorded on a 3-m spectrograph with triggered spark source. • Atomic transitions for Ba VI were identified to established new energy levels. • CI calculations with relativistic corrections were made for theoretical predictions. • Weighted oscillator strength (gf) and transition probabilities (gA) were calculated

  11. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    Science.gov (United States)

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  12. [Effects of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of IL-1beta mRNA and IL-6 mRNA in osteoblasts].

    Science.gov (United States)

    Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen

    2009-04-01

    To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.

  13. Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15.

    Directory of Open Access Journals (Sweden)

    Artur Brandt

    Full Text Available We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT in conjunction with a novel thermolabile mutant (U19dl89-97tsA58 of SV40 large T antigen (LT. This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells.

  14. Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15

    Science.gov (United States)

    Brandt, Artur; Löhers, Katharina; Beier, Manfred; Leube, Barbara; de Torres, Carmen; Mora, Jaume; Arora, Parineeta; Jat, Parmjit S.; Royer-Pokora, Brigitte

    2016-01-01

    We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD) limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD) 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT) in conjunction with a novel thermolabile mutant (U19dl89-97tsA58) of SV40 large T antigen (LT). This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells. PMID:27213811

  15. Interindividual variability in the prevalence of OPRM1 and CYP2B6 gene variations may identify drug-susceptible populations.

    Science.gov (United States)

    Bunten, H; Liang, W J; Pounder, D J; Seneviratne, C; Osselton, D

    2011-09-01

    Methadone is used worldwide for the treatment of heroin addiction; however, fatal poisonings are increasingly reported. The prevalence of CYP2B6 and μ-opioid receptor (OPRM1) gene variations were examined between a postmortem population where the deaths were associated with methadone and a live nondrug-using control population using Taqman™ SNP Genotyping assays. The CYP2B6*6 allele was higher in the postmortem population, but the difference was not significant (P = 0.92). The CYP2B6 T750C promoter variation was similar in frequency for both populations. Linkage between T750C and CYP2B6*6 was identified for both populations (P < 0.01). The prevalence of the OPRM1 A118G variation was significantly higher in the control population (P = 0.0046), which might indicate a protective mechanism against opioid toxicity. Individual susceptibility to methadone may be determined by screening for CYP2B6*6.

  16. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells.

    Science.gov (United States)

    Mendoza, Alejandra; Fang, Victoria; Chen, Cynthia; Serasinghe, Madhavika; Verma, Akanksha; Muller, James; Chaluvadi, V Sai; Dustin, Michael L; Hla, Timothy; Elemento, Olivier; Chipuk, Jerry E; Schwab, Susan R

    2017-06-01

    Effective adaptive immune responses require a large repertoire of naive T cells that migrate throughout the body, rapidly identifying almost any foreign peptide. Because the production of T cells declines with age, naive T cells must be long-lived. However, it remains unclear how naive T cells survive for years while constantly travelling. The chemoattractant sphingosine 1-phosphate (S1P) guides T cell circulation among secondary lymphoid organs, including spleen, lymph nodes and Peyer's patches, where T cells search for antigens. The concentration of S1P is higher in circulatory fluids than in lymphoid organs, and the S1P 1 receptor (S1P 1 R) directs the exit of T cells from the spleen into blood, and from lymph nodes and Peyer's patches into lymph. Here we show that S1P is essential not only for the circulation of naive T cells, but also for their survival. Using transgenic mouse models, we demonstrate that lymphatic endothelial cells support the survival of T cells by secreting S1P via the transporter SPNS2, that this S1P signals through S1P 1 R on T cells, and that the requirement for S1P 1 R is independent of the established role of the receptor in guiding exit from lymph nodes. S1P signalling maintains the mitochondrial content of naive T cells, providing cells with the energy to continue their constant migration. The S1P signalling pathway is being targeted therapeutically to inhibit autoreactive T cell trafficking, and these findings suggest that it may be possible simultaneously to target autoreactive or malignant cell survival.

  17. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice.

    Science.gov (United States)

    Wada, Eiji; Tanihata, Jun; Iwamura, Akira; Takeda, Shin'ichi; Hayashi, Yukiko K; Matsuda, Ryoichi

    2017-10-27

    Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy

  18. Kinetics of activation of the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein.

    Science.gov (United States)

    Hoggett, J G; Brierley, I

    1992-11-01

    The activation of transcription initiation from the P4 promoter of pBR322 by the Escherichia coli cyclic AMP receptor protein (CRP) has been investigated using a fluorescence abortive initiation assay. The effect of the cyclic-AMP/CRP complex on the linear P4 promoter was to increase the initial binding (KB) of RNA polymerase to the promoter by about a factor of 10, but the rate of isomerization of closed to open complex (kf) was unaffected. One molecule of CRP per promoter was required for activation, and the concentration of cyclic AMP producing half-maximal stimulation was about 7-8 microM. Supercoiling caused a 2-3-fold increase in the rate of isomerization of the CRP-activated promoter, but weakened the initial binding of polymerase by about one order of magnitude. The unactivated supercoiled promoter was too weak to allow reliable assessment of kinetic parameters against the high background rate originating from the rest of the plasmid.

  19. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals.

    Science.gov (United States)

    Wang, Kefeng; Sun, Yin; Tao, Wei; Fei, Xiang; Chang, Chawnshang

    2017-05-28

    Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Catalase rs769214 SNP in elderly malnutrition and during renutrition: is glucagon to blame?

    Science.gov (United States)

    Hebert-Schuster, M; Cottart, C H; Laguillier-Morizot, C; Raynaud-Simon, A; Golmard, J L; Cynober, L; Beaudeux, J L; Fabre, E E; Nivet-Antoine, V

    2011-10-15

    Impaired glucose tolerance is common during aging. The transcription factor PAX6 is involved in glucose homeostasis. Computational promoter sequence analysis of the catalase gene highlighted a putative PAX6 binding site on the rs769214 polymorphism A allele. Creation of this binding site has been suggested to explain renutrition inefficiency in malnourished elderly patients. Our aim was to evaluate the link between the rs769214 polymorphism of the catalase gene and glucose homeostasis in malnourished elderly patients at inclusion and during renutrition. Thirty-three malnourished elderly Caucasian inpatients were recruited. Nutritional and inflammatory statuses were assessed and a multiplex adipokine analysis was conducted at inclusion and discharge from the Geriatric Nutritional Care Unit at Charles-Foix Hospital (Ivry-sur-Seine, France). Serum glucagon, PAI-1, and TNF-α levels were significantly lower in the A-allele carriers at inclusion. During renutrition, A-allele carriers exhibited increased serum glucagon, PAI-1, and TNF-α variation. After renutrition, levels of these parameters were similar for A-allele carriers and G-allele carriers. A logistic ordinal multivariate regression analysis linked only variation of glucagon to rs769214 SNP. These results support a role for catalase SNP in the efficiency of renutrition in malnourished elderly patients via the modulation of glucagon secretion, probably involving PAX6. Copyright © 2011 Elsevier Inc. All rights reserved.