The Pauli equation with differential operators for the spin
International Nuclear Information System (INIS)
Kern, E.
1978-01-01
The spin operator s = (h/2) sigma in the Pauli equation fulfills the commutation relation of the angular momentum and leads to half-integer eigenvalues of the eigenfunctions for s. If one tries to express s by canonically conjugated operators PHI and π = ( /i)delta/deltaPHI the formal angular momentum term s = PHIxπ fails because it leads only to whole-integer eigenvalues. However, the modification of this term in the form s = 1/2(π+PHI(PHI π)+PHIxπ) leads to the required result. The eigenfunction system belonging to this differential operator s(PHI, π) consists of (2s + 1) spin eigenfunctions xim(PHI) which are given explicitly. They form a basis for the wave functions of a particle of spin s. Applying this formalism to particles with s = 1/2, agreement is reached with Pauli's spin theory. The function s(PHI, π) follows from the theory of rotating rigid bodies. The continuous spin-variable PHI = ( x, y, z) can be interpreted classically as a 'turning vector' which defines the orientation in space of a rigid body. PHI is the positioning coordinate of the rigid body or the spin coordinate of the particle in analogy to the cartesian coordinate x. The spin s is a vector fixed to the body. (orig.) [de
Pauli and the spin-statistics theorem
Duck, Ian M
1997-01-01
This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties. Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that
Pauli and The Spin-Statistics Theorem
International Nuclear Information System (INIS)
Duck, Ian; Sudarshan, E.C.G.
1998-03-01
This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties.Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that 'everyone knows the spin-statistics theorem, but no one understands it'. This book simplifies and clarifies the formal statements of the theorem, and also corrects the invariably flawed intuitive explanations which are frequently put forward. The book will be of interest to many practising physicists in all fields who have long been frustrated by the impenetrable discussions on the subject which have been available until now.It will also be accessible to students at an advanced undergraduate level as an introduction to modern physics based directly on the classical writings of the founders, including Pauli, Dirac, Heisenberg, Einstein and many others
Spinor monopole harmonics and the Pauli spin equation
International Nuclear Information System (INIS)
Pereira, J.G.; Ferreira, P.L.
1982-01-01
In the framework of Wu and Yang theory of U(1) magnetic monopoles, two problems are revisited: (i) the binding of spin-0 monopole to a spin-1/2 particle possessing an arbitrary magnetic dipole moment, and (ii) the energy levels and properties of the electron-dyon system. In both problems, the spin-1/2 particle is assumed to obey the Pauli spin equation. Spin-orbit and other higher order terms are treated as a perturbation, in connection with the second mentioned problem. Wu and Yang's spinor monopole harmonics allow an elegant and simplified treatment of those problems. The results obtained are in good agreement with those obtained in older papers. (Author) [pt
Leibfried, D.; Wineland, D. J.
2018-03-01
Effective spin-spin interactions between ? qubits enable the determination of the eigenvalue of an arbitrary Pauli product of dimension N with a constant, small number of multi-qubit gates that is independent of N and encodes the eigenvalue in the measurement basis states of an extra ancilla qubit. Such interactions are available whenever qubits can be coupled to a shared harmonic oscillator, a situation that can be realized in many physical qubit implementations. For example, suitable interactions have already been realized for up to 14 qubits in ion traps. It should be possible to implement stabilizer codes for quantum error correction with a constant number of multi-qubit gates, in contrast to typical constructions with a number of two-qubit gates that increases as a function of N. The special case of finding the parity of N qubits only requires a small number of operations that is independent of N. This compares favorably to algorithms for computing the parity on conventional machines, which implies a genuine quantum advantage.
On the effects of the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian
International Nuclear Information System (INIS)
Badnell, N.R.
1997-01-01
We have incorporated the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian, namely contact spin-spin, two-body Darwin and orbit-orbit, into the program AUTOSTRUCTURE. Illustrative results are presented, including some for reactions involving the process of autoionization. (author)
Pauli-spin blockade in a vertical double quantum dot holding two to five electrons
International Nuclear Information System (INIS)
Kodera, T; Arakawa, Y; Tarucha, S; Ono, K; Amaha, S
2009-01-01
We use a vertical double quantum dot (QD) to study spin blockade (SB) for the two-to five-electron states. SB observed for the two- and four-electron states is both assigned to Pauli exclusion with formation of a spin triplet state, and lifted by singlet-triplet admixing due to fluctuating nuclear field. SB observed for the five-electron state is caused by combined Pauli effect and Hund's rule. We observe a hysteretic behavior of the SB leakage current for up and down sweep of magnetic field, and argue that SB and its lifting by hyperfine interaction are subtle with the spin configuration and modified depending on the inter-dot detuning and number of electrons.
Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect
Danon, Jeroen
2013-08-06
Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.
Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect
Danon, Jeroen; Wang, Xuhui; Manchon, Aurelien
2013-01-01
Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.
THE PHENOMENON OF HALF-INTEGER SPIN, QUATERNIONS, AND PAULI MATRICES
Directory of Open Access Journals (Sweden)
FERNANDO R. GONZÁLEZ DÍAZ
2017-01-01
Full Text Available In this paper the phenomenon of half-integer spin exemplification Paul AM Dirac made with a pair of scissors, an elastic cord and chair play. Four examples in which the same phenomenon appears and the algebraic structure of quaternions is related to one of the examples are described. Mathematical proof of the phenomenon using known topological and algebraic results are explained. The basic results of algebraic structures are described quaternions H , and an intrinsic relationship with the phenomenon half-integer spin and the Pauli matrices is established.
Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot
Wang, Qingwen; Klochan, Oleh; Hung, Jo-Tzu; Culcer, Dimitrie; Farrer, Ian; Ritchie, David; Hamilton, Alex
Electrically defined semiconductor quantum dots are appealing systems for spin manipulation and quantum information processing. Thanks to the weak hyperfine interaction and the strong spin-orbit interaction, heavy-holes in GaAs are promising candidates for all-electrical spin manipulation. However, making stable quantum dots in GaAs has only become possible recently, mainly because of difficulties in device fabrication and device stability. Here we present electrical transport measurements of heavy-holes in a lateral double quantum dot based on a GaAs /AlxGa1 - x As heterostructure. We observe clear Pauli spin blockade and show that the lifting of the spin blockade by an external magnetic field is extremely anisotropic. Numerical calculations of heavy-hole transport through a double quantum dot in the presence of strong spin-orbit interaction demonstrate quantitative agreement with experimental results, which indicates that the observed anisotropy can be explained by the anisotropic hole g-factor and the surface Dresselhaus spin-orbit coupling.
Rochette, Sophie; Ten Eyck, Gregory A.; Pluym, Tammy; Lilly, Michael P.; Carroll, Malcolm S.; Pioro-Ladrière, Michel
2015-03-01
Silicon quantum dots are promising candidates for quantum information processing as spin qubits with long coherence time. We present electrical transport measurements on a silicon metal-oxide-semiconductor (MOS) double quantum dot (DQD). First, Coulomb diamonds measurements demonstrate the one-electron regime at a relatively high temperature of 1.5 K. Then, the 8 mK stability diagram shows Pauli spin blockade with a large singlet-triplet separation of approximatively 0.40 meV, pointing towards a strong lifting of the valley degeneracy. Finally, numerical simulations indicate that by integrating a micro-magnet to those devices, we could achieve fast spin rotations of the order of 30 ns. Those results are part of the recent body of work demonstrating the potential of Si MOS DQD as reliable and long-lived spin qubits that could be ultimately integrated into modern electronic facilities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Spectral properties of Pauli operators on the Poincare upper-half plane
International Nuclear Information System (INIS)
Inahama, Yuzuru; Shirai, Shin-ichi
2003-01-01
We investigate the essential spectrum of the Pauli operators (and the Dirac and the Schroedinger operators) with magnetic fields on the Poincare upper-half plane. The magnetic fields under consideration are asymptotically constant (which may be equal to zero), or diverge at infinity. Moreover, the Aharonov-Casher type result is also considered
Treatment of pauli exclusion operator in G-matrix calculations for hypernuclei
International Nuclear Information System (INIS)
Kuo, T.T.S.; Hao, Jifa
1995-01-01
We discuss a matrix-inversion method for treating the Pauli exclusion operator Q in the hyperon-nucleon G-matrix equation for hypernuclei such as Λ 16 O. A model space consisted of shell-model wave functions is employed. We discuss that it is preferable to employ a free-particle spectrum for the intermediate states of the G matrix. This leads to the difficulty that the G-matrix intermediate states are plane waves and on this representation the Pauli operator Q has a rather complicated structure. A matrix-inversion method for over-coming this difficulty is examined. To implement this method it is necessary to employ a so-called n 3Λ truncation approximation. Numerical calculations using the Juelich B tilde and A tilde potentials have been performed to study the accuracy of this approximation. (author)
International Nuclear Information System (INIS)
Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy
2011-01-01
The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin
2002-01-01
The annual meeting of the Pauli Committee on 30 August will be enlivened this year by a celebration to mark the publication of : No Time to be Brief - A scientific biography of Wolfgang Pauli, by Charles P. Enz, Professor Emeritus of the University of Geneva.
International Nuclear Information System (INIS)
Zhalij, Alexander
2002-01-01
We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field
About the velocity operator for spinning particles in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Catania (Italy); Recami, Erasmo; Rodrigues Junior, Waldyr A. [Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada
1995-12-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, we introduce - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into sensor algebra, we also propose a new (non-relativistic) velocity operator for a spin 1/2 particle. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of-mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current. We find furthermore that the Zitterbewegung motion involves a velocity field which is solenoidal, and that the local angular velocity is parallel to the spin vector. In presence of a non-constant spin vector (Pauli case) we have, besides the component normal to spin present even in the Schroedinger theory, also a component of the local velocity which is parallel to the rotor of the spin vector. (author). 19 refs.
About the velocity operator for spinning particles in quantum mechanics
International Nuclear Information System (INIS)
Salesi, Giovanni; Recami, Erasmo; Rodrigues Junior, Waldyr A.
1995-12-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, we introduce - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into sensor algebra, we also propose a new (non-relativistic) velocity operator for a spin 1/2 particle. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of-mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current. We find furthermore that the Zitterbewegung motion involves a velocity field which is solenoidal, and that the local angular velocity is parallel to the spin vector. In presence of a non-constant spin vector (Pauli case) we have, besides the component normal to spin present even in the Schroedinger theory, also a component of the local velocity which is parallel to the rotor of the spin vector. (author). 19 refs
Two-spinor description of massive particles and relativistic spin projection operators
Isaev, A. P.; Podoinitsyn, M. A.
2018-04-01
On the basis of the Wigner unitary representations of the covering group ISL (2 , C) of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac-Pauli-Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends-Fronsdal projection operators). With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends-Fronsdal projection operators) and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends-Fronsdal projection operators for arbitrary space-time dimensions D > 2.
Energy Technology Data Exchange (ETDEWEB)
Wang, Jiyin; Huang, Shaoyun, E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn; Lei, Zijin [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Pan, Dong; Zhao, Jianhua [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Xu, H. Q., E-mail: hqxu@pku.edu.cn, E-mail: syhuang@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden)
2016-08-01
We demonstrate direct measurements of the spin-orbit interaction and Landé g factors in a semiconductor nanowire double quantum dot. The device is made from a single-crystal pure-phase InAs nanowire on top of an array of finger gates on a Si/SiO{sub 2} substrate and the measurements are performed in the Pauli spin-blockade regime. It is found that the double quantum dot exhibits a large singlet-triplet energy splitting of Δ{sub ST} ∼ 2.3 meV, a strong spin-orbit interaction of Δ{sub SO} ∼ 140 μeV, and a large and strongly level-dependent Landé g factor of ∼12.5. These results imply that single-crystal pure-phase InAs nanowires are desired semiconductor nanostructures for applications in quantum information technologies.
Leon, Juan; Maccone, Lorenzo
2017-12-01
Schrödinger's equation says that the Hamiltonian is the generator of time translations. This seems to imply that any reasonable definition of time operator must be conjugate to the Hamiltonian. Then both time and energy must have the same spectrum since conjugate operators are unitarily equivalent. Clearly this is not always true: normal Hamiltonians have lower bounded spectrum and often only have discrete eigenvalues, whereas we typically desire that time can take any real value. Pauli concluded that constructing a general a time operator is impossible (although clearly it can be done in specific cases). Here we show how the Pauli argument fails when one uses an external system (a "clock") to track time, so that time arises as correlations between the system and the clock (conditional probability amplitudes framework). In this case, the time operator is conjugate to the clock Hamiltonian and not to the system Hamiltonian, but its eigenvalues still satisfy the Schrödinger equation for arbitrary system Hamiltonians.
The chirality operators for Heisenberg spin systems
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs
Generalized field quantization and the Pauli principle
International Nuclear Information System (INIS)
Govorkov, A.B.
1990-01-01
The work is an attempt to prove that the generalized Pauli principle (i.e. Fermi statistics) for the half-integer spin fields and the Bose statistics for the integer spin fields with allowance for the existence of internal gauge symmetries are consequences of more general assumptions of the local quantum field theory. 32 refs.; 1 tab
International Nuclear Information System (INIS)
Stapp, H.P.
1992-01-01
The role of subjective experience in physical theory is discussed, with particular attention to the later ideas of Wolfgang Pauli. These ideas appear to open the door to a unified framework for the development of science
Energy Technology Data Exchange (ETDEWEB)
Stapp, H.P.
1992-09-10
The role of subjective experience in physical theory is discussed, with particular attention to the later ideas of Wolfgang Pauli. These ideas appear to open the door to a unified framework for the development of science.
Is weak violation of the Pauli principle possible?
International Nuclear Information System (INIS)
Ignat'ev, A.Yu.; Kuz'min, V.A.
1987-01-01
The question considered in the work is whether there are models which can account for small violation of the Pauli principle. A simple algebra is constructed for the creation-annihilation operators, which contains a parameter β and describe small violation of the Pauli principle (the Pauli principle is valid exactly for β=0). The commutation relations in this algebra are trilinear. A model is presented, basing upon this commutator algebra, which allows transitions violating the Pauli principle, their probability being suppressed by a factor of β 2 (even though the Hamiltonian does not contain small parameters)
Is a weak violation of the Pauli principle possible?
International Nuclear Information System (INIS)
Ignat'ev, A.Y.; Kuz'min, V.A.
1987-01-01
We examine models in which there is a weak violation of the Pauli principle. A simple algebra of creation and annihilation operators is constructed which contains a parameter β and describes a weak violation of the Pauli principle (when β = 0 the Pauli principle is satisfied exactly). The commutation relations in this algebra turn out to be trilinear. A model based on this algebra is described. It allows transitions in which the Pauli principle is violated, but the probability of these transitions is suppressed by the quantity β 2 (even though the interaction Hamiltonian does not contain small parameters)
Nuclear spin states and quantum logical operations
International Nuclear Information System (INIS)
Orlova, T.A.; Rasulov, E.N.
2006-01-01
Full text: To build a really functional quantum computer, researchers need to develop logical controllers known as 'gates' to control the state of q-bits. In this work , equal quantum logical operations are examined with the emphasis on 1-, 2-, and 3-q-bit gates.1-q-bit quantum logical operations result in Boolean 'NOT'; the 'NOT' and '√NOT' operations are described from the classical and quantum perspective. For the 'NOT' operation to be performed, there must be a means to switch the state of q-bits from to and vice versa. For this purpose either a light or radio pulse of a certain frequency can be used. If the nucleus has the spin-down state, the spin will absorb a portion of energy from electromagnetic current and switch into the spin-up state, and the radio pulse will force it to switch into state. An operation thus described from purely classical perspective is clearly understood. However, operations not analogous to the classical type may also be performed. If the above mentioned radio pulses are only half the frequency required to cause a state switch in the nuclear spin, the nuclear spin will enter the quantum superposition state of the ground state (↓) and excited states (↑). A recurring radio pulse will then result in an operation equivalent to 'NOT', for which reason the described operation is called '√NOT'. Such an operation allows for the state of quantum superposition in quantum computing, which enables parallel processing of several numbers. The work also treats the principles of 2-q-bit logical operations of the controlled 'NOT' type (CNOT), 2-q-bit (SWAP), and the 3-q-bit 'TAFFOLI' gate. (author)
A biography of Wolfgang Ernest Pauli; La vie de Wolfgang Ernest Pauli
Energy Technology Data Exchange (ETDEWEB)
Boudenot, J.C. [Thales, 91 - Palaiseau (France)
2009-01-15
This article presents a short biography of Pauli in which we find the most important facts of his scientific career and some stunning sides of his personality. Pauli was born in 1900 in Vienna in an intellectual family. He was very soon interested in physics. At the age of 21 he published a relevant article on relativity, and the same year he presented a doctorate thesis on the quantum description of the H{sub 2}{sup +} molecular ion. As soon as 1925, Pauli discovered the exclusion principle (for which he will receive the Nobel prize in 1945), and was the first to calculate the energy levels of the hydrogen atom by using the Heisenberg formalism. In 1930, he suggested the existence of an unknown particle (the neutrino) to explain the continuous spectrum of the beta decay. In 1934, he found a link between the spin and the quantum statistics that is now called the spin-statistic theorem. Pauli died in december 1958 from a pancreas tumor. (A.C.)
Autonomous calibration of single spin qubit operations
Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor
2017-12-01
Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.
Bennett, Sophia Elizabeth
2017-01-01
This small but historically valuable collection was donated by Pauli’s widow who, with the help of friends including his former assistants Charles Enz and Victor Weisskopf, gathered together Pauli’s manuscripts and notes, and tracked down originals or copies of his many letters. His correspondence with Bohr, Heisenberg Einstein and others, discussing many of the new ideas in physics, has been published (link) and provides an invaluable resource for those interested in studying the development of 20th century science. Unlike the main CERN Archive, most items in the Pauli collection have been digitised and are available online.
Digital operation and eye diagrams in spin-lasers
International Nuclear Information System (INIS)
Wasner, Evan; Bearden, Sean; Žutić, Igor; Lee, Jeongsu
2015-01-01
Digital operation of lasers with injected spin-polarized carriers provides an improved operation over their conventional counterparts with spin-unpolarized carriers. Such spin-lasers can attain much higher bit rates, crucial for optical communication systems. The overall quality of a digital signal in these two types of lasers is compared using eye diagrams and quantified by improved Q-factors and bit-error-rates in spin-lasers. Surprisingly, an optimal performance of spin-lasers requires finite, not infinite, spin-relaxation times, giving a guidance for the design of future spin-lasers
Massive gravity and Fierz-Pauli theory
International Nuclear Information System (INIS)
Blasi, Alberto; Maggiore, Nicola
2017-01-01
Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)
Massive gravity and Fierz-Pauli theory
Energy Technology Data Exchange (ETDEWEB)
Blasi, Alberto [Universita di Genova, Dipartimento di Fisica, Genova (Italy); Maggiore, Nicola [I.N.F.N.-Sezione di Genova, Genoa (Italy)
2017-09-15
Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)
Stern-Gerlach experiment, electron spin and intermediate quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Mackintosh, A.R. (Copenhagen Univ. (Denmark). H.C. Oersted Inst.)
1983-01-01
The paper deals with the theory of electron spin. The Stern-Gerlach experiment, the anticommutation relations and the properties of spin operators are discussed. The Pauli theory, Dirac transformation theory, the double Stern-Gerlach experiment, the EPR paradox and Bell's inequality are also covered.
Projection operator and propagator for an arbitrary integral spin
Huang Shi Zhong; Wu Ning; Zheng Zhi Peng
2002-01-01
Based on the solution of the Bargmann-Wigner equation for an arbitrary integral spin, a direct derivation of the projection operator and propagator for an arbitrary integral spin is presented. The explicit form for the spin projection operators constructed by Behrends and Fronsdal is confirmed. The commutation rules and a general expression for the Feynman propagator for a free particle of arbitrary integral spin are deduced
Indian Academy of Sciences (India)
his exclusion principle, the quantum theory was a mess. Moreover, it could ... This is a function of all the coordinates and 'internal variables' such as spin, of all the ... must remain basically the same (ie change by a phase factor at most) if we ...
The Stern-Gerlach experiment, electron spin and intermediate quantum mechanics
International Nuclear Information System (INIS)
Mackintosh, A.R.
1983-01-01
The paper deals with the theory of electron spin. The Stern-Gerlach experiment, the anticommutation relations and the properties of spin operators are discussed. The Pauli theory, Dirac transformation theory, the double Stern-Gerlach experiment, the EPR paradox and Bell's inequality are also covered. (U.K.)
Ultracoherent operation of spin qubits with superexchange coupling
Rančić, Marko J.; Burkard, Guido
2017-11-01
With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.
Effect of the Pauli principle in elastic scattering
International Nuclear Information System (INIS)
Picklesimer, A.; Thaler, R.M.
1981-01-01
The effect of imposition of the Pauli principle for two-fragment elastic nuclear scattering is examined. It is shown that the antisymmetrized problem can be cast into the Lippmann-Schwinger form with an effective interaction in which the effect of the Pauli principle is entirely absorbed into the effective interaction potential operator. This result enables the formalism to be developed in analogy with the unsymmetrized formulation. Central to the approach is the choice of the off-shell extension of the transition operator. Comparison is made with a previously proposed treatment based on a different off-shell extension. It is shown that both the antisymmetrized transition operator and the associated optical potential proposed herein are readily expressed as spectator expansions in which the effect of the Pauli principle among the active fermions is incorporated in a physically appealing fashion at each stage of the expansion
From Pauli Matrices to Quantum Ito Formula
International Nuclear Information System (INIS)
Pautrat, Yan
2005-01-01
This paper answers important questions raised by the recent description, by Attal, of a robust and explicit method to approximate basic objects of quantum stochastic calculus on bosonic Fock space by analogues on the state space of quantum spin chains. The existence of that method justifies a detailed investigation of discrete-time quantum stochastic calculus. Here we fully define and study that theory and obtain in particular a discrete-time quantum Ito formula, which one can see as summarizing the commutation relations of Pauli matrices.An apparent flaw in that approximation method is the difference in the quantum Ito formulas, discrete and continuous, which suggests that the discrete quantum stochastic calculus differs fundamentally from the continuous one and is therefore not a suitable object to approximate subtle phenomena. We show that flaw is only apparent by proving that the continuous-time quantum Ito formula is actually a consequence of its discrete-time counterpart
Wolfgang Pauli - a portrait. History of science
International Nuclear Information System (INIS)
Fischer, E.P.
2008-01-01
Wolfgang Pauli (1900-1958) is named by his colleagues in the same breath with Isaac Newton and Albert Einstein, who named Pauli his ''mental son''. The history of science had neglected Pauli for a long time. The reason for this may be found in Pauli's attempts to capture the role of the unconscious in physics and the meaning of dreams in the creation of scientific pictures of the world. For Pauli a scientific method consisted in activating the unconscious and hoping that it would start up that specific type of ''painting viewing'' from which the terms can arise by which we express our understanding
Comments on spin operators and spin-polarization states of 2+1 fermions
Energy Technology Data Exchange (ETDEWEB)
Gavrilov, S.P.; Tomazelli, J.L. [Departamento Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil)
2005-02-01
In this brief article we discuss spin-polarization operators and spin-polarization states of 2+1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2+1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2+1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory. (orig.)
Is small violation of the Pauli principle possible?
International Nuclear Information System (INIS)
Ignatiev, A.Yu.; Kuzmin, V.A.
1987-02-01
The Pauli exclusion principle is one of the most fundamental laws of nature. Yet the experiment shows that many fundamental laws are in fact not absolute, but only approximate, i.e. are valid only to a certain accuracy. At present, however, there are no answers to the question: ''To what accuracy is the Pauli principle valid?'' This is so because there are no models capable of describing small deviations from the exclusion principle. In the present paper we consider the problem of constructing such models. We have constructed the simplest algebra of the creation and annihilation operators with a parameter β which incorporates the small violations of the Pauli principle (for β=0 the Pauli principle holds absolutely true). The commutation relations in this model prove to be trilinear. We then present a model Hamiltonian based on the constructed algebra which describes the Pauli principle violating transitions i.e. transitions of two identical particles into the same state with the probability suppressed by a factor of β 2 (notwithstanding the fact that the Hamiltonian itself does not contain any small parameters). (author). 8 refs
All-spin logic operations: Memory device and reconfigurable computing
Patra, Moumita; Maiti, Santanu K.
2018-02-01
Exploiting spin degree of freedom of electron a new proposal is given to characterize spin-based logical operations using a quantum interferometer that can be utilized as a programmable spin logic device (PSLD). The ON and OFF states of both inputs and outputs are described by spin state only, circumventing spin-to-charge conversion at every stage as often used in conventional devices with the inclusion of extra hardware that can eventually diminish the efficiency. All possible logic functions can be engineered from a single device without redesigning the circuit which certainly offers the opportunities of designing new generation spintronic devices. Moreover, we also discuss the utilization of the present model as a memory device and suitable computing operations with proposed experimental setups.
Q-operators for the open Heisenberg spin chain
Directory of Open Access Journals (Sweden)
Rouven Frassek
2015-12-01
Full Text Available We construct Q-operators for the open spin-12 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang–Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
Then the various algebraic properties of Pauli matricesare studied as properties of matrix algebra. What has beenshown in this article is that Pauli matrices are a representationof Clifford algebra of spin and hence all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a ...
Is the Pauli exclusion principle the origin of electron localisation?
Rincón, Luis; Torres, F. Javier; Almeida, Rafael
2018-03-01
In this work, we inquire into the origins of the electron localisation as obtained from the information content of the same-spin pair density, γσ, σ(r2∣r1). To this end, we consider systems of non-interacting and interacting identical Fermions contained in two simple 1D potential models: (1) an infinite potential well and (2) the Kronig-Penney periodic potential. The interparticle interaction is considered through the Hartree-Fock approximation as well as the configuration interaction expansion. Morover, the electron localisation is described through the Kullback-Leibler divergence between γσ, σ(r2∣r1) and its associated marginal probability. The results show that, as long as the adopted method properly includes the Pauli principle, the electronic localisation depends only modestly on the interparticle interaction. In view of the latter, one may conclude that the Pauli principle is the main responsible for the electron localisation.
Pauli-Guersey symmetry in gauge theories
International Nuclear Information System (INIS)
Stern, J.
1983-05-01
Gauge theories with massless or massive fermions in a selfcontragredient representation exhibit global symmetries of Pauli-Guersey type. Some of them are broken spontaneously leading to a difermion Goldstone bosons. An example of a boson version of the Pauli-Guersey symmetry is provided by the Weinberg-Salam model in the limit THETAsub(w)→O
A toy model for higher spin Dirac operators
International Nuclear Information System (INIS)
Eelbode, D.; Van de Voorde, L.
2010-01-01
This paper deals with the higher spin Dirac operator Q 2,1 acting on functions taking values in an irreducible representation space for so(m) with highest weight (5/2, 3/2, 1/2,..., 1/2). . This operator acts as a toy model for generalizations of the classical Rarita-Schwinger equations in Clifford analysis. Polynomial null solutions for this operator are studied in particular.
Effect of the Pauli principle on the nonrotational states in odd-A deformed nuclei
International Nuclear Information System (INIS)
Bastrukov, S.I.; Nesterenko, V.O.; Soloviev, V.G.
1982-01-01
The commutation relations between the quasiparticle and phonon operators are used to obtain the equations allowing a correct accounting of the Pauli principle for the description of the states of odd-A deformed nuclei. It is shown, that if in the quasiparticle plus phonon component the Pauli principle is not violated or is slightly violated, then a relevant vibrational state may exist in an odd-A deformed nucleus
Non Pauli-Fierz Massive Gravitons
Dvali, Gia; Redi, Michele
2008-01-01
We study general Lorentz invariant theories of massive gravitons. We show that, contrary to the standard lore, there exist consistent theories where the graviton mass term violates Pauli-Fierz structure. For theories where the graviton is a resonance this does not imply the existence of a scalar ghost if the deviation from Pauli-Fierz becomes sufficiently small at high energies. These types of mass terms are required by any consistent realization of the DGP model in higher dimension.
Thermalization Time Bounds for Pauli Stabilizer Hamiltonians
Temme, Kristan
2017-03-01
We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))}, where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.
Two-spinor description of massive particles and relativistic spin projection operators
Directory of Open Access Journals (Sweden)
A.P. Isaev
2018-04-01
Full Text Available On the basis of the Wigner unitary representations of the covering group ISL(2,C of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac–Pauli–Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends–Fronsdal projection operators. With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends–Fronsdal projection operators and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends–Fronsdal projection operators for arbitrary space–time dimensions D>2.
Wu, Ning
2018-01-01
For the one-dimensional spin-1/2 XX model with either periodic or open boundary conditions, it is shown by using a fermionic approach that the matrix element of the spin operator Sj- (Sj-Sj'+ ) between two eigenstates with numbers of excitations n and n +1 (n and n ) can be expressed as the determinant of an appropriate (n +1 )×(n +1 ) matrix whose entries involve the coefficients of the canonical transformations diagonalizing the model. In the special case of a homogeneous periodic XX chain, the matrix element of Sj- reduces to a variant of the Cauchy determinant that can be evaluated analytically to yield a factorized expression. The obtained compact representations of these matrix elements are then applied to two physical scenarios: (i) Nonlinear optical response of molecular aggregates, for which the determinant representation of the transition dipole matrix elements between eigenstates provides a convenient way to calculate the third-order nonlinear responses for aggregates from small to large sizes compared with the optical wavelength; and (ii) real-time dynamics of an interacting Dicke model consisting of a single bosonic mode coupled to a one-dimensional XX spin bath. In this setup, full quantum calculation up to N ≤16 spins for vanishing intrabath coupling shows that the decay of the reduced bosonic occupation number approaches a finite plateau value (in the long-time limit) that depends on the ratio between the number of excitations and the total number of spins. Our results can find useful applications in various "system-bath" systems, with the system part inhomogeneously coupled to an interacting XX chain.
Experimental Tests of Quantum Mechanics: Pauli Exclusion Principle and Spontaneous Collapse Models
Petrascu, Catalina Curceanu; Bragadireanu, Mario; Clozza, Alberto; Guaraldo, Carlo; Iliescu, Mihai; Rizzo, Alessandro; Vidal, Antonio Romero; Scordo, Alessandro; Sirghi, Diana Laura; Sirghi, Florin; Sperandio, Laura; Doce, Oton Vazquez; Bassi, Angelo; Donadi, Sandro; Milotti, Edoardo; Laubenstein, Matthias; Bertolucci, Sergio; Bragadireanu, Mario; Curceanu, Catalina; Pietreanu, Dorel; Ponta, Titus; Cargnelli, Michael; Ishiwatari, Tomoichi; Marton, Johann; Widmann, Eberhard; Zmeskal, Johann; Matteo, Sergio di; Egger, Jean Pierre
2014-01-01
The Pauli exclusion principle (PEP), as a consequence or the spin-statistics connection, is one of the basic principles of the modern physics. Being at the very basis of our understanding of matter, it spurs a lively debate on its possible limits, deeply rooted as it is in the very foundations of Quantum Field Theory. The VIP (VIolation of the Pauli exclusion principle) experiment is searching for a possible small violation of the PEP for electrons, using the method of searching for Pauli Exclusion Principle forbidden atomic transitions in copper. We describe the experimental method and the obtained results; we briefly present future plans to go beyond the actual limit by upgrading the experiment using vetoed new spectroscopic fast Silicon Drift Detectors. We also mention the possibility of using a similar experimental technique to search for possible X-rays generated in the spontaneous collapse models of quantum mechanics.
Energy Technology Data Exchange (ETDEWEB)
Fischer, E.P.
2008-07-01
Wolfgang Pauli (1900-1958) is named by his colleagues in the same breath with Isaac Newton and Albert Einstein, who named Pauli his ''mental son''. The history of science had neglected Pauli for a long time. The reason for this may be found in Pauli's attempts to capture the role of the unconscious in physics and the meaning of dreams in the creation of scientific pictures of the world. For Pauli a scientific method consisted in activating the unconscious and hoping that it would start up that specific type of ''painting viewing'' from which the terms can arise by which we express our understanding.
Testing the Pauli Exclusion Principle for Electrons
International Nuclear Information System (INIS)
Marton, J; Berucci, C; Cargnelli, M; Ishiwatari, T; Bartalucci, S; Bragadireanu, M; Curceanu, C; Guaraldo, C; Iliescu, M; Pietreanu, D; Piscicchia, K; Ponta, T; Vidal, A Romero; Scordo, A; Sirghi, D L; Bertolucci, S; Matteo, S Di; Egger, J-P; Laubenstein, M; Milotti, E
2013-01-01
One of the fundamental rules of nature and a pillar in the foundation of quantum theory and thus of modern physics is represented by the Pauli Exclusion Principle. We know that this principle is extremely well fulfilled due to many observations. Numerous experiments were performed to search for tiny violation of this rule in various systems. The experiment VIP at the Gran Sasso underground laboratory is searching for possible small violations of the Pauli Exclusion Principle for electrons leading to forbidden X-ray transitions in copper atoms. VIP is aiming at a test of the Pauli Exclusion Principle for electrons with high accuracy, down to the level of 10 −29 – 10 −30 , thus improving the previous limit by 3–4 orders of magnitude. The experimental method, results obtained so far and new developments within VIP2 (follow-up experiment at Gran Sasso, in preparation) to further increase the precision by 2 orders of magnitude will be presented
Non-Pauli-Fierz Massive Gravitons
International Nuclear Information System (INIS)
Dvali, Gia; Pujolas, Oriol; Redi, Michele
2008-01-01
We study general Lorentz invariant theories of massive gravitons. We show that, contrary to the standard lore, there exist consistent theories where the graviton mass term violates Pauli-Fierz structure. For theories where the graviton is a resonance, this does not imply the existence of a scalar ghost if the deviation from a Pauli-Fierz structure becomes sufficiently small at high energies. These types of mass terms are required by any consistent realization of the Dvali-Gabadadze-Porrati model in higher dimension
Quantum heat engine operating between thermal and spin reservoirs
Wright, Jackson S. S. T.; Gould, Tim; Carvalho, André R. R.; Bedkihal, Salil; Vaccaro, Joan A.
2018-05-01
Landauer's erasure principle is a cornerstone of thermodynamics and information theory [R. Landauer, IBM J. Res. Dev. 5, 183 (1961), 10.1147/rd.53.0183]. According to this principle, erasing information incurs a minimum energy cost. Recently, Vaccaro and Barnett [J. A. Vaccaro and S. M. Barnett, Proc. R. Soc. A 467, 1770 (2011), 10.1098/rspa.2010.0577] explored information erasure in the context of multiple conserved quantities and showed that the erasure cost can be solely in terms of spin angular momentum. As Landauer's erasure principle plays a fundamental role in heat engines, their result considerably widens the possible configurations that heat engines can have. Motivated by this, we propose here an optical heat engine that operates under a single thermal reservoir and a spin angular momentum reservoir coupled to a three-level system with two energy degenerate ground states. The proposed heat engine operates without producing waste heat and goes beyond the traditional Carnot engine where the working fluid is subjected to two thermal baths at different temperatures.
The Pauli-Jung conjecture and its impact today
Fuchs, Christopher A
2014-01-01
Related to the key areas of Pauli''s and Jung''s joint interests, the book covers overlapping issues from the perspectives of physics, philosophy, and psychology. Of primary significance are epistemological questions connected to issues such as realism, measurement, observation, consciousness, and the unconscious. The contributions assess the extensive material that we have about Pauli''s and Jung''s ideas today, with particular respect to concrete research questions and projects based on and re...
