WorldWideScience

Sample records for pauli-villars-regulated light-front qed

  1. Pauli-Villars regularization in nonperturbative Hamiltonian approach on the light front

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, M. Yu., E-mail: mimalysh@yandex.ru; Paston, S. A.; Prokhvatilov, E. V.; Zubov, R. A.; Franke, V. A. [Saint Petersburg State University, Saint Petersburg (Russian Federation)

    2016-01-22

    The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar λφ{sup 4} field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.

  2. Higher covariant derivative Pauli-Villars regularization does not lead to a consistent QCD

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C P [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Ruiz Ruiz, F [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H

    1994-12-31

    We compute the beta function at one loop for Yang-Mills theory using as regulator the combination of higher covariant derivatives and Pauli-Villars determinants proposed by Faddeev and Slavnov. This regularization prescription has the appealing feature that it is manifestly gauge invariant and essentially four-dimensional. It happens however that the one-loop coefficient in the beta function that it yields is not -11/3, as it should be, but -23/6. The difference is due to unphysical logarithmic radiative corrections generated by the Pauli-Villars determinants on which the regularization method is based. This no-go result discards the prescription as a viable gauge invariant regularization, thus solving a long-standing open question in the literature. We also observe that the precsription can be modified so as to not generate unphysical logarithmic corrections, but at the expense of losing manifest gauge invariance. (orig.).

  3. Higher covariant derivative Pauli-Villars regularization does not lead to a consistent QCD

    International Nuclear Information System (INIS)

    Martin, C.P.; Ruiz Ruiz, F.

    1994-01-01

    We compute the beta function at one loop for Yang-Mills theory using as regulator the combination of higher covariant derivatives and Pauli-Villars determinants proposed by Faddeev and Slavnov. This regularization prescription has the appealing feature that it is manifestly gauge invariant and essentially four-dimensional. It happens however that the one-loop coefficient in the beta function that it yields is not -11/3, as it should be, but -23/6. The difference is due to unphysical logarithmic radiative corrections generated by the Pauli-Villars determinants on which the regularization method is based. This no-go result discards the prescription as a viable gauge invariant regularization, thus solving a long-standing open question in the literature. We also observe that the precsription can be modified so as to not generate unphysical logarithmic corrections, but at the expense of losing manifest gauge invariance. (orig.)

  4. Light Cone 2017 : Frontiers in Light Front Hadron Physics : Theory and Experiment.

    CERN Document Server

    2018-01-01

    LC2017 belongs to a series of Light-Cone conferences, which started in 1991. Light Cone conferences are held each year under the auspices of the International Light Cone Advisory Committee (ILCAC) (http://www.ilcacinc.org). The main objective of the Light Cone conference series is to provide a timely update of the progress in light-front theory and its phenomenological applications. Light-front theory provides a suitable framework to calculate observables such as scattering amplitudes, decay rates, spin effects, parton distributions, and other hadronic observables. One of the themes of the conference will be the interface between theory and experiment in hadron physics. The main topics of the program are: o Hadron Physics at present and future colliders o Light Front Field Theory in QED and QCD o AdS/QCD, D Branes and Strings o Hadron Structure : TMDs, GPDs and PDFs o Lattice QCD o QCD at high temperature and density o Higher order QCD corrections

  5. Quantum electrodynamics in the light-front Weyl gauge

    International Nuclear Information System (INIS)

    Przeszowski, J.; Naus, H.W.; Kalloniatis, A.C.

    1996-01-01

    We examine (3+1)-dimensional QED quantized in the open-quote open-quote front form close-quote close-quote with finite open-quote open-quote volume close-quote close-quote regularization, namely, in discretized light-cone quantization. Instead of the light-cone or Coulomb gauges, we impose the light-front Weyl gauge A - =0. The Dirac method is used to arrive at the quantum commutation relations for the independent variables. We apply open-quote open-quote quantum-mechanical gauge fixing close-quote close-quote to implement Gauss close-quote law, and derive the physical Hamiltonian in terms of unconstrained variables. As in the instant form, this Hamiltonian is invariant under global residual gauge transformations, namely, displacements. On the light cone the symmetry manifests itself quite differently. copyright 1996 The American Physical Society

  6. Application of a Light-Front Coupled Cluster Method

    International Nuclear Information System (INIS)

    Chabysheva, S.S.; Hiller, J.R.

    2012-01-01

    As a test of the new light-front coupled-cluster method in a gauge theory, we apply it to the nonperturbative construction of the dressed-electron state in QED, for an arbitrary covariant gauge, and compute the electron's anomalous magnetic moment. The construction illustrates the spectator and Fock-sector independence of vertex and self-energy contributions and indicates resolution of the difficulties with uncanceled divergences that plague methods based on Fock-space truncation. (author)

  7. Angular momentum conservation law in light-front quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.; /SLAC /Stanford U.

    2017-03-01

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.

  8. Vacuum Polarization Tensor for QED in the Light Front Gauge

    International Nuclear Information System (INIS)

    Suzuki, A.T.; Soriano, L.A.; Bolzan, J.D.; Sales, J.H.O.

    2012-01-01

    The use of light front coordinates in quantum field theories (QFT) always brought some problems and controversies. In this work we explore some aspects of its formalism with respect to the employment of dimensional regularization in the computation of the photon's self-energy at the one-loop level and how the fermion propagator has an important role in the outcoming results. (author)

  9. Light-Front Holography and the Light-Front Schrodinger Equation

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy

    2012-08-15

    One of the most important nonperturbative methods for solving QCD is quantization at fixed light-front time {tau} = t+z=c - Dirac's 'Front Form'. The eigenvalues of the light-front QCD Hamiltonian predict the hadron spectrum and the eigensolutions provide the light-front wavefunctions which describe hadron structure. More generally, we show that the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. We outline a method for computing the required potential from first principles in QCD. The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, yields the same light front Schrodinger equation; in fact, the soft-wall AdS/QCD approach provides a model for the light-front potential which is color-confining and reproduces well the light-hadron spectrum. One also derives via light-front holography a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.

  10. Theory and Experiment for Hadrons on the Light-Front

    CERN Document Server

    Salme, Giovanni

    2016-01-01

    LC2015 belongs to a Conference series that started in 1991 under the supervision of the International Light Cone Advisory Committee (ILCAC), with the aim of promoting the research towards a rigorous description of hadrons and nuclei, based on Light-Cone quantization methods. A strong relation with the experimental activity was always pursued and it will be emphasized in the next edition, in order to meet one of the main goals of the whole Light-Cone community "to assist in the development of crucial experimental tests of hadron facilities". The scientific program will feature invited as well as contributed talks, selected in collaboration with the Scientific Advisory Committee and the ILCAC. The main topics to be addressed are: * Hadron physics at present and future facilities; * Nonperturbative methods in quantum field theory * AdS/CFT: theory and applications * Light-front theories in QCD and QED * Relativistic methods for nuclear and hadronic structures * Few-body problems onto the Light cone * Lattice gau...

  11. The QED contribution to J/{psi} plus light hadrons production at B-factories

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhi-Guo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Wang, Jian-Xiong [Chinese Academy of Science, Beijing (China). Inst. of High Energy Physics; Chinese Academy of Science, Beijing (China). Theoretical Physics Center for Science Facilities

    2013-01-15

    To understand the direct J/{psi}+X{sub non-c} {sub anti} {sub c} production mechanism in e{sup +}e{sup -} annihilation, in this work, we propose to measure the inclusive J/{psi} plus light hadrons (LH) production at B-factories and present a detailed study on its QED production due to {psi}(2S) feed-down, where the {psi}(2S) are produced in e{sup +}e{sup -}{yields}{psi}(2S)+{gamma} and e{sup +}e{sup -}{yields}{psi}(2S) +f anti f, f = lepton, lightquark, and QED contribution to direct J/{psi}+q anti q production with q = u, d, s quark. We find that the QED contribution is huge in the whole phase space region, but can be reduced largely and is in the same order as the QCD contribution when a suitable cut on the angel {theta}{sub J/{psi}} between J/{psi} and the e{sup +}e{sup -} beam is made. In this way, the cross section of J/{psi} + LH QCD production % which was predicted theoretical at next-to-leading order QCD together with relativistic correction, can be obtained by subtracting the QED contribution from the experimental measurement on inclusive J/{psi} plus light hadrons. To help to remove the QED background, we also calculate the angular and momentum distribution of J/{psi} in the QED contribution.

  12. Light-front QCD. II. Two-component theory

    International Nuclear Information System (INIS)

    Zhang, W.; Harindranath, A.

    1993-01-01

    The light-front gauge A a + =0 is known to be a convenient gauge in practical QCD calculations for short-distance behavior, but there are persistent concerns about its use because of its ''singular'' nature. The study of nonperturbative field theory quantizing on a light-front plane for hadronic bound states requires one to gain a priori systematic control of such gauge singularities. In the second paper of this series we study the two-component old-fashioned perturbation theory and various severe infrared divergences occurring in old-fashioned light-front Hamiltonian calculations for QCD. We also analyze the ultraviolet divergences associated with a large transverse momentum and examine three currently used regulators: an explicit transverse cutoff, transverse dimensional regularization, and a global cutoff. We discuss possible difficulties caused by the light-front gauge singularity in the applications of light-front QCD to both old-fashioned perturbative calculations for short-distance physics and upcoming nonperturbative investigations for hadronic bound states

  13. Transverse Momentum Distributions of Electron in Simulated QED Model

    Science.gov (United States)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  14. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse

  15. QED the strange theory of light and matter

    CERN Document Server

    Feynman, Richard Phillips

    2006-01-01

    Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the general public. Here Feynman provides a classic and definitive introduction to QED (namely quantum electrodynamics), that part of quantum field theory describing the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned ""Feynman diagrams"" instead of advanced mathematics, Feynman clearly and humorously communicates both the substance and spiri

  16. Light-Front QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.

    2004-11-30

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.

  17. QCD and Light-Front Dynamics

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; de Teramond, Guy F.

    2011-01-01

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its β-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  18. QCD and Light-Front Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  19. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    DEFF Research Database (Denmark)

    Brodsky, S. J.; de Teramond, G. F.

    2012-01-01

    Light-front holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations, it provides important physical insights into the non-perturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic...... projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions Psi(n)/H(x(i), k(perpendicular to i), lambda(i)) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark...

  20. On the regularization in the Callan-Symanzik equation

    International Nuclear Information System (INIS)

    Fujii, Yasunori; Takahashi, Yasushi

    1975-01-01

    The conservative approach of canonical theory of broken scale invariance to the Callan-Symanzik equation is pushed further with the Pauli-Villars regulators. The authors confirm that the Callan-Symanzik equation is derived in a completely general manner. (BMS) [de

  1. Theoretical particle physics

    International Nuclear Information System (INIS)

    1993-01-01

    This report discusses the following topics: Heavy Quark Physics; Chiral Perturbation Theory; Skyrmions; Large-N Limit; Weak Scale Baryogenesis; Supersymmetry; Rare Decays; Technicolor; Chiral Lattice Fermions; Pauli-Villars Regulator and the Higgs Mass Bound; Higgs and Yukawa Interactions; Gauge Fixing; and Quantum Beables

  2. QCD and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2010-10-27

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

  3. Light-Front Quantization of Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    2003-03-25

    Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.

  4. Light-Front Quantization of Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Brodskey, Stanley

    2002-12-01

    Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.

  5. Regularization with higher covariant derivatives, anomalies and the Adler-Bardeen theorem

    International Nuclear Information System (INIS)

    Day, M.

    1983-01-01

    Complications arising in the renormalization of a theory regulated by the method of higher covariant derivatives supplemented with a modified Pauli-Villars regularization are discussed. The proof of the Adler-Bardeen theorem using the method of higher covariant derivatives has to be modified. (orig.)

  6. Novel Perspectives from Light-Front QCD, Super-Conformal Algebra, and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for the nuclear parton distribution functions.

  7. QCD Phenomenology and Light-Front Wavefunctions

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2001-01-01

    A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wavefunctions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, diffractive dissociation into jets, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wavefunctions is discussed. Light-front quantization can also be used in the Hamiltonian form to construct an event generator for high energy physics reactions at the amplitude level. The light-cone partition function, summed over exponentially weighted light-cone energies, has simple boost properties which may be useful for studies in heavy ion collisions. I also review recent work which shows that the structure functions measured in deep inelastic lepton scattering are affected by final-state rescattering, thus modifying their connection to light-front probability distributions. In particular, the shadowing of nuclear structure functions is due to destructive interference effects from leading-twist diffraction of the virtual photon, physics not included in the nuclear light-cone wavefunctions

  8. Light front quantum chromodynamics: Towards phenomenology

    Indian Academy of Sciences (India)

    Light front dynamics; quantum chromodynamics; deep inelastic scattering. PACS Nos 11.10. ... What makes light front dynamics appealing from high energy phenomenology point of view? .... given in terms of Poincarй generators by. MВ = W P ...

  9. Atom-field dressed states in slow-light waveguide QED

    Science.gov (United States)

    Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter

    2016-03-01

    We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.

  10. Light-like noncommutativity, light-front quantization and new light on UV/IR mixing

    International Nuclear Information System (INIS)

    Sheikh-Jabbari, M.M.; Tureanu, A.

    2011-01-01

    We revisit the problem of quantizing field theories on noncommutative Moyal space-time with light-like noncommutativity. To tackle the issues arising from noncommuting and hence nonlocal time, we argue that for this case light-front quantization procedure should be employed. In this appropriate quantization scheme we perform the non-planar loop analysis for the light-like noncommutative field theories. One of the important and peculiar features of light-front quantization is that the UV cutoff of the light-cone Hamiltonian manifests itself as an IR cutoff for the light-cone momentum, p + . Due to this feature, the naive results of covariant quantization for the light-like case allude to the absence of the UV/IR mixing in the light-front quantization. However, by a careful analysis of non-planar loop integrals we show that this is not the case and the UV/IR mixing persists. In addition, we argue in favour of the perturbative unitarity of light-like noncommutative field theories in the light-front quantization scheme.

  11. Statistical Physics and Light-Front Quantization

    Energy Technology Data Exchange (ETDEWEB)

    Raufeisen, J

    2004-08-12

    Light-front quantization has important advantages for describing relativistic statistical systems, particularly systems for which boost invariance is essential, such as the fireball created in a heavy ion collisions. In this paper the authors develop light-front field theory at finite temperature and density with special attention to quantum chromodynamics. They construct the most general form of the statistical operator allowed by the Poincare algebra and show that there are no zero-mode related problems when describing phase transitions. They then demonstrate a direct connection between densities in light-front thermal field theory and the parton distributions measured in hard scattering experiments. The approach thus generalizes the concept of a parton distribution to finite temperature. In light-front quantization, the gauge-invariant Green's functions of a quark in a medium can be defined in terms of just 2-component spinors and have a much simpler spinor structure than the equal-time fermion propagator. From the Green's function, the authors introduce the new concept of a light-front density matrix, whose matrix elements are related to forward and to off-diagonal parton distributions. Furthermore, they explain how thermodynamic quantities can be calculated in discretized light-cone quantization, which is applicable at high chemical potential and is not plagued by the fermion-doubling problems.

  12. New results in light-front phenomenology

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    2005-01-01

    The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a trivial vacuum. In this talk I review the theoretical methods and constraints which can be used to determine these central elements of QCD phenomenology. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions and define a kinematical definition of angular momentum. The AdS/CFT correspondence of large N c supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in four-dimensional space-time has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes. String/gauge duality also predicts the QCD power-law behavior of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. The form of these near-conformal wavefunctions can be used as an initial ansatz for a variational treatment of the light-front QCD Hamiltonian. The light-front Fock-state wavefunctions encode the bound state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. The nonperturbative Fock-state wavefunctions contain intrinsic gluons, and sea quarks at any scale Q with asymmetries such as s(x) ≠ s-bar(x), u-bar(x) ≠ d-bar(x). Intrinsic charm and bottom quarks appear at large x in the light-front wavefunctions since this minimizes the invariant mass and off-shellness of the higher Fock state. In the case of nuclei, the Fock state expansion contains 'hidden color' states which cannot be classified in terms of of nucleonic degrees of freedom. I also briefly review recent analyses which show that some

  13. Zero modes in discretized light-front quantization

    International Nuclear Information System (INIS)

    Martinovic, E.

    1997-01-01

    The current understanding of the role of bosonic zero modes in field-theoretical models quantized at the equal light-front time is reviewed. After a brief discussion of the main features of the light-front field theories - in particular the simplicity of the physical vacuum - the light-front canonical formalism for the quantum electrodynamics and the Yukawa model is sketched. The zero mode of Maskawa and Yamawaki is reviewed. Reasons for the appearance of the constrained and/or dynamical zero modes are explained along with the subtleties of the gauge fixing in presence of boundary conditions. Perturbative treatment of the corresponding constraint equations in the Yukawa model and quantum electrodynamics (3+1) is outlined. The next topic is the manifestation of the symmetry breaking in the light-front field theory. A pattern of multiple solutions to the zero-mode constraint equations replacing physical picture of multiple vacua of the conventionally quantized field theories is illustrated on an example of 2-dimensional theory. The importance of a (regularized) constrained zero mode of the pion field for the consistency of the Nambu-Goldstone phase of the discretized light-front linear a/model is demonstrated. Finally, a non-trivial physical vacuum based on the dynamical zero mode is constructed for the two-dimensional light-front quantum electrodynamics. (authors)

  14. The re-enchantment of nature - Wolfgang Pauli's philosophy of quantum physics

    International Nuclear Information System (INIS)

    Nair, Ranjit

    1990-01-01

    Pauli's dreamt of a new metaphysics that would eliminate the Cartesian divide between matter and spirit, and accomplish a re-enchantment of Nature. Pauli's vision it would appear, has not been widely shared, outside of the realms of popular science. It is not surprising that someone of Pauli's persuasion, like Laurikainen, should regard this neglect as the result of a conspiracy. In a more dispassionate light, it is appropriate to take Pauli's radical proposals as a measure of the profound sense of wonder he felt at the strange, shadowy world of the quantum where classical certitudes desert us. In attempting to delineate a metaphysics radically different from that underlying classical physics, Pauli took on a conceptual challenge of immense magnitude. This enterprise itself, regardless of its success or failure, offers testimony of Pauli's stature as a philosopher-physicist. (author). 31 refs

  15. Nuclear Physics on the Light Front

    OpenAIRE

    Miller, Gerald A.

    1999-01-01

    High energy scattering experiments involving nuclei are typically analyzed in terms of light front variables. The desire to provide realistic, relativistic wave functions expressed in terms of these variables led me to try to use light front dynamics to compute nuclear wave functions. The progress is summarized here.

  16. Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra and other Advances in Light-Front QCD

    Science.gov (United States)

    Brodsky, Stanley J.

    2018-05-01

    Light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining q \\bar{q} potential κ ^4 ζ ^2, where ζ ^2 is the light-front radial variable related in momentum space to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.

  17. Light-front quantization of the sine-Gordon model

    International Nuclear Information System (INIS)

    Burkardt, M.

    1993-01-01

    It is shown how to modify the canonical light-front quantization of the (1+1)-dimensional sine-Gordon model such that the zero-mode problem of light-front quantization is avoided. The canonical sine-Gordon Lagrangian is replaced by an effective Lagrangian which does not lead to divergences as k + =(k 0 +k 1 )/ √2 →0. After canonically quantizing the effective Lagrangian, one obtains the effective light-front Hamiltonian which agrees with the naive light-front (LF) Hamiltonian, up to one additional renormalization. The spectrum of the effective LF Hamiltonian is determined using discrete light-cone quantization and agrees with results from equal-time quantization

  18. QCD Phenomenology and Light-Front Wave Functions

    International Nuclear Information System (INIS)

    Brodsky, St.J.

    2001-01-01

    A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wave functions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, diffractive dissociation into jets, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wave functions is discussed. Light-front quantization can also be used in the Hamiltonian form to construct an event generator for high energy physics reactions at the amplitude level. The light-cone partition function, summed over exponentially-weighted light-cone energies, has simple boost properties which may be useful for studies in heavy ion collisions. I also review recent work which shows that the structure functions measured in deep inelastic lepton scattering are affected by final-state rescattering, thus modifying their connection to light-front probability distributions. In particular, the shadowing of nuclear structure functions is due to destructive interference effects from leading-twist diffraction of the virtual photon, physics not included in the nuclear light-cone wave functions. (author)

  19. Spin-1 particles with light-front approach

    Directory of Open Access Journals (Sweden)

    de Melo J.P.B.C.

    2014-06-01

    Full Text Available For the vector sector, i.e, mesons with spin-1, the electromagnetic form factors and anothers observables are calculated with the light-front approach. However, the light-front quantum field theory have some problems, for example, the rotational symmetry breaking. We solve that problem added the zero modes contribuition to the matrix elements of the electromagnetic current, besides the valence contribuition. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the 0 → 0 one carries zero mode contributions.

  20. Palaeoclimate Research in Villars Cave (Dordogne, SW-France

    Directory of Open Access Journals (Sweden)

    Genty Dominique

    2008-10-01

    Full Text Available Villars Cave is a typical shallow cave from South-West France (45.44°N; 0.78°E; 175 m asl that has provided several speleothempalaeoclimatic records such as the millennial scale variability of the Last Glacial period and the Last Deglaciation. Monitoring theVillars cave environment over a 13-year period has helped in the understanding of the stable isotopic speleothem content and inthe hydrology. For example, it was demonstrated that most of the calcite CaCO3 carbon comes from the soil CO2, which explainsthe sensitivity of the δ13C to any vegetation and climatic changes. Drip rate monitoring, carried out under four stalactites from thelower and upper galleries, has shown a well marked seasonality of the seepage water with high flow rates during winter and spring.A time delay of about two months is observed between the water excess (estimated from outside meteorological stations and thedrip rate in the cave. A great heterogeneity in the flow rate amplitude variations and in the annual quantity of water between twonearby stalactites is observed, confirming the complexity of the micro-fissure network system in the unsaturated zone. At a dailyscale, the air pressure and drip rates are anti-correlated probably because of pressure stress on the fissure network. Cave air CO2concentration follows soil CO2 production and is correlated with its δ13C content. Since the beginning of the monitoring, the cave airtemperature, in both lower and upper galleries, displays a warming trend of ~+0.4°C±0.1/10yrs. This might be the consequence ofthe outside temperature increase that reaches the Villars Cave galleries through thermal wave conduction. Chemistry monitoringover a few years has shown that the seepage water of the lower gallery stations is significantly more concentrated in trace and minorelements (i.e. Sr, Mg, Ba, U than the upper stations, probably due to the 10-20 m depth difference between these galleries, whichimplies a different seepage pathway

  1. Light-Front Holography and AdS/QCD Correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy F.

    2008-04-23

    Light-Front Holography is a remarkable consequence of the correspondence between string theory in AdS space and conformal field theories in physical-space time. It allows string modes {Phi}(z) in the AdS fifth dimension to be precisely mapped to the light-front wavefunctions of hadrons in terms of a specific light-front impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron. This mapping was originally obtained by matching the exact expression for electromagnetic current matrix elements in AdS space with the corresponding exact expression for the current matrix element using light-front theory in physical space-time. More recently we have shown that one obtains the identical holographic mapping using matrix elements of the energy-momentum tensor, thus providing an important consistency test and verification of holographic mapping from AdS to physical observables defined on the light-front. The resulting light-front Schrodinger equations predicted from AdS/QCD give a good representation of the observed meson and baryon spectra and give excellent phenomenological predictions for amplitudes such as electromagnetic form factors and decay constants.

  2. Wolfgang Pauli - a portrait. History of science; Wolfgang Pauli - ein Portrait. Wissenschaftsgeschichte

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E.P.

    2008-07-01

    Wolfgang Pauli (1900-1958) is named by his colleagues in the same breath with Isaac Newton and Albert Einstein, who named Pauli his ''mental son''. The history of science had neglected Pauli for a long time. The reason for this may be found in Pauli's attempts to capture the role of the unconscious in physics and the meaning of dreams in the creation of scientific pictures of the world. For Pauli a scientific method consisted in activating the unconscious and hoping that it would start up that specific type of ''painting viewing'' from which the terms can arise by which we express our understanding.

  3. Phase transition of light in cavity QED lattices.

    Science.gov (United States)

    Schiró, M; Bordyuh, M; Oztop, B; Türeci, H E

    2012-08-03

    Systems of strongly interacting atoms and photons, which can be realized wiring up individual cavity QED systems into lattices, are perceived as a new platform for quantum simulation. While sharing important properties with other systems of interacting quantum particles, here we argue that the nature of light-matter interaction gives rise to unique features with no analogs in condensed matter or atomic physics setups. By discussing the physics of a lattice model of delocalized photons coupled locally with two-level systems through the elementary light-matter interaction described by the Rabi model, we argue that the inclusion of counterrotating terms, so far neglected, is crucial to stabilize finite-density quantum phases of correlated photons out of the vacuum, with no need for an artificially engineered chemical potential. We show that the competition between photon delocalization and Rabi nonlinearity drives the system across a novel Z(2) parity symmetry-breaking quantum criticality between two gapped phases that share similarities with the Dicke transition of quantum optics and the Ising critical point of quantum magnetism. We discuss the phase diagram as well as the low-energy excitation spectrum and present analytic estimates for critical quantities.

  4. Remembering Pauli

    CERN Multimedia

    2002-01-01

    The annual meeting of the Pauli Committee on 30 August will be enlivened this year by a celebration to mark the publication of : No Time to be Brief - A scientific biography of Wolfgang Pauli, by Charles P. Enz, Professor Emeritus of the University of Geneva.  

  5. Light-front Ward-Takahashi identity for two-fermion systems

    International Nuclear Information System (INIS)

    Marinho, J. A. O.; Frederico, T.; Pace, E.; Salme, G.; Sauer, P. U.

    2008-01-01

    We propose a three-dimensional electromagnetic current operator within light-front dynamics that satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is obtained by a quasipotential reduction of the four-dimensional current operator and acts on the light-front valence component of bound or scattering states. A relation between the light-front valence wave function and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived, such that the matrix elements of the four-dimensional current operator can be fully recovered from the corresponding light-front ones. The light-front current operator can be perturbatively calculated through a quasipotential expansion, and the divergence of the proposed current satisfies a Ward-Takahashi identity at any given order of the expansion. In the quasipotential expansion the instantaneous terms of the fermion propagator are accounted for by the effective interaction and two-body currents. We exemplify our theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the current operator at the lowest nontrivial order of the quasipotential expansion of the Bethe-Salpeter equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the Ward-Takahashi identity

  6. Transverse Lattice Approach to Light-Front Hamiltonian QCD

    CERN Document Server

    Dalley, S

    1999-01-01

    We describe a non-perturbative procedure for solving from first principles the light-front Hamiltonian problem of SU(N) pure gauge theory in D spacetime dimensions (D>2), based on enforcing Lorentz covariance of observables. A transverse lattice regulator and colour-dielectric link fields are employed, together with an associated effective potential. We argue that the light-front vacuum is necessarily trivial for large enough lattice spacing, and clarify why this leads to an Eguchi-Kawai dimensional reduction of observables to 1+1-dimensions in the infinite N limit. The procedure is then tested by explicit calculations for 2+1-dimensional SU(infinity) gauge theory, within a first approximation to the lattice effective potential. We identify a scaling trajectory which produces Lorentz covariant behaviour for the lightest glueballs. The predicted masses, in units of the measured string tension, are in agreement with recent results from conventional Euclidean lattice simulations. In addition, we obtain the poten...

  7. Light-front nuclear shell-model

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1990-01-01

    I examine the effects of nuclear structure on high-energy, high-momentum transfer processes, specifically the EMC effect. For pedagogical reasons, a fictitious but simple two-body system consisting of two equal-mass particles interacting in a harmonic oscillator potential has been chosen. For this toy nucleus, I utilize a widely-used link between instant-form and light-front dynamics, formulating nuclear structure and deep-inelastic scattering consistently in the laboratory system. Binding effects are compared within conventional instant-form and light-front dynamical frameworks, with appreciable differences being found in the two cases. 20 refs

  8. Higher order radiative corrections to electron anomaly in QED; a remark on asymptotic behaviour of vacuum polarization insertions and explicit analytic values of the first six ladder graphs

    International Nuclear Information System (INIS)

    Caffo, M.; Turrini, S.; Remiddi, E.

    1978-04-01

    As a comment to a recent paper by B. Lautrup we show that the series of multiple lowest order vacuum polarization insertions in the lowest vertex graph is convergent for finite Pauli-Villars regularizing mass, and becomes divergent in the limit of infinite regularizing mass. We then evaluate, analytically, the contributions due to the first twelve vacuum polarization insertions. We consider also the contributions to the electron anomaly due to the vertex ladder graphs. They are all positive and growing fast; the ratio between two successive ones is also growing, up to 2.95 for the last two we evaluate. (orig.) [de

  9. Theory of superfluorescence-laser crossover in a cavity QED system

    Energy Technology Data Exchange (ETDEWEB)

    Sezaki, Riku; Ishikawa, Akira; Kobayashi, Kiyoshi [University of Yamanashi, Department of Science for Advanced Materials, Kofu, Yamanashi (Japan); Miyajima, Kensuke [Tokyo University of Science, Department of Applied Physics, Tokyo (Japan)

    2017-11-15

    Coherent emissions of photons, originating from coherently-coupled polarizations, are created by laser and superfluorescence, but the mechanisms remain obscure to be fully explored in nanophotonics from the application viewpoint to coherent-light sources. In this paper, we present a comprehensive full quantum theory to clarify the crossover between laser and superfluorescence caused by the competition between stimulated and spontaneous emissions in a cavity QED system. As a result, in case of steady-state emission, we show the feasibility of coherent-light emission by superfluorescence different from laser, depending on the quality factor of a cavity QED system. In particular, the coherence generation due to superfluorescence occurs in a shorter timescale in a cavity QED systems with a lower Q factor than laser due to stimulated emission. This result suggests that superfluorescence can be applied to a novel coherent-light source by a mechanism greatly different from laser. (orig.)

  10. The Role of Zero-Modes in the Canonical Quantization of Heavy-Fermion QED in Light-Cone Coordinates

    OpenAIRE

    Brown, Robert W.; Jun, Jin Woo; Shvartsman, Shmaryu M.; Taylor, Cyrus C.

    1993-01-01

    Four-dimensional heavy-fermion QED is studied in light-cone coordinates with (anti-)periodic field boundary conditions. We carry out a consistent light-cone canonical quantization of this model using the Dirac algorithm for a system with first- and second-class constraints. To examine the role of the zero modes, we consider the quantization procedure in {the }zero-mode {and the non-zero-mode} sectors separately. In both sectors we obtain the physical variables and their canonical commutation ...

  11. AdS/QCD and Applications of Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    Light-Front Holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in 3 + 1 physical space-time, thus providing a compelling physical interpretation of the AdS/CFT correspondence principle and AdS/QCD, a useful framework which describes the correspondence between theories in a modified AdS5 background and confining field theories in physical space-time. To a first semiclassical approximation, where quantum loops and quark masses are not included, this approach leads to a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role. We give an overview of the light-front holographic approach to strongly coupled QCD. In particular, we study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The results for the TFFs for the {eta} and {eta}' mesons are also presented. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  12. Gluon cascades and amplitudes in light-front perturbation theory

    International Nuclear Information System (INIS)

    Cruz-Santiago, C.A.; Staśto, A.M.

    2013-01-01

    We construct the gluon wave functions, fragmentation functions and scattering amplitudes within the light-front perturbation theory. Recursion relations on the light-front are constructed for the wave functions and fragmentation functions, which in the latter case are the light-front analogs of the Berends–Giele recursion relations. Using general relations between wave functions and scattering amplitudes it is demonstrated how to obtain the maximally-helicity violating amplitudes, and explicit verification of the results is based on simple examples.

  13. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  14. Theoretical particle physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics: heavy quark physics; Chiral Perturbation theory; Skyrmions; quarkonia and nuclear matter; parity violating nuclear matrix elements; how precisely can one determine M U /M D ; weak scale baryogenesis; constraints of baryogenesis form neutrino masses; majorons, double beta decay, supernova 1987A; rare decays; chiral lattice fermions; Pauli-Villars regulator and the Higgs mass bound; and Higgs and Yukawa interactions

  15. From strong to ultrastrong coupling in circuit QED architectures

    Energy Technology Data Exchange (ETDEWEB)

    Niemczyk, Thomas

    2011-08-10

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  16. From strong to ultrastrong coupling in circuit QED architectures

    International Nuclear Information System (INIS)

    Niemczyk, Thomas

    2011-01-01

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  17. Light-front view of the axial anomaly

    International Nuclear Information System (INIS)

    Ji, C.; Rey, S.

    1996-01-01

    Motivated by an apparent puzzle of the light-front vacua incompatible with the axial anomaly, we have considered the two-dimensional massless Schwinger model for an arbitrary interpolating angle of Hornbostel close-quote s interpolating quantization surface. By examining spectral deformation of the Dirac sea under an external electric field semiclassically, we have found that the axial anomaly is quantization angle independent. This indicates an intricate nontrivial vacuum structure present even in the light-front limit. copyright 1996 The American Physical Society

  18. Light-front dynamics of Chern-Simons systems

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1994-10-01

    The Chern-Simons theory coupled to complex scalars is quantized on the light-front in the local light-cone gauge by constructing the self-consistent Hamiltonian theory. It is shown that no inconsistency arises on using two local gauge-fixing conditions in the Dirac procedure. The light-front Hamiltonian turns out to be simple and the framework may be useful to construct renormalized field theory of particles with fractional statistics (anyons). The theory is shown to be relativistic and the extra term in the transformation of the matter field under space rotations, interpreted in previous works as anomaly, is argued to be gauge artefact. (author). 20 refs

  19. AdS/QCD and Applications of Light-Front Holography

    DEFF Research Database (Denmark)

    Brodsky, S. J.; Cao, F. G.; de Teramond, G. F.

    2012-01-01

    Light-front holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in (3+1)-dimensional physical space-time, thus providing a compelling physical interpretation of the Ad...

  20. Anomaly cancellation in effective supergravity theories from the heterotic string: Two simple examples

    Science.gov (United States)

    Gaillard, Mary K.; Leedom, Jacob

    2018-02-01

    We use Pauli-Villars regularization to evaluate the conformal and chiral anomalies in the effective field theories from Z3 and Z7 compactifications of the heterotic string without Wilson lines. We show that parameters for Pauli-Villars chiral multiplets can be chosen in such a way that the anomaly is universal in the sense that its coefficient depends only on a single holomorphic function of the three diagonal moduli. It is therefore possible to cancel the anomaly by a generalization of the four-dimensional Green-Schwarz mechanism. In particular we are able to reproduce the results of a string calculation of the four-dimensional chiral anomaly for these two models.

  1. Light-front field theory in the description of hadrons

    Directory of Open Access Journals (Sweden)

    Ji Chueng-Ryong

    2017-01-01

    Full Text Available We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  2. Light-front field theory in the description of hadrons

    Science.gov (United States)

    Ji, Chueng-Ryong

    2017-03-01

    We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  3. Relation between equal-time and light-front wave functions

    International Nuclear Information System (INIS)

    Miller, Gerald A.; Tiburzi, Brian C.

    2010-01-01

    The relation between equal-time and light-front wave functions is studied using models for which the four-dimensional solution of the Bethe-Salpeter wave function can be obtained. The popular prescription of defining the longitudinal momentum fraction using the instant-form free kinetic energy and third component of momentum is found to be incorrect except in the nonrelativistic limit. One may obtain light-front wave functions from rest-frame, instant-form wave functions by boosting the latter wave functions to the infinite momentum frame. Despite this difficulty, we prove a relation between certain integrals of the equal-time and light-front wave functions.

  4. Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling using circuit QED (2) - light dynamics and light-matter entanglement -

    Science.gov (United States)

    Sagastizabal, R.; Langford, N. K.; Kounalakis, M.; Dickel, C.; Bruno, A.; Luthi, F.; Thoen, D. J.; Endo, A.; Dicarlo, L.

    Light-matter interaction can lead to large photon build-up and hybrid atom-photon entanglement in the ultrastrong coupling (USC) regime, where the coupling strength becomes comparable to the eigenenergies of the system. Accessing the cavity degree of freedom, however, is an outstanding challenge in natural USC systems. In this talk, we directly probe light field dynamics in the USC regime using a digital simulation of the quantum Rabi model in a planar circuit QED chip with a transmon moderately coupled to a resonator. We produce high-accuracy USC light-matter dynamics, using second-order Trotterisation and up to 90 Trotter steps. We probe the average photon number, photon parity and perform Wigner tomography of the simulated field. Finally, we combine tomography of the resonator with qubit measurements to evidence the Schrödinger-cat-like atom-photon entanglement which is a key signature of light-matter dynamics in the USC regime. Funding from the EU FP7 Project ScaleQIT, the ERC Synergy Grant QC-lab, the Netherlands Organization of Scientic Research (NWO), and Microsoft Research.

  5. A biography of Wolfgang Ernest Pauli; La vie de Wolfgang Ernest Pauli

    Energy Technology Data Exchange (ETDEWEB)

    Boudenot, J.C. [Thales, 91 - Palaiseau (France)

    2009-01-15

    This article presents a short biography of Pauli in which we find the most important facts of his scientific career and some stunning sides of his personality. Pauli was born in 1900 in Vienna in an intellectual family. He was very soon interested in physics. At the age of 21 he published a relevant article on relativity, and the same year he presented a doctorate thesis on the quantum description of the H{sub 2}{sup +} molecular ion. As soon as 1925, Pauli discovered the exclusion principle (for which he will receive the Nobel prize in 1945), and was the first to calculate the energy levels of the hydrogen atom by using the Heisenberg formalism. In 1930, he suggested the existence of an unknown particle (the neutrino) to explain the continuous spectrum of the beta decay. In 1934, he found a link between the spin and the quantum statistics that is now called the spin-statistic theorem. Pauli died in december 1958 from a pancreas tumor. (A.C.)

  6. {theta}-vacua in the light-front quantized Schwinger model

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-09-01

    The light-front quantization of the bosonized Schwinger model is discussed in the continuum formulation. The proposal, successfully used earlier for describing the spontaneous symmetry breaking on the light-front, of separating first the scalar field into the dynamical condensate and the fluctuation fields before employing the standard Dirac method works here as well. Some topics on the front form theory are summarized in the Appendices and attention is drawn to the fact that the theory quantized, at x{sup +} seems already to carry information on equal x{sup -} commutators as well. (author). 21 refs.

  7. θ-vacua in the light-front quantized Schwinger model

    International Nuclear Information System (INIS)

    Srivastava, Prem P.

    1996-09-01

    The light-front quantization of the bosonized Schwinger model is discussed in the continuum formulation. The proposal, successfully used earlier for describing the spontaneous symmetry breaking on the light-front, of separating first the scalar field into the dynamical condensate and the fluctuation fields before employing the standard Dirac method works here as well. Some topics on the front form theory are summarized in the Appendices and attention is drawn to the fact that the theory quantized, at x + seems already to carry information on equal x - commutators as well. (author). 21 refs

  8. The covariant-evolution-operator method in bound-state QED

    International Nuclear Information System (INIS)

    Lindgren, Ingvar; Salomonson, Sten; Aasen, Bjoern

    2004-01-01

    The methods of quantum-electrodynamical (QED) calculations on bound atomic systems are reviewed with emphasis on the newly developed covariant-evolution-operator method. The aim is to compare that method with other available methods and also to point out possibilities to combine that with standard many-body perturbation theory (MBPT) in order to perform accurate numerical QED calculations, including quasi-degeneracy, also for light elements, where the electron correlation is relatively strong. As a background, the time-independent many-body perturbation theory (MBPT) is briefly reviewed, particularly the method with extended model space. Time-dependent perturbation theory is discussed in some detail, introducing the time-evolution operator and the Gell-Mann-Low relation, generalized to an arbitrary model space. Three methods of treating the bound-state QED problem are discussed. The standard S-matrix formulation, which is restricted to a degenerate model space, is discussed only briefly. Two methods applicable also to the quasi-degenerate problem are treated in more detail, the two-times Green's-function and the covariant-evolution-operator techniques. The treatment is concentrated on the latter technique, which has been developed more recently and which has not been discussed in more detail before. A comparison of the two-times Green's-function and the covariant-evolution-operator techniques, which have great similarities, is performed. In the appendix a simple procedure is derived for expressing the evolution-operator diagrams of arbitrary order. The possibilities of merging QED in the covariant evolution-operator formulation with MBPT in a systematic way is indicated. With such a technique it might be feasible to perform accurate QED calculations also on light elements, which is presently not possible with the techniques available

  9. Wolfgang Pauli - a portrait. History of science

    International Nuclear Information System (INIS)

    Fischer, E.P.

    2008-01-01

    Wolfgang Pauli (1900-1958) is named by his colleagues in the same breath with Isaac Newton and Albert Einstein, who named Pauli his ''mental son''. The history of science had neglected Pauli for a long time. The reason for this may be found in Pauli's attempts to capture the role of the unconscious in physics and the meaning of dreams in the creation of scientific pictures of the world. For Pauli a scientific method consisted in activating the unconscious and hoping that it would start up that specific type of ''painting viewing'' from which the terms can arise by which we express our understanding

  10. Rotational covariance and light-front current matrix elements

    International Nuclear Information System (INIS)

    Keister, B.D.

    1994-01-01

    Light-front current matrix elements for elastic scattering from hadrons with spin 1 or greater must satisfy a nontrivial constraint associated with the requirement of rotational covariance for the current operator. Using a model ρ meson as a prototype for hadronic quark models, this constraint and its implications are studied at both low and high momentum transfers. In the kinematic region appropriate for asymptotic QCD, helicity rules, together with the rotational covariance condition, yield an additional relation between the light-front current matrix elements

  11. On the possible dynamical realization of the Pauli–Villars regularization

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, A. A.; Savelova, E. P., E-mail: ka98@mail.ru [Society, and Man, Dubna International University for Nature (Russian Federation)

    2015-12-15

    The problem of free-particle scattering on virtual wormholes is considered. It is shown that, for all types of relativistic fields, this scattering leads to the appearance of additional very heavy particles, which play the role of auxiliary fields in the invariant scheme of Pauli–Villars regularization. A nonlinear correction that describes the back reaction of particles to the vacuum distribution of virtual wormholes is also obtained.

  12. Isovector meson-exchange currents in the light-front dynamics

    International Nuclear Information System (INIS)

    Desplanques, B.; Karmanov, V.A.; Mathiot, J.F.

    1994-09-01

    In the light-front dynamics, there is no pair term that plays the role of the dominant isovector pion exchange current. This current gives rise to the large and experimentally observed contribution to the deuteron electrodisintegration cross-section near threshold for pseudo-scalar πNN coupling. It is analytically shown that in leading 1/m order the amplitude in the light-front dynamics coincides, however, with the one given by the pair term. At high Q 2 , it consists of two equal parts. One comes from extra components of the deuteron and final state relativistic wave functions. The other results from the contact NNπγ interaction which appears in the light-front dynamics. This provides a transparent link between relativistic and non-relativistic approaches. (author). 16 refs., 4 figs

  13. AdS/QCD, Light-Front Holography, and Sublimated Gluons

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The gauge/gravity duality leads to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian - 'Light-Front Holography', which provides a Lorentz-invariant first-approximation to QCD, and successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schroedinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta} in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons - the relativistic analogs of the Schroedinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence quarks, jet hadronization, and other hadronic observables. One thus obtains a one-parameter color-confining model for hadron physics at the amplitude level. AdS/QCD also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function with an infrared fixed point which agrees with the effective coupling a{sub g1} (Q{sup 2}) extracted from measurements of the Bjorken sum rule below Q{sup 2} < 1 GeV{sup 2}. This is consistent with a flux-tube interpretation of QCD where soft gluons with virtualities Q{sup 2} < 1 GeV{sup 2} are sublimated into a color-confining potential for quarks. We discuss a number of phenomenological hadronic properties which support this picture.