Metric versus observable operator representation, higher spin models
Fring, Andreas; Frith, Thomas
2018-02-01
We elaborate further on the metric representation that is obtained by transferring the time-dependence from a Hermitian Hamiltonian to the metric operator in a related non-Hermitian system. We provide further insight into the procedure on how to employ the time-dependent Dyson relation and the quasi-Hermiticity relation to solve time-dependent Hermitian Hamiltonian systems. By solving both equations separately we argue here that it is in general easier to solve the former. We solve the mutually related time-dependent Schrödinger equation for a Hermitian and non-Hermitian spin 1/2, 1 and 3/2 model with time-independent and time-dependent metric, respectively. In all models the overdetermined coupled system of equations for the Dyson map can be decoupled algebraic manipulations and reduces to simple linear differential equations and an equation that can be converted into the non-linear Ermakov-Pinney equation.
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)
1975-03-11
When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.
AN-type Dunkl operators and new spin Calogero-Sutherland models
International Nuclear Information System (INIS)
Finkel, F.; Gomez-Ullate, D.; Gonzalez-Lopez, A.; Rodriguez, M.A.; Zhdanov, R.
2001-01-01
A new family of A N -type Dunkl operators preserving a polynomial subspace of finite dimension is constructed. Using a general quadratic combination of these operators and the usual Dunkl operators, several new families of exactly and quasi-exactly solvable quantum spin Calogero-Sutherland models are obtained. These include, in particular, three families of quasi-exactly solvable elliptic spin Hamiltonians. (orig.)
Joint measurements of spin, operational locality and uncertainty
International Nuclear Information System (INIS)
Andersson, E.; Barnett, S.M.; Aspect, A.
2005-01-01
Full text: Joint measurements of non-commuting observables are possible within quantum mechanics, if one accepts an increase in the variances of the jointly measured observables. In this contribution, we discuss joint measurements of spin 1/2 along any two directions. Starting from an operational locality principle, we show how to obtain the known bound on how sharp the joint measurement can be. Operational locality here means, that no operation performed at a quantum system at one location can instantaneously affect a system at another location. The measurement bound is general and is here obtained without reference to any quantum measurement formalism. We find that the bound is formally identical to a Bell inequality of the CHSH type, and we also give a direct interpretation of the measurement bound in terms of an uncertainty relation. A simple way to realise the joint measurement for the case of photon polarization is presented. Further to their fundamental interest, quantum joint measurements of non-commuting observables can be related to state estimation. They are also of interest in quantum information, e.g. as strategies for eavesdropping in quantum cryptography. (author)
Quantum capacity of Pauli channels with memory
International Nuclear Information System (INIS)
Huang Peng; He Guangqiang; Lu Yuan; Zeng Guihua
2011-01-01
The amount of coherent quantum information that can be reliably transmitted down the memory Pauli channels with Markovian correlated noise is investigated. Two methods for evaluating the quantum capacity of the memory Pauli channels are proposed to try to trace the memory effect on the transmissions of quantum information. We show that the evaluation of quantum capacity can be reduced to the calculation of the initial memory state of each successive transmission. Furthermore, we derive quantum capacities of the memory phase flip channel, bit flip channel and bit-phase flip channel. Also, a lower bound of the quantum capacity of the memory depolarizing channel is obtained. An increase of the degree of memory of the channels has a positive effect on the increase of their quantum capacities.
Numerical simulation of spin-qubit operation in coupled quantum dots
International Nuclear Information System (INIS)
Goto, Daisuke; Eto, Mikio
2007-01-01
Electronic states and spin operation in coupled quantum dots are numerically studied, considering realistic shape of quantum dots and electron-electron interaction. (i) We evaluate the spin coupling J between two electron spins, as a function of magnetic field perpendicular to the quantum dots. We observe a transition from antiferromagnetic coupling (J>0) to ferromagnetic coupling (J<0) at magnetic field of a few Tesla. The spin coupling is hardly influenced by the size difference between the quantum dots if the energy levels are matched. (ii) We simulate SWAP gate operations by calculating the time development of two electron spins. We show that a sudden change of tunnel barrier may result in the gate errors. The spin exchange is incomplete in the presence of strong spin-orbit interaction in InGaAs. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Elaboration of the recently proposed test of Pauli's principle under strong interactions
International Nuclear Information System (INIS)
Ktorides, C.N.; Myung, H.C.; Santilli, R.M.
1980-01-01
The primary objective of this paper is to stimulate the experimental verification of the validity or invalidity of Pauli's principle under strong interactions. We first outline the most relevant steps in the evolution of the notion of particle. The spin as well as other intrinsic characteristics of extended, massive, particles under electromagnetic interactions at large distances might be subjected to a mutation under additional strong interactions at distances smaller than their charge radius. These dynamical effects can apparently be conjectured to account for the nonpointlike nature of the particles, their necessary state of penetration to activate the strong interactions, and the consequential emergence of broader forces which imply the breaking of the SU(2)-spin symmetry. We study a characterization of the mutated value of the spin via the transition from the associative enveloping algebra of SU(2) to a nonassociative Lie-admissible form. The departure from the original associative product then becomes directly representative of the breaking of the SU(2)-spin symmetry, the presence of forces more general than those derivable from a potential, and the mutated value of the spin. In turn, such a departure of the spin from conventional quantum-mechanical values implies the inapplicability of Pauli's exclusion principle under strong interactions, because, according to this hypothesis, particles that are fermions under long-range electromagnetic interactions are no longer fermions under these broader, short-range, forces. In nuclear physics possible deviations from Pauli's exclusion principle can at most be very small. These experimental data establish that, for the nuclei considered, nucleons are in a partial state of penetration of their charge volumes although of small statistical character
Giant Faraday effect due to Pauli exclusion principle in 3D topological insulators.
Paudel, Hari P; Leuenberger, Michael N
2014-02-26
Experiments using ARPES, which is based on the photoelectric effect, show that the surface states in 3D topological insulators (TI) are helical. Here we consider Weyl interface fermions due to band inversion in narrow-bandgap semiconductors, such as Pb1-xSnxTe. The positive and negative energy solutions can be identified by means of opposite helicity in terms of the spin helicity operator in 3D TI as ĥ(TI) = (1/ |p|_ |) β (σ|_ x p|_ ) · z^, where β is a Dirac matrix and z^ points perpendicular to the interface. Using the 3D Dirac equation and bandstructure calculations we show that the transitions between positive and negative energy solutions, giving rise to electron-hole pairs, obey strict optical selection rules. In order to demonstrate the consequences of these selection rules, we consider the Faraday effect due to the Pauli exclusion principle in a pump-probe setup using a 3D TI double interface of a PbTe/Pb₀.₃₁Sn₀.₆₉Te/PbTe heterostructure. For that we calculate the optical conductivity tensor of this heterostructure, which we use to solve Maxwell's equations. The Faraday rotation angle exhibits oscillations as a function of probe wavelength and thickness of the heterostructure. The maxima in the Faraday rotation angle are of the order of mrds.
International Nuclear Information System (INIS)
Wang Fan; Chen Zhida
2006-01-01
A new strategy to search for the good quantum numbers for the corner-sharing spin systems, as archetypal plaquettes of the lattices, was suggested for the first time in order to study on geometric spin frustration. The calculations on energy spectra by using the irreducible tensor operator method with the new strategy can be much reduced. As representative examples the energy spectra for the spin pentamer of the tetrahedron with a centered spin site and the spin heptamer of three corner-sharing equilateral-triangle were examined in order to confirm efficiency of the new strategy. Through our code, with automatically searching for the good quantum numbers, the projection operators S iz , S ix and S iy matrices in the ground state space for the spin heptamer were reliably constructed
Double folding model including the Pauli exclusion principle
International Nuclear Information System (INIS)
Gridnev, K.A.; Soubbotin, V.B.; Oertzen, W. von; Bohlen, H.G.; Vinas, X.
2002-01-01
A new method to incorporate the Pauli principle into the double folding approach to the heavy ion potential is proposed. It is shown that in order to take into account the Pauli blocking a redefinition of the density matrices of the free isolated nuclei must be one. A solution to the self-consistent incorporation of the Pauli-blocking effects in the mean-field nucleus-nucleus potential is obtained in the Thomas-Fermi approximation [ru
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
intuitive way to understand quantum theory of spin, and is a natural formalism to study ... Pauli matrices define two-dimensional representation of. Euclidean signature (all of ..... In the process he introduced quaternion al- gebra which has three ...
Extended higher-spin superalgebras and their realizations in terms of quantum operators
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, M A
1988-01-01
The realization of the N = 1 higher-spin superalgebra, proposed earlier by E.S. Fradkin and the author, is found in terms of bosonic quantum operators. The extended higher-spin superalgebras, generalizing ordinary extended supersymmetry with arbitrary N > 1, are constructed by adding fermion quantum operators. Automorphisms, real forms, subalgebras, contractions and invariant forms of these infinite-dimensional superalgebras are studied. The formulation of the higher-spin superalgebras is described in terms of symbols of operators by Berezin. We hope that this formulation will provide in future the powerful tool for constructing the complete solution of the higher-spin problem, the problem of introducing a consistent gravitational interaction for massless higher-spin fields (s > 2).
General structure of a two-body operator for spin-(1/2) particles
International Nuclear Information System (INIS)
Ershov, S.N.
2004-01-01
A direct derivation of the operator structure for two spin-(1/2) particles is presented subject to invariance under basic symmetries and Galilean frame transformation. The partial wave decomposition for coefficient functions, valid on- and off-shell, is explicitly deduced. The momentum transfer representation and angular momentum decomposition for general spin-dependent potentials are obtained
Generalized Pauli constraints in small atoms
Schilling, Christian; Altunbulak, Murat; Knecht, Stefan; Lopes, Alexandre; Whitfield, James D.; Christandl, Matthias; Gross, David; Reiher, Markus
2018-05-01
The natural occupation numbers of fermionic systems are subject to nontrivial constraints, which include and extend the original Pauli principle. A recent mathematical breakthrough has clarified their mathematical structure and has opened up the possibility of a systematic analysis. Early investigations have found evidence that these constraints are exactly saturated in several physically relevant systems, e.g., in a certain electronic state of the beryllium atom. It has been suggested that, in such cases, the constraints, rather than the details of the Hamiltonian, dictate the system's qualitative behavior. Here, we revisit this question with state-of-the-art numerical methods for small atoms. We find that the constraints are, in fact, not exactly saturated, but that they lie much closer to the surface defined by the constraints than the geometry of the problem would suggest. While the results seem incompatible with the statement that the generalized Pauli constraints drive the behavior of these systems, they suggest that the qualitatively correct wave-function expansions can in some systems already be obtained on the basis of a limited number of Slater determinants, which is in line with numerical evidence from quantum chemistry.
Coherent Operations and Screening in Multielectron Spin Qubits
DEFF Research Database (Denmark)
Higginbotham, Andrew Patrick; Kuemmeth, Ferdinand; Hanson, M.P.
2014-01-01
Multielectron spin qubits are demonstrated, and performance examined by comparing coherent exchange oscillations in coupled single-electron and multielectron quantum dots, measured in the same device. Fast (>1 GHz) exchange oscillations with a quality factor Q ∼ 15 are found for the multielectron...
Pauli and Jung the meeting of two great minds
Lindorff, David
2004-01-01
The pioneering work of Nobel prize-winning physicist Wolfgang Pauli led to developing the bombs that decimated Hiroshima and Nagasaki. Desperate over this outcome, Pauli sought help from the eminent depth psychologist, C. G. Jung. Their long correspondence provides the powerful and unique record of a mature scientist's inner journey. It also has had a tremendous impact on scientific and psychological thought ever since. Pauli and Jung is a lucid interpretation of Pauli's ideas and dreams that forcefully validates his belief in the inseparable union of science and spirituality. Far ahead of their time, Wolfgang Pauli and C. G. Jung both knew this union is essential for the future of humanity and the survival of the planet.
Spin injection, transport, and read/write operation in spin-based MOSFET
International Nuclear Information System (INIS)
Saito, Yoshiaki; Marukame, Takao; Inokuchi, Tomoaki; Ishikawa, Mizue; Sugiyama, Hideyuki; Tanamoto, Tetsufumi
2011-01-01
We proposed a novel spin-based MOSFET 'Spin-Transfer-torque-Switching MOSFET (STS-MOSFET)' that offers non-volatile memory and transistor functions with complementary metal-oxide-semiconductor (CMOS) compatibility, high endurance and fast write time using STS. The STS-MOSFETs with Heusler alloy (Co 2 Fe 1 Al 0.5 Si 0.5 ) were prepared and reconfigurability of a novel spintronics-based MOSFET, STS-MOSFET, was successfully realized for the transport properties owing to reduction of the contact resistance in ferromagnetic metal/thin insulator tunnel barrier/Si junctions. The device showed magnetocurrent (MC) and write characteristics with the endurance of over 10 5 cycles. It was also clarified that the read characteristic can be improved in terms of MC ratio, however, is deteriorated in terms of the mobility by choosing connection configurations of the source and the drain in the STS-MOSFETs.
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
of Pauli matrices follow from the underlying algebra. Clif- ford algebraic approach provides a geometrical and hence intuitive way to understand quantum theory of spin, and is a natural formalism to study spin. Clifford algebraic formal- ism has lot of applications in every field where spin plays an important role. Introduction.
Physical States and BRST Operators for Higher-spin $W$ Strings
Liu, Yu-Xiao; Wei, Shao-Wen; Zhang, Li-Jie; Ren, Ji-Rong
2008-01-01
In this paper, we mainly investigate the $W_{2,s}^{M}\\otimes W_{2,s}^{L}$ system, in which the matter and the Liouville subsystems generate $W_{2,s}^{M}$ and $W_{2,s}^L$ algebras respectively. We first give a brief discussion of the physical states for corresponding $W$ stings. The lower states are given by freezing the spin-2 and spin-$s$ currents. Then, introducing two pairs of ghost-like fields, we give the realizations of $W_{1,2,s}$ algebras. Based on these linear realizations, BRST oper...
Double-folding model including the Pauli exclusion principle
International Nuclear Information System (INIS)
Gridnev, K.A.; Soubbotin, V.B.; Oertzen, W. von; Bohlen, H.G.; Vinas, X.
2002-01-01
A new method for incorporating the Pauli exclusion principle into the double-folding approach to the heavy-ion potential is proposed. The description of the exchange terms at the level of the semiclassical one-body density matrix is used. It is shown that, in order to take into account Pauli blocking properly, the density matrices of free isolated nuclei must be redefined. A solution to the self-consistent incorporation of Pauli blocking effects in the mean-field nucleus-nucleus potential is obtained in the Thomas-Fermi approximation
Projection operators and supplementary conditions for superfields with an arbitrary spin
International Nuclear Information System (INIS)
Sokatchev, E.
1975-01-01
It is shown that a superfield with an external spin j and a nonzero mass contains four non reducible representations of supersymmetry algebra. A general method is proposed for the evolution the representations out of the superfield by using projection operators, derived from Casimir operators. This expansion is also expressed in terms of additional differential conditions
Determination operation Time Risk of Box Spinning Components-oe Spinning Machine
Slobodan Stefanovic
2013-01-01
Based on the constructed dependency diagram reliability of the exploitation operation time of each constituent components of the analyzed frame in the case of selected statistical distributions, areas of the operation exploitation and repair intervals are determined. This is done by determining the first inflection points. Based on these points analysis to determine the time of safety operation of frame components with allowable risk to the segmental linear function of the intensity of failur...
Nucleon effective mass effects on the Pauli-blocking function
International Nuclear Information System (INIS)
Pina, S.R. de; Mesa, J.; Deppman, A.; Arruda-Neto, J.D.T.; Duarte, S.B.; Oliveira, E.C. de; Tavares, O.A.P.; Medeiros, E.L.; Goncalves, M.; Paiva, E. de
2002-01-01
The effects of nucleon effective mass on the Pauli-blocking function are worked out. We have shown that such effects on the quasi-deuteron mechanism of photonuclear absorption are rather relevant. The Pauli-blocking function has been evaluated by applying a Monte Carlo calculation particularly suitable for simulation of intranuclear cascade processes of intermediate-energy nuclear reactions. The nucleon binding in the photonuclear absorption mechanism is taken into account accordingly. (author)
Nucleon effective mass effects on the Pauli-blocking function
International Nuclear Information System (INIS)
Pina, S.R. de; Mesa, J.; Deppman, A.; Arruda-Neto, J.D.T.; Goncalves, M.; Paiva, E. de
2002-05-01
The effects of nucleon effective mass on the Pauli-blocking function are worked out. We have shown that such effects on the quasi-deuteron mechanism of photonuclear absorption are rather relevant. The pauli-blocking function has been evaluated by applying a Monte Carlo calculation particularly suitable for simulation of intranuclear cascade process of intermediate-energy nuclear reactions. The nucleon binding in the photonuclear absorption mechanism is accordingly taken into account. (author)
Quantum theory as a description of robust experiments: Derivation of the Pauli equation
Energy Technology Data Exchange (ETDEWEB)
De Raedt, Hans [Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen (Netherlands); Katsnelson, Mikhail I.; Donker, Hylke C. [Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525AJ Nijmegen (Netherlands); Michielsen, Kristel, E-mail: k.michielsen@fz-juelich.de [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich (Germany); RWTH Aachen University, D-52056 Aachen (Germany)
2015-08-15
It is shown that the Pauli equation and the concept of spin naturally emerge from logical inference applied to experiments on a charged particle under the conditions that (i) space is homogeneous (ii) the observed events are logically independent, and (iii) the observed frequency distributions are robust with respect to small changes in the conditions under which the experiment is carried out. The derivation does not take recourse to concepts of quantum theory and is based on the same principles which have already been shown to lead to e.g. the Schrödinger equation and the probability distributions of pairs of particles in the singlet or triplet state. Application to Stern–Gerlach experiments with chargeless, magnetic particles, provides additional support for the thesis that quantum theory follows from logical inference applied to a well-defined class of experiments. - Highlights: • The Pauli equation is obtained through logical inference applied to robust experiments on a charged particle. • The concept of spin appears as an inference resulting from the treatment of two-valued data. • The same reasoning yields the quantum theoretical description of neutral magnetic particles. • Logical inference provides a framework to establish a bridge between objective knowledge gathered through experiments and their description in terms of concepts.
Rational quantum integrable systems of DN type with polarized spin reversal operators
Directory of Open Access Journals (Sweden)
B. Basu-Mallick
2015-09-01
Full Text Available We study the spin Calogero model of DN type with polarized spin reversal operators, as well as its associated spin chain of Haldane–Shastry type, both in the antiferromagnetic and ferromagnetic cases. We compute the spectrum and the partition function of the former model in closed form, from which we derive an exact formula for the chain's partition function in terms of products of partition functions of Polychronakos–Frahm spin chains of type A. Using a recursion relation for the latter partition functions that we derive in the paper, we are able to numerically evaluate the partition function, and thus the spectrum, of the DN-type spin chain for relatively high values of the number of spins N. We analyze several global properties of the chain's spectrum, such as the asymptotic level density, the distribution of consecutive spacings of the unfolded spectrum, and the average degeneracy. In particular, our results suggest that this chain is invariant under a suitable Yangian group, and that its spectrum coincides with that of a Yangian-invariant vertex model with linear energy function and dispersion relation.
Most negative and most positive expectation values of the spin operator
International Nuclear Information System (INIS)
Zamick, Larry
2011-01-01
Formulas for the most positive and most negative values of the expectation of the spin operator are given and compared with single-particle values. The Nilsson model is used to evaluate these expectations and a scenario is discussed where the value is greater than one.
Anomalous dimensions of spin-zero four-quark operators without derivatives
International Nuclear Information System (INIS)
Jamin, M.; Kremer, M.
1986-01-01
The anomalous dimensions of local spin-zero four-quark operators without derivatives are calculated for the case of three flavours. We also give the result in the approximation that no flavour mixing occurs, because this may be relevant for lattice calculations of four-quark condensates in the quenched approximation. We demonstrate the influence of the operator mixing in a specific example. (orig.)
Comments on correlation functions of large spin operators and null polygonal Wilson loops
Energy Technology Data Exchange (ETDEWEB)
Cardona, Carlos A., E-mail: cargicar@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Physics Department, University of Buenos Aires, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina)
2013-02-11
We discuss the relation between correlation functions of twist-two large spin operators and expectation values of Wilson loops along light-like trajectories. After presenting some heuristic field theoretical arguments suggesting this relation, we compute the divergent part of the correlator in the limit of large 't Hooft coupling and large spins, using a semi-classical world-sheet which asymptotically looks like a GKP rotating string. We show this diverges as expected from the expectation value of a null Wilson loop, namely, as (ln{mu}{sup -2}){sup 2}, {mu} being a cut-off of the theory.
Comments on correlation functions of large spin operators and null polygonal Wilson loops
International Nuclear Information System (INIS)
Cardona, Carlos A.
2013-01-01
We discuss the relation between correlation functions of twist-two large spin operators and expectation values of Wilson loops along light-like trajectories. After presenting some heuristic field theoretical arguments suggesting this relation, we compute the divergent part of the correlator in the limit of large 't Hooft coupling and large spins, using a semi-classical world-sheet which asymptotically looks like a GKP rotating string. We show this diverges as expected from the expectation value of a null Wilson loop, namely, as (lnμ −2 ) 2 , μ being a cut-off of the theory.
New spin Calogero-Sutherland models related to BN-type Dunkl operators
International Nuclear Information System (INIS)
Finkel, F.; Gomez-Ullate, D.; Gonzalez-Lopez, A.; Rodriguez, M.A.; Zhdanov, R.
2001-01-01
We construct several new families of exactly and quasi-exactly solvable BC N -type Calogero-Sutherland models with internal degrees of freedom. Our approach is based on the introduction of a new family of Dunkl operators of B N type which, together with the original B N -type Dunkl operators, are shown to preserve certain polynomial subspaces of finite dimension. We prove that a wide class of quadratic combinations involving these three sets of Dunkl operators always yields a spin Calogero-Sutherland model, which is (quasi-)exactly solvable by construction. We show that all the spin Calogero-Sutherland models obtainable within this framework can be expressed in a unified way in terms of a Weierstrass ζ function with suitable half-periods. This provides a natural spin counterpart of the well-known general formula for a scalar completely integrable potential of BC N type due to Olshanetsky and Perelomov. As an illustration of our method, we exactly compute several energy levels and their corresponding wavefunctions of an elliptic quasi-exactly solvable potential for two and three particles of spin 1/2
Highly Efficient Spin-Current Operation in a Cu Nano-Ring
Murphy, Benedict A.; Vick, Andrew J.; Samiepour, Marjan; Hirohata, Atsufumi
2016-11-01
An all-metal lateral spin-valve structure has been fabricated with a medial Copper nano-ring to split the diffusive spin-current path. We have demonstrated significant modulation of the non-local signal by the application of a magnetic field gradient across the nano-ring, which is up to 30% more efficient than the conventional Hanle configuration at room temperature. This was achieved by passing a dc current through a current-carrying bar to provide a locally induced Ampère field. We have shown that in this manner a lateral spin-valve gains an additional functionality in the form of three-terminal gate operation for future spintronic logic.
Baxter Q-operator and separation of variables for the open SL(2, R) spin chain
International Nuclear Information System (INIS)
Derkachov, Sergey E.; Korchemsky, Gregory P.; Manashov, Alexander N.
2003-01-01
We construct the Baxter Q-operator and the representation of the Separated Variables (SoV) for the homogeneous open SL(2, R) spin chain. Applying the diagrammatical approach, we calculate Sklyanin's integration measure in the separated variables and obtain the solution to the spectral problem for the model in terms of the eigenvalues of the Q-operator. We show that the transition kernel to the SoV representation is factorized into the product of certain operators each depending on a single separated variable. As a consequence, it has a universal pyramid-like form that has been already observed for vari- ous quantum integrable models such as periodic Toda chain, closed SL(2, R) and SL(2, C) spin chains. (author)
The Pauli exclusion principle origin, verifications and applications
Kaplan, Ilya G
2017-01-01
This is the first scientific book devoted to the Pauli Exclusion Principle, which is a fundamental principle of quantum mechanics and is permanently applied in chemistry, physics, molecular biology and in physical astronomy. However, while the principle has been studied for more than 90 years, rigorous theoretical foundations still have not been established and many unsolved problems remain. Following an introduction and historical survey, this book discusses the still unresolved questions around this fundamental principle. For instance, why, according to the Pauli Exclusion Principle, are only symmetric and antisymmetric permutation symmetries for identical particles realized, while the Schrödinger equation is satisfied by functions with any permutation symmetry? Chapter 3 covers possible answers to this, while chapter 4 presents effective and elegant methods for finding the Pauli-allowed states in atomic, molecular and nuclear spectroscopy. Chapter 5 discusses parastatistics and fractional statistics, dem...
Lin, Cheng-Ju; Motrunich, Olexei I.
2017-12-01
We numerically construct translationally invariant quasiconserved operators with maximum range M , which best commute with a nonintegrable quantum spin chain Hamiltonian, up to M =12 . In the large coupling limit, we find that the residual norm of the commutator of the quasiconserved operator decays exponentially with its maximum range M at small M , and turns into a slower decay at larger M . This quasiconserved operator can be understood as a dressed total "spin-z " operator, by comparing with the perturbative Schrieffer-Wolff construction developed to high order reaching essentially the same maximum range. We also examine the operator inverse participation ratio of the operator, which suggests its localization in the operator Hilbert space. The operator also shows an almost exponentially decaying profile at short distance, while the long-distance behavior is not clear due to limitations of our numerical calculation. Further dynamical simulation confirms that the prethermalization-equilibrated values are described by a generalized Gibbs ensemble that includes such quasiconserved operator.
On the surprising rigidity of the Pauli exclusion principle
International Nuclear Information System (INIS)
Greenberg, O.W.
1989-01-01
I review recent attempts to construct a local quantum field theory of small violations of the Pauli exclusion principle and suggest a qualitative reason for the surprising rigidity of the Pauli principle. I suggest that small violations can occur in our four-dimensional world as a consequence of the compactification of a higher-dimensional theory in which the exclusion principle is exactly valid. I briefly mention a recent experiment which places a severe limit on possible violations of the exclusion principle. (orig.)
Scattering theory of infrared divergent Pauli-Fierz Hamiltonians
Derezinski, J
2003-01-01
We consider in this paper the scattering theory of infrared divergent massless Pauli-Fierz Hamiltonians. We show that the CCR representations obtained from the asymptotic field contain so-called {\\em coherent sectors} describing an infinite number of asymptotically free bosons. We formulate some conjectures leading to mathematically well defined notion of {\\em inclusive and non-inclusive scattering cross-sections} for Pauli-Fierz Hamiltonians. Finally we give a general description of the scattering theory of QFT models in the presence of coherent sectors for the asymptotic CCR representations.
Pauli correlations in heavy-ion collisions at high energies
International Nuclear Information System (INIS)
Franco, V.; Nutt, W.T.
1977-01-01
The effects of short-range correlations on the Glauber expansion for nucleus-nucleus collisions are calculated using the Fermi gas model for nuclei. When the Pauli principle is neglected for collisions between heavy nuclei, calculation of the optical phase-shift function leads to non-unitary results and cross sections cannot be obtained. When Pauli correlations are included important cancellations in the optical phase-shift function are found which make possible the calculation of total and differential cross sections for heavy nuclei. (Auth.)
Maximilien Brice
2005-01-01
The 146 items - preprints by Born, Bohr, Heisenberg and others some with dedications to Pauli from the author - had been part of the personal library of the Nobel prize-winning physicist, Wolfgang Pauli.
Wolfgang Pauli at the 6th meeting of the Nobel Prize laureates
Franz Thorbecke, Lindau
1956-01-01
From left to right : ?, Max Born, Paul Adrien Maurice Dirac, Adolf Friedrich Johann Butenandt, ?, Otto Hahn, Wolfgang Pauli, Franca Pauli, Sir Chandrasekhara Venkata Raman, Isidor Isaac Rabi, and Leopold Ruzicka
Influence of the Pauli principle on the one-quasiparticle states in odd spherical nuclei
International Nuclear Information System (INIS)
Chan Zuy Khuong
1980-01-01
The effect of the Pauli principle on the fragmentation of one-quasiparticle states in odd spherical nuclei is studied within the quasiparticle-phonon nuclear model. It is shown that the Pauli principle influences considerably the position and structure of a few low-lying states. The fragmentation of one-quasiparticle states at intermediate and high excitation energies is slightly affected by the Pauli principle, and the calculations can be performed by taking the Pauli principle into account roughly. (author)
Uimin-Lai-Sutherland spin-3/2 chain model in terms of fermion creation and annihilation operators
International Nuclear Information System (INIS)
Mirumyan, M.B.
2002-01-01
The Uimin-Lai-Sutherland spin-3/2 chain model is investigated. The representation of the su(2) algebra for the spin 3/2 is constructed in the linear space of the creation and annihilation operators of three fermions. Expressions are obtained for the Hamiltonian and energy spectrum as well as the corresponding Bethe equations are derived
Uimin-Lai-Sutherland spin-3/2 chain model in terms of fermion creation and annihilation operators
Mirumyan, M B
2002-01-01
The Uimin-Lai-Sutherland spin-3/2 chain model is investigated. The representation of the su(2) algebra for the spin 3/2 is constructed in the linear space of the creation and annihilation operators of three fermions. Expressions are obtained for the Hamiltonian and energy spectrum as well as the corresponding Bethe equations are derived.
Continuous spins in 2D gravity: Chiral vertex operators and local fields
International Nuclear Information System (INIS)
Gervais, Jean-Loup; Schnittger, Jens
1994-01-01
We construct the exponentials of the Liouville field with continuous powers within the operator approach. Their chiral decomposition is realized using the explicit Coulomb-gas operators we introduced earlier. From the quantum group viewpoint, they are related to semi-infinite highest- or lowest-weight representations with continuous spins. The Liouville field itself is defined, and the canonical commutation relations are verified, as well as the validity of the quantum Liouville field equations. In a second part, both screening charges are considered. The braiding of the chiral components is derived and shown to agree with an ansatz of a parallel paper of Gervais and Roussel. ((orig.))
The physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory
International Nuclear Information System (INIS)
Ding You; Rovelli, Carlo
2010-01-01
A covariant spin-foam formulation of quantum gravity has been recently developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In this paper we reconsider the implementation of the constraints that defines the model. We define in a simple way the boundary Hilbert space of the theory, introducing a slight modification of the embedding of the SU(2) representations into the SL(2,C) ones. We then show directly that all constraints vanish on this space in a weak sense. The vanishing is exact (and not just in the large quantum number limit). We also generalize the definition of the volume operator in the spin-foam model to the Lorentzian signature and show that it matches the one of loop quantum gravity, as in the Euclidean case.
International Nuclear Information System (INIS)
McGavin, Dennis G; Tennant, W Craighead
2009-01-01
In setting up a spin Hamiltonian (SH) to study high-spin Zeeman and high-spin nuclear and/or electronic interactions in electron paramagnetic resonance (EPR) experiments, it is argued that a maximally reduced SH (MRSH) framed in tesseral combinations of spherical tensor operators is necessary. Then, the SH contains only those terms that are necessary and sufficient to describe the particular spin system. The paper proceeds then to obtain interrelationships between the parameters of the MRSH and those of alternative SHs expressed in Cartesian tensor and Stevens operator-equivalent forms. The examples taken, initially, are those of Cartesian and Stevens' expressions for high-spin Zeeman terms of dimension BS 3 and BS 5 . Starting from the well-known decomposition of the general Cartesian tensor of second rank to three irreducible tensors of ranks 0, 1 and 2, the decomposition of Cartesian tensors of ranks 4 and 6 are treated similarly. Next, following a generalization of the tesseral spherical tensor equations, the interrelationships amongst the parameters of the three kinds of expressions, as derived from equivalent SHs, are determined and detailed tables, including all redundancy equations, set out. In each of these cases the lowest symmetry, 1-bar Laue class, is assumed and then examples of relationships for specific higher symmetries derived therefrom. The validity of a spin Hamiltonian containing mixtures of terms from the three expressions is considered in some detail for several specific symmetries, including again the lowest symmetry. Finally, we address the application of some of the relationships derived here to seldom-observed low-symmetry effects in EPR spectra, when high-spin electronic and nuclear interactions are present.
Physical states and BRST operators for higher-spin W strings
International Nuclear Information System (INIS)
Liu, Yu-Xiao; Wei, Shao-Wen; Ren, Ji-Rong; Zhang, Li-Jie
2009-01-01
In this paper, we mainly investigate the W 2,s M x W 2,s L system, in which the matter and the Liouville subsystems generate the W 2,s M and W 2,s L algebras, respectively. We first give a brief discussion of the physical states for the corresponding W strings. The lower states are given by freezing the spin-2 and spin-s currents. Then, introducing two pairs of ghost-like fields, we give the realizations of the W 1,2,s algebras. Based on these linear realizations, the BRST operators for the W 2,s algebras are obtained. Finally, we construct new BRST charges of the Liouville system for the W 2,s L strings at the specific values of the central charges c: c=-(22)/(5) for the W 2,3 L algebra, c=-24 for the W 2,4 L algebra and c=-2,-(286)/(3) for the W 2,6 L algebra, at which the corresponding W 2,s L algebras are singular. (orig.)
Note on the two inequivalent spin 1/2 baryon field operators
International Nuclear Information System (INIS)
Christos, G.A.
1985-01-01
There are two inequivalent spin 1/2 local baryon field operators that can be constructed from 3 quarks. A priori the Jsup(P)=1/2 + baryons can couple to any linear combination of these operators. We show however that the coupling of the 1/2 + baryons to these operators is determined by the value of the SU(3) ratio of F to D type peudoscalar-baryon couplings. The experimental value of this ratio implies, for example, that the proton couples strongly to (usup(T)Cγ 5 d)u and weakly to (usup(T)Cd)γ 5 u. This is of interest in QCD sum rule applications. (orig.)
Pauli blocking and medium effects in nucleon knockout reactions
International Nuclear Information System (INIS)
Bertulani, C. A.; De Conti, C.
2010-01-01
We study medium modifications of the nucleon-nucleon (NN) cross sections and their influence on the nucleon knockout reactions. Using the eikonal approximation, we compare the results obtained with free NN cross sections with those obtained with a purely geometrical treatment of Pauli blocking and with NN obtained with more elaborated Dirac-Bruecker methods. The medium effects are parametrized in terms of the baryon density. We focus on symmetric nuclear matter, although the geometrical Pauli blocking also allows for the treatment of asymmetric nuclear matter. It is shown that medium effects can change the nucleon knockout cross sections and momentum distributions up to 10% in the energy range E lab =50-300 MeV/nucleon. The effect is more evident in reactions involving halo nuclei.
Testing the Pauli Exclusion Principle for electrons at LNGS
Shi, H.; Bertolucci, S.; Berucci, C.; Bragadireanu, A.M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; De Paolis, L.; Di Matteo, S.; d'Uffizi, A.; Egger, J.-P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Marton, J.; Laubenstein, M.; Milotti, E.; Pietreanu, D.; Piscicchia, K.; Ponta, T.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Sirghi, D.L.; Sirghi, F.; Sperandio, L.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.
High-precision experiments have been done to test the Pauli exclusion principle (PEP) for electrons by searching for anomalous $K$-series X-rays from a Cu target supplied with electric current. With the highest sensitivity, the VIP (VIolation of Pauli Exclusion Principle) experiment set an upper limit at the level of $10^{-29}$ for the probability that an external electron captured by a Cu atom can make the transition from the 2$p$ state to a 1$s$ state already occupied by two electrons. In a follow-up experiment at Gran Sasso, we aim to increase the sensitivity by two orders of magnitude. We show proofs that the proposed improvement factor is realistic based on the results from recent performance tests of the detectors we did at Laboratori Nazionali di Frascati (LNF).
Operation and control of a dilution refrigerator for spin conversion measurements with neutrons
International Nuclear Information System (INIS)
Guckelsberger, K.; Friedrich, H.; Hennecke, H.; Matula, S.; Mihlan, F.H.; Mugai, D.; Scherm, R.
1984-01-01
In order to investigate the process of spin conversion we monitor by neutron transmission the time dependent non equilibrium population of tunneling levels in molecular crystals at very low temperatures over extended periods of time. We describe the cryogenic and operational aspects of an experiment comprising a dilution refrigerator with a 12-sample container, automatic sample change, automatic refill of cryogenic fluids and a watch-dog alarm system. Thermometry for the range 10 mK to 300 K is described including computer read-out and computerized temperature control
On surface clustering and Pauli principle effects in alpha decay
International Nuclear Information System (INIS)
Holan, S.
1983-01-01
The importance of the correct description of nuclear surface region in alpha decay calculations is pointed out. A model is proposed takinq into account explicitly surface clustering and Pauli principle effects which are essential in this region. A method for solving the main integrodifferential equation of the model by using the oscillator shell basis and the Collatz method is worked out. The first numerical results are obtained for nonlocal potential of the atpha particle-daughter nucleus interaction
Proof of the Spin Statistics Connection 2: Relativistic Theory
Santamato, Enrico; De Martini, Francesco
2017-12-01
The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important "Pauli Exclusion Principle" but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Santamato and De Martini in Found Phys 45(7):858-873, 2015) we presented a proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the "Conformal Quantum Geometrodynamics". In the present paper, by the same theory the proof of the spin-statistics theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the standard quantum mechanics, which determines the correct spin-statistics connection observed in Nature (Santamato and De Martini in Found Phys 45(7):858-873, 2015). The present proof of the spin-statistics theorem is simpler than the one presented in Santamato and De Martini (Found Phys 45(7):858-873, 2015), because it is based on symmetry group considerations only, without having recourse to frames attached to the particles. Second quantization and anticommuting operators are not necessary.
Barrier versus tilt exchange gate operations in spin-based quantum computing
Shim, Yun-Pil; Tahan, Charles
2018-04-01
We present a theory for understanding the exchange interaction between electron spins in neighboring quantum dots, either by changing the detuning of the two quantum dots or independently tuning the tunneling barrier between quantum dots. The Hubbard model and a more realistic confining-potential model are used to investigate how the tilting and barrier control affect the effective exchange coupling and thus the gate fidelity in both the detuning and symmetric regimes. We show that the exchange coupling is less sensitive to the charge noise through tunnel barrier control (while allowing for exchange coupling operations on a sweet spot where the exchange interaction has zero derivative with respect to the detuning). Both GaAs and Si quantum dots are considered, and we compare our results with experimental data showing qualitative agreements. Our results answer the open question of why barrier gates are preferable to tilt gates for exchange-based gate operations.
Wide operating window spin-torque majority gate towards large-scale integration of logic circuits
Vaysset, Adrien; Zografos, Odysseas; Manfrini, Mauricio; Mocuta, Dan; Radu, Iuliana P.
2018-05-01
Spin Torque Majority Gate (STMG) is a logic concept that inherits the non-volatility and the compact size of MRAM devices. In the original STMG design, the operating range was restricted to very small size and anisotropy, due to the exchange-driven character of domain expansion. Here, we propose an improved STMG concept where the domain wall is driven with current. Thus, input switching and domain wall propagation are decoupled, leading to higher energy efficiency and allowing greater technological optimization. To ensure majority operation, pinning sites are introduced. We observe through micromagnetic simulations that the new structure works for all input combinations, regardless of the initial state. Contrary to the original concept, the working condition is only given by threshold and depinning currents. Moreover, cascading is now possible over long distances and fan-out is demonstrated. Therefore, this improved STMG concept is ready to build complete Boolean circuits in absence of external magnetic fields.
Comment on ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’
International Nuclear Information System (INIS)
De Gier, Jan
2012-01-01
We consider the paper ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’, by Klauser, Mossel and Caux (2012 J. Stat. Mech. P03012) to be a new and important step in the numerical analysis of the correlation functions of quantum spin chains. The correlation functions considered in this paper were not previously computed, their analytical study is extremely complicated and the numerical results can be used for comparison with experiments. (news and perspectives)
Theory and applications of generalized operator transforms for diagonalization of spin hamiltonians
International Nuclear Information System (INIS)
Schweiger, A.; Graf, F.; Rist, G.; Guenthard, Hs.H.
1976-01-01
A generalized transform formalism for vector operators is devised for diagonalization of a rather wide class of spin hamiltonians. The operator technique leads to equations for transformation matrices, for which analytical solutions are given. These allow analytical formulation of the transformed electron Zeeman term, the sum of the magnetic hyperfine and nuclear Zeeman term, the electric quadrupole term and the electronic and nuclear Zeeman coupling terms. The angular dependence of energy eigenvalues, frequencies and line strengths of ESR and ENDOR transitions to first order will be expressed as compact bilinear and quadratic forms of the columns of the matrix relating the molecular coordinate system to the laboratory system. Thereby the explicit calculation of rotation matrices may be completely avoided, though the latter formally express the operator transforms. The generalized operator transform is also carried out for the off-diagonal blocks originating from hyperfine interaction terms. This allows the second order energy terms to be expressed explicitly as compact hermitean forms of a simple structure, in particular the explicit structure of mixing terms between hyperfine interactions of different (sets of) nuclei is obtained. The relationship to the conventional Bleaney transform is discussed and the analogy to the generalized operator transform is worked out. (Auth.)
The re-enchantment of nature - Wolfgang Pauli's philosophy of quantum physics
International Nuclear Information System (INIS)
Nair, Ranjit
1990-01-01
Pauli's dreamt of a new metaphysics that would eliminate the Cartesian divide between matter and spirit, and accomplish a re-enchantment of Nature. Pauli's vision it would appear, has not been widely shared, outside of the realms of popular science. It is not surprising that someone of Pauli's persuasion, like Laurikainen, should regard this neglect as the result of a conspiracy. In a more dispassionate light, it is appropriate to take Pauli's radical proposals as a measure of the profound sense of wonder he felt at the strange, shadowy world of the quantum where classical certitudes desert us. In attempting to delineate a metaphysics radically different from that underlying classical physics, Pauli took on a conceptual challenge of immense magnitude. This enterprise itself, regardless of its success or failure, offers testimony of Pauli's stature as a philosopher-physicist. (author). 31 refs
The Strange Friendship of Pauli and Jung - When Physics Met Psychology
CERN. Geneva
2009-01-01
At a key time in his scientific development, Pauli was undergoing analysis by Jung. What can we learn about Pauli's discoveries of the exclusion principle and the CPT theorem, as well as his thoughts on non-conservation of parity, and his quest with Heisenberg for a unified field theory of elementary particles from Jung’s analysis of his dreams? A very different Pauli emerges, one at odds with esteemed colleagues such as Niels Bohr and Werner Heisenberg.
Pauli-Villars regularization in nonperturbative Hamiltonian approach on the light front
Energy Technology Data Exchange (ETDEWEB)
Malyshev, M. Yu., E-mail: mimalysh@yandex.ru; Paston, S. A.; Prokhvatilov, E. V.; Zubov, R. A.; Franke, V. A. [Saint Petersburg State University, Saint Petersburg (Russian Federation)
2016-01-22
The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar λφ{sup 4} field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.
Theophilou, Iris; Lathiotakis, Nektarios N; Helbig, Nicole
2018-03-21
We investigate the structure of the one-body reduced density matrix of three electron systems, i.e., doublet and quadruplet spin configurations, corresponding to the smallest interacting system with an open-shell ground state. To this end, we use configuration interaction (CI) expansions of the exact wave function in Slater determinants built from natural orbitals in a finite dimensional Hilbert space. With the exception of maximally polarized systems, the natural orbitals of spin eigenstates are generally spin dependent, i.e., the spatial parts of the up and down natural orbitals form two different sets. A measure to quantify this spin dependence is introduced and it is shown that it varies by several orders of magnitude depending on the system. We also study the ordering issue of the spin-dependent occupation numbers which has practical implications in reduced density matrix functional theory minimization schemes, when generalized Pauli constraints (GPCs) are imposed and in the form of the CI expansion in terms of the natural orbitals. Finally, we discuss the aforementioned CI expansion when there are GPCs that are almost "pinned."
Theophilou, Iris; Lathiotakis, Nektarios N.; Helbig, Nicole
2018-03-01
We investigate the structure of the one-body reduced density matrix of three electron systems, i.e., doublet and quadruplet spin configurations, corresponding to the smallest interacting system with an open-shell ground state. To this end, we use configuration interaction (CI) expansions of the exact wave function in Slater determinants built from natural orbitals in a finite dimensional Hilbert space. With the exception of maximally polarized systems, the natural orbitals of spin eigenstates are generally spin dependent, i.e., the spatial parts of the up and down natural orbitals form two different sets. A measure to quantify this spin dependence is introduced and it is shown that it varies by several orders of magnitude depending on the system. We also study the ordering issue of the spin-dependent occupation numbers which has practical implications in reduced density matrix functional theory minimization schemes, when generalized Pauli constraints (GPCs) are imposed and in the form of the CI expansion in terms of the natural orbitals. Finally, we discuss the aforementioned CI expansion when there are GPCs that are almost "pinned."
Approximated treatment of the Pauli principle effects in elastic collisons
International Nuclear Information System (INIS)
Schechter, H.
1984-08-01
Exact microscopic methods like the RGM (Resonanting Group Method) and the GCM (Generator Coordinate Method) and approximate methods like the OCM (Orthogonality Condition Model) are used to study the effects of Pauli Principle in α- 16 O elastic scattering. Using V2 and BL nucleon-nucleon interactions, nucleus-nucleus effective potentials are obtained from RGM 'exact' wave functions and also from an approximate method developed previoulsy. Using these potentials in the OCM Saito Equation phase-shifts are calculated for partial waves Λ = 0, 1, ... 11, in the energy range 0 [pt
Magnon–magnon interactions in O(3) ferromagnets and equations of motion for spin operators
International Nuclear Information System (INIS)
Radošević, Slobodan M.
2015-01-01
The method of equations of motion for spin operators in the case of O(3) Heisenberg ferromagnet is systematically analyzed starting from the effective Lagrangian. It is shown that the random phase approximation and the Callen approximation can be understood in terms of perturbation theory for type B magnons. Also, the second order approximation of Kondo and Yamaji for one dimensional ferromagnet is reduced to the perturbation theory for type A magnons. An emphasis is put on the physical picture, i.e. on magnon–magnon interactions and symmetries of the Heisenberg model. Calculations demonstrate that all three approximations differ in manner in which the magnon–magnon interactions arising from the Wess–Zumino term are treated, from where specific features and limitations of each of them can be deduced.
Magnon–magnon interactions in O(3) ferromagnets and equations of motion for spin operators
Energy Technology Data Exchange (ETDEWEB)
Radošević, Slobodan M., E-mail: slobodan@df.uns.ac.rs
2015-11-15
The method of equations of motion for spin operators in the case of O(3) Heisenberg ferromagnet is systematically analyzed starting from the effective Lagrangian. It is shown that the random phase approximation and the Callen approximation can be understood in terms of perturbation theory for type B magnons. Also, the second order approximation of Kondo and Yamaji for one dimensional ferromagnet is reduced to the perturbation theory for type A magnons. An emphasis is put on the physical picture, i.e. on magnon–magnon interactions and symmetries of the Heisenberg model. Calculations demonstrate that all three approximations differ in manner in which the magnon–magnon interactions arising from the Wess–Zumino term are treated, from where specific features and limitations of each of them can be deduced.
The role of the Pauli principle in metastability exchange collisions
International Nuclear Information System (INIS)
Pinard, M.; Laloe, F.
1980-01-01
In optical pumping experiments, metastability exchange collisions are used to transfer orientation, alignment, ... between different atomic levels. This article studies the effect of such collisions on the atom internal variables density operator by a method used in a previous publication for spin exchange collisions. The calculations are valid when the nuclei of the two atoms are distinguishable as well as when they are identical particles, wich allows a detailed discussion of nuclear identity effects (apparent magnetic field, etc...). Two cases are successively studied: no depolarization of the electronic angular momentum (He*-He collisions) and partial depolarization (Ne*-Ne collisions for example). The nuclear identity effects should be observable in low temperature optical pumping experiments with noble gases. In an Appendix, another particle identity effect is studied, which can be observed in atomic beam experiments: during the collision of two 3 He atoms, both in the ground state, the spin state of the atoms scattered in a particular direction can be changed by nuclear indistinguishability effects
On the evaporation of solar dark matter: spin-independent effective operators
Energy Technology Data Exchange (ETDEWEB)
Liang, Zheng-Liang [Institute of High Energy Physics, Chinese Academy of Sciences,19B Yuquan Road, Beijing, 100049 (China); Wu, Yue-Liang; Yang, Zi-Qing; Zhou, Yu-Feng [Kavli Institute for Theoretical Physics China,CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Zhong Guan Cun Street 55#, Beijing, 100190 (China)
2016-09-13
As a part of the effort to investigate the implications of dark matter (DM)-nucleon effective interactions on the solar DM detection, in this paper we focus on the evaporation of the solar DM for a set of the DM-nucleon spin-independent (SI) effective operators. In order to put the evaluation of the evaporation rate on a more reliable ground, we calculate the non-thermal distribution of the solar DM using the Monte Carlo methods, rather than adopting the Maxwellian approximation. We then specify relevant signal parameter spaces for the solar DM detection for various SI effective operators. Based on the analysis, we determine the minimum DM masses for which the DM-nucleon coupling strengths can be probed from the solar neutrino observations. As an interesting application, our investigation also shows that evaporation effect can not be neglectd in a recent proposal aiming to solve the solar abundance problem by invoking the momentum-dependent asymmetric DM in the Sun.
On the evaporation of solar dark matter: spin-independent effective operators
International Nuclear Information System (INIS)
Liang, Zheng-Liang; Wu, Yue-Liang; Yang, Zi-Qing; Zhou, Yu-Feng
2016-01-01
As a part of the effort to investigate the implications of dark matter (DM)-nucleon effective interactions on the solar DM detection, in this paper we focus on the evaporation of the solar DM for a set of the DM-nucleon spin-independent (SI) effective operators. In order to put the evaluation of the evaporation rate on a more reliable ground, we calculate the non-thermal distribution of the solar DM using the Monte Carlo methods, rather than adopting the Maxwellian approximation. We then specify relevant signal parameter spaces for the solar DM detection for various SI effective operators. Based on the analysis, we determine the minimum DM masses for which the DM-nucleon coupling strengths can be probed from the solar neutrino observations. As an interesting application, our investigation also shows that evaporation effect can not be neglectd in a recent proposal aiming to solve the solar abundance problem by invoking the momentum-dependent asymmetric DM in the Sun.
Collisional excitation of neon-like Ni XIX using the Breit–Pauli R ...
Indian Academy of Sciences (India)
Abstract. Collision strength for the transition within the first five fine-structure levels in Ni XIX are calculated using the Breit–Pauli R-matrix method. Configuration inter- action wave functions are used to represent the target states included in the R-matrix expansion. The relativistic effects are incorporated in the Breit–Pauli ...
Spin fine structure of optically excited quantum dot molecules
Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.
2007-06-01
The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.
International Nuclear Information System (INIS)
Khuong, C.Z.; Soloviev, V.G.; Voronov, V.V.
1981-01-01
The effect of the Pauli principle on the fragmentation of one-quasiparticle states in spherical nuclei is studied within the quasiparticle-phonon nuclear model. It is shown that the Pauli principle influences considerably the position and structure of a few low-lying states, the fragmentation of one-quasiparticle states at intermediate and high excitation energies is slightly affected by the Pauli principle, and the calculations can be performed by taking the Pauli principle roughly into account. (author)
From convolutionless generalized master to Pauli master equations
International Nuclear Information System (INIS)
Capek, V.
1995-01-01
The paper is a continuation of previous work within which it has been proved that time integrals of memory function (i.e. Markovian transfer rates from Pauli Master Equations, PME) in Time-Convolution Generalized Master Equations (TC-GME) for probabilities of finding a state of an asymmetric system interacting with a bath with a continuous spectrum are exactly zero, provided that no approximation is involved, irrespective of the usual finite-perturbation-order correspondence with the Golden Rule transition rates. In this paper, attention is paid to an alternative way of deriving the rigorous PME from the TCL-GME. Arguments are given in favor of the proposition that the long-time limit of coefficients in TCL-GME for the above probabilities, under the same assumption and presuming that this limit exists, is equal to zero. 11 refs
Quark-Pauli effects in s-shell {Lambda} hypernuclei
Energy Technology Data Exchange (ETDEWEB)
Nemura, Hidekatsu; Suzuki, Yasuyuki [Niigata Univ. (Japan)
1998-07-01
To make clear the differences between the singlet and triplet forces in {Lambda}N interaction, we investigate that how {Lambda}N interaction is concerned with the binding energies of s-shell {Lambda} hypernuclei, using through the effective forces. We shape the effective {Lambda}N potential to reproduce both the experimental binding energies of three- and four-body {Lambda} hypernuclei. It gives the maximal numbers of phase shift of the 31-32 and 19-20 (in degree) in the {Lambda}N scattering at {sup 1}S{sub 0} and {sup 3}S{sub 1} states, respectively. In the case of five-body system, {sub {Lambda}}{sup 5}He, we conclude that the quark Pauli effect is crucial. (author)
Energy Technology Data Exchange (ETDEWEB)
Maeda, Kiminori [Department of Chemistry, University of Oxford, Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, Oxford (United Kingdom); Liddell, Paul; Gust, Devens [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, 85287-1604 (United States); Hore, P. J. [Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford (United Kingdom)
2013-12-21
Spin-selective reactions of radical pairs are conventionally modelled using an approach that dates back to the 1970s [R. Haberkorn, Mol. Phys. 32, 1491 (1976)]. An alternative approach based on the theory of quantum measurements has recently been suggested [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. We present here the first experimental attempt to discriminate between the two models. Pulsed electron paramagnetic resonance spectroscopy has been used to investigate intramolecular electron transfer in the radical pair form of a carotenoid-porphyrin-fullerene molecular triad. The rate of spin-spin relaxation of the fullerene radical in the triad was found to be inconsistent with the quantum measurement description of the spin-selective kinetics, and in accord with the conventional model when combined with spin-dephasing caused by rotational modulation of the anisotropic g-tensor of the fullerene radical.
The Bertlmann-Martin Inequality and Spin Degrees of Freedom
International Nuclear Information System (INIS)
Boufas, S.; Ighezou, F.-Z.; Lombard, R. J.
2012-01-01
The Bertlmann-Martin inequality based on the dipole sum rule is revisited taking into account the spin degrees of freedom. We consider 1 and 2 particles of spin 1/2 in a mean field, adding a spin dependent interaction. The derivation of the inequality relies on the closure relation. We discuss the effect of the Pauli principle, and the restrictions it imposes on the use of the closure relation. The problem is exemplified by a simple model based on harmonic forces. Moreover, in the 2 particle case, the model we use is separable in the relative and centre of mass coordinates. In this case, we show that for operators connecting only singlet states, their sum rule can be calculated in the usual way, i. e. via the double commutator of this operator with the Hamiltonian. An upper bound can also be obtained by using the Bertlmann-Martin technique. This is not possible for operators involving a transition between singlet and triplet states. (author)
Pion-nucleus scatter and the Pauli principle
International Nuclear Information System (INIS)
Dover, C.B.; Lemmer, R.H.
1976-01-01
A density expansion of the pion self-energy for pions in nuclear matter is reexamined. It is shown that a single hole-line expansion of the self-energy (i) is equivalent to using a strongly quenched πN scattering amplitude in the medium, and (ii) results in an inconsistent treatment of the virtual pions necessarily present in a field-theoretic description of the problem. Exchange of intermediate pions gives rise to nucleon-nucleon, as well as pion-nucleon scattering diagrams that both contribute to the pion self-energy in an essential way. The nucleon-nucleon scattering proceeds, for instance, via a one-pion-exchange potential that is, however, highly nonstatic for energy transfers between nucleons close to the incident energy. Such interactions are singled out automatically for special treatment in a field-theory approach to the problem, and should not be introduced in an ad hoc manner as part of an empirical NN interaction in nuclear matter. We evaluate the coherent and charge exchange contributions to the pion-nucleus optical potential, proportional to the total density and the neutron-proton density difference, respectively. The Pauli principle is found to provide a small correction to the coherent part, both in the hole-line and density expansion formalisms. However, the charge exchange part of the potential is almost completely damped at low energies in the hole-line expansion, while the inclusion of backward-going graphs (random-phase-approximation-type correlations) restores it to its value based on free space πN charge exchange amplitudes (i.e., no net Pauli effect)
Kirkpatrick, Andrew W.; Nicolaou, Savvas; Rowan, Kevin; Liu, David; Cunningham, Johan; Sargsyan, Ashot E.; Hamilton, Douglas; Dulchavsky, Scott A.
2005-05-01
The recent interest in the use of ultrasound (US) to detect pneumothoraces after acute trauma in North America was initially driven by an operational space medicine concern. Astronauts aboard the International Space Station (ISS) are at risk for pneumothoraces, and US is the only potential medical imaging available. Pneumothoraces are common following trauma, and are a preventable cause of death, as most are treatable with relatively simple interventions. While pneumothoraces are optimally diagnosed clinically, they are more often inapparent even on supine chest radiographs (CXR) with recent series reporting a greater than 50% rate of occult pneumothoraces. In the course of basic scientific investigations in a conventional and parabolic flight laboratory, investigators familiarized themselves with the sonographic features of both pneumothoraces and normal pulmonary ventilation. By examining the visceral-parietal pleural interface (VPPI) with US, investigators became confident in diagnosing pneumothoraces. This knowledge was subsequently translated into practice at an American and a Canadian trauma center. The sonographic examination was found to be more accurate and sensitive than CXR (US 96% and 100% versus US 74% and 36%) in specific circumstances. Initial studies have also suggested that detecting the US features of pleural pulmonary ventilation in the left lung field may offer the ability to exclude serious endotracheal tube malpositions such as right mainstem and esophageal intubations. Applied thoracic US is an example of a clinically useful space medicine spin-off that is improving health care on earth.
Breit-Pauli approximation for highly ionized beryllium-like ions Kr XXXIII, Mo XXXIX and W LXXI
International Nuclear Information System (INIS)
Glass, R.
1979-01-01
Oscillator strengths and transition probabilities were calculated for transitions between the 1s 2 2s 2 , 1s 2 2s 2p and 1s 2 2p 2 states, namely: 1S 0 /sup e/ → 1 P 1 0 ; 1 P 1 0 → 1 D 2 /sup e/; 1 P 1 0 → 1 S 0 /sup e/ and 3 P/sub J/ 0 → 3 P/sub J//sup e/. A common set of radial functions is used. It is found that for allowed transitions the one-electron relativistic operators are more important than the Breit-Pauli corrections
Violations of the Pauli principle and the interior of the sun
Energy Technology Data Exchange (ETDEWEB)
Plaga, R.
1989-08-01
The consequences of a violation of the Pauli principle for the physics of the solar interior are explored. It is found that a bound state of two protons becomes possible. This leads to an increase in the rate of hydrogen burning in the sun. Because a very large cross section for this reaction is in clear contradiction with the theory of stellar structure when compared with observations of solar luminosity, radius and mechanical oscillations, stringent limits on a violation of the Pauli principle in the two nucleon system can be given. However, a very small violation of the Pauli principle in the two nucleon system might solve the longstanding solar neutrino problem. (orig.).
Atom and archetype the Pauli/Jung letters, 1932-1958
2001-01-01
Wolfgang Pauli, world-renowned physicist, turned to Carl Jung for help, setting a standing appointment for Mondays at noon. Thus bloomed an extraordinary intellectual conjunction. Eighty letters, written over twenty-six years, record that friendship, and are published here in English for the first time.Through the association of these two pioneering thinkers, developments in physics profoundly influenced the evolution of Jungian psychology. And many of Jung's abiding themes shaped how Pauli - and, through him, other physicists - understood the physical world. Atom and Archetype will appeal not only to those interested in the life of Pauli or Jung, but also to the educated general reader.
Taking into account of the Pauli principle in the quasiparticle-phonon nuclear model
International Nuclear Information System (INIS)
Solov'ev, V.G.
1979-01-01
The effect of an exact account taken of the Pauli principle and correlations in ground states in calculations in the framework of the quasiparticle-phonon model of a nucleus has been studied. It is elucidated when it is possible to use the random phase approximation (RPA) and when the Pauli principle should be exactly taken into account. It has been shown that in the quasiparticle-phonon model of a nucleus one may perform calculations with a precise account of the Pauli principle. In most of the problems calculations can be carried out with RPA-phonons
Relativistic corrections to the algebra of position variables and spin-orbital interaction
Directory of Open Access Journals (Sweden)
Alexei A. Deriglazov
2016-10-01
Full Text Available In the framework of vector model of spin, we discuss the problem of a covariant formalism [35] concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy–Wouthuysen transformation.
Relativistic corrections to the algebra of position variables and spin-orbital interaction
Energy Technology Data Exchange (ETDEWEB)
Deriglazov, Alexei A., E-mail: alexei.deriglazov@ufjf.edu.br [Departamento de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation); Pupasov-Maksimov, Andrey M., E-mail: pupasov.maksimov@ufjf.edu.br [Departamento de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil)
2016-10-10
In the framework of vector model of spin, we discuss the problem of a covariant formalism [35] concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy–Wouthuysen transformation.
International Nuclear Information System (INIS)
Salesi, G.
1995-07-01
Starting from the Pauli current the decomposition of the non-relativistic local velocity has been obtained in two parts (in the ordinary tensorial language): one parallel and the other orthogonal to the impulse. The former is recognized to be the classical part, that is, the center-of-mass (CM) velocity, and the latter the quantum one, that is, the velocity of the motion in the CM frame (namely, the internal spin motion or Zitterbewegung). Inserting this complete, composite expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e. Newtonian) Lagrangian, the author straightforwardly get the appearance of the so called quantum potential associates as it is known, to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung
The influence of Pauli blocking effects on the properties of dense hydrogen
International Nuclear Information System (INIS)
Ebeling, W; Blaschke, D; Redmer, R; Reinholz, H; Roepke, G
2009-01-01
We investigate the effects of Pauli blocking on the properties of hydrogen at high pressures, where recent experiments have shown a transition from insulating behavior to metal-like conductivity. Since the Pauli principle prevents multiple occupation of electron states (Pauli blocking), atomic states disintegrate subsequently at high densities (Mott effect). We calculate the energy shifts due to Pauli blocking and discuss the Mott effect solving an effective Schroedinger equation for strongly correlated systems. The ionization equilibrium is treated on the basis of a chemical approach. Results for the ionization equilibrium and the pressure in the region 4000 K < T < 20 000 K are presented. We show that the transition to a highly conducting state is softer than found in earlier work. A first-order phase transition is observed at T < 6450 K, but a diffuse transition appears still up to 20 000 K
Breit–Pauli atomic structure calculations for Fe XI
International Nuclear Information System (INIS)
Aggarwal, Sunny; Singh, Jagjit; Mohan, Man
2013-01-01
Energy levels, oscillator strengths, and transition probabilities are calculated for the lowest-lying 165 energy levels of Fe XI using configuration-interaction wavefunctions. The calculations include all the major correlation effects. Relativistic effects are included in the Breit–Pauli approximation by adding mass-correction, Darwin, and spin–orbit interaction terms to the non-relativistic Hamiltonian. For comparison with the calculated ab initio energy levels, we have also calculated the energy levels by using the fully relativistic multiconfiguration Dirac–Fock method. The calculated results are in close agreement with the National Institute of Standards and Technology compilation and other available results. New results are predicted for many of the levels belonging to the 3s3p 4 3d and 3s3p 3 3d 2 configurations, which are very important in astrophysics, relevant, for example, to the recent observations by the Hinode spacecraft. We expect that our extensive calculations will be useful to experimentalists in identifying the fine structure levels in their future work
Influence of Pauli principle and polarization on 16O + 16O interaction potential
International Nuclear Information System (INIS)
Nesterov, V.A.
2012-01-01
In the work have studied the dependence of the interaction potential on taking into account the Pauli principle as well as monopole and quadrupole polarization within approaches based on the energy-density formalism and two-center shell model wave functions for 16 O + 16 O system. In the adiabatic approximation it is shown that the contribution of the Pauli principle and polarization in colliding nuclei radically changes the behavior of interaction potential
On the checking of electric charge conservation law and the pauli principle
International Nuclear Information System (INIS)
Okun', L.B.
1989-01-01
This is a short critical review of the attempts to check the accuracy with which are carried out in experiment the electric charge conservation law and the Pauli principle. The absence of the inwardly noncontradictory phenomenological theory is emphasized, which could describe the charge conservation and/or the Pauli principle violation. Under charge nonconservation longitudinal photons are of a principal importance. New suggestions concerning the principle Puli checking are discussed
Spin rotation after a spin-independent scattering. Spin properties of an electron gas in a solid
International Nuclear Information System (INIS)
Zayets, V.
2014-01-01
It is shown that spin direction of an electron may not be conserved after a spin-independent scattering. The spin rotations occur due to a quantum-mechanical fact that when a quantum state is occupied by two electrons of opposite spins, the total spin of the state is zero and the spin direction of each electron cannot be determined. It is shown that it is possible to divide all conduction electrons into two group distinguished by their time-reversal symmetry. In the first group the electron spins are all directed in one direction. In the second group there are electrons of all spin directions. The number of electrons in each group is conserved after a spin-independent scattering. This makes it convenient to use these groups for the description of the magnetic properties of conduction electrons. The energy distribution of spins, the Pauli paramagnetism and the spin distribution in the ferromagnetic metals are described within the presented model. The effects of spin torque and spin-torque current are described. The origin of spin-transfer torque is explained within the presented model
Tokatlı, Ahmet; Gençten, Azmi; Şahin, Mükerrem; Tezel, Özden; Bahçeli, Semiha
2004-07-01
The product operator descriptions of INEPT and reverse INEPT (RINEPT) NMR experiments are introduced for weakly coupled ISn ( I=1/2, S=3/2 with n=1,2,3) spin systems. Explicit expressions for polarization transfer from spin-3/2 quadrupolar nuclei to spin-1/2 nuclei (and reversed polarization transfer) are given in detail by using the evolutions of product operators under the spin-spin coupling Hamiltonian. The results calculated for the intensities and positions of the observable signals are simulated in the molecules containning the 119Sn ( I=1/2) and 35Cl ( S=3/2) nuclei at the coupling constant of JSn-Cl=375 Hz by using the Maple programme on computer.
Single-Particle Spin-Orbit Splittings in Nuclei
Kazuhiko, ANDO; Hiroharu, BANDO; Department of Physics, Kyoto University; Division of Mathematical Physics, Fukui University
1981-01-01
Single-particle spin-orbit splittings (Δ^) in ^O and ^Ca nuclei are evaluated within the framework of the effective interaction theory by employing the Reid soft-core potential and meson-exchange three-body forces (TBF). Among the two-body force contributions, the Pauli-rearrangement effect on Δ^ is studied with special care. The TBF contribution to Δ^ is found to be significant. The G-matrix, the second-order pauli-rearrangement and the TBF contribute to Δ^ by the amount of ～1/2, ～1/5 and ～1...
International Nuclear Information System (INIS)
Roiban, R.; Tseytlin, A. A.
2008-01-01
We consider folded (S,J) spinning strings in AdS 5 xS 5 (with one spin component in AdS 5 and a one in S 5 ) corresponding to the Tr(D S Φ J ) operators in the sl(2) sector of the N=4 super Yang-Mills theory in the special scaling limit in which both the string mass ∼√(λ)lnS and J are sent to infinity with their ratio fixed. Expanding in the parameter l=(J/√(λ)lnS) we compute the 2-loop string sigma-model correction to the string energy and show that it agrees with the expression proposed by Alday and Maldacena [J. High Energy Phys. 11 (2007) 019]. We suggest that a resummation of the logarithmic l 2 ln n l terms is necessary in order to establish an interpolation to the weakly coupled gauge-theory results. In the process, we set up a general framework for the calculation of higher loop corrections to the energy of multispin string configurations. In particular, we find that in addition to the direct 2-loop term in the string energy there is a contribution from lower loop order due to a finite 'renormalization' of the relation between the parameters of the classical solution and the fixed spins, i.e., the charges of the SO(2,4)xSO(6) symmetry.
Sparaciari, Carlo; Paris, Matteo G. A.
2013-01-01
We address measurement schemes where certain observables Xk are chosen at random within a set of nondegenerate isospectral observables and then measured on repeated preparations of a physical system. Each observable has a probability zk to be measured, with ∑kzk=1, and the statistics of this generalized measurement is described by a positive operator-valued measure. This kind of scheme is referred to as quantum roulettes, since each observable Xk is chosen at random, e.g., according to the fluctuating value of an external parameter. Here we focus on quantum roulettes for qubits involving the measurements of Pauli matrices, and we explicitly evaluate their canonical Naimark extensions, i.e., their implementation as indirect measurements involving an interaction scheme with a probe system. We thus provide a concrete model to realize the roulette without destroying the signal state, which can be measured again after the measurement or can be transmitted. Finally, we apply our results to the description of Stern-Gerlach-like experiments on a two-level system.
International Nuclear Information System (INIS)
Wang Huaiyu; Long Yao; Chen Nanxian
2006-01-01
In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin quantum number S. The Chebyshev equation is transformed from an ordinary differential equation obtained when we dealt with Heisenberg model, in order to calculate all three components of magnetization, by many-body Green's function under random phase approximation. The Chebyshev functions with argument being greater than 1 are discussed. This paper shows that the Chebyshev polynomials with their argument being greater than 1 have their physical application.
Dabir, Hossein; Davarpanah, Morteza; Ahmadpour, Ali
2015-07-01
The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.
Mesoscopic rings with spin-orbit interactions
Energy Technology Data Exchange (ETDEWEB)
Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto, E-mail: berche@lpm.u-nancy.f [Statistical Physics Group, Institut Jean Lamour, UMR CNRS No 7198, Universite Henri Poincare, Nancy 1, B.P. 70239, F-54506 Vandoeuvre les Nancy (France)
2010-09-15
A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin currents are derived following an intuitive definition, and then a more thorough derivation is built upon the canonical Lagrangian formulation that emphasizes the SU(2) gauge structure of the transport problem of spin-1/2 fermions in spin-orbit active media. The quantization conditions that follow from the constraint of single-valued Pauli spinors are also discussed. The targeted students are those of a graduate condensed matter physics course.
On inclusion of the Pauli principle in the quasi particle-phonon nuclear model
International Nuclear Information System (INIS)
Soloviev, V.G.