  14. Poincare invariant algebra from instant to light-front quantization

    International Nuclear Information System (INIS)

    Ji, Chueng-Ryong; Mitchell, Chad

    2001-01-01

    We present the Poincare algebra interpolating between instant and light-front time quantizations. The angular momentum operators satisfying SU(2) algebra are constructed in an arbitrary interpolation angle and shown to be identical to the ordinary angular momentum and Leutwyler-Stern angular momentum in the instant and light-front quantization limits, respectively. The exchange of the dynamical role between the transverse angular mometum and the boost operators is manifest in our newly constructed algebra

  15. Role of zero modes in the canonical quantization of heavy-fermion QED in light-cone coordinates

    International Nuclear Information System (INIS)

    Brown, R.W.; Jun, J.W.; Shvartsman, S.M.; Taylor, C.C.

    1993-01-01

    Four-dimensional heavy-fermion QED is studied in light-cone coordinates with (anti)periodic field boundary conditions. We carry out a consistent light-cone canonical quantization of this model using the Dirac algorithm for a system with first- and second-class constraints. To examine the role of the zero modes, we consider the quantization procedure in the zero-mode and the nonzero-mode sectors separately. In both sectors we obtain the physical variables and their canonical commutation relations. The physical Hamiltonian is constructed via a step-by-step exclusion of the unphysical degrees of freedom. An example using this Hamiltonian in which the zero modes play a role is the verification of the correct Coulomb potential between two heavy fermions

  16. Quasiparadoxes of massless QED

    International Nuclear Information System (INIS)

    Smilga, A.V.

    1990-04-01

    We show that the limit m e =0 in the conventional QED is not smooth. In contrast to the massless QED the massive QED, however small the mass is, involves finite probability chirality breaking processes. The chirality breaking effects may be observed provided the size of experimental installation is greater than the formation length ∼ E/m 2 . We discuss also the finite cross sections of virtual longitudinal photon production and scattering in massless QED recently found by Gorsky, Ioffe and Khodjamirian and argue that real longitudinal photons do not interact while the limit of zero virtuality is not smooth. (author). 23 refs, 4 figs

  17. Light front field theory: an advanced primer

    International Nuclear Information System (INIS)

    Martinovic, L.

    2007-01-01

    We present an elementary introduction to quantum field theory formulated in terms of Dirac's light front variables. In addition to general principles and methods, a few more specific topics and approaches based on the author's work will be discussed. Most of the discussion deals with massive two-dimensional models formulated in a finite spatial volume starting with a detailed comparison between quantization of massive free fields in the usual field theory and the light front (LF) quantization. We discuss basic properties such as relativistic invariance and causality. After the LF treatment of the soluble Federbush model, a LF approach to spontaneous symmetry breaking is explained and a simple gauge theory - the massive Schwinger model in various gauges is studied. A LF version of bosonization and the massive Thirring model are also discussed. A special chapter is devoted to the method of discretized light cone quantization and its application to calculations of the properties of quantum solitons. The problem of LF zero modes is illustrated with the example of the two/dimensional Yukawa model. Hamiltonian perturbation theory in the LF formulation is derived and applied to a few simple processes to demonstrate its advantages. As a byproduct, it is shown that the LF theory cannot be obtained as a 'light-like' limit of the usual field theory quantized on a initial space-like surface. A simple LF formulation of the Higgs mechanism is then given Since our intention was to provide a treatment of the light front quantization accessible to postgradual students, an effort was made to discuss most of the topics pedagogically and number of technical details and derivations are contained in the appendices (Author)

  18. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  19. The Pauli-Jung conjecture and its impact today

    CERN Document Server

    Fuchs, Christopher A

    2014-01-01

    Related to the key areas of Pauli''s and Jung''s joint interests, the book covers overlapping issues from the perspectives of physics, philosophy, and psychology. Of primary significance are epistemological questions connected to issues such as realism, measurement, observation, consciousness, and the unconscious. The contributions assess the extensive material that we have about Pauli''s and Jung''s ideas today, with particular respect to concrete research questions and projects based on and re...

  20. Light-Front Dynamics in Hadron Physics

    NARCIS (Netherlands)

    Ji, C.R.; Bakker, B.L.G.; Choi, H.M.

    2013-01-01

    Light-front dynamics(LFD) plays an important role in the analyses of relativistic few-body systems. As evidenced from the recent studies of generalized parton distributions (GPDs) in hadron physics, a natural framework for a detailed study of hadron structures is LFD due to its direct application in

  1. QED effects on individual atomic orbital energies

    Science.gov (United States)

    Kozioł, Karol; Aucar, Gustavo A.

    2018-04-01

    Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.

  2. A representação feminina em D. Narcisa de Villar, de Ana Luísa de Azevedo Castro

    Directory of Open Access Journals (Sweden)

    Bárbara Loureiro Andreta

    2014-07-01

    Full Text Available D. Narcisa de Villar is the only novel written by Ana Luísa de Azevedo Castro, published in 1859. In this novel, the women and the native people represent the resistance to the patriarchal, colonialist and enslaver society. As in other nineteenth century female authorship’s novels, D. Narcisa de Villar denounces the institutional and symbolical violence, which interlines the construction of the Brazilian nation, disestablishing, in this way, the configuration of the national identity, since she gave voice to the subaltern voices.

  3. Taylor-Lagrange regularization scheme and light-front dynamics

    International Nuclear Information System (INIS)

    Grange, P.; Mathiot, J.-F.; Mutet, B.; Werner, E.

    2010-01-01

    The recently proposed renormalization scheme based on the definition of field operators as operator valued distributions acting on specific test functions is shown to be very convenient in explicit calculations of physical observables within the framework of light-front dynamics. We first recall the main properties of this procedure based on identities relating the test functions to their Taylor remainder of any order expressed in terms of Lagrange's formulae, hence the name given to this scheme. We thus show how it naturally applies to the calculation of state vectors of physical systems in the covariant formulation of light-front dynamics. As an example, we consider the case of the Yukawa model in the simple two-body Fock state truncation.

  4. Higgs mechanism in light-front quantized field theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P P

    1993-12-31

    The spontaneous symmetry breaking of continuous symmetry in light-front quantized scalar field theory is studied following the standard Dirac procedure for constrained dynamical systems. A non-local constraint is found to follow. The values of the constant backgrounds fields (zero modes) at the tree level, as a consequence, are shown to given by minimizing the light-front energy. The zero modes are shown to commute with the non-zero ones and the isovector built from them is seen to characterize a (non-perturbative) vacuum state and the corresponding physical sector. The infinite degeneracy of the vacuum is described by the continuum of the allowed orientations of this background isovector in the isospin space. The symmetry generators in the quantized field theory annihilate the vacuum is contrast to the case of equal-time quantization. Not all of them are conserved and the conserved ones determine the surviving symmetry of the quantum theory Lagrangian. The criteria for determining the background isovector and the counting of the number of Goldstone bosons goes as in the equal-time case. A demonstration in favour of the absence of Goldstone bosons in two dimensions is also found. Finally, is extended to an understanding of the Higgs mechanism in light-front frame. (author). 13 refs.

  5. Higgs mechanism in light-front quantized field theory

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1992-01-01

    The spontaneous symmetry breaking of continuous symmetry in light-front quantized scalar field theory is studied following the standard Dirac procedure for constrained dynamical systems. A non-local constraint is found to follow. The values of the constant backgrounds fields (zero modes) at the tree level, as a consequence, are shown to given by minimizing the light-front energy. The zero modes are shown to commute with the non-zero ones and the isovector built from them is seen to characterize a (non-perturbative) vacuum state and the corresponding physical sector. The infinite degeneracy of the vacuum is described by the continuum of the allowed orientations of this background isovector in the isospin space. The symmetry generators in the quantized field theory annihilate the vacuum is contrast to the case of equal-time quantization. Not all of them are conserved and the conserved ones determine the surviving symmetry of the quantum theory Lagrangian. The criteria for determining the background isovector and the counting of the number of Goldstone bosons goes as in the equal-time case. A demonstration in favour of the absence of Goldstone bosons in two dimensions is also found. Finally, is extended to an understanding of the Higgs mechanism in light-front frame. (author). 13 refs

  6. Is weak violation of the Pauli principle possible?

    International Nuclear Information System (INIS)

    Ignat'ev, A.Yu.; Kuz'min, V.A.

    1987-01-01

    The question considered in the work is whether there are models which can account for small violation of the Pauli principle. A simple algebra is constructed for the creation-annihilation operators, which contains a parameter β and describe small violation of the Pauli principle (the Pauli principle is valid exactly for β=0). The commutation relations in this algebra are trilinear. A model is presented, basing upon this commutator algebra, which allows transitions violating the Pauli principle, their probability being suppressed by a factor of β 2 (even though the Hamiltonian does not contain small parameters)

  7. On the trace anomaly of a Weyl fermion

    Energy Technology Data Exchange (ETDEWEB)

    Bastianelli, Fiorenzo; Martelli, Riccardo [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)

    2016-11-29

    We calculate the trace anomaly of a Weyl fermion coupled to gravity by using Fujikawa’s method supplemented by a consistent regulator. The latter is constructed out of Pauli-Villars regulating fields. The motivation for presenting such a calculation stems from recent studies that suggest that the trace anomaly of chiral fermions in four dimensions might contain an imaginary part proportional to the Pontryagin density. We find that the trace anomaly of a Weyl fermion is given by half the trace anomaly of a Dirac fermion, so that no imaginary part proportional to the Pontryagin density is seen to arise.

  8. The QED Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, G.W.

    1994-07-01

    On May 18--20, 1994, Argonne National Laboratory hosted the QED Workshop. The workshop was supported by special funding from the Office of Naval Research. The purpose of the workshop was to assemble of a group of researchers to consider whether it is desirable and feasible to build a proof-checked encyclopedia of mathematics, with an associated facility for theorem proving and proof checking. Among the projects represented were Coq, Eves, HOL, ILF, Imps, MathPert, Mizar, NQTHM, NuPrl, OTTER, Proof Pad, Qu-Prolog, and RRL. Although the content of the QED project is highly technical rigorously proof-checked mathematics of all sorts the discussions at the workshop were rarely technical. No prepared talks or papers were given. Instead, the discussions focused primarily on such political, sociological, practical, and aesthetic questions, such as Why do it? Who are the customers? How can one get mathematicians interested? What sort of interfaces are desirable? The most important conclusion of the workshop was that QED is an idea worthy pursuing, a statement with which virtually all the participants agreed. In this document, the authors capture some of the discussions and outline suggestions for the start of a QED scientific community.

  9. The vacuum structure of light-front φ41+1-theory

    International Nuclear Information System (INIS)

    Heinzl, T.; Stern, C.; Werner, E.; Zellermann, B.

    1996-01-01

    We discuss the vacuum structure of φ 4 -theory in 1+1 dimensions quantised on the light-front x + =0. To this end, one has to solve a non-linear, operator-valued constraint equation. It expresses that mode of the field operator having longitudinal light-front momentum equal to zero, as a function of all the other modes in the theory. We analyse whether this zero mode can lead to a non-vanishing vacuum expectation value of the field φ and thus to spontaneous symmetry breaking. In perturbation theory, we get no symmetry breaking. If we solve the constraint, however, non-perturbatively, within a mean-field type Fock ansatz, the situation changes: while the vacuum state itself remains trivial, we find a non-vanishing vacuum expectation value above a critical coupling. Exactly the same result is obtained within a light-front Tamm-Dancoff approximation, if the renormalisation is done in the correct way. (orig.). With 1 fig

  10. Pauli-Guersey symmetry in gauge theories

    International Nuclear Information System (INIS)

    Stern, J.

    1983-05-01

    Gauge theories with massless or massive fermions in a selfcontragredient representation exhibit global symmetries of Pauli-Guersey type. Some of them are broken spontaneously leading to a difermion Goldstone bosons. An example of a boson version of the Pauli-Guersey symmetry is provided by the Weinberg-Salam model in the limit THETAsub(w)→O

  11. Pauli and Jung the meeting of two great minds

    CERN Document Server

    Lindorff, David

    2004-01-01

    The pioneering work of Nobel prize-winning physicist Wolfgang Pauli led to developing the bombs that decimated Hiroshima and Nagasaki. Desperate over this outcome, Pauli sought help from the eminent depth psychologist, C. G. Jung. Their long correspondence provides the powerful and unique record of a mature scientist's inner journey. It also has had a tremendous impact on scientific and psychological thought ever since. Pauli and Jung is a lucid interpretation of Pauli's ideas and dreams that forcefully validates his belief in the inseparable union of science and spirituality. Far ahead of their time, Wolfgang Pauli and C. G. Jung both knew this union is essential for the future of humanity and the survival of the planet.

  12. Vector mesons on the light front

    International Nuclear Information System (INIS)

    Naito, K.; Maedan, S.; Itakura, K.

    2004-01-01

    We apply the light-front quantization to the Nambu-Jona-Lasinio model with the vector interaction, and compute vector meson's mass and light-cone wavefunction in the large N limit. Following the same procedure as in the previous analyses for scalar and pseudo-scalar mesons, we derive the bound-state equations of a qq-bar system in the vector channel. We include the lowest order effects of the vector interaction. The resulting transverse and longitudinal components of the bound-state equation look different from each other. But eventually after imposing an appropriate cutoff, one finds these two are identical, giving the same mass and the same (spin-independent) light-cone wavefunction. Mass of the vector meson decreases as one increases the strength of the vector interaction

  13. Projecting the Bethe-Salpeter Equation onto the Light-Front and Back: A Short Review

    International Nuclear Information System (INIS)

    Frederico, T.; Salme, G.

    2011-01-01

    The technique of projecting the four-dimensional two-body Bethe-Salpeter equation onto the three-dimensional Light-Front hypersurface, combined with the quasi-potential approach, is briefly illustrated, by placing a particular emphasis on the relation between the projection method and the effective dynamics of the valence component of the Light-Front wave function. Some details on how to construct the Fock expansion of both (a) the Light-Front effective interaction and (b) the electromagnetic current operator, satisfying the proper Ward-Takahashi identity, will be presented, addressing the relevance of the Fock content in the operators living onto the Light-Front hypersurface. Finally, the generalization of the formalism to the three-particle case will be outlined. (author)

  14. Non Pauli-Fierz Massive Gravitons

    CERN Document Server

    Dvali, Gia; Redi, Michele

    2008-01-01

    We study general Lorentz invariant theories of massive gravitons. We show that, contrary to the standard lore, there exist consistent theories where the graviton mass term violates Pauli-Fierz structure. For theories where the graviton is a resonance this does not imply the existence of a scalar ghost if the deviation from Pauli-Fierz becomes sufficiently small at high energies. These types of mass terms are required by any consistent realization of the DGP model in higher dimension.

  15. Photon polarization tensor in the light front field theory at zero and finite temperatures

    International Nuclear Information System (INIS)

    Silva, Charles da Rocha; Perez, Silvana; Strauss, Stefan

    2012-01-01

    Full text: In recent years, light front quantized field theories have been successfully generalized to finite temperature. The light front frame was introduced by Dirac , and the quantization of field theories on the null-plane has found applications in many branches of physics. In order to obtain the thermal contribution, we consider the hard thermal loop approximation. This technique was developed by Braaten and Pisarski for the thermal quantum field theory at equal times and is particularly useful to extract the leading thermal contributions to the amplitudes in perturbative quantum field theories. In this work, we consider the light front quantum electrodynamics in (3+1) dimensions and evaluate the photon polarization tensor at one loop for both zero and finite temperatures. In the first case, we apply the dimensional regularization method to extract the finite contribution and find the transverse structure for the amplitude in terms of the light front coordinates. The result agrees with one-loop covariant calculation. For the thermal corrections, we generalize the hard thermal loop approximation to the light front and calculate the dominant temperature contribution to the polarization tensor, consistent with the Ward identity. In both zero as well as finite temperature calculations, we use the oblique light front coordinates. (author)

  16. Non-Pauli-Fierz Massive Gravitons

    International Nuclear Information System (INIS)

    Dvali, Gia; Pujolas, Oriol; Redi, Michele

    2008-01-01

    We study general Lorentz invariant theories of massive gravitons. We show that, contrary to the standard lore, there exist consistent theories where the graviton mass term violates Pauli-Fierz structure. For theories where the graviton is a resonance, this does not imply the existence of a scalar ghost if the deviation from a Pauli-Fierz structure becomes sufficiently small at high energies. These types of mass terms are required by any consistent realization of the Dvali-Gabadadze-Porrati model in higher dimension

  17. Double folding model including the Pauli exclusion principle

    International Nuclear Information System (INIS)

    Gridnev, K.A.; Soubbotin, V.B.; Oertzen, W. von; Bohlen, H.G.; Vinas, X.

    2002-01-01

    A new method to incorporate the Pauli principle into the double folding approach to the heavy ion potential is proposed. It is shown that in order to take into account the Pauli blocking a redefinition of the density matrices of the free isolated nuclei must be one. A solution to the self-consistent incorporation of the Pauli-blocking effects in the mean-field nucleus-nucleus potential is obtained in the Thomas-Fermi approximation [ru

  18. Nucleon parton distributions in a light-front quark model

    International Nuclear Information System (INIS)

    Gutsche, Thomas; Lyubovitskij, Valery E.; Schmidt, Ivan

    2017-01-01

    Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q_v(x) and δq_v(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)

  19. Nucleon parton distributions in a light-front quark model

    Energy Technology Data Exchange (ETDEWEB)

    Gutsche, Thomas [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Lyubovitskij, Valery E. [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Tomsk Polytechnic University, Laboratory of Particle Physics, Mathematical Physics Department, Tomsk (Russian Federation); Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile); Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile)

    2017-02-15

    Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q{sub v}(x) and δq{sub v}(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)

  20. The Hamiltonian of QED. Zero mode

    International Nuclear Information System (INIS)

    Zastavenko, L.G.

    1990-01-01

    We start with the standard QED Lagrangian. New derivation of the spinor QED Hamiltonian is given. We have taken into account the zero mode. Our derivation is faultless from the point of view of gauge invariance. It gives important corrections to the standard QED Hamiltonian. Our derivation of the Hamiltonian can be generalized to the case of QCD. 5 refs

  1. Is a weak violation of the Pauli principle possible?

    International Nuclear Information System (INIS)

    Ignat'ev, A.Y.; Kuz'min, V.A.

    1987-01-01

    We examine models in which there is a weak violation of the Pauli principle. A simple algebra of creation and annihilation operators is constructed which contains a parameter β and describes a weak violation of the Pauli principle (when β = 0 the Pauli principle is satisfied exactly). The commutation relations in this algebra turn out to be trilinear. A model based on this algebra is described. It allows transitions in which the Pauli principle is violated, but the probability of these transitions is suppressed by the quantity β 2 (even though the interaction Hamiltonian does not contain small parameters)

  2. Nonperturbative QED vacuum birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Dolgaya, E.E.; Sokolov, V.A. [Physics Department, Moscow State University,Moscow, 119991 (Russian Federation)

    2017-05-19

    In this paper we represent nonperturbative calculation for one-loop Quantum Electrodynamics (QED) vacuum birefringence in presence of strong magnetic field. The dispersion relations for electromagnetic wave propagating in strong magnetic field point to retention of vacuum birefringence even in case when the field strength greatly exceeds Sauter-Schwinger limit. This gives a possibility to extend some predictions of perturbative QED such as electromagnetic waves delay in pulsars neighbourhood or wave polarization state changing (tested in PVLAS) to arbitrary magnetic field values. Such expansion is especially important in astrophysics because magnetic fields of some pulsars and magnetars greatly exceed quantum magnetic field limit, so the estimates of perturbative QED effects in this case require clarification.

  3. The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form

    International Nuclear Information System (INIS)

    Mourad, J.; Sazdjian, H.

    1994-01-01

    The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs

  4. Hard Thermal Loop approximation in the Light Front Quantum Field Theory

    International Nuclear Information System (INIS)

    Silva, Charles da Rocha; Perez, Silvana

    2011-01-01

    Full text: In this paper we generalize the Hard Thermal Loop approximation (HTL) for the Thermal Light Front Quantum Field Theory. This technique was developed by Braaten e Pisarski [PRL. 63 (1989) 1129, Nucl. Phys. B337 (1990) 569], for the Thermal Quantum Field Theory at equal time and is particularly useful to solve problems of convergence of the amplitudes within Quantum Chromodynamics, caused by the inherently nonperturbative behavior. The HTL approximation satisfies simple Ward identities, is ultraviolet finite and gauge independent. Here we use the light front generalized coordinates (GLFC) proposed by one of us (V. S. Alves, Ashok Das, e Silvana Perez [PRD. 66, (2002) 125008]) and analyze the one loop amplitudes for the λφ3 theory and the Quantum Electrodynamics in (3+1) dimensions at finite temperature in the HTL approximation. For the scalar theory, we evaluate the two-point function, recovering the usual dispersion relations. We also analyze the rotational invariance of the model. We then consider the Quantum Electrodynamics in (3+1) dimensions and calculate the polarization tensor and the vertex function at finite temperature in the HTL approximation. In future, our interest will be to apply the Generalized Light Front formalism to understand the confinement mechanism which occurs in the Quantum Chromodynamics. There is an expectation that the Light Front Quantum Field Theory formalism is more appropriate to study this problems. (author)

  5. Hard Thermal Loop approximation in the Light Front Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Charles da Rocha [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Belem, PA (Brazil); Universidade Federal do Para (UFPA), Belem, PA (Brazil); Perez, Silvana [Universidade Federal do Para (UFPA), Belem, PA (Brazil)

    2011-07-01

    Full text: In this paper we generalize the Hard Thermal Loop approximation (HTL) for the Thermal Light Front Quantum Field Theory. This technique was developed by Braaten e Pisarski [PRL. 63 (1989) 1129, Nucl. Phys. B337 (1990) 569], for the Thermal Quantum Field Theory at equal time and is particularly useful to solve problems of convergence of the amplitudes within Quantum Chromodynamics, caused by the inherently nonperturbative behavior. The HTL approximation satisfies simple Ward identities, is ultraviolet finite and gauge independent. Here we use the light front generalized coordinates (GLFC) proposed by one of us (V. S. Alves, Ashok Das, e Silvana Perez [PRD. 66, (2002) 125008]) and analyze the one loop amplitudes for the {lambda}{phi}3 theory and the Quantum Electrodynamics in (3+1) dimensions at finite temperature in the HTL approximation. For the scalar theory, we evaluate the two-point function, recovering the usual dispersion relations. We also analyze the rotational invariance of the model. We then consider the Quantum Electrodynamics in (3+1) dimensions and calculate the polarization tensor and the vertex function at finite temperature in the HTL approximation. In future, our interest will be to apply the Generalized Light Front formalism to understand the confinement mechanism which occurs in the Quantum Chromodynamics. There is an expectation that the Light Front Quantum Field Theory formalism is more appropriate to study this problems. (author)

  6. Optical Search for QED vacuum magnetic birefringence, Axions and photon Regeneration

    CERN Multimedia

    Pugnat, P; Hryczuk, A; Finger, M; Finger, M; Kral, M

    2007-01-01

    Since its prediction in 1936 by Euler, Heisenberg and Weisskopf in the earlier development of the Quantum Electrodynamic (QED) theory, the Vacuum Magnetic Birefringence (VMB) is still a challenge for optical metrology techniques. According to QED, the vacuum behaves as an optically active medium in the presence of an external magnetic field. It can be experimentally probed with a linearly polarized laser beam. After propagating through the vacuum submitted to a transverse magnetic field, the polarization of the laser beam will change to elliptical and the parameters of the polarization are directly related to fundamental constants such as the fine structure constant and the electron Compton wavelength. Contributions to the VMB could also arise from the existence of light scalar or pseudo-scalar particles like axions that couple to two photons and this would manifest itself as a sizeable deviation from the initial QED prediction. On one side, the interest in axion search, providing an answer to the strong-CP p...

  7. Double-folding model including the Pauli exclusion principle

    International Nuclear Information System (INIS)

    Gridnev, K.A.; Soubbotin, V.B.; Oertzen, W. von; Bohlen, H.G.; Vinas, X.

    2002-01-01

    A new method for incorporating the Pauli exclusion principle into the double-folding approach to the heavy-ion potential is proposed. The description of the exchange terms at the level of the semiclassical one-body density matrix is used. It is shown that, in order to take into account Pauli blocking properly, the density matrices of free isolated nuclei must be redefined. A solution to the self-consistent incorporation of Pauli blocking effects in the mean-field nucleus-nucleus potential is obtained in the Thomas-Fermi approximation

  8. Membrane dynamics in the intrinsic light-front coordinates

    International Nuclear Information System (INIS)

    Aragone, C.; Restuccia, A.; Torrealba, R.

    1991-01-01

    The authors study the dynamics of the membrane, using internal light-front (LF) coordinates. The set of constraints, although equivalent to the standard one, is different. The intrinsic LF gauge is defined. Four additional, alternative gauge-fixing conditions are analyzed. Two of them polynomialize the system, while the other two are convenient for studying the initial-value problem. In particular, one of them is also extrinsically (i.e., in the ambient space) light-front. In this gauge, the system is shown to be consistently reduced to attain a canonical form in terms of pure transverse variables. Two constraints on these variables still hold, clearly showing the presence, as they must, of D - 3 degrees of freedom. Finally, the initial-value problem in this intrinsic-extrinsic. LF gauge is solved. Although the paper is based on the first-order action, the LF-Hamiltonian approach is discussed too

  9. Circuit QED lattices: Towards quantum simulation with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sebastian [Institute for Theoretical Physics, ETH Zurich, 8093, Zurich (Switzerland); Koch, Jens [Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208 (United States)

    2013-06-15

    The Jaynes-Cummings model describes the coupling between photons and a single two-level atom in a simplified representation of light-matter interactions. In circuit QED, this model is implemented by combining microwave resonators and superconducting qubits on a microchip with unprecedented experimental control. Arranging qubits and resonators in the form of a lattice realizes a new kind of Hubbard model, the Jaynes-Cummings-Hubbard model, in which the elementary excitations are polariton quasi-particles. Due to the genuine openness of photonic systems, circuit QED lattices offer the possibility to study the intricate interplay of collective behavior, strong correlations and non-equilibrium physics. Thus, turning circuit QED into an architecture for quantum simulation, i.e., using a well-controlled system to mimic the intricate quantum behavior of another system too daunting for a theorist to tackle head-on, is an exciting idea which has served as theorists' playground for a while and is now also starting to catch on in experiments. This review gives a summary of the most recent theoretical proposals and experimental efforts. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Chiral current generation in QED by longitudinal photons

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Avalo, J.L., E-mail: jlacosta@instec.cu [Instituto Superior de Tecnologías y Ciencias Aplicadas (INSTEC), Ave Salvador Allende, No. 1110, Vedado, La Habana 10400 (Cuba); Pérez Rojas, H., E-mail: hugo@icimaf.cu [Instituto de Cibernética, Matemática y Física (ICIMAF), Calle E esq 15, No. 309, Vedado, La Habana 10400 (Cuba)

    2016-08-15

    We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  11. Chiral current generation in QED by longitudinal photons

    Directory of Open Access Journals (Sweden)

    J.L. Acosta Avalo

    2016-08-01

    Full Text Available We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone. In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  12. Is small violation of the Pauli principle possible?

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Kuzmin, V.A.

    1987-02-01

    The Pauli exclusion principle is one of the most fundamental laws of nature. Yet the experiment shows that many fundamental laws are in fact not absolute, but only approximate, i.e. are valid only to a certain accuracy. At present, however, there are no answers to the question: ''To what accuracy is the Pauli principle valid?'' This is so because there are no models capable of describing small deviations from the exclusion principle. In the present paper we consider the problem of constructing such models. We have constructed the simplest algebra of the creation and annihilation operators with a parameter β which incorporates the small violations of the Pauli principle (for β=0 the Pauli principle holds absolutely true). The commutation relations in this model prove to be trilinear. We then present a model Hamiltonian based on the constructed algebra which describes the Pauli principle violating transitions i.e. transitions of two identical particles into the same state with the probability suppressed by a factor of β 2 (notwithstanding the fact that the Hamiltonian itself does not contain any small parameters). (author). 8 refs

  13. Hadron spectroscopy and dynamics from light-front holography and conformal symmetry

    Directory of Open Access Journals (Sweden)

    de Téramond Guy F.

    2014-06-01

    Full Text Available To a first semiclassical approximation one can reduce the multi-parton light-front problem in QCD to an effective one-dimensional quantum field theory, which encodes the fundamental conformal symmetry of the classical QCD Lagrangian. This procedure leads to a relativistic light-front wave equation for arbitrary spin which incorporates essential spectroscopic and non-perturbative dynamical features of hadron physics. The mass scale for confinement and higher dimensional holographic mapping to AdS space are also emergent properties of this framework.

  14. Recursion relations for multi-gluon off-shell amplitudes on the light-front and Wilson lines

    Directory of Open Access Journals (Sweden)

    C. Cruz-Santiago

    2015-06-01

    Full Text Available We analyze the off-shell scattering amplitudes in the framework of the light-front perturbation theory. It is shown that the previously derived recursion relation between tree level off-shell amplitudes in this formalism actually resums whole classes of graphs into a Wilson line. More precisely, we establish a correspondence between the light-front methods for the computation of the off-shell amplitudes and the approach which makes use of the matrix elements of straight infinite Wilson lines, which are manifestly gauge invariant objects. Furthermore, since it is needed to explicitly verify the gauge invariance of light-front amplitudes, it is demonstrated that the Ward identities in this framework need additional instantaneous terms in the light-front graphs.

  15. The Pauli Objection

    Science.gov (United States)

    Leon, Juan; Maccone, Lorenzo

    2017-12-01

    Schrödinger's equation says that the Hamiltonian is the generator of time translations. This seems to imply that any reasonable definition of time operator must be conjugate to the Hamiltonian. Then both time and energy must have the same spectrum since conjugate operators are unitarily equivalent. Clearly this is not always true: normal Hamiltonians have lower bounded spectrum and often only have discrete eigenvalues, whereas we typically desire that time can take any real value. Pauli concluded that constructing a general a time operator is impossible (although clearly it can be done in specific cases). Here we show how the Pauli argument fails when one uses an external system (a "clock") to track time, so that time arises as correlations between the system and the clock (conditional probability amplitudes framework). In this case, the time operator is conjugate to the clock Hamiltonian and not to the system Hamiltonian, but its eigenvalues still satisfy the Schrödinger equation for arbitrary system Hamiltonians.

  16. Gravitational form factors and angular momentum densities in light-front quark-diquark model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Narinder [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Sharma, Neetika [I K Gujral Punjab Technical University, Department of Physical Sciences, Jalandhar, Punjab (India); Panjab University, Department of Physics, Chandigarh (India)

    2017-12-15

    We investigate the gravitational form factors (GFFs) and the longitudinal momentum densities (p{sup +} densities) for proton in a light-front quark-diquark model. The light-front wave functions are constructed from the soft-wall AdS/QCD prediction. The contributions from both the scalar and the axial vector diquarks are considered here. The results are compared with the consequences of a parametrization of nucleon generalized parton distributions (GPDs) in the light of recent MRST measurements of parton distribution functions (PDFs) and a soft-wall AdS/QCD model. The spatial distribution of angular momentum for up and down quarks inside the nucleon has been presented. At the density level, we illustrate different definitions of angular momentum explicitly for an up and down quark in the light-front quark-diquark model inspired by AdS/QCD. (orig.)

  17. Parton distributions with QED corrections

    NARCIS (Netherlands)

    Collaboration, The NNPDF; Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Rojo, Juan

    2013-01-01

    We present a set of parton distribution functions (PDFs), based on the NNPDF2.3 set, which includes a photon PDF, and QED contributions to parton evolution. We describe the implementation of the combined QCD+QED evolution in the NNPDF framework. We then provide a first determination of the full set

  18. Mind, matter, and Pauli

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1992-01-01

    The role of subjective experience in physical theory is discussed, with particular attention to the later ideas of Wolfgang Pauli. These ideas appear to open the door to a unified framework for the development of science

  19. Mind, matter, and Pauli

    Energy Technology Data Exchange (ETDEWEB)

    Stapp, H.P.

    1992-09-10

    The role of subjective experience in physical theory is discussed, with particular attention to the later ideas of Wolfgang Pauli. These ideas appear to open the door to a unified framework for the development of science.

  20. Semileptonic Bc decays in the light-front quark model

    International Nuclear Information System (INIS)

    Choi, Ho-Meoyng; Ji, Chueng-Ryong

    2010-01-01

    We investigate the exclusive semileptonic B c →(D,η c ,B,B s )lν l , η b →B c lν l (l=e,μ,τ) decays using the light-front quark model constrained by the variational principle for the QCD motivated effective Hamiltonian. The form factors f + (q 2 ) and f - (q 2 ) are obtained from the analytic continuation method in the q + =0 frame. While the form factor f + (q 2 ) is free from the zero mode, the form factor f - (q 2 ) is not free from the zero mode in the q + =0 frame. Using our effective method to relate the non-wave function vertex to the light-front valence wave function, we incorporate the zero-mode contribution as a convolution of zero-mode operator with the initial and final state wave functions.

  1. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  2. Regularization and renormalization of quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Bernard, C.; Duncan, A.

    1977-01-01

    It is proposed that field theories quantized in a curved space-time manifold can be conveniently regularized and renormalized with the aid of Pauli-Villars regulator fields. The method avoids the conceptual difficulties of covariant point-separation approaches, by starting always from a manifestly generally covariant action, and the technical limitations of the dimensional reqularization approach, which requires solution of the theory in arbitrary dimension in order to go beyond a weak-field expansion. An action is constructed which renormalizes the weak-field perturbation theory of a massive scalar field in two space-time dimensions--it is shown that the trace anomaly previously found in dimensional regularization and some point-separation calculations also arises in perturbation theory when the theory is Pauli-Villars regulated. One then studies a specific solvable two-dimensional model of a massive scalar field in a Robertson-Walker asymptotically flat universe. It is shown that the action previously considered leads, in this model, to a well defined finite expectation value for the stress-energy tensor. The particle production (less than 0 in/vertical bar/theta/sup mu nu/(x,t)/vertical bar/0 in greater than for t → + infinity) is computed explicitly. Finally, the validity of weak-field perturbation theory (in the appropriate range of parameters) is checked directly in the solvable model, and the trace anomaly computed in the asymptotic regions t→ +- infinity independently of any weak field approximation. The extension of the model to higher dimensions and the renormalization of interacting (scalar) field theories are briefly discussed

  3. Theory of single quantum dot lasers: Pauli-blocking-enhanced anti-bunching

    International Nuclear Information System (INIS)

    Su, Yumian; Bimberg, Dieter; Carmele, Alexander; Richter, Marten; Knorr, Andreas; Lüdge, Kathy; Schöll, Eckehard

    2011-01-01

    We present a theoretical model to describe the dynamics of a single semiconductor quantum dot interacting with a microcavity system. The confined quantum dot levels are pumped electrically via a carrier reservoir. The investigated dynamics includes semiconductor-specific, reservoir-induced Pauli-blocking terms in the equations of the photon probability functions. This enables a direct study of the photon statistics of the quantum light emission in dependence on the different pumping rates

  4. Light-front quantization of field theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-07-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.

  5. Light-front quantization of field theory

    International Nuclear Information System (INIS)

    Srivastava, Prem P.

    1996-07-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs

  6. The lattice spinor QED Hamiltonian critique of the continuous space approach

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Zastavenko, L.G.

    1993-01-01

    We give the irreproachable, from the point of view of gauge invariance, derivation of the lattice spinor QED Hamiltonian. Our QED Hamiltonian is manifestly gauge invariant. We point out important defects of the continuous space formulation of the QED that make, in our opinion, the lattice QED obviously preferable to the continuous space QED. We state that it is impossible to give a continuous space QED formulation which is compatible with the condition of gauge invariance. 17 refs

  7. QED at high energies

    International Nuclear Information System (INIS)

    Gastmans, R.

    1980-01-01

    This chapter demonstrates that to establish the validity of QED at the level of a few percent requires knowledge of the cross sections of the QED processes to the same accuracy. Discusses the virtual radiative corrections to the processes. Calculates the vertex correction effect to illustrate the technique. Examines the hadronic vacuum polarization because of its numerical significance. Calculates the effects of soft real photon bremsstrahlung, and shows that they cancel infrared divergences introduced by the virtual corrections. Outlines the analytical work and introduces the dimensional regularization of the infrared divergences as for the virtual photon case. Describes the calculation of the cross section for the bremsstrahlung processes in the ultra-relativistic limit. Shows the surprising simplicity of these cross sections. Discusses the phase space and the choice of integration variables in which the selection criteria must be expressed. Concludes with a comparison of some of the latest experiments on these QED reactions

  8. Light-front zero-mode contribution to the Ward Identity

    International Nuclear Information System (INIS)

    Sales, J.H.O.; Suzuki, A.T.

    2010-01-01

    In a covariant gauge we implicitly assume that the Green's function propagates information from one point of the space-time to another, so that the Green's function is responsible for the dynamics of the relativistic particle. In the light front form one would naively expect that this feature would be preserved. In this manner, the fermionic field propagator can be split into a propagating piece and a non-propagating ('contact') term. Since the latter ('contact') one does not propagate information, and therefore, supposedly can be discarded with no harm to the field dynamics we wanted to know what would be the impact of dropping it off. To do that, we investigated its role in the Ward identity in the light front. Here we use the terminology Ward identity to identify the limiting case of photon's zero momentum transfer in the vertex from the more general Ward-Takahashi identity with nonzero momentum transfer.

  9. Scaling laws, renormalization group flow and the continuum limit in non-compact lattice QED

    International Nuclear Information System (INIS)

    Goeckeler, M.; Horsley, R.; Rakow, P.; Schierholz, G.; Sommer, R.

    1992-01-01

    We investigate the ultra-violet behavior of non-compact lattice QED with light staggered fermions. The main question is whether QED is a non-trivial theory in the continuum limit, and if not, what is its range of validity as a low-energy theory. Perhaps the limited range of validity could offer an explanation of why the fine-structure constant is so small. Non-compact QED undergoes a second-order chiral phase transition at strong coupling, at which the continuum limit can be taken. We examine the phase diagram and the critical behavior of the theory in detail. Moreover, we address the question as to whether QED confines in the chirally broken phase. This is done by investigating the potential between static external charges. We then compute the renormalized charge and derive the Callan-Symanzik β-function in the critical region. No ultra-violet stable zero is found. Instead, we find that the evolution of charge is well described by renormalized perturbation theory, and that the renormalized charge vanishes at the critical point. The consequence is that QED can only be regarded as a cut-off theory. We evaluate the maximum value of the cut-off as a function of the renormalized charge. Next, we compute the masses of fermion-antifermion composite states. The scaling behavior of these masses is well described by an effective action with mean-field critical exponents plus logarithmic corrections. This indicates that also the matter sector of the theory is non-interacting. Finally, we investigate and compare the renormalization group flow of different quantities. Altogether, we find that QED is a valid theory only for samll renormalized charges. (orig.)

  10. In-Medium K^+ Electromagnetic Form Factor with a Symmetric Vertex in a Light Front Approach

    Science.gov (United States)

    Yabusaki, George H. S.; de Melo, J. P. B. C.; de Paula, Wayne; Tsushima, K.; Frederico, T.

    2018-05-01

    Using the light-front K^ +-Meson wave function based on a Bethe-Salpeter amplitude model for the Quark-Antiquark bound state, we study the Electromagnetic Form Factor (EMFF) of the K^ +-Meson in nuclear medium within the framework of light-front field theory. The K^ +-Meson model we adopt is well constrained by previous and recent studies to explain its properties in vacuum. The in-medium K^ +-Meson EMFF is evaluated for the plus-component of the electromagnetic current, J^+, in the Breit frame. In order to consistently incorporate the constituent up and antistrange Quarks of the K^ +-Meson immersed in symmetric nuclear matter, we use the Quark-Meson coupling model, which has been widely applied to various hadronic and nuclear phenomena in a nuclear medium with success. We predict the in-medium modification of the K^ +-Meson EMFF in symmetric nuclear matter. It is found that, after a fine tuning of the regulator mass, i.e. m_R = 0.600 GeV, the model is suitable to fit the available experimental data in vacuum within the theoretical uncertainties, and based on this we predict the in-medium modification of the K^ +-Meson EMFF.

  11. Testing the Pauli Exclusion Principle for Electrons

    International Nuclear Information System (INIS)

    Marton, J; Berucci, C; Cargnelli, M; Ishiwatari, T; Bartalucci, S; Bragadireanu, M; Curceanu, C; Guaraldo, C; Iliescu, M; Pietreanu, D; Piscicchia, K; Ponta, T; Vidal, A Romero; Scordo, A; Sirghi, D L; Bertolucci, S; Matteo, S Di; Egger, J-P; Laubenstein, M; Milotti, E

    2013-01-01

    One of the fundamental rules of nature and a pillar in the foundation of quantum theory and thus of modern physics is represented by the Pauli Exclusion Principle. We know that this principle is extremely well fulfilled due to many observations. Numerous experiments were performed to search for tiny violation of this rule in various systems. The experiment VIP at the Gran Sasso underground laboratory is searching for possible small violations of the Pauli Exclusion Principle for electrons leading to forbidden X-ray transitions in copper atoms. VIP is aiming at a test of the Pauli Exclusion Principle for electrons with high accuracy, down to the level of 10 −29 – 10 −30 , thus improving the previous limit by 3–4 orders of magnitude. The experimental method, results obtained so far and new developments within VIP2 (follow-up experiment at Gran Sasso, in preparation) to further increase the precision by 2 orders of magnitude will be presented

  12. AdS/CFT and Light-Front QCD

    International Nuclear Information System (INIS)

    Brodsky, S

    2008-01-01

    The AdS/CFT correspondence between string theory in AdS space and conformal field theories in physical space-time leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. The AdS/CFT correspondence also provides insights into the inherently nonperturbative aspects of QCD such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable ζ which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection leads to AdS/CFT predictions for the analytic form of the frame-independent light-front wavefunctions (LFWFs) of mesons and baryons, the fundamental entities which encode hadron properties. The LFWFs in turn predict decay constants and spin correlations, as well as dynamical quantities such as form factors, structure functions, generalized parton distributions, and exclusive scattering amplitudes. Relativistic light-front equations in ordinary space-time are found which reproduce the results obtained using the fifth-dimensional theory and have remarkable algebraic structures and integrability properties. As specific examples we describe the behavior of the pion form factor in the space and time-like regions and determine the Dirac nucleon form factors in the space-like region. An extension to nonzero quark mass is used to determine hadronic distribution amplitudes of all mesons, heavy and light. We compare our results with the moments of the distribution amplitudes which have recently been computed from lattice gauge theory

  13. Atom and archetype the Pauli/Jung letters, 1932-1958

    CERN Document Server

    2001-01-01

    Wolfgang Pauli, world-renowned physicist, turned to Carl Jung for help, setting a standing appointment for Mondays at noon. Thus bloomed an extraordinary intellectual conjunction. Eighty letters, written over twenty-six years, record that friendship, and are published here in English for the first time.Through the association of these two pioneering thinkers, developments in physics profoundly influenced the evolution of Jungian psychology. And many of Jung's abiding themes shaped how Pauli - and, through him, other physicists - understood the physical world. Atom and Archetype will appeal not only to those interested in the life of Pauli or Jung, but also to the educated general reader.

  14. Relativistic two-and three-particle scattering equations using instant and light-front dynamics

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1992-01-01

    Starting from the Bethe-Salpeter equation for two particles in the ladder approximation and integrating over the time component of momentum we derive three dimensional scattering integral equations satisfying constraints of unitarity and relativity, both employing the light-front and instant-form variables. The equations we arrive at are those first derived by Weinberg and by Blankenbecler and Sugar, and are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. We extends this procedure to the case of three particles interacting via two-particle separable potentials. Using light-front and instant form variables we suggest a couple of three dimensional three-particle scattering equations satisfying constraints of two and three-particle unitarity and relativity. The three-particle light-front equation is shown to be approximately related by a transformation of variables to one of the instant-form three-particle equations. (author)

  15. Feynman versus Bakamjian-Thomas in light-front dynamics

    International Nuclear Information System (INIS)

    Araujo, W.R.B. de; Beyer, M.; Weber, H.J.; Frederico, T.

    1999-01-01

    We compare the Bakamjian-Thomas (BT) formulation of relativistic few-body systems with light-front field theories that maintain closer contact with Feynman diagrams. We find that Feynman diagrams distinguish Melosh rotations and other kinematical quantities belonging to various composite subsystem frames that correspond to different loop integrals. The BT formalism knows only the rest frame of the whole composite system, where everything is evaluated. (author)

  16. Effective Lagrangian of QED

    International Nuclear Information System (INIS)

    Kaminski, J.Z.

    1981-01-01

    A renormalization group equation for the effective Lagrangian of QED is obtained. Starting from this equation, perturbation theory for the renormalization group equation (PTRGE) is developed. The results are in full agreement with the standard perturbation theory. Conjecturing that the asymptotic effective coupling constant is finite, the effective Lagrangian for a strong magnetic field is obtained, which is proportional to the Maxwellian Lagrangian. For the asymptotically free theories the situation is diametrically opposed to QED. In these cases the effective Lagrangian of the Yang-Mills system tends to infinity for very strong external Yang-Mills fields. (Auth.)

  17. QED corrections to the Altarelli-Parisi splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Florian, Daniel de [Universidad de Buenos Aires, Departamento de Fisica and IFIBA, FCEyN, Capital Federal (Argentina); UNSAM, International Center for Advanced Studies (ICAS), Buenos Aires (Argentina); Sborlini, German F.R.; Rodrigo, German [Universitat de Valencia - Consejo Superior de Investigaciones Cientificas, Instituto de Fisica Corpuscular, Paterna, Valencia (Spain)

    2016-05-15

    We discuss the combined effect of QED and QCD corrections to the evolution of parton distributions. We extend the available knowledge of the Altarelli-Parisi splitting functions to one order higher in QED, and we provide explicit expressions for the splitting kernels up to O(α α{sub S}). The results presented in this article allow one to perform a parton distribution function analysis reaching full NLO QCD-QED combined precision. (orig.)

  18. QED revisited

    International Nuclear Information System (INIS)

    Hueffel, H.

    2003-01-01

    Full text: We perform the stochastic quantization of scalar as well as of fermionic QED based on a generalization of the stochastic gauge fixing scheme and its geometrical interpretation. It is shown that the stochastic quantization scheme agrees exactly with the usual path integral formulation. (author)

  19. Meson Transition Form Factors in Light-Front Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.

    2011-06-22

    We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.

  20. The Strange Friendship of Pauli and Jung - When Physics Met Psychology

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    At a key time in his scientific development, Pauli was undergoing analysis by Jung. What can we learn about Pauli's discoveries of the exclusion principle and the CPT theorem, as well as his thoughts on non-conservation of parity, and his quest with Heisenberg for a unified field theory of elementary particles from Jung’s analysis of his dreams? A very different Pauli emerges, one at odds with esteemed colleagues such as Niels Bohr and Werner Heisenberg.

  1. Parton distribution functions with QED corrections in the valon model

    Science.gov (United States)

    Mottaghizadeh, Marzieh; Taghavi Shahri, Fatemeh; Eslami, Parvin

    2017-10-01

    The parton distribution functions (PDFs) with QED corrections are obtained by solving the QCD ⊗QED DGLAP evolution equations in the framework of the "valon" model at the next-to-leading-order QCD and the leading-order QED approximations. Our results for the PDFs with QED corrections in this phenomenological model are in good agreement with the newly related CT14QED global fits code [Phys. Rev. D 93, 114015 (2016), 10.1103/PhysRevD.93.114015] and APFEL (NNPDF2.3QED) program [Comput. Phys. Commun. 185, 1647 (2014), 10.1016/j.cpc.2014.03.007] in a wide range of x =[10-5,1 ] and Q2=[0.283 ,108] GeV2 . The model calculations agree rather well with those codes. In the latter, we proposed a new method for studying the symmetry breaking of the sea quark distribution functions inside the proton.

  2. Front lighted optical tooling method and apparatus

    International Nuclear Information System (INIS)

    Stone, W. J.

    1985-01-01

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature

  3. Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects

    International Nuclear Information System (INIS)

    Vary, J. P.

    2012-01-01

    Fundamental theories, such as quantum electrodynamics and quantum chromodynamics promise great predictive power addressing phenomena over vast scales from the microscopic to cosmic scales. However, new non-perturbative tools are required for physics to span from one scale to the next. I outline recent theoretical and computational progress to build these bridges and provide illustrative results for Hamiltonian Light Front Field Theory. One key area is our development of basis function approaches that cast the theory as a Hamiltonian matrix problem while preserving a maximal set of symmetries. Regulating the theory with an external field that can be removed to obtain the continuum limit offers additional possibilities as seen in an application to the anomalous magnetic moment of the electron. Recent progress capitalizes on algorithm and computer developments for setting up and solving very large sparse matrix eigenvalue problems. Matrices with dimensions of 20 billion basis states are now solved on leadership-class computers for their low-lying eigenstates and eigenfunctions. (author)

  4. Effect of the Pauli principle in elastic scattering

    International Nuclear Information System (INIS)

    Picklesimer, A.; Thaler, R.M.

    1981-01-01

    The effect of imposition of the Pauli principle for two-fragment elastic nuclear scattering is examined. It is shown that the antisymmetrized problem can be cast into the Lippmann-Schwinger form with an effective interaction in which the effect of the Pauli principle is entirely absorbed into the effective interaction potential operator. This result enables the formalism to be developed in analogy with the unsymmetrized formulation. Central to the approach is the choice of the off-shell extension of the transition operator. Comparison is made with a previously proposed treatment based on a different off-shell extension. It is shown that both the antisymmetrized transition operator and the associated optical potential proposed herein are readily expressed as spectator expansions in which the effect of the Pauli principle among the active fermions is incorporated in a physically appealing fashion at each stage of the expansion

  5. The Pauli exclusion principle origin, verifications and applications

    CERN Document Server

    Kaplan, Ilya G

    2017-01-01

    This is the first scientific book devoted to the Pauli Exclusion Principle, which is a fundamental principle of quantum mechanics and is permanently applied in chemistry, physics, molecular biology and in physical astronomy. However, while the principle has been studied for more than 90 years, rigorous theoretical foundations still have not been established and many unsolved problems remain. Following an introduction and historical survey, this book discusses the still unresolved questions around this fundamental principle. For instance, why, according to the Pauli Exclusion Principle, are only symmetric and antisymmetric permutation symmetries for identical particles realized, while the Schrödinger equation is satisfied by functions with any permutation symmetry? Chapter 3 covers possible answers to this, while chapter 4 presents effective and elegant methods for finding the Pauli-allowed states in atomic, molecular and nuclear spectroscopy. Chapter 5 discusses parastatistics and fractional statistics, dem...

  6. Perturbative renormalization of QED via flow equations

    International Nuclear Information System (INIS)

    Keller, G.; Kopper, C.

    1991-01-01

    We prove the perturbative renormalizability of euclidean QED 4 with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.)

  7. Lattice QED in the loop space

    International Nuclear Information System (INIS)

    Fort, H.

    1994-01-01

    We present a survey on the state of the art in the formulation of lattice compact QED in the space of loops. In a first part we review our most recent Hamiltonian results which signal a second order transition for (3+1) compact QED. We devote the second part to the Lagrangian loop formalism, showing the equivalence of the recently proposed loop action with the Villain form. (orig.)

  8. Perturbative renormalization of QED via flow equations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, G. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany)); Kopper, C. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany) Inst. fuer Theoretische Physik, Univ. Goettingen (Germany))

    1991-12-19

    We prove the perturbative renormalizability of euclidean QED{sub 4} with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.).

  9. Hammering towards QED

    Directory of Open Access Journals (Sweden)

    Jasmin C. Blanchette

    2016-01-01

    Full Text Available This paper surveys the emerging methods to automate reasoning over large libraries developed with formal proof assistants. We call these methods hammers. They give the authors of formal proofs a strong "one-stroke" tool for discharging difficult lemmas without the need for careful and detailed manual programming of proof search.The main ingredients underlying this approach are efficient automatic theorem provers that can cope with hundreds of axioms, suitable translations of richer logics to their formalisms, heuristic and learning methods that select relevant facts from large libraries, and methods that reconstruct the automatically found proofs inside the proof assistants.We outline the history of these methods, explain the main issues and techniques, and show their strength on several large benchmarks. We also discuss the relation of this technology to the QED Manifesto and consider its implications for QED-style efforts.

  10. Exact evaluation of the mass gap in the O(N) non-linear sigma model

    International Nuclear Information System (INIS)

    Gliozzi, F.

    1985-01-01

    When the Luescher nonlocal quantum charges are transcribed in a lattice hamiltonian formalism, they become unusually manageable. Their conservation induces an exact expression for the mass of the low-lying vector multiplet of the theory. Its value in units Λsub(PV) (Pauli-Villars scale) reads simple m=exp[1/(N-2)]Λsub(PV). (orig.)

  11. Influence of the Pauli principle on the one-quasiparticle states in odd spherical nuclei

    International Nuclear Information System (INIS)

    Chan Zuy Khuong

    1980-01-01

    The effect of the Pauli principle on the fragmentation of one-quasiparticle states in odd spherical nuclei is studied within the quasiparticle-phonon nuclear model. It is shown that the Pauli principle influences considerably the position and structure of a few low-lying states. The fragmentation of one-quasiparticle states at intermediate and high excitation energies is slightly affected by the Pauli principle, and the calculations can be performed by taking the Pauli principle into account roughly. (author)

  12. Scattering theory of infrared divergent Pauli-Fierz Hamiltonians

    CERN Document Server

    Derezinski, J

    2003-01-01

    We consider in this paper the scattering theory of infrared divergent massless Pauli-Fierz Hamiltonians. We show that the CCR representations obtained from the asymptotic field contain so-called {\\em coherent sectors} describing an infinite number of asymptotically free bosons. We formulate some conjectures leading to mathematically well defined notion of {\\em inclusive and non-inclusive scattering cross-sections} for Pauli-Fierz Hamiltonians. Finally we give a general description of the scattering theory of QFT models in the presence of coherent sectors for the asymptotic CCR representations.

  13. Nucleon effective mass effects on the Pauli-blocking function

    International Nuclear Information System (INIS)

    Pina, S.R. de; Mesa, J.; Deppman, A.; Arruda-Neto, J.D.T.; Duarte, S.B.; Oliveira, E.C. de; Tavares, O.A.P.; Medeiros, E.L.; Goncalves, M.; Paiva, E. de

    2002-01-01

    The effects of nucleon effective mass on the Pauli-blocking function are worked out. We have shown that such effects on the quasi-deuteron mechanism of photonuclear absorption are rather relevant. The Pauli-blocking function has been evaluated by applying a Monte Carlo calculation particularly suitable for simulation of intranuclear cascade processes of intermediate-energy nuclear reactions. The nucleon binding in the photonuclear absorption mechanism is taken into account accordingly. (author)

  14. Nucleon effective mass effects on the Pauli-blocking function

    International Nuclear Information System (INIS)

    Pina, S.R. de; Mesa, J.; Deppman, A.; Arruda-Neto, J.D.T.; Goncalves, M.; Paiva, E. de

    2002-05-01

    The effects of nucleon effective mass on the Pauli-blocking function are worked out. We have shown that such effects on the quasi-deuteron mechanism of photonuclear absorption are rather relevant. The pauli-blocking function has been evaluated by applying a Monte Carlo calculation particularly suitable for simulation of intranuclear cascade process of intermediate-energy nuclear reactions. The nucleon binding in the photonuclear absorption mechanism is accordingly taken into account. (author)

  15. Wolfgang Pauli at the 6th meeting of the Nobel Prize laureates

    CERN Multimedia

    Franz Thorbecke, Lindau

    1956-01-01

    From left to right : ?, Max Born, Paul Adrien Maurice Dirac, Adolf Friedrich Johann Butenandt, ?, Otto Hahn, Wolfgang Pauli, Franca Pauli, Sir Chandrasekhara Venkata Raman, Isidor Isaac Rabi, and Leopold Ruzicka

  16. The refractive index of curved spacetime II: QED, Penrose limits and black holes

    International Nuclear Information System (INIS)

    Hollowood, Timothy J.; Shore, Graham M.; Stanley, Ross J.

    2009-01-01

    This work considers the way that quantum loop effects modify the propagation of light in curved space. The calculation of the refractive index for scalar QED is reviewed and then extended for the first time to QED with spinor particles in the loop. It is shown how, in both cases, the low frequency phase velocity can be greater than c, as found originally by Drummond and Hathrell, but causality is respected in the sense that retarded Green functions vanish outside the lightcone. A 'phenomenology' of the refractive index is then presented for black holes, FRW universes and gravitational waves. In some cases, some of the polarization states propagate with a refractive index having a negative imaginary part indicating a potential breakdown of the optical theorem in curved space and possible instabilities.

  17. The 3He spectral function in light-front dynamics

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2016-01-01

    Full Text Available A distorted spin-dependent spectral function for 3He is considered for the extraction of the transverse-momentum dependent parton distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers, where final state interactions are taken into account. The generalization of the analysis to a Poincaré covariant framework within the light-front dynamics is outlined.

  18. Combining NNPDF3.0 and NNPDF2.3QED through the APFEL evolution code

    CERN Document Server

    Bertone, Valerio

    2016-01-01

    We present sets of parton distribution functions (PDFs), based on the NNPDF3.0 family, which include the photon PDF from the NNPDF2.3QED sets, and leading-order QED contributions to the DGLAP evolution as implemented in the public code APFEL. The aim is to combine our state-of-the-art determination of quark and gluon PDFs with the so far only direct determination of the photon PDF from LHC data. In addition, the use of APFEL allowed us to employ a solution of the DGLAP equation that, differently from that used for the NNPDF2.3QED sets, includes QED corrections in a more accurate way. We briefly discuss how these sets are constructed and investigate the effect of the inclusion of the QED corrections on PDFs and parton luminosities. Finally, we compare the resulting sets, which we dubbed NNPDF3.0QED, to the older NNPDF2.3QED sets and to all presently available PDF sets that include QED corrections, namely CT14QED and MRST2004QED.

  19. Nucleon-generalized parton distributions in the light-front quark model

    Indian Academy of Sciences (India)

    2016-01-12

    Jan 12, 2016 ... 1. Introduction. Generalized parton distributions (GPDs) are the important set of parameters that give us ... The AdS/CFT is the correspondence between the string theory on a higher-dimensional anti-de Sitter ... matching the soft-wall model of AdS/QCD and light-front QCD for EFFs of hadrons with arbitrary ...

  20. An introduction about precise measurements of QED γ structure functions

    International Nuclear Information System (INIS)

    Courau, A.

    1989-11-01

    Pure QED processes are theoretically exactly computable. However precise measurements and theoretical expectations of QED γ structure functions within a given experimental acceptance are not so trivial. Yet such a study is quite interesting. It supplies on the one hand a good QED test and, on the other hand, a good exercise for testing the procedure used for the determination of the hadronic γ structure functions

  1. The influence of Pauli blocking effects on the properties of dense hydrogen

    International Nuclear Information System (INIS)

    Ebeling, W; Blaschke, D; Redmer, R; Reinholz, H; Roepke, G

    2009-01-01

    We investigate the effects of Pauli blocking on the properties of hydrogen at high pressures, where recent experiments have shown a transition from insulating behavior to metal-like conductivity. Since the Pauli principle prevents multiple occupation of electron states (Pauli blocking), atomic states disintegrate subsequently at high densities (Mott effect). We calculate the energy shifts due to Pauli blocking and discuss the Mott effect solving an effective Schroedinger equation for strongly correlated systems. The ionization equilibrium is treated on the basis of a chemical approach. Results for the ionization equilibrium and the pressure in the region 4000 K < T < 20 000 K are presented. We show that the transition to a highly conducting state is softer than found in earlier work. A first-order phase transition is observed at T < 6450 K, but a diffuse transition appears still up to 20 000 K

  2. Light-front wave function of composite system with spin

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1979-01-01

    The method to construct the relativistic wave function with spin on the light front is developed. The spin structure of the deuteron wave function in relativistic range is found. The calculation methods are illustrated by the calculation of elastic pd-scattering cross section. The consideration carried out is equivalent to the solution of the problem of taking into account the spins and angular momenta in the parton wave functions in the infinite momentum frame

  3. On the surprising rigidity of the Pauli exclusion principle

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1989-01-01

    I review recent attempts to construct a local quantum field theory of small violations of the Pauli exclusion principle and suggest a qualitative reason for the surprising rigidity of the Pauli principle. I suggest that small violations can occur in our four-dimensional world as a consequence of the compactification of a higher-dimensional theory in which the exclusion principle is exactly valid. I briefly mention a recent experiment which places a severe limit on possible violations of the exclusion principle. (orig.)

  4. Pauli correlations in heavy-ion collisions at high energies

    International Nuclear Information System (INIS)

    Franco, V.; Nutt, W.T.

    1977-01-01

    The effects of short-range correlations on the Glauber expansion for nucleus-nucleus collisions are calculated using the Fermi gas model for nuclei. When the Pauli principle is neglected for collisions between heavy nuclei, calculation of the optical phase-shift function leads to non-unitary results and cross sections cannot be obtained. When Pauli correlations are included important cancellations in the optical phase-shift function are found which make possible the calculation of total and differential cross sections for heavy nuclei. (Auth.)

  5. An introduction to QED

    International Nuclear Information System (INIS)

    Martin, A.D.

    1984-01-01

    The lecture concerns quantum electrodynamics (QED), the relativistic quantum theory of electromagnetic interactions. Antiparticles, electrodynamics of spinless particles, the dirac equation and electrodynamics of spin 1/2 particles are discussed in detail. (U.K.)

  6. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  7. Light-Front Hamiltonian Approach to the Bound-State Problem in Quantum Electrodynamics

    Science.gov (United States)

    Jones, Billy D.

    1997-10-01

    Why is the study of the Lamb shift in hydrogen, which at the level of detail found in this paper was largely completed by Bethe in 1947, of any real interest today? While completing such a calculation using new techniques may be very interesting for formal and academic reasons, our primary motivation is to lay groundwork for precision bound-state calculations in QCD. The Lamb shift provides an excellent pedagogical tool for illustrating light-front Hamiltonian techniques, which are not widely known; but more importantly it presents three of the central dynamical and computational problems that we must face to make these techniques useful for solving QCD: How does a constituent picture emerge in a gauge field theory? How do bound-state energy scales emerge non-perturbatively? How does rotational symmetry emerge in a non-perturbative light-front calculation?

  8. Quantum capacity of Pauli channels with memory

    International Nuclear Information System (INIS)

    Huang Peng; He Guangqiang; Lu Yuan; Zeng Guihua

    2011-01-01

    The amount of coherent quantum information that can be reliably transmitted down the memory Pauli channels with Markovian correlated noise is investigated. Two methods for evaluating the quantum capacity of the memory Pauli channels are proposed to try to trace the memory effect on the transmissions of quantum information. We show that the evaluation of quantum capacity can be reduced to the calculation of the initial memory state of each successive transmission. Furthermore, we derive quantum capacities of the memory phase flip channel, bit flip channel and bit-phase flip channel. Also, a lower bound of the quantum capacity of the memory depolarizing channel is obtained. An increase of the degree of memory of the channels has a positive effect on the increase of their quantum capacities.

  9. Las pinturas rupestres esquemáticas de la Peña del Castellar (Villar del Humo, Cuenca

    Directory of Open Access Journals (Sweden)

    Anna ALONSO

    2009-10-01

    Full Text Available Con motivo de nuestra visita a los importantes yacimientos rupestres de Villar del Humo, y comentando sobre ellos con las gentes del lugar, fuimos informados de la existencia de un abrigo con figuras semejantes a las de los otros conjuntos '. Ante la posibilidad de que se tratase de pinturas, nos desplazamos a la zona donde, efectivamente, existía el grupo de representaciones que dan lugar a esta nota.

  10. AMIC: an expandable integrated analog front-end for light distribution moments analysis

    OpenAIRE

    SPAGGIARI, MICHELE; Herrero Bosch, Vicente; Lerche, Christoph Werner; Aliaga Varea, Ramón José; Monzó Ferrer, José María; Gadea Gironés, Rafael

    2011-01-01

    In this article we introduce AMIC (Analog Moments Integrated Circuit), a novel analog Application Specific Integrated Circuit (ASIC) front-end for Positron Emission Tomography (PET) applications. Its working principle is based on mathematical analysis of light distribution through moments calculation. Each moment provides useful information about light distribution, such as energy, position, depth of interaction, skewness (deformation due to border effect) etc. A current buffer delivers a cop...

  11. Violations of the Pauli principle and the interior of the sun

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, R.

    1989-08-01

    The consequences of a violation of the Pauli principle for the physics of the solar interior are explored. It is found that a bound state of two protons becomes possible. This leads to an increase in the rate of hydrogen burning in the sun. Because a very large cross section for this reaction is in clear contradiction with the theory of stellar structure when compared with observations of solar luminosity, radius and mechanical oscillations, stringent limits on a violation of the Pauli principle in the two nucleon system can be given. However, a very small violation of the Pauli principle in the two nucleon system might solve the longstanding solar neutrino problem. (orig.).

  12. Wolfgang Pauli Room

    CERN Multimedia

    Bennett, Sophia Elizabeth

    2017-01-01

    This small but historically valuable collection was donated by Pauli’s widow who, with the help of friends including his former assistants Charles Enz and Victor Weisskopf, gathered together Pauli’s manuscripts and notes, and tracked down originals or copies of his many letters. His correspondence with Bohr, Heisenberg Einstein and others, discussing many of the new ideas in physics, has been published (link) and provides an invaluable resource for those interested in studying the development of 20th century science. Unlike the main CERN Archive, most items in the Pauli collection have been digitised and are available online.

  13. The effect of the Pauli principle on the fragmentation of one-quasiparticle states in spherical nuclei

    International Nuclear Information System (INIS)

    Khuong, C.Z.; Soloviev, V.G.; Voronov, V.V.

    1981-01-01

    The effect of the Pauli principle on the fragmentation of one-quasiparticle states in spherical nuclei is studied within the quasiparticle-phonon nuclear model. It is shown that the Pauli principle influences considerably the position and structure of a few low-lying states, the fragmentation of one-quasiparticle states at intermediate and high excitation energies is slightly affected by the Pauli principle, and the calculations can be performed by taking the Pauli principle roughly into account. (author)

  14. Electromagnetic form factors in the light-front dynamics

    International Nuclear Information System (INIS)

    Karmanov, V.A.; Smirnov, A.V.

    1992-01-01

    It is shown that the electromagnetic vertex of a nucleus (and of any bound system), expressed through the wave function in the light-front dynamics at relativistic values of momentum transfer, contains a contribution of nonphysical form factors which increases the total number of invariant form factors (for the deuteron from 3 up to 11). This fact explains an ambiguity in the form factors calculated previously. The physical and nonphysical form factors are covariantly separated. Explicit expressions for physical form factors of systems with spin 0, 1/2 and 1 through the vertex functions are obtained. (orig.)

  15. Nonlinear QED effects in X-ray emission of pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri, Soroush [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Haghighat, Mansour [Department of Physics, Shiraz University, Shiraz 71946-84795 (Iran, Islamic Republic of); Xue, She-Sheng, E-mail: Soroush.Shakeri@ph.iut.ac.ir, E-mail: m.haghighat@shirazu.ac.ir, E-mail: xue@icra.it [ICRANet, Piazzale della Repubblica 10, 65122, Pescara (Italy)

    2017-10-01

    In the presence of strong magnetic fields near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear QED interactions. Here, we explore the impact of the effective photon-photon interaction on the polarization evolution of photons propagating through the magnetized QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes parameters. We find that linearly polarized X-ray photons propagating outward in the magnetosphere of a rotating neutron star can acquire high values for the circular polarization parameter. Meanwhile, it is shown that the polarization characteristics of photons besides photon energy depend strongly on parameters of the pulsars such as magnetic field strength, inclination angle and rotational period. Our results are clear predictions of QED vacuum polarization effects in the near vicinity of magnetic stars which can be tested with the upcoming X-ray polarimetric observations.

  16. High sensitivity tests of the Pauli Exclusion Principle with VIP2

    CERN Document Server

    Marton, J; Bertolucci, S; Berucci, C; Bragadireanu, M; Cargnelli, M; Curceanu, C; Clozza, A; Di Matteo, S; Egger, J-P; Guaraldo, C; Iliescu, M; Ishiwatari, T; Laubenstein, M; Milotti, E; Pichler, A; Pietreanu, D; Piscicchia, K; Ponta, T; Scordo, A; Shi, H; Sirghi, D L; Sirghi, F; Sperandio, L; Doce, O Vazquez; Widmann, E; Zmeskal, J

    2015-01-01

    The Pauli Exclusion Principle is one of the most fundamental rules of nature and represents a pillar of modern physics. According to many observations the Pauli Exclusion Principle must be extremely well fulfilled. Nevertheless, numerous experimental investigations were performed to search for a small violation of this principle. The VIP experiment at the Gran Sasso underground laboratory searched for Pauli-forbidden X-ray transitions in copper atoms using the Ramberg-Snow method and obtained the best limit so far. The follow-up experiment VIP2 is designed to reach even higher sensitivity. It aims to improve the limit by VIP by orders of magnitude. The experimental method, comparison of different PEP tests based on different assumptions and the developments for VIP2 are presented.

  17. Leading-order hadronic contributions to aμ and αQED from Nf=2+1+1 twisted mass fermions

    International Nuclear Information System (INIS)

    Feng, Xu; Hotzel, Grit; Renner, Dru B.

    2012-11-01

    We present the first four-flavour lattice calculation of the leading-order hadronic vacuum-polarisation contribution to the anomalous magnetic moment of the muon, a hvp μ , and the hadronic running of the QED coupling constant, Δα hvp QED (Q 2 ). In the heavy sector a mixed-action setup is employed. The bare quark masses are determined from matching the K- and D-meson masses to their physical values. Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass by utilising a recently proposed improved method. We demonstrate that this method also works in the four-flavour case.

  18. Zweideutigkeit about "Zweideutigkeit": Sommerfeld, Pauli, and the methodological origins of quantum mechanics

    Science.gov (United States)

    Seth, Suman

    In early 1925, Wolfgang Pauli (1900-1958) published the paper for which he is now most famous and for which he received the Nobel Prize in 1945. The paper detailed what we now know as his "exclusion principle." This essay situates the work leading up to Pauli's principle within the traditions of the "Sommerfeld School," led by Munich University's renowned theorist and teacher, Arnold Sommerfeld (1868-1951). Offering a substantial corrective to previous accounts of the birth of quantum mechanics, which have tended to sideline Sommerfeld's work, it is suggested here that both the method and the content of Pauli's paper drew substantially on the work of the Sommerfeld School in the early 1920s. Part One describes Sommerfeld's turn away from a faith in the power of model-based (modellmässig) methods in his early career towards the use of a more phenomenological emphasis on empirical regularities (Gesetzmässigkeiten) during precisely the period that both Pauli and Werner Heisenberg (1901-1976), among others, were his students. Part two delineates the importance of Sommerfeld's phenomenology to Pauli's methods in the exclusion principle paper, a paper that also eschewed modellmässig approaches in favour of a stress on Gesetzmässigkeiten. In terms of content, a focus on Sommerfeld's work reveals the roots of Pauli's understanding of the fundamental Zweideutigkeit (ambiguity) involving the quantum number of electrons within the atom. The conclusion points to the significance of these results to an improved historical understanding of the origin of aspects of Heisenberg's 1925 paper on the "Quantum-theoretical Reformulation (Umdeutung) of Kinematical and Mechanical Relations."

  19. Taking into account of the Pauli principle in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1979-01-01

    The effect of an exact account taken of the Pauli principle and correlations in ground states in calculations in the framework of the quasiparticle-phonon model of a nucleus has been studied. It is elucidated when it is possible to use the random phase approximation (RPA) and when the Pauli principle should be exactly taken into account. It has been shown that in the quasiparticle-phonon model of a nucleus one may perform calculations with a precise account of the Pauli principle. In most of the problems calculations can be carried out with RPA-phonons

  20. In-medium pion valence distributions in a light-front model

    Energy Technology Data Exchange (ETDEWEB)

    Melo, J.P.B.C. de, E-mail: joao.mello@cruzeirodosul.edu.br [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo (Brazil); Tsushima, K. [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo (Brazil); Ahmed, I. [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo (Brazil); National Center for Physics, Quaidi-i-Azam University Campus, Islamabad 45320 (Pakistan)

    2017-03-10

    Pion valence distributions in nuclear medium and vacuum are studied in a light-front constituent quark model. The in-medium input for studying the pion properties is calculated by the quark-meson coupling model. We find that the in-medium pion valence distribution, as well as the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.

  1. QED radiative corrections under the SANC project

    International Nuclear Information System (INIS)

    Christova, P.

    2003-01-01

    Automatic calculations of the QED radiative corrections in the framework of the SANC computer system is described. A collection of the computer programs written in FORM3 language is aimed at compiling a database of analytic results to be used to theoretically support the experiments on high-energy accelerators. Presented here is the scheme of automatic analytical calculations of the QED radiative corrections to the fermionic decays of the Z, H and W boson in the framework of the SANC system

  2. Collisional excitation of neon-like Ni XIX using the Breit–Pauli R ...

    Indian Academy of Sciences (India)

    Abstract. Collision strength for the transition within the first five fine-structure levels in Ni XIX are calculated using the Breit–Pauli R-matrix method. Configuration inter- action wave functions are used to represent the target states included in the R-matrix expansion. The relativistic effects are incorporated in the Breit–Pauli ...

  3. Binding and Pauli principle corrections in subthreshold pion-nucleus scattering

    International Nuclear Information System (INIS)

    Kam, J. de

    1981-01-01

    In this investigation I develop a three-body model for the single scattering optical potential in which the nucleon binding and the Pauli principle are accounted for. A unitarity pole approximation is used for the nucleon-core interaction. Calculations are presented for the π- 4 He elastic scattering cross sections at energies below the inelastic threshold and for the real part of the π- 4 He scattering length by solving the three-body equations. Off-shell kinematics and the Pauli principle are carefully taken into account. The binding correction and the Pauli principle correction each have an important effect on the differential cross sections and the scattering length. However, large cancellations occur between these two effects. I find an increase in the π- 4 He scattering length by 100%; an increase in the cross sections by 20-30% and shift of the minimum in π - - 4 He scattering to forward angles by 10 0 . (orig.)

  4. Exploring high-intensity QED at ELI

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, T. [Plymouth Univ., School of Mathematics and Statistics, Drake Circus, PL4 8AA (United Kingdom); Ilderton, A. [School of Mathematics, Hamilton Building, Trinity College, Dublin (Ireland)

    2009-11-15

    We give a non-technical overview of quantum electrodynamics (QED) effects arising in the presence of ultra-strong electromagnetic fields highlighting the new prospects provided by a realisation of the ELI laser facility. Vacuum polarization is a genuine QED process describing the probability amplitude of a propagating photon fluctuating into a virtual electron-positron pair. It has measurable effects such as the Lamb shift and charge screening at short distances. Nonlinear Compton scattering that consists of processes of the type: e + ngamma{sub L} -> e' + gamma (where n counting the number of laser photons involved) is an intensity dependent effect that is accessible to experimental observation

  5. Constraints and Hamiltonian in light-front quantized field theory

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1993-01-01

    Self-consistent hamiltonian formulation of scalar theory on the null plane is constructed and quantized following the Dirac procedure. The theory contains also constraint equations which would give, if solved, to a nonlocal Hamiltonian. In contrast to the equal-time formulation we obtain a different description of the spontaneous symmetry breaking in the continuum and the symmetry generators are found to annihilate the light-front vacuum. Two examples are given where the procedure cannot be applied self-consistently. The corresponding theories are known to be ill-defined from the equal-time quantization. (author)

  6. Light-front quantized field theory: (an introduction). Spontaneous symmetry breaking. Phase transition in φ4 theory

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1993-01-01

    The field theory quantized on the light-front is compared with the conventional equal-time quantized theory. The arguments based on the micro causality principle would imply that the light-front field theory may become nonlocal with respect to the longitudinal coordinate even though the corresponding equal-time formulation is local. This is found to be the case for the scalar theory. The conventional instant form theory is sometimes required to be constrained by invoking external physical considerations; the analogous conditions seem to be already built in the theory on the light-front. In spite of the different mechanisms of the spontaneous symmetry breaking in the two forms of dynamics they result in the same physical content. The phase transition in (φ 4 ) 2 theory is also discussed. The symmetric vacuum state for vanishingly small couplings is found to turn into an unstable symmetric one when the coupling is increased and may result in a phase transition of the second order in contrast to the first order transition concluded from the usual variational methods. (author)

  7. Fried-Yennie gauge in dimensionally regularized QED

    International Nuclear Information System (INIS)

    Adkins, G.S.

    1993-01-01

    The Fried-Yennie gauge in QED is a covariant gauge with agreeable infrared properties. That is, the mass-shell renormalization scheme can be implemented without introducing artificial infrared divergences, and terms having spuriously low orders in α disappear in certain bound-state calculations. The photon propagator in the Fried-Yennie gauge has the form D β μν (k)=(-1/k 2 )[g μν +βk μ kν/k 2 ], where β is the gauge parameter. In this work, I show that the Fried-Yennie gauge parameter is β=2/(1-2ε) when dimensional regularization (with n=4-2ε dimensions of spacetime) is used to regulate the theory

  8. Influence of front light configuration on the visual conspicuity of motorcycles.

    Science.gov (United States)

    Pinto, Maria; Cavallo, Viola; Saint-Pierre, Guillaume

    2014-01-01

    A recent study (Cavallo and Pinto, 2012) showed that daytime running lights (DRLs) on cars create "visual noise" that interferes with the lighting of motorcycles and affects their visual conspicuity. In the present experiment, we tested three conspicuity enhancements designed to improve motorcycle detectability in a car-DRL environment: a triangle configuration (a central headlight plus two lights located on the rearview mirrors), a helmet configuration (a light located on the motorcyclist's helmet in addition to the central headlight), and a single central yellow headlight. These three front-light configurations were evaluated in comparison to the standard configuration (a single central white headlight). Photographs representing complex urban traffic scenes were presented briefly (for 250ms). The results revealed better motorcycle-detection performance for both the yellow headlight and the helmet configuration than for the standard configuration. The findings suggest some avenues for defining a new visual signature for motorcycles in car-DRL environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Optimal ancilla-free Pauli+V circuits for axial rotations

    International Nuclear Information System (INIS)

    Blass, Andreas; Bocharov, Alex; Gurevich, Yuri

    2015-01-01

    We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL 2 (ℤ) geometry is almost elementary

  10. Influence of the Pauli principle on the two-phonon states

    International Nuclear Information System (INIS)

    Djolos, R.V.; Molina, J.L.; Soloviev, V.G.

    1979-01-01

    It is shown that the commutation relations between quasiparticles forming phonons can correctly be taken into account within the quasiparticle-phonon nuclear model. The case of the even-even deformed nuclei is studied. Exact and approximate secular equations are obtained. The corrections arising due to the Pauli principle are shown to be large for the two-phonon components of the wave functions, when the phonons are identical. The influence of the Pauli principle on the energies of the two-phonon states and radiative strength functions requires further investigation [ru

  11. Quantum revolution. [Vol.] 2: QED: the jewel of physics

    International Nuclear Information System (INIS)

    Venkataraman, G.

    1994-01-01

    Events leading to the plague or crisis of infinities in the field of quantum mechanics are surveyed in brief. How that crisis was contained by formulation of quantum electrodynamics (QED) theory is narrated in this volume. Contributions of Tomanoga, Schwinger and Feynman to the QED theory are discussed. The story of quantum mechanics is brought up to fifties. (M.G.B.)

  12. Hamiltonian formalism at light front for two-dimensional quantum electrodynamics equivalent to lorentz-covariant approach

    CERN Document Server

    Paston, S A; Prokhvatilov, E V

    2002-01-01

    The Hamiltonian, reproducing the results of the two-dimensional quantum electrodynamics in the Lorentz coordinates, is constructed on the light front. The procedure of bosonization and analysis of the boson perturbation theory in all the orders by the fermions mass are applied for this purpose. Besides the common terms, originating by the naive quantization on the light front, the obtained Hamiltonian contains an additional counterterm. It is proportional to the linear combination of the fermion zero modes (multiplied by a certain factor compensating the charge and fermion number). The coefficient before this counterterm has no ultraviolet divergence, depends on the value of the fermion condensate in the theta-vacuum and by the small fermion mass is linear by it

  13. Higher Order QED Contributions to the Atomic Structure at Strong Central Fields

    International Nuclear Information System (INIS)

    Mokler, P H

    2007-01-01

    An accurate determination of the precise structure of highly charged, very heavy ions is crucial for understanding QED at strong fields. The experimental advances in the spectroscopy of very heavy, highly charged ions-in particular H-, He- and Li-like species-are reviewed: Presently the ground state Lamb shift for H-like U ions is measured on a 1% level of accuracy; the screening terms in two-electron QED have just been touched by experiments for He-like U; and two-loop QED terms have been determined with ultimate accuracy for Li-like heavy species. The different approaches on QED measurements in strong fields will be discussed and the results compared to theory

  14. Optimal ancilla-free Pauli+V circuits for axial rotations

    Energy Technology Data Exchange (ETDEWEB)

    Blass, Andreas [Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1043 (United States); Bocharov, Alex; Gurevich, Yuri [Microsoft Research, Redmond, Washington 98052 (United States)

    2015-12-15

    We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL{sub 2}(ℤ) geometry is almost elementary.

  15. Simplicity in the structure of QED and gravity amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bjerrum-Bohr, N.E.J. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Vanhove, Pierre [Institut des Hautes Etudes Scientifiques IHES, Bures sur Yvette (France); CEA, IPhT, CNRS, URA, Gif-sur-Yvette, (France). Inst. de Physique Theorique

    2008-11-15

    We investigate generic properties of one-loop amplitudes in unordered gauge theories in four dimensions. For such theories the organisation of amplitudes in manifestly crossing symmetric expressions poses restrictions on their structure and results in remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with at least eight external photons are given only by scalar box integral functions. This QED 'no-triangle' property is true for all helicity configurations and has similarities to the 'notriangle' property found in the case of maximal N=8 supergravity. Results are derived both via a world-line formalism as well as using on-shell unitarity methods. We show that the simple structure of the loop amplitude originates from the extremely good BCFW scaling behaviour of the QED tree-amplitude. (orig.)

  16. Simplicity in the structure of QED and gravity amplitudes

    International Nuclear Information System (INIS)

    Badger, Simon; Bjerrum-Bohr, N.E.J.; Vanhove, Pierre; CEA, IPhT, CNRS, URA, Gif-sur-Yvette,

    2008-11-01

    We investigate generic properties of one-loop amplitudes in unordered gauge theories in four dimensions. For such theories the organisation of amplitudes in manifestly crossing symmetric expressions poses restrictions on their structure and results in remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with at least eight external photons are given only by scalar box integral functions. This QED 'no-triangle' property is true for all helicity configurations and has similarities to the 'notriangle' property found in the case of maximal N=8 supergravity. Results are derived both via a world-line formalism as well as using on-shell unitarity methods. We show that the simple structure of the loop amplitude originates from the extremely good BCFW scaling behaviour of the QED tree-amplitude. (orig.)

  17. QED3 formulation of vortices in boson condensates and metafluid

    International Nuclear Information System (INIS)

    Soares, Thales Costa; Spalenza, Wesley; Helayel Neto, Jose Abdalla

    2002-01-01

    Full text: One consider a system of many non-relativistic particles as a fluid, going from the discrete set of space-time coordinates of each particle to a continuous field. With an interparticle potential that satisfies a number of physically reasonable assumptions, one shows how the Lagrangian describing the motion of the fluid displays an exact local gauge invariance governed by a scalar parameter. The conserved quantity associated to this local symmetry is derived and discussed in the light of planar Electrodynamics, with photons identified as sound waves in the fluid and point-like charges corresponding to vortices with azimuthal circulation. On the other hand, exploiting further the field configurations of planar Electrodynamics, one finds a peculiar source for the electrostatic sector with azimuthal electric field and a string-like scalar potential. This work sets out to attempt at establishing a parallel between this vortex-like electric field configurations in fluid dynamics. Vortices in boson condensates and the fluid dynamics of the condensates are reassessed and translated into electromagnetic fields of planar (Chern-Simons massive) QED. On The other hand, the metafluid equations, once suitable reduced from 3 to 2 space dimensions, are also seen to match field configurations of Maxwell (massless photons) planar QED. (author)

  18. On the checking of electric charge conservation law and the pauli principle

    International Nuclear Information System (INIS)

    Okun', L.B.

    1989-01-01

    This is a short critical review of the attempts to check the accuracy with which are carried out in experiment the electric charge conservation law and the Pauli principle. The absence of the inwardly noncontradictory phenomenological theory is emphasized, which could describe the charge conservation and/or the Pauli principle violation. Under charge nonconservation longitudinal photons are of a principal importance. New suggestions concerning the principle Puli checking are discussed

  19. QED effects induced harmonics generation in extreme intense laser foil interaction

    Science.gov (United States)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  20. Pauli and The Spin-Statistics Theorem

    International Nuclear Information System (INIS)

    Duck, Ian; Sudarshan, E.C.G.