1979-01-01
The Pauli principle in odd-even, even-odd and even-even nuclei in the quasi particle-phonon nuclear model is considered. It is shown that the Pauli principle can excactly be taken into account. The exact and approximate secular equations are obtained for the wave function containing the one-quasi particle and quasi particle plus phonon components. The effect of the Pauli principle is discussed, when the wave function contains the one- and two-phonon components. In both the cases the poles are shifted in the secular equations and the quasi particle-phonon interaction terms are added. The number of quasi particles in the ground states is estimated. It is stated that in the majority of deformed nuclei the correlations in the ground states are small. It is shown that within the quasi particle-phonon nuclear model the calculations can be performed with the exact commutation relations
Binding and Pauli principle corrections in subthreshold pion-nucleus scattering
International Nuclear Information System (INIS)
Kam, J. de
1981-01-01
In this investigation I develop a three-body model for the single scattering optical potential in which the nucleon binding and the Pauli principle are accounted for. A unitarity pole approximation is used for the nucleon-core interaction. Calculations are presented for the π- 4 He elastic scattering cross sections at energies below the inelastic threshold and for the real part of the π- 4 He scattering length by solving the three-body equations. Off-shell kinematics and the Pauli principle are carefully taken into account. The binding correction and the Pauli principle correction each have an important effect on the differential cross sections and the scattering length. However, large cancellations occur between these two effects. I find an increase in the π- 4 He scattering length by 100%; an increase in the cross sections by 20-30% and shift of the minimum in π - - 4 He scattering to forward angles by 10 0 . (orig.)
Pauli principle role in the description of collective non-rotational states of deformed nuclei
International Nuclear Information System (INIS)
Solov'ev, V.G.; Shirikova, N.Yu.; Serdyukova, S.I.; Meliev, F.; Nesterenko, V.O.
1981-01-01
The Pauli principle role account for one-phonon and two- phonon states of even-even deformed nuclei sup(160, 164)Dy, sup(230, 232)Th, 154 Gd, 240 Pu, 238 U is performed. With account of isoscalar part of multipole-multipole interaction hamiltonian of a model and basic equations for energy and wave functions of one-phonon and two-phonon states are obtained. The results of calculations of centroids of energies of two-phonon states of the (lambda 1 μ 1 i 1 lambda 2 μ 2 i 2 ) type with and without the Pauli principle are tabulated. The calculations performed have shown that the energy centroids shift of collective two-phonon states with the Pauli-principle account is characteristic for all even-even deformed nuclei. In the authors opinion additional experimental investigations of 154 Cd, 164 Dy, 240 Pu two-phonon nuclei states to confirm theoretical results are necessary [ru
International Nuclear Information System (INIS)
Schmidt, M.; Janke, T.; Redmer, R.
1989-01-01
Within a model calculation the influence of the Pauli exclusion principle on the electrical conductivity of a fully ionized and degenerate hydrogen plasma is investigated. Basing on a quantum kinetic equation solved with the relaxation time ansatz, the electron-ion contribution to the resistivity is calculated. The thermodynamical T-matrix for electron-ion scattering processes is evaluated under special account for the Pauli blocking of the intermediate scattering states. The corresponding Bethe-Salpeter equation is solved analytically using a separable approximation of the statically screened potential. The Pauli exclusion principle has been found to give rise for a considerable enhancement of the transport cross section near the Fermi energy. Thus, degeneracy effects tend to diminish the electrical conductivity in the density-temperature region considered here. (author)
High sensitivity tests of the Pauli Exclusion Principle with VIP2
Marton, J; Bertolucci, S; Berucci, C; Bragadireanu, M; Cargnelli, M; Curceanu, C; Clozza, A; Di Matteo, S; Egger, J-P; Guaraldo, C; Iliescu, M; Ishiwatari, T; Laubenstein, M; Milotti, E; Pichler, A; Pietreanu, D; Piscicchia, K; Ponta, T; Scordo, A; Shi, H; Sirghi, D L; Sirghi, F; Sperandio, L; Doce, O Vazquez; Widmann, E; Zmeskal, J
2015-01-01
The Pauli Exclusion Principle is one of the most fundamental rules of nature and represents a pillar of modern physics. According to many observations the Pauli Exclusion Principle must be extremely well fulfilled. Nevertheless, numerous experimental investigations were performed to search for a small violation of this principle. The VIP experiment at the Gran Sasso underground laboratory searched for Pauli-forbidden X-ray transitions in copper atoms using the Ramberg-Snow method and obtained the best limit so far. The follow-up experiment VIP2 is designed to reach even higher sensitivity. It aims to improve the limit by VIP by orders of magnitude. The experimental method, comparison of different PEP tests based on different assumptions and the developments for VIP2 are presented.
Abdel-Hafiez, M.; Brisbois, J.; Zhu, Z.; Adamski, A.; Hassen, A.; Vasiliev, A. N.; Silhanek, A. V.; Krellner, C.
2018-03-01
We report on magneto-optical imaging and the temperature dependency of the upper critical fields Hc2 c(T ) parallel to the c axis and Hc2 a b(T ) parallel to the a b plane in Ba2Ti2Fe2As4O single crystals. These data were inferred from the measurements of the temperature-dependent resistance in static magnetic fields up to 14 T and magnetoresistance in pulsed fields up to 60 T. Hc 2 values are found to be 52 and 50 T for H ∥a b and H ∥c , respectively. These values are 1.2-1.35 times larger than the weak-coupling Pauli paramagnetic limit (Hp˜1.84 Tc ), indicating that enhanced paramagnetic limiting is essential and this superconductor is unconventional. Our observations of strong bending in the Hc2 a b(T ) curves and a nearly isotropic maximum upper critical field Hc2 a b(0 ) ≈Hc2 c(0 ) support the presence of a strong Pauli paramagnetic effect. We show that the Werthamer-Helfand-Hohenberg (WHH) formula that includes the spin-orbit scattering can effectively describe the Hc2 a b(T ) curve, whereas Hc 2 deviates from the conventional WHH theoretical model without considering the spin paramagnetic effect for the H ∥c and H ∥a b directions. For H ∥c , a two-band model is required to fully reproduce the behavior of Hc 2, while for H ∥a b the spin paramagnetic effect is responsible for the behavior of Hc 2. The anisotropy of Hc 2 is close to 3 near Tc and decreases rapidly at lower temperatures.
Seth, Suman
In early 1925, Wolfgang Pauli (1900-1958) published the paper for which he is now most famous and for which he received the Nobel Prize in 1945. The paper detailed what we now know as his "exclusion principle." This essay situates the work leading up to Pauli's principle within the traditions of the "Sommerfeld School," led by Munich University's renowned theorist and teacher, Arnold Sommerfeld (1868-1951). Offering a substantial corrective to previous accounts of the birth of quantum mechanics, which have tended to sideline Sommerfeld's work, it is suggested here that both the method and the content of Pauli's paper drew substantially on the work of the Sommerfeld School in the early 1920s. Part One describes Sommerfeld's turn away from a faith in the power of model-based (modellmässig) methods in his early career towards the use of a more phenomenological emphasis on empirical regularities (Gesetzmässigkeiten) during precisely the period that both Pauli and Werner Heisenberg (1901-1976), among others, were his students. Part two delineates the importance of Sommerfeld's phenomenology to Pauli's methods in the exclusion principle paper, a paper that also eschewed modellmässig approaches in favour of a stress on Gesetzmässigkeiten. In terms of content, a focus on Sommerfeld's work reveals the roots of Pauli's understanding of the fundamental Zweideutigkeit (ambiguity) involving the quantum number of electrons within the atom. The conclusion points to the significance of these results to an improved historical understanding of the origin of aspects of Heisenberg's 1925 paper on the "Quantum-theoretical Reformulation (Umdeutung) of Kinematical and Mechanical Relations."
Influence of the Pauli principle on the two-phonon states
International Nuclear Information System (INIS)
Djolos, R.V.; Molina, J.L.; Soloviev, V.G.
1979-01-01
It is shown that the commutation relations between quasiparticles forming phonons can correctly be taken into account within the quasiparticle-phonon nuclear model. The case of the even-even deformed nuclei is studied. Exact and approximate secular equations are obtained. The corrections arising due to the Pauli principle are shown to be large for the two-phonon components of the wave functions, when the phonons are identical. The influence of the Pauli principle on the energies of the two-phonon states and radiative strength functions requires further investigation [ru
Taking into account for the Pauli principle in particle-vibrator model
International Nuclear Information System (INIS)
Knyaz'kov, O.M.
1985-01-01
To construct Hamiltonian of the particle interaction and phonons a semimicroscopic approach developed by the author earlier is used. At that the Pauli principle is taken account of in local formalism of density matrix. Analytical expressions permitting in a closed form to solve a task of taking account of the Pauli principle in the particle-vibrator model have been derived. Unlike a phenomenological approach form factors of inelastic transitions are determined with parameters of effective nucleon-nucleon forces, central and transition densities and contain no free parameters
Effect of Pauli principle accounting an the two-phonon states of spherical nuclej
International Nuclear Information System (INIS)
Solov'ev, V.G.; Stoyanov, Ch.; Nikolaeva, R.
1983-01-01
The effect of account for the Pauli principle in two-phonon components of the wave functions on low-lying collective states of even-even spherical nuclei is investigated. The calculations are performed for sup(114, 116)Sn and sup(142, 144, 146, 148)Sm. The account of the Pauli principle is shown to exert a weak effect on the states with large one-phonon or two-phonon components. It is concluded that in some spherical nuclei sufficiently pure two-phonon states may exist
International Nuclear Information System (INIS)
Qin Fang; Chen Jisheng
2012-01-01
The finite-temperature Pauli paramagnetic susceptibility of a three-dimensional ideal anyon gas obeying Haldane fractional exclusion statistics is studied analytically. Different from the result of an ideal Fermi gas, the susceptibility of an ideal anyon gas depends on a statistical factor g in Haldane statistics model. The low-temperature and high-temperature behaviors of the susceptibility are investigated in detail. The Pauli paramagnetic susceptibility of the two-dimensional ideal anyons is also derived. It is found that the reciprocal of the susceptibility has the similar factorizable property which is exhibited in some thermodynamic quantities in two dimensions.
International Nuclear Information System (INIS)
Sanid, C; Murugesh, S
2014-01-01
We propose a system of two coupled spin-torque nano-oscillators (STNOs), one driver and another response, and demonstrate using numerical studies the synchronization of the response system to the frequency of the driver system. To this end we use a high-speed operational amplifier in the form of a voltage follower, which essentially isolates the drive system from the response system. We find the occurrence of 1 : 1 as well as 2 : 1 synchronization in the system, wherein the oscillators show limit cycle dynamics. An increase in power output is noticed when the two oscillators are locked in 1 : 1 synchronization. Moreover in the crossover region between these two synchronization dynamics we show the existence of chaotic dynamics in the slave system. The coupled dynamics under periodic forcing, using a small ac input current in addition to that of the dc part, is also studied. The slave oscillator is seen to retain its qualitative identity in the parameter space in spite of being fed in, at times, a chaotic signal. Such electrically coupled STNOs will be highly useful in fabricating commercial spin-valve oscillators with high power output, when integrated with other spintronic devices. (paper)
Energy Technology Data Exchange (ETDEWEB)
Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany and Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
2015-07-28
Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.
Pauli principle in the soft-photon approach to proton-proton bremsstrahlung
Liou, MK; Timmermans, R; Gibson, BF
1996-01-01
A relativistic and manifestly gauge-invariant soft-photon amplitude, which is consistent with the soft-photon theorem and satisfies the Pauli principle, is derived for the proton-proton bremsstrahlung process. This soft-photon amplitude is the first two-u-two-t special amplitude to satisfy all
Synchronicity - The Link Between Physics and Psyche, from Pauli and Jung to Chopra
Teodorani, M.
2006-07-01
This book, which is entirely dedicated to the mystery of "synchronicity", is divided into three parts: a) the joint research between analytic psychologist Carl Gustav Jung and quantum physicist Wolfgang Pauli; b) synchronicity mechanisms occurring in the microscopic (canonical quantum entanglement), mesoscopic and macroscopic scales; c) research and philosophy concerning synchronicity by MD Deepak Chopra.
Effects of the Pauli suppression of the Born amplitude in a nuclear medium
International Nuclear Information System (INIS)
Nutt, W.T.
1976-01-01
It is noted that the suppression of the Born term in the pion-nucleon interaction which is expected due to the action of the Pauli Exclusion Principle in a nuclear medium gives rise to a downward shift to the (3,3) resonance
Spin-torsion effects in the hyperfine structure of methanol
International Nuclear Information System (INIS)
Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.
2015-01-01
The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling
Foucault's Pendulum, Analog for an Electron Spin State
Linck, Rebecca
2012-11-01
The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.
The classical limit of quantum theories: Particles in external metrics and with spin
International Nuclear Information System (INIS)
Hogreve, J.J.
1983-01-01
The intention of this work is to provide some further steps in this program, particullary the clarification of certain aspects of the classical limit of quantum theory. Here the classical limit is understood in the sense that we consider a family of quantum theories parametrized by (h/2π) > 0, and then take the limit (h/2π) -> 0. From a mathematical point of view we are thus in the area calles 'asymptotic perturbation theory'. In detail, we examine the canonical partition function Tr [esup(-x)] with x=tH((h/2π)) for Hamiltonians H ((h/2π)) involving the Laplace-Beltrami operator on manifolds, and show that after scaling it by (h/2π)sup(N) it converges to its corresponding classical counterpart. This is done in chapter I. In chapter II we prove the convergence to its classical limit of the partition function for Hamiltonians including spin degrees of freedom, i.e. Hamiltonians of Pauli type. In this case taking the classical limit includes also manipulation on the spin space in the sense that the weight of the representation of the spin operators has to tend to infinity simultanously as (h/2π) approaches zero. Under this procedure the spin space itself, that is the representation space of the spin operators, turn into certain coadjoint orbits of the respective Lie group. The main result of chapter III is a generalized Ehrenfest theorem; as (h/2π) -> 0 the quantum mechanical time evolution generated by Hamiltonians including external metrics and vector potentials becomes a solution of the corresponding classical canonical Hamiltonian equations. (orig./HSI) [de
International Nuclear Information System (INIS)
Krolle, D.; Assenbaum, H.J.; Funck, C.; Langanke, K.
1987-01-01
The finite Pauli repulsion model of Walliser and Nakaichi-Maeda and the orthogonality condition model are two microscopically motivated potential models for the description of nuclear collisions which, however, differ from each other in the way they incorporate antisymmetrization effects into the nucleus-nucleus interaction. We have used α+α scattering at low energies as a tool to distinguish between the two different treatments of the Pauli principle. Both models are consistent with the presently available on-shell (elastic) and off-shell (bremsstrahlung) data. We suggest further measurements of α+α bremsstrahlung including the coplanar laboratory differential cross section in Harvard geometry at α-particle angles of around 27 0 and the γ-decay width of the 4 + resonance at E/sub c.m./ = 11.4 MeV, because in both cases the two models make significantly different predictions
Higher covariant derivative Pauli-Villars regularization does not lead to a consistent QCD
International Nuclear Information System (INIS)
Martin, C.P.; Ruiz Ruiz, F.
1994-01-01
We compute the beta function at one loop for Yang-Mills theory using as regulator the combination of higher covariant derivatives and Pauli-Villars determinants proposed by Faddeev and Slavnov. This regularization prescription has the appealing feature that it is manifestly gauge invariant and essentially four-dimensional. It happens however that the one-loop coefficient in the beta function that it yields is not -11/3, as it should be, but -23/6. The difference is due to unphysical logarithmic radiative corrections generated by the Pauli-Villars determinants on which the regularization method is based. This no-go result discards the prescription as a viable gauge invariant regularization, thus solving a long-standing open question in the literature. We also observe that the precsription can be modified so as to not generate unphysical logarithmic corrections, but at the expense of losing manifest gauge invariance. (orig.)
Optimal ancilla-free Pauli+V circuits for axial rotations
International Nuclear Information System (INIS)
Blass, Andreas; Bocharov, Alex; Gurevich, Yuri
2015-01-01
We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL 2 (ℤ) geometry is almost elementary
The Innermost Kernel Depth Psychology and Quantum Physics. Wolfgang Pauli's Dialogue with C.G Jung
Gieser, Suzanne
2005-01-01
"The Innermost Kernel" recounts the physicist and Nobel Laureate Wolfgang Pauli and his interest in Jungian psychology, philosophy and western world-view. It is also an exploration of the intellectual setting and context of Pauli's thinking, which has its starting point in the cultural and intellectual climate of fin-de-siècle Europe. As a contribution to the general history of quantum physics this study has a special focus on the psychological and philosophical issues discussed by physicists belonging to the Copenhagen school. The work is mainly based on the correspondence of the principle characters and explores some of the central issues discussed there, as for instance the subject-object relation, complementarity, the relation of conscious and unconscious, the process underlying concept-formation, the psychology of scientific discovery, the symbolic world of alchemy, the theories of archetypes and of synchronicity. Ultimately this book is about a remarkable scientist searching for a new understanding of ...
Effect of the Pauli principle and channel coupling on the nuclear reactions, 2
International Nuclear Information System (INIS)
Kanada, Hiroyuki; Kaneko, Tsuneo; Nomoto, Morikazu
1976-01-01
The effect of the Pauli principle on nuclear reactions of a six-nucleon system is investigated in the presence of a breakup channel, by using the resonating group method (RGM). The microscopic treatment with full exchange effects for the t( 3 He, d) 4 He reaction is examined together with the 3 He-t and d- 4 He elastic scattering. It is shown that the exchange effects (especially owing to the Pauli principle) play an important role in the differential cross section in the backward region. The t( 3 He, d) 4 He reaction is examined by decomposing the reaction processes into three terms, that is, proton stripping, neutron pick-up and residual processes. The asymmetry of the angular distribution for the t( 3 He, d) 4 He reaction is also discussed. (auth.)
New experimental limit on Pauli exclusion principle violation by electrons (VIP experiment)
Energy Technology Data Exchange (ETDEWEB)
Bartalucci, S [NFN, Laboratori Nazionali di Prascati, C.P. 13, Via E. Fermi 40, I-00044, Frascati (Italy); Bertolucci, S [NFN, Laboratori Nazionali di Prascati, C.P. 13, Via E. Fermi 40, I-00044, Frascati (Italy); Bragadireanu, M [NFN, Laboratori Nazionali di Prascati, C.P. 13, Via E. Fermi 40, I-00044, Frascati (Italy)] (and others)
2007-05-15
The Pauli exclusion principle (PEP) represents one of the basic principles of modern physics and, even if there are no compelling reasons to doubt its validity, it still spurs a lively debate, because an intuitive, elementary explanation is still missing, and because of its unique stand among the basic symmetries of physics. A new limit on the probability that PEP is violated by electrons was estabilished by the VIP (Violation of the Pauli exclusion principle) Collaboration, using the method of searching for PEP forbidden atomic transitions in copper. The preliminary value, 1/2{beta}{sup 2} < 4.5 x 10{sup -28}, represents an improvement of about two orders of magnitude of the previous limit. The goal of VIP is to push this limit at the level of 10{sup -30}.
Optimal ancilla-free Pauli+V circuits for axial rotations
Energy Technology Data Exchange (ETDEWEB)
Blass, Andreas [Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1043 (United States); Bocharov, Alex; Gurevich, Yuri [Microsoft Research, Redmond, Washington 98052 (United States)
2015-12-15
We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL{sub 2}(ℤ) geometry is almost elementary.
Higher covariant derivative Pauli-Villars regularization does not lead to a consistent QCD
Energy Technology Data Exchange (ETDEWEB)
Martin, C P [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Ruiz Ruiz, F [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H
1994-12-31
We compute the beta function at one loop for Yang-Mills theory using as regulator the combination of higher covariant derivatives and Pauli-Villars determinants proposed by Faddeev and Slavnov. This regularization prescription has the appealing feature that it is manifestly gauge invariant and essentially four-dimensional. It happens however that the one-loop coefficient in the beta function that it yields is not -11/3, as it should be, but -23/6. The difference is due to unphysical logarithmic radiative corrections generated by the Pauli-Villars determinants on which the regularization method is based. This no-go result discards the prescription as a viable gauge invariant regularization, thus solving a long-standing open question in the literature. We also observe that the precsription can be modified so as to not generate unphysical logarithmic corrections, but at the expense of losing manifest gauge invariance. (orig.).
International Nuclear Information System (INIS)
Barabash, A.S.
1989-01-01
Capabilities of modern radiation detectors for investigation into electron stability and possible violation of Pauli principle in atoms are discussed. For experimental searches of electron instability the following low-background devices are used: scintillation NaI-detectors, semiconducting detectors of enriched germanium, emission chamber, multisection proportional counter and low-temperature detectors. It is ascertained that using modern low-background devices applying the earlier enumerated detectors, it is possible to achieve sensitivity of the order of 10 24 -10 25 years for the electron lifetime relatively to its decay and Pauli principle violation in atoms. Experiments with sensitivity of ∼ 10 26 -10 27 can be realized in massive low-temperature detectors, developed for neutrino physics. 28 refs; 1 fig
Searches for the Violation of Pauli Exclusion Principle at LNGS in VIP(-2) experiment
Shi, H; Bertolucci, S; Berucci, C; Bragadireanu, A M; Cargnelli, M; Clozza, A; Curceanu, C; De Paolis, L; Di Matteo, S; d'Uffizi, A; Egger, J P; Guaraldo, C; Iliescu, M; Ishiwatari, T; Marton, J; Laubenstein, M; Milotti, E; Pietreanu, D; Piscicchia, K; Ponta, T; Vidal, A.Romero; Sbardella, E; Scordo, A; Sirghi, D L; Sirghi, F; Sperandio, L; Vazquez Doce, O; Widmann, E; Zmeskal, J
2016-01-01
The VIP (Violation of Pauli exclusion principle) experiment and its follow-up experiment VIP-2 at the Laboratori Nazionali del Gran Sasso (LNGS) search for X-rays from Cu atomic states that are prohibited by the Pauli Exclusion Principle (PEP). The candidate events, if they exist, will originate from the transition of a $2p$ orbit electron to the ground state which is already occupied by two electrons. The present limit on the probability for PEP violation for electron is 4.7 $\\times10^{-29}$ set by the VIP experiment. With upgraded detectors for high precision X-ray spectroscopy, the VIP-2 experiment will improve the sensitivity by two orders of magnitude.
Charting the Real Four-Qubit Pauli Group via Ovoids of a Hyperbolic Quadric of PG(7,2)
Czech Academy of Sciences Publication Activity Database
Saniga, M.; Levay, P.; Pracna, Petr
2012-01-01
Roč. 45, JUL 2012 (2012), s. 295304 ISSN 1751-8113 Institutional support: RVO:61388955 Keywords : Pauli group * structure * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.766, year: 2012
Theory of single quantum dot lasers: Pauli-blocking-enhanced anti-bunching
International Nuclear Information System (INIS)
Su, Yumian; Bimberg, Dieter; Carmele, Alexander; Richter, Marten; Knorr, Andreas; Lüdge, Kathy; Schöll, Eckehard
2011-01-01
We present a theoretical model to describe the dynamics of a single semiconductor quantum dot interacting with a microcavity system. The confined quantum dot levels are pumped electrically via a carrier reservoir. The investigated dynamics includes semiconductor-specific, reservoir-induced Pauli-blocking terms in the equations of the photon probability functions. This enables a direct study of the photon statistics of the quantum light emission in dependence on the different pumping rates
Application of photon detectors in the VIP2 experiment to test the Pauli Exclusion Principle
Pichler, A; Bazzi, M.; Bertolucci, S.; Berucci, C.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; De Paolis, L.; Di Matteo, S.; D'Ufflzi, A.; Egger, J.P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Piscicchia, K.; Ponta, T.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.; Sirghi, F.; Sperandio, L.; Vazquez-Doce, O.; Widmann, E.; Zmeskal, J.
2016-01-01
The Pauli Exclusion Principle (PEP) was introduced by the austrian physicist Wolfgang Pauli in 1925. Since then, several experiments have checked its validity. From 2006 until 2010, the VIP (VIolation of the Pauli Principle) experiment took data at the LNGS underground laboratory to test the PEP. This experiment looked for electronic 2p to 1s transitions in copper, where 2 electrons are in the 1s state before the transition happens. These transitions violate the PEP. The lack of detection of X-ray photons coming from these transitions resulted in a preliminary upper limit for the violation of the PEP of $4.7 \\times 10^{-29}$. Currently, the successor experiment VIP2 is under preparation. The main improvements are, on one side, the use of Silicon Drift Detectors (SDDs) as X-ray photon detectors. On the other side an active shielding is implemented, which consists of plastic scintillator bars read by Silicon Photomultipliers (SiPMs). The employment of these detectors will improve the upper limit for the violati...
Standing together in troubled times unpublished letters by Pauli, Einstein, Franck and others
2017-01-01
This captivating book is a story of the friendship between a genius physicist Wolfgang Pauli and Charlotte Houtermans whose career in physics was not as glamorous. They met in the late 1920s in Germany, at the very onset of the quantum era and personally knew all the major players in the emergent quantum world that was very much part of central Europe: Germany, Austria, Hungary, Denmark and Switzerland. And Charlotte was a student at Göttingen that was right at the heart.Caught between two evils — Soviet Communism and German National Socialism — she would have probably perished if it were not for the brotherhood of physicists: Niels Bohr, Wolfgang Pauli, Albert Einstein, James Franck, Max Born, Robert Oppenheimer and many other noted scientists who tried to save friends and colleagues (either leftist sympathizers or Jews) who were in mortal danger of being entrapped in a simmering pre-WWII Europe.Using newly discovered documents from the Houtermans family archive: twenty three Pauli's letters to Charlott...
Engineering a spin-fet: spin-orbit phenomena and spin transport induced by a gate electric field
Cardoso, J. L.; Hernández-Saldaña, H.
2012-01-01
In this work, we show that a gate electric field, applied in the base of the field-effect devices, leads to inducing spin-orbit interactions (Rashba and linear Dresselhauss) and confines the transport electrons in a two-dimensional electron gas. On the basis of these phenomena we solve analytically the Pauli equation when the Rashba strength and the linear Dresselhaus one are equal, for a tuning value of the gate electric field $\\mathcal{E}_g^*$. Using the transfer matrix approach, we provide...
Li, Dafa
2018-06-01
We construct ℓ -spin-flipping matrices from the coefficient matrices of pure states of n qubits and show that the ℓ -spin-flipping matrices are congruent and unitary congruent whenever two pure states of n qubits are SLOCC and LU equivalent, respectively. The congruence implies the invariance of ranks of the ℓ -spin-flipping matrices under SLOCC and then permits a reduction of SLOCC classification of n qubits to calculation of ranks of the ℓ -spin-flipping matrices. The unitary congruence implies the invariance of singular values of the ℓ -spin-flipping matrices under LU and then permits a reduction of LU classification of n qubits to calculation of singular values of the ℓ -spin-flipping matrices. Furthermore, we show that the invariance of singular values of the ℓ -spin-flipping matrices Ω 1^{(n)} implies the invariance of the concurrence for even n qubits and the invariance of the n-tangle for odd n qubits. Thus, the concurrence and the n-tangle can be used for LU classification and computing the concurrence and the n-tangle only performs additions and multiplications of coefficients of states.
Energy Technology Data Exchange (ETDEWEB)
Abgrall, N.; Bradley, A.W.; Chan, Y.D.; Mertens, S.; Poon, A.W.P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I.J.; Hoppe, E.W.; Kouzes, R.T.; LaFerriere, B.D.; Orrell, J.L. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F.T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Barabash, A.S.; Konovalov, S.I.; Yumatov, V. [National Research Center ' ' Kurchatov Institute' ' Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F.E.; Galindo-Uribarri, A.; Radford, D.C.; Varner, R.L.; White, B.R.; Yu, C.H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Brudanin, V.; Shirchenko, M.; Vasilyev, S.; Yakushev, E.; Zhitnikov, I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Busch, M. [Duke University, Department of Physics, Durham, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Buuck, M.; Cuesta, C.; Detwiler, J.A.; Gruszko, J.; Guinn, I.S.; Leon, J.; Robertson, R.G.H. [University of Washington, Department of Physics, Center for Experimental Nuclear Physics and Astrophysics, Seattle, WA (United States); Caldwell, A.S.; Christofferson, C.D.; Dunagan, C.; Howard, S.; Suriano, A.M. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chu, P.H.; Elliott, S.R.; Goett, J.; Massarczyk, R.; Rielage, K. [Los Alamos National Laboratory, Los Alamos, NM (United States); Efremenko, Yu. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Ejiri, H. [Osaka University, Research Center for Nuclear Physics, Ibaraki, Osaka (Japan); Finnerty, P.S.; Gilliss, T.; Giovanetti, G.K.; Henning, R.; Howe, M.A.; MacMullin, J.; Meijer, S.J.; O' Shaughnessy, C.; Rager, J.; Shanks, B.; Trimble, J.E.; Vorren, K.; Xu, W. [Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Green, M.P. [North Carolina State University, Department of Physics, Raleigh, NC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Guiseppe, V.E.; Tedeschi, D.; Wiseman, C. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Jasinski, B.R. [University of South Dakota, Department of Physics, Vermillion, SD (United States); Keeter, K.J. [Black Hills State University, Department of Physics, Spearfish, SD (United States); Kidd, M.F. [Tennessee Tech University, Cookeville, TN (United States); Martin, R.D. [Queen' s University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON (Canada); Romero-Romero, E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Vetter, K. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); Wilkerson, J.F. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States)
2016-11-15
A search for Pauli-exclusion-principle-violating K{sub α} electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 x 10{sup 30} s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 x 10{sup 30} s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of {sup 76}Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation. (orig.)
Bases for Spin Systems and Qudits
International Nuclear Information System (INIS)
Kibler, Maurice R.
2009-01-01
There is a growing interest these days for the field of quantum information and quantum computation (for which classical bits are replaced by qubits in dimension 2 and qudits in dimension d). This field is at the crossing of mathematics, informatics and quantum physics. In this work, bases of relevance for spin systems with cyclic symmetry as well as for quantum information and quantum computation are discussed from the theory of angular momentum and group-theoretical methods. This approach is connected to the use of generalized Pauli matrices (in dimension d) arising from a polar decomposition of the group SU 2 . Examples are given for d = 2, 3 and 4.
Energy Technology Data Exchange (ETDEWEB)
Moreira, Iberio de P R [Departament de Quimica Fisica and Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona and Parc CientIfic de Barcelona, C/ MartI i Franques 1, E-08028 Barcelona (Spain); Calzado, Carmen J [Departamento de Quimica Fisica, Universidad de Sevilla, C/ Prof. GarcIa Gonzalez s/n, E-41012 Sevilla (Spain); Malrieu, Jean-Paul [IRSAMC, Laboratoire de Physique Quantique, Universite Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse-Cedex (France); Illas, Francesc [Departament de Quimica Fisica and Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona and Parc CientIfic de Barcelona, C/ MartI i Franques 1, E-08028 Barcelona (Spain)
2007-10-15
A general procedure is presented which permits the form of an extended spin Hamiltonian to be established for a given magnetic solid and the magnitude of its terms to be evaluated from spin polarized, Hartree-Fock or density functional calculations carried out for periodic models. The computational strategy makes use of a general mapping between the energy of pertinent broken-symmetry solutions and the diagonal terms of the spin Hamiltonian in a local representation. From this mapping it is possible to determine not only the amplitude of the well-known two-body magnetic coupling constants between near-neighbor sites, but also the amplitudes of four-body cyclic exchange terms. A scrutiny of the on-site spin densities provides additional information and control of the many broken-symmetry solutions which can be found. The procedure is applied to the La{sub 2}CuO{sub 4}, Sr{sub 2}CuO{sub 2}F{sub 2}, Sr{sub 2}CuO{sub 2}Cl{sub 2} and Ca{sub 2}CuO{sub 2}Cl{sub 2} square lattices and the SrCu{sub 2}O{sub 3} ladder compound. It is shown that a proper description of the magnetic structure of these compounds requires that two- and four-body terms are explicitly included in the spin Hamiltonian. The implications for the interpretation of recent experiments are discussed.
International Nuclear Information System (INIS)
Shpakauskas, V.V.; Kychkin, I.S.; Rudzikas, Z.B.
1976-01-01
Certain symmetry properties of standard quantities of the atomic shell theory for LS coupling are studied, namely, the commutation of quantum numbers of spin and quasispin in genealogical coefficients and in submatrix elements of irreducible tensor operators. The method of second quantization and quasispin has been used for obtaining new relations between genealogical coefficients. The similar relations have been also found for the submatrix elements of the irreducible tensor operators, as well as for genealogical coefficients with two and more split-off electrons. For the first time in special cases for the quantities under study the explicit algebraic expressions are obtained
A two-component wave equation for particles of spin 1/2 and non-zero rest mass
International Nuclear Information System (INIS)
Srivastava, T.
1981-11-01
We have discussed here the qualifications of the equation (delta 0 +sigmasup(k)deltasub(k))psi = -kappaTpsi, where deltasub(μ) is identical to delta/deltaxsup(μ), sigmasup(k) are the Pauli spin matrices, T is the linear operator which changes the sign of t, kappa=m 0 c/(h/2π) and psi a function with two components, as a suitable wave equation for a spin 1/2 particle with non-zero rest mass. We have established that both components of all its solutions satisfy the Klein-Gordon equation and that a 1-1 correspondence can be set up between its solutions and the positive energy solutions of the Dirac equation which preserves inner products (suitably defined for our case). We have then gone on to show covariance under transformations of the proper Lorentz group as also under space and time inversions and translations. Eigenfunctions of energy-momentum and spin have been explicitly found and it is shown that causality is preserved and a Green's function exists. A list appears, at the end, of points to be discussed in Part II of this paper, points which, it is hoped, will complete the acceptability of the theory. (author)
Heisenberg (and Schrödinger, and Pauli) on hidden variables
Bacciagaluppi, Guido; Crull, Elise
In this paper, we discuss various aspects of Heisenberg's thought on hidden variables in the period 1927-1935. We also compare Heisenberg's approach to others current at the time, specifically that embodied by von Neumann's impossibility proof, but also views expressed mainly in correspondence by Pauli and by Schrödinger. We shall base ourselves mostly on published and unpublished materials that are known but little-studied, among others Heisenberg's own draft response to the EPR paper. Our aim will be not only to clarify Heisenberg's thought on the hidden-variables question, but in part also to clarify how this question was understood more generally at the time.
Integral equations for composite-particle scattering taking the Pauli principle into account
International Nuclear Information System (INIS)
Kukulin, V.I.; Neudatchin, V.G.; Pomerantsev, V.N.
1978-01-01
An approximate description of a system of three composite particles in terms of the Saito (Prog. Theor. Phys.; 41:705 (1969)) orthogonality condition model is proposed. The orthogonalising pseudopotential technique is used to derive a modified set of Fadde'ev equations where the two- and three-body exchanges due to the Pauli principle are included by orthogonalising to two-and three-body forbidden states. The scope of applicability of and the method for solving the derived equations are discussed briefly. (author)
Collision strengths from ground levels of Ti XIII using relativistic-Breit-Pauli approximation
International Nuclear Information System (INIS)
Mohan, M.; Hibbert, H.; Burke, P.G.; Keenan, F.