    1998-03-01

    This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties.Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that 'everyone knows the spin-statistics theorem, but no one understands it'. This book simplifies and clarifies the formal statements of the theorem, and also corrects the invariably flawed intuitive explanations which are frequently put forward. The book will be of interest to many practising physicists in all fields who have long been frustrated by the impenetrable discussions on the subject which have been available until now.It will also be accessible to students at an advanced undergraduate level as an introduction to modern physics based directly on the classical writings of the founders, including Pauli, Dirac, Heisenberg, Einstein and many others

  1. Generalized Pauli constraints in small atoms

    Science.gov (United States)

    Schilling, Christian; Altunbulak, Murat; Knecht, Stefan; Lopes, Alexandre; Whitfield, James D.; Christandl, Matthias; Gross, David; Reiher, Markus

    2018-05-01

    The natural occupation numbers of fermionic systems are subject to nontrivial constraints, which include and extend the original Pauli principle. A recent mathematical breakthrough has clarified their mathematical structure and has opened up the possibility of a systematic analysis. Early investigations have found evidence that these constraints are exactly saturated in several physically relevant systems, e.g., in a certain electronic state of the beryllium atom. It has been suggested that, in such cases, the constraints, rather than the details of the Hamiltonian, dictate the system's qualitative behavior. Here, we revisit this question with state-of-the-art numerical methods for small atoms. We find that the constraints are, in fact, not exactly saturated, but that they lie much closer to the surface defined by the constraints than the geometry of the problem would suggest. While the results seem incompatible with the statement that the generalized Pauli constraints drive the behavior of these systems, they suggest that the qualitatively correct wave-function expansions can in some systems already be obtained on the basis of a limited number of Slater determinants, which is in line with numerical evidence from quantum chemistry.

  2. Light-front quantized field theory (an introduction): spontaneous symmetry breaking. Phase transition in φ4 theory

    International Nuclear Information System (INIS)

    Srivastava, Prem P.

    1994-01-01

    The Dirac procedure is used to construct the Hamiltonian formulation of the scalar field theory on the light-front. The theory is quantized and the mechanism of the spontaneous symmetry breaking in the front form and the instant form dynamics are compared. The phase transition in (φ 4 )2 theory is also discussed and found to be of the second order. (author). 36 refs

  3. Light-Front Dynamics in Hadron Physics

    International Nuclear Information System (INIS)

    Ji, C.-R.; Bakker, B.L.G.; Choi, H.-M.

    2013-01-01

    Light-front dynamics(LFD) plays an important role in the analyses of relativistic few-body systems. As evidenced from the recent studies of generalized parton distributions (GPDs) in hadron physics, a natural framework for a detailed study of hadron structures is LFD due to its direct application in Minkowski space as well as its distinct feature of accounting for the vacuum fluctuations in quantum field theories. In the last few years, however, it has been emphasized that treacherous points such as LF singularities and zero-modes should be taken into account for successful LFD applications to hadron phenomenology. In this paper, we discuss a typical example of the contemporary relativistic hadron physics in which the fundamental issues should be taken into account for the successful application of LFD. In particular, we focus on the kinematic issue of GPDs in deeply virtual Compton scattering (DVCS). Although this fundamental issue has been glossed over in the literature, it must be taken care of for the correct analysis of DVCS data. (author)

  4. Taking into account for the Pauli principle in particle-vibrator model

    International Nuclear Information System (INIS)

    Knyaz'kov, O.M.

    1985-01-01

    To construct Hamiltonian of the particle interaction and phonons a semimicroscopic approach developed by the author earlier is used. At that the Pauli principle is taken account of in local formalism of density matrix. Analytical expressions permitting in a closed form to solve a task of taking account of the Pauli principle in the particle-vibrator model have been derived. Unlike a phenomenological approach form factors of inelastic transitions are determined with parameters of effective nucleon-nucleon forces, central and transition densities and contain no free parameters

  5. Shear Viscosity of Hot QED at Finite Chemical Potential from Kubo Formula

    International Nuclear Information System (INIS)

    Liu Hui; Hou Defu; Li Jiarong

    2008-01-01

    Within the framework of finite temperature feld theory this paper discusses the shear viscosity of hot QED plasma through Kubo formula at one-loop skeleton diagram level with a finite chemical potential. The effective widths (damping rates) are introduced to regulate the pinch singularities and then gives a reliable estimation of the shear viscous coefficient. The finite chemical potential contributes positively compared to the pure temperature case. The result agrees with that from the kinetics theory qualitatively

  6. Leading Twist TMDs in a Light-Front Quark-Diquark Model for Proton

    Science.gov (United States)

    Maji, Tanmay; Chakrabarti, Dipankar

    2018-05-01

    We present p_{\\perp } variation (fixed x) of the leading-twist T-even transverse momentum dependent parton distributions (TMDs) of a proton in a light-front quark-diquark model at μ ^2=2.4 and 20 GeV^2. The quark densities for unpolarized and transversely polarized proton are also presented. We observe a Soffer bound for TMDs in this model.

  7. Beta functions and central charge of supersymmetric sigma models with torsion

    International Nuclear Information System (INIS)

    Guadagnini, E.; Mintchev, M.

    1987-01-01

    We present a method for the computation of the renormalization group β-functions and the central charge in two-dimensional supersymmetric sigma models in a gravitational background. The two-loops results are exhibited. We use the Pauli-Villars regularization which preserves supersymmetry and permits an unambiguous treatment of the model with torsion. The central charge we derive for a general manifold is in agreement with the expression found on group manifolds. (orig.)

  8. Pauli blocking and medium effects in nucleon knockout reactions

    International Nuclear Information System (INIS)

    Bertulani, C. A.; De Conti, C.

    2010-01-01

    We study medium modifications of the nucleon-nucleon (NN) cross sections and their influence on the nucleon knockout reactions. Using the eikonal approximation, we compare the results obtained with free NN cross sections with those obtained with a purely geometrical treatment of Pauli blocking and with NN obtained with more elaborated Dirac-Bruecker methods. The medium effects are parametrized in terms of the baryon density. We focus on symmetric nuclear matter, although the geometrical Pauli blocking also allows for the treatment of asymmetric nuclear matter. It is shown that medium effects can change the nucleon knockout cross sections and momentum distributions up to 10% in the energy range E lab =50-300 MeV/nucleon. The effect is more evident in reactions involving halo nuclei.

  9. Carl Jung's interpretation of Wolfgang Pauli's dreams: The Bailey Island, Maine, and New York City seminars of 1936 and 1937

    Science.gov (United States)

    Brown, Richard Paul

    This dissertation reviewed the development of Jung's dream theory and addresses the question as to whether or not Jung was influenced by the dreams of the Nobel Prize winning physicist, Wolfgang Pauli. Jung provided an extensive analysis of Pauli's dreams, which are contained in the lightly edited, unpublished transcripts of lectures delivered in 1936 and 1937. An archival and hermeneutic analysis of the texts reveals a staged process of individuation that Jung related to in many ways because of the parallels to his own personal journey toward individuation. A chronological history of the development of Jung's dream theory is presented, followed by a picture of the relationship between Jung and Pauli. Thereafter, a detailed summary of the seminar transcripts, one given on Bailey Island, Maine, and the other in New York City the following year, is offered with hermeneutic commentary. An analysis of the seminars found that Pauli's dreams did, in part, support Jung's theory. Specifically, while Jung was unable to meet the scientific demands for clear empirical evidence of his dream theory, he did offer his professional and non-professional audiences with a slightly less rigorous example of his dream theory in action, demonstrating that the process shared similarities across peoples, time, and cultures. Additionally, in Pauli he found a superior mind that had gone through the process of individuation in accordance with his theory and his own experience. During the course of research, reference to a document was found in the correspondence in the Jungian Archives in Zurich. This document entitled, "FAREWELL SPEECH, Given by Dr. C. G. Jung on the Occasion of a Dinner Given in His Honor by the Analytical Psychology Club of New York City October 26, 1937" and other related documents were subsequently uncovered in the sub-basement of the Kristine Mann Library in New York City. A synopsis of the discovery and description of the papers contained in the file are discussed in

  10. Historic physics reprints come home : six boxes of historic reprints have returned home to Pauli's Library

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The 146 items - preprints by Born, Bohr, Heisenberg and others some with dedications to Pauli from the author - had been part of the personal library of the Nobel prize-winning physicist, Wolfgang Pauli.

  11. Experimental Tests of Quantum Mechanics: Pauli Exclusion Principle and Spontaneous Collapse Models

    CERN Document Server

    Petrascu, Catalina Curceanu; Bragadireanu, Mario; Clozza, Alberto; Guaraldo, Carlo; Iliescu, Mihai; Rizzo, Alessandro; Vidal, Antonio Romero; Scordo, Alessandro; Sirghi, Diana Laura; Sirghi, Florin; Sperandio, Laura; Doce, Oton Vazquez; Bassi, Angelo; Donadi, Sandro; Milotti, Edoardo; Laubenstein, Matthias; Bertolucci, Sergio; Bragadireanu, Mario; Curceanu, Catalina; Pietreanu, Dorel; Ponta, Titus; Cargnelli, Michael; Ishiwatari, Tomoichi; Marton, Johann; Widmann, Eberhard; Zmeskal, Johann; Matteo, Sergio di; Egger, Jean Pierre

    2014-01-01

    The Pauli exclusion principle (PEP), as a consequence or the spin-statistics connection, is one of the basic principles of the modern physics. Being at the very basis of our understanding of matter, it spurs a lively debate on its possible limits, deeply rooted as it is in the very foundations of Quantum Field Theory. The VIP (VIolation of the Pauli exclusion principle) experiment is searching for a possible small violation of the PEP for electrons, using the method of searching for Pauli Exclusion Principle forbidden atomic transitions in copper. We describe the experimental method and the obtained results; we briefly present future plans to go beyond the actual limit by upgrading the experiment using vetoed new spectroscopic fast Silicon Drift Detectors. We also mention the possibility of using a similar experimental technique to search for possible X-rays generated in the spontaneous collapse models of quantum mechanics.

  12. On the problem of unboundedness from below of the spinor QED Hamiltonian

    International Nuclear Information System (INIS)

    Zastavenko, L.G.

    1993-01-01

    It is show that the Hamiltonian H QED + H 2 , where H QED is the spinor QED Hamiltonian and H 2 is the positive transversal photon mass term, is unbounded from below if the electromagnetic coupling constant e 2 is small enough, e 2 0 2 , and the transversal photon squared mass parameter M 2 is not large: 0 2 2 (1 - e 2 /e 0 2 )l 2 , here, l is the cut-off parameter; and c and e 0 2 , positive constants which do not depend on any parameters. 7 refs

  13. Light-front realization of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Itakura, Kazunori; Maedan, Shinji

    2001-01-01

    We discuss a description of chiral symmetry breaking in the light-front (LF) formalism. Based on careful analyses of several modes, we give clear answers to the following three fundamental questions: (i) What is the difference between the LF chiral transformation and the ordinary chiral transformation? (ii) How does a gap equation for the chiral condensate emerge? (iii) What is the consequence of the coexistence of a nonzero chiral condensate and the trivial Fock vacuum? The answer to Question (i) is given through a classical analysis of each model. Question (ii) is answered based on our recognition of the importance of characteristic constraints, such as the zero-mode and fermionic constraints. Question (iii) is intimately related to another important problem, reconciliation of the nonzero chiral condensate ≠ 0 and the invariance of the vacuum under the LF chiral transformation Q 5 LF | 0> = 0. This and Question (iii) are understood in terms of the modified chiral transformation laws of the dependent variables. The characteristic ways in which the chiral symmetry breaking is realized are that the chiral charge Q 5 LF is no longer conserved and that the transformation of the scalar and pseudoscalar fields is modified. We also discuss other outcomes, such as the light-cone wave function of the pseudoscalar meson in the Nambu-Jona-Lasinio model. (author)

  14. Generalized field quantization and the Pauli principle

    International Nuclear Information System (INIS)

    Govorkov, A.B.

    1990-01-01

    The work is an attempt to prove that the generalized Pauli principle (i.e. Fermi statistics) for the half-integer spin fields and the Bose statistics for the integer spin fields with allowance for the existence of internal gauge symmetries are consequences of more general assumptions of the local quantum field theory. 32 refs.; 1 tab

  15. Testing the Pauli Exclusion Principle for electrons at LNGS

    CERN Document Server

    Shi, H.; Bertolucci, S.; Berucci, C.; Bragadireanu, A.M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; De Paolis, L.; Di Matteo, S.; d'Uffizi, A.; Egger, J.-P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Marton, J.; Laubenstein, M.; Milotti, E.; Pietreanu, D.; Piscicchia, K.; Ponta, T.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Sirghi, D.L.; Sirghi, F.; Sperandio, L.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    High-precision experiments have been done to test the Pauli exclusion principle (PEP) for electrons by searching for anomalous $K$-series X-rays from a Cu target supplied with electric current. With the highest sensitivity, the VIP (VIolation of Pauli Exclusion Principle) experiment set an upper limit at the level of $10^{-29}$ for the probability that an external electron captured by a Cu atom can make the transition from the 2$p$ state to a 1$s$ state already occupied by two electrons. In a follow-up experiment at Gran Sasso, we aim to increase the sensitivity by two orders of magnitude. We show proofs that the proposed improvement factor is realistic based on the results from recent performance tests of the detectors we did at Laboratori Nazionali di Frascati (LNF).

  16. Electric fields and monopole currents in compact QED

    International Nuclear Information System (INIS)

    Zach, M.; Faber, M.; Kainz, W.; Skala, P.

    1995-01-01

    The confinement in compact QED is known to be related to magnetic monopoles. Magnetic currents form a solenoid around electric flux lines between a pair of electric charges. This behaviour can be described by the dual version of Maxwell-London equations including a fluctuating string. We use a definition of magnetic monopole currents adjusted to the definition of the electric field strength on a lattice and get good agreement for field and current distributions between compact QED and the predictions of dual Maxwell-London equations. Further we show that the monopole fluctuations in the vacuum are suppressed by the flux tube. ((orig.))

  17. On the screening of static electromagnetic fields in hot QED plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1995-01-01

    The screening of static magnetic and electric fields was studied in massless quantum electrodynamics (QED) and massless scalar electrodynamics (SQED) at temperature T. Various exact relations for the static polarization tensor are first reviewed, and then verified perturbatively to fifth order (in the coupling) in QED and fourth order in SQED, using different resummation techniques. The magnetic and electric screening masses squared, as defined through the pole of the static propagators, are also calculated to fifth order in QED and fourth order in SQED, and their gauge-independence and renormalisation-group invariance is checked. Finally, arguments are provided for the vanishing of the magnetic mass to all orders in perturbation theory. (author) 26 refs

  18. Symplectic matrix, gauge invariance and Dirac brackets for super-QED

    Energy Technology Data Exchange (ETDEWEB)

    Alves, D.T. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Cheb-Terrab, E.S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mathematics

    1999-08-01

    The calculation of Dirac brackets (DB) using a symplectic matrix approach but in a Hamiltonian framework is discussed, and the calculation of the DB for the supersymmetric extension of QED (super-QED) is shown. The relation between the zero-mode of the pre-symplectic matrix and the gauge transformations admitted by the model is verified. A general description to construct Lagrangians linear in the velocities is also presented. (author)

  19. Universality of Generalized Parton Distributions in Light-Front Holographic QCD

    Science.gov (United States)

    de Téramond, Guy F.; Liu, Tianbo; Sufian, Raza Sabbir; Dosch, Hans Günter; Brodsky, Stanley J.; Deur, Alexandre; Hlfhs Collaboration

    2018-05-01

    The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function w (x ) which incorporates Regge behavior at small x and inclusive counting rules at x →1 . A simple ansatz for w (x ) that fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.

  20. Influence of Pauli principle and polarization on 16O + 16O interaction potential

    International Nuclear Information System (INIS)

    Nesterov, V.A.

    2012-01-01

    In the work have studied the dependence of the interaction potential on taking into account the Pauli principle as well as monopole and quadrupole polarization within approaches based on the energy-density formalism and two-center shell model wave functions for 16 O + 16 O system. In the adiabatic approximation it is shown that the contribution of the Pauli principle and polarization in colliding nuclei radically changes the behavior of interaction potential

  1. The Gribov problem in noncommutative QED

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio [Centro de Estudios Científicos (CECS),Casilla 1469, Valdivia (Chile); Kurkov, Maxim A. [Dipartimento di Matematica, Università di Napoli Federico II,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); CMCC-Universidade Federal do ABC,Santo André, S.P. (Brazil); INFN, Sezione di Napoli,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); Rosa, Luigi; Vitale, Patrizia [Dipartimento di Fisica, Università di Napoli Federico II,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy)

    2016-01-04

    It is shown that in the noncommutative version of QED (NCQED) Gribov copies induced by the noncommutativity of space-time appear in the Landau gauge. This is a genuine effect of noncommutative geometry which disappears when the noncommutative parameter vanishes.

  2. Leading-order hadronic contributions to a{sub {mu}} and {alpha}{sub QED} from N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)

    2012-11-15

    We present the first four-flavour lattice calculation of the leading-order hadronic vacuum-polarisation contribution to the anomalous magnetic moment of the muon, a{sup hvp}{sub {mu}}, and the hadronic running of the QED coupling constant, {Delta}{alpha}{sup hvp}{sub QED}(Q{sup 2}). In the heavy sector a mixed-action setup is employed. The bare quark masses are determined from matching the K- and D-meson masses to their physical values. Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass by utilising a recently proposed improved method. We demonstrate that this method also works in the four-flavour case.

  3. Leading order hadronic contributions to a{sub {mu}} and {alpha}{sub QED} from N{sub f} = 2 + 1 + 1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Xu Feng, Grit Hotzel, Karl Jansen, Marcus Petschlies, Dru B. Renner

    2012-12-01

    We present the first four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sub {mu}}{sup hvp}, and the hadronic running of the QED coupling constant, {Delta}{alpha}{sup hvp}{sub QED}(Q{sup 2}). In the heavy sector a mixed-action setup is employed. The bare quark masses are determined from matching the K- and D-meson masses to their physical values. Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass by utilising a recently proposed improved method. We demonstrate that this method also works in the four-flavour case.

  4. Leading-order hadronic contributions to a{sub μ} and α{sub QED} from N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hotzel, Grit [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Jansen, Karl [NIC, DESY, Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru [Jefferson Lab, Newport News (United States)

    2013-07-01

    We present the first four-flavour lattice calculation of the leading-order hadronic vacuum-polarisation contribution to the anomalous magnetic moment of the muon, a{sub μ}{sup hvp}, and the hadronic running of the QED coupling constant, Δ α{sub QED}{sup hvp} (Q{sup 2}). In the heavy sector a mixed-action setup is employed. The bare quark masses are determined from matching the K- and D-meson masses to their physical values. Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass by utilising a recently proposed improved method. We demonstrate that this method also works in the four-flavour case.

  5. A semi perturbative method for QED

    OpenAIRE

    Jora, Renata; Schechter, Joseph

    2014-01-01

    We compute the QED beta function using a new method of functional integration. It turns out that in this procedure the beta function contains only the first two orders coefficients and thus corresponds to a new renormalization scheme, long time supposed to exist.

  6. QED radiative corrections to the pionium life time

    International Nuclear Information System (INIS)

    Kuraev, Eh.A.

    1997-01-01

    The lowest order QED radiative corrections to the cross section of the recharged process of transition of two neutral ones and to the pionium lifetime are calculated in frame of scalar QED. It is argued that the ultraviolet cut-off of the loop momentum is to be chosen of order of ρ-meson mass. This fact permits to perform the calculation in frames of Effective Chiral Lagrangian theory with vector-meson dominance. The Coulomb factor corresponding to interaction in the initial state, shown, is to be removed to avoid the double counting. Resulting value of the radiative correction to the pionium lifetime is 0.25%

  7. On inclusion of the Pauli principle in the quasi particle-phonon nuclear model

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1979-01-01

    The Pauli principle in odd-even, even-odd and even-even nuclei in the quasi particle-phonon nuclear model is considered. It is shown that the Pauli principle can excactly be taken into account. The exact and approximate secular equations are obtained for the wave function containing the one-quasi particle and quasi particle plus phonon components. The effect of the Pauli principle is discussed, when the wave function contains the one- and two-phonon components. In both the cases the poles are shifted in the secular equations and the quasi particle-phonon interaction terms are added. The number of quasi particles in the ground states is estimated. It is stated that in the majority of deformed nuclei the correlations in the ground states are small. It is shown that within the quasi particle-phonon nuclear model the calculations can be performed with the exact commutation relations

  8. Polarizability sum rules in QED

    International Nuclear Information System (INIS)

    Llanta, E.; Tarrach, R.

    1978-01-01

    The well founded total photoproduction and the, assumed subtraction free, longitudinal photoproduction polarizability sum rules are checked in QED at the lowest non-trivial order. The first one is shown to hold, whereas the second one turns out to need a subtraction, which makes its usefulness for determining the electromagnetic polarizabilities of the nucleons quite doubtful. (Auth.)

  9. Recursive relations for processes with n photons of noncommutative QED

    International Nuclear Information System (INIS)

    Jafari, Abolfazl

    2007-01-01

    Recursion relations are derived in the sense of Berends-Giele for the multi-photon processes of noncommutative QED. The relations concern purely photonic processes as well as the processes with two fermions involved, both for arbitrary number of photons at tree level. It is shown that despite of the dependence of noncommutative vertices on momentum, in contrast to momentum-independent color factors of QCD, the recursion relation method can be employed for multi-photon processes of noncommutative QED

  10. QED Theory of the Nuclear Magnetic Shielding in Hydrogenlike Ions

    International Nuclear Information System (INIS)

    Yerokhin, V. A.; Pachucki, K.; Harman, Z.; Keitel, C. H.

    2011-01-01

    The shielding of the nuclear magnetic moment by the bound electron in hydrogenlike ions is calculated ab initio with inclusion of relativistic, nuclear, and quantum electrodynamics (QED) effects. The QED correction is evaluated to all orders in the nuclear binding strength parameter and, independently, to the first order in the expansion in this parameter. The results obtained lay the basis for the high-precision determination of nuclear magnetic dipole moments from measurements of the g factor of hydrogenlike ions.

  11. Two-loop QED corrections to the Altarelli-Parisi splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Florian, Daniel de [International Center for Advanced Studies (ICAS), UNSAM,Campus Miguelete, 25 de Mayo y Francia (1650) Buenos Aires (Argentina); Sborlini, Germán F.R.; Rodrigo, Germán [Instituto de Física Corpuscular, Universitat de València,Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain)

    2016-10-11

    We compute the two-loop QED corrections to the Altarelli-Parisi (AP) splitting functions by using a deconstructive algorithmic Abelianization of the well-known NLO QCD corrections. We present explicit results for the full set of splitting kernels in a basis that includes the leptonic distribution functions that, starting from this order in the QED coupling, couple to the partonic densities. Finally, we perform a phenomenological analysis of the impact of these corrections in the splitting functions.

  12. High order QED corrections in Z physics

    International Nuclear Information System (INIS)

    Marck, S.C. van der.

    1991-01-01

    In this thesis a number of calculations of higher order QED corrections are presented, all applying to the standard LEP/SLC processes e + e - → f-bar f, where f stands for any fermion. In cases where f≠ e - , ν e , the above process is only possible via annihilation of the incoming electron positron pair. At LEP/SLC this mainly occurs via the production and the subsequent decay of a Z boson, i.e. the cross section is heavily dominated by the Z resonance. These processes and the corrections to them, treated in a semi-analytical way, are discussed (ch. 2). In the case f = e - (Bhabha scattering) the process can also occur via the exchange of a virtual photon in the t-channel. Since the latter contribution is dominant at small scattering angles one has to exclude these angles if one is interested in Z physics. Having excluded that region one has to recalculate all QED corrections (ch. 3). The techniques introduced there enables for the calculation the difference between forward and backward scattering, the forward backward symmetry, for the cases f ≠ e - , ν e (ch. 4). At small scattering angles, where Bhabha scattering is dominated by photon exchange in the t-channel, this process is used in experiments to determine the luminosity of the e + e - accelerator. hence an accurate theoretical description of this process at small angles is of vital interest to the overall normalization of all measurements at LEP/SLC. Ch. 5 gives such a description in a semi-analytical way. The last two chapters discuss Monte Carlo techniques that are used for the cases f≠ e - , ν e . Ch. 6 describes the simulation of two photon bremsstrahlung, which is a second order QED correction effect. The results are compared with results of the semi-analytical treatment in ch. 2. Finally ch. 7 reviews several techniques that have been used to simulate higher order QED corrections for the cases f≠ e - , ν e . (author). 132 refs.; 10 figs.; 16 tabs

  13. Exact eigenstates and open-quotes trivialityclose quotes of λ(var-phi *var-phi)2 theory in the Feshbach-Villars formulation

    International Nuclear Information System (INIS)

    Darewych, J.W.

    1997-01-01

    The complex scalar (Klein-Gordon) quantum field theory (QFT) with a λ(var-phi * var-phi) 2 interaction is considered in the Feshbach-Villars formulation. It is shown that exact few-particle eigenstates of the QFT Hamiltonian can be obtained. The resulting relativistic few-body equations correspond to Klein-Gordon particles interacting via delta-function, or open-quotes contact,close quotes potentials. Momentum-space solutions of the two-body equation yield a open-quotes trivialclose quotes unity S matrix. copyright 1997 The American Physical Society

  14. Effect of the Pauli principle on the nonrotational states in odd-A deformed nuclei

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Nesterenko, V.O.; Soloviev, V.G.

    1982-01-01

    The commutation relations between the quasiparticle and phonon operators are used to obtain the equations allowing a correct accounting of the Pauli principle for the description of the states of odd-A deformed nuclei. It is shown, that if in the quasiparticle plus phonon component the Pauli principle is not violated or is slightly violated, then a relevant vibrational state may exist in an odd-A deformed nucleus

  15. Effect of Pauli principle accounting an the two-phonon states of spherical nuclej

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Stoyanov, Ch.; Nikolaeva, R.

    1983-01-01

    The effect of account for the Pauli principle in two-phonon components of the wave functions on low-lying collective states of even-even spherical nuclei is investigated. The calculations are performed for sup(114, 116)Sn and sup(142, 144, 146, 148)Sm. The account of the Pauli principle is shown to exert a weak effect on the states with large one-phonon or two-phonon components. It is concluded that in some spherical nuclei sufficiently pure two-phonon states may exist

  16. Study of the Magnetically Induced QED Birefringence of the Vacuum in experiment OSQAR

    CERN Document Server

    AUTHOR|(CDS)2083980

    Classical electrodynamics in a vacuum is a linear theory and does not foresee photon-photon scattering or other nonlinear effects between electromagnetic fields. In 1936 Euler, Heisenberg and Weisskopf put framework, in the earliest development of quantum electrodynamics (QED), that vacuum can behave as a birefringent medium in the presence of the external transverse magnetic field. This phenomenon is known as Vacuum Magnetic Birefringence (VMB) and it is still challenging for optical metrology since the first calculations in 1970. When linearly polarized light travels through the strong transverse magnetic field in vacuum, the polarization state of the light would change to elliptical. The difference in the refraction indexes of the ordinary and extraordinary ray is directly related to fundamental constants, such as fine structure constant or Compton wavelength. Contributions to VMB could also arise from the existence of light scalar or pseudoscalar particles, such as axions or axions like particles. Axions ...

  17. Standing together in troubled times unpublished letters by Pauli, Einstein, Franck and others

    CERN Document Server

    2017-01-01

    This captivating book is a story of the friendship between a genius physicist Wolfgang Pauli and Charlotte Houtermans whose career in physics was not as glamorous. They met in the late 1920s in Germany, at the very onset of the quantum era and personally knew all the major players in the emergent quantum world that was very much part of central Europe: Germany, Austria, Hungary, Denmark and Switzerland. And Charlotte was a student at Göttingen that was right at the heart.Caught between two evils — Soviet Communism and German National Socialism — she would have probably perished if it were not for the brotherhood of physicists: Niels Bohr, Wolfgang Pauli, Albert Einstein, James Franck, Max Born, Robert Oppenheimer and many other noted scientists who tried to save friends and colleagues (either leftist sympathizers or Jews) who were in mortal danger of being entrapped in a simmering pre-WWII Europe.Using newly discovered documents from the Houtermans family archive: twenty three Pauli's letters to Charlott...

  18. Spontaneous symmetry breaking of (1+1)-dimensional φ4 theory in light-front field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Pinsky, S.; van de Sande, B.

    1993-01-01

    We study spontaneous symmetry breaking in (1+1)-dimensional φ 4 theory using the light-front formulation of field theory. Since the physical vacuum is always the same as the perturbative vacuum in light-front field theory the fields must develop a vacuum expectation value through the zero-mode components of the field. We solve the nonlinear operator equation for the zero mode in the one-mode approximation. We find that spontaneous symmetry breaking occurs at λ critical =4π(3+ √3 )μ 2 , which is consistent with the value λ critical =54.27μ 2 obtained in the equal-time theory. We calculate the vacuum expectation value as a function of the coupling constant in the broken phase both numerically and analytically using the δ expansion. We find two equivalent broken phases. Finally we show that the energy levels of the system have the expected behavior for the broken phase

  19. Relativistic and QED corrections to the g factor of Li-like ions

    International Nuclear Information System (INIS)

    Glazov, D.A.; Shabaev, V.M.; Volotka, A.V.; Tupitsyn, I.I.; Yerokhin, V.A.; Plunien, G.; Soff, G.

    2004-01-01

    Calculations of various corrections to the g factor of Li-like ions are presented, which result in a significant improvement of the theoretical accuracy in the region Z=6-92. The configuration-interaction Dirac-Fock method is employed for the evaluation of the interelectronic-interaction correction of order 1/Z 2 and higher. This correction is combined with the 1/Z interelectronic-interaction term derived within a rigorous QED approach. The one-electron QED correction of first order in α is obtained by employing our recent results for the self-energy term and by evaluating the vacuum-polarization contribution. The screening of QED corrections is taken into account to the leading orders in αZ and 1/Z

  20. Quantum Private Comparison via Cavity QED

    International Nuclear Information System (INIS)

    Ye Tian-Yu

    2017-01-01

    The first quantum private comparison (QPC) protocol via cavity quantum electrodynamics (QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party (TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack. Particularly, it can prevent TP from knowing two users’ secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%. (paper)

  1. Compact lattice QED with Wilson fermions

    International Nuclear Information System (INIS)

    Hoferichter, A.

    1994-08-01

    We study the phase structure and the chiral limit of 4d compact lattice QED with Wilson fermions (both dynamical and quenched). We use the standard Wilson gauge action and also a modified one suppressing lattice artifacts. Different techniques and observables to locate the chiral limit are discussed. (orig.)

  2. Remnants of semiclassical bistability in the few-photon regime of cavity QED.

    Science.gov (United States)

    Kerckhoff, Joseph; Armen, Michael A; Mabuchi, Hideo

    2011-11-21

    Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing. © 2011 Optical Society of America

  3. Pauli principle role in the description of collective non-rotational states of deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Shirikova, N.Yu.; Serdyukova, S.I.; Meliev, F.; Nesterenko, V.O.

    1981-01-01

    The Pauli principle role account for one-phonon and two- phonon states of even-even deformed nuclei sup(160, 164)Dy, sup(230, 232)Th, 154 Gd, 240 Pu, 238 U is performed. With account of isoscalar part of multipole-multipole interaction hamiltonian of a model and basic equations for energy and wave functions of one-phonon and two-phonon states are obtained. The results of calculations of centroids of energies of two-phonon states of the (lambda 1 μ 1 i 1 lambda 2 μ 2 i 2 ) type with and without the Pauli principle are tabulated. The calculations performed have shown that the energy centroids shift of collective two-phonon states with the Pauli-principle account is characteristic for all even-even deformed nuclei. In the authors opinion additional experimental investigations of 154 Cd, 164 Dy, 240 Pu two-phonon nuclei states to confirm theoretical results are necessary [ru

  4. Form factors of ηc in light-front quark model

    International Nuclear Information System (INIS)

    Geng, Chao-Qiang; Lih, Chong-Chung

    2013-01-01

    We study the form factors of the η c meson in the light-front quark model. We explicitly show that the transition form factor of η c → γ * γ as a function of the momentum transfer is consistent with the experimental data by the BaBar collaboration, while the decay constant of η c is found to be f η c = 230.5 +52.2 -61.0 and 303.6 +115.2 -116.4 MeV for η c ∝ c anti c by using two η c → γγ decay widths of 5.3 ± 0.5 and 7.2 ± 2.1 keV, given by Particle Data Group and Lattice QCD calculation, respectively. (orig.)

  5. Chiral symmetry breaking and confinement in Minkowski space QED2+1

    International Nuclear Information System (INIS)

    Sauli, V.; Batiz, Z.

    2010-01-01

    Without any analytical assumption we solve the ladder QED2+1 in Minkowski space. Obtained complex fermion propagator exhibits confinement in the sense that it has no pole. Further, we transform Greens functions to the Temporal Euclidean space, wherein we show that in the special case of ladder QED2+1 the solution is fully equivalent to the Minkowski one. Obvious invalidity of Wick rotation is briefly discussed. The infrared value of the dynamical mass is compared with other known approaches, e. g. with the standard Euclidean calculation. We have presented for the first analysis of the electron gap equation in Minkowski and Temporal Euclidean space. The dynamical generation of imaginary part of the fermion mass leads to the absence of Khallen-Lehmann representation, providing thus confining solution for all value of m. Apart very small κ the real pole in the propagator is absent as well. Similarly to Euclidean QED3 Minkowski QED2+1 exhibits spontaneous chiral symmetry breaking the mass function has nontrivial solution in the limit m = 0, however the mass is complex function. Furthermore, we compare with QED solved in similar approximation in spacelike Euclidean and Temporal Euclidean space. As a interesting results, although based on the simple ladder approximation, is the proof of the exact equivalence between the theories defined in Minkowski 2+1 and 3D Temporal Euclidean space. We expect large quantitative changes when the polarization effect is taken account, especially the existence of critical number of flavors can be different when compared to the known Euclidean space estimates. Opposite to naive belief we showed and explained that the Wick rotation -the well known calculational trick in quantum theory- provides continuation of Schwinger function of the Euclidean theory which do not correspond with the Greens function calculated directly in the original Minkowski space. We can note our finding has a little to do with the know usefulness of various

  6. Hopf-algebraic renormalization of QED in the linear covariant gauge

    Energy Technology Data Exchange (ETDEWEB)

    Kißler, Henry, E-mail: kissler@physik.hu-berlin.de

    2016-09-15

    In the context of massless quantum electrodynamics (QED) with a linear covariant gauge fixing, the connection between the counterterm and the Hopf-algebraic approach to renormalization is examined. The coproduct formula of Green’s functions contains two invariant charges, which give rise to different renormalization group functions. All formulas are tested by explicit computations to third loop order. The possibility of a finite electron self-energy by fixing a generalized linear covariant gauge is discussed. An analysis of subdivergences leads to the conclusion that such a gauge only exists in quenched QED.

  7. Finite field-energy of a point charge in QED

    International Nuclear Information System (INIS)

    Costa, Caio V; Gitman, Dmitry M; Shabad, Anatoly E

    2015-01-01

    We consider a simple nonlinear (quartic in the fields) gauge-invariant modification of classical electrodynamics, to show that it possesses a regularizing ability sufficient to make the field energy of a point charge finite. The model is exactly solved in the class of static central-symmetric electric fields. Collation with quantum electrodynamics (QED) results in the total field energy of a point elementary charge about twice the electron mass. The proof of the finiteness of the field energy is extended to include any polynomial selfinteraction, thereby the one that stems from the truncated expansion of the Euler–Heisenberg local Lagrangian in QED in powers of the field strength. (paper)

  8. Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory

    Science.gov (United States)

    Zhu, Guanyu

    Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different

  9. Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

    Directory of Open Access Journals (Sweden)

    A. Stockklauser

    2017-03-01

    Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238  MHz at a resonator linewidth κ/2π=12  MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40  MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.

  10. Controlled teleportation of a multipartite quantum state via driven QED cavity

    International Nuclear Information System (INIS)

    Cao Haijing; Song Heshan

    2007-01-01

    We propose a scheme for teleporting a multipartite quantum state via driven QED cavity technologies. The combined state of Bell states is employed as a quantum channel. By adopting QED cavity technologies, our scheme does not involve the Bell-state measurements and can be perfectly realized by communicators' single particle measurements, possible C-not transformation and classical communication. The probability of successful teleportation can reach 1.0. The theoretical scheme is experimentally feasible via current technologies

  11. Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling using circuit QED (1) - implementation and matter dynamics -

    Science.gov (United States)

    Kounalakis, M.; Langford, N. K.; Sagastizabal, R.; Dickel, C.; Bruno, A.; Luthi, F.; Thoen, D. J.; Endo, A.; Dicarlo, L.

    The field dipole coupling of quantum light and matter, described by the quantum Rabi model, leads to exotic phenomena when the coupling strength g becomes comparable or larger than the atom and photon frequencies ωq , r. In this ultra-strong coupling regime, excitations are not conserved, leading to collapse-revival dynamics in atom and photon parity and Schrödinger-cat-like atom-photon entanglement. We realize a quantum simulation of the Rabi model using a transmon qubit coupled to a resonator. In this first part, we describe our analog-digital approach to implement up to 90 symmetric Trotter steps, combining single-qubit gates with the Jaynes-Cummings interaction naturally present in our circuit QED system. Controlling the phase of microwave pulses defines a rotating frame and enables simulation of arbitrary parameter regimes of the Rabi model. We demonstrate measurements of qubit parity dynamics showing revivals at g /ωr > 0 . 8 for ωq = 0 and characteristic dynamics for nondegenerate ωq from g / 4 to g. Funding from the EU FP7 Project ScaleQIT, an ERC Grant, the Dutch Research Organization NWO, and Microsoft Research.

  12. Indefinite metric and regularization of electrodynamics

    International Nuclear Information System (INIS)

    Gaudin, M.

    1984-06-01

    The invariant regularization of Pauli and Villars in quantum electrodynamics can be considered as deriving from a local and causal lagrangian theory for spin 1/2 bosons, by introducing an indefinite metric and a condition on the allowed states similar to the Lorentz condition. The consequences are the asymptotic freedom of the photon's propagator. We present a calcultion of the effective charge to the fourth order in the coupling as a function of the auxiliary masses, the theory avoiding all mass divergencies to this order [fr

  13. Quenched QED in the chiral limit

    International Nuclear Information System (INIS)

    Vandermark, S.W.

    1993-01-01

    The main goal in this project has been to understand, through analytical methods, whether there could be a continuum limit for QED. This possibility is motivated by recent lattice simulations on quenched QED which apparently exhibit a chiral phase transition at strong coupling in the chiral limit. Another goal is to develop a novel perturbation expansion which may also be usefully applied to other theories. The author begins with the general expression for the chiral order parameter, (bar ψψ), in the quenched limit of euclidean QED, where the number of fermion flavors goes to zero, using the path integral formulation. A cutoff scale, Λ, is introduced into the photon propagator and a new expansion, the open-quotes wormhole expansion,close quotes in powers of Λ 2 /m 2 , where m is the fermion mass, is derived. Graphical rules for the wormhole expansion of left-angle bar ψψ right-angle are described in detail. The author then devises algorithms to generate recursively the graphs at each successive order and to perform the loop momentum integral and γ matrix trace involved in the evaluation of each graph. These algorithms are implemented in Mathmatica and the left-angle bar ψψ right-angle expansion is carried out to order (Λ 2 / m 2 ) 6 . The author employs pade techniques to extrapolate this expansion to the chiral limit (Λ 2 /m 2 → ∞) and looks for a singularity at strong coupling to signal a phase transition. Indications have been found that there may be a phase transition but apparently there are not enough terms in the wormhole expansion to attain stability in our pade analysis. The author therefore cannot conclude that there is a chiral phase transition, although the results are consistent with the existence of one

  14. Simulations of relativistic quantum plasmas using real-time lattice scalar QED

    Science.gov (United States)

    Shi, Yuan; Xiao, Jianyuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.

  15. On the influence of the Pauli exclusion principle on the transport properties of dense Coulomb systems

    International Nuclear Information System (INIS)

    Schmidt, M.; Janke, T.; Redmer, R.

    1989-01-01

    Within a model calculation the influence of the Pauli exclusion principle on the electrical conductivity of a fully ionized and degenerate hydrogen plasma is investigated. Basing on a quantum kinetic equation solved with the relaxation time ansatz, the electron-ion contribution to the resistivity is calculated. The thermodynamical T-matrix for electron-ion scattering processes is evaluated under special account for the Pauli blocking of the intermediate scattering states. The corresponding Bethe-Salpeter equation is solved analytically using a separable approximation of the statically screened potential. The Pauli exclusion principle has been found to give rise for a considerable enhancement of the transport cross section near the Fermi energy. Thus, degeneracy effects tend to diminish the electrical conductivity in the density-temperature region considered here. (author)

  16. The two-photon self-energy and other QED radiative corrections

    International Nuclear Information System (INIS)

    Zschocke, S.

    2001-07-01

    One of the main issues in current nuclear physics is the precise measurement of the Lamb shift of strongly bound electrons in quantum electrodynamic (QED) tests in strong fields in highly charged ions. The currently performed high-precision measurements require extreme accuracy in the theoretical calculation of Lamb shift. This requires consideration of all α and α 2 order QED corrections as well as of precisely all orders in Zα. In the past years most of these QED corrections have been calculated both in 1st order and in 2nd order interference theory. As yet however, it has not been possible to assess the contribution of the two-photon self-energy, which has therefore been the greatest uncertainty factor in predicting Lamb shift in hydrogen-like systems. This study examines the contribution of these processes to Lamb shift. It also provides the first ever derivation of renormalized terms of two-photon vacuum polarisation and self-energy vacuum polarisation. Until now it has only been possible to evaluate these contributions by way of an Uehling approximation [de

  17. A Cavity QED Implementation of Deutsch-Jozsa Algorithm

    OpenAIRE

    Guerra, E. S.

    2004-01-01

    The Deutsch-Jozsa algorithm is a generalization of the Deutsch algorithm which was the first algorithm written. We present schemes to implement the Deutsch algorithm and the Deutsch-Jozsa algorithm via cavity QED.

  18. QED corrections to the 4p-4d transition energies of copperlike heavy ions

    International Nuclear Information System (INIS)

    Chen, M. H.; Cheng, K. T.; Johnson, W. R.; Sapirstein, J.

    2006-01-01

    Quantum electrodynamic (QED) corrections to 4p-4d transition energies of several copperlike ions with Z=70-92 are calculated nonperturbatively in strong external fields to all orders in binding corrections. Dirac-Kohn-Sham potentials are used to account for screening and core-relaxation effects. For the 4p 1/2 -4d 3/2 transition in copperlike bismuth, thorium, and uranium, results are in good agreement with empirical QED corrections deduced from differences between transition energies obtained from recent high-precision electron-beam ion-trap measurements and those calculated with the relativistic many-body perturbation theory (RMBPT). These comparisons provide sensitive tests of QED corrections for high-angular-momentum states in many-electron heavy ions and illustrate the importance of core-relaxation corrections. Comparisons are also made with other theories and with experiments on the 4s-4p transition energies of high-Z Cu-like ions as accuracy checks of the present RMBPT and QED calculations

  19. Pauli Paramagnetic Susceptibility of an Ideal Anyon Gas within Haldane Fractional Exclusion Statistics

    International Nuclear Information System (INIS)

    Qin Fang; Chen Jisheng

    2012-01-01

    The finite-temperature Pauli paramagnetic susceptibility of a three-dimensional ideal anyon gas obeying Haldane fractional exclusion statistics is studied analytically. Different from the result of an ideal Fermi gas, the susceptibility of an ideal anyon gas depends on a statistical factor g in Haldane statistics model. The low-temperature and high-temperature behaviors of the susceptibility are investigated in detail. The Pauli paramagnetic susceptibility of the two-dimensional ideal anyons is also derived. It is found that the reciprocal of the susceptibility has the similar factorizable property which is exhibited in some thermodynamic quantities in two dimensions.