1998-09-01
The R-matrix method is used to calculate collision strengths from ground state to the first twenty-six fine structure levels of neon-like titanium by including the relativistic term coupling coefficients in the semi-Breit-Pauli approximation. Configuration interaction wave-functions are used to represent the first fifteen lowest LS-coupled target states in the R-matrix expansion. Results obtained are compared with other calculations. This is the first detailed calculation on this ion in which relativistic, exchange, channel couplings and short-range correlation effects are taken into account. (author)
Wolfgang Pauli et l'arrière-plan de la physique
Bringuier, Eric
2003-01-01
"Wolfgang Pauli est l'une des figures scientifiques majeures du XXe siècle. Ses contributions sur la structure de l'atome ont été déterminantes pour l'établissement de la théorie quantique. Mais une grande partie de son activité fut aussi consacrée à une réflexion plus large sur les processus cognitifs. L'une de ses obsessions: trouver un langage commun pour décrire le monde physique et le monde psychique" (3 pages)
CFD Modelling of the Effects of Operating Parameters on the Spreading of Liquids on a Spinning Disc
Directory of Open Access Journals (Sweden)
Y. Pan
2014-03-01
Full Text Available A novel dry slag granulation process based on a spinning disc is being developed by CSIRO. This process utilises centrifugal force to break up molten slag into droplets, which are then quenched into solidified granules by a flow of cold air. In this process the sensible heat of slag is recovered as hot air. In the present work, a previously developed steady-state, two-dimensional and multiphase CFD model was applied to perform parametric numerical experiments to investigate the effects of a number of parameters on the liquid film thickness at the disc edge, which included liquid mass feeding (pouring rate, disc spinning speed, disc radius, liquid viscosity, density and surface tension. The modelling results were compared with experimental data and were found to be in good agreement. To reduce the number of simulations needed, Box and Behnken's fractional factorial design of numerical experiment was adopted. Furthermore, in order for the modelling results to be applicable to atomisation of different liquids using spinning discs of different sizes, a dimensionless correlation was developed based on dimensional analysis of the numerical simulation data. The modelling results indicate that the liquid film thickness can be significantly influenced by the disc radius and spinning speed, the liquid mass feeding rate, viscosity and density, whereas the liquid surface tension has a negligible effect.
Directory of Open Access Journals (Sweden)
Piotto Martial
2012-01-01
Full Text Available Abstract Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9 originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample. Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.
International Nuclear Information System (INIS)
Hakioglu, T
2009-01-01
Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.
Energy Technology Data Exchange (ETDEWEB)
Finzel, Kati, E-mail: kati.finzel@liu.se [Linköpings University, IFM Department of Physics, 58183 Linköping (Sweden)
2016-01-21
The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.
Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot
Hofmann, A.; Maisi, V. F.; Krähenmann, T.; Reichl, C.; Wegscheider, W.; Ensslin, K.; Ihn, T.
2017-10-01
The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.
Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot.
Hofmann, A; Maisi, V F; Krähenmann, T; Reichl, C; Wegscheider, W; Ensslin, K; Ihn, T
2017-10-27
The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.
Exact multiple scattering theory of two-nucleus collisions including the Pauli principle
International Nuclear Information System (INIS)
Gurvitz, S.A.
1981-01-01
Exact equations for two-nucleus scattering are derived in which the effects of the Pauli principle are fully included. Our method exploits a modified equation for the scattering of two identical nucleons, which is obtained at the beginning. Considering proton-nucleus scattering we found that the resulting amplitude has two components, one resembling a multiple scattering series for distinguishable particles, and the other a distorted (A-1) nucleon cluster exchange. For elastic pA scattering the multiple scattering amplitude is found in the form of an optical potential expansion. We show that the Kerman-McManus-Thaler theory of the optical potential could be easily modified to include the effects of antisymmetrization of the projectile with the target nucleons. Nucleus-nucleus scattering is studied first for distinguishable target and beam nucleus. Afterwards the Pauli principle is included, where only the case of deuteron-nucleus scattering is discussed in detail. The resulting amplitude has four components. Two of them correspond to modified multiple scattering expansions and the others are distorted (A-1)- and (A-2)- nucleon cluster exchange. The result for d-A scattering is extended to the general case of nucleus-nucleus scattering. The equations are simple to use and as such constitute an improvement over existing schemes
Role of the pair potential for the saturation of generalized Pauli constraints
Legeza, Örs; Schilling, Christian
2018-05-01
The dependence of the (quasi-)saturation of the generalized Pauli constraints on the pair potential is studied for ground states of few-fermion systems. For this, we consider spinless fermions in one dimension which are harmonically confined and interact by pair potentials of the form | xi-xj|s with -1 ≤s ≤5 . We use the density matrix renormalization group approach and large orbital basis to achieve the convergence on more than ten digits of both the variational energy and the natural occupation numbers. Our results confirm that the conflict between energy minimization and fermionic exchange symmetry results in a universal and nontrivial quasisaturation of the generalized Pauli constraints (quasipinning), implying tremendous structural simplifications of the fermionic ground state for all s . Those numerically exact results are complemented by an analytical study based on a self-consistent perturbation theory which we develop for this purpose. The respective results for the weak-coupling regime eventually elucidate the singular behavior found for the specific values s =2 ,4 ,..., resulting in an extremely strong quasipinning.
Pauli blocking and laser manipulation of the electron dynamics in atomic collisions
International Nuclear Information System (INIS)
Kirchner, T.
2004-01-01
Full text: The dynamics of ion-atom collisions are governed primarily by the Coulomb interactions between the active electrons and the projectile and target nuclei. This contribution is devoted to the question whether and how other phenomena can modify the outcome of atomic scattering experiments. Firstly, the role of the Pauli exclusion principle on electronic transitions will be considered. Supported by experimental data it will be argued that Pauli blocking may have an important influence on electron transfer processes if collision systems with electrons on target and projectile in the initial channel are addressed [1]. Secondly, it will be discussed to which extent the electron dynamics can be modified and manipulated by an external interaction, namely by a suitable laser field [2]. The prototype scattering system He 2+ -H will be considered in the framework of the semiclassical approximation, i.e., projectile and laser interactions are described in terms of time-dependent external potentials which govern the quantum dynamics of the electron. The focus will be on slow collisions, in which electron transfer dominates, and on relatively short wavelengths such that both time dependent potentials vary on comparable time scales. A strong enhancement of laser-assisted electron transfer is found at collision energies below 1 keV/amu [3]. Its origin and its disappearance at higher energies as well as implications for planned experiments will be discussed
The role of the Pauli principle in three-cluster systems composed of identical clusters
International Nuclear Information System (INIS)
Lashko, Yu.A.; Filippov, G.F.
2009-01-01
Within the microscopic model based on the algebraic version of the resonating group method the role of the Pauli principle in the formation of continuum wave function of nuclear systems composed of three identical s-clusters has been investigated. Emphasis is placed upon the study of the exchange effects contained in the genuine three-cluster norm kernel. Three-fermion, three-boson, three-dineutron (3d ' ) and 3α systems are considered in detail. Simple analytical method of constructing the norm kernel for 3α system is suggested. The Pauli-allowed basis functions for the 3α and 3d ' systems are given in an explicit form and asymptotic behavior of these functions is established. Complete classification of the eigenfunctions and the eigenvalues of the 12 C norm kernel by the 8 Be=α+α eigenvalues has been given for the first time. Spectrum of the 12 C norm kernel is compared to that of the 5 H system.
Report of an INS two-day meeting on roles of Pauli principle in few-body problems
International Nuclear Information System (INIS)
Kamimura, M.
1993-02-01
This small INS meeting on 'Roles of Pauli Principle in Few-Body Systems' was held on Oct. 30-31, 1991. A lecture was given by Prof. V.I. Kukulin (Moscow State University) on new physics with the quark-based Moscow N-N potential for few-nucleon systems and on microscopic studies of multi-cluster systems. Seven other speakers gave talks on various roles of the Pauli principle in few-body systems, in multi-cluster systems and in heavy-ion reactions. (J.P.N.)
Gravity and the Spin-2 Planar Schrödinger Equation
Bergshoeff, Eric A.; Rosseel, Jan; Townsend, Paul K.
2018-04-01
A Schrödinger equation proposed for the Girvin-MacDonald-Platzman gapped spin-2 mode of fractional quantum Hall states is found from a novel nonrelativistic limit, applicable only in 2 +1 dimensions, of the massive spin-2 Fierz-Pauli field equations. It is also found from a novel null reduction of the linearized Einstein field equations in 3 +1 dimensions, and in this context a uniform distribution of spin-2 particles implies, via a Brinkmann-wave solution of the nonlinear Einstein equations, a confining harmonic oscillator potential for the individual particles.
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2012-01-01
In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.
Geometrical spin symmetry and spin
International Nuclear Information System (INIS)
Pestov, I. B.
2011-01-01
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Electrical control of single hole spins in nanowire quantum dots.
Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P
2013-03-01
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
International Nuclear Information System (INIS)
Govorkov, A.B.
1988-01-01
It is shown that the local quantum field theory of free fields allows only the generalizations of the conventional quantizations (corresponding to the Fermi and Bose statistics) that correspond to the para-Fermi and para-Bose statistics and does not permit ''small'' violation of the Pauli principle
International Nuclear Information System (INIS)
Voronov, V.V.; Dang, N.D.
1984-01-01
the system of equations, enabling to calculate the energy and the structure of excited states, described by the wave function, containing one- and two-phon components was obtained in the framework of quasiparticlephonon model. The requirements of Pauli principle for two-phonon components and phonon correlation in the ground nucleus state are taken into account
Supersymmetric Runge-Lenz-Pauli vector for Dirac vortex in topological insulators and graphene
International Nuclear Information System (INIS)
Lu, Chi-Ken; Herbut, Igor F
2011-01-01
The Dirac mass-vortex at the surface of a topological insulator or in graphene is considered. Within the linear approximation for the vortex amplitude's radial dependence, the spectrum is a series of degenerate bound states, which can be classified by a set of accidental SU(2) and supersymmetry generators (Herbut and Lu 2011 Phys. Rev. B 83 125412). Here we discuss further the properties and manifestations of the supersymmetry of the vortex Hamiltonian, and point out some interesting analogies with the Runge-Lenz-Pauli vector in the non-relativistic hydrogen atom. Symmetry-breaking effects due to a finite chemical potential and the Zeeman field are also analyzed. We find that a residual accidental degeneracy remains only in the special case of equal magnitudes of both terms; otherwise it is removed entirely.
Influence of the Pauli exclusion principle on scattering properties of cobosons
International Nuclear Information System (INIS)
Thilagam, A.
2015-01-01
We examine the influence of the Pauli exclusion principle on the scattering properties of composite bosons (cobosons) made of two fermions, such as the exciton quasiparticle. The scattering process incorporates boson–phonon interactions that arise due to lattice vibrations. Composite boson scattering rates increase with the entanglement between the two fermionic constituents, which comes with a large number of available single-fermion states. An important role is played by probabilities associated with accommodating an incoming boson among the remaining unoccupied Schmidt modes in the initial composite system. While due attention is given to bi-fermion bosons, the methodology is applicable to any composite boson made up of smaller boson fragments. Due to super-bunching in a system of multiple boson condensates such as bi-bosons, there is enhanced scattering associated with bosons occupying macroscopically occupied Schmidt modes, in contrast to the system of bi-fermion pairs
Towards exact solutions of the non-linear Heisenberg-Pauli-Weyl spinor equation
International Nuclear Information System (INIS)
Mielke, E.W.
1980-03-01
In ''color geometrodynamics'' fundamental spinor fields are assumed to obey a GL(2f,C) x GL(2c,C) gauge-invariant nonlinear spinor equation of the Heisenberg-Pauli-Weyl type. Quark confinement, assimilating a scheme of Salam and Strathdee, is (partially) mediated by the tensor ''gluons'' of strong gravity. This hypothesis is incorporated into the model by considering the nonlinear Dirac equation in a curved space-time of hadronic dimensions. Disregarding internal degrees of freedom, it is then feasible, for a particular background space-time, to obtain exact solutions of the spherical bound-state problem. Finally, these solutions are tentatively interpreted as droplet-type solitons and remarks on their interrelation with Wheeler's geon construction are made. (author)
Pseudo-potential method for taking into account the Pauli principle in cluster systems
International Nuclear Information System (INIS)
Krasnopol'skii, V.M.; Kukulin, V.I.
1975-01-01
In order to take account of the Pauli principle in cluster systems (such as 3α, α + α + n) a convenient method of renormalization of the cluster-cluster deep attractive potentials with forbidden states is suggested. The renormalization consists of adding projectors upon the occupied states with an infinite coupling constant to the initial deep potential which means that we pass to pseudo-potentials. The pseudo-potential approach in projecting upon the noneigenstates is shown to be equivalent to the orthogonality condition model of Saito et al. The orthogonality of the many-particle wave function to the forbidden states of each two-cluster sub-system is clearly demonstrated
Effects of Pauli's principle in the. cap alpha. - /sup 16/O elastic scattering
Energy Technology Data Exchange (ETDEWEB)
Schechter, H; Canto, L F; Breitschaft, A M
1986-03-01
'Exact' microscopic methods like the RGM (Resonating Group Method) and the GCM (Generator Coordinate Method) and approximate methods like the OCM (Orthogonality Condition Model) are used to study the effects of Pauli's Principle in the ..cap alpha..-/sup 16/O elastic scattering. A method to derive 'exact' effective potentials for the OCM is introduced. These potentials, derived from RGM wave functions, make the OCM identical to the RGM and they have the advantage of being free from poles associated to the forbidden states. Numerical calculations are made with V2 and B1 nucleon-nucleon forces at energies in the range 0-30 MeV. The potentials and the resulting phase-shifts are compared to those obtained from the approximate method suggested by Friedrich and Canto. The problem of searching for local, state independent, potentials for the OCM is discussed.
Effect of the Pauli principle on the excited states of doubly-even deformed nuclei
International Nuclear Information System (INIS)
Jolos, R.V.; Molina, J.L.; Soloviev, V.G.
1980-01-01
It is shown that the commutation relations between the quasiparticles forming phonons can correctly be taken into account within the quasiparticle-phonon nuclear model. The doubly-even deformed nuclei with the isoscalar and isovector multipole-multipole forces are studied. The exact and approximate secular equations are derived. It is shown that the two-phonon poles in the secular equation are shifted due to the Pauli principle. These shifts are large for the two identical collective phonons. In some cases pronounced shifts are found for the poles composed of a low-lying collective phonon and a collective phonon forming the giant resonance. In other cases the shifts are not large, as a rule. (orig.) 891 FKS/orig. 892 MB
Fault-tolerant quantum computing in the Pauli or Clifford frame with slow error diagnostics
Directory of Open Access Journals (Sweden)
Christopher Chamberland
2018-01-01
Full Text Available We consider the problem of fault-tolerant quantum computation in the presence of slow error diagnostics, either caused by measurement latencies or slow decoding algorithms. Our scheme offers a few improvements over previously existing solutions, for instance it does not require active error correction and results in a reduced error-correction overhead when error diagnostics is much slower than the gate time. In addition, we adapt our protocol to cases where the underlying error correction strategy chooses the optimal correction amongst all Clifford gates instead of the usual Pauli gates. The resulting Clifford frame protocol is of independent interest as it can increase error thresholds and could find applications in other areas of quantum computation.
International Nuclear Information System (INIS)
Ottenstein, N.; Wallace, S.J.; Tjon, J.A.
1987-11-01
Dirac impulse approximation predictions for cross sections and spin observables in elastic proton scattering by 40 Ca and 208 Pb at energies of 200, 500 and 800 MeV are presented. The analysis is based on complete sets of Lorentz invariant NN amplitudes determined from a meson exchange model of the nuclear force. Effects of relativistic nuclear densities are explored including estimates of the vacuum polarization corrections based on quantum hadrodynamics. Effects of Pauli blocking are considered using the approximations of Murdock and Horowitz. A good description of the experimental data is obtained over a broad energy range and over a wide variation of nuclear size based on the generalized impulse approximation. Vacuum polarization corrections are found to enhance the agreement between theory and experiment. 18 refs., 8 figs
Spin-singlet quantum Hall states and Jack polynomials with a prescribed symmetry
International Nuclear Information System (INIS)
Estienne, Benoit; Bernevig, B. Andrei
2012-01-01
We show that a large class of bosonic spin-singlet Fractional Quantum Hall model wavefunctions and their quasihole excitations can be written in terms of Jack polynomials with a prescribed symmetry. Our approach describes new spin-singlet quantum Hall states at filling fraction ν=(2k)/(2r-1) and generalizes the (k,r) spin-polarized Jack polynomial states. The NASS and Halperin spin-singlet states emerge as specific cases of our construction. The polynomials express many-body states which contain configurations obtained from a root partition through a generalized squeezing procedure involving spin and orbital degrees of freedom. The corresponding generalized Pauli principle for root partitions is obtained, allowing for counting of the quasihole states. We also extract the central charge and quasihole scaling dimension, and propose a conjecture for the underlying CFT of the (k,r) spin-singlet Jack states.
Gauge field theory approach to spin transport in a 2D electron gas
Directory of Open Access Journals (Sweden)
B. Berche
2009-01-01
Full Text Available We discuss the Pauli Hamiltonian including the spin-orbit interaction within an U(1×SU(2 gauge theory interpretation, where the gauge symmetry appears to be broken. This interpretation offers new insight into the problem of spin currents in the condensed matter environment, and can be extended to Rashba and Dresselhaus spin-orbit interactions. We present a few outcomes of the present formulation: i it automatically leads to zero spin conductivity, in contrast to predictions of Gauge symmetric treatments, ii a topological quantization condition leading to voltage quantization follows, and iii spin interferometers can be conceived in which, starting from an arbitrary incoming unpolarized spinor, it is always possible to construct a perfect spin filtering condition.
Prus, O.; Yaish, Y.; Reznikov, M.; Sivan, U.; Pudalov, V.
2002-01-01
A novel method invented to measure the minute thermodynamic spin magnetization of dilute two dimensional fermions is applied to electrons in a silicon inversion layer. Interplay between the ferromagnetic interaction and disorder enhances the low temperature susceptibility up to 7.5 folds compared with the Pauli susceptibility of non-interacting electrons. The magnetization peaks in the vicinity of the density where transition to strong localization takes place. At the same density, the suscep...
Spin-orbit mediated control of spin qubits
DEFF Research Database (Denmark)
Flindt, Christian; Sørensen, A.S; Flensberg, Karsten
2006-01-01
We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is bas...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....
Brown, Richard Paul
This dissertation reviewed the development of Jung's dream theory and addresses the question as to whether or not Jung was influenced by the dreams of the Nobel Prize winning physicist, Wolfgang Pauli. Jung provided an extensive analysis of Pauli's dreams, which are contained in the lightly edited, unpublished transcripts of lectures delivered in 1936 and 1937. An archival and hermeneutic analysis of the texts reveals a staged process of individuation that Jung related to in many ways because of the parallels to his own personal journey toward individuation. A chronological history of the development of Jung's dream theory is presented, followed by a picture of the relationship between Jung and Pauli. Thereafter, a detailed summary of the seminar transcripts, one given on Bailey Island, Maine, and the other in New York City the following year, is offered with hermeneutic commentary. An analysis of the seminars found that Pauli's dreams did, in part, support Jung's theory. Specifically, while Jung was unable to meet the scientific demands for clear empirical evidence of his dream theory, he did offer his professional and non-professional audiences with a slightly less rigorous example of his dream theory in action, demonstrating that the process shared similarities across peoples, time, and cultures. Additionally, in Pauli he found a superior mind that had gone through the process of individuation in accordance with his theory and his own experience. During the course of research, reference to a document was found in the correspondence in the Jungian Archives in Zurich. This document entitled, "FAREWELL SPEECH, Given by Dr. C. G. Jung on the Occasion of a Dinner Given in His Honor by the Analytical Psychology Club of New York City October 26, 1937" and other related documents were subsequently uncovered in the sub-basement of the Kristine Mann Library in New York City. A synopsis of the discovery and description of the papers contained in the file are discussed in
Noise in tunneling spin current across coupled quantum spin chains
Aftergood, Joshua; Takei, So
2018-01-01
We theoretically study the spin current and its dc noise generated between two spin-1 /2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse spin Hall effect used extensively in spintronics.
International Nuclear Information System (INIS)
Lowenstein, D.I.
1985-01-01
Spin Physics at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory is the most recent of new capabilities being explored at this facility. During the summer of 1984 the AGS accelerated beams of polarized protons to 16.5 GeV/c at 40% polarization to two experiments (E782, E785). These experiments; single spin asymmetry in inclusive polarized pp interactions; and spin-spin effects in polarized pp elastic scattering, operated at the highest polarized proton energy ever achieved by any accelerator in the world. These experiments are reviewed after the complementary spin physics program with unpolarized protons, and the future possibilities with a booster injector for the AGS and the secondary benefits of a Relativisitic Heavy Ion Collider (RHIC), are placed within the context of the present physics program
Duality for massive spin two theories in arbitrary dimensions
International Nuclear Information System (INIS)
Gonzalez, B.; Urrutia, L.F.; Khoudeir, A.; Montemayor, R.
2008-01-01
Using the parent Lagrangian approach we construct a dual formulation, in the sense originally proposed by Curtright and Freund, of a massive spin two Fierz-Pauli theory in arbitrary dimensions D. This is achieved in terms of a mixed symmetry tensor T A[B 1 B 2 ...B D-2 ] , without the need of auxiliary fields. The relation of this method with an alternative formulation based on a gauge symmetry principle proposed by Zinoviev is elucidated. We show that the latter formulation in four dimensions, with a given gauge fixing together with a definite sequence of auxiliary fields elimination via their equations of motion, leads to the parent Lagrangian already considered by West completed by a Fierz-Pauli mass term, which in turns yields the Curtright-Freund action. This motivates our generalization to arbitrary dimensions leading to the corresponding extension of the four dimensional result. We identify the transverse true degrees of freedom of the dual theory and verify that their number is in accordance with those of the massive Fierz-Pauli field.
Private quantum subsystems and quasiorthogonal operator algebras
International Nuclear Information System (INIS)
Levick, Jeremy; Kribs, David W; Pereira, Rajesh; Jochym-O’Connor, Tomas; Laflamme, Raymond
2016-01-01
We generalize a recently discovered example of a private quantum subsystem to find private subsystems for Abelian subgroups of the n-qubit Pauli group, which exist in the absence of private subspaces. In doing so, we also connect these quantum privacy investigations with the theory of quasiorthogonal operator algebras through the use of tools from group theory and operator theory. (paper)
von Allwörden, Henning; Eich, Andreas; Knol, Elze J; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A
2018-03-01
We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).
von Allwörden, Henning; Eich, Andreas; Knol, Elze J.; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W.; Wegner, Daniel; Khajetoorians, Alexander A.
2018-03-01
We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).
Troeppner, Oliver; Lippert, Rainer; Shubina, Tatyana E; Zahl, Achim; Jux, Norbert; Ivanović-Burmazović, Ivana
2014-10-20
By design of a heme model complex with a binding pocket of appropriate size and flexibility, and by elucidating its kinetics and thermodynamics under elevated pressures, some of the pressure effects are demonstrated relevant for operation of heme-proteins under deep-sea conditions. Opposite from classical paradigms of the spin-crossover and reaction kinetics, a pressure increase can cause deceleration of the small-molecule binding to the vacant coordination site of the heme-center in a confined space and stabilize a high-spin state of its Fe center. This reverse high-pressure behavior can be achieved only if the volume changes related to the conformational transformation of the cavity can offset the volume changes caused by the substrate binding. It is speculated that based on these criteria nature could make a selection of structures of heme pockets that assist in reducing metabolic activity and enzymatic side reactions under extreme pressure conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.
2018-06-01
We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.
Directory of Open Access Journals (Sweden)
Wen Zhuqing
2017-06-01
Full Text Available A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated in the present research. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG and methanol are injected into the reactor from centres of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction multicomponent transport model with the CFD software ANSYS©Fluent v. 13.0. Effect of operating conditions on TG conversion is particularly investigated. Simulation results indicate that there is occurrence of back flow close to the stator at the outlet zone. Small gap size and fast rotational speed generally help to intensify mixing among reagents, and consequently enhance TG conversion. However, increasing rotational speed of spinning disk leads to more backflow, which decreases TG conversion. Large flow rate of TG at inlet is not recommended as well because of the short mean residence time of reactants inside the reactor.
International Nuclear Information System (INIS)
Xia, D X; Xu, J B
2010-01-01
Spin-coated alumina serving as a gate dielectric in thin film transistors shows interesting dielectric properties for low-voltage applications, despite a moderate capacitance. With Ga singly doped and Ga, Li co-doped ZnO as the active channel layers, typical mobilities of 4.7 cm 2 V -1 s -1 and 2.1 cm 2 V -1 s -1 are achieved, respectively. At a given gate bias, the operation current is much smaller than the previously reported values in low-voltage thin film transistors, primarily relying on the giant-capacitive dielectric. The reported devices combine advantages of high mobility, low power consumption, low cost and ease of fabrication. In addition to the transparent nature of both the dielectric and semiconducting active channels, the superior electrical properties of the devices may provide a new avenue for future transparent electronics. (fast track communication)
Drones, quasi-spin or iso-spin. A comparison of many-body techniques for general spin
International Nuclear Information System (INIS)
McKenzie, B.J.; Stedman, G.E.
1976-01-01
For an effective-spin system with 2S + 1 levels there are a number of possible mappings of spin onto pseudo-fermion operators. The relative merits of three of these methods are investigated by calculating to second order the dispersion relation for coupled spin-phonon modes in crystals containing S = 1 effective spin impurities. It is found that the drone formalism quickly becomes intractable at higher spin values, as does the related quasi-spin formalism developed in contrast with the iso-spin (or Abrinkosov projection) formalism. (author)
Piscicchia, K; Bartalucci, S; Bassi, A; Bertolucci, S; Berucci, C; Bragadireanu, A M; Cargnelli, M; Clozza, A; De Paolis, L; Di Matteo, S; Donadi, S; d'Uffizi, A; Egger, J-P; Guaraldo, C; Iliescu, M; Ishiwatari, T; Laubenstein, M; Marton, J; Milotti, E; Pietreanu, D; Ponta, T; Sbardella, E; Scordo, A; Shi, H; Sirghi, D L; Sirghi, F; Sperandio, L; Doce, O Vazquez; Zmeskal, J
2015-01-01
The development of mathematically complete and consistent models solving the so-called "measurement problem", strongly renewed the interest of the scientific community for the foundations of quantum mechanics, among these the Dynamical Reduction Models posses the unique characteristic to be experimentally testable. In the first part of the paper an upper limit on the reduction rate parameter of such models will be obtained, based on the analysis of the X-ray spectrum emitted by an isolated slab of germanium and measured by the IGEX experiment. The second part of the paper is devoted to present the results of the VIP (Violation of the Pauli exclusion principle) experiment and to describe its recent upgrade. The VIP experiment established a limit on the probability that the Pauli Exclusion Principle (PEP) is violated by electrons, using the very clean method of searching for PEP forbidden atomic transitions in copper.
Calculation program development for spinning reserve
International Nuclear Information System (INIS)
1979-01-01
This study is about optimal holding of spinning reserve and optimal operation for it. It deals with the purpose and contents of the study, introduction of the spinning reserve electricity, speciality of the spinning reserve power, the result of calculation, analysis for limited method of optimum load, calculation of requirement for spinning reserve, analysis on measurement of system stability with summary, purpose of the analysis, cause of impact of the accident, basics on measurement of spinning reserve and conclusion. It has the reference on explanation for design of spinning reserve power program and using and trend about spinning reserve power in Korea.
The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form
International Nuclear Information System (INIS)
Mourad, J.; Sazdjian, H.
1994-01-01
The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2017-01-01
Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.
Vozková, Markéta
2011-01-01
1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...
Using torsion to manipulate spin currents
Fumeron, Sébastien; Berche, Bertrand; Medina, Ernesto; Santos, Fernando A. N.; Moraes, Fernando
2017-02-01
We address the problem of quantum particles moving on a manifold characterised by the presence of torsion along a preferential axis. In fact, such a torsion may be taylored by the presence of a single screw dislocation, whose Burgers vector measures the torsion amplitude. The problem, first treated in the relativistic limit describing fermions that couple minimally to torsion, is then analysed in the Pauli limit. We show that torsion induces a geometric potential and also that it couples generically to the phase of the wave function, giving rise to the possibility of using torsion to manipulate spin currents in the case of spinor wave functions. These results emerge as an alternative strategy for using screw dislocations in the design of spintronic-based devices.
Energy Technology Data Exchange (ETDEWEB)
Roemelt, Michael; Maganas, Dimitrios; Neese, Frank [Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Muelheim an der Ruhr (Germany); DeBeer, Serena [Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Muelheim an der Ruhr (Germany); Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)
2013-05-28
A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S Prime = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with M{sub S}= S, Horizontal-Ellipsis , -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory/ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row
International Nuclear Information System (INIS)
Anton, Gisela
1990-01-01
The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.
Energy Technology Data Exchange (ETDEWEB)
Anton, Gisela
1990-12-15
The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.
Energy Technology Data Exchange (ETDEWEB)
D' Ariano, G M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Maccone, L [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Paini, M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy)
2003-02-01
We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique.
International Nuclear Information System (INIS)
D'Ariano, G M; Maccone, L; Paini, M
2003-01-01
We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique
Non-Abelian hydrodynamics and the flow of spin in spin-orbit coupled substances
International Nuclear Information System (INIS)
Leurs, B.W.A.; Nazario, Z.; Santiago, D.I.; Zaanen, J.
2008-01-01
Motivated by the heavy ion collision experiments there is much activity in studying the hydrodynamical properties of non-Abelian (quark-gluon) plasmas. A major question is how to deal with color currents. Although not widely appreciated, quite similar issues arise in condensed matter physics in the context of the transport of spins in the presence of spin-orbit coupling. The key insight is that the Pauli Hamiltonian governing the leading relativistic corrections in condensed matter systems can be rewritten in a language of SU(2) covariant derivatives where the role of the non-Abelian gauge fields is taken by the physical electromagnetic fields: the Pauli system can be viewed as Yang-Mills quantum-mechanics in a 'fixed frame', and it can be viewed as an 'analogous system' for non-Abelian transport in the same spirit as Volovik's identification of the He superfluids as analogies for quantum fields in curved space time. We take a similar perspective as Jackiw and coworkers in their recent study of non-Abelian hydrodynamics, twisting the interpretation into the 'fixed frame' context, to find out what this means for spin transport in condensed matter systems. We present an extension of Jackiw's scheme: non-Abelian hydrodynamical currents can be factored in a 'non-coherent' classical part, and a coherent part requiring macroscopic non-Abelian quantum entanglement. Hereby it becomes particularly manifest that non-Abelian fluid flow is a much richer affair than familiar hydrodynamics, and this permits us to classify the various spin transport phenomena in condensed matter physics in an unifying framework. The 'particle based hydrodynamics' of Jackiw et al. is recognized as the high temperature spin transport associated with semiconductor spintronics. In this context the absence of faithful hydrodynamics is well known, but in our formulation it is directly associated with the fact that the covariant conservation of non-Abelian currents turns into a disastrous non
QED approach to the nuclear spin-spin coupling tensor
International Nuclear Information System (INIS)
Romero, Rodolfo H.; Aucar, Gustavo A.
2002-01-01
A quantum electrodynamical approach for the calculation of the nuclear spin-spin coupling tensor of nuclear-magnetic-resonance spectroscopy is given. Quantization of radiation fields within the molecule is considered and expressions for the magnetic field in the neighborhood of a nucleus are calculated. Using a generalization of time-dependent response theory, an effective spin-spin interaction is obtained from the coupling of nuclear magnetic moments to a virtual quantized magnetic field. The energy-dependent operators obtained reduce to usual classical-field expressions at suitable limits
Bovier, Anton
2007-01-01
Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.
Energy Technology Data Exchange (ETDEWEB)
Anon.
1989-01-15
The recent 8th International Symposium on High Energy Spin Physics at the University of Minnesota in Minneapolis, Minnesota, opened with a bang when L. Pondrom (Wisconsin), donning a hard hat borrowed from construction workers, ventured that 'spin, the notorious inessential complication of hadronic physics, is finally telling us what real QCD (quantum chromodynamics, the field theory of quarks and gluons) looks like.' He was referring to an animated discussion on the meaning of the recent spin oriented (polarized) scattering results from the European Muon Collaboration (EMC) at CERN and reported at the Symposium by R. Garnet (Liverpool) and P. Schuler (Yale) which show that the proton spin is not simply a reflection of the spins of its constituent quarks.
Phonon operators for deformed nuclei
International Nuclear Information System (INIS)
Solov'ev, V.G.
1982-01-01
The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator
Doped spin ladders under magnetic field
International Nuclear Information System (INIS)
Roux, G.
2007-07-01
This thesis deals with the physics of doped two-leg ladders which are a quasi one-dimensional and unconventional superconductor. We particularly focus on the properties under magnetic field. Models for strongly correlated electrons on ladders are studied using exact diagonalization and density-matrix renormalization group (DMRG). Results are also enlightened by using the bosonization technique. Taking into account a ring exchange it highlights the relation between the pairing of holes and the spin gap. Its influence on the dynamics of the magnetic fluctuations is also tackled. Afterwards, these excitations are probed by the magnetic field by coupling it to the spin degree of freedom of the electrons through Zeeman effect. We show the existence of doping-dependent magnetization plateaus and also the presence of an inhomogeneous superconducting phase (FFLO phase) associated with an exceeding of the Pauli limit. When a flux passes through the ladder, the magnetic field couples to the charge degree of freedom of the electrons via orbital effect. The diamagnetic response of the doped ladder probes the commensurate phases of the t-J model at low J/t. Algebraic transverse current fluctuations are also found once the field is turned on. Lastly, we report numerical evidences of a molecular superfluid phase in the 3/2-spin attractive Hubbard model: at a density low enough, bound states of four fermions, called quartets, acquire dominant superfluid fluctuations. The observed competition between the superfluid and density fluctuations is connected to the physics of doped ladders. (author)
International Nuclear Information System (INIS)
Biswas, Ayan K; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha
2015-01-01
In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a ‘spin-neuron’ realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons. (paper)
Caspers, W J
1989-01-01
This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy
International Nuclear Information System (INIS)
Althoff, K.H.
1989-01-01
In 1987 the new Bonn stretcher accelerator ELSA came into operation. In this paper a short description of the accelerator and the three experimental facilities PHOENICS, ELAN and SAPHIR is given. The determination of spin observables is one of the main subjects of the experimental program. Some experiments are discussed in more detail
Universal spin dynamics in quantum wires
Energy Technology Data Exchange (ETDEWEB)
Fajardo, E. A.; Zülicke, U.; Winkler, R.
2017-10-01
We discuss the universal spin dynamics in quasi-one-dimensional systems including the real spin in narrow-gap semiconductors like InAs and InSb, the valley pseudospin in staggered single-layer graphene, and the combination of real spin and valley pseudospin characterizing single-layer transition metal dichalcogenides (TMDCs) such as MoS2, WS2, MoS2, and WSe2. All these systems can be described by the same Dirac-like Hamiltonian. Spin-dependent observable effects in one of these systems thus have counterparts in each of the other systems. Effects discussed in more detail include equilibrium spin currents, current-induced spin polarization (Edelstein effect), and spin currents generated via adiabatic spin pumping. Our work also suggests that a long-debated spin-dependent correction to the position operator in single-band models should be absent.
Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael
2004-01-01
This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...
Experimental Realization of a Quantum Spin Pump
DEFF Research Database (Denmark)
Watson, Susan; Potok, R.; M. Marcus, C.
2003-01-01
We demonstrate the operation of a quantum spin pump based on cyclic radio-frequency excitation of a GaAs quantum dot, including the ability to pump pure spin without pumping charge. The device takes advantage of bidirectional mesoscopic fluctuations of pumped current, made spin-dependent by the a......We demonstrate the operation of a quantum spin pump based on cyclic radio-frequency excitation of a GaAs quantum dot, including the ability to pump pure spin without pumping charge. The device takes advantage of bidirectional mesoscopic fluctuations of pumped current, made spin......-dependent by the application of an in-plane Zeeman field. Spin currents are measured by placing the pump in a focusing geometry with a spin-selective collector....
International Nuclear Information System (INIS)
Anon.
1983-01-01
The 5th International Symposium on High Energy Spin Physics met in September at Brookhaven. The symposium has evolved to include a number of diverse specialities: theory, including parity violations and proposed quantum chromodynamics (QCD) tests with polarized beams; experiment, including the large spin effects discovered in high transverse momentum elastic scattering and hyperon production, dibaryons, and magnetic moments; acceleration and storage of polarized protons and electrons; and development of polarized sources and targets
International Nuclear Information System (INIS)
March, N.H.
2008-08-01
In early work by the writer introducing the Pauli potential VP (r) into density functional theory, the relation of VP (r) to the, as yet unknown, single-particle kinetic energy density functional was emphasized. Here, because of ongoing experiments on ultracold atomic gases of fermions, an explicit expression for the first derivative of VP (r) for an arbitrary number of closed shells generated by harmonic confinement is derived in terms of the spherically symmetric particle density n(r) and the confining potential. (author)
International Nuclear Information System (INIS)
Bland, L.C.
2003-01-01
The physics goals that will be addressed by colliding polarized protons at the Relativistic Heavy Ion Collider (RHIC) are described. The RHIC spin program provides a new generation of experiments that will unfold the quark, anti-quark and gluon contributions to the proton's spin. In addition to these longer term goals, this paper describes what was learned from the first polarized proton collisions at √(s)=200 GeV. These collisions took place in a five-week run during the second year of RHIC operation
Directory of Open Access Journals (Sweden)
A. Gover
2006-06-01
Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.
Phonon operators in deformed nuclei
International Nuclear Information System (INIS)
Soloviev, V.G.
1981-01-01
For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru
Spin dependent photon structure functions
International Nuclear Information System (INIS)
Manohar, A.V.; Massachusetts Inst. of Tech., Cambridge
1989-01-01
Spin dependent structure functions of the photon are studied using the operator product expansion. There are new twist-two photon and gluon operators which contribute. The structure functions g 1 and F 3 are calculable in QCD, but differ from their free quark values. The corrections to F 3 are suppressed by 1/log Q 2 . The calculation is an extension of the analysis of Witten for the spin averaged structure functions F 1 and F 2 . (orig.)
The tree-alpha Faddeev calculation on 12C bound states with a Pauli correct alpha-alpha potential
International Nuclear Information System (INIS)
Kamada, Hiroyuki; Oryu, Shinsho
1986-01-01
The three-alpha model of 12 C is investigated by the Faddeev formalism with the UIM alpha-alpha potential, in which the Pauli effect between two-alpha system was taken into account adequately. The potential can reproduce the on- and off-shell effects of the alpha-alpha interaction by the rank-4 separable type for the S-wave, the rank-3 one for the D-wave, and the rank-2 one for the G-wave, in which two of the ranks in the S-wave, and one in the D-wave are prepared to eliminate the Pauli forbidden states. We obtained three even states J π = 0 + , 2 + , 4 + , and two odd states 1 - , 3 - , below the alpha- 8 Be(0 + g.s) threshold energy. The even parity states gain larger binding energies than those which have been obtained by former Faddeev calculation with the rank-1 Kukulin and Neudatchin (KN) potential. On the other hand, for the odd parity states, we obtained smaller binding energies than the former one. It is found that our Faddeev calculation with the UIM potential does not miss any important low-lying levels of 12 C, in which any spurious states do not appear. (author)
International Nuclear Information System (INIS)
Chen Xiangsong; Sun Weimin; Wang Fan; Goldman, T.
2011-01-01
We analyze the problem of spin decomposition for an interacting system from a natural perspective of constructing angular-momentum eigenstates. We split, from the total angular-momentum operator, a proper part which can be separately conserved for a stationary state. This part commutes with the total Hamiltonian and thus specifies the quantum angular momentum. We first show how this can be done in a gauge-dependent way, by seeking a specific gauge in which part of the total angular-momentum operator vanishes identically. We then construct a gauge-invariant operator with the desired property. Our analysis clarifies what is the most pertinent choice among the various proposals for decomposing the nucleon spin. A similar analysis is performed for extracting a proper part from the total Hamiltonian to construct energy eigenstates.
Doped spin ladders under magnetic field; Echelles de spins dopees sous champ magnetique
Energy Technology Data Exchange (ETDEWEB)
Roux, G
2007-07-15
This thesis deals with the physics of doped two-leg ladders which are a quasi one-dimensional and unconventional superconductor. We particularly focus on the properties under magnetic field. Models for strongly correlated electrons on ladders are studied using exact diagonalization and density-matrix renormalization group (DMRG). Results are also enlightened by using the bosonization technique. Taking into account a ring exchange it highlights the relation between the pairing of holes and the spin gap. Its influence on the dynamics of the magnetic fluctuations is also tackled. Afterwards, these excitations are probed by the magnetic field by coupling it to the spin degree of freedom of the electrons through Zeeman effect. We show the existence of doping-dependent magnetization plateaus and also the presence of an inhomogeneous superconducting phase (FFLO phase) associated with an exceeding of the Pauli limit. When a flux passes through the ladder, the magnetic field couples to the charge degree of freedom of the electrons via orbital effect. The diamagnetic response of the doped ladder probes the commensurate phases of the t-J model at low J/t. Algebraic transverse current fluctuations are also found once the field is turned on. Lastly, we report numerical evidences of a molecular superfluid phase in the 3/2-spin attractive Hubbard model: at a density low enough, bound states of four fermions, called quartets, acquire dominant superfluid fluctuations. The observed competition between the superfluid and density fluctuations is connected to the physics of doped ladders. (author)
Nesterov, V. O.
2018-06-01
In the framework of the energy density method with the use of the wave function of the two-center shell model, the influence of the simultaneous account for the Pauli exclusion principle and the monopole and quadrupole polarizations of nuclei on the nuclear part of the potential of their interaction by the example of the 40Ca +40Ca system is considered. The calculations performed in the framework of the adiabatic approximation show that the consideration of the Pauli exclusion principle and the polarization of nuclei, especially the quadrupole one, essentially affects the nucleus-nucleus interaction potential.
International Nuclear Information System (INIS)
Gaarde, C.
1985-01-01
An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)
Voyage en Paulie-Laurencie, essai sur une construction narrative polyphonique
Directory of Open Access Journals (Sweden)
2002-01-01
Full Text Available Approche analytique de la représentation latino-américaine textuelle et graphique dun voyageur bordelais du XIXe siècle, dans la revue Le Tour du Monde. Un récit qui fusionne temps et espaces à travers le prisme du regard dun Occidental satirique, rebelle et misanthrope. Cette traversée interocéanique aux confins de lhistoire, de lethnographie, des sciences en général et dune stratégie du montage hybride mi-fictionnel mi-réel, génère une poétique exotique et singulière. Une poétique qui puise à la mémoire aussi bien un infini renouveau quune amertume infinie. Lécriture dune errance recomposée devient alors cathartique dans la mise en scène de lego souffrant de Paul Marcoy poursuivant inlassablement la quête dune reconnaissance scientifique quon lui dénie certes, mais plus encore limpossible rencontre avec un moi se dérobant sans cesse. VIAJE EN PAULIE-LAURENCIE, ENSAYO SOBRE UNA CONSTRUCCIÓN NARRATIVA POLIFÓNICA. Estudio analítico de la representación latino-americana textual y gráfica de un viajero del siglo XIX oriundo de Burdeos, en la revista Le Tour du Monde. Un relato en que fusionan tiempos y espacios a través del prisma de la mirada satírica, rebelde y misantrópica de un occidental. Aquella travesía interoceánica que entrelaza historia, etnografía, ciencias en general mediante una estrategia del montaje híbrido entre ficción y realidad, genera una exótica y singular poética. Dicha poética, saca de la memoria tanto un renuevo como una amargura insondables e infinitos. La escritura de un vagabundeo recompuesto llega a ser catártica en la escenificación del ego doliente de Paul Marcoy que persigue incansablemente no sólo un reconocimiento científico, que se le niega sin lugar a dudas, sino también el imposible encuentro con un yo que sin cesar se le escapa. An analytical approach to the graphic and textual Latin-American perception of a nineteenth century traveller
Schwarz, H.
2017-01-01
The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1
Chan, Y. C.; Yip, K. Y.; Cheung, Y. W.; Chan, Y. T.; Niu, Q.; Kajitani, J.; Higashinaka, R.; Matsuda, T. D.; Yanase, Y.; Aoki, Y.; Lai, K. T.; Goh, Swee K.
2018-03-01
Ambient-pressure-grown LaO0.5F0.5BiS2 with a superconducting transition temperature Tc˜3 K possesses a highly anisotropic normal state. By a series of electrical resistivity measurements with a magnetic-field direction varying between the crystalline c axis and the a b plane, we present datasets displaying the temperature dependence of the out-of-plane upper critical field Hc2 ⊥(T ) , the in-plane upper critical field Hc2 ∥(T ) , as well as the angular dependence of Hc 2 at fixed temperatures for ambient-pressure-grown LaO0.5F0.5BiS2 single crystals. The anisotropy of the superconductivity, Hc2 ∥/Hc2 ⊥ , reaches ˜16 on approaching 0 K, but it decreases significantly near Tc. A pronounced upward curvature of Hc2 ∥(T ) is observed near Tc, which we analyze using a two-gap model. Moreover, Hc2 ∥(0 ) is found to exceed the Pauli paramagnetic limit, which can be understood by considering the strong spin-orbit coupling associated with Bi as well as the breaking of the local inversion symmetry at the electronically active BiS2 bilayers. Hence, LaO0.5F0.5BiS2 with a centrosymmetric lattice structure is a unique platform to explore the physics associated with local parity violation in the bulk crystal.
On a model of a classical relativistic particle of constant and universal mass and spin
Energy Technology Data Exchange (ETDEWEB)
Kassandrov, V; Markova, N [Institute of Gravitation and Cosmology, Russian Peoples' Friendship University, Moscow (Russian Federation); Schaefer, G; Wipf, A [Institute of Theoretical Physics, Friedrich-Schiller University, Jena (Germany)
2009-08-07
The deformation of the classical action for a point-like particle recently suggested by Staruszkiewicz gives rise to a spin structure which constrains the values of the invariant mass and the invariant spin to be the same for any solution of the equations of motion. Both these Casimir invariants, the square of the 4-momentum vector and the square of the Pauli-Lubanski vector, are shown to preserve the same fixed values also in the presence of an arbitrary external electromagnetic field. In the 'free' case, in the centre-of-mass reference frame, the particle moves along a circle of fixed radius with arbitrary varying frequency. In a homogeneous magnetic field, a number of rotational 'states' are possible with frequencies slightly different from the cyclotron frequency, and 'phase-like' transitions with spin flops occur at some critical values of the particle's 3-momentum.
International Nuclear Information System (INIS)
Calarco, T.; Datta, A.; Fedichev, P.; Zoller, P.; Pazy, E.
2003-01-01
We present an all-optical implementation of quantum computation using semiconductor quantum dots. Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are realized by switching on trion-trion interactions between different dots. State selectivity is achieved via conditional laser excitation exploiting Pauli exclusion principle. Read out is performed via a quantum-jump technique. We analyze the effect on our scheme's performance of the main imperfections present in real quantum dots: exciton decay, hole mixing, and phonon decoherence. We introduce an adiabatic gate procedure that allows one to circumvent these effects and evaluate quantitatively its fidelity
Thermal spin pumping mediated by magnons in the semiclassical regime
International Nuclear Information System (INIS)
Nakata, Kouki
2012-01-01
We microscopically analyze thermal spin pumping mediated by magnons, at the interface between a ferromagnetic insulator and a non-magnetic metal, in the semiclassical regime. The generation of a spin current is discussed by calculating the thermal spin transfer torque, which breaks the spin conservation law for conduction electrons and operates the coherent magnon state. Inhomogeneous thermal fluctuations between conduction electrons and magnons induce a net spin current, which is pumped into the adjacent non-magnetic metal. The pumped spin current is proportional to the temperature difference. When the effective temperature of magnons is lower than that of conduction electrons, localized spins lose spin angular momentum by emitting magnons and conduction electrons flip from down to up by absorbing all the emitted momentum, and vice versa. Magnons at the zero mode cannot contribute to thermal spin pumping because they are eliminated by the spin-flip condition. Consequently thermal spin pumping does not cost any kind of applied magnetic fields
Synchronicité le rapport entre physique et psyché de Pauli et Jung à Chopra
Teodorani, Massimo
2015-01-01
De mystérieux événements synchrones semblent parsemer nos vies. Tandis qu'une pensée affleure, un fait, qui renferme toujours un sens profond dont le but est de conduire nos vies vers leur destin, se produit à l'improviste, dans un synchronisme parfait. L'objectif de ce livre est de démontrer que le phénomène de la « synchronicité » est depuis longtemps étudié, en particulier par les physiciens quantiques. Ces recherches plongent leurs racines dans l'alliance durable et harmonieuse entre le grand psychologue analytique Carl Gustav Jung et le physicien quantique Wolfgang Pauli.
Energy Technology Data Exchange (ETDEWEB)
Horn, Paul R., E-mail: prhorn@berkeley.edu; Mao, Yuezhi; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, California 94720 (United States)
2016-03-21
In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na{sup +}, water-Cl{sup −}, and the naphthalene dimer.
Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures
Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.
2017-12-01
Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.
Electromagnetic coupling of spins and pseudospins in bilayer graphene
Winkler, R.; Zülicke, U.
2015-03-01
We present a theoretical study of bilayer-graphene's electronic properties in the presence of electric and magnetic fields. In contrast to known materials, including single-layer graphene, any possible coupling of physical quantities to components of the electric field has a counterpart where the analogous component of the magnetic field couples to exactly the same quantities. For example, a purely electric spin splitting appears as the magneto-electric analogue of the magnetic Zeeman spin splitting. The measurable thermodynamic response induced by magnetic and electric fields is thus completely symmetric. The Pauli magnetization induced by a magnetic field takes exactly the same functional form as the polarization induced by an electric field. Although they seem counterintuitive, our findings are consistent with fundamental principles such as time reversal symmetry. For example, only a magnetic field can give rise to a macroscopic spin polarization, whereas only a perpendicular electric field can induce a macroscopic polarization of the sublattice-related pseudospin in bilayer graphene. These rules enforced by symmetry for the matter-field interactions clarify the nature of spins versus pseudospins. We have obtained numerical values of prefactors for relevant terms. NSF Grant DMR-1310199 and Marsden Fund Contract No. VUW0719.
Spin and diamagnetism in linear and nonlinear optics
International Nuclear Information System (INIS)
Andersen, Torsten; Keller, Ole; Huebner, Wolfgang; Johansson, Boerje
2004-01-01
We present a local-field theory for spin and diamagnetism in linear and nonlinear optics. We examine all the processes contained in the Pauli Hamiltonian and its corresponding microscopic current density, including the terms depending on the electron spin. The resulting general real-space conductivities are presented and discussed. To quantify the implications of including the spin, we study the linear and nonlinear optical properties of free-electron metals, represented by the screened homogeneous electron gas. The real-space formalism is transformed into Fourier space, and the symmetries of the linear and nonlinear optical conductivities in a homogeneous electron gas are discussed. Numerical results are presented for the homogeneous electron gas, in which we treat ω and q as independent variables, thereby opening the theory to near-field optics and the study of evanescent waves. We show that in regions of the ω-q spectrum, the presence of diamagnetism and spin dynamics significantly alters the response in comparison to considering only the paramagnetic response. Additionally, we discuss the effects of screening, and we finish our treatment by a discussion of how to connect the present theory to existing methods in ab initio solid-state physics
Spin Coherence in Semiconductor Nanostructures
National Research Council Canada - National Science Library
Flatte, Michael E
2006-01-01
... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...
Multi-Valued Spin Switch in a Semiconductor Microcavity
Paraïso, T. K.; Wouters, M.; Léger, Y.; Morier-Genoud, F.; Deveaudhyphen; Plédran, B.
2011-12-01
In this work, we report on the first realization of multi-valued spin switching in the solid-state. We investigate the physics of spinor bistability with microcavity polaritons in a trap. Spinor interactions lead to special bistability regimes with decoupled thresholds for spin-up and spin-down polaritons. This allows us to establish state-of-the-art spin switching operations. We evidence polarization hysteresis and determine appropriate conditions to achieve spin multistability. For a given excitation condition, three stable spin states coexist for the system. These results open new pathways for the development of innovative spin-based logic gates and memory devices.
Spin Hall effect and Berry phase of spinning particles
International Nuclear Information System (INIS)
Berard, Alain; Mohrbach, Herve
2006-01-01
We consider the adiabatic evolution of the Dirac equation in order to compute its Berry curvature in momentum space. It is found that the position operator acquires an anomalous contribution due to the non-Abelian Berry gauge connection making the quantum mechanical algebra noncommutative. A generalization to any known spinning particles is possible by using the Bargmann-Wigner equation of motions. The noncommutativity of the coordinates is responsible for the topological spin transport of spinning particles similarly to the spin Hall effect in spintronic physics or the Magnus effect in optics. As an application we predict new dynamics for nonrelativistic particles in an electric field and for photons in a gravitational field
Nuclear spin polarized H and D by means of spin-exchange optical pumping
Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank
1998-01-01
Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.
Directory of Open Access Journals (Sweden)
H. Dadkhah
2017-10-01
Full Text Available In this paper, spinning disk photoreactor (SDP has been used for the removal of a refractory pollutant, namely p-nitrophenol (PNP, in UV/H2O2 process. The effect of various parameters such as the plate type in the SDP, concentration of oxidant (H2O2, fluid volume, initial concentration of PNP, distance of the lamps from the spinning disk, distance of the lamps from each other, pH, and rotation speed of the spinning disk in the removal efficiency has been investigated. The results indicated that the use of scrobiculate disc instead of flat disc significantly increased the removal percentage of PNP from 46 to 100 % for the irradiation time of 20 min; it also increased with increasing H2O2 concentration, but the increase in fluid volume and the initial concentration of PNP reduced the removal percentage of PNP in the SDP. The increase in the distance of UV lamps from each other and from disc surface in the SDP reduced the removal percentage of PNP. However, the increase in pH to 5.5 increased removal efficiency while increasing pH above 5.5 reduced PNP removal efficiency. The disk rotation speed from 0 to 90 rpm increased the removal percentage from 49 to 70 % for the irradiation time of 5 min, but increasing the rotation speed to more than 90 rpm reduced the removal efficiency.
Spin polarized 3He: a ''new'' quantum fluid
International Nuclear Information System (INIS)
Lhuillier, C.; Laloe, F.
1979-01-01
The physical properties of a 3 He fluid are studied, in which all nuclear spins are parallel to each other (fully polarized 3 He). At low temperatures, significant differences can exist between this polarized fluid and normal 3 He. The origin of these differences is purely quantum mechanical and arises from the Pauli exclusion principle. At low densities, only the transport properties of the gas are modified. At higher densities. The equilibrium properties (virial coefficients) are also changed by the nuclear polarization. Changes of the liquid-vapour or liquid-solid equilibrium pressures, as well as modifications of the 3 He- 4 He mixture phase diagram are predicted. This article gives a preliminary theoretical study of these new effects. Experimental prospects are briefly discussed [fr
Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing
2016-01-01
The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E
Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.
Magnetoelectric control of spin currents
Energy Technology Data Exchange (ETDEWEB)
Gómez, J. E.; Vargas, J. M.; Avilés-Félix, L.; Butera, A. [Centro Atómico Bariloche, Instituto de Nanociencia y Nanotecnología (CNEA) and Conicet, 8400 Bariloche, Río Negro (Argentina)
2016-06-13
The ability to control the spin current injection has been explored on a hybrid magnetoelectric system consisting of a (011)-cut ferroelectric lead magnesium niobate-lead titanate (PMNT) single crystal, a ferromagnetic FePt alloy, and a metallic Pt. With this PMNT/FePt/Pt structure we have been able to control the magnetic field position or the microwave excitation frequency at which the spin pumping phenomenon between FePt and Pt occurs. We demonstrate that the magnetoelectric heterostructure operating in the L-T (longitudinal magnetized-transverse polarized) mode couples the PMNT crystal to the magnetostrictive FePt/Pt bilayer, displaying a strong magnetoelectric coefficient of ∼140 Oe cm kV{sup −1}. Our results show that this mechanism can be effectively exploited as a tunable spin current intensity emitter and open the possibility to create an oscillating or a bistable switch to effectively manipulate spin currents.
International Nuclear Information System (INIS)
Mookerjee, Abhijit
1976-01-01
''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)
Demand Response Spinning Reserve Demonstration
Energy Technology Data Exchange (ETDEWEB)
Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.
2007-05-01
The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
International Nuclear Information System (INIS)
Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji
2017-01-01
Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)
Entangled spins and ghost-spins
Directory of Open Access Journals (Sweden)
Dileep P. Jatkar
2017-09-01
Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.
Spin voltage generation through optical excitation of complementary spin populations
Bottegoni, Federico; Celebrano, Michele; Bollani, Monica; Biagioni, Paolo; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco
2014-08-01
By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules.
Pramanik, S.; bandyopadhyay, S.; Cahay, M.
2003-01-01
We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...
Spin sensitivity of a channel electron multiplier
International Nuclear Information System (INIS)
Scholten, R.E.; McClelland, J.J.; Kelley, M.H.; Celotta, R.J.
1988-01-01
We report direct measurements of the sensitivity of a channel electron multiplier to electrons with different spin orientations. Four regions of the multiplier cone were examined using polarized electrons at 100-eV incident energy. Pulse counting and analog modes of operation were both investigated and in each case the observed spin effects were less than 0.5%
Spin-valley dynamics of electrically driven ambipolar carbon-nanotube quantum dots
Osika, E. N.; Chacón, A.; Lewenstein, M.; Szafran, B.
2017-07-01
An ambipolar n-p double quantum dot defined by potential variation along a semiconducting carbon-nanotube is considered. We focus on the (1e,1h) charge configuration with a single excess electron of the conduction band confined in the n-type dot and a single missing electron in the valence band state of the p-type dot for which lifting of the Pauli blockade of the current was observed in the electric-dipole spin resonance (Laird et al 2013 Nat. Nanotechnol. 8 565). The dynamics of the system driven by periodic electric field is studied with the Floquet theory and the time-dependent configuration interaction method with the single-electron spin-valley-orbitals determined for atomistic tight-binding Hamiltonian. We find that the transitions lifting the Pauli blockade are strongly influenced by coupling to a vacuum state with an empty n dot and a fully filled p dot. The coupling shifts the transition energies and strongly modifies the effective g factors for axial magnetic field. The coupling is modulated by the bias between the dots but it appears effective for surprisingly large energy splitting between the (1e,1h) ground state and the vacuum (0e, 0h) state. Multiphoton transitions and high harmonic generation effects are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Xing, Yong-Zhong, E-mail: yzxing@tsnu.edu.cn [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zhang, H.F. [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Liu, Xiao-Bin [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zheng, Yu-Ming [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); China Institute of Atomic Energy, P.O. Box 275(18), Beijing 102413 (China)
2017-01-15
The dissipation phenomenon in the heavy-ion reaction at incident energy near Fermi energy is studied by simulating the reactions {sup 129}Xe + {sup 129}Sn and {sup 58}Ni + {sup 58}Ni with isospin-dependent quantum molecular dynamics model (IQMD). The isotropy ratio in terms of transverse and longitudinal energies of the free protons emitted in the final states of these reactions is quantitatively analyzed to explore the in-medium correlation of the binary collisions. Comparison of the calculations with the experimental data recently released by INDRA collaboration exhibits that the ratio is very sensitive to the Pauli blocking effect in two-body collisions and Pauli exclusion principle is indispensable in the theoretical simulations for the heavy-ion reactions near the Fermi energy.
Sign rules for anisotropic quantum spin systems
International Nuclear Information System (INIS)
Bishop, R. F.; Farnell, D. J. J.; Parkinson, J. B.
2000-01-01
We present exact ''sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the importance of such sign rules in variational calculations and quantum Monte Carlo calculations is emphasized. This is illustrated by a simple variational treatment of a one-dimensional anisotropic spin model
Maximiliem Brice
2006-01-01
Telegramme sent on June 14 1956 from physicists Fred Reines and Clyde Cowan to Wolfgang Pauli announcing the detection, for the first time, of neutrinos. The Physics Nobel Prize in 1995 was awarded to Reines for this discovery.
Account of the Pauli principle in the quasiparticle-phonon nuclear model
International Nuclear Information System (INIS)
Molina, Kh.L.
1980-01-01
The correlation effects in the ground states of even-even deformed nuclei on their one- and two-phonon states are studied in terms of the semimicroscopic nuclear theory. A secular equation for one-phonon excitations is derived, which take into account, in average, exact commutation relations between quasiparticle operators. It is demonstrated, that the account of the correlation in the ground state can significantly influence the values of the wave function two-phonon components
RHIC spin flipper AC dipole controller
Energy Technology Data Exchange (ETDEWEB)
Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.
2011-03-28
The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.
Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets
Hung, Yu-Ming
demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite ferromagnetic resonance in YIG with a microwave frequency magnetic field and detect the voltage associated with the inverse spin-Hall effect (ISHE) in the Pt layer. The ISHE signal is found to decay exponentially with the NiO thickness with a characteristic decay length of 3.9 nm. However, in contrast to the ISHE response, as the NiO thickness increases the SMR signal goes towards zero abruptly at a NiO thickness of 4 nm, highlighting the different length scales associated with the spin-transport in NiO and SMR in such trilayers.
Magnetic Nanostructures Spin Dynamics and Spin Transport
Farle, Michael
2013-01-01
Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.
Charge-induced spin torque in Weyl semimetals
Kurebayashi, Daichi; Nomura, Kentaro
In this work, we present phenomenological and microscopic derivations of spin torques in magnetically doped Weyl semimetals. As a result, we obtain the analytical expression of the spin torque generated, without a flowing current, when the chemical potential is modulated. We also find that this spin torque is a direct consequence of the chiral anomaly. Therefore, observing this spin torque in magnetic Weyl semimetals might be an experimental evidence of the chiral anomaly. This spin torque has also a great advantage in application. In contrast to conventional current-induced spin torques such as the spin-transfer torques, this spin torque does not accompany a constant current flow. Thus, devices using this operating principle is free from the Joule heating and possibly have higher efficiency than devices using conventional current-induced spin torques. This work was supported by JSPS KAKENHI Grant Number JP15H05854 and JP26400308.
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.
2005-11-01
Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.
Terletska, Hanna; Dobrovitski, Viatcheslav
2015-03-01
The electron spin of the NV center in diamond is a promising platform for spin sensing. Applying the dynamical decoupling, the NV electron spin can be used to detect the individual weakly coupled carbon-13 nuclear spins in diamond and employ them for small-scale quantum information processing. However, the nuclear spins within this approach remain unprotected from decoherence, which ultimately limits the detection and restricts the fidelity of the quantum operation. Here we investigate possible schemes for combining the resonant decoupling on the NV spin with the decoherence protection of the nuclear spins. Considering several schemes based on pulse and continuous-wave decoupling, we study how the joint electron-nuclear spin dynamics is affected. We identify regimes where the all-spin coherence protection improves the detection and manipulation. We also discuss potential applications of the all-spin decoupling for detecting spins outside diamond, with the purpose of implementing the nanoscale NMR. This work was supported by the US Department of Energy Basic Energy Sciences (Contract No. DE-AC02-07CH11358).
Harmony of spinning conformal blocks
Energy Technology Data Exchange (ETDEWEB)
Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Sobko, Evgeny [Stockholm Univ. (Sweden); Nordita, Stockholm (Sweden); Isachenkov, Mikhail [Weizmann Institute of Science, Rehovoth (Israel). Dept. of Particle Physics and Astrophysics
2016-12-07
Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.
Energy Technology Data Exchange (ETDEWEB)
Alday, Luis F.; Bissi, Agnese; Łukowski, Tomasz [Mathematical Institute, University of Oxford,Andrew Wiles Building, Radcliffe Observatory Quarter,Woodstock Road, Oxford, OX2 6GG (United Kingdom)
2015-11-16
Using conformal field theory (CFT) arguments we derive an infinite number of constraints on the large spin expansion of the anomalous dimensions and structure constants of higher spin operators. These arguments rely only on analyticity, unitarity, crossing-symmetry and the structure of the conformal partial wave expansion. We obtain results for both, perturbative CFT to all order in the perturbation parameter, as well as non-perturbatively. For the case of conformal gauge theories this provides a proof of the reciprocity principle to all orders in perturbation theory and provides a new “reciprocity' principle for structure constants. We argue that these results extend also to non-conformal theories.
International Nuclear Information System (INIS)
Alday, Luis F.; Bissi, Agnese; Łukowski, Tomasz
2015-01-01
Using conformal field theory (CFT) arguments we derive an infinite number of constraints on the large spin expansion of the anomalous dimensions and structure constants of higher spin operators. These arguments rely only on analyticity, unitarity, crossing-symmetry and the structure of the conformal partial wave expansion. We obtain results for both, perturbative CFT to all order in the perturbation parameter, as well as non-perturbatively. For the case of conformal gauge theories this provides a proof of the reciprocity principle to all orders in perturbation theory and provides a new “reciprocity' principle for structure constants. We argue that these results extend also to non-conformal theories.
Harmony of spinning conformal blocks
Energy Technology Data Exchange (ETDEWEB)
Schomerus, Volker [DESY Hamburg, Theory Group,Notkestraße 85, 22607 Hamburg (Germany); Sobko, Evgeny [Nordita and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Isachenkov, Mikhail [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel)
2017-03-15
Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.
The Dirac operator on a finite domain and the R-matrix method
International Nuclear Information System (INIS)
Grant, I P
2008-01-01
Relativistic effects in electron-atom collisions and photo-excitation and -ionization processes increase in importance as the atomic number of the target atom grows and spin-dependent effects increase. A relativistic treatment in which electron motion is described using the Dirac Hamiltonian is then desirable. A version of the popular nonrelativistic R-matrix package incorporating terms from the Breit-Pauli Hamiltonian has been used for modelling such processes for some years. The fully relativistic Dirac R-matrix method has been less popular, but is becoming increasingly relevant for applications to heavy ion targets, where the need to use relativistic wavefunctions is more obvious. The Dirac R-matrix method has been controversial ever since it was first proposed by Goertzel (1948 Phys. Rev. 73 1463-6), and it is therefore important to confirm that recent elaborate and costly applications of the method, such as, Badnell et al (2004 J. Phys. B: At. Mol. Phys. 37 4589) and Ballance and Griffin (2007 J. Phys. B: At. Mol. Opt. Phys. 40 247-58), rest on secure foundations. The first part of this paper analyses the structure of the two-point boundary-value problem for the Dirac operator on a finite domain, from which we construct a unified derivation of the Schroedinger (nonrelativistic) and Dirac (relativistic) R-matrix methods. Suggestions that the usual relativistic theory is not well founded are shown to be without foundation
Spin squeezing and entanglement in a dispersive cavity
International Nuclear Information System (INIS)
Deb, R. N.; Abdalla, M. Sebawe; Hassan, S. S.; Nayak, N.
2006-01-01
We consider a system of N two-level atoms (spins) interacting with the radiation field in a dispersive but high-Q cavity. Under an adiabatic condition, the interaction Hamiltonian reduces to a function of spin operators which is capable of producing spin squeezing. For a bipartite system (N=2), the expressions for spin squeezing get very simple, giving a clear indication of close to 100% noise reduction. We analyse this squeezing as a measure of bipartite entanglement
Spin-polarized spin excitation spectroscopy
International Nuclear Information System (INIS)
Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J
2010-01-01
We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.
On the quantization of spin systems and Fermi systems
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Sirugue, M.
1978-03-01
It is shown that spin operators and Fermi operators can be interpreted as the Weyl quantization of some functions on a classical phase space which is a compact group. Moreover the transition from quantum spin to Fermi operators is an isomorphism of the classical phase space preserving the Haar measure
International Nuclear Information System (INIS)
Prets, A.
1998-07-01
In the present Ph. D. thesis we are considering a special form of scaling limits, namely the hydrodynamic limit. Such limits are considered to explain macroscopic behavior of matter by means of microscopic dynamic laws. In this procedure a rescaling of space and time plays a central role. The limit will be formulated in a quantum mechanical way. Within this framework we study derivations of the Landau Lifshitz equation for ferromagnets. This equation is a macroscopic equation of motion for the magnetization vector and results into the theory of spin waves. Since we have no exact knowledge of the Heisenberg operator's time evolution no definitive statement an how to regain the Landau Lifshitz equation from the microscopic dynamics can be given. In contrast to the Heisenberg operator, for an Ising type interaction inside a ferromagnet one is able to recover macroscopically a solution of a linearized Landau Lifschitz equation. (author)
Gate-Driven Pure Spin Current in Graphene
Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng
2017-09-01
The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.
Oscillator strengths and transition probabilities from the Breit–Pauli R-matrix method: Ne IV
Energy Technology Data Exchange (ETDEWEB)
Nahar, Sultana N., E-mail: nahar@astronomy.ohio-state.edu
2014-09-15
The atomic parameters–oscillator strengths, line strengths, radiative decay rates (A), and lifetimes–for fine structure transitions of electric dipole (E1) type for the astrophysically abundant ion Ne IV are presented. The results include 868 fine structure levels with n≤ 10, l≤ 9, and 1/2≤J≤ 19/2 of even and odd parities, and the corresponding 83,767 E1 transitions. The calculations were carried out using the relativistic Breit–Pauli R-matrix method in the close coupling approximation. The transitions have been identified spectroscopically using an algorithm based on quantum defect analysis and other criteria. The calculated energies agree with the 103 observed and identified energies to within 3% or better for most of the levels. Some larger differences are also noted. The A-values show good to fair agreement with the very limited number of available transitions in the table compiled by NIST, but show very good agreement with the latest published multi-configuration Hartree–Fock calculations. The present transitions should be useful for diagnostics as well as for precise and complete spectral modeling in the soft X-ray to infra-red regions of astrophysical and laboratory plasmas. -- Highlights: •The first application of BPRM method for accurate E1 transitions in Ne IV is reported. •Amount of atomic data (n going up to 10) is complete for most practical applications. •The calculated energies are in very good agreement with most observed levels. •Very good agreement of A-values and lifetimes with other relativistic calculations. •The results should provide precise nebular abundances, chemical evolution etc.
Higher spin black holes with soft hair
Energy Technology Data Exchange (ETDEWEB)
Grumiller, Daniel [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Tempo, David; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)
2016-10-21
We construct a new set of boundary conditions for higher spin gravity, inspired by a recent “soft Heisenberg hair”-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin-N, many of which resemble the spin-2 results: the generators of the asymptotic W{sub 3} algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call “higher spin black flowers”, are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W-algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Spin nematics next to spin singlets
Yokoyama, Yuto; Hotta, Chisa
2018-05-01
We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.