  20. The renormalization group study of the effective theory of lattice QED

    International Nuclear Information System (INIS)

    Sugiyama, Y.

    1988-01-01

    The compact U(1) lattice gauge theory with massless fermions (Lattice QED) is studied through the effective model analytically, using the renormalization group method. The obtained effective model is the local boson field system with non-local interactions. The authors study the existence of non-trivial fixed point and its scaling behavior. This fixed point seems to be tri-critical. Such fixed point is interpreted in terms of the original Lattice QED model, and the results are consistent with the Monte Calro study

  1. Treatment of pauli exclusion operator in G-matrix calculations for hypernuclei

    International Nuclear Information System (INIS)

    Kuo, T.T.S.; Hao, Jifa

    1995-01-01

    We discuss a matrix-inversion method for treating the Pauli exclusion operator Q in the hyperon-nucleon G-matrix equation for hypernuclei such as Λ 16 O. A model space consisted of shell-model wave functions is employed. We discuss that it is preferable to employ a free-particle spectrum for the intermediate states of the G matrix. This leads to the difficulty that the G-matrix intermediate states are plane waves and on this representation the Pauli operator Q has a rather complicated structure. A matrix-inversion method for over-coming this difficulty is examined. To implement this method it is necessary to employ a so-called n 3Λ truncation approximation. Numerical calculations using the Juelich B tilde and A tilde potentials have been performed to study the accuracy of this approximation. (author)

  2. Pauli and the spin-statistics theorem

    CERN Document Server

    Duck, Ian M

    1997-01-01

    This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties. Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that

  3. Monopoles and chiral symmetry breaking in compact and noncompact QED3

    International Nuclear Information System (INIS)

    Fiebig, H.R.

    1990-11-01

    A comparison of the compact and the noncompact lattice action for 2+1 dimensional QED is made. In particular, the chiral order parameter and the monopole density ρ m are computed as functions of β for N f = 0.2 fermion flavours. The results reveal a strong correlation between and ρ m . Moreover, this correlation is identical for the compact and noncompact theories. This is interpreted as evidence that monopole condensation drives chiral symmetry breaking in lattice QED 3 . (Author) (6 refs., 5 figs.)

  4. QED coherence in matter

    CERN Document Server

    Preparata, Giuliano

    1995-01-01

    Up until now the dominant view of condensed matter physics has been that of an "electrostatic MECCANO" (erector set, for Americans). This book is the first systematic attempt to consider the full quantum-electrodynamical interaction (QED), thus greatly enriching the possible dynamical mechanisms that operate in the construction of the wonderful variety of condensed matter systems, including life itself.A new paradigm is emerging, replacing the "electrostatic MECCANO" with an "electrodynamic NETWORK," which builds condensed matter through the long range (as opposed to the "short range" nature o

  5. QED blue-sheet effects inside black holes

    International Nuclear Information System (INIS)

    Burko, L.M.

    1997-01-01

    The interaction of the unboundedly blueshifted photons of the cosmic microwave background radiation with a physical object falling towards the inner horizon of a Reissner-Nordstroem black hole is analyzed. To evaluate this interaction we consider the QED effects up to the second order in the perturbation expansion. We then extrapolate the QED effects up to a cutoff, which we introduce at the Planckian level. (Our results are not sensitive to the cutoff energy.) We find that the energy absorbed by an infalling observer is finite, and for typical parameters would not lead to a catastrophic heating. However, this interaction would almost certainly be fatal for a human being, or other living organisms of similar size. On the other hand, we find that smaller objects may survive the interaction. Our results do not provide support for the idea that the Cauchy horizon is to be regarded as the boundary of spacetime. copyright 1997 The American Physical Society

  6. Is the Pauli exclusion principle the origin of electron localisation?

    Science.gov (United States)

    Rincón, Luis; Torres, F. Javier; Almeida, Rafael

    2018-03-01

    In this work, we inquire into the origins of the electron localisation as obtained from the information content of the same-spin pair density, γσ, σ(r2∣r1). To this end, we consider systems of non-interacting and interacting identical Fermions contained in two simple 1D potential models: (1) an infinite potential well and (2) the Kronig-Penney periodic potential. The interparticle interaction is considered through the Hartree-Fock approximation as well as the configuration interaction expansion. Morover, the electron localisation is described through the Kullback-Leibler divergence between γσ, σ(r2∣r1) and its associated marginal probability. The results show that, as long as the adopted method properly includes the Pauli principle, the electronic localisation depends only modestly on the interparticle interaction. In view of the latter, one may conclude that the Pauli principle is the main responsible for the electron localisation.

  7. Three-point Green's function of massless QED in position space to lowest order

    International Nuclear Information System (INIS)

    Mitra, Indrajit

    2009-01-01

    The transverse part of the three-point Green's function of massless QED is determined to the lowest order in position space. Taken together with the evaluation of the longitudinal part in Mitra (2008) (J. Phys. A: Math. Theor. 41 315401), this gives a relation for QED which is analogous to the star-triangle relation. We relate our result to conformal-invariant three-point functions

  8. Chiral symmetry breaking is permitted in supersymmetric QED

    International Nuclear Information System (INIS)

    Walker, M.

    2000-01-01

    Full text: A chirally symmetric theory will generally have a chirally symmetric and a chirally asymmetric solution for the dressed fermionic propagator. It has been claimed that no chirally asymmetric solution for the fermionic propagator exists in supersymmetric QED. This result in the superfield formalism uses a gauge dependent argument whose validity has since been questioned. We present an analogous analysis using the component formalism which demonstrates that chiral symmetry breaking is permitted in this theory. We open the presentation with a brief introduction to supersymmetry, supersymmetric QED, and the superfield formalism. We describe chiral symmetry breaking and the Dyson-Schwinger equation used to analyse it. The derivation of the erroneous theorem claiming the lack of an a chiral propagator is outlined and its flaws discussed. We finish with the equivalent derivation in component fields and our contradictory result

  9. Superspace formulation for the master equation

    International Nuclear Information System (INIS)

    Abreu, E.M.; Braga, N.R.

    1996-01-01

    It is shown that the quantum master equation of the field-antifield quantization method at one-loop order can be translated into the requirement of a superfield structure for the action. The Pauli-Villars regularization is implemented in this BRST superspace and the case of anomalous gauge theories is investigated. The quantum action, including Wess-Zumino terms, shows up as one of the components of a superfield that includes the BRST anomalies in the other component. The example of W2 quantum gravity is also discussed. copyright 1996 The American Physical Society

  10. Simulations of QCD and QED with C* boundary conditions

    Science.gov (United States)

    Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario

    2018-03-01

    We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214

  11. QED fermi fields as operator-valued distributions and anomalies

    International Nuclear Information System (INIS)

    Grange, P.; Werner, E.

    2005-01-01

    The treatment of fields as operator-valued distributions (OPVD) is recalled with the emphasis on the importance of causality following the work of Epstein and Glaser. Gauge-invariant theories demand the extension of the usual translation operation on OPVD, thereby leading to a generalized QED formulation. At D = 2 the solvability of the Schwinger model is totally preserved. At D = 4 the paracompactness property of the Euclidean manifold permits the use of test functions which are a decomposition of unity and thereby provides a natural justification and extension of the non-perturbative heat kernel method (Fujikawa) for Abelian anomalies. On the Minkowski manifold the specific role of causality in the restauration of gauge invariance (and mass generation for QED 2 is exemplified in a simple way. (author)

  12. Counterterms in Gravity in the Light-Front Formulation and a D=2 Conformal-like Symmetry in Gravity

    OpenAIRE

    Bengtsson, Anders K. H.; Brink, Lars; Kim, Sung-Soo

    2012-01-01

    In this paper we discuss gravity in the light-front formulation (light-cone gauge) and show how possible counterterms arise. We find that Poincare invariance is not enough to find the three-point counterterms uniquely. Higher-spin fields can intrude and mimic three-point higher derivative gravity terms. To select the correct term we have to use the remaining reparametrization invariance that exists after the gauge choice. We finally sketch how the corresponding programme for N=8 Supergravity ...

  13. Massive gravity and Fierz-Pauli theory

    Energy Technology Data Exchange (ETDEWEB)

    Blasi, Alberto [Universita di Genova, Dipartimento di Fisica, Genova (Italy); Maggiore, Nicola [I.N.F.N.-Sezione di Genova, Genoa (Italy)

    2017-09-15

    Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)

  14. Massive gravity and Fierz-Pauli theory

    International Nuclear Information System (INIS)

    Blasi, Alberto; Maggiore, Nicola

    2017-01-01

    Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)

  15. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2012-02-16

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  16. QED, QCD en pratique

    OpenAIRE

    Aurenche , P; Guillet , J.-Ph; Pilon , E

    2016-01-01

    3rd cycle; Ces notes sont une introduction à l'application de l'électrodynamique quantique (QED) et de la chromodynamiques quantique (QCD) aux réactions de diffusion à hautes énergies. Le premier thème abordé est celui des divergences ultraviolettes et de la renormalisation à une boucle, avec comme conséquence pour QCD la liberté asymptotique. Le deuxième thème est celui des divergences infrarouges et colinéaires qui dans QCD sont traitées dans le cadre du modèle des partons avec l'introducti...

  17. Charged hadrons in local finite-volume QED+QCD with C* boundary conditions

    CERN Document Server

    Lucini, Biagio; Ramos, Alberto; Tantalo, Nazario

    2016-01-01

    In order to calculate QED corrections to hadronic physical quantities by means of lattice simulations, a coherent description of electrically-charged states in finite volume is needed. In the usual periodic setup, Gauss's law and large gauge transformations forbid the propagation of electrically-charged states. A possible solution to this problem, which does not violate the axioms of local quantum field theory, has been proposed by Wiese and Polley, and is based on the use of C* boundary conditions. We present a thorough analysis of the properties and symmetries of QED in isolation and QED coupled to QCD, with C* boundary conditions. In particular we learn that a certain class of electrically-charged states can be constructed in this setup in a fully consistent fashion, without relying on gauge fixing. We argue that this class of states covers most of the interesting phenomenological applications in the framework of numerical simulations. We also calculate finite-volume corrections to the mass of stable charg...

  18. New experimental limit on Pauli exclusion principle violation by electrons (VIP experiment)

    Energy Technology Data Exchange (ETDEWEB)

    Bartalucci, S [NFN, Laboratori Nazionali di Prascati, C.P. 13, Via E. Fermi 40, I-00044, Frascati (Italy); Bertolucci, S [NFN, Laboratori Nazionali di Prascati, C.P. 13, Via E. Fermi 40, I-00044, Frascati (Italy); Bragadireanu, M [NFN, Laboratori Nazionali di Prascati, C.P. 13, Via E. Fermi 40, I-00044, Frascati (Italy)] (and others)

    2007-05-15

    The Pauli exclusion principle (PEP) represents one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it still spurs a lively debate, because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. A new limit on the probability that PEP is violated by electrons was estabilished by the VIP (Violation of the Pauli exclusion principle) Collaboration, using the method of searching for PEP forbidden atomic transitions in copper. The preliminary value, 1/2{beta}{sup 2} < 4.5 x 10{sup -28}, represents an improvement of about two orders of magnitude of the previous limit. The goal of VIP is to push this limit at the level of 10{sup -30}.

  19. QED effects in the pseudoscalar meson sector

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD (United Kingdom); Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, 650-0047 (Japan); Perlt, H. [Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, Leipzig, 04109 (Germany); Pleiter, D. [Jülich Supercomputer Centre, Forschungszentrum Jülich, Jülich, 52425 (Germany); Institut für Theoretische Physik, Universität Regensburg, Regensburg, 93040 (Germany); Rakow, P.E.L. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Peach Street , Liverpool, L69 3BX (United Kingdom); Schierholz, G. [Deutsches Elektronen-Synchrotron DESY, Hamburg, 22603 (Germany); Schiller, A. [Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, Leipzig, 04109 (Germany); Stokes, R. [CSSM, Department of Physics, University of Adelaide, Adelaide, SA, 5005 (Australia); Stüben, H. [Regionales Rechenzentrum, Universität Hamburg, Hamburg, 20146 (Germany); Young, R.D.; Zanotti, J.M. [CSSM, Department of Physics, University of Adelaide, Adelaide, SA, 5005 (Australia); Collaboration: the QCDSF and UKQCD collaboration

    2016-04-15

    In this paper we present results on the pseudoscalar meson masses from a fully dynamical simulation of QCD+QED, concentrating particularly on violations of isospin symmetry. We calculate the π{sup +}–π{sup 0} splitting and also look at other isospin violating mass differences. We have presented results for these isospin splittings in http://arxiv.org/abs/1508.06401. In this paper we give more details of the techniques employed, discussing in particular the question of how much of the symmetry violation is due to QCD, arising from the different masses of the u and d quarks, and how much is due to QED, arising from the different charges of the quarks. This decomposition is not unique, it depends on the renormalisation scheme and scale. We suggest a renormalisation scheme in which Dashen’s theorem for neutral mesons holds, so that the electromagnetic self-energies of the neutral mesons are zero, and discuss how the self-energies change when we transform to a scheme such as (MS)-bar , in which Dashen’s theorem for neutral mesons is violated.

  20. Endemic infrared divergences in QED3 at finite temperature

    International Nuclear Information System (INIS)

    Lo, Pok Man; Swanson, Eric S.

    2011-01-01

    We demonstrate that massless QED in three dimensions contains endemic infrared divergences. It is argued that these divergences do not affect observables; furthermore, it is possible to choose a gauge that renders the theory finite.

  1. Loop expansion in massless three-dimensional QED

    International Nuclear Information System (INIS)

    Guendelman, E.I.; Radulovic, Z.M.

    1983-01-01

    It is shown how the loop expansion in massless three-dimensional QED can be made finite, up to three loops, by absorbing the infrared divergences in a gauge-fixing term. The same method removes leading and first subleading singularities to all orders of perturbation theory, and all singularities of the fermion self-energy to four loops

  2. Report of an INS two-day meeting on roles of Pauli principle in few-body problems

    International Nuclear Information System (INIS)

    Kamimura, M.

    1993-02-01

    This small INS meeting on 'Roles of Pauli Principle in Few-Body Systems' was held on Oct. 30-31, 1991. A lecture was given by Prof. V.I. Kukulin (Moscow State University) on new physics with the quark-based Moscow N-N potential for few-nucleon systems and on microscopic studies of multi-cluster systems. Seven other speakers gave talks on various roles of the Pauli principle in few-body systems, in multi-cluster systems and in heavy-ion reactions. (J.P.N.)

  3. Pion-nucleus scatter and the Pauli principle

    International Nuclear Information System (INIS)

    Dover, C.B.; Lemmer, R.H.

    1976-01-01

    A density expansion of the pion self-energy for pions in nuclear matter is reexamined. It is shown that a single hole-line expansion of the self-energy (i) is equivalent to using a strongly quenched πN scattering amplitude in the medium, and (ii) results in an inconsistent treatment of the virtual pions necessarily present in a field-theoretic description of the problem. Exchange of intermediate pions gives rise to nucleon-nucleon, as well as pion-nucleon scattering diagrams that both contribute to the pion self-energy in an essential way. The nucleon-nucleon scattering proceeds, for instance, via a one-pion-exchange potential that is, however, highly nonstatic for energy transfers between nucleons close to the incident energy. Such interactions are singled out automatically for special treatment in a field-theory approach to the problem, and should not be introduced in an ad hoc manner as part of an empirical NN interaction in nuclear matter. We evaluate the coherent and charge exchange contributions to the pion-nucleus optical potential, proportional to the total density and the neutron-proton density difference, respectively. The Pauli principle is found to provide a small correction to the coherent part, both in the hole-line and density expansion formalisms. However, the charge exchange part of the potential is almost completely damped at low energies in the hole-line expansion, while the inclusion of backward-going graphs (random-phase-approximation-type correlations) restores it to its value based on free space πN charge exchange amplitudes (i.e., no net Pauli effect)

  4. QED vacuum loops and inflation

    Energy Technology Data Exchange (ETDEWEB)

    Fried, H.M. [Brown University, Department of Physics, Providence, RI (United States); Gabellini, Y. [UMR 6618 CNRS, Institut Non Lineaire de Nice, Valbonne (France)

    2015-03-01

    A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)

  5. QED vacuum loops and inflation

    International Nuclear Information System (INIS)

    Fried, H.M.; Gabellini, Y.

    2015-01-01

    A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)

  6. Application of photon detectors in the VIP2 experiment to test the Pauli Exclusion Principle

    CERN Document Server

    Pichler, A; Bazzi, M.; Bertolucci, S.; Berucci, C.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; De Paolis, L.; Di Matteo, S.; D'Ufflzi, A.; Egger, J.P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Piscicchia, K.; Ponta, T.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.; Sirghi, F.; Sperandio, L.; Vazquez-Doce, O.; Widmann, E.; Zmeskal, J.

    2016-01-01

    The Pauli Exclusion Principle (PEP) was introduced by the austrian physicist Wolfgang Pauli in 1925. Since then, several experiments have checked its validity. From 2006 until 2010, the VIP (VIolation of the Pauli Principle) experiment took data at the LNGS underground laboratory to test the PEP. This experiment looked for electronic 2p to 1s transitions in copper, where 2 electrons are in the 1s state before the transition happens. These transitions violate the PEP. The lack of detection of X-ray photons coming from these transitions resulted in a preliminary upper limit for the violation of the PEP of $4.7 \\times 10^{-29}$. Currently, the successor experiment VIP2 is under preparation. The main improvements are, on one side, the use of Silicon Drift Detectors (SDDs) as X-ray photon detectors. On the other side an active shielding is implemented, which consists of plastic scintillator bars read by Silicon Photomultipliers (SiPMs). The employment of these detectors will improve the upper limit for the violati...

  7. Hamiltonian formulation of QED in the superaxial gauge

    International Nuclear Information System (INIS)

    Girotti, H.O.; Rothe, H.J.

    A Hamiltonian formulation of QED in a fully fixed axial gauge is presented. The equal-time commutators for all field variables are computed and are shown to lead to the correct equations of motion. The constraints and gauge conditions hold as strong operator relations. (Author) [pt

  8. APFEL : A PDF Evolution Library with QED corrections

    NARCIS (Netherlands)

    Bertone, Valerio; Carrazza, Stefano; Rojo, Juan

    Quantum electrodynamics and electroweak corrections are important ingredients for many theoretical predictions at the LHC. This paper documents APFEL, a new PDF evolution package that allows for the first time to perform DGLAP evolution up to NNLO in QCD and to LO in QED, in the

  9. Pauli principle in the soft-photon approach to proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Liou, MK; Timmermans, R; Gibson, BF

    1996-01-01

    A relativistic and manifestly gauge-invariant soft-photon amplitude, which is consistent with the soft-photon theorem and satisfies the Pauli principle, is derived for the proton-proton bremsstrahlung process. This soft-photon amplitude is the first two-u-two-t special amplitude to satisfy all

  10. Quantum Logic Network for Cloning a State Near a Given One Based on Cavity QED

    International Nuclear Information System (INIS)

    Da-Wei, Zhang; Xiao-Qiang, Shao; Ai-Dong, Zhu

    2008-01-01

    A quantum logic network is constructed to simulate a cloning machine which copies states near a given one. Meanwhile, a scheme for implementing this cloning network based on the technique of cavity quantum electrodynamics (QED) is presented. It is easy to implement this network of cloning machine in the framework of cavity QED and feasible in the experiment. (general)

  11. Large gauge symmetries and asymptotic states in QED

    Energy Technology Data Exchange (ETDEWEB)

    Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)

    2016-12-19

    Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.

  12. Measurements of the QED Structure of the Photon

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Blobel, V.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Doucet, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hoch, M.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1999-01-01

    The structure of both quasi-real and highly virtual photons is investigated using the reaction e+e- -> e+e-mu+mu-, proceeding via the exchange of two photons. The results are based on the complete OPAL dataset taken at e+e- centre-of-mass energies close to the mass of the Z boson. The QED structure function F_2^gamma and the differential cross-section dsigdx for quasi-real photons are obtained as functions of the fractional momentum x from the muon momentum which is carried by the struck muon in the quasi-real photon for values of Q**2 ranging from 1.5 to 400 GeV**2. The differential cross-section dsigdx for highly virtual photons is measured for 1.5 P**2. Based on azimuthal correlations the QED structure functions F_A^gamma and F_B^gamma for quasi-real photons are determined for an average Q**2 of 5.4 GeV**2.

  13. On C{sub J} and C{sub T} in conformal QED

    Energy Technology Data Exchange (ETDEWEB)

    Giombi, Simone; Tarnopolsky, Grigory [Princeton University, Department of Physics,Jadwin Hall, Washington Road, Princeton NJ 08544 (United States); Klebanov, Igor R. [Princeton University, Department of Physics,Jadwin Hall, Washington Road, Princeton NJ 08544 (United States); Princeton Center for Theoretical Science, Princeton University,Jadwin Hall, Washington Road, Princeton NJ 08544 (United States)

    2016-08-26

    QED with a large number N of massless fermionic degrees of freedom has a conformal phase in a range of space-time dimensions. We use a large N diagrammatic approach to calculate the leading corrections to C{sub T}, the coefficient of the two-point function of the stress-energy tensor, and C{sub J}, the coefficient of the two-point function of the global symmetry current. We present explicit formulae as a function of d and check them versus the expectations in 2 and 4−ϵ dimensions. Using our results in higher even dimensions we find a concise formula for C{sub T} of the conformal Maxwell theory with higher derivative action F{sub μν}(−∇{sup 2}){sup (d/2)−2}F{sup μν}. In d=3, QED has a topological symmetry current, and we calculate the correction to its two-point function coefficient, C{sub J}{sup top}. We also show that some RG flows involving QED in d=3 obey C{sub T}{sup UV}>C{sub T}{sup IR} and discuss possible implications of this inequality for the symmetry breaking at small values of N.

  14. Direct measurement of alpha_QED(mZ)at the FCC-ee

    CERN Document Server

    Janot, Patrick

    2016-02-08

    When the measurements from the FCC-ee become available, an improved determination of the standard-model "input" parameters will be needed to fully exploit the new precision data towards either constraining or fitting the parameters of beyond-the-standard-model theories. Among these input parameters is the electromagnetic coupling constant estimated at the Z mass scale, alpha_QED(mZ). The measurement of the muon forward- backward asymmetry at the FCC-ee, just below and just above the Z pole, can be used to make a direct determination of alpha_QED(mZ) with an accuracy deemed adequate for an optimal use of the FCC-ee precision data.

  15. Some heavy vector and tensor meson decay constants in light-front quark model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang [Chongqing Jiaotong University, College of Materials Science and Engineering, Chongqing (China); National Tsing Hua University, Department of Physics, Hsinchu (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); Lih, Chong-Chung [National Center for Theoretical Sciences, Physics Division, Hsinchu (China); Shu-Zen College of Medicine and Management, Department of Optometry, Kaohsiung Hsien (China); Xia, Chuanhui [Chongqing Jiaotong University, College of Materials Science and Engineering, Chongqing (China)

    2016-06-15

    We study the decay constants (f{sub M}) of the heavy vector (D{sup *}, D{sub s}{sup *}, B{sup *}, B{sub s}{sup *}, B{sub c}{sup *}) and tensor (D{sub 2}{sup *}, D{sub s2}{sup *}, B{sub 2}{sup *}, B{sub s2}{sup *}) mesons in the light-front quarkmodel.With the known pseudoscalar meson decay constants of f{sub D}, f{sub Ds}, f{sub B}, f{sub Bs}, and f{sub Bc} as the input parameters to determine the light-front meson wave functions, we obtain f{sub D{sup *},D{sub s{sup *}B{sup *}B{sub s{sup *},B{sub c{sup *}}}}} = (252.0{sub -11.6}{sup +13.8}, 318.3{sub -12.6}{sup +15.3}, 201.9{sub -41.4}{sup +43.2}, 244.2 ± 7.0, 473.4 ± 18.2) and (264.9{sub -9.5}{sup +10.2}, 330.9{sub -9.0}{sup +9.9}, 220.2{sub -46.2}{sup +49.1}, 265.7 ± 8.0, 487.6 ± 19.2) MeV with Gaussian and power-law wave functions, respectively, while we have f{sub D{sub 2{sup *},D{sub s{sub 2{sup *}B{sub 2{sup *}B{sub s{sub 2{sup *}}}}}}}} = (143.6{sub -21.8}{sup +24.9}, 209.5{sub -24.2}{sup +29.1}, 80.9{sub -27.7}{sup +33.8}, 109.7{sub -15.0}{sup +15.7}) MeV with only Gaussian wave functions. (orig.)

  16. Perspectives of Light-Front Quantized Field Theory: Some New Results

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Prem P.

    1999-08-13

    A review of some basic topics in the light-front (LF) quantization of relativistic field theory is made. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the microcausality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in covariant gauges among others. The discussion on the LF is more economical and more transparent than that found in the conventional equal-time quantized theory. The removal of the constraints on the LF phase space by following the Dirac method, in fact, results in a substantially reduced number of independent dynamical variables. Consequently, the descriptions of the physical Hilbert space and the vacuum structure, for example, become more tractable. In the context of the Dyson-Wick perturbation theory the relevant propagators in the front form theory are causal. The Wick rotation can then be performed to employ the Euclidean space integrals in momentum space. The lack of manifest covariance becomes tractable, and still more so if we employ, as discussed in the text, the Fourier transform of the fermionic field based on a special construction of the LF spinor. The fact that the hyperplanes x{sup {+-}} = 0 constitute characteristic surfaces of the hyperbolic partial differential equation is found irrelevant in the quantized theory; it seems sufficient to quantize the theory on one of the characteristic hyperplanes.

  17. Noncommutative QED and anomalous dipole moments

    International Nuclear Information System (INIS)

    Riad, I.F.; Sheikh-Jabbari, M.M.

    2000-09-01

    We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)

  18. Gauge covariance of the fermion Schwinger–Dyson equation in QED

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shaoyang, E-mail: sjia@email.wm.edu [Physics Department, College of William & Mary, Williamsburg, VA 23187 (United States); Pennington, M.R., E-mail: michaelp@jlab.org [Physics Department, College of William & Mary, Williamsburg, VA 23187 (United States); Theory Center, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2017-06-10

    Any practical application of the Schwinger–Dyson equations to the study of n-point Green's functions in a strong coupling field theory requires truncations. In the case of QED, the gauge covariance, governed by the Landau–Khalatnikov–Fradkin transformations (LKFT), provides a unique constraint on such truncation. By using a spectral representation for the massive fermion propagator in QED, we are able to show that the constraints imposed by the LKFT are linear operations on the spectral densities. We formally define these group operations and show with a couple of examples how in practice they provide a straightforward way to test the gauge covariance of any viable truncation of the Schwinger–Dyson equation for the fermion 2-point function.

  19. Quantum Bayesian rule for weak measurements of qubits in superconducting circuit QED

    International Nuclear Information System (INIS)

    Wang, Peiyue; Qin, Lupei; Li, Xin-Qi

    2014-01-01

    Compared with the quantum trajectory equation (QTE), the quantum Bayesian approach has the advantage of being more efficient to infer a quantum state under monitoring, based on the integrated output of measurements. For weak measurement of qubits in circuit quantum electrodynamics (cQED), properly accounting for the measurement backaction effects within the Bayesian framework is an important problem of current interest. Elegant work towards this task was carried out by Korotkov in ‘bad-cavity’ and weak-response limits (Korotkov 2011 Quantum Bayesian approach to circuit QED measurement (arXiv:1111.4016)). In the present work, based on insights from the cavity-field states (dynamics) and the help of an effective QTE, we generalize the results of Korotkov to more general system parameters. The obtained Bayesian rule is in full agreement with Korotkov's result in limiting cases and as well holds satisfactory accuracy in non-limiting cases in comparison with the QTE simulations. We expect the proposed Bayesian rule to be useful for future cQED measurement and control experiments. (paper)

  20. Nonperturbative infrared dynamics in three dimensional QED

    International Nuclear Information System (INIS)

    Gusynin, V.P.

    2000-01-01

    A non-linear Schwinger-Dyson (SD) equation for the gauge boson propagator of massless QED in 2 + 1 dimensions is studied. It is shown that the nonperturbative solution leads to a non-trivial renormalization-group infrared fixed point quantitatively close to the one found in the leading order of the 1/N expansion, with N the number of fermion flavors

  1. Gauge fixing problem in the conformal QED

    International Nuclear Information System (INIS)

    Ichinose, Shoichi

    1986-01-01

    The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)

  2. The Pauli equation with differential operators for the spin

    International Nuclear Information System (INIS)

    Kern, E.

    1978-01-01

    The spin operator s = (h/2) sigma in the Pauli equation fulfills the commutation relation of the angular momentum and leads to half-integer eigenvalues of the eigenfunctions for s. If one tries to express s by canonically conjugated operators PHI and π = ( /i)delta/deltaPHI the formal angular momentum term s = PHIxπ fails because it leads only to whole-integer eigenvalues. However, the modification of this term in the form s = 1/2(π+PHI(PHI π)+PHIxπ) leads to the required result. The eigenfunction system belonging to this differential operator s(PHI, π) consists of (2s + 1) spin eigenfunctions xim(PHI) which are given explicitly. They form a basis for the wave functions of a particle of spin s. Applying this formalism to particles with s = 1/2, agreement is reached with Pauli's spin theory. The function s(PHI, π) follows from the theory of rotating rigid bodies. The continuous spin-variable PHI = ( x, y, z) can be interpreted classically as a 'turning vector' which defines the orientation in space of a rigid body. PHI is the positioning coordinate of the rigid body or the spin coordinate of the particle in analogy to the cartesian coordinate x. The spin s is a vector fixed to the body. (orig.) [de

  3. QED contribution to the color-singlet J/ψ production in Υ decay near the endpoint

    International Nuclear Information System (INIS)

    Liu Xiaohui

    2010-01-01

    A recent study indicates that the α 2 α s 2 order QED processes of Υ→J/ψ+X decay are compatible with those of QCD processes. However, in the endpoint region, the nonrelativistic QED calculation breaks down since the collinear degrees of freedom are missing under the framework of this effective theory. In this paper we apply the soft-collinear effective theory (SCET) to study the color-singlet QED process at the kinematic limit. Within this approach we are able to sum the kinematic logarithms by running operators using the renormalization group equations of soft-collinear effective theory, which will lead to a dramatic change in the momentum distribution near the endpoint and the spectrum shape consistent with the experimental results.

  4. Searches for the Violation of Pauli Exclusion Principle at LNGS in VIP(-2) experiment

    CERN Document Server

    Shi, H; Bertolucci, S; Berucci, C; Bragadireanu, A M; Cargnelli, M; Clozza, A; Curceanu, C; De Paolis, L; Di Matteo, S; d'Uffizi, A; Egger, J P; Guaraldo, C; Iliescu, M; Ishiwatari, T; Marton, J; Laubenstein, M; Milotti, E; Pietreanu, D; Piscicchia, K; Ponta, T; Vidal, A.Romero; Sbardella, E; Scordo, A; Sirghi, D L; Sirghi, F; Sperandio, L; Vazquez Doce, O; Widmann, E; Zmeskal, J

    2016-01-01

    The VIP (Violation of Pauli exclusion principle) experiment and its follow-up experiment VIP-2 at the Laboratori Nazionali del Gran Sasso (LNGS) search for X-rays from Cu atomic states that are prohibited by the Pauli Exclusion Principle (PEP). The candidate events, if they exist, will originate from the transition of a $2p$ orbit electron to the ground state which is already occupied by two electrons. The present limit on the probability for PEP violation for electron is 4.7 $\\times10^{-29}$ set by the VIP experiment. With upgraded detectors for high precision X-ray spectroscopy, the VIP-2 experiment will improve the sensitivity by two orders of magnitude.

  5. Pauli-spin blockade in a vertical double quantum dot holding two to five electrons

    International Nuclear Information System (INIS)

    Kodera, T; Arakawa, Y; Tarucha, S; Ono, K; Amaha, S

    2009-01-01

    We use a vertical double quantum dot (QD) to study spin blockade (SB) for the two-to five-electron states. SB observed for the two- and four-electron states is both assigned to Pauli exclusion with formation of a spin triplet state, and lifted by singlet-triplet admixing due to fluctuating nuclear field. SB observed for the five-electron state is caused by combined Pauli effect and Hund's rule. We observe a hysteretic behavior of the SB leakage current for up and down sweep of magnetic field, and argue that SB and its lifting by hyperfine interaction are subtle with the spin configuration and modified depending on the inter-dot detuning and number of electrons.

  6. Form factors of {eta}{sub c} in light-front quark model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang [Chongqing University of Posts and Telecommunications, College of Mathematics and Physics, Chongqing (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Lih, Chong-Chung [Shu-Zen College of Medicine and Management, Department of Optometry, Kaohsiung Hsien (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); National Tsing Hua University, Department of Physics, Hsinchu (China)

    2013-08-15

    We study the form factors of the {eta}{sub c} meson in the light-front quark model. We explicitly show that the transition form factor of {eta}{sub c} {yields} {gamma}{sup *}{gamma} as a function of the momentum transfer is consistent with the experimental data by the BaBar collaboration, while the decay constant of {eta}{sub c} is found to be f{sub {eta}{sub c}} = 230.5{sup +52.2}{sub -61.0} and 303.6{sup +115.2}{sub -116.4} MeV for {eta}{sub c} {proportional_to} c anti c by using two {eta}{sub c} {yields} {gamma}{gamma} decay widths of 5.3 {+-} 0.5 and 7.2 {+-} 2.1 keV, given by Particle Data Group and Lattice QCD calculation, respectively. (orig.)

  7. Semileptonic decays of B and D mesons in the light-front formalism

    International Nuclear Information System (INIS)

    Jaus, W.

    1990-01-01

    The light-front formalism is used to present a relativistic calculation of form factors for semileptonic D and B decays in the constituent quark model. The quark-antiquark wave functions of the mesons can be obtained, in principle, from an analysis of the meson spectrum, but are approximated in this work by harmonic-oscillator wave functions. The predictions of the model are consistent with the experimental data for B decays. The Kobayashi-Maskawa (KM) matrix element |V cs | is determined by a comparison of the experimental and theoretical rates for D 0 →K - e + ν, and is consistent with a unitary KM matrix for three families. The predictions for D→K * transitions are in conflict with the data

  8. Non-markovian effects in semiconductor cavity QED: Role of phonon-mediated processes

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter

    We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from the pola......We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from...... the polaritonic quasi-particle nature of the carrier-photon system interacting with the phonon reservoir....

  9. QED Effects in Molecules: Test on Rotational Quantum States of H2

    Science.gov (United States)

    Salumbides, E. J.; Dickenson, G. D.; Ivanov, T. I.; Ubachs, W.

    2011-07-01

    Quantum electrodynamic effects have been systematically tested in the progression of rotational quantum states in the XΣg+1, v=0 vibronic ground state of molecular hydrogen. High-precision Doppler-free spectroscopy of the EFΣg+1-XΣg+1 (0,0) band was performed with 0.005cm-1 accuracy on rotationally hot H2 (with rotational quantum states J up to 16). QED and relativistic contributions to rotational level energies as high as 0.13cm-1 are extracted, and are in perfect agreement with recent calculations of QED and high-order relativistic effects for the H2 ground state.

  10. The parity-preserving massive QED3: Vanishing β-function and no parity anomaly

    Directory of Open Access Journals (Sweden)

    O.M. Del Cima

    2015-11-01

    Full Text Available The parity-preserving massive QED3 exhibits vanishing gauge coupling β-function and is parity and infrared anomaly free at all orders in perturbation theory. Parity is not an anomalous symmetry, even for the parity-preserving massive QED3, in spite of some claims about the possibility of a perturbative parity breakdown, called parity anomaly. The proof is done by using the algebraic renormalization method, which is independent of any regularization scheme, based on general theorems of perturbative quantum field theory.

  11. Effect of the Pauli principle and channel coupling on the nuclear reactions, 2

    International Nuclear Information System (INIS)

    Kanada, Hiroyuki; Kaneko, Tsuneo; Nomoto, Morikazu

    1976-01-01

    The effect of the Pauli principle on nuclear reactions of a six-nucleon system is investigated in the presence of a breakup channel, by using the resonating group method (RGM). The microscopic treatment with full exchange effects for the t( 3 He, d) 4 He reaction is examined together with the 3 He-t and d- 4 He elastic scattering. It is shown that the exchange effects (especially owing to the Pauli principle) play an important role in the differential cross section in the backward region. The t( 3 He, d) 4 He reaction is examined by decomposing the reaction processes into three terms, that is, proton stripping, neutron pick-up and residual processes. The asymmetry of the angular distribution for the t( 3 He, d) 4 He reaction is also discussed. (auth.)

  12. Leading quantum gravitational corrections to QED

    OpenAIRE

    Butt, M. S.

    2006-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged spin-1/2 fermions in the combined theory of general relativity and QED. The coupled Dirac-Einstein system is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativi...

  13. Classical Electron Model with QED Corrections

    OpenAIRE

    Lenk, Ron

    2010-01-01

    In this article we build a metric for a classical general relativistic electron model with QED corrections. We calculate the stress-energy tensor for the radiative corrections to the Coulomb potential in both the near-field and far-field approximations. We solve the three field equations in both cases by using a perturbative expansion to first order in alpha (the fine-structure constant) while insisting that the usual (+, +, -, -) structure of the stress-energy tensor is maintained. The resul...

  14. Spectral properties of Pauli operators on the Poincare upper-half plane

    International Nuclear Information System (INIS)

    Inahama, Yuzuru; Shirai, Shin-ichi

    2003-01-01

    We investigate the essential spectrum of the Pauli operators (and the Dirac and the Schroedinger operators) with magnetic fields on the Poincare upper-half plane. The magnetic fields under consideration are asymptotically constant (which may be equal to zero), or diverge at infinity. Moreover, the Aharonov-Casher type result is also considered

  15. Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect

    Science.gov (United States)

    Wu, Yan; Hou, De-fu; Ren, Hai-cang

    2017-11-01

    We assess the applicability of the Wigner function formulation in its present form to the chiral magnetic effect and note some issues regarding the conservation and the consistency of the electric current in the presence of an inhomogeneous and time-dependent axial chemical potential. The problems are rooted in the ultraviolet divergence of the underlying field theory associated with the axial anomaly and can be fixed with the Pauli-Villars regularization of the Wigner function. The chiral magnetic current with a nonconstant axial chemical potential is calculated with the regularized Wigner function and the phenomenological implications are discussed.

  16. Pion transverse momentum dependent parton distributions in the Nambu and Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Noguera, Santiago [Departament de Fisica Teòrica and IFIC, Universitat de València - CSIC,E-46100 Burjassot (Spain); Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia,via A. Pascoli, I - 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I - 06123 Perugia (Italy)

    2015-11-16

    An explicit evaluation of the two pion transverse momentum dependent parton distributions at leading twist is presented, in the framework of the Nambu-Jona Lasinio model with Pauli-Villars regularization. The transverse momentum dependence of the obtained distributions is generated solely by the dynamics of the model. Using these results, the so called generalized Boer-Mulders shift is studied and compared with recent lattice data. The obtained agreement is very encouraging, in particular because no additional parameter has been introduced. A more conclusive comparison would require a precise knowledge of the QCD evolution of the transverse momentum dependent parton distributions under scrutiny.

  17. Renormalized thermodynamic entropy of black holes in higher dimensions

    International Nuclear Information System (INIS)

    Kim, S.P.; Kim, S.K.; Soh, K.; Yee, J.H.

    1997-01-01

    We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstroem black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular, we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon. copyright 1997 The American Physical Society

  18. Vector anomaly and practicality of light-front dynamics

    International Nuclear Information System (INIS)

    Chueng-Ryong Ji; Bakker, B.L.G.

    2005-01-01

    Light-front dynamics (LFD) is like sweeping dirt to a corner to make the rest of the space clean. This feature allows many practical applications of LFD to the phenomenology of particle physics. To strengthen the practicality of LFD, however, it is necessary to check where the dirt is piled and to find ways to handle the associate complications. In this presentation, we discuss an explicit example of a non-vanishing zero-mode contribution to physical amplitudes which has been regarded as one of the typical complications in LFD. In particular, we analyze the vector anomaly occurring in the calculation of the CP-even form factors of the elementary W ± gauge bosons and find that the zero-mode contribution to the helicity zero-to-zero amplitude for the W ± gauge bosons is crucial for the correct LFD calculations. Further, we confirm that the anomaly-free condition found in the analysis of the axial anomaly can also get rid of the vector anomaly in LFD as well as in the manifestly covariant calculations. Our findings in this work may provide a bottom-up fitness test not only to the LFD calculations but also to the theory itself, whether it is the standard model or any extension of the standard model. (author)

  19. Test of QED in e+e- → γγ at LEP

    International Nuclear Information System (INIS)

    Adeva, B.; Adriani, O.; Aguilar-Benitez, M.; Akbari, H.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Alviggi, M.G.; An, Q.; Anderhub, H.; Anderson, A.L.; Andreev, V.P.; Angelov, T.; Antonov, L.; Antreasyan, D.; Arce, P.; Arefiev, A.; Azemoon, T.; Aziz, T.; Baba, P.V.K.S.; Bagnaia, P.; Bakken, J.A.; Baksay, L.; Ball, R.C.; Banerjee, S.; Bao, J.; Barone, L.; Bay, A.; Becker, U.; Behrens, J.; Beingessner, S.; Bencze, G.L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biland, A.; Bizzarri, R.; Blaising, J.J.; Bloemeke, P.; Blumenfeld, B.; Bobbink, G.J.; Bocciolini, M.; Boehlen, W.; Boehm, A.; Boehringer, T.; Borgia, B.; Borilkov, D.; Bourquin, M.; Boutigny, D.; Branson, J.G.; Brock, I.C.; Bryant, F.; Buisson, C.; Bujak, A.; Burger, J.D.; Burq, J.P.; Busenitz, J.; Cai, X.D.; Camps, C.; Capell, M.; Carbonara, F.; Carmianti, F.; Cartacci, A.M.; Cerrada, M.; Cesaroni, F.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chen, M.; Chen, M.L.; Chiefari, G.; Chien, C.Y.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Commichau, V.; Conforto, G.; Contin, A.; Crijns, F.; Cui, X.Y.; Dai, T.S.; D'Alessandro, R.; De Asmudis, R.; Degre, A.; Deiters, K.; Denes, E.; Denes, P.; De Notaristefani, F.; Dhina, M.; DiBitonto, D.; Diemoz, M.; Diez-Hedo, F.; Dimitrov, H.R.; Dionisi, C.; Dittus, F.; Dolin, R.; Drago, E.; Driever, T.; Duchesneau, D.; Duinker, P.; Duran, I.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Extermann, P.; Fabretti, R.; Faber, G.; Falciano, S.; Fan, Q.; Fan, S.J.; Fabre, M.; Fay, J.; Fehlmann, J.; Fenker, H.; Ferguson, T.; Fernandez, G.; Ferroni, F.; Fesefeldt, H.; Field, J.; Finocchiaro, G.; Fisher, P.H.; Forconi, G.; Foreman, T.; Freudenreich, K.; Friebel, W.; Fukushima, M.; Gailloud, M.; Galaktionov, Yu.; Gallo, E.; Ganguli, S.N.; Garcia-Abia, P.; Gau, S.S.; Gentile, S.; Glaubman, M.; Goldfarb, S.; Gong, Z.F.; Gonzalez, E.; Gordeev, A.; Goettlicher, P.; Goujon, D.; Gratta, G.; Grinnell, C.; Gruenewald, M.; Guanziroli, M.; Gurtu, A.; Gustafson, H.R.; Gutay, L.J.; Haan, H.; Hancke, S.; Hangarter, K.; Harris, M.; Hasan, A.; He, C.F.; Hebbeker, T.; Herbert, M.; Herten, G.; Herten, U.; Herve, A.; Hilgers, K.; Hofer, H.; Hoorani, H.; Hsu, L.S.; Hu, G.; Hu, G.Q.; Ille, B.; Ilyas, M.M.; Innocente, V.; Isiksal, E.; Jagel, E.; Jin, B.N.; Jones, L.W.; Khan, R.A.; Kamyshkov, Yu.; Karyotakis, Y.; Kaur, M.; Khokhar, S.; Khoze, V.; Kirkby, D.; Kittel, W.; Klimentov, A.; Koenig, A.C.; Kornadt, O.; Koutsenko, V.; Kraemer, R.W.; Kramer, T.; Kratsev, V.R.; Krenz, W.; Krizmanic, J.; Kuhn, A.; Kumar, K.S.; Kumar, V.; Kunin, A.; Laak, A. van; Lalieu, V.; Landi, G.; Lanius, K.; Lange, W.; Lanske, D.; Lanzano, S.; Lebrun, P.

    1990-01-01

    We have measured the cross-section of the reaction e + e - →γγ at center of mass energies around the Z 0 mass. The results are in good agreement with QED predictions. For the QED cutoff parameters the limit of Λ + >103 GeV and Λ - >118 GeV are found. For the decays Z 0 →γγ, Z 0 →π 0 γ, Z 0 →ηγ and Z 0 →γγγ we find upper limits of 2.9x10 -4 , 2.9x10 -4 , 4.1x10 -4 and 1.2x10 -4 , respectively. All limits are at 95% CL. (orig.)

  20. Diente de un gran dinosaurio terópodo (Allosauroidea de la Formación Villar del Arzobispo (Titónico-Berriasiense de Riodeva (España

    Directory of Open Access Journals (Sweden)

    Alcalá, L.

    2009-06-01

    Full Text Available An isolated theropod tooth from a microconglomerate of the Tithonian-Berriasian Villar del Arzobispo Formation at Riodeva (Aragón, Spain is described. The specimen is remarkably large (apical length: 98.3 mm. The morphology of the tooth is compressed labiolingually, with denticules on the carinae reaching the base in the carina distal but not in the mesial one. These features and their large size allow us to include it in the clade Allosauroidea. Having in mind the dental variability existing among the tooth of the different genera of Allosauroidea we can not assign it to any definite group within this clade.Se describe un diente de dinosaurio terópodo de 98,3 mm de longitud apical hallado en el término municipal de Riodeva (Teruel. El diente ha sido localizado de forma aislada en un nivel de microconglomerados perteneciente a la Formación Villar del Arzobispo de edad Titónico-Berriasiense. La morfología del diente, comprimido labiolingualmente, con las carenas denticuladas que alcanzan la base de la corona distal pero no la mesial, y el tamaño del ejemplar permiten incluirlo dentro del clado Allosauroidea. La variabilidad existente entre los dientes de diferentes géneros de alosauroideos determina que sea prudente no asignarlo a un grupo concreto dentro de este clado.

  1. Symmetries for Light-Front Quantization of Yukawa Model with Renormalization

    Science.gov (United States)

    Żochowski, Jan; Przeszowski, Jerzy A.

    2017-12-01

    In this work we discuss the Yukawa model with the extra term of self-interacting scalar field in D=1+3 dimensions. We present the method of derivation the light-front commutators and anti-commutators from the Heisenberg equations induced by the kinematical generating operator of the translation P+. Mentioned Heisenberg equations are the starting point for obtaining this algebra of the (anti-) commutators. Some discrepancies between existing and proposed method of quantization are revealed. The Lorentz and the CPT symmetry, together with some features of the quantum theory were applied to obtain the two-point Wightman function for the free fermions. Moreover, these Wightman functions were computed especially without referring to the Fock expansion. The Gaussian effective potential for the Yukawa model was found in the terms of the Wightman functions. It was regularized by the space-like point-splitting method. The coupling constants within the model were redefined. The optimum mass parameters remained regularization independent. Finally, the Gaussian effective potential was renormalized.

  2. Implementing quantum information splitting using a five-partite cluster state in cavity QED

    International Nuclear Information System (INIS)

    Ye Liu; Song Qingmin; Li Aixia

    2010-01-01

    We propose an explicit scheme for splitting up quantum information into parts using five-atom cluster states in cavity quantum electrodynamics (QED). It is found that the quantum information splitting of an arbitrary two-atomic state can be realized by using the five-atom cluster state. During the process, the cavity fields are excited only virtually. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized using a range of current cavity QED techniques. The schemes considered here are also secure against certain eavesdropping attacks.

  3. New uncertainties in QCD–QED rescaling factors using quadrature ...

    Indian Academy of Sciences (India)

    mf ). This is true for heavier quarks ... mass scale down to the physical quark mass scale is parametrised by the QCD–. QED rescaling factors ηf ... It will be an important numerical exercise to estimate the uncertainties in ηf using the quadrature ...

  4. (g-2){sub μ} at four loops in QED

    Energy Technology Data Exchange (ETDEWEB)

    Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Smirnov, Alexander V. [Moscow State Univ. (Russian Federation). Research Computing Center; Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Steinhauser, Matthias; Wellmann, David [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik

    2017-08-15

    We review the four-loop QED corrections to the anomalous magnetic moment of the muon. The fermionic contributions with closed electron and tau contributions are discussed. Furthermore, we report on a new independent calculation of the universal four-loop contribution and compare with existing results.

  5. Multipartite quantum correlations among atoms in QED cavities

    Science.gov (United States)

    Batle, J.; Farouk, A.; Tarawneh, O.; Abdalla, S.

    2018-02-01

    We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in n different and noninteracting cavities, all of which were initially prepared in a maximally correlated state of n qubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deaths and nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.

  6. Estimación del valor económico que generan los parques periurbanos de La Sierrezuela y Los Villares en la ciudad de Córdoba, España

    Directory of Open Access Journals (Sweden)

    Amalia Hidalgo-Fernández

    2013-01-01

    Full Text Available El objetivo del estudio es valorar económicamente intangibles en dos Parques Periurbanos La Sie- rrezuela y los Villares en la ciudad de Córdoba (España. La valoración económica de bienes que carecen de mercado como son los usos recreativos de libre acceso aporta una valiosa información de gestión. Se realizaron 305 entrevistas en puntos estratégicos de dichos Parques, utilizando el método de valoración contingente y considerando como vehículo de pago la entrada al mismo y la máxima disposición a donar para conservación del mismo. Se utilizó un SIG para determinar la población potencial de visitantes. El análisis de los resultados a los Parques de La Sierrezuela y Los Villares muestra que la máxima disposición al pago de los visitantes es de 3,5 €, y de 3,6 €, y que la disposición a donar para su conservación es de 25,6 € y de 53,3 € respectivamente. Estos valores justifican la existencia y conservación de estos espacios naturales.

  7. Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, Kati, E-mail: kati.finzel@liu.se [Linköpings University, IFM Department of Physics, 58183 Linköping (Sweden)

    2016-01-21

    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.

  8. Spontaneous symmetry breaking of (1+1)-dimensional φ4 theory in light-front field theory. II

    International Nuclear Information System (INIS)

    Pinsky, S.S.; van de Sande, B.

    1994-01-01

    We discuss spontaneous symmetry breaking of (1+1)-dimensional φ 4 theory in light-front field theory using a Tamm-Dancoff truncation. We show that, even though light-front field theory has a simple vacuum state which is an eigenstate of the full Hamiltonian, the field can develop a nonzero vacuum expectation value. This occurs because the zero mode of the field must satisfy an operator-valued constraint equation. In the context of (1+1)-dimensional φ 4 theory we present solutions to the constraint equation using a Tamm-Dancoff truncation to a finite number of particles and modes. We study the behavior of the zero mode as a function of coupling and Fock space truncation. The zero mode introduces new interactions into the Hamiltonian which breaks the Z 2 symmetry of the theory when the coupling is stronger than the critical coupling. We investigate the energy spectrum in the symmetric and broken phases, show that the theory does not break down in the vicinity of the critical coupling, and discuss the connection to perturbation theory. Finally, we study the spectrum of the field φ and show that, in the broken phase, the field is localized away from φ=0 as one would expect from equal-time calculations. We explicitly show that tunneling occurs

  9. Chiral symmetry breaking in QED for weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.C. (Missouri Univ., Columbia, MO (USA). Dept. of Physics and Astronomy); Shen, T.C. (Illinois Univ., Urbana, IL (USA). Beckman Inst.)

    1991-05-01

    We examine the procedure for studying chiral symmetry breaking for weak coupling in QED. We note that while the lowest non-trivial order calculations using numerical solutions to the Schwinger-Dyson equation indicate a breaking of chiral symmetry, the neglected higher-order contributions to the effective potential have imaginary values which can indicate possible instabilities in the theory. (author).

  10. Chiral symmetry breaking in QED for weak coupling

    International Nuclear Information System (INIS)

    Huang, J.C.; Shen, T.C.

    1991-01-01

    We examine the procedure for studying chiral symmetry breaking for weak coupling in QED. We note that while the lowest non-trivial order calculations using numerical solutions to the Schwinger-Dyson equation indicate a breaking of chiral symmetry, the neglected higher-order contributions to the effective potential have imaginary values which can indicate possible instabilities in the theory. (author)

  11. Causal theory in (2+1)-dimensional Qed

    International Nuclear Information System (INIS)

    Scharf, G.; Wreszinski, W.F.

    1994-01-01

    The program of constructing the S-matrix by means of causality in quantum field theory goes back to Stueckelberg and Bogoliubov. Epstein and Glaser proposed an axiomatic construct where ultraviolet divergences do not appear, leading directly to the renormalized perturbation series. They have shown that in the causal theory the UV problem is a consequence of incorrect distribution splitting. This paper studies the causal theory in (2+1)D Qed

  12. The scalar-photon 3-point vertex in massless quenched scalar QED

    International Nuclear Information System (INIS)

    Concha-Sánchez, Y; Gutiérrez-Guerrero, L X; Fernández-Rangel, L A

    2016-01-01

    Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex. (paper)

  13. Elaboration of the recently proposed test of Pauli's principle under strong interactions

    International Nuclear Information System (INIS)

    Ktorides, C.N.; Myung, H.C.; Santilli, R.M.

    1980-01-01

    The primary objective of this paper is to stimulate the experimental verification of the validity or invalidity of Pauli's principle under strong interactions. We first outline the most relevant steps in the evolution of the notion of particle. The spin as well as other intrinsic characteristics of extended, massive, particles under electromagnetic interactions at large distances might be subjected to a mutation under additional strong interactions at distances smaller than their charge radius. These dynamical effects can apparently be conjectured to account for the nonpointlike nature of the particles, their necessary state of penetration to activate the strong interactions, and the consequential emergence of broader forces which imply the breaking of the SU(2)-spin symmetry. We study a characterization of the mutated value of the spin via the transition from the associative enveloping algebra of SU(2) to a nonassociative Lie-admissible form. The departure from the original associative product then becomes directly representative of the breaking of the SU(2)-spin symmetry, the presence of forces more general than those derivable from a potential, and the mutated value of the spin. In turn, such a departure of the spin from conventional quantum-mechanical values implies the inapplicability of Pauli's exclusion principle under strong interactions, because, according to this hypothesis, particles that are fermions under long-range electromagnetic interactions are no longer fermions under these broader, short-range, forces. In nuclear physics possible deviations from Pauli's exclusion principle can at most be very small. These experimental data establish that, for the nuclei considered, nucleons are in a partial state of penetration of their charge volumes although of small statistical character

  14. Double parton correlations in Light-Front constituent quark models

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2015-01-01

    Full Text Available Double parton distribution functions (dPDF represent a tool to explore the 3D proton structure. They can be measured in high energy proton-proton and proton nucleus collisions and encode information on how partons inside a proton are correlated among each other. dPFDs are studied here in the valence quark region, by means of a constituent quark model, where two particle correlations are present without any additional prescription. This framework allows to understand the dynamical origin of the correlations and to clarify which, among the features of the results, are model independent. Use will be made of a relativistic light-front scheme, able to overcome some drawbacks of the previous calculation. Transverse momentum correlations, due to the exact treatment of the boosts, are predicted and analyzed. The role of spin correlations is also shown. Due to the covariance of the approach, some symmetries of the dPDFs are seen unambigously. For the valence sector, also the study of the QCD evolution of the model results, which can be performed safely thanks to the property of good support, has been also completed.

  15. Resonator QED experiments with single {sup 40}Ca{sup +} ions; Resonator-QED-Experimente mit einzelnen {sup 40}Ca{sup +}-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B.

    2006-12-20

    Combining an optical resonator with an ion trap provides the possibility for QED experiments with single or few particles interacting with a single mode of the electro-magnetic field (Cavity-QED). In the present setup, fluctuations in the count rate on a time scale below 30 seconds were purely determined by the photon statistics due to finite emission and detection efficiency, whereas a marginal drift of the system was noticeable above 200 seconds. To find methods to increase the efficiency of the photon source, investigations were conducted and experimental improvements of the setup implemented in the frame of this thesis. Damping of the resonator field and coupling of ion and field were considered as the most important factors. To reduce the damping of the resonator field, a resonator with a smaller transmissivity of the output mirror was set up. The linear trap used in the experiment allows for the interaction of multiple ions with the resonator field, so that more than one photon may be emitted per pump pulse. This was investigated in this thesis with two ions coupled to the resonator. The cross correlation of the emitted photons was measured with the Hanbury Brown-Twiss method. (orig.)

  16. Effects of the Pauli suppression of the Born amplitude in a nuclear medium

    International Nuclear Information System (INIS)

    Nutt, W.T.

    1976-01-01

    It is noted that the suppression of the Born term in the pion-nucleon interaction which is expected due to the action of the Pauli Exclusion Principle in a nuclear medium gives rise to a downward shift to the (3,3) resonance

  17. Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order

    International Nuclear Information System (INIS)

    Kurz, Alexander; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2015-08-01

    The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.

  18. Dynamics of symmetry breaking in strongly coupled QED

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1988-10-01

    I review the dynamical structure of strong coupled QED in the quenched planar limit. The symmetry structure of this theory is examined with reference to the nature of both chiral and scale symmetry breaking. The renormalization structure of the strong coupled phase is analysed. The compatibility of spontaneous scale and chiral symmetry breaking is studied using effective lagrangian methods. 14 refs., 3 figs

  19. Up and Down Quark Masses and Corrections to Dashen's Theorem from Lattice QCD and Quenched QED.

    Science.gov (United States)

    Fodor, Z; Hoelbling, C; Krieg, S; Lellouch, L; Lippert, Th; Portelli, A; Sastre, A; Szabo, K K; Varnhorst, L

    2016-08-19

    In a previous Letter [Borsanyi et al., Phys. Rev. Lett. 111, 252001 (2013)] we determined the isospin mass splittings of the baryon octet from a lattice calculation based on N_{f}=2+1 QCD simulations to which QED effects have been added in a partially quenched setup. Using the same data we determine here the corrections to Dashen's theorem and the individual up and down quark masses. Our ensembles include 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashen's theorem, we obtain ϵ=0.73(2)(5)(17), where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, m_{u}=2.27(6)(5)(4) and m_{d}=4.67(6)(5)(4)  MeV in the modified minimal subtraction scheme at 2  GeV and the isospin breaking ratios m_{u}/m_{d}=0.485(11)(8)(14), R=38.2(1.1)(0.8)(1.4), and Q=23.4(0.4)(0.3)(0.4). Our results exclude the m_{u}=0 solution to the strong CP problem by more than 24 standard deviations.

  20. Pioneros de la fotografía turística en Navarra: Santa María del Villar y el conde de la Ventosa

    OpenAIRE

    Latorre-Izquierdo, J. (Jorge)

    2012-01-01

    Diego Quiroga Losada, marqués de Santa María del Villar y José María Álvarez de Toledo son dos fotógrafos vinculados a Navarra a los que une una común afición por un género de fotografía turística, que se encuentra a medio camino entre lo artístico (en el contexto del Pictorialismo)y lo puramente documental, según la tradición de fotografía de viajes decimonónica. Son fotógrafos de tradición regeneracionista, noventayochista, que rompieron tanto con el academicismo fotográfico como con ...

  1. Circuit QED with transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wulschner, Karl Friedrich; Puertas, Javier; Baust, Alexander; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Marx, Achim; Menzel, Edwin; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Weides, Martin [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2015-07-01

    Superconducting quantum bits are basic building blocks for circuit QED systems. Applications in the fields of quantum computation and quantum simulation require long coherence times. We have fabricated and characterized superconducting transmon qubits which are designed to operate at a high ratio of Josephson energy and charging energy. Due to their low sensitivity to charge noise transmon qubits show good coherence properties. We couple transmon qubits to coplanar waveguide resonators and coplanar slotline resonators and characterize the devices at mK-temperatures. From the experimental data we derive the qubit-resonator coupling strength, the qubit relaxation time and calibrate the photon number in the resonator via Stark shifts.

  2. Towards bootstrapping QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Shai M.; Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2016-08-02

    We initiate the conformal bootstrap study of Quantum Electrodynamics in 2+1 space-time dimensions (QED{sub 3}) with N flavors of charged fermions by focusing on the 4-point function of four monopole operators with the lowest unit of topological charge. We obtain upper bounds on the scaling dimension of the doubly-charged monopole operator, with and without assuming other gaps in the operator spectrum. Intriguingly, we find a (gap-dependent) kink in these bounds that comes reasonably close to the large N extrapolation of the scaling dimensions of the singly-charged and doubly-charged monopole operators down to N=4 and N=6.

  3. Decoherence in semiconductor cavity QED systems due to phonon couplings

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Mørk, Jesper

    2014-01-01

    We investigate the effect of electron-phonon interactions on the coherence properties of single photons emitted from a semiconductor cavity QED (quantum electrodynamics) system, i.e., a quantum dot embedded in an optical cavity. The degree of indistinguishability, governing the quantum mechanical...

  4. Radiation Protection Aspects of the Linac Coherent Light Source Front End Enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Vollaire, J.; Fasso, A.; Liu, J.C.; Mao, X.S.; Prinz, A.; Rokni, S.H.; Leitner, M.Santana; /SLAC

    2010-08-26

    The Front End Enclosure (FEE) of the Linac Coherent Light Source (LCLS) is a shielding housing located between the electron dump area and the first experimental hutch. The upstream part of the FEE hosts the commissioning diagnostics for the FEL beam. In the downstream part of the FEE, two sets of grazing incidence mirror and several collimators are used to direct the beam to one of the experimental stations and reduce the bremsstrahlung background and the hard component of the spontaneous radiation spectrum. This paper addresses the beam loss assumptions and radiation sources entering the FEE used for the design of the FEE shielding using the Monte-Carlo code FLUKA. The beam containment system prevents abnormal levels of radiations inside the FEE and ensures that the beam remains in its intended path is also described.

  5. QED contributions to electron g-2

    Science.gov (United States)

    Laporta, Stefano

    2018-05-01

    In this paper I briefly describe the results of the numerical evaluation of the mass-independent 4-loop contribution to the electron g-2 in QED with 1100 digits of precision. In particular I also show the semi-analytical fit to the numerical value, which contains harmonic polylogarithms of eiπ/3, e2iπ/3 and eiπ/2 one-dimensional integrals of products of complete elliptic integrals and six finite parts of master integrals, evaluated up to 4800 digits. I give also some information about the methods and the program used.

  6. On the equivalence of massive qed with renormalizable and in unitary gauge

    International Nuclear Information System (INIS)

    Abdalla, E.

    1978-03-01

    In the framework of BPHZ renormalization procedure, we discuss the equivalence between 4-dimensional renormalizable massive quantum electrodynamics (Stueckelberg lagrangian), and massive QED in the unitary gauge

  7. An architecture for integrating planar and 3D cQED devices

    Energy Technology Data Exchange (ETDEWEB)

    Axline, C.; Reagor, M.; Heeres, R.; Reinhold, P.; Wang, C.; Shain, K.; Pfaff, W.; Chu, Y.; Frunzio, L.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2016-07-25

    Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter, and high-Q stripline resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.

  8. Implementation of Traveling Odd Schrödinger Cat States in Circuit-QED

    Directory of Open Access Journals (Sweden)

    Jaewoo Joo

    2016-10-01

    Full Text Available We propose a realistic scheme of generating a traveling odd Schrödinger cat state and a generalized entangled coherent state in circuit quantum electrodynamics (circuit-QED. A squeezed vacuum state is used as the initial resource of nonclassical states, which can be created through a Josephson traveling-wave parametric amplifier, and travels through a transmission line. Because a single-photon subtraction from the squeezed vacuum gives an odd Schrödinger cat state with very high fidelity, we consider a specific circuit-QED setup consisting of the Josephson amplifier creating the traveling resource in a line, a beam-splitter coupling two transmission lines, and a single photon detector located at the end of the other line. When a single microwave photon is detected by measuring the excited state of a superconducting qubit in the detector, a heralded cat state is generated with high fidelity in the opposite line. For example, we show that the high fidelity of the outcome with the ideal cat state can be achieved with appropriate squeezing parameters theoretically. As its extended setup, we suggest that generalized entangled coherent states can be also built probabilistically and that they are useful for microwave quantum information processing for error-correctable qudits in circuit-QED.

  9. Resonator QED experiments with single 40Ca+ ions

    International Nuclear Information System (INIS)

    Lange, B.

    2006-01-01

    Combining an optical resonator with an ion trap provides the possibility for QED experiments with single or few particles interacting with a single mode of the electro-magnetic field (Cavity-QED). In the present setup, fluctuations in the count rate on a time scale below 30 seconds were purely determined by the photon statistics due to finite emission and detection efficiency, whereas a marginal drift of the system was noticeable above 200 seconds. To find methods to increase the efficiency of the photon source, investigations were conducted and experimental improvements of the setup implemented in the frame of this thesis. Damping of the resonator field and coupling of ion and field were considered as the most important factors. To reduce the damping of the resonator field, a resonator with a smaller transmissivity of the output mirror was set up. The linear trap used in the experiment allows for the interaction of multiple ions with the resonator field, so that more than one photon may be emitted per pump pulse. This was investigated in this thesis with two ions coupled to the resonator. The cross correlation of the emitted photons was measured with the Hanbury Brown-Twiss method. (orig.)

  10. Leading quantum gravitational corrections to scalar QED

    OpenAIRE

    Bjerrum-Bohr, N. E. J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The n...

  11. Azimuthal asymmetry in processes of nonlinear QED for linearly polarized photon

    International Nuclear Information System (INIS)

    Bajer, V.N.; Mil'shtejn, A.I.

    1994-01-01

    Cross sections of nonlinear QED processes (photon-photon scattering, photon splitting in a Coulomb field, and Delbrueck scattering) are considered for linearly polarized initial photon. The cross sections have sizeable azimuthal asymmetry. 15 refs.; 3 figs

  12. Role of the pair potential for the saturation of generalized Pauli constraints

    Science.gov (United States)

    Legeza, Örs; Schilling, Christian

    2018-05-01

    The dependence of the (quasi-)saturation of the generalized Pauli constraints on the pair potential is studied for ground states of few-fermion systems. For this, we consider spinless fermions in one dimension which are harmonically confined and interact by pair potentials of the form | xi-xj|s with -1 ≤s ≤5 . We use the density matrix renormalization group approach and large orbital basis to achieve the convergence on more than ten digits of both the variational energy and the natural occupation numbers. Our results confirm that the conflict between energy minimization and fermionic exchange symmetry results in a universal and nontrivial quasisaturation of the generalized Pauli constraints (quasipinning), implying tremendous structural simplifications of the fermionic ground state for all s . Those numerically exact results are complemented by an analytical study based on a self-consistent perturbation theory which we develop for this purpose. The respective results for the weak-coupling regime eventually elucidate the singular behavior found for the specific values s =2 ,4 ,..., resulting in an extremely strong quasipinning.

  13. On surface clustering and Pauli principle effects in alpha decay

    International Nuclear Information System (INIS)

    Holan, S.

    1983-01-01

    The importance of the correct description of nuclear surface region in alpha decay calculations is pointed out. A model is proposed takinq into account explicitly surface clustering and Pauli principle effects which are essential in this region. A method for solving the main integrodifferential equation of the model by using the oscillator shell basis and the Collatz method is worked out. The first numerical results are obtained for nonlocal potential of the atpha particle-daughter nucleus interaction

  14. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2010-01-01

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling α s AdS (Q 2 ). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale ∼ 1 GeV. The resulting β-function appears to capture the essential characteristics of the full β-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on α s AdS (Q 2 ).

  15. Possibility of experiments using radiation counters for test electron stability and Pauli principle violation in atoms

    International Nuclear Information System (INIS)

    Barabash, A.S.

    1989-01-01

    Capabilities of modern radiation detectors for investigation into electron stability and possible violation of Pauli principle in atoms are discussed. For experimental searches of electron instability the following low-background devices are used: scintillation NaI-detectors, semiconducting detectors of enriched germanium, emission chamber, multisection proportional counter and low-temperature detectors. It is ascertained that using modern low-background devices applying the earlier enumerated detectors, it is possible to achieve sensitivity of the order of 10 24 -10 25 years for the electron lifetime relatively to its decay and Pauli principle violation in atoms. Experiments with sensitivity of ∼ 10 26 -10 27 can be realized in massive low-temperature detectors, developed for neutrino physics. 28 refs; 1 fig

  16. Strength Enhancement of Car Front Bumper for Slow Speed Impact by FEA Method as per IIHS Regulation

    Science.gov (United States)

    Sonawane, Chandrakant Rameshchandra; Shelar, Ajit Lavaji

    2017-05-01

    Low speed collisions happen significantly due to on road slow moving heavy traffic as well as during parking of vehicles. The bumpers are provided in front and back side of a vehicle has two main purposes: first is to absorb the energy generated during these kinds of slow speed impacts and secondly to protect the expensive parts like main engine parts, radiators and connected engine cooling mechanism, headlights, taillights, etc, by slowing down the vehicles. The problem often in various cars bumper is that they doesn't line-up vertically during low speed impact and leads to damage of various parts which are costly to repair. Many a times bumper design does not have sufficient capacity to absorb the energy generated during these impact. Guideline by International Institute Highway Safety (IIHS) regulation provides useful insight for such low speed impact study. In this paper, slow speed impact test were conducted as per IIHS regulation in three positions namely central impact, left hand corner impact and right hand corner impact. Parameters including bumper material, shape, thickness and impact condition are analyzed using fine element analysis (FEA) to enhance crashworthiness design in low speed impact. Then the vehicle front structure has been modified suitably. It has been observed that lining up the front metal bumper with suitable stiffness provides the best result which ultimately reduces the damage to the vehicle parts.

  17. Application of up-front licensing

    Energy Technology Data Exchange (ETDEWEB)

    Grant, S D [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada); Snell, V G [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    AECL has been pioneering `up-front` licensing of new reactor designs. The CANDU 3 design has been formally reviewed by AECB staff for a number of years. The CANDU 9 design has just started the up-front licensing process. The process gives designers, regulators and potential customers early confidence in the licensability of future plants. (author). 4 refs., 2 tabs.

  18. Application of up-front licensing

    International Nuclear Information System (INIS)

    Grant, S.D.; Snell, V.G.

    1995-01-01

    AECL has been pioneering 'up-front' licensing of new reactor designs. The CANDU 3 design has been formally reviewed by AECB staff for a number of years. The CANDU 9 design has just started the up-front licensing process. The process gives designers, regulators and potential customers early confidence in the licensability of future plants. (author). 4 refs., 2 tabs

  19. The Nielsen identities for the two-point functions of QED and QCD

    International Nuclear Information System (INIS)

    Breckenridge, J.C.; Sasketchewan Univ., Saskatoon, SK; Lavelle, M.J.; Steele, T.G.; Sasketchewan Univ., Saskatoon, SK

    1995-01-01

    We consider the Nielsen identities for the two-point functions of full QCD and QED in the class of Lorentz gauges. For pedagogical reasons the identities are first derived in QED to demonstrate the gauge independence of the photon self-energy, and of the electron mass shell. In QCD we derive the general identity and hence the identities for the quark, gluon and ghost propagators. The explicit contributions to the gluon and ghost identities are calculated to one-loop order, and then we show that the quark identity requires that in on-shell schemes the quark mass renormalisation must be gauge independent. Furthermore, we obtain formal solutions for the gluon self-energy and ghost propagator in terms of the gauge dependence of other, independent Green functions. (orig.)

  20. New Circuit QED system based on Triple-leg Stripline Resonator.

    Science.gov (United States)

    Kim, Dongmin; Moon, Kyungsun

    Conventional circuit QED system consists of a qubit located inside a linear stripline resonator, which has successfully demonstrated a strong coupling between a single photon and a qubit. Here we present a new circuit QED system, where the qubit is coupled to triple-leg stripline resonator (TSR). We have shown that TSR supports two-fold degenerate photon modes among others. By coupling them to a single qubit, we have obtained the dressed states of a coupled system of a single qubit and two-fold degenerate photon modes. By locating two qubits at two legs of TSR, we have studied a potential two-bit gate operation (e.g., CNOT gate) of the system. We will discuss the main advantage of utilizing two-fold degenerate photon modes This work is partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B01013756).

  1. Physical pictures of symmetry breaking in quenched QED4

    International Nuclear Information System (INIS)

    Kogut, J.B.; Argonne National Lab., IL

    1989-01-01

    We discuss 'collapse of the wavefunction' as the phenomenon underlying chiral symmetry breaking in quenched QED4. The 1/r singularity in the 'collapsed' qanti q wavefunction causes 'catalyzed symmetry breaking' which is the field theoretic analog of 'monopole induced proton decay'. The evasion of mean field exponents by the quenched theory's chiral phase transition is emphasized. (orig.)

  2. Existence of Green's functions in perturbative Q.E.D

    International Nuclear Information System (INIS)

    Seneor, R.

    1976-01-01

    A report is made on some work done in collaboration with P. Blanchard which shows how, in the framework developped by H.Epstein and V.Glaser, one can prove the existence of Green's functions in quantum electrodynamics (Q.E.D.). The proof can be extended, in principle, to any theory involving massive and non massive particles. (Auth.)

  3. Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities

    Energy Technology Data Exchange (ETDEWEB)

    Baeta Scarpelli, A.P. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Rua Hugo D' Antola, 95, Lapa, Sao Paulo (Brazil); Mariz, T. [Universidade Federal de Alagoas, Instituto de Fisica, Maceio, Alagoas (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, Paraiba (Brazil)

    2013-08-15

    In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)

  4. Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities

    International Nuclear Information System (INIS)

    Baeta Scarpelli, A.P.; Mariz, T.; Nascimento, J.R.; Petrov, A.Yu.

    2013-01-01

    In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)

  5. General QED/QCD aspects of simple systems

    International Nuclear Information System (INIS)

    Telegdi, V.L.; Brodsky, S.J.

    1989-09-01

    This paper discusses the following topics: renormalization theory; the Kinoshita-Lee-Nauenberg theorem; the Yennie-Frautschi-Suura relation; scale invariance at large momentum transfer; scaling and scaling violation at large momentum transfers; low-energy theorem in Compton scattering; does the perturbation series in QED converge; renormalization of the weak angle Θ w ; the Nambu-Bethe-Salpeter (NBS) equation; the decay rate of 3 S, positronium; radiative corrections to QCD Born cross section; and progress on the relativistic 2-body equation

  6. Light-by-Light Scattering Constraint on Born-Infeld Theory.

    Science.gov (United States)

    Ellis, John; Mavromatos, Nick E; You, Tevong

    2017-06-30

    The recent measurement by ATLAS of light-by-light scattering in LHC Pb-Pb collisions is the first direct evidence for this basic process. We find that it excludes a range of the mass scale of a nonlinear Born-Infeld extension of QED that is ≲100  GeV, a much stronger constraint than those derived previously. In the case of a Born-Infeld extension of the standard model in which the U(1)_{Y} hypercharge gauge symmetry is realized nonlinearly, the limit on the corresponding mass reach is ∼90  GeV, which, in turn, imposes a lower limit of ≳11  TeV on the magnetic monopole mass in such a U(1)_{Y} Born-Infeld theory.

  7. OpenQ∗D simulation code for QCD+QED

    DEFF Research Database (Denmark)

    Campos, Isabel; Fritzsch, Patrick; Hansen, Martin

    2018-01-01

    The openQ∗D code for the simulation of QCD+QED with C∗ boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion....... An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/....

  8. Perturbative formulation of pure space-like axial gauge QED with infrared divergences regularized by residual gauge fields

    International Nuclear Information System (INIS)

    Nakawaki, Yuji; McCartor, Gary

    2006-01-01

    We construct a new perturbative formulation of pure space-like axial gauge QED in which the inherent infrared divergences are regularized by residual gauge fields. For this purpose, we carry out our calculations in the coordinates x μ =(x + , x - , x 1 , x 2 ), where x + =x 0 sinθ + x 3 cosθ and x - = x 0 cosθ - x 3 sinθ. Here, A=A 0 cosθ + A 3 sinθ = n·A=0 is taken as the gauge fixing condition. We show in detail that, in perturbation theory, infrared divergences resulting from the residual gauge fields cancel infrared divergences resulting from the physical parts of the gauge field. As a result, we obtain the gauge field propagator proposed by Mandelstam and Leibbrandt. By taking the limit θ→π/4, we are able to construct a light-cone formulation that is free from infrared divergences. With that analysis complete, we next calculate the one-loop electron self-energy, something not previously done in the light-cone quantization and light-cone gauge. (author)

  9. One-Step Generation of Multiqubit Greenberger-Horne-Zeilinger States in a Driven Circuit QED System

    International Nuclear Information System (INIS)

    Huang Jinsong; Nie Wei; Wei Lianfu

    2011-01-01

    We propose an efficient scheme to generate multiqubit Greenberger-Horne-Zeilinger (GHZ) states by one-step quantum operation in a driven circuit quantum electrodynamics (QED) system. Our proposal is based on a unitary evolution exp[-iλS 2 x ], with S x being the collective spin operator in x direction and λ a controllable parameter, induced by driving the resonator. The quantum operation avoids resonator-field decay and may achieve the GHZ states with ideal success probability. The feasibility with the experimentally-demonstrated circuit QED system is also discussed. (general)

  10. A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED, the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.

  11. Semileptonic and radiative decays of the Bc meson in the light-front quark model

    International Nuclear Information System (INIS)

    Choi, Ho-Meoyng; Ji, Chueng-Ryong

    2009-01-01

    We investigate the exclusive semileptonic B c →(D,η c ,B,B s )lν l , η b →B c lν l (l=e,μ,τ) decays using the light-front quark model constrained by the variational principle for the QCD-motivated effective Hamiltonian. The form factors f + (q 2 ) and f - (q 2 ) are obtained from the analytic continuation method in the q + =0 frame. While the form factor f + (q 2 ) is free from the zero mode, the form factor f - (q 2 ) is not free from the zero mode in the q + =0 frame. We quantify the zero-mode contributions to f - (q 2 ) for various semileptonic B c decays. Using our effective method to relate the non-wave-function vertex to the light-front valence wave function, we incorporate the zero-mode contribution as a convolution of the zero-mode operator with the initial and final state wave functions. Our results are then compared to the available experimental data and the results from other theoretical approaches. Since the prediction on the magnetic dipole B c *→B c +γ decay turns out to be very sensitive to the mass difference between B c * and B c mesons, the decay width Γ(B c *→B c γ) may help in determining the mass of B c * experimentally. Furthermore, we compare the results from the harmonic oscillator potential and the linear potential and identify the decay processes that are sensitive to the choice of confining potential. From the future experimental data on these sensitive processes, one may obtain more realistic information on the potential between the quark and antiquark in the heavy meson system.

  12. Oblique photon expansion of QED structure functions

    International Nuclear Information System (INIS)

    Chahine, C.

    1986-01-01

    In the oblique photon expansion, the collinear part of photon emission is summed up to all orders in perturbation theory. The number of oblique or non-collinear photons is the expansion order. Unlike in perturbation theory, every term of the expansion is both infrared finite and gauge invariant. The zero oblique photon contribution to the electromagnetic structure tensor in QED is computed in detail. The behaviors of the structure functions F1 and F2 are discussed in the soft and ultra-soft limits

  13. Testing of QED-Theory and Precise Measurements of the Rydberg Series for the He-Like Multicharged Ions

    Energy Technology Data Exchange (ETDEWEB)

    Pal' chikov, V. G. [VNIIFTRI, Mendeleevo, National Research Institute for Physical-Technical and Radiotechnical Measurements - (Russian Federation)], E-mail: vitpal@mail.ru

    2001-01-15

    The wavelengths of the 1snp{sup 1}P{sub 1}-1s{sup 21}S{sub 0} transitions in He-like Mg XI, F VIII (n= 4-8) and Al XII (n=6,9) have been calculated in the framework of the 1/Z expansion method including relativistic effects and QED contributions. It is found that QED corrections to the ground-state ionization energy are significant at the present level of experimental accuracy.

  14. Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997)

    Science.gov (United States)

    Moosmüller, H.; Arnott, W. P.; Rogers, C. F.; Chow, J. C.; Frazier, C. A.; Sherman, L. E.; Dietrich, D. L.

    1998-11-01

    A new photoacoustic instrument for the measurement of aerosol light absorption was collocated with conventional aerosol instrumentation during the 1996-1997 winter intensive monitoring period of the Northern Front Range Air Quality Study. Measurements of the light absorption efficiency for black carbon were 5 m2/g at 685 nm and 10 m2/g at 532 nm, and for elemental carbon, they were 3.6 m2/g at 685 nm. We show that these values together with previous photoacoustic measurements of aerosol light absorption shed some light on the wavelength dependence of absorption efficiency for carbonaceous aerosol in the visible and near-visible region. Integrating plate type filter measurements of aerosol light absorption result in far larger values than those measured with the photoacoustic instrument. We demonstrate that a recently published correction technique [Horvath, 1997] can yield improved agreement.

  15. Spinor monopole harmonics and the Pauli spin equation

    International Nuclear Information System (INIS)

    Pereira, J.G.; Ferreira, P.L.

    1982-01-01

    In the framework of Wu and Yang theory of U(1) magnetic monopoles, two problems are revisited: (i) the binding of spin-0 monopole to a spin-1/2 particle possessing an arbitrary magnetic dipole moment, and (ii) the energy levels and properties of the electron-dyon system. In both problems, the spin-1/2 particle is assumed to obey the Pauli spin equation. Spin-orbit and other higher order terms are treated as a perturbation, in connection with the second mentioned problem. Wu and Yang's spinor monopole harmonics allow an elegant and simplified treatment of those problems. The results obtained are in good agreement with those obtained in older papers. (Author) [pt

  16. Quark-Pauli effects in s-shell {Lambda} hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nemura, Hidekatsu; Suzuki, Yasuyuki [Niigata Univ. (Japan)

    1998-07-01

    To make clear the differences between the singlet and triplet forces in {Lambda}N interaction, we investigate that how {Lambda}N interaction is concerned with the binding energies of s-shell {Lambda} hypernuclei, using through the effective forces. We shape the effective {Lambda}N potential to reproduce both the experimental binding energies of three- and four-body {Lambda} hypernuclei. It gives the maximal numbers of phase shift of the 31-32 and 19-20 (in degree) in the {Lambda}N scattering at {sup 1}S{sub 0} and {sup 3}S{sub 1} states, respectively. In the case of five-body system, {sub {Lambda}}{sup 5}He, we conclude that the quark Pauli effect is crucial. (author)

  17. Zero field Quantum Hall Effect in QED3

    International Nuclear Information System (INIS)

    Raya, K; Sánchez-Madrigal, S; Raya, A

    2013-01-01

    We study analytic structure of the fermion propagator in the Quantum Electrodynamics in 2+1 dimensions (QED3) in the Landau gauge, both in perturbation theory and nonperturbatively, by solving the corresponding Schwinger-Dyson equation in rainbow approximation. In the chiral limit, we found many nodal solutions, which could be interpreted as vacuum excitations. Armed with these solutions, we use the Kubo formula and calculate the filling factor for the zero field Quantum Hall Effect

  18. Multi-flavor massless QED{sub 2} at finite densities via Lefschetz thimbles

    Energy Technology Data Exchange (ETDEWEB)

    Tanizaki, Yuya [RIKEN BNL Research Center, Brookhaven National Laboratory,Upton, NY 11973-5000 (United States); Tachibana, Motoi [Department of Physics, Saga University,Saga 840-8502 (Japan)

    2017-02-15

    We consider multi-flavor massless (1+1)-dimensional QED with chemical potentials at finite spatial length and the zero-temperature limit. Its sign problem is solved using the mean-field calculation with complex saddle points.

  19. CERN LEP2 constraint on 4D QED having a dynamically generated spatial dimension

    International Nuclear Information System (INIS)

    Cho, G.-C.; Izumi, Etsuko; Sugamoto, Akio

    2002-01-01

    We study 4D QED in which one spatial dimension is dynamically generated from the 3D action, following the mechanism proposed by Arkani-Hamed, Cohen, and Georgi. In this model, the generated fourth dimension is discretized by an interval parameter a. We examine the phenomenological constraint on the parameter a coming from collider experiments on the QED process e + e - →γγ. It is found that the CERN e + e - collider LEP2 experiments give the constraint of 1/a > or approx. 461 GeV. The expected bound on the same parameter a at a future e + e - linear collider is briefly discussed

  20. Hydrogen atom spectrum and the Lamb shift in noncommutative QED

    International Nuclear Information System (INIS)

    Chaichian, M. . Helsinki Institute of Physics, Helsinki; Tureanu, A. . Helsinki Institute of Physics, Helsinki; FI)

    2000-10-01

    We have calculated the energy levels of the hydrogen atom and as well the Lamb shift within the noncommutative quantum electrodynamics theory. The results show deviations from the usual QED both on the classical and on the quantum levels. On both levels, the deviations depend on the parameter of space/space noncommutativity. (author)

  1. Synchronicity - The Link Between Physics and Psyche, from Pauli and Jung to Chopra

    Science.gov (United States)

    Teodorani, M.