Induction-detection electron spin resonance with spin sensitivity of a few tens of spins
Energy Technology Data Exchange (ETDEWEB)
Artzi, Yaron; Twig, Ygal; Blank, Aharon [Schulich Faculty of Chemistry Technion—Israel Institute of Technology, Haifa 32000 (Israel)
2015-02-23
Electron spin resonance (ESR) is a spectroscopic method that addresses electrons in paramagnetic materials directly through their spin properties. ESR has many applications, ranging from semiconductor characterization to structural biology and even quantum computing. Although it is very powerful and informative, ESR traditionally suffers from low sensitivity, requiring many millions of spins to get a measureable signal with commercial systems using the Faraday induction-detection principle. In view of this disadvantage, significant efforts were made recently to develop alternative detection schemes based, for example, on force, optical, or electrical detection of spins, all of which can reach single electron spin sensitivity. This sensitivity, however, comes at the price of limited applicability and usefulness with regard to real scientific and technological issues facing modern ESR which are currently dealt with conventional induction-detection ESR on a daily basis. Here, we present the most sensitive experimental induction-detection ESR setup and results ever recorded that can detect the signal from just a few tens of spins. They were achieved thanks to the development of an ultra-miniature micrometer-sized microwave resonator that was operated at ∼34 GHz at cryogenic temperatures in conjunction with a unique cryogenically cooled low noise amplifier. The test sample used was isotopically enriched phosphorus-doped silicon, which is of significant relevance to spin-based quantum computing. The sensitivity was experimentally verified with the aid of a unique high-resolution ESR imaging approach. These results represent a paradigm shift with respect to the capabilities and possible applications of induction-detection-based ESR spectroscopy and imaging.
Strong interaction scattering of a spin-zero particle by a 1/2 spin particle
International Nuclear Information System (INIS)
Derem, Andre
1969-03-01
This paper gather kinematic formulas that are commonly used to describe the scattering, with conservation of parity, 0 - + 1 + /2 → 0 - + 1 + /2 (in the notation S P , S being the spin and P the parity). The two particles 0 - will be two mesons M and M', the two particles 1 + /2 two baryons B and B'. The authors assume that the masses of these four particles are all different. The notations and the definitions are introduced in chapter 1. Chapter 2 recalls essential notions concerning the Dirac equation. The relativistic invariant differential cross-section is calculated in chapter 3, as a function of the invariant amplitudes A'(s,t) and B(s,t). Pauli's usual formalism in the center of mass system is given in chapter 4, as well as the means of passing f(θ) and g(θ) amplitudes to A' and B amplitudes. Chapter 5 is concerned with elastic scattering [fr
Datta-Das-type spin-field-effect transistor in the nonballistic regime
Ohno, Munekazu; Yoh, Kanji
2008-01-01
We analyzed the applicability of original Datta-Das proposal for spin-field-effect transistor (spin-FET) to nonballistic regime based on semiempirical Monte Carlo simulation for spin transport. It is demonstrated that the spin helix state in two-dimensional electron gas system is sufficiently robust against D'yakonov-Perel' spin relaxation to allow an operation of Datta-Das-type spin-FET in the nonballistic transport regime. It is also shown that the spin diffusion length of the spin helix st...
Parity and the spin{statistics connection
Indian Academy of Sciences (India)
A simple demonstration of the spin-statistics connection for general causal fields is obtained by using the parity operation to exchange spatial coordinates in the scalar product of a locally commuting field operator, evaluated at position x, with the same field operator evaluated at -x, at equal times.
Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi
2017-01-01
We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
Energy Technology Data Exchange (ETDEWEB)
Lamy-Poirier, Joel, E-mail: jlamypoirier@perimeterinstitute.c [Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Canada, G1V 0A6 (Canada); Mathieu, Pierre, E-mail: pmathieu@phy.ulaval.c [Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Canada, G1V 0A6 (Canada)
2011-06-01
This is the second of two articles (independent of each other) devoted to the analysis of the path description of the states in su-hat (2){sub k} WZW models. Here we present a constructive derivation of the fermionic character at level k based on these paths. The starting point is the expression of a path in terms of a sequence of nonlocal (formal) operators acting on the vacuum ground-state path. Within this framework, the key step is the construction of the level-k operator sequences out of those at level-1 by the action of a new type of operators. These actions of operators on operators turn out to have a path interpretation: these paths are precisely the finitized RSOS paths related to the unitary minimal models M(k+1,k+2). We thus unravel - at the level of the path representation of the states - a direct factorization into a k=1 spinon part times a RSOS factor. It is also pointed out that since there are two fermionic forms describing these finite RSOS paths, the resulting fermionic su-hat (2){sub k} characters arise in two versions. Finally, the relation between the present construction and the Nagoya spectral decomposition of the path space is sketched.
Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.
Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D
2009-10-09
Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.
Spin transport at high temperatures in epitaxial Heusler alloy/n-GaAs lateral spin valves
Peterson, Timothy A.; Christie, Kevin D.; Patel, Sahil J.; Crowell, Paul A.; Palmstrøm, Chris J.
2015-03-01
We report on electrical injection and detection of spin accumulation in ferromagnet/ n-GaAs lateral spin-valve devices, observed up to and above room temperature. The ferromagnet in these measurements is the Heusler alloy Co2FeSi, and the semiconductor channel is GaAs doped at 3 ×1016 cm-3. The spin signal is enhanced by operating the detection contact under forward bias. The enhancement originates from drift effects at low-temperatures and an increase of the detection efficiency at all temperatures. The detector bias dependence of the observed spin-valve signal is interpreted by taking into account the quantum well (QW) which forms in the degenerately doped region immediately behind the Schottky tunnel barrier. In particular, we believe the QW is responsible for the minority spin accumulation (majority spin current) under large forward bias. The spin diffusion length and lifetime are determined by measuring the separation dependence of the non-local spin valve signal in a family of devices patterned by electron beam lithography. A spin diffusion length of 700 nm and lifetime of 46 picoseconds are found at a temperature of 295 K. This work was supported by the NSF under DMR-1104951, the NSF MRSEC program and C-SPIN, a SRC STARNET center sponsored by MARCO and DARPA.
The spin-s quantum Heisenberg ferromagnetic models in the physical magnon theory
International Nuclear Information System (INIS)
Liu, B.-G.; Pu, F.-C.
2001-01-01
The spin-s quantum Heisenberg ferromagnetic model is investigated in the physical magnon theory. The effect of the extra unphysical magnon states on every site is completely removed in the magnon Hamiltonian and during approximation procedure so that the condition †n i a n i >=0(n≥2s+1) is rigorously satisfied. The physical multi-magnon occupancy †n i a n i >(1≤n≤2s) is proportional to T 3n/2 at low temperature and is equivalent to 1/(2s+1) at the Curie temperature. The magnetization not only unified but also well-behaved from zero temperature to Curie temperature is obtained in the framework of the magnon theory for the spin-s quantum Heisenberg ferromagnetic model. The ill-behaved magnetizations at high temperature in earlier magnon theories are completely corrected. The relation of magnon (spin wave) theory with spin-operator decoupling theory is clearly understood
About kinematics and hydrodynamics of spinning particles: some simple considerations
International Nuclear Information System (INIS)
Recami, Erasmo; Rodrigues Junior, Waldyr A.; Salesi, Giovanni
1995-12-01
In the first part (Sections 1 and 2) of this paper - starting from the Pauli current, in the ordinary tensorial language - we obtain the decomposition of the non-relativistic field velocity into two orthogonal parts: the classical part, that is the velocity w p/m of the center-of-mass (CM), and the so-called quantum part, that is, the velocity V of the motion in the CM frame (namely, the integral spin motion or Zitterbewegung). By inserting such a complete, composite expression of the velocity into the kinetic energy term of the non-relativistic classical (Newtonian) Lagrangian, we straightforwardly get the appearance of the so-called quantum potential associated, as it is know, with the Madelueng fluid. This result carries further evidence that the quantum behaviour of micro-systems can be a direct consequence of the fundamental existence of spin. In the second part (Sections 3 and 4), we fix our attention on the total velocity vector v vector w + vector V, being now necessary to pass to relativistic (classical) physics; and we show that the proper time entering the definition of the four-velocity v μ for spinning particles has to be the proper time τ of the CM frame. Inserting the correct Lorentz factor into the definition of v μ leads to completely new kinematical properties for v 2 . The important constraint pμ v μ identically true for scalar particles, but just assumed a priori in all previous spinning particle theories, is herein derived in a self-consistent way. (author). 24 refs
About kinematics and hydrodynamics of spinning particles: some simple considerations
Energy Technology Data Exchange (ETDEWEB)
Recami, Erasmo; Rodrigues Junior, Waldyr A. [Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada; Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica
1995-12-01
In the first part (Sections 1 and 2) of this paper - starting from the Pauli current, in the ordinary tensorial language - we obtain the decomposition of the non-relativistic field velocity into two orthogonal parts: the classical part, that is the velocity w p/m of the center-of-mass (CM), and the so-called quantum part, that is, the velocity V of the motion in the CM frame (namely, the integral spin motion or Zitterbewegung). By inserting such a complete, composite expression of the velocity into the kinetic energy term of the non-relativistic classical (Newtonian) Lagrangian, we straightforwardly get the appearance of the so-called quantum potential associated, as it is know, with the Madelueng fluid. This result carries further evidence that the quantum behaviour of micro-systems can be a direct consequence of the fundamental existence of spin. In the second part (Sections 3 and 4), we fix our attention on the total velocity vector v vector w + vector V, being now necessary to pass to relativistic (classical) physics; and we show that the proper time entering the definition of the four-velocity v{sup {mu}} for spinning particles has to be the proper time {tau} of the CM frame. Inserting the correct Lorentz factor into the definition of v{sup {mu}} leads to completely new kinematical properties for v{sup 2}. The important constraint p{mu} v{sup {mu}} identically true for scalar particles, but just assumed a priori in all previous spinning particle theories, is herein derived in a self-consistent way. (author). 24 refs.
Yang-Mills correlation functions from integrable spin chains
International Nuclear Information System (INIS)
Roiban, Radu; Volovich, Anastasia
2004-01-01
The relation between the dilatation operator of N = 4 Yang-Mills theory and integrable spin chains makes it possible to compute the one-loop anomalous dimensions of all operators in the theory. In this paper we show how to apply the technology of integrable spin chains to the calculation of Yang-Mills correlation functions by expressing them in terms of matrix elements of spin operators on the corresponding spin chain. We illustrate this method with several examples in the SU(2) sector described by the XXX 1/2 chain. (author)
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
The following topics were ealt with: Hadron physics with proton and deuteron probes, physics projects with Georgian participation, spin physics with antiprotons and leptons, spin filtering experiments, ISTC projects, technical issues for FAIR. (HSI)
Dynamic nuclear spin polarization
Energy Technology Data Exchange (ETDEWEB)
Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)
1996-11-01
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.
Arian Zad, Hamid; Ananikian, Nerses
2017-11-01
We consider a symmetric spin-1/2 Ising-XXZ double sawtooth spin ladder obtained from distorting a spin chain, with the XXZ interaction between the interstitial Heisenberg dimers (which are connected to the spins based on the legs via an Ising-type interaction), the Ising coupling between nearest-neighbor spins of the legs and rungs spins, respectively, and additional cyclic four-spin exchange (ring exchange) in the square plaquette of each block. The presented analysis supplemented by results of the exact solution of the model with infinite periodic boundary implies a rich ground state phase diagram. As well as the quantum phase transitions, the characteristics of some of the thermodynamic parameters such as heat capacity, magnetization and magnetic susceptibility are investigated. We prove here that among the considered thermodynamic and thermal parameters, solely heat capacity is sensitive versus the changes of the cyclic four-spin exchange interaction. By using the heat capacity function, we obtain a singularity relation between the cyclic four-spin exchange interaction and the exchange coupling between pair spins on each rung of the spin ladder. All thermal and thermodynamic quantities under consideration should be investigated by regarding those points which satisfy the singularity relation. The thermal entanglement within the Heisenberg spin dimers is investigated by using the concurrence, which is calculated from a relevant reduced density operator in the thermodynamic limit.
International Nuclear Information System (INIS)
Svarc, A.
1992-01-01
The origin of the broad structure in the ratio of the differential cross section at O o and 30 o CMS scattering angle in the pp→π + d process at the invariant mass of 2.41 GeV, which has been extracted using the world collection of experimental data as input, has been analysed. The observed pattern can be generated by a combination of the Pauli principle restrictions upon the helicity amplitudes, combined with their individual and smooth energy behaviour. No assertions regarding additional dibaryon dynamics can be made without accounting for the observed effect. A toy model is presented solely as an illustration. (author)
International Nuclear Information System (INIS)
Nguyen Dinh Dang; Voronov, V.V.
1983-01-01
A system of basic equations of the quasiparticle-phonon model is obtained for energies and a structure of excited states described by the wave functions containing one- and two-phonon components. The effects due to the Pauli principle for two-phonon components and the phonon ground state correlations of a spherical nucleus are taken here into account. The quantitative estimations of these effects are given by a simplified scheme. The relation between these equations with the results from other theoretical approaches is discussed
International Nuclear Information System (INIS)
Ji Xiangdong
2003-01-01
Spin is a beautiful concept that plays an ever important role in modern physics. In this talk, I start with a discussion of the origin of spin, and then turn to three themes in which spin has been crucial in subatomic physics: a lab to explore physics beyond the standard model, a tool to measure physical observables that are hard to obtain otherwise, a probe to unravel nonperturbative QCD. I conclude with some remarks on a world without spin
Action-angle variables for the harmonic oscillator : ambiguity spin x duplication spin
International Nuclear Information System (INIS)
Oliveira, C.R. de; Malta, C.P.
1983-08-01
The difficulties of obtaining for the harmonic oscillator a well defined unitary transformation to action-angle variables were overcome by M. Moshinsky and T.H. Seligman through the introduction of a spinlike variable (ambiguity spin) from a classical point of view. The difficulty of defining a unitary phase operator for the harmonic oscillator was overcome by Roger G. Newton also through the introduction of a spinlike variable (named duplication spin by us) but within a quantum framework. The relation between the ambiguity spin and the duplication spin by introducing these two types of spins in the canonical transformation to action-angle variables is investigated. Doing this it is possible to obtain both well defined unitary transformation and phase operator. (Author) [pt
Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain
Directory of Open Access Journals (Sweden)
P.Hlushak
2005-01-01
Full Text Available One-dimensional quantum spin-1/2 XY models admit the rigorous analysis not only of their static properties (i.e. the thermodynamic quantities and the equal-time spin correlation functions but also of their dynamic properties (i.e. the different-time spin correlation functions, the dynamic susceptibilities, the dynamic structure factors. This becomes possible after exploiting the Jordan-Wigner transformation which reduces the spin model to a model of spinless noninteracting fermions. A number of dynamic quantities (e.g. related to transverse spin operator or dimer operator fluctuations are entirely determined by two-fermion excitations and can be examined in much detail.
International Nuclear Information System (INIS)
Anon.
1980-01-01
From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible
DEFF Research Database (Denmark)
Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang
2017-01-01
The thermoelectric performance of a topological energy converter is analyzed. The H-shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an e...
Cross, Rod
2013-01-01
Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…
Spin Orbit Torque in Ferromagnetic Semiconductors
Li, Hang
2016-06-21
Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall
Circuit Simulation of All-Spin Logic
Alawein, Meshal
2016-05-01
With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall
NMR with generalized dynamics of spin and spatial coordinates
International Nuclear Information System (INIS)
Lee, Chang Jae.
1987-11-01
This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences
Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.
2018-04-01
An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.
Spin physics in semiconductors
2017-01-01
This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.
Photodissociation of NaK: Ab initio spin-orbit interaction of the Na (32S) and K (42Pj) manifold
International Nuclear Information System (INIS)
Manaa, M.R.
1999-01-01
The relevant interstate b 3 II, A 1 Σ + , c 3 Σ + , and B 1 II spin-orbit induced matrix elements, arising from the Ma (3 2 S) K (4 2 P j ) manifold are treated within the full microscopic Breit-Pauli approximation based on ab initio configuration interaction (CI) wave functions. The determination of these couplings as a function of the internuclear distance of NaK should permit a full treatment of the fine-structure branching ratio K*(4 2 P 1/2 (D 1 ))/Kasterisk(4 2 P 3/2 (D 2 )) in manifold-meditated photodissociation and in the treatment of interstate perturbations
Inverse spin Hall effect by spin injection
Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.
2007-09-01
Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.
International Nuclear Information System (INIS)
Bogar, Ferenc; Bartha, Ferenc; Bartha, Ferenc A.; March, Norman H.
2011-01-01
Independently, in the mid-1980s, several groups proposed to bosonize the density-functional theory (DFT) for fermions by writing a Schroedinger equation for the density amplitude ρ(r) 1/2 , with ρ(r) as the ground-state electron density, the central tool of DFT. The resulting differential equation has the DFT one-body potential V(r) modified by an additive term V P (r) where P denotes Pauli. To gain insight into the form of the Pauli potential V P (r), here, we invoke the known Coulombic density, ρ ∞ (r) say, calculated analytically by Heilmann and Lieb (HL), by summation over the entire hydrogenic bound-state spectrum. We show that V P∞ (r) has simple limits for both r tends to infinity and r approaching zero. In particular, at large r, V P∞ (r) precisely cancels the attractive Coulomb potential -Ze 2 /r, leaving V(r)+V P∞ (r) of O(r -2 ) as r tends to infinity. The HL density ρ ∞ (r) is finally used numerically to display V P∞ (r) for all r values.
Bulk electron spin polarization generated by the spin Hall current
Korenev, V. L.
2005-01-01
It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.
Bulk electron spin polarization generated by the spin Hall current
Korenev, V. L.
2006-07-01
It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.
International Nuclear Information System (INIS)
Eslami, L.; Faizabadi, E.
2014-01-01
The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.
Spin injection and transport in semiconductor and metal nanostructures
Zhu, Lei
In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes
Muon spin relaxation in random spin systems
International Nuclear Information System (INIS)
Toshimitsu Yamazaki
1981-01-01
The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)
Fabricating tungsten crucibles by drawing and extrusion spinning
International Nuclear Information System (INIS)
Edstrom, C.M.
1981-01-01
The fabrication of seamless tungsten crucibles 127-mm ID x 265-mm high x 6.25-mm wall thickness (5 in. x 10 1/2 in. x 1/4 in.) involved three drawing operations and extrusion spinning. The success of the drawing operations came from a combination of low draw reduction percentage, generous draw radii, large punch-to-die clearance, and attention to drawing temperature. The extrusion spinning success related to good drawn-cup-to-spinning-mandrel fit prior to making the extrusion passes, removal of stress risers in the part prior to spinning, and special attention to part and mandrel temperature
Feynman propagator for a particle with arbitrary spin
International Nuclear Information System (INIS)
Huang Shi-Zhong; Zhang Peng-Fei; Ruan Tu-Nan; Zhu Yu-Can; Zheng Zhi-Peng
2005-01-01
Based on the solution to the Rarita-Schwinger equations, a direct derivation of the projection operator and propagator for a particle with arbitrary spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral spin; the general commutation rules and Feynman propagator for a free particle of any spin are derived, and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, 4 are provided. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Derem, Andre [Commissariat a l' Energie Atomique - CEA, Centre d' Etudes Nucleaires de Saclay, Departement de Physique des Particules Elementaires (France)
1969-03-15
This paper gather kinematic formulas that are commonly used to describe the scattering, with conservation of parity, 0{sup -} + 1{sup +}/2 → 0{sup -} + 1{sup +}/2 (in the notation S{sup P}, S being the spin and P the parity). The two particles 0{sup -} will be two mesons M and M', the two particles 1{sup +}/2 two baryons B and B'. The authors assume that the masses of these four particles are all different. The notations and the definitions are introduced in chapter 1. Chapter 2 recalls essential notions concerning the Dirac equation. The relativistic invariant differential cross-section is calculated in chapter 3, as a function of the invariant amplitudes A'(s,t) and B(s,t). Pauli's usual formalism in the center of mass system is given in chapter 4, as well as the means of passing f(θ) and g(θ) amplitudes to A' and B amplitudes. Chapter 5 is concerned with elastic scattering [French] Nous rassemblons ici un certain nombre de formules cinematiques qui sont utilisees couramment lorsqu'on veut decrire la diffusion, avec conservation de la parite, 0{sup -} + 1{sup +}/2 → 0{sup -} + 1{sup +}/2 (dans la notation S{sup P}, S etant le spin et P la parite). Les deux particules 0{sup -} seront deux mesons M et M', les deux particules 1{sup +}/2 deux baryons B et B'. Nous supposerons que les masses de ces quatre particules sont toutes differentes. Les notations et les definitions sont introduites au chapitre 1. Dans le chapitre 2 sont reprises les notions essentielles concernant l'equation de Dirac. La section efficace differentielle, invariante relativiste, est calculee au chapitre 3 en fonction des amplitudes invariantes A'(s,t) et B(s,t). Le formalisme habituel de Pauli dans le systeme du centre de masse est donne au chapitre 4, de meme que le moyen de passer des amplitudes f(θ) et g(θ) aux amplitudes A' et B. Le chapitre 5 concerne la diffusion elastique. Les formules sont numerotees independamment dans chaque paragraphe. Lorsque les renvois se font d
International Nuclear Information System (INIS)
Klimko, G.T.; Luzanov, A.V.
1988-01-01
An analysis has been made of the problem of calculating one- and two-particle spin densities, which are needed in calculations of spin-orbit and spin-spin coupling. The proposed solution is oriented toward the application of computational algorithms using unitary group representations; the solution consists of explicit expressions for the matrix elements of spin density operators in terms of the means of products of spin-free generators. This has eliminated a serious problem encountered previously in determining spin characteristics of molecules within the framework of unitary formalism
Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.
2015-10-01
Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical
The susceptibilities in the spin-S Ising model
International Nuclear Information System (INIS)
Ainane, A.; Saber, M.
1995-08-01
The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs
Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer
International Nuclear Information System (INIS)
Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.
1996-01-01
Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Korenev, V. L.
2007-01-01
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei brings the optical transition energy into resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of...
Directory of Open Access Journals (Sweden)
Zunlue Zhu
2012-07-01
Full Text Available The potential energy curves (PECs of the X^{2}Π and A^{2}Π electronic states of the SO^{+} ion are calculated using the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction (MRCI approach for internuclear separations from 0.08 to 1.06 nm. The spin-orbit coupling effect on the spectroscopic parameters is included using the Breit-Pauli operator. To improve the quality of PECs and spin-orbit coupling constant (A_{0}, core-valence correlation and scalar relativistic corrections are included. To obtain more reliable results, the PECs obtained by the MRCI calculations are corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q. At the MRCI+Q/aug-cc-pV5Z+CV+DK level, the A_{0} values of the SO^{+}(X^{2}Π_{1/2, 3/2} and SO^{+}(A^{2}Π_{1/2, 3/2} are 362.13 and 58.16 cm^{−1} when the aug-cc-pCVTZ basis set is used to calculate the spin-orbit coupling splitting, and the A_{0} of the SO^{+}(X^{2}Π_{1/2, 3/2} and SO^{+}(A^{2}Π_{1/2, 3/2} are 344.36 and 52.90 cm^{−1} when the aug-cc-pVTZ basis set is used to calculate the spin-orbit coupling splitting. The conclusion is drawn that the core-valence correlations correction makes the A_{0} slightly larger. The spectroscopic results are obtained and compared with those reported in the literature. Excellent agreement exists between the present results and the measurements. The vibrational manifolds are calculated, and those of the first 30 vibrational states are reported for the J = 0 case. Comparison with the measurements shows that the present vibrational manifolds are both reliable and accurate.
Controllability of symmetric spin networks
Albertini, Francesca; D'Alessandro, Domenico
2018-05-01
We consider a network of n spin 1/2 systems which are pairwise interacting via Ising interaction and are controlled by the same electro-magnetic control field. Such a system presents symmetries since the Hamiltonian is unchanged if we permute two spins. This prevents full (operator) controllability, in that not every unitary evolution can be obtained. We prove however that controllability is verified if we restrict ourselves to unitary evolutions which preserve the above permutation invariance. For low dimensional cases, n = 2 and n = 3, we provide an analysis of the Lie group of available evolutions and give explicit control laws to transfer between two arbitrary permutation invariant states. This class of states includes highly entangled states such as Greenberger-Horne-Zeilinger (GHZ) states and W states, which are of interest in quantum information.
Dieny, B.; Sousa, R.; Prejbeanu, L.
2007-04-01
Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic
Universal relations of an ultracold Fermi gas with arbitrary spin-orbit coupling
Jie, Jianwen; Qi, Ran; Zhang, Peng
2018-05-01
We derive the universal relations for an ultracold two-component Fermi gas with a spin-orbit coupling (SOC) ∑α,β =x ,y ,zλα βσαpβ , where px ,y ,z and σx ,y ,z are the single-atom momentum and Pauli operators for pseudospin, respectively, and the SOC intensity λα β could take an arbitrary value. We consider the system with an s -wave short-range interspecies interaction, and ignore the SOC-induced modification for the value of the scattering length. Using the first-quantized approach developed by Tan [S. Tan, Phys. Rev. Lett. 107, 145302 (2011), 10.1103/PhysRevLett.107.145302], we obtain the short-range and high-momentum expansions for the one-body real-space correlation function and momentum distribution function, respectively. For our system these functions are a 2 ×2 matrix in the pseudospin basis. We find that the leading-order (1 /k4 ) behavior of the diagonal elements of the momentum distribution function, i.e., n↑↑(k ) and n↓↓(k ) , are not modified by the SOC. However, the SOC can significantly modify the large-k behaviors of the distribution difference δ n (k ) ≡n↑↑(k ) -n↓↓(k ) as well as the nondiagonal elements of the momentum distribution function, i.e., n↑↓(k ) and n↓↑(k ) . In the absence of the SOC, the leading order of δ n (k ) , n↑↓(k ) , and n↓↑(k ) is O (1 /k6) . When SOC appears, it can induce a term on the order of 1 /k5 for these elements. We further derive the adiabatic relation and the energy functional. Our results show that the SOC can induce an additional term in the energy functional, which describes the contribution from the SOC to the total energy. In addition, the form of the adiabatic relation for our system is not modified by the SOC. Our results are applicable for the systems with any type of single-atom trapping potential, which could be either diagonal or nondiagonal in the pseudospin basis.
J-NSE: Neutron spin echo spectrometer
Directory of Open Access Journals (Sweden)
Olaf Holderer
2015-08-01
Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.
Topologically Massive Higher Spin Gravity
Bagchi, A.; Lal, S.; Saha, A.; Sahoo, B.
2011-01-01
We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the
Spin-orbit and spin-lattice coupling
International Nuclear Information System (INIS)
Bauer, Gerrit E.W.; Ziman, Timothy; Mori, Michiyasu
2014-01-01
We pursued theoretical research on the coupling of electron spins in the condensed matter to the lattice as mediated by the spin-orbit interaction with special focus on the spin and anomalous Hall effects. (author)
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.
Higher spin fields and the Gelfand-Dickey algebra
International Nuclear Information System (INIS)
Bakas, I.
1989-01-01
We show that in 2-dimensional field theory, higher spin algebras are contained in the algebra of formal pseudodifferential operators introduced by Gelfand and Dickey to describe integrable nonlinear differential equations in Lax form. The spin 2 and 3 algebras are discussed in detail and the generalization to all higher spins is outlined. This provides a conformal field theory approach to the representation theory of Gelfand-Dickey algebras. (orig.)
Spin resonance strength calculation through single particle tracking for RHIC
Energy Technology Data Exchange (ETDEWEB)
Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-05-03
The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.
Spin injection into Pt-polymers with large spin-orbit coupling
Sun, Dali; McLaughlin, Ryan; Siegel, Gene; Tiwari, Ashutosh; Vardeny, Z. Valy
2014-03-01
Organic spintronics has entered a new era of devices that integrate organic light-emitting diodes (OLED) in organic spin valve (OSV) geometry (dubbed bipolar organic spin valve, or spin-OLED), for actively manipulating the device electroluminescence via the spin alignment of two ferromagnetic electrodes (Science 337, 204-209, 2012; Appl. Phys. Lett. 103, 042411, 2013). Organic semiconductors that contain heavy metal elements have been widely used as phosphorescent dopants in white-OLEDs. However such active materials are detrimental for OSV operation due to their large spin-orbit coupling (SOC) that may limit the spin diffusion length and thus spin-OLED based on organics with large SOC is a challenge. We report the successful fabrication of OSVs based on pi-conjugated polymers which contain intrachain Platinum atoms (dubbed Pt-polymers). Spin injection into the Pt-polymers is investigated by the giant magnetoresistance (GMR) effect as a function of bias voltage, temperature and polymer layer thickness. From the GMR bias voltage dependence we infer that the ``impendence mismatch'' between ferromagnetic electrodes and Pt-polymer may be suppressed due to the large SOC. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.
Spin Current Noise of the Spin Seebeck Effect and Spin Pumping
Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.
2018-01-01
We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.
Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals
International Nuclear Information System (INIS)
Chen Zhide; Liang, J.-Q.; Pu, F.-C.
2003-01-01
Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved
Effect of spin rotation coupling on spin transport
International Nuclear Information System (INIS)
Chowdhury, Debashree; Basu, B.
2013-01-01
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied
Effect of spin rotation coupling on spin transport
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com
2013-12-15
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.
Spin temperature concept verified by optical magnetometry of nuclear spins
Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.
2018-01-01
We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.
Spin labels. Applications in biology
International Nuclear Information System (INIS)
Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.
1980-11-01
The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)
Spin Switching via Quantum Dot Spin Valves
Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.
2018-01-01
We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.
Hawkes, N
1999-01-01
RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).
International Nuclear Information System (INIS)
Haxton, W.C.
1988-01-01
I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig
International Nuclear Information System (INIS)
Peskin, M.E.
1994-01-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics
Classical spins in superconductors
Energy Technology Data Exchange (ETDEWEB)
Shiba, H [Tokyo Univ.; Maki, K
1968-08-01
It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E. [Stanford Univ., CA (United States)
1994-12-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.
International Nuclear Information System (INIS)
Masaike, Akira
1993-01-01
Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production
Directory of Open Access Journals (Sweden)
Jin Lan (兰金
2015-12-01
Full Text Available A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.
Superconductivity and spin fluctuations
International Nuclear Information System (INIS)
Scalapino, D.J.
1999-01-01
The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations
International Nuclear Information System (INIS)
Tannenbaum, M.J.
1996-01-01
Operation of RHIC with two beams of highly polarized protons (70%, either longitudinal or transverse) at high luminosity L = 2 x 10 32 cm -2 sec -1 for two months/year will allow the STAR and PHENIX detectors to perform high statististics studies of polarization phenomena in the perturbative region of hard scattering where both QCD and ElectroWeak theory make detailed predictions for polarization effects. The collision c.m. energy, √s = 200 - 500 GeV, represents a new domain for the study of spin. Direct photon production will be used to measure the gluon polarization in the polarized proton. A new twist comes from W-boson production which is expected to be 100% parity violating and will thus allow measurements of flavor separated Quark and antiquark (u, bar u, d, bar d) polarization distributions. Searches for parity violation in strong interaction processes such as jet and leading particle production will be a sensitive way to look for new physics beyond the standard model, one possibility being quark substructure
Spin Hall and spin swapping torques in diffusive ferromagnets
Pauyac, C. O.
2017-12-08
A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.
Spin Hall and spin swapping torques in diffusive ferromagnets
Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.
2017-01-01
A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.
International Nuclear Information System (INIS)
Sarmento, E.F.
1980-01-01
Results are found for the correlation dynamic functions (or the correspondent green functions) between any combination including pairs of electronic anel nuclear spin operators in an antiferromagnet semi-infinite media., at low temperature T N . These correlation functions, are used to investigate, at the same time, the properties of surface spin waves in volume and surface. The dispersion relatons of nuclear and electronic spin waves coupled modes, in surface are found, resolving a system of linearized equatons of spin operators a system of linearized equations of spin operators. (author) [pt
Generalized spins and yours applications
International Nuclear Information System (INIS)
Melnikoff, M.
1978-01-01
The correlation between the colinear SU(6) sub(W,STRONG) group, of classification, builded by Melosh in 1974 inside th Null-Plane formalism, and the static SU(6) group classical of classification of the Flat-Plane formalism which is a chiral SU(6) x SU(6) algebra sub-group of Feynman-Gell-Mann-Zweig, is analized. It is shown that is possible to define the 'static limit', in the weak sense, for the SU(6) sub(W,STRONG). Furthermore, rotational symmetries of the Hamiltonian H=α vector. p vector + mβ + ω(x) (1+β) + Ω(x)α vector. x vector are wanted. It is possible to define, in the Flat-Plane formalism a conserved spin but that dont't one relate with the canonical spin by no unitary transformations. The generalized operator of total angular momentum which is conserved, in the Null-Plane formalism in its 'non-orthogonal' version, is found. A generalized spin, conserved, obtained by a exact Melosh transformation appropriate for the case is also found [pt
Observables and Microcospic Entropy of Higher Spin Black Holes
Compère, G.; Jottar, J.I.; Song, W.
2013-01-01
In the context of recently proposed holographic dualities between higher spin theories in AdS3 and (1 + 1)-dimensional CFTs with W symmetry algebras, we revisit the definition of higher spin black hole thermodynamics and the dictionary between bulk fields and dual CFT operators. We build a canonical
Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation
Directory of Open Access Journals (Sweden)
A. A. Deriglazov
2011-01-01
Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.
Computationally inexpensive interpretation of magnetic data for finite spin clusters
DEFF Research Database (Denmark)
Thuesen, Christian Aagaard; Weihe, Høgni; Bendix, Jesper
2010-01-01
We show that high-temperature expansion of the partition function is a computationally convenient tool to interpretation of magnetic properties of spin clusters wherein the spin centers are interacting via an isotropic Heisenberg exchange operator. High-temperature expansions up to order 12 are u...
Spin chain for quantum strings
International Nuclear Information System (INIS)
Beisert, N.
2005-01-01
We review and compare the integrable structures in N=4 gauge theory and string theory on AdS 5 x S 5 . Recently, Bethe ansaetze for gauge theory/weak coupling and string theory/strong coupling were proposed to describe scaling dimensions in the su(2) subsector. Here we investigate the Bethe equations for quantum string theory, naively extrapolated to weak coupling. Excitingly, we find a spin chain Hamiltonian similar, but not equal, to the gauge theory dilatation operator. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
Ting, David Z.
2007-01-01
The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.
Nuclear spins in nanostructures
International Nuclear Information System (INIS)
Coish, W.A.; Baugh, J.
2009-01-01
We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Spin analysis of photoelectrons by using synchrotron radiation
International Nuclear Information System (INIS)
Yagishita, Akira
1983-03-01
This report is the proceedings of a workshop on ''Spin analysis of photoelectrons by using synchrotron radiation'' held at National Laboratory for High Energy Physics on October 21, 1982. The purpose of this workshop was to examine the feasibility of the experiment on the spin analysis of photoelectrons at the photon factory which has started the operation in 1982. The workshop covered the following subjects on the spin analysis of photoelectrons and on the detectors for spin polarization; the experiment and the theory on the spin analysis of photoelectrons emitted from gas and solid, the detectors for measuring the spin polarization of electron beam, the test experiment on a Mott detector, and further problems. The proceedings contain five papers related to the above subjects. (Asami, T.)