    2006-07-01

    This book, which is entirely dedicated to the mystery of "synchronicity", is divided into three parts: a) the joint research between analytic psychologist Carl Gustav Jung and quantum physicist Wolfgang Pauli; b) synchronicity mechanisms occurring in the microscopic (canonical quantum entanglement), mesoscopic and macroscopic scales; c) research and philosophy concerning synchronicity by MD Deepak Chopra.

  2. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems

    Science.gov (United States)

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-01-01

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654

  3. The role of the Pauli principle in three-cluster systems composed of identical clusters

    International Nuclear Information System (INIS)

    Lashko, Yu.A.; Filippov, G.F.

    2009-01-01

    Within the microscopic model based on the algebraic version of the resonating group method the role of the Pauli principle in the formation of continuum wave function of nuclear systems composed of three identical s-clusters has been investigated. Emphasis is placed upon the study of the exchange effects contained in the genuine three-cluster norm kernel. Three-fermion, three-boson, three-dineutron (3d ' ) and 3α systems are considered in detail. Simple analytical method of constructing the norm kernel for 3α system is suggested. The Pauli-allowed basis functions for the 3α and 3d ' systems are given in an explicit form and asymptotic behavior of these functions is established. Complete classification of the eigenfunctions and the eigenvalues of the 12 C norm kernel by the 8 Be=α+α eigenvalues has been given for the first time. Spectrum of the 12 C norm kernel is compared to that of the 5 H system.

  4. On the construction of QED using ERG

    International Nuclear Information System (INIS)

    Sonoda, H

    2007-01-01

    It has been known for some time that a smooth momentum cutoff is compatible with local gauge symmetries. In this paper, we show concretely how to construct QED using the exact renormalization group (ERG). First, we give a new derivation of the Ward identity for the Wilson action using the technique of composite operators. Second, parametrizing the theory by its asymptotic behaviour for a large cutoff, we show how to fine tune the parameters to satisfy the identity. Third, we recast the identity as an invariance of the Wilson action under a nonlinear BRST transformation

  5. Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED

    Science.gov (United States)

    Zhang, Hao; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2018-04-01

    We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Kerr effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.

  6. Gauge-invariant dressed fermion propagator in massless QED3

    International Nuclear Information System (INIS)

    Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.

    2006-01-01

    The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED 3 is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement

  7. Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED

    Directory of Open Access Journals (Sweden)

    Varun D. Vaidya

    2018-01-01

    Full Text Available Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.

  8. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-05-26

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS} (Q{sup 2}).

  9. Meson-meson scattering in lattice QED2+1

    International Nuclear Information System (INIS)

    Fiebig, H.R.; Woloshyn, R.M.

    1993-01-01

    Scattering phase shifts of a meson-meson system in staggered 3-dimensional lattice QED are computed. The main task of the simulation is to obtain a discrete set of two-body energy levels. These are extracted from a 4-point time correlation matrix and then used to obtain scattering phase shifts. The results for the l = 0 and l = 2 partial waves are consistent with short-range repulsion and intermediate-range attraction of the residual meson-meson interaction. (orig.)

  10. Approximated treatment of the Pauli principle effects in elastic collisons

    International Nuclear Information System (INIS)

    Schechter, H.

    1984-08-01

    Exact microscopic methods like the RGM (Resonanting Group Method) and the GCM (Generator Coordinate Method) and approximate methods like the OCM (Orthogonality Condition Model) are used to study the effects of Pauli Principle in α- 16 O elastic scattering. Using V2 and BL nucleon-nucleon interactions, nucleus-nucleus effective potentials are obtained from RGM 'exact' wave functions and also from an approximate method developed previoulsy. Using these potentials in the OCM Saito Equation phase-shifts are calculated for partial waves Λ = 0, 1, ... 11, in the energy range 0 [pt

  11. THE PHENOMENON OF HALF-INTEGER SPIN, QUATERNIONS, AND PAULI MATRICES

    Directory of Open Access Journals (Sweden)

    FERNANDO R. GONZÁLEZ DÍAZ

    2017-01-01

    Full Text Available In this paper the phenomenon of half-integer spin exemplification Paul AM Dirac made with a pair of scissors, an elastic cord and chair play. Four examples in which the same phenomenon appears and the algebraic structure of quaternions is related to one of the examples are described. Mathematical proof of the phenomenon using known topological and algebraic results are explained. The basic results of algebraic structures are described quaternions H , and an intrinsic relationship with the phenomenon half-integer spin and the Pauli matrices is established.

  12. Local and non-local Schroedinger cat states in cavity QED

    International Nuclear Information System (INIS)

    Haroche, S.

    2005-01-01

    Full text: I will review recent experiments performed on mesoscopic state superpositions of field states in cavity QED. Proposals to extend these studies to Schroedinger cat states delocalized in two cavities will be discussed. New versions of Bell's inequality tests will probe the non-local behavior of these cats and study their sensitivity to decoherence. (author)

  13. Cavity QED with single trapped Ca+-ions

    International Nuclear Information System (INIS)

    Mundt, A.B.

    2003-02-01

    This thesis reports on the design and setup of a vacuum apparatus allowing the investigation of cavity QED effects with single trapped 40 Ca + ions. The weak coupling of ion and cavity in the 'bad cavity limit' may serve to inter--convert stationary and flying qubits. The ion is confined in a miniaturized Paul trap and cooled via the Doppler effect to the Lamb--Dicke regime. The extent of the atomic wave function is less than 30 nm. The ion is enclosed by a high finesse optical cavity. The technically--involved apparatus allows movement of the trap relative to the cavity and the trapped ion can be placed at any position in the standing wave. By means of a transfer lock the cavity can be resonantly stabilized with the S 1/2 ↔ D 5/2 quadrupole transition at 729 nm (suitable as a qubit) without light at that wavelength being present in the cavity. The coupling of the cavity field to the S 1/2 ↔ D 5/2 quadrupole transition is investigated with various techniques in order to determine the spatial dependence as well as the temporal dynamics. The orthogonal coupling of carrier and first--order sideband transitions at field nodes and antinodes is explored. The coherent interaction of the ion and the cavity field is confirmed by exciting Rabi oscillations with short resonant pulses injected into the cavity. Finally, first experimental steps towards the observation of cavity enhanced spontaneous emission have been taken. (author)

  14. QED corrections in deep-inelastic scattering from tensor polarized deuteron target

    CERN Document Server

    Gakh, G I

    2001-01-01

    The QED correction in the deep inelastic scattering from the polarized tensor of the deuteron target is considered. The calculations are based on the covariant parametrization of the deuteron quadrupole polarization tensor. The Drell-Yan representations in the electrodynamics are used for describing the radiation real and virtual particles

  15. Investigations into light-front interactions for massless fields (I): non-constructibility of higher spin quartic amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Anders K.H. [Academy of Textiles, Engineering and Economics, University of Borås,Allégatan 1, SE-50190 Borås (Sweden)

    2016-12-27

    The dynamical commutators of the light-front Poincaré algebra yield first order differential equations in the p{sup +} momenta for the interaction vertex operators. The homogeneous solution to the equation for the quartic vertex is studied. Consequences as regards the constructibility assumption of quartic higher spin amplitudes from cubic amplitudes are discussed. The existence of quartic contact interactions unrelated to cubic interactions by Poincaré symmetry indicates that the higher spin S-matrix is not constructible. Thus quartic amplitude based no-go results derived by BCFW recursion for Minkowski higher spin massless fields may be circumvented.

  16. Chiral anomalies in QED and QCD at finite temperature

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1991-01-01

    Chiral anomalies (a) for QED and QCD at finite temperature are analyzed in imaginary- and real-time formalisms. Both triangle diagrams and functional methods are used. It is found that the expressions for a in terms of finite-temperature fields are formally similar to that for the zero-temperature anomaly as a function of zero-temperature fields, thereby generalizing previous work by other authors. (author). 20 refs.; 1 fig

  17. Engineering non-linear resonator mode interactions in circuit QED by continuous driving: Introduction

    Science.gov (United States)

    Pfaff, Wolfgang; Reagor, Matthew; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Krastanov, Stefan; Frunzio, Luigi; Devoret, Michel; Jiang, Liang; Schoelkopf, Robert

    2015-03-01

    High-Q microwave resonators show great promise for storing and manipulating quantum states in circuit QED. Using resonator modes as such a resource in quantum information processing applications requires the ability to manipulate the state of a resonator efficiently. Further, one must engineer appropriate coupling channels without spoiling the coherence properties of the resonator. We present an architecture that combines millisecond lifetimes for photonic quantum states stored in a linear resonator with fast measurement provided by a low-Q readout resonator. We demonstrate experimentally how a continuous drive on a transmon can be utilized to generate highly non-classical photonic states inside the high-Q resonator via effective nonlinear resonator mode interactions. Our approach opens new avenues for using modes of long-lived linear resonators in the circuit QED platform for quantum information processing tasks.

  18. Evidence for a critical behavior in 4D pure compact QED

    International Nuclear Information System (INIS)

    Jersak, J.; Neuhaus, T.

    1995-01-01

    We present evidence about a critical behavior of 4D compact QED (CQED) pure gauge theory. Regularizing the theory on lattices homotopic to a sphere, we present evidence for a critical, i.e. second order like behavior at the deconfinement phase transition for certain values of the coupling parameter γ. ((orig.))

  19. Anomalous Lorentz and CPT violation from a local Chern-Simons-like term in the effective gauge-field action

    Science.gov (United States)

    Ghosh, K. J. B.; Klinkhamer, F. R.

    2018-01-01

    We consider four-dimensional chiral gauge theories defined over a spacetime manifold with topology R3 ×S1 and periodic boundary conditions over the compact dimension. The effective gauge-field action is calculated for Abelian U (1) gauge fields Aμ (x) which depend on all four spacetime coordinates (including the coordinate x4 ∈S1 of the compact dimension) and have vanishing components A4 (x) (implying trivial holonomies in the 4-direction). Our calculation shows that the effective gauge-field action contains a local Chern-Simons-like term which violates Lorentz and CPT invariance. This result is established perturbatively with a generalized Pauli-Villars regularization and nonperturbatively with a lattice regularization based on Ginsparg-Wilson fermions.

  20. Exact multiple scattering theory of two-nucleus collisions including the Pauli principle

    International Nuclear Information System (INIS)

    Gurvitz, S.A.

    1981-01-01

    Exact equations for two-nucleus scattering are derived in which the effects of the Pauli principle are fully included. Our method exploits a modified equation for the scattering of two identical nucleons, which is obtained at the beginning. Considering proton-nucleus scattering we found that the resulting amplitude has two components, one resembling a multiple scattering series for distinguishable particles, and the other a distorted (A-1) nucleon cluster exchange. For elastic pA scattering the multiple scattering amplitude is found in the form of an optical potential expansion. We show that the Kerman-McManus-Thaler theory of the optical potential could be easily modified to include the effects of antisymmetrization of the projectile with the target nucleons. Nucleus-nucleus scattering is studied first for distinguishable target and beam nucleus. Afterwards the Pauli principle is included, where only the case of deuteron-nucleus scattering is discussed in detail. The resulting amplitude has four components. Two of them correspond to modified multiple scattering expansions and the others are distorted (A-1)- and (A-2)- nucleon cluster exchange. The result for d-A scattering is extended to the general case of nucleus-nucleus scattering. The equations are simple to use and as such constitute an improvement over existing schemes

  1. Possible experiments to distinguish between different methods of treating the Pauli principle in nuclear potential models

    International Nuclear Information System (INIS)

    Krolle, D.; Assenbaum, H.J.; Funck, C.; Langanke, K.

    1987-01-01

    The finite Pauli repulsion model of Walliser and Nakaichi-Maeda and the orthogonality condition model are two microscopically motivated potential models for the description of nuclear collisions which, however, differ from each other in the way they incorporate antisymmetrization effects into the nucleus-nucleus interaction. We have used α+α scattering at low energies as a tool to distinguish between the two different treatments of the Pauli principle. Both models are consistent with the presently available on-shell (elastic) and off-shell (bremsstrahlung) data. We suggest further measurements of α+α bremsstrahlung including the coplanar laboratory differential cross section in Harvard geometry at α-particle angles of around 27 0 and the γ-decay width of the 4 + resonance at E/sub c.m./ = 11.4 MeV, because in both cases the two models make significantly different predictions

  2. Gauge dependence of the infrared behaviour of massless QED3

    International Nuclear Information System (INIS)

    Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.

    2006-01-01

    Using the Zumino identities it is shown that in a class of non-local gauges, massless QED 3 has an infrared behaviour of a conformal field theory with a continuously varying anomalous dimension of the fermion. In the usual Lorentz gauge, the fermion propagator falls off exponentially for a large separation, but this apparent fermion mass is a gauge artifact

  3. Compact lattice QED with staggered fermions and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Hoferichter, A.; Mitrjushkin, V.K.; Mueller-Preussker, M.

    1994-07-01

    Different formulations of the 4d compact lattice QED with staggered fermions (standard Wilson and modified by suppression of lattice artifacts) are investigated by Monte Carlo simulations within the quenched approximation. We show that after suppressing lattice artifacts the system undergoes a phase transition from the Coulomb phase into a presumably weakly chirally broken phase only at (unphysical) negative β-values. (orig.)

  4. First-order signals in compact QED with monopole suppressed boundaries

    International Nuclear Information System (INIS)

    Lippert, T.; Schilling, K.; Forschungszentrum Juelich GmbH

    1995-01-01

    Pure gauge compact QED on hypercubic lattices is considered with periodically closed monopole currents suppressed. We compute observables on sublattices which are nested around the centre of the lattice in order to locate regions where translation symmetry is approximately recovered. Our Monte Carlo simulations on 24 4 -lattices give indications for a first-order nature of the U(1) phase transition. ((orig.))

  5. Nonlinear optics quantum computing with circuit QED.

    Science.gov (United States)

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  6. QED radiative corrections to impact factors

    International Nuclear Information System (INIS)

    Kuraev, E.A.; Lipatov, L.N.; Shishkina, T.V.

    2001-01-01

    We consider radiative corrections to the electron and photon impact factors. The generalized eikonal representation for the e + e - scattering amplitude at high energies and fixed momentum transfers is violated by nonplanar diagrams. An additional contribution to the two-loop approximation appears from the Bethe-Heitler mechanism of fermion pair production with the identity of the fermions in the final state taken into account. The violation of the generalized eikonal representation is also related to the charge parity conservation in QED. A one-loop correction to the photon impact factor for small virtualities of the exchanged photon is obtained using the known results for the cross section of the e + e - production during photon-nuclei interactions

  7. Charting the Real Four-Qubit Pauli Group via Ovoids of a Hyperbolic Quadric of PG(7,2)

    Czech Academy of Sciences Publication Activity Database

    Saniga, M.; Levay, P.; Pracna, Petr

    2012-01-01

    Roč. 45, JUL 2012 (2012), s. 295304 ISSN 1751-8113 Institutional support: RVO:61388955 Keywords : Pauli group * structure * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.766, year: 2012

  8. Measurement of the magnetically-induced QED birefringence of the vacuum and an improved search for laboratory axions: Technical report. Project definition study of the use of assets and facilities of the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Lee, S.A.; Fairbank, W.M. Jr.; Toki, W.H.; Kraushaar, P.F. Jr.; Jaffery, T.S.

    1994-01-01

    The Colorado State Collaboration has studied the feasibility of a high sensitivity QED birefringence/axion search measurement. The objective of this work is to measure, for the first time, the birefringence induced in the vacuum on a light beam travelling in a powerful magnetic field. The same experimental setup also allows a highly sensitive search for axion or axion-like particles. The experiment would combined custom-designed optical heterodyne interferometry with a string of six SSC prototype superconducting dipole magnets at the N-15 site of the SSC Laboratory. With these powerful laser tools, sensitivity advances of 10 7 to 10 9 over previous optical experiments will be possible. The proposed experiment will be able to measure the QED light-by-light scattering effect with a 0.5% accuracy. The increased sensitivity for the axion-two photon interaction will result in a bound on this process rivaling the results based on astrophysical arguments. In the technical report the authors address the scientific significance of these experiments and examine the limiting technical parameters which control their feasibility. The proposed optical/electronic scheme is presented in the context of a background of the known and projected systematic problems which will confront any serious attempt to make such measurements

  9. The Innermost Kernel Depth Psychology and Quantum Physics. Wolfgang Pauli's Dialogue with C.G Jung

    CERN Document Server

    Gieser, Suzanne

    2005-01-01

    "The Innermost Kernel" recounts the physicist and Nobel Laureate Wolfgang Pauli and his interest in Jungian psychology, philosophy and western world-view. It is also an exploration of the intellectual setting and context of Pauli's thinking, which has its starting point in the cultural and intellectual climate of fin-de-siècle Europe. As a contribution to the general history of quantum physics this study has a special focus on the psychological and philosophical issues discussed by physicists belonging to the Copenhagen school. The work is mainly based on the correspondence of the principle characters and explores some of the central issues discussed there, as for instance the subject-object relation, complementarity, the relation of conscious and unconscious, the process underlying concept-formation, the psychology of scientific discovery, the symbolic world of alchemy, the theories of archetypes and of synchronicity. Ultimately this book is about a remarkable scientist searching for a new understanding of ...

  10. One-step generation of continuous-variable quadripartite cluster states in a circuit QED system

    Science.gov (United States)

    Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li

    2017-07-01

    We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.

  11. Diagrammatic cancellations and the gauge dependence of QED

    Energy Technology Data Exchange (ETDEWEB)

    Kißler, Henry, E-mail: kissler@physik.hu-berlin.de [Department of Mathematical Sciences, University of Liverpool, L69 7ZL, Liverpool (United Kingdom); Department of Mathematics, Humboldt-Universität zu Berlin, Rudower Chaussee 25, D-12489 Berlin (Germany); Kreimer, Dirk, E-mail: kreimer@math.hu-berlin.de [Department of Mathematics, Humboldt-Universität zu Berlin, Rudower Chaussee 25, D-12489 Berlin (Germany)

    2017-01-10

    This letter examines diagrammatic cancellations for Quantum Electrodynamics (QED) in the general linear gauge. These cancellations combine Feynman graphs of various topologies and provide a method to reconstruct the gauge dependence of the electron propagator from the result of a particular gauge by means of a linear Dyson–Schwinger equation. We use this method in combination with dimensional regularization to demonstrate how the 3-loop ε-expansion in the Feynman gauge determines the ε-expansions for all gauge parameter dependent terms to 4 loops.

  12. Light-Regulated Electrochemical Sensor Array for Efficiently Discriminating Hazardous Gases.

    Science.gov (United States)

    Liang, Hongqiu; Zhang, Xin; Sun, Huihui; Jin, Han; Zhang, Xiaowei; Jin, Qinghui; Zou, Jie; Haick, Hossam; Jian, Jiawen

    2017-10-27

    Inadequate detection limit and unsatisfactory discrimination features remain the challenging issues for the widely applied electrochemical gas sensors. Quite recently, we confirmed that light-regulated electrochemical reaction significantly enhanced the electrocatalytic activity, and thereby can potentially extend the detection limit to the parts per billion (ppb) level. Nevertheless, impact of the light-regulated electrochemical reaction on response selectivity has been discussed less. Herein, we systematically report on the effect of illumination on discrimination features via design and fabrication of a light-regulated electrochemical sensor array. Upon illumination (light on), response signal to the examined gases (C 3 H 6 , NO, and CO) is selectively enhanced, resulting in the sensor array demonstrating disparate response patterns when compared with that of the sensor array operated at light off. Through processing all the response patterns derived from both light on and light off with a pattern recognition algorithm, a satisfactory discrimination feature is observed. In contrast, apparent mutual interference between NO and CO is found when the sensor array is solely operated without illumination. The impact mechanism of the illumination is studied and it is deduced that the effect of the illumination on the discriminating features can be mainly attributed to the competition of electrocatalytic activity and gas-phase reactivity. If the enhanced electrocatalytic activity (to specific gas) dominates the whole sensing progress, enhancements in the corresponding response signal would be observed upon illumination. Otherwise, illumination gives a negligible impact. Hence, the response signal to part of the examined gases is selectively enhanced by illumination. Conclusively, light-regulated electrochemical reaction would provide an efficient approach to designing future smart sensing devices.

  13. Wolfgang Pauli et l'arrière-plan de la physique

    CERN Multimedia

    Bringuier, Eric

    2003-01-01

    "Wolfgang Pauli est l'une des figures scientifiques majeures du XXe siècle. Ses contributions sur la structure de l'atome ont été déterminantes pour l'établissement de la théorie quantique. Mais une grande partie de son activité fut aussi consacrée à une réflexion plus large sur les processus cognitifs. L'une de ses obsessions: trouver un langage commun pour décrire le monde physique et le monde psychique" (3 pages)

  14. On the effects of the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian

    International Nuclear Information System (INIS)

    Badnell, N.R.

    1997-01-01

    We have incorporated the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian, namely contact spin-spin, two-body Darwin and orbit-orbit, into the program AUTOSTRUCTURE. Illustrative results are presented, including some for reactions involving the process of autoionization. (author)

  15. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED3

    International Nuclear Information System (INIS)

    Belich, H.; Helayel-Neto, J.A.; Ferreira, M.M. Jr.; Maranhao Univ., Sao Luis, MA

    2002-10-01

    We start from a parity-breaking MCS QED 3 model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e - e - - bound state. Three expressions V eff↓↓ , V eff↓↑ , V eff↓↓ ) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED 3 model adopted may be suitable to address an eventual case of e - e - pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  16. Does the Higgs mechanism favour electron-electron bound states in Maxwell-Chern-Simons QED3?

    International Nuclear Information System (INIS)

    Belich, Humberto; Helayeel-Neto, Jose Abdalla; Ferreira Junior, Manoel Messias

    2000-01-01

    Full text follows: We show that low-energy electron-electron bound states appear in the Maxwell-Chern-Simons (MCS) planar QED. In spite of the repulsive interaction mediated by the MCS gauge field, a net attractive interaction stems due to the Higgs mechanism through an Yukawa-type interaction. The spontaneous breaking of a local U(1)-symmetry is realized by a γ 6 -type potential. We conclude, by using the Schroedinger equation associated to the net attractive scattering potential, that electron-electron bound states arise in the model. Therefore, the Higgs mechanism overcomes the difficulties found out by Girotti et al. (Phys. Rev. Lett. 69 (1992) 2623) in searching for bound states in the MCS planar QED. (author)

  17. Nonsequential multiphoton double ionization of He in intense laser - a QED approach

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Mazumder, Mina; Chakrabarti, J.; Faisal, F.H.M.

    2010-01-01

    The non-sequential muItiphoton double ionization (NSDI) of He in intense laser field is not yet completely understood, more so for spin resolved currents. We are tempted to use QED and Feynman diagram to obtain spin polarized currents. Hartree-Fock (HF) ground-state correlated wave function of He atom is considered in circularly polarized laser. In QED approach one of the electrons is directly ionized by photon absorption while the second electron is shaken off due to the change in the internal potential of the atom. In He-atom the two ionized electrons can only be in the singlet spin state. Spin-symmetric and spin-flip transitions are eventually possible for the direct and the shake-off electrons. In an ensemble of (HF type) He-atoms the ionized Volkov electrons may acquire 4 pairs of momenta indicating e-e correlation in the final state. Coulomb correction is taken care off through the Sommerfeld factor

  18. Gauge-invariant dressed fermion propagator in massless QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Indrajit [Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indrajit.mitra@saha.ac.in; Ratabole, Raghunath [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: sharat@imsc.res.in

    2006-04-27

    The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED{sub 3} is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement.

  19. From Pauli Matrices to Quantum Ito Formula

    International Nuclear Information System (INIS)

    Pautrat, Yan

    2005-01-01

    This paper answers important questions raised by the recent description, by Attal, of a robust and explicit method to approximate basic objects of quantum stochastic calculus on bosonic Fock space by analogues on the state space of quantum spin chains. The existence of that method justifies a detailed investigation of discrete-time quantum stochastic calculus. Here we fully define and study that theory and obtain in particular a discrete-time quantum Ito formula, which one can see as summarizing the commutation relations of Pauli matrices.An apparent flaw in that approximation method is the difference in the quantum Ito formulas, discrete and continuous, which suggests that the discrete quantum stochastic calculus differs fundamentally from the continuous one and is therefore not a suitable object to approximate subtle phenomena. We show that flaw is only apparent by proving that the continuous-time quantum Ito formula is actually a consequence of its discrete-time counterpart

  20. Headlamps for light based driver assistance

    Science.gov (United States)

    Götz, M.; Kleinkes, M.

    2008-04-01

    Driving at night is dangerous. Although only 25% of all driving tasks are performed at night, nearly half of all fatal accidents happen in this time. In order to increase safety when driving under poor visibility conditions, automotive front lighting systems have undergone a strong development in the last fifteen years. One important milestone was the introduction of Xenon headlamps in 1992, which provide more and brighter light for road illumination than ever before. Since then the paradigm of simply providing more light has changed toward providing optimised light distributions, which support the driver's perception. A first step in this direction was the introduction of dynamic bend lighting and cornering light in 2003. In 2006 the first full AFS headlamp (Adaptive Front Lighting System) allowed an optimised adoption of the light distribution to the driving situation. These systems use information provided by vehicle sensors and an intelligent algorithm to guide light towards those areas where needed. Nowadays, even more information about the vehicle's environment is available. Image processing systems, for example, allow to detect other traffic participants, their speed and their driving directions. In future headlamp systems these data will be used to constantly regulate the reach of the light distribution thus allowing a maximal reach without providing glare. Moreover, technologies that allow to constantly use a high-beam light distribution are under development. These systems will illuminate the whole traffic area only excluding other traffic participants. LED light sources will play a significant role in these scenarios, since they allow to precisely illuminate certain areas of the road, while neighbouring parts will be left in dark.

  1. Effects of the fermionic vacuum polarization in QED

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, M.F.X.P.; Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil); Barone, F.E.

    2018-01-15

    Some effects of vacuum polarization in QED due to the presence of field sources are investigated. We focus on effects with no counter-part in Maxwell electrodynamics. The Uehling interaction energy between two stationary point-like charges is calculated exactly in terms of Meijer-G functions. Effects induced on a hydrogen atom by the vacuum polarization in the vicinity of a Dirac string are considered. We also calculate the interaction between two parallel Dirac strings and corrections to the energy levels of a quantum particle constrained to move on a ring circumventing a solenoid. (orig.)

  2. Dynamical breakdown of chiral symmetry in vectorial theories: QED and QCD

    International Nuclear Information System (INIS)

    Garcia, J.C.M.

    1987-01-01

    Using a variational approach for the Effective Potential for composite operators we dicuss the dynamical breakdown of chiral symmetry in two vectorial theories: Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD). We study the energetic aspects of the problem calculating the Effective Potential with the asymptotic nonperturbative solutions of the Schwinger-Dyson equation for the fermion selfenergy. (author) [pt

  3. QED polarization asymmetries for e+e- scattering due to helicity flips

    International Nuclear Information System (INIS)

    Anders, T.B.; Sell, E.W.

    1992-01-01

    The polarization asymmetries for the e + e - scattering with polarized incoming of outgoing beams, which are proportional to the amplitudes φ 5 describing one helicity flip and φ 2 describing two helicity flips, have been calculated including their pure QED radiative corrections. These asymmetries are partly large and can be observed well at low energies. (orig.)

  4. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  5. QED's School Market Trends: Teacher Buying Behavior & Attitudes, 2001-2002. Research Report.

    Science.gov (United States)

    Quality Education Data, Inc., Denver, CO.

    This study examined teachers' classroom material buying behaviors and trends. Data came from Quality Education Data's National Education Database, which includes U.S. K-12 public, private, and Catholic schools and districts. Researchers surveyed K-8 teachers randomly selected from QED's National Education Database. Results show that teachers spend…

  6. Preparation of genuine Yeo-Chua entangled state and teleportation of two-atom state via cavity QED

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We first propose a scheme for preparing the genuine Yeo-Chua 4-qubit entangled state via cavity QED. Using the genuine Yeo-Chua atomic state, we further propose a cavity QED scheme for teleporting an arbitrary two-atom state. In two schemes the large-detuning is chosen and the necessary time is designed to be much shorter than Rydberg-atom’s lifespan. Both schemes share the distinct advantage that cavity decay and atom decay can be neglected. As for the interaction manipulation, our preparation scheme is more feasible than a recent similar one. Compared with the Yeo and Chua’s scheme, our teleportation scheme has significantly reduced the measuring difficulty.

  7. Generation of shock fronts in the interaction of short pulses of intense laser light in supercritical plasma

    International Nuclear Information System (INIS)

    Lopez V, V.E.; Ondarza R, R.

    2004-01-01

    The investigation of the laser interaction with plasma has been carried out mainly in laboratories of Europe, Japan and United States during the last decades. This studies concern the propagation of intense light laser in a non homogeneous plasma, the radiation absorption and the generation of suprathermal electrons, among others. Numerical simulations made by Denavit, for radiation pulses for up of 10 20 W/cm 2 on solid targets, have allowed to observe the generation of ionic crash fronts with high propagation speeds. In this work it is expanded the study of this effect through algorithms of particles simulation. (Author)

  8. Two-loop operator matrix elements for massive fermionic local twist-2 operators in QED

    International Nuclear Information System (INIS)

    Bluemlein, J.; Freitas, A. de; Universidad Simon Bolivar, Caracas; Neerven, W.L. van

    2011-11-01

    We describe the calculation of the two--loop massive operator matrix elements with massive external fermions in QED. We investigate the factorization of the O(α 2 ) initial state corrections to e + e - annihilation into a virtual boson for large cms energies s >>m 2 e into massive operator matrix elements and the massless Wilson coefficients of the Drell-Yan process adapting the color coefficients to the case of QED, as proposed by F. A. Berends et. al. (Nucl. Phys. B 297 (1988)429). Our calculations show explicitly that the representation proposed there works at one-loop order and up to terms linear in ln (s/m 2 e ) at two-loop order. However, the two-loop constant part contains a few structural terms, which have not been obtained in previous direct calculations. (orig.)

  9. Pauli blocking and laser manipulation of the electron dynamics in atomic collisions

    International Nuclear Information System (INIS)

    Kirchner, T.

    2004-01-01

    Full text: The dynamics of ion-atom collisions are governed primarily by the Coulomb interactions between the active electrons and the projectile and target nuclei. This contribution is devoted to the question whether and how other phenomena can modify the outcome of atomic scattering experiments. Firstly, the role of the Pauli exclusion principle on electronic transitions will be considered. Supported by experimental data it will be argued that Pauli blocking may have an important influence on electron transfer processes if collision systems with electrons on target and projectile in the initial channel are addressed [1]. Secondly, it will be discussed to which extent the electron dynamics can be modified and manipulated by an external interaction, namely by a suitable laser field [2]. The prototype scattering system He 2+ -H will be considered in the framework of the semiclassical approximation, i.e., projectile and laser interactions are described in terms of time-dependent external potentials which govern the quantum dynamics of the electron. The focus will be on slow collisions, in which electron transfer dominates, and on relatively short wavelengths such that both time dependent potentials vary on comparable time scales. A strong enhancement of laser-assisted electron transfer is found at collision energies below 1 keV/amu [3]. Its origin and its disappearance at higher energies as well as implications for planned experiments will be discussed

  10. From convolutionless generalized master to Pauli master equations

    International Nuclear Information System (INIS)

    Capek, V.

    1995-01-01

    The paper is a continuation of previous work within which it has been proved that time integrals of memory function (i.e. Markovian transfer rates from Pauli Master Equations, PME) in Time-Convolution Generalized Master Equations (TC-GME) for probabilities of finding a state of an asymmetric system interacting with a bath with a continuous spectrum are exactly zero, provided that no approximation is involved, irrespective of the usual finite-perturbation-order correspondence with the Golden Rule transition rates. In this paper, attention is paid to an alternative way of deriving the rigorous PME from the TCL-GME. Arguments are given in favor of the proposition that the long-time limit of coefficients in TCL-GME for the above probabilities, under the same assumption and presuming that this limit exists, is equal to zero. 11 refs

  11. The common elements of atomic and hadronic physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J., E-mail: sjbth@slac.stanford.edu [Stanford University, SLAC National Accelerator Laboratory (United States)

    2015-08-15

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  12. The Common Elements of Atomic and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-26

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  13. Decay constants and radiative decays of heavy mesons in light-front quark model

    International Nuclear Information System (INIS)

    Choi, Ho-Meoyng

    2007-01-01

    We investigate the magnetic dipole decays V→Pγ of various heavy-flavored mesons such as (D,D*,D s ,D s *,η c ,J/ψ) and (B,B*,B s ,B s *,η b ,Υ) using the light-front quark model constrained by the variational principle for the QCD-motivated effective Hamiltonian. The momentum dependent form factors F VP (q 2 ) for V→Pγ* decays are obtained in the q + =0 frame and then analytically continued to the timelike region by changing q perpendicular to iq perpendicular in the form factors. The coupling constant g VPγ for real photon case is then obtained in the limit as q 2 →0, i.e. g VPγ =F VP (q 2 =0). The weak decay constants of heavy pseudoscalar and vector mesons are also calculated. Our numerical results for the decay constants and radiative decay widths for the heavy-flavored mesons are overall in good agreement with the available experimental data as well as other theoretical model calculations

  14. Heisenberg (and Schrödinger, and Pauli) on hidden variables

    Science.gov (United States)

    Bacciagaluppi, Guido; Crull, Elise

    In this paper, we discuss various aspects of Heisenberg's thought on hidden variables in the period 1927-1935. We also compare Heisenberg's approach to others current at the time, specifically that embodied by von Neumann's impossibility proof, but also views expressed mainly in correspondence by Pauli and by Schrödinger. We shall base ourselves mostly on published and unpublished materials that are known but little-studied, among others Heisenberg's own draft response to the EPR paper. Our aim will be not only to clarify Heisenberg's thought on the hidden-variables question, but in part also to clarify how this question was understood more generally at the time.

  15. Integral equations for composite-particle scattering taking the Pauli principle into account

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Neudatchin, V.G.; Pomerantsev, V.N.

    1978-01-01

    An approximate description of a system of three composite particles in terms of the Saito (Prog. Theor. Phys.; 41:705 (1969)) orthogonality condition model is proposed. The orthogonalising pseudopotential technique is used to derive a modified set of Fadde'ev equations where the two- and three-body exchanges due to the Pauli principle are included by orthogonalising to two-and three-body forbidden states. The scope of applicability of and the method for solving the derived equations are discussed briefly. (author)

  16. Measurement of the Proton Structure Function $F_{2}$ at low $Q^{2}$ in QED Compton Scattering at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brisson, V.; Broker, H.-B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grassler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K.H.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kuckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Poschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Ratiani, Z.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.-G.; Wissing, Ch.; Woehrling, E.-E.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2004-01-01

    The proton structure function F_2(x,Q^2) is measured in inelastic QED Compton scattering using data collected with the H1 detector at HERA. QED Compton events are used to access the kinematic range of very low virtualities of the exchanged photon, Q^2, down to 0.5 GeV^2, and Bjorken x up to \\sim 0.06, a region which has not been covered previously by inclusive measurements at HERA. The results are in agreement with the measurements from fixed target lepton-nucleon scattering experiments.

  17. Quantum theory as a description of robust experiments: Derivation of the Pauli equation

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, Hans [Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen (Netherlands); Katsnelson, Mikhail I.; Donker, Hylke C. [Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525AJ Nijmegen (Netherlands); Michielsen, Kristel, E-mail: k.michielsen@fz-juelich.de [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich (Germany); RWTH Aachen University, D-52056 Aachen (Germany)

    2015-08-15

    It is shown that the Pauli equation and the concept of spin naturally emerge from logical inference applied to experiments on a charged particle under the conditions that (i) space is homogeneous (ii) the observed events are logically independent, and (iii) the observed frequency distributions are robust with respect to small changes in the conditions under which the experiment is carried out. The derivation does not take recourse to concepts of quantum theory and is based on the same principles which have already been shown to lead to e.g. the Schrödinger equation and the probability distributions of pairs of particles in the singlet or triplet state. Application to Stern–Gerlach experiments with chargeless, magnetic particles, provides additional support for the thesis that quantum theory follows from logical inference applied to a well-defined class of experiments. - Highlights: • The Pauli equation is obtained through logical inference applied to robust experiments on a charged particle. • The concept of spin appears as an inference resulting from the treatment of two-valued data. • The same reasoning yields the quantum theoretical description of neutral magnetic particles. • Logical inference provides a framework to establish a bridge between objective knowledge gathered through experiments and their description in terms of concepts.

  18. Front gardens to car parks: changes in garden permeability and effects on flood regulation.

    Science.gov (United States)

    Warhurst, Jennifer R; Parks, Katherine E; McCulloch, Lindsay; Hudson, Malcolm D

    2014-07-01

    This study addresses the consequences of widespread conversion of permeable front gardens to hard standing car parking surfaces, and the potential consequences in high-risk urban flooding hotspots, in the city of Southampton. The last two decades has seen a trend for domestic front gardens in urban areas to be converted for parking, driven by the lack of space and increased car ownership. Despite media and political attention, the effects of this change are unknown, but increased and more intense rainfall, potentially linked to climate change, could generate negative consequences as runoff from impermeable surfaces increases. Information is limited on garden permeability change, despite the consequences for ecosystem services, especially flood regulation. We focused on eight flooding hotspots identified by the local council as part of a wider urban flooding policy response. Aerial photographs from 1991, 2004 and 2011 were used to estimate changes in surface cover and to analyse permeability change within a digital surface model in a GIS environment. The 1, 30 and 100 year required attenuation storage volumes were estimated, which are the temporary storage required to reduce the peak flow rate given surface permeability. Within our study areas, impermeable cover in domestic front gardens increased by 22.47% over the 20-year study period (1991-2011) and required attenuation storage volumes increased by 26.23% on average. These increases suggest that a consequence of the conversion of gardens to parking areas will be a potential increase in flooding frequency and severity - a situation which is likely to occur in urban locations worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The European Commission's light bulb decree: Another costly regulation?

    International Nuclear Information System (INIS)

    Frondel, Manuel; Lohmann, Steffen

    2011-01-01

    Since September 2009, Regulation 244/2009 of the European Commission enforces the gradual phase-out of incandescent light bulbs. As of September 2012, only energy-efficient lighting sources will be allowed for sale. Among these are halogen light bulbs, light-emitting diodes (LED), or compact fluorescent light bulbs-often referred to as energy-saving light bulbs. The Commission's justification for the phase-out of conventional light bulbs maintains that a reduction in the electricity consumed will not only lead to lower energy cost for private households and industrial consumers, but at the same time lead to a decrease in greenhouse gas emissions. This article discusses possible reasons for the slow market diffusion of energy-saving light bulbs and shows that the investment in energy-efficient light bulbs does not necessarily lead to significant cost reductions. Drawing on some illustrative examples, we demonstrate that the use of cheaper incandescent bulbs instead of energy-saving light bulbs can be economically rational in cases of rather low usage times, in which the higher initial purchasing price might only pay off after very long time spans. Furthermore, due to the coexistence with the European Emissions Trading Scheme (ETS), this regulation attains no additional emission reductions beyond those achieved by the ETS alone. We thus conclude that the general ban of incandescent light bulbs is inappropriate and should be abolished by the Commission. - Research highlights: → This article discusses reasons for the slow market diffusion of energy-saving light bulbs. → We show that using incandescent bulbs can be rational in cases of rather low usage times. → We conclude that the general ban of incandescent light bulbs should be abolished by the Commission.

  20. A Study of Bending Mode Algorithm of Adaptive Front-Lighting System Based on Driver Preview Behavior

    Directory of Open Access Journals (Sweden)

    Zhenhai Gao

    2014-01-01

    Full Text Available The function of adaptive front-lighting system is to improve the lighting condition of the road ahead and driving safety at night. The current system seldom considers characteristics of the driver’s preview behavior and eye movement. To solve this problem, an AFS algorithm modeling a driver’s preview behavior was proposed. According to the vehicle’s state, the driver’s manipulating input, and the vehicle’s future state change which resulted from the driver’s input, a dynamic predictive algorithm of the vehicle’s future track was established based on an optimal preview acceleration model. Then, an experiment on the change rule of the driver’s preview distance with different speeds and different road curvatures was implemented with the eye tracker and the calibration method of the driver’s preview time was established. On the basis of these above theories and experiments, the preview time was introduced to help predict the vehicle’s future track and an AFS algorithm modeling the driver’s preview behavior was built. Finally, a simulation analysis of the AFS algorithm was carried out. By analyzing the change process of the headlamp’s lighting region while bend turning which was controlled by the algorithm, its control effect was verified to be precise.

  1. Overview on the anomaly and Schwinger term in two dimensional QED

    International Nuclear Information System (INIS)

    Adam, C.; Bertlmann, R.A.; Hofer, P.

    1993-01-01

    The axial anomaly of two-dimensional QED is computed in different ways (perturbative, via dispersion integrals, path integral and index theorem) and their relation is discussed as well as the relation between anomaly, Schwinger term and the Dirac vacuum. Some features of the special case of massless fermions (Schwinger model) and some methods of exactly solving it are demonstrated. (authors)

  2. Gauge dependence of the infrared behaviour of massless QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Indrajit [Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indrajit.mitra@saha.ac.in; Ratabole, Raghunath [The Institute of Mathematical Sciences, CIT Campus, Taramani PO, Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [The Institute of Mathematical Sciences, CIT Campus, Taramani PO, Chennai 600113 (India)]. E-mail: sharat@imsc.res.in

    2006-03-23

    Using the Zumino identities it is shown that in a class of non-local gauges, massless QED{sub 3} has an infrared behaviour of a conformal field theory with a continuously varying anomalous dimension of the fermion. In the usual Lorentz gauge, the fermion propagator falls off exponentially for a large separation, but this apparent fermion mass is a gauge artifact.

  3. Status and prospects of (g-2)μ and ΔαQED

    International Nuclear Information System (INIS)

    Teubner, Thomas

    2008-01-01

    A brief review of the status of the anomalous magnetic moment of the muon, (g-2) μ , and the running of the electromagnetic coupling, α QED (q 2 ), is given. The discrepancy between the Standard Model prediction of g-2 and the measurement from BNL is discussed. The prospects for further improvements in the determination of the vacuum polarisation contributions are outlined.

  4. Factors controlling streambed coverage of Didymosphenia geminata in two regulated streams in the Colorado Front Range

    OpenAIRE

    Miller, Matthew P.; McKnight, Diane M.; Cullis, James D.; Greene, Alicia; Vietti, Kristin; Liptzin, Daniel

    2009-01-01

    Didymosphenia geminata is a stalk-forming freshwater diatom which was historically found primarily in oligotrophic lakes and streams, but has recently become a nuisance species in many lotic systems worldwide. In the last 5–8 years, D. geminata has become established in Boulder Creek and South Boulder Creek, two regulated montane streams in the Front Range of the Colorado Rocky Mountains. Factors that may influence the growth of D. geminata were monitored during the summer of 2006. D. geminat...