Spin drift and spin diffusion currents in semiconductors
Energy Technology Data Exchange (ETDEWEB)
Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au
2008-09-15
On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.
Spin drift and spin diffusion currents in semiconductors
Directory of Open Access Journals (Sweden)
M Idrish Miah
2008-01-01
Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.
Spin drift and spin diffusion currents in semiconductors
International Nuclear Information System (INIS)
Idrish Miah, M
2008-01-01
On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.
Quantifying Spin Hall Angles from Spin Pumping : Experiments and Theory
Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.
2010-01-01
Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni80Fe20|normal metal (N) bilayers into a coplanar
Compound nucleus effects in spin-spin cross sections
International Nuclear Information System (INIS)
Thompson, W.J.
1976-01-01
By comparison with recent data, it is shown that spin-spin cross sections for low-energy neutrons may be dominated by a simple compound-elastic level-density effect, independent of spin-spin terms in the nucleon-nucleus optical-model potential. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Molavi, Mohamad, E-mail: Mo_molavi@yahoo.com [Faculty of Physics, Kharazmi University, Tehran (Iran, Islamic Republic of); Faizabadi, Edris, E-mail: Edris@iust.ac.ir [School of Physics, Iran University of Science and Technology, 16846 Tehran (Iran, Islamic Republic of)
2017-04-15
By using the Green's function formalism, we investigate the effects of single particle energy levels of a quantum dot on the spin-dependent transmission properties through a triple-quantum-dot ring structure. In this structure, one of the quantum dots has been regarded to be non-magnetic and the Rashba spin-orbit interaction is imposed locally on this dot while the two others can be magnetic. The on-site energy of dots, manipulates the interference of the electron spinors that are transmitted to output leads. Our results show that the effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots, which is applicable by a controllable lateral bias voltage externally. Besides, by tuning the parameters such as Rashba spin-orbit interaction, and on-site energy of dots and magnetic flux inside the ring, the structure can be indicated the spin-flip effect and behave as a full spin polarizer or splitter. - Highlights: • The effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots. • In the situation that the QDs have non-zero on-site energies, the system can demonstrate the full spin-polarization. • By tuning the Rashba spin-orbit strength and magnetic flux encountered by the ring the system operates as a Stern-Gerlach apparatus.
International Nuclear Information System (INIS)
Eslami, Leila; Esmaeilzadeh, Mahdi
2014-01-01
Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted
2013-01-01
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated
SPINning parallel systems software
International Nuclear Information System (INIS)
Matlin, O.S.; Lusk, E.; McCune, W.
2002-01-01
We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin
McWeeny, Roy
2004-01-01
Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp
NUCLEON SPIN: Enigma confirmed
International Nuclear Information System (INIS)
Anon.
1994-01-01
In 1987 the European Muon Collaboration (EMC - June 1988, page 9) reported results from a polarized muon-proton scattering experiment at CERN which puzzled the particle and nuclear physics communities. Contrary to the prediction of the naive quark model, the EMC found that little of the proton spin seemed to be carried by the spins of the quarks. An extensive experimental programme was therefore immediately proposed at CERN, SLAC (Stanford) and DESY (Hamburg) to measure the spin structure function of the neutron and to repeat the proton measurement with improved accuracy
International Nuclear Information System (INIS)
Konoto, Makoto
2007-01-01
Development of highly effective evaluation technology of magnetic structures on a nanometric scale is a key to understanding spintronics and related phenomena. A high-resolution spin-polarized scanning electron microscope (spin SEM) developed recently is quite suitable for probing such nanostructures because of the capability of analyzing local magnetization vectors in three dimensions. Utilizing the spin SEM, a layered antiferromagnetic structure with the 1nm-alternation of bilayer-sheet magnetization has been successfully resolved. The real-space imaging with full analysis of the temperature-dependent magnetization vectors will be demonstrated. (author)
International Nuclear Information System (INIS)
Khan, H.
1990-01-01
This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)
Czech Academy of Sciences Publication Activity Database
Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš
2010-01-01
Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010
International Nuclear Information System (INIS)
Chang Wenkua; Zheng Han
1989-01-01
The effects of spinning process parameters including max. pass percentage reduction, spinning temperature, feed rate, lubricant and annealing technology on the quality of shaped components are summarized and discussed in the present paper. The above mentioned parameters are adopted in the process of spinning of barrel-shaped and specially shaped components of refractory metals and their alloys W, Mo, Nb, Zr, TZM molybdenum alloy, C-103, C-752 niobium alloy etc. The cause of leading to usual defects of spun products of refractory metals such as lamellar as 'scaling', crack, swelling, wrinkle, etc. have been analysed and the ways to eliminate the defects have been put forward. 8 figs., 5 tabs. (Author)
Spin transfer torque with spin diffusion in magnetic tunnel junctions
Manchon, Aurelien
2012-08-09
Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.
Electron spin and nuclear spin manipulation in semiconductor nanosystems
International Nuclear Information System (INIS)
Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi
2006-01-01
Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Gaussian dominance on compact spin manifolds
International Nuclear Information System (INIS)
Patrascioiu, A.; Richard, J.L.
1984-07-01
The low temperature regime of continuous spin models is discussed. The relevance of the weak coupling expansion for the calculation of invariant Green's functions is analyzed. Notably it is found that in two dimensions Green's functions of invariant operators cannot be computed perturbatively
The spin and the restrained relativity
International Nuclear Information System (INIS)
Bacry, H.
1992-01-01
The replacement of the Schroedinger position operator by a new one involving the spin variables obliges us to modify slightly the formulas of Lorentz transformations. Here we give a classical description of the way energy, momentum, space and time coordinates transform under a boost. (orig.)
International Nuclear Information System (INIS)
Ahn, Changrim; Nepomechie, Rafael I.; Suzuki, Junji
2008-01-01
Beisert et al. have identified an integrable SU(2,2) quantum spin chain which gives the one-loop anomalous dimensions of certain operators in large N c QCD. We derive a set of nonlinear integral equations (NLIEs) for this model, and compute the scattering matrix of the various (in particular, magnon) excitations
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Interference elimination: nuclear spin in the cabin
International Nuclear Information System (INIS)
Anon.
1984-01-01
Constructed on Michael Faraday's cage principle, such cabins enable nuclear spin tomographs to operate undisturbed by foreign radiation. The working signals of these medical research apparatus are screened from the environment so that radio and television reception are not affected. Details are given of the structure of the cabin, of the prefabricated structural elements of non-magnetic materials (chromium-nickel steel). (Auth.)
Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials
International Nuclear Information System (INIS)
Miah, M. Idrish; Kityk, I.V.; Gray, E. MacA.
2007-01-01
The longitudinal current in Si-doped gallium arsenide was spin-polarized using circularly polarized light. The spin current was detected by the extraordinary Hall effect. An enhancement of Hall conductivity with increasing moderately Si-doping was found, indicating that the introduction of dopants increases the electronic spin polarization. This finding may provide an opportunity for controlling and manipulating nonmagnetic semiconductors via electron spin for operating device applications. Band energy calculations using pseudopotentials confirm the influence of Si content and electron-phonon interaction on the behaviour of the spin current and hence on the spin-dependent Hall voltage
Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials
Energy Technology Data Exchange (ETDEWEB)
Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au; Kityk, I.V. [Institute of Physics, J. Dlugosz University Czestochowa, PL-42201 Czestochowa (Poland); Gray, E. MacA. [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)
2007-10-15
The longitudinal current in Si-doped gallium arsenide was spin-polarized using circularly polarized light. The spin current was detected by the extraordinary Hall effect. An enhancement of Hall conductivity with increasing moderately Si-doping was found, indicating that the introduction of dopants increases the electronic spin polarization. This finding may provide an opportunity for controlling and manipulating nonmagnetic semiconductors via electron spin for operating device applications. Band energy calculations using pseudopotentials confirm the influence of Si content and electron-phonon interaction on the behaviour of the spin current and hence on the spin-dependent Hall voltage.
Ultrafast optical control of individual quantum dot spin qubits.
De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa
2013-09-01
Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled
When measured spin polarization is not spin polarization
International Nuclear Information System (INIS)
Dowben, P A; Wu Ning; Binek, Christian
2011-01-01
Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)
Higher spin currents in the orthogonal coset theory
Energy Technology Data Exchange (ETDEWEB)
Ahn, Changhyun [Kyungpook National University, Department of Physics, Taegu (Korea, Republic of)
2017-06-15
In the coset model (D{sub N}{sup (1)} + D{sub N}{sup (1)}, D{sub N}{sup (1)}) at levels (k{sub 1}, k{sub 2}), the higher spin 4 current that contains the quartic WZW currents contracted with a completely symmetric SO(2N) invariant d tensor of rank 4 is obtained. The three-point functions with two scalars are obtained for any finite N and k{sub 2} with k{sub 1} = 1. They are determined also in the large N 't Hooft limit. When one of the levels is the dual Coxeter number of SO(2N), k{sub 1} = 2N - 2, the higher spin (7)/(2) current, which contains the septic adjoint fermions contracted with the above d tensor and the triple product of structure constants, is obtained from the operator product expansion (OPE) between the spin (3)/(2) current living in the N = 1 superconformal algebra and the above higher spin 4 current. The OPEs between the higher spin (7)/(2), 4 currents are described. For k{sub 1} = k{sub 2} = 2N - 2 where both levels are equal to the dual Coxeter number of SO(2N), the higher spin 3 current of U(1) charge (4)/(3), which contains the six products of spin (1)/(2) (two) adjoint fermions contracted with the product of the d tensor and two structure constants, is obtained. The corresponding N = 2 higher spin multiplet is determined by calculating the remaining higher spin (7)/(2), (7)/(2), 4 currents with the help of two spin (3)/(2) currents in the N = 2 superconformal algebra. The other N = 2 higher spin multiplet, whose U(1) charge is opposite to the one of the above N = 2 higher spin multiplet, is obtained. The OPE between these two N = 2 higher spin multiplets is also discussed. (orig.)
Spin-off strategies for the improvement of the performance national nuclear R and D project
International Nuclear Information System (INIS)
Lee, T. J.; Kim, H. J.; Jung, H. S.; Yang, M. H.; Choi, Y. M.
1998-01-01
In the light of the strategic utilization of the national R and D projects, this paper is to induce the spin-off strategies to improve the national R and D effectiveness through analyzing the spin-off characteristics of nuclear technologies, the spin-off status of the advanced countries and the case study of Korean nuclear spin-offs. Spin-off process is viewed as a three-stage operation, such as preparation stage, implementation stage and maintenance stage. In order to find the correlation between the influencing factors and spin-off effectiveness, the Spearman's correlation coefficient was employed as a specific statistical technique. By integrating this correlation, spin-off process and spin-off strategies, this paper presents an efficient frame work to improve the spin-off effectiveness
Spin-4 extended conformal algebras
International Nuclear Information System (INIS)
Kakas, A.C.
1988-01-01
We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)
Anisotropic spin relaxation in graphene
Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.
2008-01-01
Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular
Spin squeezing and quantum correlations
Indian Academy of Sciences (India)
2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.
Geometry of spin coherent states
Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.
2018-04-01
Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \
Charge and Spin Transport in Spin-orbit Coupled and Topological Systems
Ndiaye, Papa Birame
2017-10-31
In the search for low power operation of microelectronic devices, spin-based solutions have attracted undeniable increasing interest due to their intrinsic magnetic nonvolatility. The ability to electrically manipulate the magnetic order using spin-orbit interaction, associated with the recent emergence of topological spintronics with its promise of highly efficient charge-to-spin conversion in solid state, offer alluring opportunities in terms of system design. Although the related technology is still at its infancy, this thesis intends to contribute to this engaging field by investigating the nature of the charge and spin transport in spin-orbit coupled and topological systems using quantum transport methods. We identified three promising building blocks for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic state). Chapter 2 reviews the basics and essential concepts used throughout the thesis: the spin-orbit coupling, the mathematical notion of topology and its importance in condensed matter physics, then topological magnetism and a zest of magnonics. In Chapter 3, we study the spin-orbit torques at the magnetized interfaces of 3D topological insulators. We demonstrated that their peculiar form, compared to other spin-orbit torques, have important repercussions in terms of magnetization reversal, charge pumping and anisotropic damping. In Chapter 4, we showed that the interplay between magnon current jm and magnetization m in homogeneous ferromagnets with Dzyaloshinskii-Moriya (DM) interaction, produces a field-like torque as well as a damping-like torque. These DM torques mediated by spin wave can tilt the imeaveraged magnetization direction and are similar to Rashba torques for electronic systems. Moreover, the DM torque is more efficient when magnons are
International Nuclear Information System (INIS)
O'FAllon, J.R.
1991-01-01
The history of spin physics experiments is presented, with emphasis of Kent Terwilliger's involvement. Development of polarized beams and targets at the ZGS and AGS is recalled. P-P elastic scattering experiments are reviewed
International Nuclear Information System (INIS)
Ratcliffe, P.G.
1993-01-01
A discussion is presented of the role that transverse spin physics can play in providing information on the bound state dynamics in hadronic physics. Care is taken to distinguish between single- and double-spin measurements, each being discussed separately. In the case of single-spin effects it is stressed that as yet no satisfactory explanation has been provided within the framework if perturbative QCD which in fact generally predicts negligible effects. In order to clarify the situation experimental data at yet higher p T are necessary and semi-leptonic data could shed some light on the underlying scattering mechanisms. As regards double-spin correlations, the theoretical picture (although clouded by some ill-informed, often erroneous statements and even recent papers) is rather well understood and what is dearly missing is the experimental study of, for example, g 2 in deep-inelastic scattering. (author). 31 refs
International Nuclear Information System (INIS)
Glyde, H.R.; Hernadi, S.I.
1986-01-01
Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)
Microresonators for electron spin qubits
International Nuclear Information System (INIS)
Suter, D.; Stonies, R.; Voges, E.
2005-01-01
Full text: The traditional high-Q EPR resonators are optimized for large samples. For small samples and individual qubits, it is possible to design different resonators that have much better power handling properties, create less interference with other peripheral lines and, if they are used for detection, have better sensitivity. Other parameters being equal, the sensitivity of the resonator can be increased by minimizing its size and thus increasing the filling factor. In contrast to cavity type resonators, microcoils can be made much smaller than the operation wavelength. For this type of resonator, it has been established theoretically and experimentally that the sensitivity varies inversely with its linear dimensions. Moreover, the planar coil geometry is ideal to be manufactured in a small size by means of standard microtechnology. It also offers advantages for the excitation of electron spins in prototype quantum computer systems. High microwave power to the magnetic field conversion factor of the microresonator allows to achieve 24 ns L/2 - pulses with less than 20 mW of incident power. Within the QIPDDF-ROSES project, we are using such resonators to measure the EPR parameters of monolayer molecular films of N at C60 and for excitation of the single electron spin in a defect center in diamond. The microresonator prototypes consisting of a 200 μm planar microcoil tuned and matched at 14 GHz with distributed elements have been fabricated on Si substrate. The sensitivity tests with a DPPH samples resulted in the sensitivity value 10E9 spins/G/Hz1/2 at 300 K. The designed layouts of the microresonator can be scaled down up to a tens of micrometers, and with a different microwave coupling approach hundreds of nanometers could be achieved, allowing the operation frequency up to 100 THz (author)
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Energy Technology Data Exchange (ETDEWEB)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-05-07
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
International Nuclear Information System (INIS)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-01-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems
Connected and disconnected quark contributions to hadron spin
International Nuclear Information System (INIS)
Chambers, A.J.
2014-12-01
By introducing an external spin operator to the fermion action, the quark spin fractions of hadrons are determined from the linear response of the hadron energies using the Feynman-Hellmann (FH) theorem. At our SU(3)-flavour symmetric point, we find that the connected quark spin fractions are universally in the range 55-70% for vector mesons and octet and decuplet baryons. There is an indication that the amount of spin suppression is quite sensitive to the strength of SU(3) breaking. We also present first preliminary results applying the FH technique to calculations of quark-line disconnected contributions to hadronic matrix elements of axial and tensor operators. At the SU(3)-flavour symmetric point we find a small negative contribution to the nucleon spin from disconnected quark diagrams, while the corresponding tensor matrix elements are consistent with zero.
Radial expansion for spinning conformal blocks
Costa, Miguel S.; Penedones, João; Trevisani, Emilio
2016-07-12
This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.
Optical switching of nuclear spin-spin couplings in semiconductors.
Goto, Atsushi; Ohki, Shinobu; Hashi, Kenjiro; Shimizu, Tadashi
2011-07-05
Two-qubit operation is an essential part of quantum computation. However, solid-state nuclear magnetic resonance quantum computing has not been able to fully implement this functionality, because it requires a switchable inter-qubit coupling that controls the time evolutions of entanglements. Nuclear dipolar coupling is beneficial in that it is present whenever nuclear-spin qubits are close to each other, while it complicates two-qubit operation because the qubits must remain decoupled to prevent unwanted couplings. Here we introduce optically controllable internuclear coupling in semiconductors. The coupling strength can be adjusted externally through light power and even allows on/off switching. This feature provides a simple way of switching inter-qubit couplings in semiconductor-based quantum computers. In addition, its long reach compared with nuclear dipolar couplings allows a variety of options for arranging qubits, as they need not be next to each other to secure couplings.
Exertional Rhabdomyolysis after Spinning
Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung
2016-01-01
Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24?48 hours after attending a spi...
CERN. Geneva
2014-01-01
The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.
Evaluation of radiative spin polarization in an electron storage ring
Energy Technology Data Exchange (ETDEWEB)
Chao, A W [Stanford Linear Accelerator Center, CA (USA)
1981-02-15
We have developed a matrix formalism that provides an accurate way of evaluating the degree of spin polarization built up through the process of synchrotron radiation under a wide variety of storage ring operation conditions.
Salberger, Olof; Korepin, Vladimir
We introduce a new model of interacting spin 1/2. It describes interactions of three nearest neighbors. The Hamiltonian can be expressed in terms of Fredkin gates. The Fredkin gate (also known as the controlled swap gate) is a computational circuit suitable for reversible computing. Our construction generalizes the model presented by Peter Shor and Ramis Movassagh to half-integer spins. Our model can be solved by means of Catalan combinatorics in the form of random walks on the upper half plane of a square lattice (Dyck walks). Each Dyck path can be mapped on a wave function of spins. The ground state is an equally weighted superposition of Dyck walks (instead of Motzkin walks). We can also express it as a matrix product state. We further construct a model of interacting spins 3/2 and greater half-integer spins. The models with higher spins require coloring of Dyck walks. We construct a SU(k) symmetric model (where k is the number of colors). The leading term of the entanglement entropy is then proportional to the square root of the length of the lattice (like in the Shor-Movassagh model). The gap closes as a high power of the length of the lattice [5, 11].
Chudnovsky, Eugene M.
2007-01-01
An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...
The Triple Axis and SPINS Spectrometers.
Trevino, S F
1993-01-01
In this paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, this work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments.
Frequency multiplexing for readout of spin qubits
Energy Technology Data Exchange (ETDEWEB)
Hornibrook, J. M.; Colless, J. I.; Mahoney, A. C.; Croot, X. G.; Blanvillain, S.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Lu, H.; Gossard, A. C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)
2014-03-10
We demonstrate a low loss, chip-level frequency multiplexing scheme for readout of scaled-up spin qubit devices. By integrating separate bias tees and resonator circuits on-chip for each readout channel, we realise dispersive gate-sensing in combination with charge detection based on two radio frequency quantum point contacts. We apply this approach to perform multiplexed readout of a double quantum dot in the few-electron regime and further demonstrate operation of a 10-channel multiplexing device. Limitations for scaling spin qubit readout to large numbers of multiplexed channels are discussed.
String bits and the spin vertex
Jiang, YunfengInstitut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France; Kostov, Ivan(Institut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France); Petrovskii, Andrei(Institut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France); Serban, Didina(Institut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France)
2015-01-01
We initiate a novel formalism for computing correlation functions of trace operators in the planar N=4 SYM theory. The central object in our formalism is the spin vertex, which is the weak coupling analogy of the string vertex in string field theory. We construct the spin vertex explicitly for all sectors at the leading order using a set of bosonic and fermionic oscillators. We prove that the vertex has trivial monodromy, or put in other words, it is a Yangian invariant. Since the monodromy o...
Spin force and torque in non-relativistic Dirac oscillator on a sphere
Shikakhwa, M. S.
2018-03-01
The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin-orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.
A many-body analysis of NMR in spin-1/2 system
International Nuclear Information System (INIS)
Roy, G.K.; Sinha, S.K.
1977-01-01
The NMR absorption in a spin-1/2 system at finite temperature has been analysed by using the linear response theory and calculating the finite-temperature retarted spin Green's function. In this calculations, the Drone-Fermion representation for the spin operators has been used. A model spin-lattice interaction which is linear in phonon and Fermion operators has been considered, and its effect on a mutually non-interacting spin system has been calculated using the diagrammatic expansions technique. It is found that the complete summing up of a particular class of diagrams yields the Lorentzian shape of the resonance line. (author)
Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited
Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.
The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.
Spin-current emission governed by nonlinear spin dynamics.
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-10-16
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.
K-band single-chip electron spin resonance detector.
Anders, Jens; Angerhofer, Alexander; Boero, Giovanni
2012-04-01
We report on the design, fabrication, and characterization of an integrated detector for electron spin resonance spectroscopy operating at 27 GHz. The microsystem, consisting of an LC-oscillator and a frequency division module, is integrated onto a single silicon chip using a conventional complementary metal-oxide-semiconductor technology. The achieved room temperature spin sensitivity is about 10(8)spins/G Hz(1/2), with a sensitive volume of about (100 μm)(3). Operation at 77K is also demonstrated. Copyright © 2012 Elsevier Inc. All rights reserved.
Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction
Ortiz Pauyac, Christian
2016-06-19
In the present thesis we introduce the reader to the ﬁeld of spintronics and explore new phenomena, such as spin transfer torques, spin ﬁltering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin ﬁltering. In Chap. 3 we discuss the Rashba torque in ferromagnetic ﬁlms, and in Chap. 4 we study spin Hall eﬀect and spin swapping in ferromagnetic ﬁlms, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.
Higher spin currents in orthogonal Wolf space
International Nuclear Information System (INIS)
Ahn, Changhyun; Paeng, Jinsub
2015-01-01
For the N=4 superconformal coset theory by ((SO(N+4))/(SO(N)×SU(2)))×U(1) (that contains an orthogonal Wolf space) with N = 4, the N=2 WZW affine current algebra is obtained. The 16 generators (or 11 generators) of the large N=4 linear (or nonlinear) superconformal algebra are described by these WZW affine currents explicitly. Along the line of large N=4 holography, the extra 16 currents with spins (2,(5/2),(5/2),3), ((5/2),3,3,(7/2)), ((5/2),3,3,(7/2)), and (3,(7/2),(7/2),4) are obtained in terms of the WZW affine currents. The lowest spin of this N=4 multiplet is two rather than one, which is for a unitary Wolf space. The operator product expansions between the above 11 currents and these extra 16 higher spin currents are found explicitly. (paper)
A new spin on causality constraints
Energy Technology Data Exchange (ETDEWEB)
Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University, Ithaca, New York (United States)
2016-10-26
Causality in a shockwave state is related to the analytic properties of a four-point correlation function. Extending recent results for scalar probes, we show that this constrains the couplings of the stress tensor to light spinning operators in conformal field theory, and interpret these constraints in terms of the interaction with null energy. For spin-1 and spin-2 conserved currents in four dimensions, the resulting inequalities are a subset of the Hofman-Maldacena conditions for positive energy deposition. It is well known that energy conditions in holographic theories are related to causality on the gravity side; our results make a connection on the CFT side, and extend it to non-holographic theories.
Long coherence times for edge spins
Kemp, Jack; Yao, Norman Y.; Laumann, Christopher R.; Fendley, Paul
2017-06-01
We show that in certain one-dimensional spin chains with open boundary conditions, the edge spins retain memory of their initial state for very long times, even at infinite temperature. The long coherence times do not require disorder, only an ordered phase. In the integrable Ising and XYZ chains, the presence of a strong zero mode means the coherence time is infinite. When Ising is perturbed by interactions breaking the integrability, the coherence time remains exponentially long in the perturbing couplings. We show that this is a consequence of an edge ‘almost’ strong zero mode that almost commutes with the Hamiltonian. We compute this operator explicitly, allowing us to estimate accurately the plateau value of edge spin autocorrelator.
Stapel, R.J.; De Vries, J.D.E.
2014-01-01
This article focuses on a generation of chroniclers from the Low Countries operating at the intersection of urban and clerical environments and how they worked together to produce new historiographical texts. At the heart are the writings of three of the most productive and well-known
Optical spin generation/detection and spin transport lifetimes
International Nuclear Information System (INIS)
Miah, M. Idrish
2011-01-01
We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.
Optical spin generation/detection and spin transport lifetimes
Energy Technology Data Exchange (ETDEWEB)
Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)
2011-02-25
We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.
Magnetocaloric effect in quantum spin-s chains
Directory of Open Access Journals (Sweden)
A. Honecker
2009-01-01
Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.
Rotational Invariance of the 2d Spin - Spin Correlation Function
Pinson, Haru
2012-09-01
At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).
Quantum decoration transformation for spin models
Energy Technology Data Exchange (ETDEWEB)
Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre, E-mail: ors@dfi.ufla.br
2016-09-15
It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.
Quantum decoration transformation for spin models
International Nuclear Information System (INIS)
Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre
2016-01-01
It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.
Efficient Spin Injection into Semiconductor
International Nuclear Information System (INIS)
Nahid, M.A.I.
2010-06-01
Spintronic research has made tremendous progress nowadays for making future devices obtain extra advantages of low power, and faster and higher scalability compared to present electronic devices. A spintronic device is based on the transport of an electron's spin instead of charge. Efficient spin injection is one of the very important requirements for future spintronic devices. However, the effective spin injection is an exceedingly difficult task. In this paper, the importance of spin injection, basics of spin current and the essential requirements of spin injection are illustrated. The experimental technique of electrical spin injection into semiconductor is also discussed based on the experimental experience. The electrical spin injection can easily be implemented for spin injection into any semiconductor. (author)
International Nuclear Information System (INIS)
Yokosawa, A.
1992-01-01
Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, π-nucleon physics looked attractive, since the determination of spin and parity of possible πp resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy
Directory of Open Access Journals (Sweden)
Rugang Geng
2016-09-01
Full Text Available In the preceding review paper, Paper I [Journal of Science: Advanced Materials and Devices 1 (2016 128–140], we showed the major experimental and theoretical studies on the first organic spintronic subject, namely organic magnetoresistance (OMAR in organic light emitting diodes (OLEDs. The topic has recently been of renewed interest as a result of a demonstration of the magneto-conductance (MC that exceeds 1000% at room temperature using a certain type of organic compounds and device operating condition. In this report, we will review two additional organic spintronic devices, namely organic spin valves (OSVs where only spin polarized holes exist to cause magnetoresistance (MR, and spin organic light emitting diodes (spin-OLEDs where both spin polarized holes and electrons are injected into the organic emissive layer to form a magneto-electroluminescence (MEL hysteretic loop. First, we outline the major advances in OSV studies for understanding the underlying physics of the spin transport mechanism in organic semiconductors (OSCs and the spin injection/detection at the organic/ferromagnet interface (spinterface. We also highlight some of outstanding challenges in this promising research field. Second, the first successful demonstration of spin-OLEDs is reviewed. We also discuss challenges to achieve the high performance devices. Finally, we suggest an outlook on the future of organic spintronics by using organic single crystals and aligned polymers for the spin transport layer, and a self-assembled monolayer to achieve more controllability for the spinterface.
Spin Structures in Magnetic Nanoparticles
DEFF Research Database (Denmark)
Mørup, Steen; Brok, Erik; Frandsen, Cathrine
2013-01-01
Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation....... Here, we give a short review of anomalous spin structures in nanoparticles....
On the geometry of the spin-statistics connection in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Reyes, A.
2006-07-01
The Spin-Statistics theorem states that the statistics of a system of identical particles is determined by their spin: Particles of integer spin are Bosons (i.e. obey Bose-Einstein statistics), whereas particles of half-integer spin are Fermions (i.e. obey Fermi-Dirac statistics). Since the original proof by Fierz and Pauli, it has been known that the connection between Spin and Statistics follows from the general principles of relativistic Quantum Field Theory. In spite of this, there are different approaches to Spin-Statistics and it is not clear whether the theorem holds under assumptions that are different, and even less restrictive, than the usual ones (e.g. Lorentz-covariance). Additionally, in Quantum Mechanics there is a deep relation between indistinguishability and the geometry of the configuration space. This is clearly illustrated by Gibbs' paradox. Therefore, for many years efforts have been made in order to find a geometric proof of the connection between Spin and Statistics. Recently, various proposals have been put forward, in which an attempt is made to derive the Spin-Statistics connection from assumptions different from the ones used in the relativistic, quantum field theoretic proofs. Among these, there is the one due to Berry and Robbins (BR), based on the postulation of a certain single-valuedness condition, that has caused a renewed interest in the problem. In the present thesis, we consider the problem of indistinguishability in Quantum Mechanics from a geometric-algebraic point of view. An approach is developed to study configuration spaces Q having a finite fundamental group, that allows us to describe different geometric structures of Q in terms of spaces of functions on the universal cover of Q. In particular, it is shown that the space of complex continuous functions over the universal cover of Q admits a decomposition into C(Q)-submodules, labelled by the irreducible representations of the fundamental group of Q, that can be
Rackham, Neil
1995-01-01
True or false? In selling high-value products or services: "closing" increases your chance of success; it is essential to describe the benefits of your product or service to the customer; objection handling is an important skill; and open questions are more effective than closed questions. All false, says Neil Rackham. He and his team studied more than 35,000 sales calls made by 10,000 sales people in 23 countries over 12 years. Their findings revealed that many of the methods developed for selling low-value goods just don't work for major sales. Rackham went on to introduce his SPIN-selling method, where SPIN describes the whole selling process - Situation questions, Problem questions, Implication questions, Need-payoff questions. SPIN-selling provides you with a set of simple and practical techniques which have been tried in many of today's leading companies with dramatic improvements to their sales performance.
Contucci, Pierluigi
2013-01-01
Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.
Exertional Rhabdomyolysis after Spinning.
Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung
2016-11-01
Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24-48 hours after attending a spinning class at a local gymnasium. Paired with key laboratory findings, her symptoms were suggestive of rhabdomyolysis. She required hospital admission to sustain renal function through fluid resuscitation therapy and fluid balance monitoring. Because exertional rhabdomyolysis may occur in any unfit but otherwise healthy individual who indulges in stationary cycling, the potential health risks of this activity must be considered.
DEFF Research Database (Denmark)
Jensen, J.; Houmann, Jens Christian Gylden
1975-01-01
The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been...... explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating...... in the c direction of Tb have been studied experimentally by means of inelastic neutron scattering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed...
International Nuclear Information System (INIS)
Schill, Christian
2012-01-01
The COMPASS experiment is a fixed target experiment at the CERN SPS using muon and hadron beams for the investigation of the spin structure of the nucleon and hadron spectroscopy. The main objective of the muon physics program is the study of the spin of the nucleon in terms of its constituents, quarks and gluons. COMPASS has accumulated data during 6 years scattering polarized muons off longitudinally or transversely polarized deuteron ( 6 LiD) or proton (NH 3 ) targets. Results for the gluon polarization are obtained from longitudinal double spin cross section asymmetries using two different channels, open charm production and high transverse momentum hadron pairs, both proceeding through the photon-gluon fusion process. Also, the longitudinal spin structure functions of the proton and the deuteron were measured in parallel as well as the helicity distributions for the three lightest quark flavours. With a transversely polarized target, results were obtained with proton and deuteron targets for the Collins and Sivers asymmetries for charged hadrons as well as for identified kaons and pions. The Collins asymmetry is sensitive to the transverse spin structure of the nucleon, while the Sivers asymmetry reflects correlations between the quark transverse momentum and the nucleon spin. Recently, a new proposal for the COMPASS II experiment was accepted by the CERN SPS which includes two new topics: Exclusive reactions like DVCS and DVMP using the muon beam and a hydrogen target to study generalized parton distributions and Drell-Yan measurements using a pion beam and a polarized NH 3 target to study transverse momentum dependent distributions.
Control of electron spin decoherence in nuclear spin baths
Liu, Ren-Bao
2011-03-01
Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath
CONFERENCE: Muon spin rotation
Energy Technology Data Exchange (ETDEWEB)
Karlsson, Erik
1986-11-15
An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.
DEFF Research Database (Denmark)
Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans
1975-01-01
with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results......, which are corrected for the effect of the direct coupling between the magnons and the phonons, and for the field dependence of the relative magnetization at finite temperatures. A large q⃗-dependent difference between the two energy components is observed, showing that the anisotropy of the two...
International Nuclear Information System (INIS)
Ramachandran, R.
1994-09-01
The object of this brief review is to reconcile different points of view on how the spin of proton is made up from its constituents. On the basis of naive quark model with flavour symmetry such as isospin or SU(3) one finds a static description. On the contrary the local SU(3) colour symmetry gives a dynamical view. Both these views are contrasted and the role of U(1) axial anomaly and the ambiguity for the measurable spin content is discussed. (author). 16 refs, 1 fig
Russ, Maximilian; Burkard, Guido
2017-10-01
The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange
Spin transfer torque with spin diffusion in magnetic tunnel junctions
Manchon, Aurelien; Matsumoto, R.; Jaffres, H.; Grollier, J.
2012-01-01
in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque
Dual descriptions of massive spin-2 particles in D=3+1
International Nuclear Information System (INIS)
Dalmazi, Denis
2013-01-01
Full text: Since the sixties (last century) one speculates on the effects of a possible (tiny) mass for the graviton. One expects a decrease in the gravitational interaction at large distances which comes handy regarding the experimental data of the last 15 years on the accelerated expansion of the universe. There has been a growing interest in massive quantum gravity in the last years. Almost all recent works are built up on the top of a free (quadratic) action for a massive spin-2 particle known as massive Fierz-Pauli (FP) theory which has first appeared in 1939. In this theory the basic field is a symmetric rank-2 tensor. It is a common belief in the massive gravity community that the massive FP theory is the unique self-consistent (ghost free, Poincare covariant, correct number of degrees of freedom) description of massive spin-2 particles in terms of a rank-2 tensor. We have shown recently that there are other possibilities if we start with a general (non-symmetric) rank-2 tensor. Here we show how our previous work is related with the well known massive FP theory via the introduction of spectators fields of rank-0 (scalar) and rank-1 (vector). We comment on the introduction of interacting vertices and how they affect the free duality with the massive FP theory (author)
Transverse Spin Physics: Recent Developments
International Nuclear Information System (INIS)
Yuan, Feng
2008-01-01
Transverse-spin physics has been very active and rapidly developing in the last few years. In this talk, I will briefly summarize recent theoretical developments, focusing on the associated QCD dynamics in transverse spin physics
International Nuclear Information System (INIS)
Faris, W.G.
1981-01-01
Dankel has shown how to incorporate spin into stochastic mechanics. The resulting non-local hidden variable theory gives an appealing picture of spin correlation experiments in which Bell's inequality is violated. (orig.)
Energy efficient hybrid computing systems using spin devices
Sharad, Mrigank
Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.