  5. Pauli-blocking effect in two-body collisions dominates the in-medium effects in heavy-ion reactions near Fermi energy

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yong-Zhong, E-mail: yzxing@tsnu.edu.cn [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zhang, H.F. [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Liu, Xiao-Bin [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zheng, Yu-Ming [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); China Institute of Atomic Energy, P.O. Box 275(18), Beijing 102413 (China)

    2017-01-15

    The dissipation phenomenon in the heavy-ion reaction at incident energy near Fermi energy is studied by simulating the reactions {sup 129}Xe + {sup 129}Sn and {sup 58}Ni + {sup 58}Ni with isospin-dependent quantum molecular dynamics model (IQMD). The isotropy ratio in terms of transverse and longitudinal energies of the free protons emitted in the final states of these reactions is quantitatively analyzed to explore the in-medium correlation of the binary collisions. Comparison of the calculations with the experimental data recently released by INDRA collaboration exhibits that the ratio is very sensitive to the Pauli blocking effect in two-body collisions and Pauli exclusion principle is indispensable in the theoretical simulations for the heavy-ion reactions near the Fermi energy.

  6. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    In typical circuit QED systems on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present design considerations for the 3D microwave cavity as well as the superconducting transmon qubit. Moreover, we show experimental data of a high purity aluminum cavity demonstrating quality factors above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. Our experiments also demonstrate that the quality factor is less dependent on the power compared to planar resonator geometries. Furthermore, we present strategies for tuning both the cavity and the qubit individually.

  7. Compact QED tree-level amplitudes from dressed BCFW recursion relations

    International Nuclear Information System (INIS)

    Badger, Simon D.; Henn, Johannes M.

    2010-05-01

    We construct a modified on-shell BCFW recursion relation to derive compact analytic representations of tree-level amplitudes in QED. As an application, we study the amplitudes of a fermion pair coupling to an arbitrary number of photons and give compact formulae for the NMHV and N 2 MHV case. We demonstrate that the new recursion relation reduces the growth in complexity with additional photons to be exponential rather than factorial. (orig.)

  8. Compact QED tree-level amplitudes from dressed BCFW recursion relations

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Henn, Johannes M. [Humboldt Univ., Berlin (Germany). Inst. fuer Physik

    2010-05-15

    We construct a modified on-shell BCFW recursion relation to derive compact analytic representations of tree-level amplitudes in QED. As an application, we study the amplitudes of a fermion pair coupling to an arbitrary number of photons and give compact formulae for the NMHV and N{sup 2}MHV case. We demonstrate that the new recursion relation reduces the growth in complexity with additional photons to be exponential rather than factorial. (orig.)

  9. On a manifestation of the anomalies in the massless QED

    International Nuclear Information System (INIS)

    Gorskij, A.S.

    1989-01-01

    The questions concerned with the axial and conformal anomalies in the massless QED are discussed. It is shown that the interaction of the longitudinal real photons is proportional to the β function of the theory and the corresponding matrix element L |Θ αβ |γ L > where Θ αβ is energy-momentum tensor has a common features with the nonvanishing matrix element α |γ> in the massless limit. 7 refs.; 2 figs

  10. Light Regulation of Gibberellin Biosynthesis and Mode of Action.

    Science.gov (United States)

    García-Martinez, José Luis; Gil, Joan

    2001-12-01

    Some phenotypic effects produced in plants by light are very similar to those induced by hormones. In this review, the light-gibberellin (GA) interaction in germination, de-etiolation, stem growth, and tuber formation (process regulated by GAs) are discussed. Germination of lettuce and Arabidopsis seeds depends on red irradiation (R), which enhances the expression of GA 3-oxidase genes (GA3ox) and leads to an increase in active GA content. De-etiolation of pea seedling alters the expression of GA20ox and GA3ox genes and induces a rapid decrease of GA1 content. Stem growth of green plants is also affected by diverse light irradiation characteristics. Low light intensity increases stem elongation and active GA content in pea and Brassica. Photoperiod controls active GA levels in long-day rosette (spinach and Silene) and in woody plants (Salix and hybrid aspen) by regulating different steps of GA biosynthesis, mainly through transcript levels of GA20ox and GA3ox genes. Light modulation of stem elongation in light-grown plants is controlled by phytochrome, which modifies GA biosynthesis and catabolism (tobacco, potato, cowpea, Arabidopsis) and GA-response (pea, cucumber, Arabidopsis). In Arabidopsis and tobacco, ATH1 (a gene encoding an homeotic transcription factor) is a positive mediator of a phyB-specific signal transduction cascade controlling GA levels by regulating the expression of GA20ox and GA3ox. Tuber formation in potato is controlled by photoperiod (through phyB) and GAs. Inductive short-day conditions alter the diurnal rhythm of GA20ox transcript abundance, and increases the expression of a new protein (PHOR1) that plays a role in the photoperiod-GA interaction.

  11. Anomalous Lorentz and CPT violation

    Science.gov (United States)

    Klinkhamer, F. R.

    2018-01-01

    If there exists Lorentz and CPT violation in nature, then it is crucial to discover and understand the underlying mechanism. In this contribution, we discuss one such mechanism which relies on four-dimensional chiral gauge theories defined over a spacetime manifold with topology ℛ3 × S 1 and periodic spin structure for the compact dimension. It can be shown that the effective gauge-field action contains a local Chern-Simons-like term which violates Lorentz and CPT invariance. For arbitrary Abelian U(1) gauge fields with trivial holonomies in the compact direction, this anomalous Lorentz and CPT violation has recently been established perturbatively with a Pauli-Villars-type regularization and nonperturbatively with a lattice regularization based on Ginsparg-Wilson fermions.

  12. Chiral Schwinger model with the Faddeevian regularization in the light-front frame: construction of the gauge-invariant theory through the Stueckelberg term, Hamiltonian and BRST formulations

    International Nuclear Information System (INIS)

    Kulshreshtha, U.

    1998-01-01

    A chiral Schwinger model with the Faddeevian regularization a la Mitra is studied in the light-front frame. The front-form theory is found to be gauge-non-invariant. The Hamiltonian formulation of this gauge-non-invariant theory is first investigated and then the Stueckelberg term for this theory is constructed. Finally, the Hamiltonian and BRST formulations of the resulting gauge-invariant theory, obtained by the inclusion of the Stueckelberg term in the action of the above gauge-non-invariant theory, are investigated with some specific gauge choices. (orig.)

  13. AdS/QCD, LIight-Front Holography, and the Non-perturbative Running Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-04-29

    The combination of Anti-de Sitter space (AdS) methods with light-front (LF) holography provides a remarkably accurate first approximation for the spectra and wavefunctions of meson and baryon light-quark bound states. The resulting bound-state Hamiltonian equation of motion in QCD leads to relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. The eigenvalues give the hadronic spectrum, and the eigenmodes represent the probability distributions of the hadronic constituents at a given scale. A positive-sign confining dilaton background modifying AdS space gives a very good account of meson and baryon spectroscopy and form factors. The light-front holographic mapping of this model also leads to a non-perturbative effective coupling {alpha}{sub s}{sup Ads} (Q{sup 2}) which agrees with the effective charge defined by the Bjorken sum rule and lattice simulations. It displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD.

  14. Impact of front-of-pack nutrition information and label design on children's choice of two snack foods: Comparison of warnings and the traffic-light system.

    Science.gov (United States)

    Arrúa, Alejandra; Curutchet, María Rosa; Rey, Natalia; Barreto, Patricia; Golovchenko, Nadya; Sellanes, Andrea; Velazco, Guillermo; Winokur, Medy; Giménez, Ana; Ares, Gastón

    2017-09-01

    Research on the relative influence of package features on children's perception of food products is still necessary to aid policy design and development. The aim of the present work was to evaluate the relative influence of two front-of-pack (FOP) nutrition labelling schemes, the traffic light system and Chilean warning system, and label design on children's choice of two popular snack foods in Uruguay, wafer cookies and orange juice. A total of 442 children in grades 4 to 6 from 12 primary schools in Montevideo (Uruguay) participated in the study. They were asked to complete a choice-conjoint task with wafer cookies and orange juice labels, varying in label design and the inclusion of FOP nutrition information. Half of the children completed the task with labels featuring the traffic-light system (n = 217) and the other half with labels featuring the Chilean warning system (n = 225). Children's choices of wafer cookies and juice labels was significantly influenced by both label design and FOP nutritional labels. The relative impact of FOP nutritional labelling on children's choices was higher for the warning system compared to the traffic-light system. Results from the present work stress the need to regulate the design of packages and the inclusion of nutrient claims, and provide preliminary evidence of the potential of warnings to discourage children's choice of unhealthful products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Thermalization Time Bounds for Pauli Stabilizer Hamiltonians

    Science.gov (United States)

    Temme, Kristan

    2017-03-01

    We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))}, where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.

  16. Proof of the relativistic covariance of the fermion Green function in QED

    International Nuclear Information System (INIS)

    Nguyen Suan Han.

    1995-02-01

    This paper is devoted to the calculation of the fermion Green function in QED in the framework of the Minimal Quantization Method, based on an explicit solution of the constraint equations and the gauge-invariance principle. The relativistic invariant expression for the fermion Green function which has the right analytical properties is obtained. (author). 24 refs

  17. Risk management on an alluvial fan: a case study of the 2008 debris-flow event at Villar Pellice (Piedmont, N-W Italy

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2010-05-01

    Full Text Available In the Piedmont Region (North-Western Italy, the regional authorities manage debris flow risk by following the ideal sequence of steps that are generally pursued in land planning and civil protection activities. Complex procedures and methods are elaborated and widely discussed with politicians, economists and the general public. On the contrary, in emergency situations, civil protection agencies generally prefer the adoption of simple and flexible criteria. In this paper, a catastrophic debris flow event, that occurred in 2008 in Villar Pellice, is described in this perspective, after an analysis of the triggering rainfalls and of the effects on human life and properties. The availability of a series of personal accounts coming from people who witnessed the occurrences before, during and after the event has allowed us to analyse, in detail, the dynamics of the event. Thanks to these accounts, it has been possible to propose new guidelines for the planning of the emergency activities in areas that are potentially prone to similar impulsive phenomena.

  18. Technique for finding and identifying filters that cut off OTDR lights in front of ONU from a central office

    Science.gov (United States)

    Takaya, Masaaki; Honda, Hiroyasu; Narita, Yoshihiro; Yamamoto, Fumihiko; Arakawa, Koji

    2006-04-01

    We report on a newly developed in-service measurement technique that can be used from a central office to find and identify any filter in front of an ONU on an optical fiber access network. Using this system, in-service tests can be performed because the test lights are modulated at a high frequency. Moreover, by using the equipment we developed, this confirmation operation can be performed continuously and automatically with existing automatic fiber testing systems. The developed technique is effective for constructing a fiber line testing system with an optical time domain reflectometer.

  19. Lorentz and CPT violation in QED revisited: A missing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Del Cima, Oswaldo M., E-mail: wadodelcima@if.uff.b [Universidade Federal Fluminense (UFF), Polo Universitario de Rio das Ostras, Rua Recife s/n, 28890-000, Rio das Ostras, RJ (Brazil); Fonseca, Jakson M., E-mail: jakson.fonseca@ufv.b [Universidade Federal de Vicosa (UFV), Departamento de Fisica, Avenida Peter Henry Rolfs s/n, 36570-000, Vicosa, MG (Brazil); Franco, Daniel H.T., E-mail: daniel.franco@ufv.b [Universidade Federal de Vicosa (UFV), Departamento de Fisica, Avenida Peter Henry Rolfs s/n, 36570-000, Vicosa, MG (Brazil); Piguet, Olivier, E-mail: opiguet@pq.cnpq.b [Universidade Federal do Espirito Santo (UFES), Departamento de Fisica, Campus Universitario de Goiabeiras, 29060-900, Vitoria, ES (Brazil)

    2010-05-03

    We investigate the breakdown of Lorentz symmetry in QED by a CPT violating interaction term consisting of the coupling of an axial fermion current with a constant vector field b, in the framework of algebraic renormalization - a regularization-independent method. We show, to all orders in perturbation theory, that a CPT-odd and Lorentz violating Chern-Simons-like term, definitively, is not radiatively induced by the axial coupling of the fermions with the constant vector b.

  20. Lorentz and CPT violation in QED revisited: A missing analysis

    International Nuclear Information System (INIS)

    Del Cima, Oswaldo M.; Fonseca, Jakson M.; Franco, Daniel H.T.; Piguet, Olivier

    2010-01-01

    We investigate the breakdown of Lorentz symmetry in QED by a CPT violating interaction term consisting of the coupling of an axial fermion current with a constant vector field b, in the framework of algebraic renormalization - a regularization-independent method. We show, to all orders in perturbation theory, that a CPT-odd and Lorentz violating Chern-Simons-like term, definitively, is not radiatively induced by the axial coupling of the fermions with the constant vector b.

  1. On the impossibility of a small violation of the Pauli principle within the local quantum field theory

    International Nuclear Information System (INIS)

    Govorkov, A.B.

    1988-01-01

    It is shown that the local quantum field theory of free fields allows only the generalizations of the conventional quantizations (corresponding to the Fermi and Bose statistics) that correspond to the para-Fermi and para-Bose statistics and does not permit ''small'' violation of the Pauli principle

  2. A Test of QED in Electron-Positron Annihilation at Energies around the Z Mass

    CERN Document Server

    Spartiotis, C

    1992-01-01

    A study of the reaction e+ e- -t 11( /) at center-of-mass energies around the mass of the z 0 boson(91.2Ge V) has been performed. The total and differential cross sections have been measured cor- responding to an integrated luminosity of 14.42pb- 1 . The results are in good agreement with QED predictions. Lower limits were set , at 95% confidence level, on the QED cutoff parameters of A+ >130 GeV, A_ >112 GeV and on the mass of an excited elec- tron of me* > 120 Ge V. z 0 rare decays with photonic signatures in the final state were also searched for. Upper limits, at 953 confi- dence level, for the branching ratio of z 0 decaying into 7ro/ /11, TJI and /// are 1.2 x 10-4, 1.7 x 10-4, 3.3 x 10- 5 respectively.

  3. Cancellation of soft and collinear divergences in noncommutative QED

    International Nuclear Information System (INIS)

    Mirza, B.; Zarei, M.

    2006-01-01

    In this paper, we investigate the behavior of noncommutative IR divergences and will also discuss their cancellation in the physical cross sections. The commutative IR (soft) divergences existing in the nonplanar diagrams will be examined in order to prove an all-order cancellation of these divergences using the Weinberg's method. In noncommutative QED, collinear divergences due to triple photon splitting vertex, were encountered, which are shown to be canceled out by the noncommutative version of KLN theorem. This guarantees that there is no mixing between the Collinear, soft divergences and noncommutative IR divergences

  4. Optimal back-to-front airplane boarding

    Science.gov (United States)

    Bachmat, Eitan; Khachaturov, Vassilii; Kuperman, Ran

    2013-06-01

    The problem of finding an optimal back-to-front airplane boarding policy is explored, using a mathematical model that is related to the 1+1 polynuclear growth model with concave boundary conditions and to causal sets in gravity. We study all airplane configurations and boarding group sizes. Optimal boarding policies for various airplane configurations are presented. Detailed calculations are provided along with simulations that support the main conclusions of the theory. We show that the effectiveness of back-to-front policies undergoes a phase transition when passing from lightly congested airplanes to heavily congested airplanes. The phase transition also affects the nature of the optimal or near-optimal policies. Under what we consider to be realistic conditions, optimal back-to-front policies lead to a modest 8-12% improvement in boarding time over random (no policy) boarding, using two boarding groups. Having more than two groups is not effective.

  5. Optimal back-to-front airplane boarding.

    Science.gov (United States)

    Bachmat, Eitan; Khachaturov, Vassilii; Kuperman, Ran

    2013-06-01

    The problem of finding an optimal back-to-front airplane boarding policy is explored, using a mathematical model that is related to the 1+1 polynuclear growth model with concave boundary conditions and to causal sets in gravity. We study all airplane configurations and boarding group sizes. Optimal boarding policies for various airplane configurations are presented. Detailed calculations are provided along with simulations that support the main conclusions of the theory. We show that the effectiveness of back-to-front policies undergoes a phase transition when passing from lightly congested airplanes to heavily congested airplanes. The phase transition also affects the nature of the optimal or near-optimal policies. Under what we consider to be realistic conditions, optimal back-to-front policies lead to a modest 8-12% improvement in boarding time over random (no policy) boarding, using two boarding groups. Having more than two groups is not effective.

  6. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Eder, Peter; Fischer, Michael; Goetz, Jan; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Muenchen (Germany); Haeberlein, Max; Wulschner, Karl Friedrich [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Fedorov, Kirill; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    In typical circuit QED systems, on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present studies on transmon qubits capacitively coupled to 3D cavities. The internal quality factors of our 3D cavities, machined out of high purity aluminum, are above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. For characterization of the sample, we perform dispersive shift measurements up to the third energy level of the qubit. We show simulations and data describing the effect of the transmon geometry on it's capacitive properties. In addition, we present progress towards an integrated quantum memory application.

  7. Breit–Pauli atomic structure calculations for Fe XI

    International Nuclear Information System (INIS)

    Aggarwal, Sunny; Singh, Jagjit; Mohan, Man

    2013-01-01

    Energy levels, oscillator strengths, and transition probabilities are calculated for the lowest-lying 165 energy levels of Fe XI using configuration-interaction wavefunctions. The calculations include all the major correlation effects. Relativistic effects are included in the Breit–Pauli approximation by adding mass-correction, Darwin, and spin–orbit interaction terms to the non-relativistic Hamiltonian. For comparison with the calculated ab initio energy levels, we have also calculated the energy levels by using the fully relativistic multiconfiguration Dirac–Fock method. The calculated results are in close agreement with the National Institute of Standards and Technology compilation and other available results. New results are predicted for many of the levels belonging to the 3s3p 4 3d and 3s3p 3 3d 2 configurations, which are very important in astrophysics, relevant, for example, to the recent observations by the Hinode spacecraft. We expect that our extensive calculations will be useful to experimentalists in identifying the fine structure levels in their future work

  8. Improved ring potential of QED at finite temperature and in the presence of weak and strong magnetic fields

    International Nuclear Information System (INIS)

    Sadooghi, N.; Anaraki, K. Sohrabi

    2008-01-01

    Using the general structure of the vacuum polarization tensor Π μν (k 0 ,k) in the infrared (IR) limit, k 0 →0, the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k 0 →0, k→0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature and for α→0, the improved ring potential consists of a term proportional to T 4 α 5/2 , in addition to the expected T 4 α 3/2 term arising from the static limit. Here, α is the fine structure constant. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential includes a novel term consisting of dilogarithmic function (eB)Li 2 (-(2α/π)(eB/m 2 )). Using the ring improved (one-loop) effective potential including the one-loop effective potential and ring potential in the IR limit, the dynamical chiral symmetry breaking of QED is studied at finite temperature and in the presence of the strong magnetic field. The gap equation, the dynamical mass and the critical temperature of QED in the regime of the lowest Landau level dominance are determined in the improved IR as well as in the static limit. For a given value of the magnetic field, the improved ring potential is shown to be more efficient in decreasing the critical temperature arising from the one-loop effective potential.

  9. Renormalization of QED with planar binary trees

    International Nuclear Information System (INIS)

    Brouder, C.

    2001-01-01

    The Dyson relations between renormalized and bare photon and electron propagators Z 3 anti D(q)=D(q) and Z 2 anti S(q)=S(q) are expanded over planar binary trees. This yields explicit recursive relations for the terms of the expansions. When all the trees corresponding to a given power of the electron charge are summed, recursive relations are obtained for the finite coefficients of the renormalized photon and electron propagators. These relations significantly decrease the number of integrals to carry out, as compared to the standard Feynman diagram technique. In the case of massless quantum electrodynamics (QED), the relation between renormalized and bare coefficients of the perturbative expansion is given in terms of a Hopf algebra structure. (orig.)

  10. On the classical dynamics of charges in non-commutative QED

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Mohammadzadeh, H.

    2004-01-01

    Following Wong's approach to formulating the classical dynamics of charged particles in non-Abelian gauge theories, we derive the classical equations of motion of a charged particle in U(1) gauge theory on non-commutative space, the so-called non-commutative QED. In the present use of the procedure, it is observed that the definition of the mechanical momenta should be modified. The derived equations of motion manifest the previous statement about the dipole behavior of the charges in non-commutative space. (orig.)

  11. FIN5 positively regulates far-red light responses in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Cho, D.S.; Hong, S.H.; Nam, H.G.; Soh, M.S.

    2003-01-01

    We report the characterization of a semi-dominant mutation fin5-1 (far-red insensitive 5-1) of Arabidopsis, which was isolated from genetic screening of phytochrome A (phyA) signaling components. Plants with the fin5-1 mutation exhibited a long hypocotyl phenotype when grown under far-red (FR) light, but not under red light. Physiological analyses implied that FIN5 might be differentially involved in diverse responses that are regulated by phyA under continuous FR light. Anthocyanin accumulation, gravitropic response of hypocotyl growth, and FR light-preconditioned blocking of greening were also impaired in the fin5-1 mutant, whereas photoperiodic floral induction was not, if at all, significantly affected. Moreover, light-regulated expression of the CHS, PORA and PsbS genes was attenuated in fin5-1 mutant plants, while the light-induced expression of CAB was normal. The mutation exhibited semi-dominance regarding control of hypocotyl growth in FR light. We suggest that FIN5 defines a novel branch in the network of phyA signaling in Arabidopsis. (author)

  12. Role of ions in the regulation of light-harvesting

    Directory of Open Access Journals (Sweden)

    Radek Kana

    2016-12-01

    Full Text Available Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer. Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl- attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids, provides an electrical field. The electrical double layer is affected by the valence of the ions and interferes with the regulation of state transitions, protein interactions, and excitation energy spillover from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching of the excited state of chlorophyll a. A triggering of non-photochemical quenching proceeds via lumen acidification and is coupled to the export of positive counter-ions (Mg2+, K+ to the stroma or/and negative ions (e.g., Cl- into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+ in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of electrical double layer, proposed by James Barber (J. Barber (1980 Biochim Biophys Acta 594:253-308 in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+ and divalent (Mg2+ ions on light-harvesting and on screening of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters.

  13. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: belich@cbpf.br; helayel@gft.ucp.br; Del Cima, O.M. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: delcima@gft.ucp.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br

    2002-10-01

    We start from a parity-breaking MCS QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e{sup -}e{sup -} - bound state. Three expressions (V{sub eff{down_arrow}}{sub {down_arrow}}, V{sub eff{down_arrow}}{sub {up_arrow}}, V{sub eff{down_arrow}}{sub {down_arrow}}) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED{sub 3} model adopted may be suitable to address an eventual case of e{sup -}e{sup -} pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  14. Retino-hypothalamic regulation of light-induced murine sleep

    Directory of Open Access Journals (Sweden)

    Fanuel eMuindi

    2014-08-01

    Full Text Available The temporal organization of sleep is regulated by an interaction between the circadian clock and homeostatic processes. Light indirectly modulates sleep through its ability to phase shift and entrain the circadian clock. Light can also exert a direct, circadian-independent effect on sleep. For example, acute exposure to light promotes sleep in nocturnal animals and wake in diurnal animals. The mechanisms whereby light directly influences sleep and arousal are not well understood. In this review, we discuss the direct effect of light on sleep at the level of the retina and hypothalamus in rodents. We review murine data from recent publications showing the roles of rod-, cone- and melanopsin-based photoreception on the initiation and maintenance of light-induced sleep. We also present hypotheses about hypothalamic mechanisms that have been advanced to explain the acute control of sleep by light. Specifically, we review recent studies assessing the roles of the ventrolateral preoptic area and the suprachiasmatic nucleus. We also discuss how light might differentially promote sleep and arousal in nocturnal and diurnal animals respectively. Lastly, we suggest new avenues for research on this topic which is still in its early stages.

  15. AMIC: an expandable integrated analog front-end for light distribution moments analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spaggiari, M; Herrero, V; Lerche, C W; Aliaga, R; Monzo, J M; Gadea, R, E-mail: michele.spaggiari@gmail.com [Instituto de Instrumentacion para Imagen Molecular (I3M), Universidad Politecnica de Valencia, Camino de Vera, 46022, Valencia (Spain)

    2011-01-15

    In this article we introduce AMIC (Analog Moments Integrated Circuit), a novel analog Application Specific Integrated Circuit (ASIC) front-end for Positron Emission Tomography (PET) applications. Its working principle is based on mathematical analysis of light distribution through moments calculation. Each moment provides useful information about light distribution, such as energy, position, depth of interaction, skewness (deformation due to border effect) etc. A current buffer delivers a copy of each input current to several processing blocks. The current preamplifier is designed in order to achieve unconditional stability under high input capacitance, thus allowing the use of both Photo-Multiplier Tubes (PMT) and Silicon Photo-Multipliers (SiPM). Each processing block implements an analog current filtering by multiplying each input current by a programmable 8-bit coefficient. The latter is implemented through a high linear MOS current divider ladder, whose high sensitivity to variations in output voltages requires the integration of an extremely stable fully differential current collector. Output currents are then summed and sent to the output stage, that provides both a buffered output current and a linear rail-to-rail voltage for further digitalization. Since computation is purely additive, the 64 input channels of AMIC do not represent a limitation in the number of the detector's outputs. Current outputs of various AMIC structures can be combined as inputs of a final AMIC, thus providing a fully expandable structure. In this version of AMIC, 8 programmable blocks for moments calculation are integrated, as well as an I2C interface in order to program every coefficient. Extracted layout simulation results demonstrate that the information provided by moment calculation in AMIC helps to improve tridimensional positioning of the detected event. A two-detector test-bench is now being used for AMIC prototype characterization and preliminary results are presented.

  16. III–V quantum light source and cavity-QED on Silicon

    Science.gov (United States)

    Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621

  17. III-V quantum light source and cavity-QED on silicon.

    Science.gov (United States)

    Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.

  18. Present status and prospect of the experimental study of QED in high Z ions

    International Nuclear Information System (INIS)

    Briand, J.P.

    1993-01-01

    I summarize in this paper the present status of our experimental knowledge on the Lamb shift of high Z hydrogenlike ions. Some tentative prospect on the future improvements with the new large accelerators and ion sources are discussed and compared with the present accuracy of QED corrections. (orig.)

  19. Multiphoton production and tests of QED at LEP-II

    International Nuclear Information System (INIS)

    Winter, M.

    2001-01-01

    Data collected by the 4 LEP collaboration from 1995 to 2000 at collision energies ranging from 130 to 208 GeV were used to measure the cross-section of the process e + e - →γγ(γ). QED predictions for this reaction were tested with a few per-cent accuracy and manifestations of physics beyond the Standard Model (SM) were investigated. Preliminary lower bounds on the cut-off parameter Λ ± , the mass of an excited electron, the string mass scale underlying low-scale Quantum Gravity and on energy scales expression various contact interactions were derived. (author)

  20. Two-channel interaction models in cavity QED

    International Nuclear Information System (INIS)

    Wang, L.

    1993-01-01

    The authors introduce four fully quantized models of light-matter interactions in optical or microwave cavities. These are the first exactly soluble models in cavity quantum electrodynamics (cavity QED) that provide two transition channels for the flipping of atomic states. In these models a loss-free cavity is assumed to support three or four quantized field modes, which are coupled to a single atom. The atom exchanges photons with the cavity, in either the Raman configuration including both Stokes and anti-Stokes modes, or through two-photon cascade processes. The authors obtain the effective Hamiltonians for these models by adiabatically eliminating an off-resonant intermediate atomic level, and discuss their novel properties in comparison to the existing one-channel Jaynes-Cummings models. They give a detailed description of a method to find exact analytic solutions for the eigenfunctions and eigenvalues for the Hamiltonians of four models. These are also valid when the AC Stark shifts are included. It is shown that the eigenvalues can be expressed in very simple terms, and formulas for normalized eigenvectors are also given, as well as discussions of some of their simple properties. Heisenberg picture equations of motions are derived for several operators with solutions provided in a couple of cases. The dynamics of the systems with both Fock state and coherent state fields are demonstrated and discussed using the model's two key variables, the atomic inversion and the expectation value of photon number. Clear evidences of high efficiency mode-mixing are seen in both the Raman and cascade configurations, and different kinds of collapses and revivals are encountered in the atomic inversions. Effects of several factors like the AC Stark shift and variations in the complex coupling constants are also illustrated

  1. Solvable light-front model of the electromagnetic form factor of the relativistic two-body bound state in 1+1 dimensions

    International Nuclear Information System (INIS)

    Mankiewicz, L.; Sawicki, M.

    1989-01-01

    Within a relativistically correct yet analytically solvable model of light-front quantum mechanics we construct the electromagnetic form factor of the two-body bound state and we study the validity of the static approximation to the full form factor. Upon comparison of full form factors calculated for different values of binding energy we observe an unexpected effect that for very strongly bound states further increase in binding leads to an increase in the size of the bound system. A similar effect is found for another quantum-mechanical model of relativistic dynamics

  2. Resolving the SELEX--LHCb Double-Charm Baryon Conflict: The Impact of Intrinsic Heavy-Quark Hadroproduction and Supersymmetric Light-Front Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-01-01

    In this paper we show that the intrinsic heavy-quark QCD mechanism for the hadroproduction of heavy hadrons at large $x_F$ can resolve the apparent conflict between measurements of double-charm baryons by the SELEX fixed-target experiment and the LHCb experiment at the LHC collider. We show that both experiments are compatible, and that both results can be correct. The observed spectroscopy of double-charm hadrons is in agreement with the predictions of supersymmetric light front holographic QCD.

  3. Multiloop stringlike formulas for QED

    International Nuclear Information System (INIS)

    Lam, C.S.

    1993-01-01

    Multiloop gauge-theory amplitudes written in the Feynman-parameter representation are poised to take advantage of two important developments of the past decade: the spinor-helicity technique and the superstring reorganization. The former has been considered in a previous paper; the latter will be elaborated in this paper. We show here how to write multiloop stringlike formulas in the Feynman-parameter representation for any diagram in QED, including those involving other nonelectromagnetic interactions, provided the internal photon lines are not adjacent to any external photon line. The general connection between the Feynman-parameter approach and the superstring and/or first-quantized approach is discussed. In the special case of a one-loop multiphoton amplitude, these formulas reduce to the ones obtained by the superstring and the first-quantized methods. The stringlike formulas exhibit a simple gauge structure which makes the Ward-Takahashi identity apparent, and enables the integration-by-parts technique of Bern and Kosower to be applied, so that gauge-invariant parts can be extracted diagram by diagram with the seagull vertex neglected

  4. [Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. The effort in quantum field theory provides theoretical results to test or replace assumed ingredients of the QCM. Our primary emphasis in field theory continues to be the solution of non-perturbative problems. Two prominent examples are the development and solution of relativistic two-body wave equations for bound states and resonances and the development of methods for solving field theories via light-front quantization which include the treatment of a dynamical vacuum. An important spin-off from the relativistic two-body wave equation effort has been the solution of QED for electron-positron scattering which is complete through the order of one-photon exchange. Resonances are obtained which are in accord with the electron-positron peaks observed in the GSI heavy-ion experiments. In discovering this resonance phenomena we have uncovered a new scale for phenomena within QED. Although we have much progress to report, many outstanding problems remain. We propose a strong effort in the direction of eventually solving relativistic three-body wave equations for a model of the baryons. We also propose to continue our efforts to develop nonperturbative methods to solve quantum field theories with fermions both on the light-front and with equal time quantization

  5. Leading quantum gravitational corrections to scalar QED

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude, which are known to give the long range, low energy, leading quantum corrections, are used to construct the leading post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two charged scalars. The result is discussed in relation to experimental verifications

  6. Collision strengths from ground levels of Ti XIII using relativistic-Breit-Pauli approximation

    International Nuclear Information System (INIS)

    Mohan, M.; Hibbert, H.; Burke, P.G.; Keenan, F.

    1998-09-01

    The R-matrix method is used to calculate collision strengths from ground state to the first twenty-six fine structure levels of neon-like titanium by including the relativistic term coupling coefficients in the semi-Breit-Pauli approximation. Configuration interaction wave-functions are used to represent the first fifteen lowest LS-coupled target states in the R-matrix expansion. Results obtained are compared with other calculations. This is the first detailed calculation on this ion in which relativistic, exchange, channel couplings and short-range correlation effects are taken into account. (author)

  7. Probabilistic Teleportation of an Arbitrary Two-Atom State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-Ming

    2007-01-01

    We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED.It is shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not,our teleportation scheme can always be probabilistically realized.The success probability of teleportation is determined by the smaller coefficients of the two initially entangled atom pairs.

  8. Study of Multiphoton Final States and Tests of QED in $e^+ e^-$ collisions at $\\sqrt{s}$ up to 209 GeV

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2002-01-01

    The process e+ e- -> n gamma with n>=2 is studied at centre-of-mass energies ranging from \\root(s)=192 to 208 GeV. The data sample corresponds to a total integrated luminosity of 427 1/pb. The total and differential cross sections are found to be in agreement with the QED expectations. Using all the data collected with the L3 detector above the Z pole, limits on deviations from QED, excited electrons, contact interactions, extra space dimensions and excited spin-3/2 leptons are set.

  9. Front-Loaded Linezolid Regimens Result in Increased Killing and Suppression of the Accessory Gene Regulator System of Staphylococcus aureus

    Science.gov (United States)

    Brown, Tanya; Parasrampuria, Ridhi; Brazeau, Daniel A.; Forrest, Alan; Kelchlin, Pamela A.; Holden, Patricia N.; Peloquin, Charles A.; Hanna, Debra; Bulitta, Jurgen B.

    2012-01-01

    Front loading is a strategy used to optimize the pharmacodynamic profile of an antibiotic through the administration of high doses early in therapy for a short duration. Our aims were to evaluate the impact of front loading of linezolid regimens on bacterial killing and suppression of resistance and on RNAIII, the effector molecule of the accessory gene regulator system (encoded by agr) in methicillin-resistant Staphylococcus aureus (MRSA). Time-killing experiments over 48 h were utilized for linezolid against four strains of MRSA: USA100, USA300, USA400, and ATCC 29213. A hollow-fiber infection model simulated traditional and front-loaded human therapeutic regimens of linezolid versus USA300 at 106 CFU/ml over 240 h. Over 48 h in time-kill experiments, linezolid displayed bacteriostatic activity, with reductions of >1 log10 CFU/ml for all strains. Front-loaded regimens that were administered over 5 days, 1,200 mg every 12 h (q12h) (total, 10 doses) and 2,400 mg q12h (total, 10 doses) followed by 300 mg q12h thereafter, resulted in sustained bactericidal activity, with reductions of the area under the CFU curve of −6.15 and −6.03, respectively, reaching undetectable limits at the 10-day study endpoint. All regimens displayed a reduction in RNAIII relative expression at 24 h and 240 h compared with that of the growth control. Monte Carlo simulations predicted a linezolid are promising and may be of utility in severe MRSA infections, where early aggressive therapy is necessary. PMID:22526313

  10. Supersymmetric QED at finite temperature and the principle of equivalence

    International Nuclear Information System (INIS)

    Robinett, R.W.

    1985-01-01

    Unbroken supersymmetric QED is examined at finite temperature and it is shown that the scalar and spinor members of a chiral superfield acquire different temperature-dependent inertial masses. By considering the renormalization of the energy-momentum tensor it is also shown that the T-dependent scalar-spinor gravitational masses are also no longer degenerate and, moreover, are different from their T-dependent inertial mass shifts implying a violation of the equivalence principle. The temperature-dependent corrections to the spinor (g-2) are also calculated and found not to vanish

  11. Entangled-photon generation from a quantum dot in cavity QED

    International Nuclear Information System (INIS)

    Ajiki, Hiroshi; Ishihara, Hajime

    2009-01-01

    We theoretically study polarization-entangled photon generation from a single quantum dot in a microcavity. Entangled-photon pairs with singlet or triplet Bell states are generated in the resonant-hyperparametric scattering via dressed states in the cavity QED. Although co-polarized non-entangled photons are also generated, the generation is dramatically suppressed in the strong-coupling limit owing to the photon blockade effect. Finite binding energy of biexciton is also important for the generation of photon pairs with high degree of entanglement. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Scaling for deuteron structure functions in a relativistic light-front model

    International Nuclear Information System (INIS)

    Polyzou, W.N.; Gloeckle, W.

    1996-01-01

    Scaling limits of the structure functions [B.D. Keister, Phys. Rev. C 37, 1765 (1988)], W 1 and W 2 , are studied in a relativistic model of the two-nucleon system. The relativistic model is defined by a unitary representation, U(Λ,a), of the Poincaracute e group which acts on the Hilbert space of two spinless nucleons. The representation is in Dirac close-quote s [P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949)] light-front formulation of relativistic quantum mechanics and is designed to give the experimental deuteron mass and n-p scattering length. A model hadronic current operator that is conserved and covariant with respect to this representation is used to define the structure tensor. This work is the first step in a relativistic extension of the results of Hueber, Gloeckle, and Boemelburg. The nonrelativistic limit of the model is shown to be consistent with the nonrelativistic model of Hueber, Gloeckle, and Boemelburg. [D. Hueber et al. Phys. Rev. C 42, 2342 (1990)]. The relativistic and nonrelativistic scaling limits, for both Bjorken and y scaling are compared. The interpretation of y scaling in the relativistic model is studied critically. The standard interpretation of y scaling requires a soft wave function which is not realized in this model. The scaling limits in both the relativistic and nonrelativistic case are related to probability distributions associated with the target deuteron. copyright 1996 The American Physical Society

  13. Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED

    International Nuclear Information System (INIS)

    Sturm, Christian

    2013-01-01

    The running of the effective electromagnetic coupling is for many electroweak observables the dominant correction. It plays an important role for deriving constraints on the Standard Model in the context of electroweak precision measurements. We compute the four-loop QED corrections to the running of the effective electromagnetic coupling and perform a numerical evaluation of the different gauge invariant subsets

  14. High-Q AlAs/GaAs adiabatic micropillar cavities with submicron diameters for cQED experiments

    DEFF Research Database (Denmark)

    Lermer, M.; Gregersen, Niels; Dunzer, F.

    Quantum dot (QD) micropillar cavities represent an interesting class of microresonator systems aiming at the observation and application of cavity quantum electrodynamics (cQED) on a semiconductor platform. They combine valuable properties i.e. a highly directional and approximately Gaussian shaped...

  15. Phytohormone and Light Regulation of Chlorophyll Degradation

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhu

    2017-11-01

    Full Text Available Degreening, due to the net loss of chlorophyll (Chl, is the most prominent symptom during the processes of leaf senescence, fruit ripening, and seed maturation. Over the last decade or so, extensive identifications of Chl catabolic genes (CCGs have led to the revelation of the biochemical pathway of Chl degradation. As such, exploration of the regulatory mechanism of the degreening process is greatly facilitated. During the past few years, substantial progress has been made in elucidating the regulation of Chl degradation, particularly via the mediation of major phytohormones' signaling. Intriguingly, ethylene and abscisic acid's signaling have been demonstrated to interweave with light signaling in mediating the regulation of Chl degradation. In this review, we briefly summarize this progress, with an effort on providing a framework for further investigation of multifaceted and hierarchical regulations of Chl degradation.

  16. Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.M.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; ONeale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2006-01-01

    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer through its effect on the angular spectrum of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This is the strongest direct evidence ever presented that the running of alpha is consistent with Standard Model expectations. The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running, and therefore provide the first clear experimental evidence that hadronic loops also contribute.

  17. Algebraic renormalization of parity-preserving QED3 coupled to scalar matter II: broken case

    International Nuclear Information System (INIS)

    Cima, O.M. del; Franco, D.H.T.; Helayel-Neto, J.A.; Piguet, O.

    1996-11-01

    In this letter the algebraic renormalization method, which is independent of any kind of regularization scheme, is presented for the parity-preserving QED 3 coupled to scalar matter in the broken regime, where the scalar assumes a finite vacuum expectation value, =v. The model shows to be stable under radiative corrections and anomaly free. (author)

  18. Quantum master equation for QED in exact renormalization group

    International Nuclear Information System (INIS)

    Igarashi, Yuji; Itoh, Katsumi; Sonoda, Hidenori

    2007-01-01

    Recently, one of us (H. S.) gave an explicit form of the Ward-Takahashi identity for the Wilson action of QED. We first rederive the identity using a functional method. The identity makes it possible to realize the gauge symmetry even in the presence of a momentum cutoff. In the cutoff dependent realization, the nilpotency of the BRS transformation is lost. Using the Batalin-Vilkovisky formalism, we extend the Wilson action by including the antifield contributions. Then, the Ward-Takahashi identity for the Wilson action is lifted to a quantum master equation, and the modified BRS transformation regains nilpotency. We also obtain a flow equation for the extended Wilson action. (author)

  19. Power corrections to the HTL effective Lagrangian of QED

    Science.gov (United States)

    Carignano, Stefano; Manuel, Cristina; Soto, Joan

    2018-05-01

    We present compact expressions for the power corrections to the hard thermal loop (HTL) Lagrangian of QED in d space dimensions. These are corrections of order (L / T) 2, valid for momenta L ≪ T, where T is the temperature. In the limit d → 3 we achieve a consistent regularization of both infrared and ultraviolet divergences, which respects the gauge symmetry of the theory. Dimensional regularization also allows us to witness subtle cancellations of infrared divergences. We also discuss how to generalize our results in the presence of a chemical potential, so as to obtain the power corrections to the hard dense loop (HDL) Lagrangian.

  20. The European Commission's light bulb decree: Another costly regulation?

    Energy Technology Data Exchange (ETDEWEB)

    Frondel, Manuel, E-mail: frondel@rwi-essen.de [Ruhr-University Bochum (RUB), Ruhr-Graduate School in Economics (RGS Econ) (Germany); Rheinisch-Westfaelisches Institut fuer Wirtschaftsforschung (RWI), Hohenzollernstr. 1-3, 45128 Essen (Germany); Lohmann, Steffen [Rheinisch-Westfaelisches Institut fuer Wirtschaftsforschung (RWI), Hohenzollernstr. 1-3, 45128 Essen (Germany); Tinbergen Institute (Netherlands)

    2011-06-15

    Since September 2009, Regulation 244/2009 of the European Commission enforces the gradual phase-out of incandescent light bulbs. As of September 2012, only energy-efficient lighting sources will be allowed for sale. Among these are halogen light bulbs, light-emitting diodes (LED), or compact fluorescent light bulbs-often referred to as energy-saving light bulbs. The Commission's justification for the phase-out of conventional light bulbs maintains that a reduction in the electricity consumed will not only lead to lower energy cost for private households and industrial consumers, but at the same time lead to a decrease in greenhouse gas emissions. This article discusses possible reasons for the slow market diffusion of energy-saving light bulbs and shows that the investment in energy-efficient light bulbs does not necessarily lead to significant cost reductions. Drawing on some illustrative examples, we demonstrate that the use of cheaper incandescent bulbs instead of energy-saving light bulbs can be economically rational in cases of rather low usage times, in which the higher initial purchasing price might only pay off after very long time spans. Furthermore, due to the coexistence with the European Emissions Trading Scheme (ETS), this regulation attains no additional emission reductions beyond those achieved by the ETS alone. We thus conclude that the general ban of incandescent light bulbs is inappropriate and should be abolished by the Commission. - Research Highlights: > This article discusses reasons for the slow market diffusion of energy-saving light bulbs. > We show that using incandescent bulbs can be rational in cases of rather low usage times. > We conclude that the general ban of incandescent light bulbs should be abolished by the Commission.